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PRELIMINARY AND INCOMPLETE

Abstract

We prove a number of new theorems that offer sufficient conditions for the existence
and uniqueness of equilibrium systems. The theorems are powerful: we show how they
can be applied to drastically simplify existing proofs for well known equilibrium systems
and establish results for systems not previously characterized. We first present a new
results concerning the existence, uniqueness, and calculation of a class of models where
economic interactions between agents are subject to potentially many sets of bilateral
frictions. We then offer a generalization of the gross substitutes condition that can
be applied recursively to offer the proofs of existence and/or uniqueness for general
equilibrium systems too complicated to be tackled using existing methods. We illustrate
the power of this method by providing (for the first time) sufficient conditions for the
existence and uniqueness of two well known trade models: a multi-country monopolistic
competition model with heterogenous firms and a (nearly) arbitrary distribution of firm
productivities in each country, and of a perfect competition setup with intermediate

inputs and input-output relationships.

*We thank Pol Antras, Lorenzo Caliendo and Dave Donaldson. All errors are our own.



1 Introduction

In recent years, there has been a rapid proliferation of “quantitative” general equilibrium
models. These models are general equilibrium systems that include a large number of pa-
rameters and a large number of equilibrium outcomes to make them sufficiently flexible to be
applied empirically to understand real world economic systems (e.g. trade across many loca-
tions, the economic distribution of activity across space, the internal structure of cities, etc.).
While there has been much success in incorporating increasingly sophisticated economic in-
teractions within these models, the understanding of the general equilibrium properties of the
models themselves has lagged behind. Understanding these general equilibrium properties,
however, is of paramount importance; for example, the comparative statics of quantitative
models are well defined only if the equilibrium of that model exists and is unique. In this
paper, we provide a number of new mathematical results to facilitate the understanding of
these two important properties.

We first consider a particular form of general equilibrium systems that are common
in the spatial economics literature where equilibrium outcomes of one economic agent are
(loosely speaking) “weighted averages” of the equilibrium outcomes of other economic agents,
where the “weights” are determined by exogenous bilateral frictions.! We provide a new
theorem that provides sufficient conditions for existence and uniqueness of such systems for
an any number of endogenous variables and any number of (arbitrary) bilateral frictions.
Furthermore, we provide an algorithm for calculating such an equilibrium and sufficient
conditions under which the algorithm will converge. Finally, we prove that the sufficient
conditions for uniqueness are also necessary, in the sense that if they are not satisfied, then
there exists some bilateral trade frictions (i.e. some “geography”) such that multiple equilibria
will arise.

We next consider the general form of general equilibrium systems. Much like Blackwell’s
sufficient conditions for a contraction mapping, these sufficient conditions are meant to be
easily verifiable. For existence, the sufficient conditions require one suitably well behaved
operator corresponding to the equilibrium system of study and guarantee that Brouwer’s
fixed point theorem can be applied. For uniqueness, the sufficient conditions generalize the
“gross substitutes” conditions of Mas-Colell, Whinston, and Green (1995) by relaxing the
homogeneity of degree zero assumption. We then show that these conditions can be applied
recursively, allowing one to break up complicated general equilibrium systems into more

manageable pieces.

!See Allen and Arkolakis (2014) for how these systems arise in economic geography models and Allen,
Arkolakis, and Takahashi (2014) for how they arise in trade models exhibiting gravity.



To illustrate the power of the method, we tackle a problem that has vexed trade economists
for more than a decade: is the Melitz (2003) model well behaved for an arbitrary distribution
of firm productivity (and possibly varying across countries)? Reassuringly, it turns out that
the Melitz (2003) model is well behaved and both existence and uniqueness holds for (nearly)
any distribution of firm productivities. Similarly, we discuss existence and uniqueness in the
perfect competition setup of Eaton and Kortum (2002) with intermediate inputs and input-
output relationships, as formulated by Caliendo and Parro (2015). While existence in this
model holds generally, it turns out that the sufficient conditions for uniqueness place strong
restrictions on the form of the input-output linkages across countries.

This paper is organized as follows: in the next section, we present a new set of results
regarding the existence and uniqueness of equilibria with arbitrary bilateral frictions between
economic agents. In Section 3, we present the theorems providing the sufficient conditions
of existence and uniqueness for general equilibrium systems as well as offer several examples
of how these theorems can be applied. In Section 4, we show how these conditions can
be used to tackle the existence and uniqueness of more complicated general equilibrium
systems recursively and apply this algorithm to the Melitz (2003) model with arbitrary firm
productivity distributions and the Caliendo and Parro (2015) with input-output linkages

across sectors. Section 5 concludes.

2 Existence and uniqueness of “gravity” trade models

with many bilateral frictions

An important class of general equilibrium systems are those in which interactions between
economic agents are subject to bilateral frictions. For example, in “gravity” trade models,
it is assumed that the movement of goods between locations is subject to bilateral trade
frictions. In this class of models, the equilibrium system oftentimes can be written in a
form where (loosely stated), the equilibrium outcome for one country/location is a function
of a “weighted average” of the equilibrium outcomes of other countries/locations, where the
“weights” are functions of the bilateral frictions. In this section, we present new results on
the existence and uniqueness of such equilibrium systems, where there are one or many sets
of bilateral frictions.

Specifically, consider a model where the equilibrium can be represented as the following

system of equations:
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In such a framework, there are J locations and H unknown .J-vector of endogenous vari-
ables, and J systems of equations that relate a log-linear function of endogenous variables
in location ¢ to the sum of a possibly different log-linear function of endogenous variables
across all other locations j, where the sum is weighted by a set of exogenous bilateral trade
frictions. The characteristic values A\, Ao, ..., A\g are endogenous scalars that balance the
overall level of two sides of equations. Notice that due to the homogeneity imbedded in this
equation, solving system 1 can be always decomposed into two steps: the first step is to
find the solution =z = {x?} that makes two sides of the above equations parallel with each
L KE TR (o)

J

other ie. for any k € {1,2,..., H}, == () are equal for all 7; the second step
h=1\T;

is to adjust the characteristic values of the two sides be equal. The main challenge is the
first step and can be analyzed generally. The second part usually can be solved by some
normalization conditions (e.g. the total resources constraint) or the special structure of the
coefficients {7, Bkn} and depends on the specific context. Thus, in the following we will
mainly demonstrate the results for the first step and show the second step by some examples.

Denote I' as the H x H matrix whose element(I"),, = g, i.e. T' is the matrix of
exponents of the left hand side. Similarly, define B to be the H x H matrix whose element
(B),), = Bkn, i.e. B is the matrix of exponents on the right hand side. The following theorem
characterizes the properties of an equilibrium defined by the system 1 as a function of these

two matrices.

Theorem 1. Consider the system of equations 1. Assume I' is invertible (non-singular).
Define the matriz A =BT, the matriz AP to be the matriz constructed by the absolute value
of the elements of A, i.e.(AP),, = |(A),,|, and define p (AP) as AP’s largest eigenvalue (or
“spectral radius”). Then we have:

i) If Kikj > 0 for all k,7, 7, there exists a strictly positive solution.

i) If p(A?) < 1 and KY > 0 for all k,i,j, then there is at most one strictly positive
solution (to-scale).

iii) If p(AP) < 1 and Kfj > 0 for all k,7,7, the unique solution can be computed by a
simple iterative procedure.

i) If p(AP) > 1 and all elements of each column of A have the same sign, then there
exists a kernel {Kfj} such that there are multiple strictly positive solutions, i.e. for some set

of frictions, the uniqueness conditions above are both necessary and sufficient.



Proof. Details are in the appendix. O]

Notice that the equation system 1 is more general than first glance, as we can transform
many existing system into the above form by some simple tricks. For example, we can
redefine some variables and also increase/replicate the number of equations such that we can
rescale the dimension of all sets of equations to be the same. In the following, we show by

an example this kind of transformation and also the application of above theorem 1.

Example 1. In the model of Alvarez and Lucas (2007), the equilibrium conditions are (after

simplifying the second condition)
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Now define F; = a+(8 — a) F; = 37 Dyja+) 7 Dy (B — a)wij = > 77 Dijla+ (8 —
Then the equilibrium conditions can be described in the following four equations in which

Pmi, Fi, F; and w; are the unknown variables.
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The determinant of I' is —;—je which implies I' is invertible. Thus according to theorem
1, the existence of the solution is always hold.
Furthermore,
1-8 0 0 Ié]
1 0 0 0 0
Bt -
0 0 0 0
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If 6 > (1 — B)pB, the eigenvalues are { 0, 0, 1, % } Obviously, )% < 1.
Thus the uniqueness holds.

