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Abstract

A large literature following Ruhm (2000) suggests that mortality falls during
recessions and rises during booms. This relationship, however, tends to be
analyzed within a panel-data framework that implicitly assumes either that
local economic shocks do not induce migration, or that insofar as they do,
these movements are accurately reflected in intercensal population estimates.
In this paper, we argue that unobserved migratory responses have the potential
to bias results. To study the extent of this bias, we draw on two natural
experiments: the recession in cotton textile-producing regions of Britain during
the U.S. Civil War and the Appalachian coal boom that followed the OPEC
oil embargo in the 1970s. In both settings, we find evidence of a substantial
migration response. Furthermore, we show that estimates of the business cycle-
mortality relationship obtained using the standard approach are highly sensitive
to assumptions about both the accuracy of interpolated population values and
the short-run relationship between population and mortality. We also show
that control regions may be indirectly affected by migration into or away from
treatment regions, leading to unobserved treatment spillovers. Together, our
findings suggest that, when left unaddressed, large migratory responses can
meaningfully undermine inference. Once we adjust for migration, we find no
evidence that the coal boom substantially affected mortality, and we find that
mortality increased during the cotton recession.
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1 Introduction

How do business cycles affect mortality? This question has attracted substantial at-

tention following an influential study by Ruhm (2000), which found that mortality

rates in the U.S. fall during recessions and rise during booms. Methodologically,

Ruhm compared state-level unemployment rates to state-level total mortality rates.

This panel-data approach has now been applied to a wide variety of settings in devel-

oped and developing countries, both modern and historical. The majority of studies

in this literature yield consistent results: mortality appears to be pro-cyclical.1

One critical assumption embedded in this empirical approach is that either there

is no large migration response to business-cycle fluctuations, or that short-run pop-

ulation flows are accurately captured by intercensal population estimates.2 If this

assumption fails, say, because unobserved migration changes either the size or the

composition of an affected location’s at-risk population, then we may observe a spuri-

ous change in the observed mortality rate which we will misinterpret as reflecting the

true impact of business cycles on health. We call this phenomenon migration bias.

Migration also raises two further concerns. First, migration may cause unemployment

rates, the key explanatory variable used in most of the studies following Ruhm (2000),

to become endogenous.3 Second, since business cycle-induced migration is likelier to

occur between treatment and control locations, rather than within them, treatment

spillovers across migrant-sending and migrant-receiving regions have the potential to

1We review this literature in Appendix A.1. Notable exceptions which find either mixed health
effects or evidence of counter-cyclical mortality include Svensson (2007), Economou et al. (2008),
and Miller & Urdinola (2010).

2This potential issue is mentioned in Ruhm (2007), Stuckler et al. (2012) and Lindo (2015), but
we are not aware of a study that assess the extent to which migration may affect the results in this
literature.

3This is because unemployment rates both affect and are affected by migration. That is, a
change in the unemployment rate may induce migration, and this migration will in turn affect both
the numerator and denominator used to calculate unemployment rates in the next period. Similarly,
unemployment rates may affect and be affected by patterns in mortality and fertility, patterns which
may also be influenced by migration. The endogeneity of unemployment rates has been raised as a
concern in Miller & Urdinola (2010).
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bias coefficient estimates obtained in panel-data regressions.

In light of these issues, the aims of this study are twofold: first, to assess the mi-

gration response to short-run changes in economic conditions; and second, to examine

the impact of such migration on estimates of the relationship between business cycles

and mortality.

To do this, we draw on two empirical settings in which we can observe the local in-

cidence of an economic shock without relying on measures, such as the unemployment

rate, which drive and are endogenously affected by migration. The first setting is the

large recession in the cotton-textile producing regions of Britain caused by the U.S.

Civil War (1861-1865), an event which sharply reduced the supply of raw cotton.4

The second setting is the boom in the coal-producing counties of the Appalachian

U.S. over the period 1970-1977, an event precipitated by the OPEC oil embargo and

national regulatory changes.5 Both settings were chosen because they offer plausibly

exogenous variation in the timing and spatial distribution of short-term economic

shocks, allowing us to more cleanly identify changes in local economic conditions.6

In both cases, the temporal component of the economic shock was short, sharp, and

generated by outside forces that were largely unexpected. Meanwhile, the spatial

incidence of each shock was determined by the pre-existing distribution of economic

activity, which was in turn due to underlying natural endowments.7 Importantly,

migration was not a consideration in the choice of these settings.

We make three primary contributions in this study. First, we show that local eco-

4This setting has previously been studied by Hanlon (2015) and Hanlon (Forthcoming), which
examined outcomes related to technological change and urban growth, respectively.

5This setting has previously been studied by Black et al. (2002), Black et al. (2005), and Black
et al. (2013), which investigated outcomes related to social welfare provision, local economic perfor-
mance, and fertility, respectively.

6This approach follows work by Miller & Urdinola (2010).
7In the case of the coal boom, the key natural endowment was coal reserves. In the case of the

cotton shortage, work by Crafts & Wolf (2014) shows that the spatial distribution of the cotton
textile industry in the 1830s was driven by factors including the availability of water power sources,
rugged terrain, and access to a natural port. There was strong persistence in industry location, so
that the locations where the industry was concentrated in the 1830s remained the main centers of
the industry in the 1860s.
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nomic shocks can induce substantial and systematic migration responses. In the case

of the cotton shortage, we observe evidence that workers left cotton textile-producing

areas during the recession, settling temporarily in nearby non-cotton locations. In

the case of the coal boom, we observe that the pattern of out-migration from Ap-

palachia in the decades prior to the 1970s saw a short-lived reversal during the boom

decade of 1970-1980. In this setting in particular, migration appears to have been

highly selective, with boom-time population changes driven by the return of healthy

working-age adults.

Second, we provide evidence that the estimated relationship between business

cycles and mortality is highly sensitive to modeling assumptions related to migra-

tion. In particular, we show that the standard approach can produce results that are

unstable—and even misleading—in the presence of migration. In our cotton setting,

for instance, the standard approach produces estimates that are opposite in sign to

those obtained under specifications that more fully account for migration bias. This

is because the standard estimating equation introduced by Ruhm (2000) embeds im-

portant assumptions about the accuracy of intercensal population estimates and the

relationship between population and mortality in the short run. To be more specific,

by using the mortality rate as the dependent variable, the Ruhm approach implic-

itly assumes a one-to-one relationship between changes in population and those in

mortality. This assumption is likely to be violated when migration has taken place—

for instance, if migration is selective, if it causes intercensal population to be poorly

measured, or if it induces congestion effects.

Accordingly, we use three strategies to diagnose and account for the impact of

migration on estimates of the relationship between business cycles and mortality.

First, we propose a set of alternative estimation strategies, each embedding different

assumptions about the relationship between mortality and short-run changes in popu-

lation. Comparing the results obtained from these alternative approaches shows that

estimates of the business cycle-mortality relationship depend heavily on the choices
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made to model migration. Second, we use the available evidence on the migration

response in each setting in order to choose between these alternative approaches and

the underlying assumptions they imply. Third, we validate our choice of modeling as-

sumptions by generating additional results using windows around census years, when

population estimates are more accurate and less subject to migration bias.

Our final contribution is to provide substantive evidence on the relationship be-

tween business cycles and mortality in two very different environments. In the case of

the cotton shortage, our results after adjusting for migration bias suggest that mor-

tality increased during this recession. In the case of the Appalachian coal boom, there

is evidence that population sorting through migration, with young, healthy workers

migrating temporarily to coal areas during the boom, had a substantial impact on

the observed mortality rate. We find little evidence, however, that the Appalachian

coal boom had any real effect on underlying population mortality. Strikingly, neither

our cotton nor our coal findings are consistent with the pro-cyclical mortality results

obtained in most of the existing literature.

Together, our results suggest that migration bias is an important concern, and

that it may cause the standard panel-data approach used in the literature to gener-

ate meaningfully inaccurate estimates of the relationship between business cycles and

mortality. One approach to dealing with these effects is to focus on specific shocks,

assess the magnitude and direction of migration bias, and to use additional informa-

tion on those migratory responses to make empirical choices that will mitigate this

bias. An alternative approach to dealing with migration bias—but one that is only

possible in settings with unusually rich data—is to use individual-level panel data.

This approach has been applied in Sweden by Gerdtham & Johannesson (2005) and

in the U.S. by Edwards (2008). Notably, these papers find mixed or counter-cyclical

effects. Together with our results, the findings in these studies suggest that account-

ing for migration bias may substantially change our understanding of the relationship

between business cycles and mortality. Although studies using individual-level panel
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data may be less vulnerable to migration issues, current data constraints mean that

this approach cannot be widely applied—for instance, in developing-country settings

or over longer periods of time, where we may nevertheless wish to study the relation-

ship between business cycles and mortality.

In addition to the large literature following Ruhm (2000), which we describe in

more detail in the next two sections, our results are also related to recent work by

Cutler et al. (2016), which uses national cohort data to study the impact of recessions

on mortality on a cross-country basis. Because migration is more difficult across na-

tional borders, this approach, like the individual panel-data ones above, is less likely

than other studies in this literature to suffer from migration bias. Indeed, Cutler

et al. (2016) find mixed evidence of pro-cyclicality as well: large recessions are bad

for health, while small ones may improve health. Given that the cotton shortage

we study was a very large shock, our results upon adjusting for migration appear

to be consistent with their findings. Finally, our emphasis on the statistical impact

of migration on estimates of health is related to work emphasizing the impact that

migration can generate when panel-data approaches are applied to answer other ques-

tions. For example, Borjas (2003) and Borjas (2014) provide evidence that migration

responses can be an important source of bias in estimates of the impact of foreign

migrants on local labor markets.

In the next section, we briefly describe the mechanisms through which local eco-

nomic shocks may affect health. Section 3 describes the impact that migration can

have on observed mortality rates, while Section 4 describes the empirical approach

that we will use to investigate these issues. We illustrate the impact of migration bias

empirically in our cotton shortage and coal boom examples, which are presented in

Sections 5 and 6, respectively. Section 7 concludes.

5



2 Business cycles and health

The existing literature highlights a number of channels through which booms or

recessions can affect mortality rates. For example, recessions may improve health by

removing individuals from environmental and work-related hazards such as pollution,

traffic accidents, and on-the-job injuries (Muller, 1989; Chay & Greenstone, 2003);

by freeing up time for breastfeeding, childcare, exercise, and other salutary activities

(Dehejia & Lleras-Muney, 2004; Ruhm, 2000); by raising the quality of elder-care

(Stevens et al., 2015); and by limiting the capacity for unhealthy behaviors such as

smoking and alcohol use (Ruhm & Black, 2002; Ruhm, 2005). On the other hand, the

negative income shocks associated with recessions may compromise access to proper

nutrition, shelter, and medical care (Griffith et al., 2013; Painter, 2010).8 Job loss, in

particular, may cause psychological stress, raising rates of suicide and risky behavior

(Eliason & Storrie, 2009; Sullivan & von Wachter, 2009). Accordingly, the net effects

of business cycles on mortality are ambiguous ex ante.

3 Migration and the standard approach

Despite the variety of channels through which business-cycle fluctuations might im-

pact mortality, studies applying the standard panel-data approach introduced by

Ruhm (2000) have consistently found evidence that, on net, health improves during

recessions, although there is some evidence that this relationship may have weak-

ened in recent years (Ruhm, 2015).9 A review of leading papers in this literature is

provided in Appendix A.1.

Typically, studies in this literature apply an estimating equation such as,

8In the case of many of these mechanisms, we would expect the opposite effect during boom
times, such that health worsens.

9Although we confine our discussion here to studies of total mortality, we acknowledge that a
number of developing-country studies find evidence that recessions increase infant mortality.
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ln(MRit) = βEit +Xitγ + φi + ηt + εit (1)

where MRit is the mortality rate in a given location (e.g., state) i; ηt and φi are a

full set of time-period and location fixed effects; Eit is the location’s unemployment

rate (or another similar variable representing local economic conditions); and Xit is

a set of controls.

There are three channels through which migration can affect estimates generated

using Eq. 1. First, migration may affect the key explanatory variable, Eit. Second,

migration can affect the dependent variable MRit, which includes population in the

denominator. Third, migration spillovers across locations may affect results through

the comparison, implicit in Eq. 1, between treated and control locations. Below we

discuss each of these potential channels in more detail. Before doing so, it is worth

noting that some of these channels reflect a true effect of migration on mortality rates,

while in other cases, migration affects estimates of the mortality rate without having

any effect on the true mortality rate. Below we will differentiate between channels

that represent real versus purely statistical effects.

One channel where migration can affect the results of Eq. 1 is through the Eit

term. As pointed out in previous work (Miller & Urdinola, 2010), the measures of Eit

typically used in the literature, such as the unemployment rate, may be endogenous.

This is particularly true if migration is an important factor: for instance, if unem-

ployed workers leave an area to obtain employment elsewhere, then this migration

will not only respond to the local unemployment rate, but it will also directly affect

the local unemployment rate.10 One solution to this issue, which we adopt, is to

study contexts in which we can observe plausibly exogenous variation in the timing

and spatial distribution of local economic shocks.

10Furthermore, it will affect the unemployment rate in both migrant-sending and migrant-receiving
locations, which will compound the migration bias through spillover effects, which we will discuss
later.
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Migration can also affect estimates obtained from Eq. 1 through the interpolated

annual population variable, which appears directly in the denominator of the mortal-

ity rate term, and which can also implicitly bias the numerator. In particular, using

the mortality rate as the dependent variable in Eq. 1 involves an implicit assump-

tion that mortality scales one-for-one with population.11 Migration can cause this

assumption to fail in several ways.

First, if short-run population changes are not accurately captured by intercensal

population estimates, we should not expect a one-for-one mortality response to changes

in (estimated) annual population. This is a purely mechanical phenomenon that arises

from the fact that while the mortality-rate numerator (deaths) is observed annually,

direct measures of the denominator (population) are not available outside of census

years. Indeed, in nine out of every ten population observations, these denominator

values must be constructed, introducing room for error. Typically, population in a

non-census year is interpolated using observed population counts from two censuses,

as well as data on births and deaths occurring in the interim. In data from mod-

ern developed countries, additional sources are used to help capture that portion

of migration which can be observed.12 However, as we discuss in Appendix A.2.2,

even in modern developed countries there remains some unobserved migration that

must be allocated across intercensal years. This means that while deaths in the

(annually-observed) numerator may increase or decrease as a function of the true

at-risk population, the denominator may not move in step. If we expect that people

migrate from places with worse economic conditions to those with better ones (as we

find in both of our empirical examples), and if migration is not fully captured by in-

tercensal population estimates, then this will bias results towards finding pro-cyclical

11One way to see this point is to separate the log mortality rate into log mortality and log
population. Moving log population to the right-hand side of the equation shows that the specification
in Eq. 1 is assuming that population is reflected in mortality with a coefficient of one.

12For example, in the U.S., the Census uses tax information from the IRS as well as Medicare
data to track migration among working-age and older adults, respectively.
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mortality.13

A second channel through which migration can cause the assumption that mortal-

ity moves one-for-one with estimated population to fail is through migrant selection.

In particular, if those who migrate in response to business-cycle fluctuations are not

representative of the population as a whole, then we should not expect mortality to

scale one-for-one with estimated population, even if estimated population is perfectly

observed. For example, if healthy young workers are more likely to leave locations

with worse economic conditions than, say, retirees (as is the case in the two settings

that we study), then we should expect the mortality rate in the location experiencing

worse economic conditions to rise even if the change in economic conditions itself has

no causal impact on mortality. Focusing on age-standardized mortality can partially

deal with the selective sorting of population, but it cannot account for selection of

migrants within age groups.

While the first two channels illustrate ways in which migration can affect the

observed mortality rate without affecting true underlying population health, it is

also possible for migration to influence the true mortality rate. One such channel is

through congestion costs (e.g., by straining fixed local resources), which will increase

mortality in migrant-receiving areas while reducing mortality in migrant-sending ar-

eas. Another channel by which the act of migration itself can change underlying

health is by relocating people across locations with different intrinsic conditions. If,

for example, people move from less healthy to healthier locations, then migration will

have a direct and beneficial impact on health.14 As with the first two channels, the

congestion effects and protective effects of migration will undermine the one-for-one

relationship between mortality and population.