Finally, it is worth pointing out that the solution {pmi, F;. F}, wi} given by the iterative
algorithm in theorem 1 not necessarily makes equations exactly hold yet. It only makes two
sides of equations 2-5 parallel. In order to make the equations hold, one need to adjust the
relative level value of {pmi, F; F;, wi}. Specifically speaking, first, fix {p,,;} and adjust the
level of {w;} to make equation 2 hold; second, fix {p,.;, w;}and adjust the level of {F;} to
make equation 3 hold; third, fix {py:, w;, F;}and adjust the level of {Fl} to make equation

4 hold; finally, after some algebra, one can show that equation 5 automatically holds.

3 Existence and uniqueness theorems for general equi-

librium systems

For trade models which can’t be transformed into above general form, we present a series
of results that are useful for establishing existence and uniqueness. We illustrate their prac-
ticality by going through a number of examples where our results can be used to facilitate
the proof of existence and uniqueness, or even prove new results that were not feasible
before. Before we do that we proceed with some definitions. Consider a known function
[ RY, — R" we call f the equilibrium system. We say that a vector z* € R} is an
equilibrium vector for the equilibrium system if and only if f (z*) = 0. The purpose of
this paper is to provide sufficient conditions for the equilibrium system that guarantee the

existence and uniqueness, respectively, of an equilibrium vector.



3.1 Existence

We begin with existence and state the following lemma that provides relevant sufficient

conditions.

Lemma 1. Suppose there exists a once continuously differentiable “scaffold” function F' :
R — R™ where for all i € {1,...,n}, fi(x) = F;(v,2;) and the following conditions are
satisfied:

i) For all ' € R}, , there exists x; such that F; (2',z;) = 0.

i) PR S < 0 for all §.

i11) There exists «' such that for x; defined in F;(sx',x;) = 0, x; = o(s) (i.e. when

s—+00, = —o00;whens—0,>—=0)

Then there exists an equilibrium vector x*.

Proof. We proceed by using Brouwer’s fixed point theorem. From the first and second
condition, there exists a unique z; such that F; (2/,z;) = 0. Thus we define the operator
T : 2’ — x where x; satisfies F; (I/, xz) = 0. Thus we can also write equation F'(sx’,x;) =0
as w; = T'(sz'). As s — oo implies > — 0o, we can select a large enough M > 0 such that
for all i x; < Mz} ie. x < Ma'. Similarly, we can select a small enough m > 0 such that
x > ma'. Now define K = {z|mz’ <z < Ma'}.

According to the second condition, we know that 7' (z) increases with respect to x thus
for any © € K we have T'(z) € K. Thus, T : K — K. As a result, we can apply Brouwer’s

fixed point theorem, which guarantees existence. O

Theorem 1 provides sufficient conditions under which one can construct a continuous
operator on a compact space whose fixed point corresponds to the equilibrium vector of the
considered equilibrium system. If these conditions hold, Brouwer’s fixed point theorem guar-
antees the existence of such a fixed point and hence the existence of an equilibrium vector.
The power of Theorem 1 is that rather than trying to prove existence directly for the equilib-
rium system f as is typically done, existence is achieved via selecting the appropriate scaffold
function F' (so-called because it is only temporarily necessary to construct the conditions of
uniqueness for the equilibrium system f), which implicitly defines a continuous operator 7'
where existence can be more easily proven.

Intuitively, the scaffold function takes as inputs an “input” vector 2’ and “output” vector
x; condition (i) says that the scaffold function implicitly defines an operator that for any
“input” vector 2’ returns the “output” vector such that the scaffold function returns a vector of
zeros. Condition (ii) is a sufficient condition for the scaffold function to generate a monotonic
increasing operator. Condition (iii) requires that for some input vector, the implicit operator

increases at less than a linear rate.



Below, we provide several examples of how the right choice of a scaffold function can
greatly simplify the proof of existence. The first example is to establish the existence of a
price vector, given wages, in the general equilibrium version of the Eaton and Kortum (2002)
model developed by Alvarez and Lucas (2007).

Example 2. The first example is the existence part of Theorem 1 Alvarez and Lucas (2007).

Consider the following functional:

" —0
Pt =3 (Kgwlp} ) Vi€ {l..n}, (6)

j=1
where § > 0, K;; > 0 for all 4,j € {1,...,n} and w; > 0 for all j € {1,....,n} are all given
positive model parameters. This functional represents the price index of a consumer and
here we treat wages, w;, as given. We prove the existence of a vector of strictly positive {p;}

that satisfy equation (6).
Proof. We proceed by verifying the conditions of 1. We define the scaffold function

Fi(p,p) = (Z (Kijwf (p;)lﬁ) 9) K — Di-

j=1

S

g\ 0\
Condition (i) obviously holds, as setting p; = (Z?l (Kijwf (p;-)l ﬂ) ) implies F; (p', p) =

0; because %;’_’pi) = -1, %ﬁm > 0, condition (ii) also holds; also considering F; (sp’, p),
7 J

implies p; o s'77 i.e. p; = 0(s) condition (iii) also holds. Hence, there exists a set of {p;}

that satisfy equation (6). O

The second example is derived from a perfect competition model with multiple countries,
multiple sectors and input-output relationships across sectors, developed by Caliendo and
Parro (2015). Further complications may arise in this case because of the varying degrees of
relationship between countries and sectors. However, the proof of existence is straightforward

in this case too.

Example 3. In Caliendo and Parro (2015), the price is determined in this equation P/ =
, . _pgin—L/ed
A [N (i)

S A4kJ =1, 6] is a constant. In this equation, only the price P¥ is endogenous. The

where ¢/ = SJw) [11_, (PE)™, 0 < 44,957 < 1 and ~J +

larger complication of this price index versus the previous is the existence of multiple sectors

and the complicated input-output structure.



Proof. After substituting CZ out, we then first transform it into

j N J J 2J . -
(P = AN N <5ng1‘ 11 (Pf)”’f f@;i> .
=1

k=1

Like in the example 2, we proceed by verifying the conditions of Lemma 1. We define the

scaffold function
~ N . . J J ~ ’Yk’j . - ¥
Fin (P, P]) = 473N <6£w21' I1(7)" %) G
i=1 k=1

Condition (i) obviously holds since our definition of PJ implies F},, (15, Pg) = 0; obviously

OF; . (P,P}) OF; . (P,P)

oF] > 0, —eE < 0, so that condition (ii) also holds; besides,
- N AP . J J ~ Wk’j . v j
Fin (sP, Pg) — A3 )y (5ng¢' I1 (Pf) : %) — (PN,
i=1 k=1

implies PJ o % where §; € {1 — Mi=1,.., N} so that 8; € (0,1). This implies PJ = o (s)
i.e. condition (iii) also holds. Hence, there exists a set of {P?} that satisfy equation (11)

which completes the derivation. O

3.2 Uniqueness

A standard approach to proving uniqueness of general equilibrium systems requires homo-
geneity of degree zero and gross substitution conditions as sufficient conditions (see, for
example, Mas-Colell, Whinston, and Green (1995), chapter 17). However, there are many
examples of equilibrium systems where directly proving gross substitution is difficult. Of-
tentimes in these systems, gross substitution can be shown for a subset of the full general
equilibrium system; however, requiring homogeneity of degree zero prevents one from con-
sidering the uniqueness of one portion of that system. In example 1 above, we considered
the existence of prices given a set of wages; if we were to examine the uniqueness of prices
given a set of wages, it is straightforward to see that the partial system is not homogeneous
of degree zero. In what follows, we show that the homogeneity of degree zero restriction can
be relaxed, which will allows us to apply gross substitutes separately to subsets of the full
equilibrium system, thereby greatly simplifying the task of proving uniqueness.

Let us make some additional definitions that will be useful for the analysis that follows.

We say a function f (z) satisfies gross substitution if for any j # i, gf_ > (. We say that
J



a function is homogeneous of degree « if f(tx) = t*f (z) for all ¢ > 0. With these basic
definitions, we can now proceed to state our main results for uniqueness and describe their
applications. In the following Theorems 2 and 3, we show that even if homogeneity holds
partly or jointly with other variables (the exact definition can be seen below), we can still
have uniqueness without requiring full homogeneity of the system, i.e. f;(tx) = t*f; (z).
The first theorem generalizes the full homogeneity condition into a less demanding partial

homogeneity requirement.

Theorem 2. Assume (i) f (x) satisfies gross-substitution and (ii) fi(x) can be decomposed
as fi (z) = Z;/il gl (2) =272, b () where g} (x), hEF (z) > 0 are, respectively, homogeneous
of degree o and [y, with max a; < min .

1) Then there is at most one up-to-scale solution of f (x) = 0.

2) In particular, if for some j, k a; # Bj , then there is at most one solution.