To help address the potential issues generated by assuming a one-to-one relation-

ship between population and mortality, we consider alternative specifications that do

13For further discussion of this issue, see Appendix A.2.
14This would also be an example of an indirect but true effect of business cycles on mortality—it

is indirect in that it occurs as a result of the migration that business cycles induce.
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not impose this strict relationship. In particular, we consider a range of specifications

embodying assumptions that vary from a strictly proportional relationship between

population and mortality to no short-run relationship. Estimating results using this

range of alternative specifications will help us assess the sensitivity of estimates to

assumptions about the relationship between interpolated population and mortality.

We also offer a second strategy to understanding the impact of migration bias that

relies on the fact that intercensal population estimates are more accurate, and less

vulnerable to migration-related error, closer to census years. Thus, by looking at

treatment windows close to census years and expanding these windows iteratively, we

can assess the stability of the results obtained from our range of specifications as the

wedge between the true unobserved population and our best interpolated estimates

of it becomes larger. Combining these strategies with additional information about

the migration response in the setting under study allows us to not only to diagnose

migration bias, but also to mitigate it so that we can arrive at a more accurate

understanding of the relationship between business cycles and health.

It should be noted that a key feature of several of the sources of bias listed

above—the endogeneity of unemployment rates, the mechanical relocation of popula-

tion, migrant selectivity, and congestion effects—is that the impacts of migration in

migrant-sending locations will be matched by opposite responses in migrant-receiving

locations. Such spillovers violate the assumptions behind the panel-data approach in

Eq. 1. Accordingly, treatment spillovers reflect yet another channel through which

migration may bias results generated using the standard approach. Indeed, it is like-

lier to exacerbate than to attenuate the migration bias arising from other sources.

However, the issues caused by spatial spillovers can be addressed if migrant-sending

and migrant-receiving locations can be identified and compared to a third set of lo-

cations that were not contaminated by substantial spillovers. This intuition provides

the foundation for our empirical approach to addressing spillover concerns.
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4 Empirical approach

Our starting point is the standard estimating equation introduced by Ruhm (2000),

shown in Eq. 1 above. To deal with the possibility that measures of local economic

conditions might be endogenous, we modify Eq. 1 by replacing the unemployment

rate Eit with a plausibly exogenous measure of the incidence of local economic shocks,

SHOCKit. In our examples, this variable is generated by interacting time-varying

industry-specific global price shocks with measures of the initial importance of the

affected industry in each location. Our modified specification is

ln(MRit) = β1SHOCKit + φi + ηt + εit . (2)

Conditional on SHOCKit being exogenously determined, Eq. 2 removes concerns

about the measure of local economic shock being endogenous in the presence of mi-

gration. Still implicit in Eq. 2, however, is the assumption that that mortality and

population move one-for-one. As discussed in the previous section, migration is likely

to cause this assumption to fail, either because the true at-risk population is not well

measured by intercensal population estimates, because migration is selective, or be-

cause of congestion effects. Thus, the specification in Eq. 2 is only likely to be valid

under ideal circumstances, i.e., when intercensal population estimates are accurate

and neither migrant selection nor congestion effects are important.

Motivated by this concern, we consider two alternative regression specifications.

The first is,

ln(MORTit) = β̃1SHOCKit + β̃2 ln( ˜POP it) + φi + ηt + εit (3)

where MORTit is the number of deaths in location i and period t and ˜POP it is

interpolated population in period t. The key difference in Eq. 3, relative to Eq. 2,
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is that the relationship between population and mortality is no longer constrained to

be one-to-one. Rather, it is estimated in the data.

The estimated values of β̃2 obtained from Eq. 3 can be a useful tool for diagnosing

estimation issues created by migration. In particular, the approach shown in Eq. 2

assumes that β2 = 1. If instead we estimate a β̃2 significantly different from one,

then this signals that migration is likely to be affecting results obtained using Eq.

2. One reason that we might find β̃2 < 1 is that intercensal population estimates

are inaccurate reflections of the true population at that moment in time. In that

case, and if migrants move from places with worse economic conditions to places with

better ones, then β̃2 will be systematically biased downwards. Attenuation bias due

to random mis-measurement of population will also push β̃2 towards zero. We should

also expect to see β̃2 < 1 if migrants tend to be healthier than the general population.

This is because such population movements will cause less-than-proportional changes

in receiving-location mortality.15

While we view Eq. 3 as an improvement on Eq. 2 because it does not require

the perhaps unrealistic assumption that mortality moves one-for-one with popula-

tion, it still suffers from two potential problems. First, we may be concerned that

the ln(POPit) term is not only systematically mis-measured, but is also endogenously

affected by both mortality and migration. This is because since best-available inter-

polation methods use the observed population in the following census as an explicit

input to intercensal interpolations, and distribute unobserved net migration occur-

ring in other intercensal years across all intercensal years. In this way, all intercensal

values are interdependent and may be tainted by migration-related mis-measurement

and mortality effects in other years.

15On the other hand, if migrants are negatively selected on health, or if congestion forces are
strong, then we may observe β̃2 > 1. For example, if congestion is important, when population
moves away from a location we should expect a more-than-proportional fall in deaths because the
fall in deaths generated by a reduction in congestion is added to the reduction in deaths due to the
mechanical removal of population. We do not emphasize this possibility here because it does not
appear to be the dominant force in our empirical examples.
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A second, and more important issue for our purposes, is due to the fact that the

estimated relationship between population and mortality reflects a combination of the

long-run relationship and the short-run relationship between these variables. Over

the long-run, we expect that population and number of deaths in a location will move

together; as population iincreases, there are more people at risk of mortality, and it is

reasonable to expect the number of deaths to also rise. However, in the short-run, the

relationship between population and mortality may be very different from the long-

run relationship. For example, if short-run population changes are driven by young

workers who have very low mortality risk, then there may be little or no short-run

relationship between population and mortality.16

One way to partially address issues raised by the difference between the short-run

and long-run relationship between mortality and population in Eq. 3 is to include

location-specific time-trends. Because population growth rates tend to be fairly per-

sistent over the time periods that we study, the inclusion of time trends in Eq. 3

will serve to absorb differences in long-run population growth, allowing β̃2 to pick up

the short-run relationship between population and mortality. To allow this, we will

incorporate linear location-specific time trends in some regression specifications.

An alternative approach to dealing with the concerns we have raised about Eqs.

2-3 is to consider a third specification:

ln(MORTit) = β̄1SHOCKit + φi + ηt + εit . (4)

Note that Eq. 4 differs from Eq. 3 only in that we omit the log population variable.

Implicitly, this specification assumes that in the short run, there is no relationship

between population and mortality, reflecting the opposite extreme to the strictly

proportional relationship assumed in Eq. 2.

16This issue will be exacerbated by the use of interpolated population values in non-census years.
In Appendix A.2 we provide a short example illustrating this concern.

13



To summarize, Eqs. 2, 3, and 4 reflect a range of assumptions about the short-

run relationship between population and mortality, and therefore generate a range

of estimates of the relationship between business cycles and mortality. When these

estimates are close to agreement, we can be reasonably confident in the results, even

in the presence of migration. When estimates diverge substantially, this signals that

assumptions about how to model underlying population and its impact on mortality

play an important role in determining the results. In those cases, carefully studying

the available evidence on migration patterns in the setting under study can help us

choose between alternative specifications.

The last issue we need to address before moving to our empirical results is the im-

pact of spillovers across locations. The specifications in Eqs. 2-4 rely on a comparison

between a set of treated locations and a set of control locations. However, if migration

in response to local economic shocks in the treated locations affects mortality in the

control locations, then the control locations cannot provide a valid counterfactual.

We implement a relatively simple approach for dealing with this issue which involves

identifying those locations that are likely to send or receive migrants to or from the

treated locations. Since migrant flows are often related to distance, we refer to these

as “nearby” locations.17 Once we have identified nearby locations that are likely to

share migrant flows with the treated locations, we can estimate the impact of the

shock on both the treated and nearby locations by comparing these to a third set of

clean control locations. This not only allows us for a cleaner view of the true mortal-

ity treatment effect of a change in local economic conditions, but it also reveals the

indirect effects that the standard empirical approach obscures.

17Of course, in many, and particularly, in modern settings, geographic distance may not be the
dimension over which migration takes place. For instance, migrant-sending regions may be identified
on the basis of occupational similarity, social or transportation networks, etc.
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5 The Lancashire cotton shortage

Having laid out our basic empirical approach, we now turn to the first of our two

empirical examples: a sharp, severe, and short-lived downturn in the cotton textile-

producing region of Britain in the 19th Century.18 This historical example is useful

because it allows us to cleanly identify the spatial and temporal incidence of an

adverse shock without having to rely on potentially endogenous measures of local

economic conditions, such as unemployment. In addition, high migration costs in

this setting make it easier for us to track and demonstrate the impact of migrant

spillovers, which occur mainly between geographically proximate locations. Finally,

this historical setting is somewhat similar to a modern low- or middle-income coun-

try, such as those in Gonzalez & Quast (2011) or Cutler et al. (2002), than it is to

the developed-country settings typically studied in this literature (or, indeed, in our

second empirical example). Accordingly, evidence from this empirical setting con-

tributes to the generalizability of our findings. Below we provide a brief description

of this setting and data we use. Further details are available in Appendix B.

5.1 Background and Data

The cotton textile industry was the largest and most important industrial sector

of the British economy during the 19th century. For historical reasons dating to

the 1700s, British cotton textile production was geographically concentrated in the

Northwest counties of Lancashire and Cheshire, which held over 80% of the cotton

textile workers in England & Wales in 1861.19 The industry was entirely reliant on

18This event has previously been studied by Hanlon (Forthcoming) and Hanlon (2015). Historians
often refer to this event as the “Cotton Famine,” where the term “famine” is used metaphorically
to describe the dearth of cotton inputs. We avoid using this term because it can be misleading in a
study focused on health.

19Crafts & Wolf (2014) suggest that the main factor determining the location of the cotton textile
industry prior to 1830 was the location of rivers, which were used for power, access to the port
of Liverpool, and a history of textile innovation in the 18th century. Calculation based on data
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Figure 1: Cotton prices, imports, and spatial distribution of cotton textile industry

British import quantities and prices Spatial distribution of cotton textiles

Import data from Mitchell (1988). Price data, from Mitchell & Deane (1962), are for the
benchmark Upland Middling variety. Data on the geography of the cotton textile industry
the are calculated from the 1851 Census of Population. Shaded in the map of England &
Wales are districts with over 10% of employment in cotton, while the inset shows the share
of employment in cotton in the core cotton region, with darker colors indicating a greater
share of employment in cotton.

imported raw cotton and, in the run-up to U.S. Civil War, 70% of these imports came

from the U.S. South (Mitchell, 1988). The war sharply reduced British imports of

U.S. cotton, prompting a sudden and dramatic rise in cotton prices and a sharp drop

production. These effects are depicted in the left-hand panel of Figure 1.20 The right-

hand panel shows the spatial distribution of the British cotton textile industry on the

eve of the U.S. Civil War. Additional information, in Appendix B.1, shows that the

direct impact of the U.S. Civil War on the British economy was largely confined to

the cotton textile sector.

Both contemporary reports on public assistance and data on relief-seekers suggest

collected by the authors from the 1861 Census of Population reports.
20Appendix Figure B.1 shows British firms’ raw cotton consumption and variable operating costs

(excluding cotton), good proxies for industry output. These show a sharp drop in production and
factor payments during the 1861-1865 period equal to roughly a 50% reduction compared to pre-
war output levels. As described in Hanlon (2015), other cotton-producing countries such as India,
Egypt and Brazil rapidly increased their output during the U.S. Civil War period. However, these
increases were not large enough to offset the lost U.S. supplies, though they did contribute to the
rapid rebound in imports after 1865.
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that the shock had a substantial and geographically-concentrated impact on workers.

One reflection of these effects is presented in Figure 2. The left-hand panel of this

figure describes the number of able-bodied relief-seekers who obtained aid from local

Poor Law Boards, the main source of government support for the destitute in our set-

ting. During the U.S. Civil War, we see an increase in relief seekers in the Northwest

counties, where cotton textile production was concentrated. Non-cotton counties,

however, were largely unaffected. Contemporary reports suggest that at the nadir

of the recession in 1862 and early 1863, roughly half a million people in the cotton-

producing districts relied on relief from government sources or private charities. The

right-hand panel of Figure 2 describes expenditures by local Poor Law Boards. These

spiked in Lancashire and Cheshire, the two main cotton textile counties, during the

U.S. Civil War. In the face of the cotton shortage, workers in the affected areas

employed a variety of coping mechanisms, including running down savings, pawning

valuables and furniture, seeking government and charitable support, and migrating.

In Appendix B.2, we review contemporary evidence on all these private and institu-

tional responses to the cotton shortage, with the exception of migration, which we

discuss in Section 5.2.

To analyze the impact of the U.S. Civil War on migration and mortality in the

cotton-textile regions of Britain, we draw on population data from the British Census

for every decade from 1851-1881, and mortality data over the period 1851-1865, the

latter taken from reports produced annually by the Registrar General’s office.21 Our

analysis is conducted at the district level using 539 geographically-consistent districts

covering all of England & Wales over this period.22

To identify treated districts, we use information on the industrial composition of

21Further details on the data are available in Appendix B.3.
22The available data cover around 630 districts in each year, but some districts experienced bound-

ary changes over time. To obtain geographically consistent districts, we manually review the bound-
ary changes for every district over our study period and combine any pair of districts experiencing
a boundary change that resulted in the movement of over 100 people from one to the other. This
leaves us with 539 consistent districts in the main analysis.
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Figure 2: The spatial incidence of the cotton shock

Able-bodied relief-seekers Poor Law Board expenditures

Expenditure data were collected from the annual reports of the Poor Law Board. Data on
relief seekers come from Southall et al. (1998) (left-hand graph reproduced from Hanlon
(Forthcoming)).

employment in each district on the eve of the U.S. Civil War, based on occupation

data from the 1851 Census. In the main analysis, we define as cotton (i.e., “treated”)

districts those districts with over 10% of employment in cotton textile production.23

Our study covers the years 1851-1865, with the U.S. Civil War years (1861-1865) defin-

ing the cotton shortage period. We focus only on the periods before and during the

shortage because of concerns that the post-shortage years may have been influenced

by persistent effects of the shortage.24 Wherever intercensal population estimates are

used, these are generated using Das Gupta interpolation, which accounts for annual

changes in population due to observed births and deaths within each district, and

23In robustness checks we also generate results using a continuous measure of local cotton textile
employment shares. We focus our main results on a discrete cutoff both in order to make interpre-
tation easier, and in order to reduce the impact of measurement error. In particular, within the set
of major cotton textile districts, variation in cotton textile employment share does not necessarily
correspond to variation in shock intensity because the impact of the cotton shortage depended in
part on the type of cotton textile products produced in each district. For example, districts that
produced finer fabrics, where raw cotton was a smaller portion of total cost, were less affected by
the cotton shortage.

24For example, we know that one form of relief during the cotton shortage was public works em-
ployment, which was mainly focused on projects improving health or transportation infrastructure.
These projects were undertaken relatively late in the study period, so they are unlikely to have
substantially affected mortality during the Civil War.
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distributes any residual population change at the decade level (the error of closure, a

measure of implied net migration) smoothly across intercensal years.25

5.2 Migration

Contemporary accounts indicate that out-migration occurred in response to the cot-

ton shortage, but the extent of these flows remains debated. Thus, to assess the

magnitude of the migratory response, we look for changes in population growth pat-

terns using data from the 1851-1881 censuses. These data are presented in Figure 3,

which describes changes in district population across each decade, normalized by the

change in 1851-1861 (the decade preceding the downturn).26 This figure reveals three

important patterns. First, it presents evidence of a substantial slowdown in popula-

tion growth in the cotton textile districts in the decade spanning the cotton shortage.

This suggests either that the downturn coincided with a rise in out-migration from

those districts, or a reduction in in-migration. Indeed, additional evidence on the

birthplaces of Northwest county residents, which we present in Appendix B.4, sug-

gests that both an increase in out-migration and a reduction in in-migration occurred

during this period. Second, we observe an acceleration in population growth in nearby

districts, which we define as non-cotton districts that are within 25 km of a cotton

district. Meanwhile, there is little change in the population growth trend in districts

beyond 25 km. These patterns are consistent with short-distance migration from cot-

ton textile districts during the downturn. Third, we see that these changes essentially

disappear after 1871, a fact which highlights the temporary nature of the shock.

These implied migration flows were meaningfully large. In terms of magnitude,

25The Das Gupta method is the same approach used by the U.S. Census Bureau. The main
difference between our approach and modern census population interpolations is that modern esti-
mates draw on additional information (for instance in the U.S., information such as IRS tax data
and Medicare records) that partially capture migration taking place between censuses. This type of
additional data are not available in the period we study. For more on best practices in interpolation,
see Appendix A.2.2.

26The 1861 Census was collected in April of that year, before the U.S. Civil War had any substantial
impact. As a result, this should be thought of as a clean pre-war population observation.
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Figure 3: Migration response to the cotton shortage

Changes in district population, 1851-1881

This graph describes the change in population for all cotton
districts, all non-cotton districts, all districts in England &
Wales, and all non-cotton districts within 25km of a cotton
district using Census data. Cotton districts are defined as
those districts with more than 10% of employment in cotton
textile production in 1851. The population growth rate for
each group of districts is normalized to one in 1851-1861.
Data are from the Census of Population.

had the population of the cotton districts grown from 1861-1871 at the same rate

that it grew in 1851-1861, these districts would have had 54,000 additional residents

in 1871, a figure equal to 2.2% of the districts’ 1861 population.27 Similarly, if nearby

districts had grown in 1861-1871 at the rate they grew during 1851-1861, they would

have had 61,000 fewer residents, which is equal to 4% of the districts’ 1861 popula-

tion. Note that these figures will understate the migration response if some migrants

returned between 1865 and 1871.28

An alternative view of migration is provided by calculating implied net migration

rates at the district level. These are calculated as the difference between the observed

population count in a district in a given census year and the population that we

27As a point of comparison, during the Great Depression in the U.S., Fishback et al. (2006) report
that from 1935-1940, 11% of the U.S. population moved, with 60% of the moves occurring within
state. This suggests that the migration response observed in our setting may not be unusually large
compared to other historical recessions.

28These patterns are consistent with the city-level experiences documented in Hanlon (Forthcom-
ing).
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would have expected in that district-year given the population in the previous census

plus all births and less all deaths in the intervening years.29 In the left-hand panel

of Figure 4, we map implied net migration by district from 1851-1861. The cotton

textile districts show a strong pattern of net in-migration (dark colors) in this decade.

In the right-hand panel we plot the change in net migration in 1861-1871 compared

to 1851-1861. This figure provides evidence of a large reduction in net in-migration in

most of the cotton textile districts during the Civil War decade. We also see evidence

of an increase in migration into districts surrounding the cotton areas, consistent

with migration from the cotton districts into nearby locations.30 Overall, the results

in Figures 3-4 show a substantial and short-distance migration response to the cotton

shortage.

Although selectivity will become much more important in our second empirical

example, there is also some evidence of selective migration away from the cotton

textile districts during the U.S. Civil War period. In particular, in Appendix B.4 we

provide evidence showing that young adults were somewhat more likely to migrate

in response to the cotton shock than the elderly. However, the change in population

in the 20-39 age group accounts for only about three-fifths of the overall change in

population of the cotton districts between 1861 and 1871. Thus, even though this

group was important, a substantial amount of migration likely occurred among other

segments of the populations as well.

5.3 Mortality

Having established that the cotton shortage induced a substantial and spatially con-

centrated migratory response, we next analyze the impact of this event on mortality

patterns. As a first step, Figure 5 describes the evolution of log mortality across the

29Put another way, implied net migration is the difference between the census count and the
postcensal estimate obtained via the components of change method. This conceptual approach has
been used in studies of migration such as Fishback et al. (2006).

30Additional graphs are available in Appendix B.4.
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Figure 4: Maps of implied net migration

Net migration before the war (1851-61) Implied change in net migration
from 1851-1861 to 1861-1871

The left-hand panel maps implied net migration for each district in the decade before the shock,
1851-1861. Darker colors indicate net in-migration. The right-hand panel plots the difference in
net migration between the 1851-61 and 1861-71 decade. Lighter colors indicate an increase in net
out-migration from a district during the Civil War decade (1861-71). Implied net migration is
calculated as the difference between the observed population count in a district in a given census
year and the population that we would have expected in that district-year given the population in
the previous census count plus all births and less all deaths in the intervening years.
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study period (normalized such that 1860=1).31 In the left-hand panel we separate

cotton districts, nearby districts (those within 25 km), and all other districts. There

are three notable features here. First, in the pre-shortage period, mortality in the

three groups track each other well. Second, in the first two years of the U.S. Civil

War, there is evidence of elevated mortality in the cotton districts, though this in-

crease disappears after 1862. Third, in the nearby districts we observe a substantial

increase in mortality, particularly after 1862. One potential cause of this increase in

mortality in nearby districts is migration from cotton to nearby districts.

Since our evidence suggests that most migration out of cotton districts went to

nearby areas, combining the migrant-sending and migrant-receiving districts can help

us get a sense of the aggregate mortality impact of the downturn. Recall that most of

the channels through which migration generates bias, discussed in Section 3, suggest

that we should observe offsetting effects in migrant-receiving and migrant-sending

districts. Given this, aggregating migrant-sending and migrant-receiving regions will

allow us to assess the net impact of the recession on mortality. In the right-hand

graph we combine the cotton and nearby districts. These results provide evidence

that overall mortality in the cotton-and-nearby-districts category increased during

the U.S. Civil War period.

31Graphs of the mortality rate are available in Appendix B.5.
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Figure 5: Mortality effects of the cotton shortage

Cotton, nearby and control districts Combining cotton and nearby districts

Mortality data from the reports of the Registrar General. Data cover all of England & Wales.
Cotton districts are those with more than 10% of employment in cotton textile production
in 1851. Nearby districts are non-cotton districts within 25km of the cotton districts. The
linear trend line in the right-hand panel is fitted to data from the cotton and nearby districts
from 1851-1860.

Next, we analyze these patterns econometrically. Table 1 present our results, with

results in Columns 1-3 corresponding to the specifications in Eqs. 2-4, respectively. In

these regressions standard errors are clustered by district to adjust for serial correla-

tion.32 In Column 1, we present results using the log mortality rate as the dependent

variable, as in the standard approach. Here we find evidence that the mortality rate

fell during the recession, a finding that is consistent with the pro-cyclical mortal-

ity results obtained in most of the studies following Ruhm (2000). In Column 2,

we move the population denominator the the right-hand side of the equation. This

weakens the relationship between the cotton shock and mortality. Moreover, we can

see that the estimated relationship between population and mortality is well below

(and statistically different from) one, suggesting that the one-to-one relationship be-

tween population and mortality embedded in the specification in Column 1 may be

inaccurate. Column 3 presents results based on the specification in Eq. 4, which

32Clustering standard errors by district is similar to the approach used in most studies in this
literature. In Appendix B.5, we present additional results including those clustered by county (a
larger geographic unit), and those adjusting simultaneously for serial and spatial correlation across
locations. Results are qualitatively unaffected as all three approaches produce similar standard
errors.
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assumes no short-run relationship between population and mortality. Here the sign

of the relationship between the cotton shock and mortality becomes positive. This

difference makes it clear that assumptions about the relationship between population

and mortality have a meaningful impact on the results.

Table 1: Preliminary estimates of the mortality effect of the cotton shortage

Dependent variable: Ln(MORT. RATE) Ln(MORTALITY) Ln(MORTALITY)

(1) (2) (3)

Cotton district × shortage -0.0276** -0.0221* 0.0155
(0.0108) (0.0114) (0.0189)

Ln(Pop) 0.872***
(0.0283)

Observations 8,085 8,085 8,085
R-squared 0.137 0.334 0.195

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by district. Data cover 539
districts from 1851-1865. All regressions include district fixed effects and year effects. Shock
period is 1861-1865. Cotton districts are defined as those with a cotton employment share
greater than 10%.

The results in Table 1 show that the estimated relationship between population

and mortality is sensitive to assumptions about the relationship between short-run

population changes and mortality. To provide substantive evidence on the true effect

of the cotton shortage on mortality, we need a way to choose between these alternative

sets of assumptions. However, before we tackle that issue, it is useful to deal with

a second concern that is not addressed in Table 1: the impact of spillovers across

treated and putative control districts due to migration.

In order to deal with the issue of migrant spillovers, we include a term to capture

the impact of migration from cotton textile districts to other nearby areas. Our

primary approach to dealing with the impact of migration on nearby districts is to

construct a variable, NEARcot0−25
j , which reflects, for each non-cotton district, the

amount of cotton textile employment in other districts within 25 km (or alternative

distance windows). Specifically, we calculate,
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NEARcot0−25j = ln

∑
i 6=j

1[d(i, j) < 25km] ∗ (COTi + 1) ∗ 1[COTDISTj = 0]

 (5)

where 1[d(i, j) < 25km] is an indicator variable that equals one when the distance

between districts i and j is less than 25 km and COTi is cotton textile employment

in district i.33 The 1[COTDISTj = 0] component of this equation ensures that

we only cacluate nearby cotton exposure for non-cotton districts, defined as those

with less than 10% of employment in cotton textile production.34 Finally, because

nearby cotton textile employment is zero for districts that were far from cotton textile

producing areas, we add one before taking logs. We then include this employment-

weighted distance term, interacted with an indicator for the shock period, in our

regressions. Including this variable effectively removes indirectly-treated districts

from the control group, allowing us to separately evaluate the direct and indirect

mortality effects against a clean counterfactual. In robustness exercises in Appendix

Table 11, we iteratively add increasingly distant employment-weighted distance bands

to show that the majority of systematic spillovers are indeed captured within 25 km.

We also consider an alternative approach to measuring “nearby” districts that uses

unweighted (i.e., indicator) variables for districts within particular distance bands of

the major cotton textile districts. These alternatives deliver similar results.

Table 2 presents results that account for the impact of cotton textile employment

in nearby districts. Again, we display results that correspond to each of our three

estimating equations in Columns 1-3. The results in Table 2 provide evidence that

mortality increased in nearby districts during the cotton shortage, consistent with

33To calculate the distance between any pair of districts, we collect the latitude and longitude of
the main town or district seat for each district, which we call the district center. For a small number
of very rural districts, we use the geographic center of the district.

34We include the 1[COTDISTj = 0] term because we expect that the impact of the recession
in nearby districts will influence migration into non-cotton districts, but that this is unlikely to
influence net migration into other cotton districts. Contemporary evidence consistently shows that
those leaving cotton districts were not migrating to other major cotton-producing areas. See, e.g.,
Arnold (1864).
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the relocation of migrants from the cotton to nearby districts. Once we account

for migration spillovers, the results in Column 3 suggest that the recession led to a

statistically significant increase in mortality, while the results in Column 1 continue

to suggest that the recession reduced mortality. Again, it is clear that the results

are highly sensitive to assumptions about the relationship between population and

mortality.

Table 2: Accounting for spillovers to nearby districts

Dependent variable: Ln(MORT. RATE) Ln(MORTALITY) Ln(MORTALITY)

(1) (2) (3)

Cotton district × shortage -0.0229** -0.0125 0.0494**
(0.0114) (0.0123) (0.0195)

Nearby cotton emp. × shortage 0.00154 0.00287** 0.0109***
(0.00117) (0.00122) (0.00187)

Ln(Pop) 0.857***
(0.0293)

Observations 8,085 8,085 8,085
R-squared 0.137 0.335 0.207

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by district. Data cover 539 districts
from 1851-1865. All regressions include district fixed effects and year effects. Shock period is
1861-1865. Cotton districts are defined as those with a cotton employment share greater than
10%.

Given the sensitivity of these results, we consider two approaches to help choose

among the alternative assumptions. First, we review the evidence on migration dur-

ing the cotton shortage to assess the validity of the assumptions underlying each

of these specifications. Second, we show how our results change when we look at

narrower shock windows that are closer to the census year and so less vulnerable to

population mis-measurement due to migration. In this case, the census year (1861)

falls conveniently at the beginning of the cotton shortage period.

The evidence in Section 5.2 shows that, relative the the previous decade, cotton

textile districts experienced a substantial reduction in population growth during the
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the downturn. Despite this reduction, however, population in most cotton districts

increased over the 1861-1871 decade. This fact is important because when we con-

struct our intercensal population estimates, they will imply positive growth across

all years, which is at odds with the available evidence on the migration response.

The available evidence suggests that people left the cotton districts during the cotton

shortage, but that population in these areas rebounded from 1866-1871 as the cotton

industry recovered.35 When this pattern is combined with the one-to-one relationship

between population and mortality embedded in the specification in Column 1 of Table

2, the result will be to bias results towards finding that the mortality rate decreased

during the shortage, simply because the interpolated population denominator over-

states the true population.36 Under these population growth conditions (a point that

we discuss further in Appendix A.2), the specification in Column 3 of Table 2 clearly

offers a more suitable approach to modeling mortality. Since the available evidence

on migration during this event implies that the assumptions underlying the results in

Column 3 of Table 2 are most realistic, these are accordingly our preferred results.

Another way to differentiate between the alternative results in Table 2 is to study

their robustness. In particular, in Appendix 9 we consider how these specifications

react to the inclusion of district time-trends, which are included in some specifications

in the Ruhm literature. The results in Appendix 9 show that once district time trends

are included, all three alternative specifications deliver results that are very similar to

those produced without trends in Column 3 of Table 2.37 This reinforces our choice

of Eq. 4 as our preferred specification. These results also suggest that the cotton

shortage statistically significantly increased mortality. The robustness of this result

is assessed in Appendix 10.

35For example in the 1871 Census the Registrar for Salford, near Manchester, an important cotton
textile area, wrote that the population of the district experienced an “Increase due to the revival of
trade since the conclusion of the American war...”

36Of course, even the numerator may be spuriously low if the exodus of cotton-district residents
led cotton districts to have an at-risk population that was, in actuality, unobservedly smaller.

37That all three specifications deliver very similar results once time trends are included suggests
that most of the differences across specifications are due to long-run population trends.
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As a final way to validate our results, we exploit the fact that population estimates

should be more accurate, and less subject to migration-related mis-measurement,

closer to census years. Table 3 presents additional results showing how the estimates

obtained from each specification change as we iteratively expand the shock period

window to include years further from the census year 1861. The top panel presents

results using the log mortality rate as the dependent variable, as in Column 1 of

Table 2. The middle panel corresponds to Column 2 of Table 2, where the outcome

variable is log mortality and log population is on the right-hand side. The bottom

panel presents results with log mortality, as in Column 3 of Table 2.

There are two important features to note in Table 3. First, near the census year,

all three specifications deliver very similar results: the downturn results in higher

mortality. Second, as we consider larger windows which include years further from

the census year, the results in Panel C consistently show that the cotton shortage

increased cotton-district mortality. In contrast, the results in Panel A switch from

positive and statistically significant to negative and statistically significant. In Panel

B the results switch from positive and stastistically significant to negative and in-

significant. Both of these patterns provide support for our preferred specification,

which consistently suggests that mortality increased during the cotton shortage.
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Table 3: Results for various windows starting in 1861

Shock years: 1861 1861-62 1861-63 1861-64 1861-65
(1) (2) (3) (4) (5)

Panel A – DV: Log Mortality Rate

Cotton × shortage 0.0246* 0.0334*** 0.000559 -0.0212* -0.0229**
(0.0146) (0.0116) (0.00980) (0.0115) (0.0114)

Nearby × shortage -2.77e-05 0.00152 0.00134 0.00205* 0.00154
(0.00155) (0.00139) (0.00133) (0.00123) (0.00117)

Panel B – DV: Log Mortality

Cotton × shortage 0.0405** 0.0482*** 0.0154 -0.00887 -0.0125
(0.0158) (0.0122) (0.0100) (0.0120) (0.0123)

Nearby × shortage 0.00188 0.00333** 0.00319** 0.00361*** 0.00287**
(0.00156) (0.00140) (0.00135) (0.00128) (0.00122)

Ln(Pop) 0.727*** 0.761*** 0.774*** 0.822*** 0.857***
(0.0398) (0.0359) (0.0334) (0.0308) (0.0293)

Panel C – DV: Log Mortality

Cotton × shortage 0.0829*** 0.0953*** 0.0660*** 0.0478*** 0.0494**
(0.0203) (0.0168) (0.0152) (0.0178) (0.0195)

Nearby × shortage 0.00695*** 0.00909*** 0.00949*** 0.0108*** 0.0109***
(0.00176) (0.00168) (0.00173) (0.00182) (0.00187)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by district. All regressions include

district fixed effects and year effects. N=5,929 in Column 1; 6,468 in Column 2; 7,007 in

Column 3; 7,546 in Column 4; 8,085 in Column 5.