Proof. We proceed by contradiction. Suppose there are two different up-to-scale solutions,
x', 2% such that f(z') =0, f(z%) = 0. Then without loss of generality, there exists some
t >1and i€ {1,...,n} such that tx} = 2? and tz} > 22 for all m # i. As z' and 2? are
different up-to-scale, for at least one j, the inequality must strictly hold. Thus, according
to condition i), fi(tz') > f(2?) = 0; according to condition ii), f;(z') = Y77, t=ig! (tz') —
St () = ¢II0A [0 i ] (1) S ISR (g1)] > (1),
This is a contradiction, so there is at most one up-to-scale solution.

Furthermore, if f; () is not homogeneous of some degree because «o; # [y, there is at most
one solution. Suppose not, tx! and z! are the solutions, then f;(z') > t*minﬁkfi(tml) =0,

also a contradiction. OJ

We now proceed by applying the theorem to some other useful examples.
The first example is an elementary proof of the main Proposition establishing uniqueness
in the Mas-Colell, Whinston, and Green (1995) book.

Example 4. Notice that if for any k, j, S = a; = 0, then f; (x) is homogeneous of degree 0.
In this case the Theorem 2 becomes the standard proposition used in the literature to prove
uniqueness, i.e. that homogeneous of degree zero systems that satisfy the gross-substitute
property have a unique solution. See, for example, Proposition 17.F.3 in the Mas-Colell,
Whinston, and Green (1995) book.

In the second example we establish uniqueness for the prices, given wages, on the Alvarez

and Lucas (2007) model already discussed above.

10



Example 5. This example is the uniqueness part of Theorem 1 of Alvarez and Lucas (2007)
(see Example 2 above) where the authors prove the uniqueness of prices with wages set as

given in equation
n
0

-0 _ B, 1-8Y)
Pi —Z(Kijwjpj ) '

j=1

—0
Denote f; (p) = g (p) — h; (p), where g; (p) = (2?21 (Kijwfp;_ﬁ> ) and h; (p) = p;. It
is obvious that gross substitution holds. Also notice that g; (p) and h; (p) are respectively

S

homogenous of degree 1 — § and 1, 1 — 8 < 1, partial homogeneity also holds. Thus, there is
at most one solution p given w. Combined with Example 1 above, we have therefore proved

the existence and uniqueness of a set of {p;} that satisfy equation (6).

Example 6. This example is also the uniqueness of price P when wage is given in equa-

tion PJ = AJ

mn

. . kg . —6 /e
SN (éiwz [T, (P¥)™ liji) ] as Example 3. Under the same

[ . i
transformation, we define f;, (P) = gjn (P) — 1= 1]NY_h}, (P) where g;,, (P) = (P]) ’

. o kg . 07
and 1}, (P) = A7N] (5i wzﬁ ., (PEy™ "k Z) . Gross substitution also obviously holds.

gjn (P) is homogeneous degree —§? whereas h;n (P) is homogeneous degree — (1 — %j ) 67,

notice that —67 < min — (1 — ! ) 67. Thus, uniqueness holds.

The second theorem generalizes the full homogeneity condition into a joint homogeneity
condition required to hold with respect to another set of variables (possibly variables that

are considered exogenous to the system).

Theorem 3. Suppose there exists a y° € RE, for some K > 1 and g : RTES — R™ where
f(z) = g(z,y°) such that: (i) f (x) satisfies the gross-substitution property; (ii) g (x,y) is
homogeneous of any degree; and (iii) g—g; >0 forallke{1,.., K}.

Then there ezists al most one solution satisfying f (x) = 0.

Proof. Again we proceed by contradiction. Suppose there are two different up-to-scale,
solutions, z!, 22, such that f(z') = 0, f(2?) = 0. If g—;i > 0 , without loss of generality,
there exists some ¢ > 1 and ¢ € {1,...,n} such that tz] = 27 and tz} > 22 for all m # i.
As x! and 2? are different up-to-scale, for at least one j, the inequality must strictly holds.
The homogeneity condition here implies means f(tz!,ty°) = 0. The homogeneity condition
implies f;(tz',y?) < f(tz',ty°) = 0; The gross substitution condition implies g;(tx!,3°) >
gi(x?,4°) = 0, thus a contradiction. O

11



Notice that Example 4 is a special case of Theorem 3 as well. We can also apply Theorem
3 in Example 5 if we choose wage w; as the joint variable. However, Theorems 1 and 2 are
not entirely substitutable. In the next section’s proof of the Melitz model only Theorem 3

can be used, as in that model we have changes in the extensive margin.

[More examples will be forthcoming,|

4 A general recipe for existence and uniqueness and

applications

So far, we have developed a set of sufficient conditions for the existence and uniqueness of
an equilibrium system. Unfortunately, general equilibrium models oftentimes are complex
systems comprising a large number of equations that are difficult to tackle simultaneously.
In this section, we show how the conditions developed in the previous section can be applied
recursively to subsets of the full equilibrium system, thereby simplifying the task of proving
existence and uniqueness. We then illustrate the power of this method by proving the
existence and uniqueness of several trade models: a multi-country monopolistic competition
model with heterogeneous firms, with an arbitrary distribution of firm productivities in each

country; a multi-sector model of Caliendo and Parro (2015).

4.1 The recipe: decompose the general equilibrium into a se-

quence of sub-problems

We formally state the procedure used in Alvarez and Lucas (2007) that decomposes the
general equilibrium problem into a sequence of sub-problems. Using the theorems devel-
oped above and below we can analyze one-by-one these problems and prove existence and
uniqueness, until we establish existence and uniqueness of the entire general equilibrium
system.

Specifically, suppose the general equilibrium system is defined by the equilibrium equa-
tions G () = 0 in which x is endogenous variable. The procedure to prove the existence and

uniqueness of solution x is as follows.

e Step 1: divide the equilibrium equations G and variables = into G, ..., GF and x!, ..., x*

e Step 2: prove the existence and uniqueness of z!' in equations group G* where x2, ..., x"

are taken as given. Then we denote 2! = G* (x?,...,x")

12



e Step 3: prove the existence and uniqueness of 22 in equations group G? where x3, ..., x%

are taken as given and z' = G' (x%,...,x""). Then we can denote 22 = G* (x?,...,x")

e Step P: prove the existence and uniqueness of 2" in equations group G¥ where 2P~! =

Grt (xP), .. 2t =G (x2, L xT).

By proving the existence and uniqueness of various trade models, cases where these
properties have not been established so far, we will show that this can be a general way to
deal with general equilibrium problems with multiple groups of equations. However, there
are still several open issues left to deal with. For example, how we are going to rank the
equation groups and which variables should be taken as endogenous in the sub-problem?
The answer to those questions generally depends on the specific context of the model and no
rule-of-thumb can be provided. Instead, we present a number of examples to establish the
validity and practicality of the procedure.

Before proceeding into the examples, we first present a lemma which will be repeatedly

used in the following applications.

Lemma 2. Define S to be an n x n diagonal matrix with strictly positive diagonal elements,
i.e. sy >0 for alli € {1,..,n}. Define T to be a weakly positive n x n matriz (i.e. t;; > 0
for alli,j € {1,....,n}). Define n x n matrir A =S —T.

1) If 32ty < su, then A" exists and A™" > 0, A~ = (I—i—zzozl (S_lT)k) S—L.
Furthermore if T > 0, then A= > 0.

2) If 37, tji < sii, the result is the same evcept A~1 = S7! (I + > ey (TSfl)k).

Proof. Details is in the appendix. O
We also present the following auxiliary lemma.

Lemma 3. Suppose A is a n X n positive matriz and \g is its positive eigenvalue. Then the
rank of AgI — A isn — 1.

Proof. According to theorem 1 in page 53 of book Gantmakher (1959), Agis a simple root
of [N — A|, which means mg =11in [\I—A| = (A= Xg)"" (A= A)™ ... (A — M\p)™* where
Aos AL, - - -, A are all the different eigenvalues of matrix A and ) m; = n. Then apparently
Ao — Ao, A1 — Ao, -+, A — Ag is the eigenvalue of matrix AgI — A, moreover |AI — (\I)| =
A=0)""A—= A1 = X)™ ... (A= (A — o)™ Then the algebraic multiplicity of the non-
zero eigenvalue in matrix A\gI — A is n — 1, as a result, the rank of \oI — A is n — 1 (see page
199 of book Ibe (2011)). O

13



Having established the set of required results we proceed by establishing conditions for

existence and uniqueness in two well-known examples from the trade literature.

4.2 Heterogeneous firms with arbitrary country-specific produc-
tivity distributions

We consider a world of N countries. Each country has a measure L; of workers. Labor is the
only factor of production and worker’s wage is denoted by w;, and income per capita (that
maybe different than the wage) as y;. Total income is composed of labor income and profit
income, 7;, and firm profits are equally distributed to local consumers. Consumers have
constant elasticity of substitution (CES) demand with respect to all varieties and elasticity
0.