Overall, the results in Tables 1-3 show how sensitive estimates are to assumptions

about the relationship between population and mortality in the short run. However,

by using additional information on migration patterns, and by looking closer to cen-

sus years where population is less vulnerable to mis-measurement, we can select a

specification, Eq. 4, that delivers consistent results that more accurately reflect the

business cycle-mortality relationship. Under this specification, results indicate that

mortality in the cotton districts appears to have increased during the downturn. Im-

portantly, this finding is corroborated by the patterns shown in Figure 5. In addition

to the downturn’s direct effects, we find evidence that mortality increased in districts

proximate to cotton textile areas, consistent with the impact of the relocation of pop-
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ulation to these areas.38 Thus, we conclude that after adjusting for the statistical

appearance of health change due to migration bias, the overall effect of the cotton

downturn was to increase mortality.

6 The Appalachian coal boom

In the second of our two empirical examples, we consider a more recent setting in

which we can identify a spatially concentrated shock to local economic conditions. In

particular, following Black et al. (2005) (hereafter BMS), we study the impact of the

commodity price boom that affected the Appalachian coal-mining region of the U.S.

between 1970 and 1977.39 This example allows us to consider the impact of migration

bias on the relationship between temporary local economic shocks and mortality in

a setting that is more similar to most of the previous literature.40 As before, we

describe the empirical setting briefly. Further details on this setting can be found in

Black et al. (2005).

6.1 Background and Data

The Appalachian coal boom of the 1970s was generated by regulatory changes that

took place in 1969, together with a rise in oil prices due to the OPEC oil embargo

in 1973-74.41 The left-hand panel of Figure 6 presents data from BMS showing the

38It is important to recognize that the increase in mortality in nearby districts does not necessarily
imply that true mortality rates rose in those areas; it may simply be due to an increase in the at-
risk population. However, mortality in nearby areas may have increased through channels such as
selective migration or the congestion effects generated by new arrivals.

39In a related paper, Black et al. (2002) study the impact of the coal boom and bust on partici-
pation in Disability Insurance. They find that disability program participation fell during the boom
and then increased during the bust.

40In fact, the time period covered by this example partially overlaps with the period covered in
the original Ruhm (2000) paper.

41See Black et al. (2005). The Appalachian region also benefited from new roads during this period
as a result of the Appalachian Development Highway Program (Jaworkski & Kitchens, 2016), but
this affected the region as a whole rather than just those areas with coal resources.
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evolution of coal prices across this period. Coal prices rose sharply starting in 1970 and

then fell after 1982, as competition from western coal mines increased. Additional

data provided by BMS show that these price increases were matched by a similar

increase in coal industry earnings. BMS divide their study into three periods—the

boom (1970-1977), a stable peak period (1978-1982), and the bust (1983-1989)—a

convention which, for consistency, we will also adopt.

The spatial distribution of the economic impact of these price increases was dic-

tated by the naturally-occurring coal reserves available in each county. The right-hand

panel of Figure 6 provides a map showing the distribution of coal reserves across the

four states studied by BMS: Kentucky, Ohio, Pennsylvania, and West Virginia. This

figure shows that the main coal reserves were located in a band of counties stretching

from southern Pennsylvania, across West Virginia and Ohio, and into Kentucky.

Figure 6: Coal prices and the spatial distribution of coal reserves

Coal prices Counties with coal reserves over
one billion short tons

Left-hand panel is from Black et al. (2005). The right-hand panel is produced using the USCOAL database provided

by the U.S. Geological Survey using data from surveys conducted mainly in the 1960s.

The main data used in our analysis come from the the decennial Census of Popu-

lation and from the annual records of deaths and births given by Bailey et al. (2016)

and the Centers for Disease Control. In the main analysis, we focus on the four states

studied by BMS, though we add additional neighboring states in some robustness

32



checks. To identify coal counties, we use data from the U.S. Geological Survey’s US-

COAL database, which provides estimates of coal reserves by county from surveys

taken mainly in the 1960s. In our main analysis, we identify coal counties as those

with over one billion short tons of reserves, though we consider alternative cutoffs in

robustness checks. There are 72 counties that satisfy this criterion in the four analysis

states.42 Our control counties are those with coal reserves below the cutoff, and fol-

lowing BMS, we limit the set of control counties to those counties in the four analysis

states with populations ranging from 8,000 to 225,000. This population criterion is

applied to control counties in order to obtain a set that is similar to the fairly rural

coal counties, and results in our dropping the main urban counties in these states

from the control group. This yields 202 non-coal control counties. In robustness ex-

ercises, we consider a larger set of control counties including all non-coal counties in

the four states studied by BMS as well as additional counties in a set of four further

neighboring states.

We define the coal boom as spanning the period 1970-1977, and we limit our

analysis to the pre-boom (1950-1969) and boom (1970-1977) periods. This parallels

the approach used in our first example, and also avoids questions about whether the

period after 1977 should be treated as a downturn or merely as the end of a boom.

As in the cotton shortage example, intercensal population estimates are generated

using the Das Gupta interpolation method. These account for births and deaths in

each county-year, and distribute decade-wide implied net migration across intercensal

years. It is worth noting that for reasons of data availability, these interpolations use

slightly less information than estimates produced by the census today, the latter of

which take advantage of additional information on migration from IRS and Medicare

data. However, in Appendix C.1 we provide evidence that in the 1970s, when we

42This differs slightly from the approach used by BMS, which identifies coal counties as those
where more than 10% of earnings came from the coal industry in 1969, a criterion that yields 32
coal counties. We prefer to use coal reserves to identify the treated counties rather than earnings
because reserves are less likely to reflect other factors affecting the counties in the period just before
the coal boom. However, in the end, both approaches yield fairly similar results.
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have both our intercensal estimates and the census interpolations (which are partially

adjusted for migration), these two series are quite similar.43

6.2 Migration

Figure 7 describes the migration response generated by the coal boom and bust in

the coal and control counties. Population in the coal counties was shrinking in the

decades before the coal boom, but increased substantially from 1970-1980 before

resuming their decline. These patterns suggest that how we deal with differential

initial population growth trends and longer-run migration flows will play an important

role in our results.44

In control counties, we see no evidence of a change in population growth in re-

sponse to the coal boom. This suggests that either the control counties do not share

migration flows with the coal counties, or that these flows are so small relative to the

size of the migrant-sending regions that they have little impact in these locations.

There are several likely explanations for this pattern. First, our control counties do

not include major urban areas, which may have been the preferred destination of

Appalachian migrants before the boom, and a source of return migrants during the

coal boom. Second, coal counties were relatively small in terms of population, so

43Annual county-level interpolated population data are not provided by the Census for years prior
to 1970.

44These migration patterns are consistent with the results of BMS, who also find evidence of
an increase in employment and population growth in the coal counties from 1970-1980, followed
by a reduction from 1980-1990. Using data from the Bureau of Economic Analysis, BMS find
that employment, overall earnings, and earnings per worker in the mining sector increased during
the 1970-1977 boom, were stable from 1978-1982, and then decreased starting in 1983. They also
find the same pattern for workers outside of the mining sector. These effects were concentrated
in construction and retail, which primarily provide non-traded goods and services. Using Census
data, they provide evidence that between 1970 and 1980, a period which includes mainly boom
years, there was a statistically significant increase in population in the 20-29 age group. There were
decreases in population across a broader set of working-age groups from 1980-1990, a period which
includes mainly bust years. Finally, they estimate that the number of families living in poverty in
the coal counties decreased from 1970-1980, and then increased from 1980-1990. It is notable that
very similar results were obtained by Carrington (1996) in a study of the impact of the temporary
boom in the Alaskan economy that occurred during the construction of the Trans-Alaska Pipeline.
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Figure 7: Migration response to the coal boom

Log population in coal and control counties

This figure describes the change in population for all coal
counties and the control counties in the four states in the
original BMS study. Coal counties are defined as those in
which more than 10% of income came from coal in 1969.
Intercensal population estimates are constructed using the
Das Gupta interpolation method.

even if the migration inflows had a large effect in those counties, they may not have

had any meaningful impact elsewhere, particularly if the set of locations was more

diffuse than in our cotton example. Third, the low costs of migration in this setting

may have caused many of those returning to the coal counties to have originated

outside of the four states covered in our study. Regardless of the cause, the fact that

we find no large population response in the control counties has important implica-

tions for our analysis, since it implies that spillovers between migrant-sending and

migrant-receiving counties are not likely to be an important source of bias in this

setting.

Figure 8 presents maps of implied net migration by county in the decade before

the coal boom, and the difference in implied net migration during the coal boom

decade relative to the preceding decade.45 In the left-hand panel we see that coal

45As before, we focus only on the four states included in the BMS analysis; maps including four
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districts were experiencing strong net out-migration in the decade before the coal

boom. Similar patterns are also observed in 1950-60, as well as in the decade following

the coal boom (see Appendix C.2). However, the right-hand panel reveals a striking

reversal in this trend during the coal boom decade. Furthermore, in Figure 8 we see

no evidence that counties proximate to coal counties experienced a stark reversal in

migration patterns during the boom period, as we had observed for nearby counties in

the cotton shortage example. This suggests that spillovers between coal and nearby

counties are unlikely to be an important concern in this particular setting, consistent

with the results in Figure 7.

Figure 8: Maps of migration before and during the coal boom

Implied net migration Implied change in net migration
prior to the boom (1960-70) from 1960-70 to 1970-80

The left-hand panel describes implied net migration over the decade from 1960-70. Lighter colors
indicate counties experiencing net out-migration. The right-hand panel describes the change in
net migration from the 1960-70 decade to the 1970-80 decade. Darker colors indicate districts that
experienced an increase in net in-migration in the 1970s relative to the previous decade. Implied
net migration is calculated as the difference between the observed population count in a district
in a given census year and the population that we would have expected in that district-year given
the population in the previous census count plus all births and less all deaths in the intervening
years.

The evidence presented in Appendix C.2 suggests not only that coal counties saw

massive in-migration flow during the boom, but also that this migration was selective.

The population increase in the coal counties during the decade spanning the boom,

1970-1980, was 342,000. Of this, over 210,000 of the increase was in the 25-34 age

group, while another 101,000 were in the 15-24 age group. Thus, the vast majority of

additional states adjacent to these four core states are provided in Appendix C.2.
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new residents of the coal counties during the boom were young adults, the healthiest

segment of the population. Moreover, these increases, especially the increase among

25-34 year-olds, were much larger in percentage terms than the change in population

in the control counties.46 Thus, selective migration in response to the coal boom was

stronger than the selectivity of migration in response to the cotton shortage. The age

distribution of the implied migration flows is important for our study because young

adults have low mortality rates relative to those in other age groups, meaning that

even large in-flows of this group may contribute little to total mortality.47

6.3 Mortality

As in our cotton example, we begin in Figure 9 by providing graphical evidence on

the impact of the boom—and the migration it induced—on mortality. The left-hand

panel shows that mortality rates in the coal counties were rising prior to the boom

and fell rapidly during the coal boom period. While the mortality rate was higher in

the coal counties during the coal boom period, this figure does not give the impression

that health became worse in the coal counties during the boom. Rather, the mortality

rate in the coal counties appears to evolve roughly in parallel to the mortality rate in

control counties during the boom.

The right-hand panel of Figure 9 plots log mortality in the coal and control coun-

ties, normalized for comparability. Here we see that log mortality in both sets of

counties track each other very closely from about 1955 through the main coal boom

period. If anything, it appears that mortality in the coal counties may have dropped

relative to the control counties during the boom. This is somewhat surprising given

evidence that population was flowing into the coal counties during the boom.

46Similar results are also reported by BMS, who find that most of the increase in population in
the coal counties from 1970-1980 was concentrated among those aged 20-29, particularly men.

47In particular, in the four states used in our main analysis the mortality rate for those aged
20-24 was 1.40 deaths per thousand in 1970 and for people aged 25-34 it was 1.44 per thousand.
In contrast, the average death rate across the entire population in that year was 10.24 deaths per
thousand, with the vast majority of deaths concentrated among those over age 55.
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Figure 9: Mortality effects of the coal boom and bust

Mortality rate Log mortality

Mortality data from Bailey et al. (2016). Population data are from the Census and annual-
ized using Das Gupta interpolation.

The striking difference between the left and right-hand panels of Figure 9 tells us

that essentially all of the mortality-rate differences observed in these two groups of

counties from the mid-1950s through 1977 are due to population movements. Com-

paring the mortality-rate movements illustrated in Figure 9 to the population move-

ments in Figure 7 reinforces this result: as population in the coal counties falls in

the 1950s and 1960s, the mortality rate increases, and as population rebounds in the

1970s, the mortality rate falls. Despite all this, deaths in the coal and control counties

trend together throughout. In Appendix Figure 22 we present additional evidence

comparing the evolution of mortality within different age groups in coal and control

counties. These results are similar to the all-age results shown in Figure 9—that is,

the evolution of mortality looks similar in the treatment and control counties.

The fact that the increase in population in the coal counties during the boom

was not matched by an increase in deaths suggests that the migrants entering these

counties during the boom were less likely to die than the average resident of these

counties on the eve of the boom. This pattern is consistent with evidence suggesting
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that most migrants were young adults.48 Because these migrants had very low mor-

tality risk, they had little effect on the number of deaths, but their presence in the

population did make it appear that the overall mortality rate had declined. Overall,

the patterns in Figure 9 suggest that the economic shock had little impact on total

mortality, and that changes in the the mortality rate primarily reflect changes in the

size and composition of the population.

Next, we examine the results obtained when applying the three alternative econo-

metric approaches discussed in Section 4. To illustrate the problems caused by the

migration-driven violation of the parallel trends assumption when using the log mor-

tality rate as the dependent variable (as evidenced in the left panel of Figure 9), we

show results both without and with county time trends. Our results are in Table 4.

The top panel presents estimates our three alternative specifications without county

time trends, while the bottom panel presents estimates with time trends. Standard

errors are clustered by county.49

As in the cotton example, the results in Table 4 are highly sensitive to assumptions

made about how to model the relationship between population and mortality in the

short run. Results change substantially both as we move from Columns 1-3, and

and as we include or exclude county time trends. The results obtained using the

mortality rate as the dependent variable, in Columns 1a and 1b, are particularly

sensitive to the inclusion of time trends. In contrast, results in Columns 3a and 3b

are less sensitive to the inclusion of time trends. It is also worth noting that in the

results in Columns 2a and 2b, the coefficient on the population term is well below

one, suggesting that the one-to-one relationship between population and mortality

embedded in the specification used in Columns 1a and 1b is likely to be violated.

Indeed, this coefficient is consistent with the boom-time in-flows of healthy workers

48We provide further evidence of the boom-induced change in the age distribution of the coal-
county population in Appendix C.2.

49Results using spatial standard errors are available in Appendix Table 15. These deliver similar
results.
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who contributed less-than-proportionally to coal-county deaths.

Given the patterns described in Figure 9 and the evidence on migration, our as-

sessment is that the results in Columns 1a and 1b of Table 4 are likely to provide

misleading results that are driven primarily by changes in the population denomina-

tor. The results in Columns 2 and 3 are likely to be more reliable. These estimates

suggest that the coal boom had little effect on total mortality.

Table 4: Estimated mortality effects of the coal boom

Dependent variable: Ln(MR) Ln(MORT) Ln(MORT)

Panel A: Without county time trends
(1a) (2a) (3a)

Coal county × boom 0.0958*** 0.0104 -0.0225*
(0.0172) (0.0113) (0.0117)

Ln(Pop) 0.278***
(0.0298)

Panel B: With county time trends
(1b) (2b) (3b)

Coal county × boom -0.0375*** -0.00306 0.00947
(0.00958) (0.00906) (0.0104)

Ln(Pop) 0.267***
(0.0427)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by county.
All regressions include county fixed effects and year effects. N=7,672.

As in our cotton example, our shock begins in a census year, which provides a

convenient way to examine the stability of the results as population measures become

more vulnerable to migration-related error. Specifically, by looking at how results

change as we expand the shock window away from the census year, provides addi-

tional evidence on how to amongst the specifications in Table 4. This is done in

Table 5 for various windows starting in 1970. Panel A presents results using the

log mortality rate as the dependent variable as per the standard approach, Panel B

presents results using log mortality as the dependent variable while still controlling
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Table 5: Results for various windows starting in 1970

Shock years: 1970-1971 1970-73 1970-75 1970-77
(1) (2) (3) (4)

Panel A – DV: Log Mortality Rate

Coal county × boom -0.00876 -0.0205* -0.0302*** -0.0347***
(0.0102) (0.0105) (0.0102) (0.0106)

Panel B – DV: Log Mortality

Coal county × boom 0.00409 -0.00161 -0.00717 -0.00739
(0.0103) (0.0106) (0.00989) (0.00988)

Ln(Pop) 0.155** 0.224*** 0.280*** 0.267***
(0.0771) (0.0622) (0.0523) (0.0437)

Panel C – DV: Log Mortality

Coal county × boom 0.00644 0.00387 0.00183 0.00258
(0.0104) (0.0110) (0.0106) (0.0108)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by county. All regressions include

county fixed effects, year effects, and linear county time trends. N=6,028 in Column 1; 6,576

in Column 2; 7,124 in Column 3; 7,672 in Column 4..

for log population, and Panel C presents results with log mortality as the dependent

variable, without including log population. There are two important patterns to note

in Table 5. First, for windows closer to the census year, all three approaches yield

similar results: the coal boom has very little impact on mortality. Second, as the

size of the window increases, the results in Panel B continue to show evidence that

the boom had little impact on mortality, while the results in Panel A change sub-

stantially, becoming statistically significant. Both of these patterns justify our using

the third, log mortality, specification as our preferred approach. Moreover, the fact

that the results in Panel A become negative and statistically significant as we move

away from the census year is consistent with the expected effect of migration in this

setting, as the inflow of young healthy workers pushes the population denominator

up without much affecting the number of deaths.

The overriding message from Figure 9 and Tables 4-5 is that the boom had lit-
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tle impact on mortality, but a substantial impact on observed mortality rates. Our

interpretation of these results is that the coal boom induced a large migration re-

sponse, but one that was concentrated among young workers who carried very little

mortality risk. For those who were at a higher risk of mortality (i.e., older residents),

the changing economic conditions seem to have had little effect, such that we see

no evidence of a change in their patterns of mortality. This is most likely because

older residents and those with increased mortality risk were insured against economic

shocks by retirements savings and programs such as Social Security, Medicare and

Medicaid, and because they were unlikely to have been the recipients of the rise in

mining incomes.

In summary, we draw two main conclusions from the experience of the Appalachian

coal boom. First, as in the cotton downturn, we find evidence that the coal boom

caused a substantial change in migration patterns. Second, we observe changes in the

observed mortality rate across locations, but little effect on the number of deaths.

Thus, it appears that changes in mortality rates were largely statistical, and were

driven by changes in the population denominator. Consistent with this pattern, we

also find evidence that much of the migration that took place was selective and con-

centrated among young workers, a population with very little mortality risk. Overall,

we conclude that the coal boom had little effect on mortality, but that an analysis

focused on the overall mortality rates may find large and spurious results driven by

the unobserved short-term migration of young, healthy workers. Put more simply,

as in the cotton downturn, migration has the capacity to meaningfully undermine

inferences about the causal impact of business cycles on mortality—at times even

flipping the sign on the estimated relationship.
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7 Conclusion

Drawing on two natural experiments in very different settings, this paper assesses

the sensitivity of estimates of the relationship between business cycles and mortality

to unobserved migration. In both settings, we find that changes in local economic

conditions generated a substantial migration response, and that this migration has the

potential to systematically bias estimates of the impact of business cycles on mortality.

In particular, we show that when short-run population flows are not well measured,

estimates are highly sensitive to the choice of assumptions about the relationship

between these changes in population and those in mortality. The standard approach

used in the literature following Ruhm (2000), which takes the mortality rate as the

dependent variable, appears to be especially vulnerable to bias generated by migration

because it imposes strong assumptions on the relationship between population and

mortality in the short run. These assumptions are likely to be violated in the presence

of migration, resulting in misleading estimates. Importantly, migration need not be

selective, nor does it need to confer a true health benefit or detriment, for it to

generate the false impression of a change in health where there has been none. Taken

as a whole, our results raise questions about the validity of the widely-used panel-data

approach to estimating the relationship between business cycles and health.

If migration bias may pose serious problems in estimating the business cycle-

mortality relationship, how can we correct for it? An ideal solution to migration

bias concerns is to use individual-level panel data, as has been done by Gerdtham

& Johannesson (2005) and Edwards (2008).50 Unfortunately, this type of data is

only available in a very small number of modern developed countries. In settings

where such detailed data are not available, however, one alternative is to focus only

on infant mortality, where migration is less of a concern.51 However, the impact of

50Dehejia & Lleras-Muney (2004) also uses individual-level panel data in a study focused on infant
health.

51Recent studies in this literature include Paxson & Schady (2005), Ferreira & Schady (2009),
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business-cycle fluctuations on infant mortality may differ from that on other segments

of the population, meaning that to focus on this outcome for the purposes of clean

identification may be to miss a large part of the story. A second alternative is to

focus on patterns at the national level, as is done by Cutler et al. (2016), whose cross-

country approach abstracts from difficult-to-track internal migration flows. Finally,

a third approach, proposed in this paper, is to carefully study individual events that

provide plausibly exogenous variation in the incidence of temporary economic shocks,

and to use the available evidence in the empirical context to diagnose and mitigate

migration bias.

Bhalotra (2010), Miller & Urdinola (2010), Baird et al. (2011), Cruces et al. (2012), Friedman &
Schady (2013), and Bozzoli & Quintana-Domeque (2014). Many, though not all, of these studies
find that negative economic shocks increase infant mortality.
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A Appendix: Literature, concepts and methods

A.1 Review of selected related literature

Below, we provide a review of select leading studies on the relationship between re-

cessions and public health. In particular, we highlight the methodological approaches

used, the main findings, and the setting in which these results are found.

Study Data Dependent variable Specification Standard errors Result

1 Ruhm (2000) QJE 50 states, 20 years
Ln(mortality rate), 
Ln(mortality)

Fixed effects
Robust, weighted by 
population 

Procyclical mortality

2
Ruhm & Black (2002)            
J. Health Ec.

13 years, 15‐45 states 
(repeated cross‐sections of 
individual‐level data)

Alcohol use
Linear probability mode 
with state fixed effects 
and time trends

Clustered by state‐
month

Procyclical alcohol 
use

3 Ruhm (2003) J. Health Ec.
20 states (31 MSAs), 10 years 
(individual‐level data)

Various health indicators
Linear probability model 
with state FEs

Clustered by state
Countercyclical 
health

4
Chay & Greenstone (2003) 
QJE

3 years, 1200 counties Infant mortality rate
Fixed effects at the 
county level with state 
time trends

Robust, weighted by 
births

Recessions reduce 
mortality

5
Dehijia & Lleras‐Muney 
(2004)  QJE

Individual data, state level 
explanatory variables, 50 
states, 25 years

Mothers characteristics, 
infant health indicators, 
prenatal care

Fixed effects at state 
level, with some state 
time trends

Clustered at state 
level, weighted and 
unweighted

Improved infant 
health during 
recessions

6
Neumayer (2004)              
Soc. Sci. & Medicine

20 years, 11‐16 German states
Ln(mortality rate), 
mortality by cause

Fixed effects at state level 
with lagged dependent 
variable (Arellano‐Bond)

Robust, weighted by 
state population

Procyclical mortality

7 Ruhm (2005) J. Health Ec.
34‐45 states, 14 years 
(repeated cross‐sections of 
individual‐level data)

Smoking, overweight Probit regressions

Robust, with 
correlation within 
state‐month or by 
state

Smoking and obesity 
are procyclical

8
Gerdtham & Johannesson 
(2005) Soc. Sci. Med.

Individual‐level panel data, 10‐
16 years

Prob. of death
Probit model, individual 
level with time‐series 
explanatory variable

Robust, clustered by 
individual

Mortality  risk 
countercyclical for 
men, unclear for 
women

9
Tapia Granados (2005) 
European J. of Pop.

18 years, 50 provinces (Spain) Ln(mortality rate)
Fixed effects with some 
province time trends

Weighted by 
population

Procyclical mortality

10
Gerdtham & Ruhm (2006) 
Ec. and Human Bio. 

23 OECD countries, 37 years Ln(mortality rate)
Fixed effects at country 
level

Robust and AR1, 
weighted by country 
pop.

Procyclical mortality

11
Svensson (2007)                  
Soc. Sci. & Medicine

21 Swedish regions, 17 years Heart disease Fixed effects Robust Mixed results

12
Ruhm (2007)        
Demography

50 states +DC, 20 years
Coronary heart death 
rates, all heart‐related 
death rates

Fixed effects
Robust, AR1, 
weighted by 
population

Recessions decrease 
coronary mortality

13
Fishback et al. (2007)  
Review of Ec. and Stat.

114 U.S. cities, 1929‐1940
Infant mortality rate, 
overall death rate

Fixed effects Robust Procyclical mortality
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14
Edwards (2008)                 
Soc. Sci. & Medicine

Individual level data panel 
data by state & year

Mortality rate Logit regressions Procyclical mortality

15
Economou et al. (2008)       
J. of Economic Studies

13 EU countries, 20 years 
1977‐1996

Mortality rate Fixed effects Robust
Countercyclical 
mortality

16
Miller et al (2009)             
AER P&P

50 states + DC, 1978‐2004
Ln(mortality rate) by 
group

Fixed effects Poisson at 
state level, some time 
trends

Clustered by state, 
weighted by state 
population

Procyclical mortality

17 Lin (2009) Applied Econ.
8 Asia‐Pacific countries,      
1976‐2003

Ln(mortality rate)
Fixed effects, with some 
country time trends

Robust, weighted by 
population

Procyclical mortality

18
Stuckler, et al. (2009) 
Lancet

26 EU countries, 1970‐2007 Mortality rate by cause
Fixed effects in 
differences

Clustered by country Mixed

19
Gonzalez & Quast (2011)  
Empir. Econ.

32 Mexican states, 1993‐2004 Ln(mortality rate) Fixed effects Clustered by state Procyclical mortality

20
Stuckler et al (2012) J. of 
Epid. & Community Health

114 cities in 36 states, 9 years Ln(mortality rate)
Fixed effect and 
distributed lag

Clustered by state Procyclical mortality

21 Ariizumi & Schirle (2012)
10 Canadian provinces, 33 
years 1977‐2009

Ln(mortality rate)
Fixed effects, with 
provincen time trends

Clustered by province 
or bootstrapped

Procyclical mortality

22
McInerney & Mellor (2012), 
J. Health Econ.

50 US states from 1976‐2008, 
Individual‐level data repeated 
cross‐sections from 1994‐
2008

Ln(mortality rate) and 
other senior health 
indicators

Fixed effects with location 
time trends

Unclear
Countercyclical 
health among seniors 
in recent decades

23
Tekin et al. (2013) NBER 
Working Paper No. 19234

Repeated cross‐sections of 
individual‐level data, 2005‐
2005‐2011

Variety of health 
indicators (reported 
health, smoking, etc.)

Fixed effects at the state 
level with some state 
time trends

Clustered by state‐
month

Zero recession‐
mortality relationship

24
Ruhm (2015)                           
J. Health Ec.

50 states, 35 years 1976‐2010 
(using different time 
windows)

Ln(mortality rate)
Fixed effects, with some 
state time trends

Clustered by state
Mortality becoming 
less procyclical 
recently

25
Stevens et al (2015)            
AEJ: Policy

50 US states, 1978‐2006
Ln(mortality rate) by 
group

Fixed effects with location 
time trends

Clustered by state Procyclical mortality

26
Ruhm (2015) NBER Working 
Paper No. 21604

50 US states or 3,142 US 
counties, 1976‐2013

Ln(mortality rate)
Fixed effects with location 
time trends

Clustered by state Procyclical mortality

A.2 Intercensal population estimation

A.2.1 Assumptions about population growth in the presence of migration

A key issue in this literature has to do with the fact that in most intercensal years

(indeed, in 9 out of every 10), the available population measure is an interpolated vari-

able that does not perfectly reflect the true underlying population. This can seriously

bias estimates of the true relationship between business cycles and health, because

in the presence of short-term migration flows, this interpolation error is systematic
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rather than random.

As an example of the potential issue generated by interpolation, consider a hypo-

thetical situation in which a district experiencing long-run population growth is hit

by a short-run recession, followed by a recovery. Further, assume that the recession

causes out-migration which is reversed during the recovery period. These are essen-

tially the conditions observed in the case of the cotton shortage. Finally, to keep

things simple, assume that the recession has no impact on the mortality rate.

The left-hand panel of Figure 10 describes the evolution of population in this hy-

pothetical setting. In this example, the interpolated population builds in population

growth during the recession, even though population was falling during that period.

If that interpolated population is used in the denominator when calculating the mor-

tality rate, as shown in the right-hand panel, then it will make it appear that the

mortality rate fell during the recession even when it did not.52 If instead we do not

use the interpolated population information (as in Eq. 4), then in this case, we will

obtain a mortality rate estimate that is closer to the true value. Thus, including the

interpolated population value in the regression does not necessarily lead to a more

accurate counterfactual.

The main conclusion to draw from this discussion is that when there is a migration

response to economic shocks, assumptions made about the evolution of population

and the relationship between population and mortality in the short versus long run

are important. Moreover, in the absence of accurate annual population estimates,

it is not necessarily true that using interpolated values will lead to more accurate

results. Indeed, erroneous assumptions about population change may introduce new

sources of bias into our calculations.

52Note also that this interpolation does not merely result in population mis-measurement in the
recession period. Rather, by forcing part of the growth that occurred at one point in the intercensal
period into another, this approach also leads population in the recovery sub-period to be under-
estimated, which will further contribute to the spurious impression that the recession was good for
health.
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Figure 10: Example

Population Mortality rate

A.2.2 Errors of closure and Das Gupta interpolation

The results presented in this study suggest that migration bias has an important

impact on the estimated business cycle-mortality relationship in both of our empirical

settings.53 Should we be concerned that migration may cause similar issues in other

contexts? The answer to this question depends in large part on the accuracy of

intercensal population estimates.

Except in the rare few studies that make use of individual-level panel data (e.g.

Ruhm (2003), Dehejia & Lleras-Muney (2004), Gerdtham & Johannesson (2005), and

Edwards (2008)), and which thus abstract from denominator issues altogether, even

modern developed-country studies rely on intercensal figures obtained via interpola-

tion from decennial censuses of population.

For instance, the standard approach used by the U.S. Census Bureau, termed

the Das Gupta method, calculates annual estimates of population using a base and

53Indeed, despite the fact that we might expect this bias to be most problematic in settings—such
as historical and developing-country ones—with mobile labor forces and a poor capacity to track
such movements intercensally, our coal boom analysis nevertheless indicates that migration bias can
be an issue even in a modern rich-country setting.
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terminal year census count combined with annual information on births, deaths, and

net internal and international migration.54 Specifically, for each intercensal year,

they calculate a cumulative population value that adds to observed population in a

base census year all the net change in population (up to that year) due to natural

increase (i.e. births minus deaths) and migration (i.e. internal and international

migrant inflows minus internal and international migrant outflows). Working in this

manner until they reach the next census year, they obtain what is called a “postcensal

estimate” for the entire 10-year period. This represents the population we would

expect to find in the terminal census, based on the observed initial census count

and all known entries and exits from the population. The difference between this

postcensal estimate and the terminal year’s observed census count is termed the error

of closure, and is equivalent to -1 times the residual implied net migration that has

gone unobserved in the intercensal period. We will return to this concept shortly.