There is monopolistic competition and firms face variable and fixed costs of selling into
each market j. In particular, there is an iceberg cost 7;; of shipping the good from country
¢ to country j. In addition, firms pay a fixed exporting cost f;; in terms of domestic labor
to sell to market j. Each firm has potentially different productivity and the density of firms
with productivity z is m; (2).

Notice that in this environment the marginal cost of a firm with productivity z of pro-
ducing its good in country ¢ and selling to j is simply w;7;;/2. Because of monopolistic
competition and CES demand function firms charge a constant markup over this marginal
cost so the corresponding price is given byp;; (z) = 6%.where 0 = -%;. Given the above

assumption total sales of a firm z from country ¢ in market j are simply

. l1—0o
(o'njw,>
Yij (2) = —pisoYils-

J
In addition, gross profits, i.e. revenue minus production and shipping costs are simply

Yij (2) /o

For brevity we omit most of the derivations that lead to the equilibrium conditions below
but briefly state the equilibrium conditions. For a discussion of the equilibrium conditions
and their detailed derivation see Melitz (2003), Arkolakis (2011) and Allen and Arkolakis
(2015). The general equilibrium of this economic environment is defined by the following
conditions: zero-profit for the cutoff firm, budget balance, labor market clearing and current

account balance. We describe each one in turn.
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Zero profit condition: The zero-profit condition defines the productivity of the firm
from market ¢ that exactly breaks even by selling to market j. Thus, the cutoff firm’s variable
profits in this market equal to its fixed marketing cost, i.e.

1 *
Vi (Zz'j) = wifij,

so that cutoff productivity can be expressed as

Zik‘ = Ciji—%a (7)
Pyy;~

1
l—o . .
is a constant. At the same time, the sales revenue earned from

where ¢;; = 67 | 2
v Y| ofij
country j of firm z7; is ow; f;;. It is easy to show that the sales revenue earned from country
j between two different firms within the same country would be proportional to their pro-
ductivity ratio power to o — 1. Thus the total revenue earned by country 7 from country j
o—1
is yi; = ow, fi f;o (f) m;(z)dz.
ij ij
Budget Balance: The budget balance implies that the revenue earned by all firms from

country j should equal to its total expenditure y;L;, that is
uili = Uk (8)
k

Labor market clearing: The labor market clearing condition implies that the total
labor income should equal to the sum of labor income from production and serving export

(e.g marketing)

o—1 o
J J Zij

Current account balance: The current account balance condition implies that the

total expenditure should equal to the total revenue.

YLy = Zyij' (10)
J
An equilibrium in this setting is {y;, w;, P;} such that equations 8, 9 and 10 hold. To

make the model meaningful, also for the purpose of proving uniqueness and existence, we

need the following condition.
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Condition 1. Denote G;(z*) = [ (Z%)U_1 m;(z)dz. We assume that for any 2* > 0, G(2*)
is finite and strictly positive, and m; (z) > 0.

Condition 1 is the only restriction we place on the distribution of firm productivities in
each country. Note that this condition implies Zli_r)nooGi(z*) = 0 and zl*iI—IEOGi(Z*) = 00. Also
note that this condition holds for the Pareto distribution. Now we follow the above recipe
to decompose the equilibrium into a sequence of sub-problems and repeatedly use the above

theorems in each sub-problem. Specifically, we proceed in the following three steps.

e Step 1: prove the existence and uniqueness of {P;} in equation (8) with {w;,y;} taken

as given.

e Step 2: prove the existence and uniqueness of {w;} in equation (9) with {y;} taken as

given and {P;} endogenously solved in last step.

e Step 3: prove the existence and uniqueness of {y;} in equation (10) with {w;, P;}

endogenously solved in this last step.

The results of the above three steps can be summarized in the below theorem.

Proposition 1. Assume C.1 holds. Then there exists a unique (up-to-scale) {y;, w;, P;}
satisfying equations (8), (9) and (10).

Hence, the equilibrium of the many-country Melitz (2003) model is well defined (i.e. it
exists and is unique) for any set of country-specific distributions of firm productivities, as

long as those distributions satisfy Condition 1 above.

4.3 Multi-sector trade model with input-output linkages

The above theorems and the recipe to characterize the existence and uniqueness of an equi-
librium can also be applied in Caliendo and Parro (2015), a multi-country, multi-sector trade
model with input-output linkage among sectors.? In Caliendo and Parro (2015), the equilib-
rium is defined by equations (2), (4), (6), (7), and (9). To facilitate the proof of existence and
uniqueness, the equilibrium conditions we use are slightly different from —but are equivalent
to— the equilibrium conditions in their paper.

The first equation is equation (4) in their paper, which defines price with wage given,

N _ —1/69
Pi=A |3 N (cgﬂg;i)‘ejl , (11)
=1

ZNotice that in their paper, as in Dekle, Eaton, and Kortum (2008), there is nominal exogenous trade
deficit across countries. Since the deficit to GDP ratios should not depend on the normalization chosen, but
they do in the cases of nominal exogenous deficits, we do not consider deficits in our analysis.
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; k.
; AT k\ - :
W I — §iw? W j _
here ¢, = 02w [ i, (Pn) here 07 is a country-sector specific parameter.

The second equation is equation (7) in their paper,

ZV Z —l—o/[n, (12)

=

N[l ]

ZhN:I)‘h [C;L“ ]
The third equation is the labor market clearing condition,

7 T
9]7and] = WLy +Zg 1Zz— FEDE

Jo_
where . = J )

Z%Z T (13)

i=1 1+7—m

We again follow the above recipe to decompose the equilibrium into a sequence of sub-
problems and repeatedly use the toolkit of theorems in each sub-problem. The final conclu-

sion is summarized in the following two theorems.
Proposition 2. There exists { P4, XJ w,} such that equations (11), (12) and (13) hold.
Proof. See appendix. O

It is obvious from the above Proposition that existence holds unconditionally. However,

proving the uniqueness of the equilibrium requires strong conditions. Define v¢ = minyi*,
- .5,k
e L Y R ' YA j 67
7% = maxy!, 7" = miny}, ¥ = maxy), A = min), A = max)/, andky = min (/ﬁjm) ,
n.j,k ] n,J n,j ] n,i,J

_ N . . . . .
Kg = max (mfn) . The following proposition states sufficient conditions for uniqueness of
n727-]

equilibrium in the Caliendo and Parro (2015) model.

Proposition 3. Assume that the following four conditions hold: (i) vJ* =~ for any coun-

Ly 2
try n, input j and any sector k and k'; (i1) 67 is the same for different j; (iii) (:-—T—Li:Z)
1— 7_, (iv) 7). = 72 so that countries use the same tariff for different countries.

Then the solution of (11), (12) and (13) is unique (up-to-scale).
Proof. See appendix. O

Conditions (i), (ii) (iii) together imply that for any n,j BWZ” > 0 (¢ # m), which in
turn guarantees that the gross-substitution property holds. Our proof generalizes previous
approaches of Alvarez and Lucas (2007) and Allen, Arkolakis, and Takahashi (2014) by

establishing sufficient conditions for the existence and uniqueness in a multi-sector Eaton

and Kortum (2002) model that also features intermediate inputs.
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5 Conclusion

TBD
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6 Appendix A: proof for the theorem 1

The following is the whole proof of theorem 1.

k k
Ty hn
k k
Ty Y2

Proof. Denote 2% = . Let Iny® = A Inz" where y* = . Thus, if the above

k k
TN YN
system 1 can be equivalently rewritten as

N H
uio= My EETT )™ k=120 (14)
j=1 h=1

where ay, = (AﬁAv_l)kh- Furthermore, the following equation is also equivalent with,

of the purpose of up to scale solution, the above equation system 14.

N k H h\ &kh
v ORETTE, ()
yE = 2y 5 T (07) k=12, H. (15)

ZnN:I 22:1 Kﬁln Hthl (yﬁ)akh

Thus, in the following we will focus on equation system 15 and 14.

Part (i)

In the following we are going to use Brouwer’s fixed-point theorem to prove the existence,
like Karlin and Nirenberg (1967) and Allen, Arkolakis, and Takahashi (2014).

First, construct the operators. Define operator T : RN — RYN where (T (y))HN(k_l) =
T K I ()™

Zg:l Z%:l Kk HhH:l (yl}) Wi
k

KE . K} N k TTH R\ Ok
J— J — ]
Second, denote M = H%?XZLKZ >0, my = nil’ljnzf\,:1 i > 0. Thus, mg >, _, K [, (yj) <

H h\ Qkh N k H R\ Qkh S KE T (yh)akh
Ky ij Hh:1 (y]) < M Zm:l ij Hh:l (yj) , and my, < Sy JZn}Vq:jKﬁzhn ll_IhH;(yZ)akh =
M. So define Y = {z|my, < y¥ < My, for all k, j}. Obviously, for any y >> 0, T'(y) € Y.
Thus, there exists a solution in equation 15.
Part (ii)

In equation system, 14, suppose we have two different solutions in the sense of up to scale:

Obviously, T' is a continuous operator.