Finally, to create the intercensal estimates of population, this error of closure is then

distributed across intercensal years geometrically, thus “topping up” the year-specific

value obtained on the way to the postcensal estimate (see U.S. Census Bureau (2012a)

for further details of the procedure).55

Importantly, in addition to introducing systematic measurement error by dis-

tributing implied residual migration agnostically across intercensal years (in the man-

ner described by the stylized example in Section A.2.1), Das Gupta interpolations will

also be endogenous, since intercensal values will always depend on the terminal census

count, which is itself a function of any shock-induced changes in population during

the intercensal period (whether through shock-induced migration or shock-induced

changes in fertility and mortality).

As mentioned above, on the way to calculating Das Gupta estimates, we also

54To compute the latter two measures, census officials rely on a wealth of information, such as
Social Security and Medicare records and records of troops stationed abroad.

55It is this Das Gupta method that we use in all the intercensal population estimates presented
in this paper (albeit, without adjustments for net migration, since in both samples we lack the data
to do so).
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calculate a useful measure which can serve as a diagnostic of data quality, particularly

as it pertains to unobserved migration: the error of closure. The error of closure can

be interpreted as the (negative of)56 implied net migration that has gone unobserved:

the higher the magnitude of the error of closure, the less well observed is migration.

Furthermore, the larger the error of closure, the more important are assumptions

about how to distribute growth across intercensal years.57 58

To get a sense of the quality of best-available intercensal population estimates and

the likelihood of bias related to unobserved migration in studies using these data,

we now compare the errors in the intercensal population estimates available in our

settings to the errors found in several modern developed and developing countries. In

particular, we calculate the error of closure at several levels of geographic aggregation

for three wealthy countries (England and Wales, the United States, and Canada),

and for one developing country (India). We compare these to similar figures obtained

from our historical data for England and Wales. These errors of closure, reported in

absolute value as a percentage of final-year population, are presented in Table 6.

Here, we find evidence that migration is imperfectly observed—and so, may be

imperfectly reflected in intercensal population—even in modern rich-country settings

that we might expect to be least prone to such error. Panel A shows that migration-

adjusted errors of closure at the national level are non-negligible, ranging from 0.10%

to 2.42% in magnitude. Here, our historical estimates for England & Wales, which,

crucially, cannot adjust for migration, compare favorably. For contrast, modern errors

56Indeed, the error of closure is conceptually identical to the net migration rates used in papers
like Fishback et al. (2006), which study migration.

57It is worth noting that the error of closure is not a perfect measure of the potential for migration
bias because it only reflects unobserved net migration. This will miss, for example, migration away
from areas experiencing a recession which is reversed before the next census is taken.

58Thus, errors of closure resulting from best-available data can be thought of as the residual implied
net migration above and beyond that which was observable, and which was therefore accounted for
in the postcensal estimate. In settings, such as ours, where postcensal estimates do not adjust
for migration (since migration in these settings cannot be directly observed), the error of closure
represents the total implied net migration. Accordingly, we would naturally expect our errors of
closure to be larger than those calculated using best-available methods and modern data.
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of closure from India are several times higher, ranging from 4.61-9.94%.

Naturally, errors of closure are larger at lower levels of spatial aggregation, where

postcensal statistics may fail to fully capture internal migration. In Column 5 of

Panel B, we present estimates for the comparator that, given the country and the

size of the spatial unit we consider in our main analysis,59 is perhaps most relevant

to our empirical setting: modern England and Wales at the Local Authority District

(LAD) level. Using best-available methods, LAD-level errors of closure are on average

roughly one quarter the size of those we obtain from historical England and Wales

at the Registration District (RD) level.60 Comparing measures on a more consistent

basis (that is, where neither error of closure adjusts for migration) reduces this accu-

racy gap substantially: average historical errors of closure at the RD level are only

half that for modern LADs. Indeed, comparing migration-adjusted to non-migration-

adjusted errors of closure for those modern developed-country units for which it is

available, it is clear that even while partially adjusting for migration, best-available

modern errors of closure still leave a substantial portion of migration unaccounted

for.61

59Disaggregating our historical errors of closure by district type, and considering raw (rather than
absolute) errors of closure so that we can account for the direction of implied net migration flows,
we find that at the district level, our average error of closure is 6.2% over 1851-1861 and 5.6% over
1861-1871. For cotton districts, this average is -0.54% and 1.3%, respectively; for nearby (within
25 km) districts, 2.6% and 0.9%; and for all other districts, 6.7% and 6.0%. These figures outline
broad patterns in migration during the downturn. Specifically, they suggest that total net implied
migration was no different before the downturn in “all other” districts than it was during it, but
that cotton districts that had been net gainers of migrants in the decade preceding the downturn
became net donors during it. Similarly, nearby districts that had been net donors of migrants prior
to the downturn (for instance, fueling the industrial expansion of neighboring cotton districts), saw
a large drop in their net “export” of population during the 1860s. Taken together, these findings
are consistent with the broader results in our study, and particularly with the migration patterns
implied by Figure 3.

60Errors of closure look similar for other small, sub-provincial units in modern rich countries. See,
e.g., errors of closure reported for census metropolitan areas and economic regions of Canada, which
in 2011 were as high in magnitude as 3.0% and 4.4%, respectively (Statistics Canada, Demography
Division, 2016).

61Note that while non-zero errors of closure may represent a source of bias due to cumulative
unobserved migration over the entire decade, Das Gupta and similar annual interpolated popula-
tion estimates may exacerbate this bias by introducing further error into the data and estimation
process. Namely, such estimated denominators make implicit assumptions about the distribution of
the decade-wide residual net migration implied by the error of closure, and thus about the timing
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Furthermore, there is considerable cross-unit heterogeneity in the error of closure:

even adjusting for migration, 65% of modern English and Welsh LADs have errors

of closure above 1.00%, with the City of London boasting a whopping 52.71% rate

of error. More importantly from an estimation standpoint, it should be noted that

although this table presents the absolute value of the error of closure, inaccuracy

is liable to be compounded where errors of closure move in opposite directions in

recession-stricken and migrant-receiving spatial units—say, because of unobserved

migration from one unit to the other. Indeed, distributions of the errors of closure for

modern sub-national units tend to be roughly centered on zero, whereas the historical

distributions lie much farther to the right (not reported). This in turn means that

intercensal denominator gaps in a differences-in-differences framework may be more

highly exaggerated in these modern settings, biasing the shock coefficient downward.

What influences the size of the error of closure? Stratifying further, and using

the U.S. over 1990-2000 as an example, we find that at its smallest, the error of

closure is 0.37%, among the relatively immobile elderly (age 85+). Meanwhile, the

modern U.S. error of closure is understandably largest in the lower end of the prime

working-age population (25-34 years old), where it is -5.92% (U.S. Census Bureau,

2010). This pattern is consistent with labor mobility and other age-related factors

that may make this age group particularly hard to track as they move, given the

sort of tax and Medicare data the U.S. Census Bureau uses to make these migration

adjustments. Indeed, the 1990-2000 census period in the U.S. has been widely ac-

knowledged as having an unusually large error of closure, and this large error in turn

has been attributed to precisely those issues we highlight as concerns in this analysis:

the mis-measurement of highly mobile populations—in the case of the U.S. in the

1990s, the growing Hispanic population (Robinson & West, 2005).62 Recent studies

of migration flows.
62Further undermining the accuracy of such analyses is the fact that those populations that may

be especially vulnerable to mis-measurement (for reasons including but not limited to their higher
geographic mobility) may also face different mortality risk profiles and access to medical and social
welfare services.
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in the medical and biostatistics literatures have also raised the issue of denominator

measurement error, highlighting in particular the issue of measurement error in small

demographic strata, such as those by age and race (see Phipps et al. (2005) for a dis-

cussion of intercensal interpolation-driven bias in estimates of breast cancer incidence

rates, and Hund (2012, Ch. 4-5) for a broader methodological discussion of related

denominator issues).63

63For instance, Phipps et al. (2005) suggest that “areas with a high growth rate, a large population
of retirees, or a large population of foreign-born individuals are likely to be underestimated, while
areas with high poverty, and areas with a negative growth rate are likely to be overestimated.”
Using alternative denominators, they find “the DOF-based [breast cancer incidence] rates for Marin
County were approximately 22% higher than census-based rates based on the same numerators.”
It should be noted that this 22% bias does not include the additional bias that could occur in the
presence of spillovers, which in a differences-in-differences framework could compound denominator
error if undercounts in one area lead to overcounts in the region used as a comparator.
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Table 6: Absolute error of closure (%)

Panel A: National

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Country E&W E&W E&W E&W US US Canada Canada Canada India India
Period 1851-1861 1861-1871 1991-2001 2001-2011 1990-2000 2000-2010 1996-2001 2001-2006 2006-2011 1991-2001 2001-2011

EOC (Natural increase only) 0.61 0.25 2.21 4.41 3.29 9.94 4.61
EOC (Migration-adjusted) 0.92 0.40 2.42 0.16 0.20 0.10 0.50

Panel B: Sub-national

Country E&W E&W E&W E&W E&W E&W US Canada Canada Canada India
Geo Unit RD County RD County LAD County State + DC Province Province Province State

Period 1851-1861 1851-1861 1861-1871 1861-1871 2001-2011 2001-2011 2000-2010 1996-2001 2001-2006 2006-2011 2001-2011

Mean EOC (Natural increase only) 10.68 7.23 10.44 6.56 4.97 4.93 4.26 6.31
Min 0.02 0.32 0.01 0.20 0.01 0.82 0.16 0.59
Max 31.91 18.68 68.44 19.55 16.02 8.85 19.28 21.73
Share < 1.00% 0.03 0.13 0.05 0.13 0.10 0.02 0.20 0.11
Share > 5.00% 0.78 0.69 0.76 0.60 0.44 0.49 0.33 0.46

Mean EOC (Migration-adjusted) 2.26 1.10 0.96 0.73 0.95 0.97
Min 0.01 0.02 0.00 0.00 0.00 0.00
Max 52.71 2.69 4.80 2.20 3.20 2.10
Share < 1.00% 0.35 0.53 0.73 0.54 0.62 0.54
Share > 5.00% 0.10 0.00 0.00 0.00 0.00 0.00

Observations 539 55 539 55 347 55 51 13 13 13 35

We report the absolute value (magnitude) of the error of closure in the total population, calculated as a percentage of the final-year census count of population. Figures are given for England &
Wales, the United States, Canada, and India, as well as for smaller geographic units within these countries (i.e. Registration Districts, Local Authority Districts, counties, and states/provinces).
“EOC (natural increase only)” refers to the error of closure based on accounting for births and deaths only. “EOC (migration-adjusted)” refers to the error of closure based on accounting for
births, deaths, internal and international migration, and other similar adjustments. With the exception of the figures for all of Canada and for the US in 1990-2000, which are taken directly
from Statistics Canada, Demography Division (2016) and U.S. Census Bureau (2010), respectively, the table reports the authors’ calculations based on data from United Kingdom Office for
National Statistics (2002, 2003, 2011, 2012, 2014), U.S. Census Bureau (2011a,b, 2012b, 2016), and Office of the Registrar General & Census Commissioner, India (2013, 2016).
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Together, these findings suggest that the bias resulting from poor intercensal

population denominators is likely to be a significant factor in a variety of settings,

even beyond the obvious historical and developing-country ones. From a practical

perspective, as both our coal boom analysis and these error-of-closure comparisons

imply, even modern rich-country studies should be concerned about denominator-

interpolation problems that could arise when studying granular, sparsely populated,64

or rapidly growing geographic regions; small strata (for instance, by age, gender, race,

and the interactions of these, especially where the sub-population in question may also

experience mortality risk that is different from that of the general population); and

populations that are vulnerable, mobile, and/or prone to under-registration (e.g. in

the modern U.S., Hispanics and immigrant populations and young working-age peo-

ple more generally). What’s more, in the presence of migration spillovers, this bias

will be further magnified when using standard panel data approaches to estimation.

For simpler comparisons, in Table 7 we also report the error of closure in our

two empirical settings (which should be interpreted as total implied net migration)

alongside just the best-available ones from other settings (which should be interpreted

as residual implied net migration).65 Columns 1-4 compares the error of closure in

England & Wales during the historical period that we study to those in the most

recent census. We can see that the modern census is doing much better than the

census in our setting at both the district and county level. However, we can also

see that unobserved net migration in the modern census is still equal to over 1% of

population at the county level and over 2% at the district level. Similarly, for U.S.

states or Canadian provinces, we observe errors of around 1% of the population. This

64In sparsely populated or difficult-to-monitor regions, errors can be even higher: for instance,
average absolute errors of closure for sub-provincial units are highest in rural provinces/territories,
such as the Northwest Territories, whose census divisions had an average absolute error of closure
of 3.5% in 2011 (Statistics Canada, Demography Division, 2016).

65When analyzing this table it is useful to remember that errors of closure will generally be smaller
at higher levels of aggregation. For example, unobserved net migration between two districts within
the same county will influence the error of closure at the district level but will not increase the error
of closure at the county level.
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Table 7: Absolute error of closure (%), best available technique

Country England England England England US Canada India
& Wales & Wales & Wales & Wales

Geo. Unit: District District County County State Province State

Period 1861-71 2001-11 1861-71 2001-11 2000-10 2006-11 2001-11

Mean EOC 10.44 2.26 6.56 1.10 0.96 0.97 6.31
Min 0.01 0.01 0.20 0.02 0.00 0.00 0.59
Max 68.44 52.71 19.55 2.69 4.80 2.10 21.73
Share < 1% 0.05 0.35 0.13 0.53 0.73 0.54 0.11
Share > 5% 0.76 0.10 0.60 0.00 0.00 0.00 0.46

Observations 539 347 55 55 51 13 35

This table reports the absolute value (magnitude) of the error of closure in the total population, calculated as a percentage
of the final-year census count of population. For England & Wales, the values reported for 1861-1871 are from the consistent
registration districts used in this study while the values reported for 2001-2011 are for local area districts. For the U.S. we
report values for the 50 states plus the District of Columbia. In each case, the best-available technique is used to calculate
the EOC; for instance, the figures from historical England & Wales and modern India adjust for natural increase only, while
those for the modern England & Wales, the U.S., and Canada adjust for natural increase as well as observed internal and
international migration. With the exception of the figures for all of Canada which are taken directly from Statistics Canada,
Demography Division (2016) the table reports the authors’ calculations based on data from United Kingdom Office for
National Statistics (2002, 2003, 2011, 2012, 2014), U.S. Census Bureau (2011a,b, 2012b, 2016), and Office of the Registrar
General & Census Commissioner, India (2013, 2016).

suggests that even with the additional data used to track migration in the modern

census, migration bias may still be a concern, though any bias is likely to be less

severe than in the settings that we study. In the last Column of Table 7, we look at

errors of closure at the state level in India. Here we observe that the average error of

closure is over 6% of the state population and the largest error was over 20% of the

state population. This suggests that in India, and likely in other developing countries,

migration bias may be a serious concern.

B Appendix: The Lancashire cotton shortage

B.1 Additional evidence on the effects of the cotton shock

Figure 11 describes domestic raw cotton consumption in Britain from 1850-1875. This

is the best available measure of the change in production in the industry across this
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period. The graph also describes the evolution of payments for wages and other vari-

able costs, other than cotton, in the industry, from 1860-1868. Both of these statistics

suggest that the shock period was characterized by a large reduction, equal to roughly

half of pre-war production, in both industry production and wage payments.

Figure 11: British domestic cotton consumption and input payments, 1850-1875

Domestic raw cotton consumption data from Mitchell & Deane (1962). Wage and cost data

from Forwood (1870).

To look for other effects of the U.S. Civil War on the British economy, a natural

starting point is to look at imports and exports. The left-hand panel of Figure 12

focuses on imports. This figure shows that, once imports of raw cotton are excluded,

there do not appear to be any substantial changes in either total imports or raw

material imports to Britain. This makes sense given that raw cotton made up 67%

of total British imports from the U.S. in 1860. Of the other major U.S. exports to

Britain, only tobacco was heavily sourced from the South, and that made up only

2.6% of imports from the U.S.

The right-hand panel of Figure 12 shows the behavior of exports from Britain over

the study period. There was a substantial drop in exports of textiles during the U.S.

Civil War period, which was due entirely to exports of cotton (these were relatively

good years for other textile industries such as wool and linen). However once textile

exports are removed there is no evidence of a substantial change in British exports
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Figure 12: British imports and exports, 1854-1869

Imports to Britain Exports from Britain

Data from Mitchell (1988).

during the Civil War period.

One may expect that the U.S. Civil War would have had an impact on particular

sectors of the British economy, such as arms or warship production. However, British

producers were prohibited from selling arms to either side during the Civil War. While

it is well known that some producers were able to circumvent these restrictions, in

general they limited the impact that the conflict had on these industries.

One sector of the British economy that was substantially affected was the shipping

industry. To avoid the risk of capture by Southern privateers, many U.S. merchant

ships, which were primarily owned by Northern shipping interests, were transferred to

British ownership during the U.S. Civil War. This resulted in a substantial expansion

of the British merchant fleet, which had impacts in major shipping centers particularly

Liverpool. To account for the potential effect of these changes, in robustness exercises

we explore the impact of dropping Liverpool and London, the two most important

British ports, from our data.
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B.2 Responses to the cotton shortage

Contemporary reports offer a mixed view of the impact that the cotton shortage had

on health. Some 19th century observers, such as Arnold (1864), report that there

was a “lessened death-rate throughout nearly the whole of the [cotton] district, and,

generally speaking, the improved health of the people.” In the words of the Registrar

of Wigan, these gains were attributed primarily to “more freedom to breathe the

fresh air, inability to indulge in spirituous liquors, and better nursing of children.”66

On the other hand, there were also reports of negative health effects due to poor

nutrition and crowded living conditions.67 Seasonality features prominently in these

reports, with conditions worsening during the winters, when the shortage of clothing,

bedding, and coal for heating increased individuals’ vulnerability to winter diseases

such as influenza.

The response of both individuals and institutions to the recession caused by the

cotton shortage played an important role in influencing health outcomes during this

period.68 Workers who found themselves unemployed responded, first, by reducing

costs and dipping into any available savings, and later, by pawning or selling items of

66Quoted from the Report of the Registrar General, 1862. The importance of childcare is high-
lighted in a number of reports, such as Dr Buchanan’s 1862 Report on the Sanitary Conditions of
the Cotton Towns (Reports from Commissioners, British Parliamentary Papers, Feb-July 1863, p.
304), which discusses the importance of the “greater care bestowed on infants by their unemployed
mothers than by the hired nursery keepers.”. This channel was likely to be particularly important in
the setting we study because female labor force participation rates were high, even among mothers.
Using 1861 Census occupation data, we calculate that nationally, 41% of women over 20 were work-
ing and they made up 31% of the labor force. This rate was much higher in major cotton textile
areas. In districts with over 10% of employment in cotton textiles in 1861, the average female labor
force participation rate for women over 20 was 55% and women made up 38% of the labor force.
For comparison, these are similar to the levels achieved in the U.S. in the 1970s and 1980s (Olivetti,
2013), though of course the nature of the work done by women was quite different.

67Dr Buchanan, in his Report on the Sanitary Conditions of the Cotton Towns, states that “There
is a wan and haggard look about the people...” (Reports from Commissioners, British Parliamentary
Papers, Feb-July 1863, p. 301). Typhus and scurvy, diseases strongly associated with deprivation,
made an appearance in Manchester and Preston in 1862 after being absent for many years, while
the prevalence of measles, whooping cough, and scarlet fever may have also increased (Report on
the Sanitary Conditions of the Cotton Towns, Reports from Commissioners, British Parliamentary
Papers, Feb-July 1863).

68For further details on mortality patterns in Britain during this period, see Appendix ??.
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value, including furniture, household goods, clothing and bedding (see Watts (1866,

p. 214) and Arnold (1864)). Evidence suggests that many workers exhausted these

private resources before turning to public relief—indeed, some previously proud work-

ers were even found begging or busking on the streets (Henderson, 1969, p. 98-99).

Even those who remained employed generally suffered substantial reductions in in-

come, due to working short-time or to the substitution of Indian for U.S. cotton, a

practice which slowed down production and reduced pay, which was largely based on

piece rates. Finally, as discussed briefly in Section 5.2, many left cotton districts in

search of work in other areas.

The recession also generated an unprecedented institutional response aimed at

relieving the suffering in cotton districts. Contemporary reports largely credit public

relief efforts for the fact that no widespread famine occurred during the recession.69

Relief funds came in two main forms. First, funds were provided at the local level

through the Poor Law Boards, the primary system for poor relief in Britain during this

period.70 However, because Poor Law funds were associated with pauperism, provided

funds for only the barest level of subsistence, and required “labour tests” such as rock-

breaking, which cotton workers found demeaning, there is evidence that workers tried

to avoid drawing on this stigmatized source of support (Kiesling, 1996; Boyer, 1997).

The second source of funds was a large number of charitable contributions. These

funds could take the form of cash, vouchers, and in-kind assistance, and came from

voluntary subscriptions from across the country and even as far away as Australia

(Watts, 1866). Direct relief was not the only institutional response. Additional relief

programs included schools for children and adults, such as girl’s sewing schools, as

well as public works employment for unemployed cotton workers, though most public

69For example, the Registrar General’s report of 1864 states that (p. xv), “that famine did not
bear the fruit which in the history of nations it has too often borne, the spectacle of thousands struck
by fever and death,—is mainly due to that legal provision for the poor which Christian civilization
has established, and to the spontaneous munificence of a people amongst whom the seeds of charity
have been liberally scattered.”

70These funds were provided by taxes levied on local property owners. See Watts (1866) for a
description of the workings of the Poor Law Boards during the Cotton Famine.
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works employment began in 1863, after the worst of the crisis had passed.71

At the height of the recession in the winter of 1862, reports indicate that roughly

500,000 persons depended on public relief funds, with over 270,000 of these supported

by the local Poor Law boards and an additional 230,000 reliant on the voluntary relief

funds (Arnold, 1864, p. 296). The number of persons supported by public sources

would fall to 264,014 by mid-summer 1863, and by 1865, the number of persons on

relief fell back to where it had been at the beginning of the crisis (Arnold, 1864;

Ellison, 1886).

Despite the best attempts of institutions and individuals to cope with the crisis—

for instance, through short-time work, public relief funds, in-kind transfers, and public

works employment—these efforts were insufficient in the face of such an intense and

unexpected shock. Accordingly, migration became a popular means of adjustment as

many erstwhile cotton operatives left cotton districts in search of work in other areas.

B.3 Data used in the cotton shock analysis

To assess the health consequences of the cotton shortage, we construct a new panel

of annual district-level mortality spanning 1851-1865. These detailed data, which

we digitized from original reports of the Registrar General, include information on

both the age and cause of death for over 600 registration districts covering all of

England and Wales.The registration district-level tabulations are the finest geographic

level covering the demography of all of England and Wales annually in this period.

Previously available data from the Registrar General’s reports, digitized by Woods

(1997), is reported only at the decade level, and so is insufficiently detailed for our

71See Arnold (1864) for a discussion of public works. The availability of public works expanded
substantially starting in the summer of 1863, when Parliament passed the Public Works (Manu-
facturing Districts) Act. This Act used the central government’s borrowing authority to provide
long-term low interest rate loans to municipal governments so that they could undertake needed
public works projects using unemployed cotton operatives. Most of these projects were aimed at
improvements to roads and water or sewer systems.
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analysis. For an in-depth discussion of the Registrar General’s data, see Woods

(2000).

We also collect information from the Registrar General’s reports on district pop-

ulation and births, which allows us to calculate mortality rates and to assess fertility

responses to the crisis. The population data are based on information from the census

years 1851, 1861 and 1871, while the births data were collected annually. When cal-

culating mortality rates, we interpolate intercensal population using the Das Gupta

method, per U.S. Census Bureau best practices (U.S. Census Bureau, 2012a).72

In our main analysis, we take the entire U.S. Civil War, 1861-1865, as shock

period. As noted above, contemporary reports suggest that most of the adverse

impacts of the U.S. Civil War were concentrated in the first three years of the event,

but we focus primarily on the entire Civil War period so as to avoid concerns that

our main results may be dependent on the choice of shock years that we consider.

In particular, as part of the government response to the cotton shortage, a number

of public works projects focused on sanitary improvements were undertaken during

the recession. Most of these did not come into operation until late in the 1861-1865

period. In addition, migration occurring during the shock period was also likely to

have affected mortality patterns in the post-shock period. Focusing on the pre-shock

and shock periods avoids concerns about how to treat these factors.

In order to establish the spatial distribution of the shock, we measure the im-

portance of the cotton textile industry in each registration district prior to the U.S.

Civil War. This is done using data from the full-count 1851 Census of Population,

which includes information on occupation, by district, for every person in England

and Wales. Since the location of industries is highly persistent over time, we use

72The Das Gupta method accounts for the number of births and deaths in a district in each
year, and distributes decennial residual population (the “error of closure,” or the difference between
enumerated population in the terminal year and population estimates at that date based on natural
increase over the preceding decade) across the intercensal years. This method is used by the U.S.
Census, though the Census Bureau also uses additional information from tax returns and Medicare
claims to provide a partial adjustment for migration. For further discussion see Section A.2.2.
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use data from 1851 rather than from 1861 to avoid the possibility that our measure

may be influenced by events occurring in cotton districts at the time of enumeration.

Nevertheless, we provide robustness results using occupation data from the 1861 Cen-

sus. Using these occupation data, we calculate the number of cotton textile workers

as a share of the total working population for each district, which provides us with

a cross-sectional measure of the importance of the cotton textile industry in each

district on the eve of the shortage.

One factor complicating the use of these data is the change in district boundaries

over time. To deal with this issue, we manually review the boundary changes for

every district over our study period and combine any pair of districts experiencing a

boundary change that resulted in the movement of over 100 people from one to the

other. This leaves us with 539 consistent districts in the main analysis.73 Summary

statistics for these 539 districts appear in Table 8.

Table 8: Summary Statistics

Panel A: Full sample of districts
(1) (2) (3) (4)

Mean Standard Min Max
deviation

Average annual deaths (full sample) 809.23 1050.19 34 11,256
Cotton employment share (1851 census) 0.017 0.07 0 0.51
Nearby cotton employment (1851 census) 4569.01 20,175.54 0 158,490
Population (1851 census) 33,260.87 35,019.68 2493 284,126

Panel B: Cotton districts only
Average annual deaths prior to shock 1943.89 1546.46 207 7957
Average annual deaths during shock 2133.1 1684.46 199 8900

Full sample includes 8085 district-year observations spanning 1851-1865 for 539 unique districts. For the statistics that only draw
on district-level data, there are District-level annual death data transcribed from annual reports of the Registrar General. Cotton
employment share is simply the share of the total workforce (in 1851) that was employed in the cotton industry. Nearby cotton
employment refers to the total number of workers in the 0-25 km radius of each district that were employed in the cotton industry in
1851. Nearby cotton employment is set to 0 for cotton districts (those with an 1851 cotton employment share greater than 10 percent).
Pre-shock period is 1851-1860 while the shock period is 1861-1865.

73One area where boundary changes create major issues is in a set of districts around Leeds. Ulti-
mately, to obtain a consistent series we combine several neighboring districts into a single “Greater
Leeds” district.
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B.4 Additional results on migration during the cotton shock

B.4.0.1 Internal migration Additional evidence on migration during the cotton

shock can be gleaned from the location-of-birth information provided in the census.

Specifically, changes in people in the population of people born in one location who

are resident in another can be used to provide evidence on net migration between

locations. The location-of-birth data are only available at the county, level, so in

Figure 13, which is reproduced from Hanlon (Forthcoming), we compare the largest

cotton textile county, Lancashire, with the neighboring wool textile county of York-

shire. The figure indicates that the number of Yorkshire residents who were born in

Lancashire increased substantially from 1861-1871, while the number of Lancashire

residents born in Yorkshire stagnated. This suggests an out-migration of Lancashire

residents during the U.S. Civil War, as well as reduced in-migration to Lancashire.

Figure 13: Evidence of migration for Yorkshire and Lancashire from birthplace data

This graph, which is reproduced from Hanlon (Forthcoming), presents data on the birthplace of

county residents from the Census of Population.

Next, we consider some results that help us think about how migration patterns

varied across age groups. Figure 14 describes the share of the population in each age
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category up to 79 in the cotton districts. The most prominent feature in this graph

is that there was a substantial excess of young workers in the 20-24 age group in

cotton districts in 1861, which had largely disappeared by 1871. This suggests that

the migration response to the shock was strongest among young adults.

Figure 14: Share of population in each age group in cotton districts

Population data are from the Census of Population for 1861 and
1871. Cotton districts are identified as those with over 10 per-
cent of workers employed in cotton textile production in the 1851
Census, as in the main analysis.

An alternative view of the same pattern is provided in Figure 15, which compares

the share of population by age group in cotton districts, nearby districts, and all

other districts. This is done for 1861 in the top panel and for 1871 in the bottom

panel. In 1861, cotton districts had a much larger share of young workers, particularly

in the 15-19 and 20-24 age groups, than the other districts. By 1871, most of that

difference had disappeared. It is also worth noting that in 1871, the nearby districts

had substantially more population in the 25-29 and 30-34 age groups than the “all-

other” districts. This pattern is consistent with the migration of workers who were

in the 15-19 and 20-24 age group and living in cotton districts in 1861, into nearby
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districts where, by 1871, they appear in the 25-29 and 30-34 age groups.

Figure 15: Share of population in each age group by type of district

1861

1871

Population data are from the Census of Population for 1861 and 1871. Cotton districts are identified

as those with over 10 percent of workers employed in cotton textile production in the 1851 Census.

Nearby districts are those within 25 km of cotton districts.

B.4.0.2 Emigration from the UK Tracking emigration from the U.K. in re-

sponse to the cotton shock is more difficult that tracking internal migration. What
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information is available was collected at the ports of embarkation and reported in the

British Parliamentary Papers. Figure 16 uses data from the 1868 report to the House

of Commons, which provides total emigration numbers for 1853-1867. This graph

shows that the total number of emigrants leaving the U.K. fell almost continuously

from 1851-1861 and then increased substantially from 1861-1863. Unfortunately we

don’t know what areas these emigrants were coming from, though we do know that

most emigrants were Irish by birth. The English made up roughly one-third of em-

igrants across this period. However, by 1860 there were many Irish and Scottish

living in cotton districts, so international emigrants from cotton districts need not be

English.

Figure 16: Emigration from the U.K., 1852-1867

Data from the British Parliamentary Papers (1868, no. 045515).

B.5 Additional results on mortality during the cotton shock

Figure 17 presents results similar to those shown in Figure 5 of the main text, but

using mortality rates rather than mortality.
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Figure 17: Mortality rates during the cotton shortage

Cotton, nearby and control districts Combining cotton and nearby districts

Mortality data from the reports of the Registrar General. Data cover all of England & Wales.
Population denominators are based on Census data and iterpolated using information on
births and deaths from the Registrar General’s reports using the Das Gupta method. Cotton
districts are those with more than 10% of employment in cotton textile production in 1851.
Nearby districts are non-cotton districts within 25 km of the cotton districts.

Table 9: Accounting for spillovers to nearby districts with time trends

Dependent variable: Ln(MORT. RATE) Ln(MORTALITY) Ln(MORTALITY)

(1) (2) (3)

Cotton district × shortage 0.079*** 0.069*** 0.072***
(0.017) (0.016) (0.016)

Nearby cotton emp. × shortage 0.007*** 0.007*** 0.007***
(0.002) (0.002) (0.002)

Ln(Pop) -0.385**
(0.170)

Observations 8,085 8,085 8,085
R-squared 0.239 0.421 0.420

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by district. Data cover 539 districts
from 1851-1865. All regressions include district fixed effects, year fixed effects, and district-specific
time trends. Shock period is 1861-1865. Cotton districts are defined as those with a cotton
employment share greater than 10%.

Table 10 presents some additional robustness results for the cotton shock example.

We focus on results that include variables capturing the impact of the cotton shock

in nearby districts, which is our preferred specification.
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In the first column we impose a population density cutoff which limits the set of

comparison districts to be more similar to the cotton districts, which tended to be

relatively dense urban areas. Specifically, we use a population density cutoff of 0.89,

which is the minimum density among cotton districts. In the second column we drop

London, Liverpool, Leeds and Manchester from the data. London is a clear outlier

because of its size and status as the capital. Liverpool is dropped because as the

main port for cotton shipments it may have also been affected by the shock. Leeds is

dropped because it experienced several border changes during the 1861-1871 decade.