{y?(o)}, {y?(l)} hich makes equations 14 hold and the corresponding eigenvalues are {A{},
n(1) h(1)
{\+}. Denote M}, = max%;, mj, = min%;. Notice that for at least one h, %—: > 1. Thus,
T Y; 1Y,

equation system 14 can also be expressedlas
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h(l) Okh h(0) “kn
yk(l) MZJ 1 Hh 1 W (yj )

i Yj
o 0
_ [min (a, )] a <0 [max (a, b)]* a <0
Define ¢ (o, a, b) = forz,y > 0and ® (a, x,y) = :
[max (a,b)]” a>0 [min (a,b)]* a >0
7|a| ml A\ @ =
Notice that (Zzlg; [Ei’f((sg))} . Then @ (agp, mp, My,) < <x§]> kh < & (0, 1y, M),

also notice that for some k, h, j, the inequality strictly holds. Thus we have

N oo () h(0))**"
. LA Zj:l Kikj [T (yj )
M, <\, H @ (an, mp, M) max R(0)
Pt ! Y;

N H h(0) ¥k

) H ) Zj:l Kfj [T (yj )
)\k H Q (akh7 mp, Mh) miln yh(o) S my
h=1 7

Notice that for k,4, AJ Zjvzl Kfj Hthl (y;.l(o)) " y?(o) as {yf(o)} is also the solution.
Thus,

Hthlg(akhamhaMh> < _2 Hh 1 (akhamfth)
my - )\]1C Mk

<1

My ¥ D (agp, mp, My) _ My 1 (Mh>|akh|

my - (Qn, mp, My) g - \

And again for some k the inequality strictly holds. In log form,

ln— < Z\akhﬂn—

And in matrix form, it is

z < APz

h
)

APz
where y is a vector (2), = In 22 and from above z > 0 and z # 0. Thus 1 <  min )
M I<h<Hjyp#0 *h
according to Collatz—Wielandt Formula (Page 666 in Meyer (2000)) and Perron-Frobenius
theorem, this implies that the positive eigenvalue of AP is bigger than 1, a contradiction.
Part (iii)
The proof of the convergence is quite similar with the uniqueness proof. Starting from

any strictly positive {yj( )}, we construct a sequence of {yf(t)} successively in the following
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way,

SR

T\ Qkh
where AL, = SV, Zjvzl Kl -, (y?(t 1)> . Tt can be rewritten as

h(t—1)

e h(t—2)\ ¥k
yl;(t) A Zj 1 {Hh 1 (—h(t 2)) (?Jj ) }
7 .7

k(t— - —
Z‘(t DI yi(t 1)

k(t) Y\ “kh _ k(t)
y.
Also we have @ (ayp, mb, Mf) < (W) < @ (agp, mh, M}) where M} = max f<t 7,

J
k(t)

ml, = min—+— and ® (o, ,y), ® (o, z,y) are the same in the proof of uniqueness. Thus
i Y
we have

N h(t-2) Sk
S KT, (1)

E(t—1
yi(t )

S KT ()™

— — : J

)‘i: Hg (akm mz 17 MftL 1> miln k(t—1) S mz
h=1

%

Akh
Cancel out yf =1 = At Zjvzl Kl HhH:1 (y?(t_2)> and put the two inequalities to-
gether,

H
M} <\ HCT) (akh,mh M~ 1) max
h=1

T

HhH:l@(akh’mzil’Miil) )‘ijl [T @ (o, my, ' M)
\

<
t X Tyt t
my N My
Thus,
;. H t—1 t—l t—1\ —loknl
%H@<akhamh 7Mh H(M ) <1
t = t—1 3 i— 1 1 X
In log form,
H
Mt Mt—l
In —% < oyl In )
h=1

And in matrix form, it is
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Zt < Apztfl

t
where 2" is a vector (z'), =1In % Successively use the inequality we get
h

2t < (AP) 20

Suppose z is the positive eigenvector of AP corresponding to the largest eigenvalue p (AP),

Zt
and denote M = m’?x((z—))h". Then we have

2t < (AP) 20 < Mp (AP) 2

So, 2! must converge to zero. Besides, from the proof in the existence part, we know that
yt € X, thus {yf (t)} also converges.

Part (iv)

As p(AP) > 1, there must exists non-negative eigenvector z such that z < A4z , and
the equality strictly holds for z; # 0.

Consider the kernel {KZ > 0} which satisfy Zj Ki’“j = 1. Obviously, y° = 1 is one
solution of equations 14 (the corresponding A2 = 1 for all k). In the following we are going
to construct kernels such that there exists another different solutions such that equations 14
also hold.

Arbitrarily divide the variables indexes S = {1,2,..., N} into two nonempty groups
eg. ST ={1} and ST = {2,..., N}. And denote R~ = {h|ag, <0, for all k} and RT =

exp (—z 1€ ST
{h|as, > 0, for all k}. We define ' in the following way: if h € R, yf(l) = p (=) ;

1 ieSt
exp(z,) 1€ 8T
ifthe Rty = p(z1) . Obviously, y! is (up-to-scale) different from y°. Notice
1 i€ S
that
N H b H akh H Qkh
k (1) k h(1) k h(1)
ZK@-H@ > = ZKUH(% ) +ZKUH<% )
j=1  h=1 jes—  h=l jest  h=1
= exp (— Z |k zh> Z Kfj + exp (Z |k zh) Z Ki’“j
heR~ jES—™ heRt jes+
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If ke R,

H

N
SRS TL(47)"" = o (X ol ) i
j=1 h=1 heR+

where 77" = exp <— S el zh> Yies- Kh+Y"eqr K- Notice exp (— S ] zh) <
gjf(l) < 1. Also recall from the above that z, < 37 |aw|2n, thus (from the above
definition of yf(l)) exp (— Zle \akh|zh> < yf(l) < 1. By adjusting the value of K,
while keeping Z]. Kyi; = 1, we can always make yf(l) = gjf(l). At the same time, set
i = exp (— Y oher+ [k zh), equations set = holds.

If ¥ € R', similarly, we can again show that = holds. Thus, there exists multiple

equilibria. n

7 Appendix B: Proof of Lemma 2

Proof. Tf 37 ti; < si, write A = S(I—S7'T).

Notice that S™1 is also a diagonal matrix and its diagonal element i is = . Thus A~ ! exists
if and only if (I — S™'T) ™" exists, and A~' = (I— S~'T)"'S~!. As S~ 1T is a non- negatlve
matrix, according to Lemma 2.1 in Chapter 6 of Berman and Plemmons (1979), (I — S~'T) ™"
exists if and only if the spectral radius of S™'T is smaller than 1, i.e. p(S™'T) < 1. Denote
S™!T = Q = (¢ij) where ¢;; = ?Ti > 0, thus

qu = S“ <1

Let us construct an auxiliary matrix Q = (Gix) where ¢, = qu for all k # n (n is

the dimension of the square matrices) G, = 1 — > gx. Thus >, Gix = 1. Notice that
k#n

AT
<Q) x 1 = 1% 1 i.e. unit vector is the positive eigenvector and 1 is the positive eigenvalue.

According to Perron-Frobenius theorem p (Q) = 1. Also notice that Q > Q, at the same

time the eigenvalue must increase with the element matrix (% > (), according to corollary

. [
2.4 on page 185 of Stewart and Sun (1990)). Thus p(S™'T) < 1. So (I—S'T)™" ==

0]oo> > (S7!T)* > 0, thus A~ = (I — S~'T) 'S~ > 0. Furthermore, if T > 0, A~ > 0.
If 37t < si, write A = (I TS™1)S. The rest is similar with the above. O
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8 Appendix C: Proofs of propositions in various trade

models

Before moving into the examples, we introduce some notation. To use the existence and
uniqueness theorems in the last section, we need to know the monotonicity relationship
between variables and equations in the equilibrium system. Since in complex equilibrium
systems there are too many variables and equations, to make things simpler, we will use the
differential notation dx, dy rather than derivative notation %. For example, in equation

f(z,y) = 0, we will differentiate it as f; (z,y) dx + fo(x,y)dy = 0. To know the derivative

0 k#j o
we just need to set dxy = and solve dy; which will be yl

1 k=3

. This notation also

81’

gives us the flexibility to transform the variables, e.g. in order to know the elasticity %

"
7 and solve % which will be 811113”
1 k' _ j Yi 3] Nz;

the appendix), this makes things easier.

lnxj

we just need to set df—: = . As we will see (in

8.1 Proof Heterogeneous firms with arbitrary country-specific pro-

ductivity distributions

The following is the proof of Proposition 1 which establish the existence and uniqueness of

Melitz model with fixed entry and non-standard firm distribution.