Manchester is dropped because it was an outlier relative to other cotton districts;

it was the largest cotton town and the main market for the industry. In Column

3, we use a shorter pre-shock period. In Column 4 we define cotton districts as

those with an employment share greater than 5% and in Column 5 we define cotton

districts based on 1861 Census data. Both columns show an increase in mortality

for both cotton and nearby districts, however, the increase for cotton districts is not

statistically significant when we define cotton districts as those with greater than 5%

employment share.

74



Table 10: Assessing the robustness of the cotton shock results

Dependent variable is ln(deaths)

(1) (2) (3) (4) (5)
Population No London, Data from Cotton dist Cotton emp.

density Liverpool, 1856-65 defined as based on
>0.089 Leeds, or only emp. share>5% 1861 census

Manchester
1[Cotton district] × 0.048** 0.039** 0.067*** 0.020 0.051***
Cotton shortage (0.020) (0.018) (0.017) (0.018) (0.019)

0-25 km exposure × 0.009*** 0.009*** 0.011*** 0.010*** 0.011***
Cotton shortage (0.002) (0.002) (0.002) (0.002) (0.002)

District effects Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes
Observations 7905 7680 5390 8085 8085
R-squared 0.212 0.197 0.272 0.207 0.205

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the district-level in parentheses. Data cover 539 districts from 1851-1865.
Downturn period is 1861-1865. Cotton districts are defined as those with a cotton employment share greater than 10%. Nearby cotton
exposure is calculated as the log of (1 + total cotton employment in other districts that lie within 25km). This variable is set to zero
for cotton districts. Mortality data are from annual reports of the Registrar General.

Table 11 considers several alternatives to identifying nearby cotton districts. In

Column 1 we add to our baseline specification the effect of cotton employment in

the 25-50 km, 50-75km, and 75-100 km bins. There we see that the effects are

concentrated in the 0-25 km bin. In Column 2 we replicate this specification; however,

instead of using log(nearby cotton employment) we use a series of indicators for

whether the district was within 0-25 km, 25-50 km, 50-75 km, or 75-100 km of a

cotton district. Again, we see that the nearby effects are concentrated in the 0-25

km bin. In both specifications the main effect for cotton districts is unaffected. In

Columns 3 and 4 we consider continuous measures of cotton exposure. Specifically,

for each non-cotton district, we calculate the distance to all other districts and then

discount cotton employment for further away districts. In Column 3 we discount

by exp(-distance/1000) and in column 4 we discount linearly. While discounting

linearly produces qualitatively similar results, the effect of nearby cotton employment

(discounted exponentially) is positive but insignificant.
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Table 11: Alternative measures of nearby cotton exposure

Dependent variable is ln(deaths)

(1) (2) (3) (4)
1[Cotton district] × 0.059*** 0.031 0.241*** 0.050**
Cotton shortage (0.022) (0.019) (0.056) (0.020)

0-25 km exposure × 0.012***
Cotton shortage (0.002)

25-50 km exposure × -0.004
Cotton shortage (0.003)

50-75 km exposure × -0.001
Cotton shortage (0.003)

75-100 km exposure × 0.004
Cotton shortage (0.003)

1[0-25 km of cot. dist.] × 0.077***
Cotton shortage (0.024)

1[25-50 km of cot. dist.] × 0.054***
Cotton shortage (0.018)

1[50-75 km of cot. dist.] × 0.039**
Cotton shortage (0.018)

1[75-100 km of cot. dist.] × 0.051***
Cotton shortage (0.015)

Nearby cot. emp. discounted as 1.221***
exp(-distance/10000) × Cotton shortage (0.287)

Nearby cot. emp. discounted as 2.378***
1/(distance×10) × Cotton shortage (0.461)

District effects Yes Yes Yes Yes
Year effects Yes Yes Yes Yes
Observations 8085 8085 8085 8085
R-squared 0.209 0.206 0.201 0.205

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the district-level in parentheses. Data cover 539 districts from 1851-1865.
Downturn period is 1861-1865. Cotton districts are defined as those with a cotton employment share greater than 10%. Nearby cotton
exposure is calculated as the log of (1 + total cotton employment in other districts that lie within 25km). This variable is set to zero
for cotton districts. Mortality data are from annual reports of the Registrar General.76



Table 12 presents estimated results corresponding to Table 1 in the main text,

but using two additional approaches to dealing with standard errors. In this table,

the parenthesis contain standard errors clustered by district, which is the approach

used in the main text. This approach is the most similar to the one taken in most

existing studies in this literature. In square brackets, we report standard errors

clustered by county, which is the next largest geographic unit. There are 42 counties

in our data. In the curly brackets, we present standard errors that allow for serial

correlation using the approach from Conley (1999), up to a cutoff distance of 25km.

All three approaches yield fairly similar results, though allowing spatial correlation

does increase the confidence intervals somewhat.

Table 12: Assessing the importance of standard error adjustments

Dependent variable: Ln(MR) Ln(MORT) Ln(MORT)

(1) (2) (3)

Cotton district × shortage -0.023 -0.013 0.049
(0.011) (0.012) (0.019)
[0.010] [0.012] [0.026]
{0.020} {0.020} {0.020}

Cotton emp. within 0.002 0.003 0.011
0-25km × shortage (0.001) (0.001) (0.002)

[0.002] [0.002] [0.003]
{0.001} {0.001} {0.002}

Ln(Pop) -0.857**
(0.029)
[0.028]
{0.032}

District effects Yes Yes Yes
Year effects Yes Yes Yes

Standard errors clustered by district in parentheses. Standard errors clustered
by county in brackets. 25 km spatially corrected standard errors in curly brack-
ets. Data cover 539 districts from 1851-1865. Downturn period is 1861-1865.
Cotton districts are defined as those with a cotton employment share greater
than 10%.
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C Appendix: The Appalachian coal boom

This section contains additional background information and results related to the

coal boom example. Many additional details can be found in the following previously

published papers looking at the coal boom: Black et al. (2002) and Black et al. (2005).

C.1 Data used in the coal boom analysis

The mortality data used in our analysis of the coal boom come from Bailey et al.

(2016) files deposited at IPUMS. These files contain data on mortality by both loca-

tion at the county level.74 In addition to deaths, the Bailey et al. (2016) data also

provide the number of births, which we use when constructing intercensal population

estimates.

The second type of data used in our study is a set of population data from the

Census. These data are available at the county level for every decade. For intercensal

years, we generate estimated population values using the Das Gupta method, which

uses the previous and next census population values for each county as well as birth

and death information.

In the main analysis we use data starting covering 1950-1977. Summary statistics

for the main variables used in the analysis across these years are presented in Table

13.

74Our analysis uses the location of residence mortality data.
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Table 13: Summary statistics for variables used in the main coal boom analysis

Variable Mean Std. Dev. Min. Max.
Mortality rate (per 1000) 10.239 1.93 3.568 19.568
Log mortality rate 2.307 0.201 1.272 2.974
Mortality 432.16 411.531 43 2681
Log mortality 5.734 0.793 3.761 7.894
Population 43,189 40,276 8,008 231,122
Log population 10.335 0.803 8.988 12.351

N 7672

The interpolated population values used in the main analysis were generated by

the authors using census population data together with births and deaths. In the

1970s we also have intercensal population estimates from the census, though these

are not available at the count level in earlier periods. In Figure 18 we compare our

intercensal population estimates for the coal and control counties to those produced

by the census. This figure shows that our estimates are quite similar to those produced

by the census.

Figure 18: Comparing our population estimates to those produced by the census

In addition to the data used in the main analysis, we have also collected mortality

data by age group. Unfortunately, however, we have only found these data at the

county level starting in 1968, so we do not have a long enough pre-shock period
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to replicate the analysis that we applied to the total mortality data. Instead, in

Appendix C.3 we present graphs describing the evolution of mortality within age

categories from 1968 through the coal boom period.

Table 14 describes mortality rates by age group. We focus on mortality rates in

1970 in order to take advantage of the census population figures in that year and we

use only data from the counties used in the main analysis to construct these figures.

The main take-away from Table 14 is that mortality rates among those in their 20s

and 30s were much lower than for older age groups. This is an important fact because,

as discussed in the next appendix section, this group was the most likely to migrate

in response to the coal boom.

Table 14: Mortality rate by age group in 1970 (per thousand)

0-4 5-9 10-14 15-19 20-24 25-34 35-44 45-54 55-64 65-74 Over 75
4.821 0.43 0.387 0.994 1.405 1.475 3.054 7.385 17.454 38.554 102.823

C.2 Additional results on migration during the coal boom

Figure 19 presents a map showing the difference in net migration by county in the

1970-80 decade compared to the 1960-70 decade including more surrounding states

than the map in Figure 7. The additional states we include here are Maryland, North

Carolina, Tennessee, and Virginia. Dark colors indicate counties that experienced an

increase in in-migration in the coal boom decade, 1970-1980, relative to the decade

before.
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Figure 19: Difference in net migration with additional states

Figure 20 presents maps showing net migration based on the error of closure in the

decade before the coal boom, the decade covering most of the boom, and the decade

after the boom. Light colors indicate counties experiencing net out-migration. We

can see that the coal counties experienced a clear pattern of out-migration during the

decades before and after the boom, but that this pattern of out-migration completely

disappeared during the 1970-1980 period.
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Figure 20: Estimated net migration before, during and after the coal boom

Two decades before the coal boom – 1950-1960

Decade before the coal boom – 1960-1970

During the coal boom – 1970-1980

After the coal boom – 1980-1990

Next, we look at the distribution of migrants into the coal counties by age groups.

Figure 21 plots the percentage change in population in the coal and control counties

between 1970 and 1980. This shows that population growth in the coal counties

during this period was concentrated in the 25-34 age group. While this age group
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also experienced growth in the control counties, this was less rapid than in the coal

counties. Moreover, in terms of numbers, the change in population aged 25-34 in the

coal counties accounts for 100,259 people out of a total population increase of 180,903

during the 1970-1980 decade. The 15-24 year old age group accounted for another

43,870 of this increase. Thus, a substantial majority of the population increase in the

coal counties from 1970-1980 was concentrated among young adults.

Figure 21: Percentage change in population by age group

C.3 Additional results on mortality during the coal boom

C.3.0.1 Results using spatial standard errors In the main text we present

results with standard errors that are clustered by county to allow for serial correlation.

In Table 15 we present alternative standard errors that allow for spatial correlation

between counties within 100km of each other, following Conley (1999), and serial

correlation for up to two years on each side of the observation year, following Newey

& West (1987). We focus only on results with county time-trends because of evidence

that the parallel trends assumption is violated when time-trends are not included.

These alternative standard errors are presented in square brackets. In general these
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Table 15: Estimated effects of the coal boom with alternative standard errors

Dependent variable: Ln(MR) Ln(MORT) Ln(MORT)
(1) (2) (3)

Coal district × boom -0.0375 -0.00306 0.00947
(0.00958) (0.00906) (0.0104)
[0.00858] [0.00712] [0.00780]

Ln(Pop) 0.267
(0.0427)
[0.0332]

Standard errors clustered by district in parenthesis. Spatial
standard errors allowing correlation for districts within 100km
and serial correlation up to two lags in square brackets. All
regressions include county fixed effects, year effects and county
time trends. N=7,672.

Table 16: Weighted coal boom regression results

Dependent variable: Ln(MR) Ln(MORT) Ln(MORT)
(1) (2) (3)

Coal district × boom -0.0412*** -0.00191 0.0126
(0.0105) (0.00871) (0.0106)

Ln(Pop) 0.270***
(0.0336)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered
by district. All regressions include county fixed effects, year
effects and county time trends. N=7,672.

standard errors are smaller than those obtained when clustering by county, so we

present the more conservative clustered standard errors in the main text.

C.3.0.2 Weighted results Next, we present results where each observation is

weighted by county population in 1960. We focus only on results with county time-

trends because of evidence that the parallel trends assumption is violated when time-

trends are not included. These weighted results, presented in Table 16, are qualita-

tively similar to those shown in the main text.
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Table 17: Coal boom regression results with additional control counties

Dependent variable: Ln(MR) Ln(MORT) Ln(MORT)
(1) (2) (3)

Coal district × boom -0.0288*** 0.00253 0.00947
(0.00958) (0.0102) (0.0103)

Ln(Pop) 0.181
(0.164)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered
by district. All regressions include county fixed effects, year
effects and county time trends. N=12,330.

C.3.0.3 Coal boom results with additional control counties In our main

analysis we use only the treatment and control counties considered by BMS. Here

we expand the set of control counties to include all counties in the four states that

they study as well as counties in three neighboring states, Maryland, Tennessee, and

Virginia. Results obtained with these additional control counties are presented in

Table 17. We focus only on results with county time-trends because of evidence that

the parallel trends assumption is violated when time-trends are not included.

C.3.0.4 Coal boom results with alternative coal counties In our main anal-

ysis we identify coal counties as those with over one billion tons of coal reserves. Below

we present results using two alternative definitions. In Columns 1-3, coal counties

are identified as those with over 2.5 billion tons of reserves prior to the boom. We

can see that using this alternative cutoff has relatively little impact on the results.

In Columns 4-6 we identify coal counties as those with over 10% of earnings coming

from coal in 1969, based on the list provided by BMS. Here the main change is in

results obtained using log mortality as the outcome without including log population

as a control, in Column 6, where we see evidence that mortality may have increased

during the recession. However, it is worth noting that this increase is sensitive to

the inclusion of time-trends; without time trends the coefficient obtained from the
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Table 18: Coal boom regression results with alternative coal county definitions

Coal counties are those with more Coal counties are those with
than 2.5 billion tons of reserves 10% of earnings from coal in 1969

(42 coal counties) (32 coal counties)

Dependent variable: Ln(MR) Ln(MORT) Ln(MORT) Ln(MR) Ln(MORT) Ln(MORT)
(1) (2) (3) (4) (5) (6)

Coal district × boom -0.0347*** -0.00739 0.00258 -0.0478*** 0.0234 0.0469***
(0.0106) (0.00988) (0.0108) (0.0124) (0.0151) (0.0156)

Ln(Pop) 0.267*** 0.248***
(0.0437) (0.0468)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by district. All
regressions include county fixed effects, year effects and county time trends.
N=7,672.

specification in Column 6 is much smaller and not statistically significant.

C.3.0.5 Results by age group In Figure 22, we present graphs showing the

evolution of log mortality for different age groups in the coal counties and control

counties. In each graph we plot log mortality for the two series on separate axis,

since there are more control counties with a larger overall population, but we use

scales covering the same range for comparability.

For children, we can see that the number of deaths are falling in both locations al-

though there is an increase in deaths around 1971 that is more pronounced in the coal

counties. One likely explanation for this is that births in the coal counties increased in

the early 1970s relative to the nearby counties. For young adults mortality is quite flat

and similar across the two groups of counties, though there is some evidence of higher

mortality in the coal counties towards the end of the boom and in the following years.

Among working age adults over 24, the number of deaths was smoothly decreasing

in both sets of counties across the study period, though this decline was somewhat

more rapid in the coal counties. Among older adults, both locations experienced a

brief increase in mortality from 1972-1974. This timing corresponds to the recession
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of 1973-75 caused by the oil embargo and provides further suggestive evidence that

mortality may increase, rather than decrease, during recessions, particularly for the

elderly. The number of deaths also increased in both locations starting in the 1980s.

Overall, there does not appear to be any clear changes in relative mortality between

the treatment and control counties during the coal boom period.

Figure 22: Mortality by age categories in the coal and control counties

Children 0-14 Young adults 15-24

Prime age adults 25-54 Older adults over 55

C.3.0.6 Evidence on births The next graph plots the number of births, in logs,

in the coal counties compared to the control counties. This figure show that there

was a substantial increase in births in the first two years of the coal boom which was

somewhat larger in coal counties than in the control locations. The relative increase
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in births in coal counties during the coal boom may reflect changing fertility choices,

or this may simply reflect the relative increase in adults in their 20s and 30s in the

coal counties during the boom.

Figure 23: Births in the coal and control counties
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