Proof. To facilitate the proof, we first define some notations.
Denote the excess expenditure EY = Yk Ukj — YL, excess wage EY = 0771 Zj Yij +
wlfl] f m;(z)dz — w;L;, and excess income EI = Z]. vij — ¥iL;. Differentiate E;f, EY
and E!

dw dy;
dES = Zyk] b ZM,W L, yy? (16)
Zkj J
dw; dz
dEY = EY— — ML—Y 17
[ 7 w; zj: 1) > ( )
I z] dyz
08 == My Nl 19
1] Z (2
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where for convenience we defineANy; = wkfk]mk(zk])zw, M,;; = (6 —1)y;; + cAN;; , and
M, = (o= 1) yij + 0 AN;;. Besides, differentiate equation 7,

dz;  dP dw;, 1 dy
S s S (19)
5 P, o—-1w 1-o0 vy

Step 1: prove the existence and uniqueness of {P,} in equation 8 with {w;,y;}
taken as given.

The proof of both uniqueness and existence is done by showing that excess expenditure,
E, is monotonic on P; and the range is (0, o0).

First, given wage and income, there always exists a price index that satisfy (8). Notice
that according to equation (7), for any given P;, w; and y; there will always exist a cutoff

zi;- And also given any w and y, when P; — 0, z;; — 00, so

o—1
z
Zawkfkj/ <ZT) mk(z)dz —yjL; = —y;L;
Zk]

kg

and if P; — oo, z;; — 0, condition 1 implies that EY — oo. Besides, obviously EY is
continuous with respect to P;. According to the intermediate value theorem, there must
exist a price P; satisfying (8).

Second, the solution of price index is unique in each market. Given the wage and expen-
diture, after inserting the expression of cutoff z;; into the excess expenditure EY, the only
unknown variable is the price index is P;, to prove the uniqueness of the price index we need
only to prove Ef is monotonic with respect to (w.r.t.) P;. Wage and expenditure are given

dy;

means that 2% = 5+ =0 forall 7 and j. Insert equation (19) into equation (16), we get
i j

. dw dz; dy; dP,
TR S ST L
. ; -

As Mjy; is positive, thus EY is increasing with P;.

All in all, there exists a unique price given wage and income solving equation ().

Step 2: prove the existence and uniqueness of {w;} in equation (9) with {y;}
taken as given and {P,} endogenously solved in last step.

Existence part of step 2:

1451
In this step, to simplify notations, define a few functions: Z;; (w;, P;,y) = cijM,

Pjyffl
where Zij (w;, Pj,y) increases w.r.t w; and decreases w.r.t. Pj; F; (2*) = (0 — 1) Gi(2*) +
[ mi(2)dz, where from the main context G,(z*) = [ (£)7 "mi(2)dz. F, (*)decreases

z z*
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w.r.t z*, moreover if z* — 0, F;(2*) > (6 —1)Gi(z") — oo; if 2* — oo, F;(2") <
(0 —1+1)Gi(z*) = 0; P;(w,y;) is the implicit function of price from equation (8) ac-
cording to step 1. Here insert equation (19) into equation (16), notice here as equation (8)
holds, thus dE7 = 0. Thus we have

Zk;& (o=1)% 1) Gas Vuy —|—o’ANkj] CZ}‘ZC UZk ANk]dyJ

aP; _
P; Yok (0= 1) yrj + 0 AN
Zk Mlijdw_k - Zk AN’W dy] ( )
= 20
Zk Mk’j

which means that P; (w,y;) increases with w and decreases with y;.

Notice that equation (9) is equivalent with L; = > . fi; F; (Zij (wi, P (w,y;) , y))-

Now we proceed by verifying the conditions of Lemma 1. Notice that the above equation
can be written as H; (w',w;) = >, fi; Fi (Zi; (wi, Py (W', y5) ,y)) — Li = 0.

Condition (i): fw; — 0,Z;; (wi, Py (w',y;) ,y) — 0thus >, fi; Fi (Zij (wi, Py (W', y5) ,y)) —
00 ; w; — 00, Zyj (wi, Py (W', y;) ,y) — 00, > fijFi (Zij (wi, Py (W', ;) ,y)) — 0. According
to the intermediate value theorem, there exists w; such that H; (w',w;) = 0.

Condition (ii): As Z;; (w;, P;,y) is increasing w.r.t w; and F; (z) is decreasing w.r.t z*,
> fijFi (Zij (wi, Py (W', y;) ,y)) decreases w.r.t w; i.e. émé% < 0; Besides, Z;; (w;, P, y)
decreases w.r.t P; and P; (w',y;) increases w.r.t w’, thus Zj fiiFi (Zij (wy, P (W', y) ,y)) in-

OH;(w' w;) < 0. OH; (w' w;) OH; (w' w;)

aw; Ow; ow". ’

creases w.r.t w' i.e.
Condition (iii):
We will first see how the price index change if the wage w" becomes tw°(t # 1). If ¢

(twﬁ)prﬁ

< 0, condition (ii) is also satisfied.

increase, to keep equation (8) y;L; = >, otwy fr;Gr(2;;) hold, z;; = cx; —— has
(P (tw®,y;)) ;07"

. . . . . P(tuOy)

to increase. Moreover, if ¢t — 0, z;; — 0; if £ — o0, 2; — oco. Thus V, (t) = TP

is an decreasing vector function w.r.t ¢, V, (1) =1, and if t — 0, V, (t) — oo; if t — o0,
Vv, (t) = 0.

Denote vector V,, (t) = (i)Hﬁ where w; is defined in H; (tw®,w;) = 0. Then

tw?
Vo (Vw
Zij (wy, Pyy) = ((Vp(( )))) zpywhere 20 = Zi; (w°, P; (wo,y;),y) . Obviously, —max(ézz oy <

(Vul®); — _ (Vult),
V), = N v, (1), Thus

Vo) o) - p N (Tl V.0,
Zfl] mzij SLZ _zj:fUFZ ((v t ) < Zflj ma. (vp (t))j ij

p J
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Also notice that there exists a constant s; satisfying L; = > i fii Fi (s,zfj) Thus

24T (™) < 2 folh (si2) < 2 IE (e 77

(Vul), < o < (u®),

which means that m <g < mm(vp( 0, ie.

simin (V, (¢))

J

< (Vu (t)); < smax (V, (1)),

J j J

As the range of V, (¢) is (0,00), so is (Vy (t)),

77

specifically, if t — 0, (V, (1)), = o0
i.e..- — 0;if t = 00, (Vy (t)); = 0 i.e.;- — oo. Condition (iii) also holds. Thus existence
is proven.

Uniqueness part of step 2:

We prove the uniqueness part by verifying the conditions of Theorem 3.

Condition (i): gross substitution holds for excess wage EY, i

we are going to perturb w; while keeping other wages constant. Besides, as y are exogenously
given in this step y will not change either, i.e. we set dwk = %_j =0 for all j and all k& # .

In this step, again dEf = 0 thus from equation (20), we have

ap _ MG
b > Myj
. dz¥, dP; .
Also notice that —* = —=5. Thus equation (17)
i J

~ dw
dw UMll- aw
dE; = B - - ij { } =Y ML
S -y [-2] - S an T
Gross substitution holds.
Condition (ii): the excess demand is joint homogeneous with the expenditure y, this is
obvious.

Condition (iii): the excess demand is monotonic w.r.t the expenditure y. Here, we will

set % = 0 for all 7. It implies that —* = —a;,i? %dﬁ Insert it into the price index
i J O Yj
: ap; oot 2k ANk dy] . : :
expression, we get -+ = Sy “2 and insert them into equation (17), we get
J k J

» AW; 1 dy:
dE" E“’_Z Z { 7 1_0%:
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2k My L—oly;y 5 "My oy

The right side is positive. Condition (iii) also holds. Thus the uniqueness follows.

Step 3: prove the existence and uniqueness of {y;} in equation 10 with {w;, P;}
endogenously solved in last step.

Existence of step 3:

We are going to prove the existence part by verifying conditions (i)-(v) of Proposition
17.B.2 in Mas-Colell, Whinston, and Green (1995).

The first four of the conditions can be easily verified. Define the excess demand function

> Yig
T

k3

of income as EY = — L; in which wage w and price P are solved from equations (8) and

(9). Obviously it is continuous, homogeneous of degree zero and EY > —L; > —D where
D = max L. Also Y, y;E} =, (Ej Yij — yiLi> = Zj > i Yij — Zj y;L; = 0, Walras’ law
is satisfied.

Now we verify the last one: if y™ — 3% where y° # 0 and 3? = 0 for some i, then
max{E} (y™)}—o0. Suppose not, there exists B > 0 and a sub-sequence {y™} such that
max{E) (y™)} < B is bounded. All the operating firms’ market expenses must be smaller
than its gross profit %Z] Yi;. Thus "T_lz] vi; < wil; < Zj Yij, 80 w;*L; < Zj Yij =
yi™ (L + EY) <y (L; + B) which means w]™ — 0; it implies in any market j the price
index P; — 0. At the same time as 7+ 37 y;L; < 30 w;L; < 37, y;L;, there must always

some countries [ # i whose sub-sub-sequence wage w,*" > C > 0. Thus market ’s cutoff
1+ 1
productivity zj; = cij——— — oo (I # 1), which implies that Y vy; = > w; fi; F) (Zz*]) — 0,
Py~ i i
yii < y;Li — 0. Thus wL; = ) y;; — 0, which is a contradict with wlmk" > (. So it must be
J
that max{E} (y™)}—o0. The existence proof is completed.

Uniqueness of step 3:

We prove the uniqueness part by using Theorem (2). The homogeneity condition obvi-
ously holds: the excess income function is homogeneous of degree 1 on income y. We only
need to verify the gross substitution part. Similar to above, we are going to represent the
gross substitution condition in the differential condition.

Here the wage and price indexes are all endogenously determined. Thus none of them
will be directly set to zero. As we care about how the excess income E! of country i will be
affected by the income change in country /. So we set % = 0 for all j # [. Insert equation

J

(20) into equation equation (19), we get

29



dzj; dP; o dw; 1 dy,

25 n _Pj+0—1wi 1 -0 y;
N w - dy:
B ZkUMlgjiU_:_UZkANkjyij+ o alwi+ 1 dy;
- ZkMk_] a—lwi 1—0'3/]'
~ 1 dw
_ _O'ZkMkj wkk+ o dwz‘_ ijj % (21)

Zk M o—1w; Zk My v,

For country j # [, the last term is zero. Insert the above expression into the wage differential
equation (17). In this step, dEY = 0 , thus we have.

1 dwk

ij

Zk My o—1w Y My y;

and we move all %” terms into left side, we get

dw M} dy;
My g ) G _Mi yLi— 22
Z [ w; Z <Z Zk Mk;] kj) wy, Zk Mkl ( )

Yi

Insert equation (21), to the differential expression of excess income (equation (18)),

dEl[ = _ZM’L] *Z]+Zy1j ‘ Yi 1C:lgyz

1] Z (2

d M; d
- UZ <Z Zk Mk]) — Z ij w; Zk A]\}klylLlﬂ

Notice that we can substitute the middle term & ), M, dwl according to (22), thus

dwy, — My — M} dy
dE! = & (My; — M, + y L
Z (Z Zk Mky o kj)) Wk Zk Mkl o U

Because My, — M,; = (U_l) yr; > 0, as long as dw—’“ is positive (while we set @ be positive)

dwk

the above equation is p081tlve We now turn to (22) to prove <k is positive. erte equation

(22) in the matrix form

aAd—w = dy
Y

where A is a matrix, A = S — T, S = (si) is a diagonal matrix, wheres;; = . M U,
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and T = (tik), tix = Zj S M M,i] Notice that the row summation of T ), t;, =

2k M, .
Dok Zk i M = X M, ST M:; < >, Mj; = sy Then according to Lemma 2, we
know that A is 1nvert1ble and A7 >> 0. As a result C%’“ is positive (while we set % be
positive). Uniqueness is proven.

The above three steps together is the complete proof of Proposition 1. O

8.2 Proof for Multi-sector trade model with input-output linkages
We first give the proof of Proposition 2.

Proof. Step 1: prove the existence and uniqueness of price P in equation 11 with
w,, goods expenditure X/, and resident expenditure I,,.

Proof can be seen in above examples 3 and 6.

Step 2: prove the existence and uniqueness of production X/ in equation (12)
with w, exogenously given and P endogenously solved in equation (11).

Substitute the expression of I,, into (24), we obtain

J N
=> > it 13: ka+aﬂZZran"mk Xk 4+ odw, Ly, (23)

k=1 i=1 k=1 m=1

Notice that given price if we write the above equations in the form of matrix it becomes

X=AX+0b
Xi
where X = Xi] is a NJ dimension vector; A = (a(n_l)JJrL(i_l)Hk) is a NJ-by-NJ ma-
X5
. . k
trix whose element is a(;,—1) 4, (i—1)7+k = ”yn 1+r’“ FA(n—1)J4j,(i—1)J+k Where 1) 45 (i—1) 74k =
k .
nm Tk n=1 . . . . .
Zm ! T b = (b(n,l) ]+j) is also a NJ dimension vector in which
0 n#1

bn-1)s+; = odw,L,. The above matrix equation can be written as (I— A)X = b. No-
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tice that the summation along the column of matrix A is

J N N 7Tk N ﬂ_k
Z;;a” DIEREEDIEE ;(1_75)1+ﬁ!2+ —~ Ty 7
j=1 n= n= m=
N k N k
— _ Ak L . Tim
I v A Dy
N k
k in
B

According to Lemma 2, we know that I — A is invertible and (I — A)_1 >> (. Thus there
exists a unique X = (I — A)™" b with wage given.
Step 3: prove the existence and uniqueness of w, in equation (13) P, X/
endogenously solved in equations (11), (12).
PIHRETD DA Xfi

J
1+Tin

Define Z, (w) =

following properties.

™ — L,. we are going to verify that Z, (w) satisfy the

(i) Z, (w) is continuous. From step 1, price index P is continuous w.r.t w; from step 2,
X is continuous w.r.t w and P. Thus, Z, (w) must be continuous w.r.t w.

(i) Z, (w) is homogeneous degree zero. From equation (11) we can conclude that trade
sharer homogeneous degree zero w.r.t w. Then from equation (24) X is homogeneous degree
one. Thus, Z, (w) is homogeneous degree zero.

(ili) Z, (w) also satisfy the Walras’ law. Sum both sides of equation (23)

J J J N J N
;;ﬁ:;; ;;%’kuﬁ,ﬁ){%ﬂ%;; gt +;wnLn—
J N J N
:ZZZ( —’YS) 1+mTk f—kZZZTﬁml_i_"mk Xﬁ—i—anLn
n k=1 i=1 m n k=1 m=1 n
J N k J N
ey nli kmzzmzwn :
n k=1 i=1 n j=1

Cancel > Z;}:l X7 on both sides, we have Y w,Z, (w) =0, Walras’ law hold.
(iv) Z, (w) > —max {L;}.
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(v) if w? — w®, where w® # 0 and w? = 0 for some m, then

mjax {Zj (wd)} — 0

We are going to show that Z,, (w?) — co. It is sufficient to show that Z; LN X 1_7;1

N jﬂj

is positively lower bounded i.e. Z > X =

> k where k is a positive constant.

For any i # m, from equation (23) X/ > o/w?L;. So to guarantee Z}]ﬂ% SV f%

positively lower bounded, we just make for some i, j me will not tend to 0. Suppose not,

when d is large enought, for any € > 0, ﬂfm < €.

. . j k.j
Differentiate ¢/ = 6w HZZI (P]j)% and equation (?7), we respectively get

dcl, dw,, dP*
o T2 B

Insert the first one into the second one we get

J N dwn
7 2w T =,
n k= i=1 n

Transform it a little bit, we have

; N J N J
(% - dw”) DD mned ( - - dg) =2 (Z ﬂﬁﬂﬁ”%) d;U :

=1 k=1

Similarly, represent the above in the matrix form

(I—7"°)c" =7"™"dw

where ¢¥ is a NJ dimension vector whose (7 — 1) N + nth element is chT% o dw”; 77° is
a NJ-by-NJ matrix whose element is (W”C)(] DN (b D = qlAkis 7V is a NJ-by-N

matrix whose element is (77); )y, = S S b Akiyk while dw is a N dimension

vector whose ith element is d“’l.

Wy

Notice that the summation along the row of matrix 77 is 37 _, 489 STV k= S ki =

1 -~ <1—miny < 1. Again, according to Lemma 2, we know that I — 77¢ is invertible
n?]
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and (I —77¢)"" >> 0. Also one can verify that the summation of each row of (77¢)" is
t
smaller than (1 — min’yf;) , thus the summation of each row (I —n7¢)~" is smaller than
n.j

miihgb' (I —x7¢)~" is upper bounded.
n,J

As w® — wP, if i # m, w; > 0, so we don’t have to care about the value of di — yk Cfit

w.r.t dwﬂ (as C?U”? will almost be zero) but only focus on the value w.r.t %= Thus the

3 K3 m
J k kj~k dw
yw ) ——m
(m w)(J 1)N4n,; Decomes D et T Yoy Slm .

According to the above, 7¥ =~ < ¢, thus (77 W) N < e 1%’77"3 d“’m. Thus

nm

0< dc* —yF d““ < €C where C'is a constant. Notice that for ¢t # m dcf — 0 for ey _y Nk dwm

m wm

Be81des, notlce that

i [FRS
dck al dc
k k

= -0 P Zﬂm v

C?’TL =1 n
It means that when the share is small enough, it will increase w.r.t w,,, so it can’t be
that 78— 0. A contradiction. O

Uniqueness:

We now give the proof of Proposition 3.

We are going to prove the uniqueness under the conditions: i) v/* = ~3*2 for any n, j

. GaLpp )\ 2 . . )
and any k; and ko; ii) €7 is the same for different j; iii) (1— L%i> > 11—~ iv) 7, =7

,YG,YL N ne

countries use the same tariff for different countries.

Proof. For the convenience of proving the uniqueness, we use the following two equations
(24) and (25) instead to replace equations (12) and (13).

N J
vi=>. (ZWY’“ +oﬂl> . (24)
=1 k=1

147,
J )‘][ ]79]' kv k
i 1 nZ — ] ]
where i N X [Ciz’leh] -6 and [, = wyLy, + Z] 1 Zz 1 1—‘,—’7’ m (Zk 177 Y +ag 1 )
under same tariff I,, = «,, <wnL + ZJ . ZZ ) 1:@ Zk ) ,yy,kyk) where di, = éj
T Z}] 121 1 177- ni
+‘r

This equation is about production balance. The dimension of this equation is also J x N.
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Zw (25)

It can easily be shown by substituting X7 and Y with each other ( X7 = S77_ ~A2*Yk 4
adl,, Yi = val Z:X) that these two equations are equivalent with equatlons (12) and
(13).

In the following we are going to proceed the same way like the existence proof part.

Step 1: prove the existence and uniqueness of price P in equation (11) with
w,, goods expenditure X/, and resident expenditure I,,.

Proof can also be seen in above examples (3) and (6).

Step 2: prove the existence and uniqueness of production Y/ in equation (24)
with w, exogenously given and P endogenously solved in equation (11).

Substitute the expression of I,, into (24), we get

N J N »
=) (Z VPYE 4 ala; (wlLl +Y > ny’kl fsTfs ﬂstik>> B

i—1 —

Simplify it a little bit,

N J
_ZZ(P}/Z’]{:_'_;%&) _Zaazwz )
i=1 k=1

~j:k th T 4
Where /y’L - OZ a’b Zt 125 171 1+T 7Tis‘

Notice that with price given if we Write the above equations in the form of matrix it will

(26)

become
I-B)Y =5
v}
where YV = Yl‘] is a NJ dimension vector; B = (b(n,]_)]+j7(i,1)t]+k) is a NJ-by-NJ
v

. . ik o~k T T T .
matrix whose element is bg,—1)4j,(i—1)s+k = (Vf + 47 > T b= (bn_1)s1;) is also a N.J
;

. . . . 7 N T
dimension vector in which by,—1)s4; = Y ;g &l Qw; L ey

Notice that the summation along the row of matrix B is 23'1:1 ZnN:1 (fyf k5 k) % —

mn
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Dy + D, where D, = ZJ 12 ik T and Djj, = ZJ 12 i iy

n111+1 n121+7

7=1 n=1 t=1 =1 i3
- ii ola J v N ( — ) ) T
pene i L+, 1+,
i N 7_[_4' J N ﬂ"j
—_ 1— 7 ~Z in_ ~1Dz in
( 72);;%@1—%7% ;;(aza k)1+njn
Thus
J N i J N 7Tj
Dz Dl - 7 j Y. zn - k J ~Z in
kTt Uik = k[ ;nZl 104 1—1—7’ +< %);;azalJrTfn

Notice that

R 3 S I D W SR

7j=1 n=1

So
Di,k+Di,k<1_7£€<1

1 >~ 0. Thus

According to Lemma 2, we know that I — A is invertible and (I — A)
there exists a unique Y = (I — A)™" b with wage given.
Step 3: prove the uniqueness of w, in equation (25) withP, Y/ endogenously

solved in equations (11), (24).

Z,YJ V&l

As both side of it is homogeneous degree one, we only need to prove the gross substitution
condition to get the uniqueness.

Here wee are going to first introduce a lemma which says how the trade share will change
when wage w; changes. In order to keep the main structure compact, the proof of the lemma
will be left in the end.

Notice that under condition (ii) Tgi = 7',{
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J N ot J .
~j7k - .7 -’ tzk s t j 5. tzk %
Vi T oGy E Vi T s = QG0 Y 7

3

t=1 s=1 s t=1

Both them are exogenous. Thus differentiate equation (26)

dyi — ZZdYk( J’C)Lnjz

i=1 k=1 L4

N j N J
= addwiL; T +ZZYZ’“< ”’) +Zaadwz 7
=1 T

i=1 k=1 + Tzn

Suppose only country m’s wage change, then we will have

J Ny . J
dyi — dy} ( + 57 k) _Min AY7 + o dw,, Ly, Timn.
" Zl ; 1+, L+ Tinn

where dYJ = YOV, (o/o?zszzH ;
Lemma 4 dY7 > 0 if n # m; dY7 <0ifn=m
N _ o |dyi—ay) n=m _
Define dY such that dY,] = ‘ . Then above differential equation can
ay; n#m

+3 vk ( + 57 k)) AT Notice that from

4+,

be written as

k 3ok _ﬁ" IR Sk ik ~ik\ Ton , T
ZdY ( + AP ) - = Lo (n)dY;] =) dY (v +7gé)_,+agndmem1_

J J
i=1 k=1 1+Tin k=1 L+ Tinn

where 1_, (n) is an indicator function i.e. 1, (n) =1ifn #m; 1., (n) =0if n = m.
Similarly with the above, we express it in the matrix form.
I-B)dY =b

where B is the same as last step, (I — B)_1 >> (). Also notice that right side is positive.
Thus dY > 0, for n # m Y,/ increases with respect to w,,, gross substitution is satisfied.

Uniqueness holds. O
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The following are the lemma and its proof which are used in above proof.

Lemma 4. In equation (11), if (i) v* = 3% for any country n , input j and any sector
~L Ak 2
k and k' ; (i1) 67 is the same for different j ; (iii) < Liﬁj) >1-— ﬁ , then for any n, j

gl—ij>0(l #m).

Proof. From the above, the differential equation of price index will be

dpi & Jdw;
P;?;:Z ( . Zk] )

’L

As always, in the form of matrix the above equation will become

(I—7"P)dP = 7"""dw

where dP is a NJ dimension vector whose (j — 1) N + nth element is 2 while dw; ™P =

j
<7r(7571)”j7(2.71)”k) is a N'J-by-NJ matrix whose element is (7). 1y, o 1) 714 = AR
7P is a N.J-by-N matrix whose element is (7r7p“’) (j—1)N-4ni = M7 While dw is as above a

N dimension vector whose ith element is

. As usual, we can verify that 77P’s summation

w;

of row is SN S qd 4B =N a2l (1- 71-) < 1—miny/ < 1. Then
dP = (I —7"P) "' 2PV dw
Besides, notice that price P is homogeneous of degree one w.r.t w. It also means that if

we set dw = 1, dP = 1 ( One can also verify this in equation (I — 7P)dP = 7"®¥dw) i.e.

-1 : e i
— 7P — J AJ
(I —7")"" x4y = 1 where x4, is a N.J vector whose element (Zaw) ;_1)n4n; 18 Dimq Tpi i -

1 1=m
We want to focus on the derivative, so we set dwi = and the above equation
' 0 i#m
becomes
-1
dP = (I — 7T'yp) T dwm
] W%mvm
where (Zawm)-1)n-1n = Tam ¥ = (@dw) Go1)Nini T3 |
-\ —07
As G < N I < NG df_@~j<j<)\ﬁeg h ~j ("JM)
s 97 < Xl ™y < 0¢ and S, < m, < Sig T Where 7, = 7, we
Shei(d)
. i i EARg . . N
have R7) < ZﬂT—l;ﬁ < R™'7J where R = ;— v Under condition (i) and (ii), 77,

is the same for all j thus for all the j 7/ is the same, which we denote as 7,,. Thus,

Rﬂ-mxdw S L dwm S R medw-
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For i # m,

Our condition (1 2

>

o dPj  dd]
Pl
dPI sy dPF
9j<P-7 _ny’id Pk)
" k=1 ¢

dm

2 J
> >1—ﬁimplies7r7m'>0.

n
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