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rivals. The marketplace that results from this rivalry is characterized by speed differentials, 
whereby some traders are faster than others. Is such a marketplace optimal? To answer this 
question, we study a series of exogenous weather-related episodes that temporarily remove speed 
advantages of the fastest traders by disrupting their microwave networks. During these episodes, 
adverse selection declines accompanied by improved liquidity and reduced volatility. Liquidity 
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1. Introduction 

In recent years, information processing and order transmission speeds in financial markets 

have increased significantly and are measured in fractions of a second. Being faster than others 

has important advantages. First, the fastest trader is the first to change his limit orders in response 

to new information, thus avoiding being picked off by others. Second, he himself may choose to 

pick off slower traders. Given the importance of being the fastest, trading firms generously invest 

in new technology in a race to bring information transmission speeds closer to the speed of light. 

This speed race creates a marketplace where some firms are faster than others. In its 

concept release on equity market structure, the SEC (2010) notes that differences in speeds 

between market participants may hurt liquidity. Harris (2013) echoes this concern and points out 

that if liquidity providers are even marginally slower than the fastest traders, they are at risk of 

being adversely selected. Recognizing this risk, liquidity providers will quote wider spreads. 

Several theory models support this notion, suggesting that when speed differentials between 

traders exist, adverse selection may increase and liquidity may become more expensive (e.g., 

Hoffmann, 2014; Biais, Foucault and Moinas, 2015; Budish, Cramton and Shim, 2015; Foucault, 

Hombert and Roşu, 2016). 

In this study, we use a previously unexplored dependence between precipitation (i.e., rain 

and snow) and information transmission speed to build a multi-year time series of intraday speed 

differentials. Specifically, we use the fact that precipitation disrupts microwave networks used by 

select traders to transmit information between Chicago and New York. During such disruptions, 

these traders must fall back on the slower fiber-optic cable, losing the speed advantage. We show 

that when this happens, adverse selection, trading costs and volatility decline. As such, rain clouds 

come with a silver lining. 
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The first microwave network that linked the markets in Chicago and New York was 

operational at the end of 2010, with several additional networks built in 2011 and 2012. During 

this period, access to microwave transmissions was limited to a small group of trading firms, 

because the Federal Communications Commission, citing airwave congestion, restricted the 

number of network licenses. As such, the 2011-2012 period provides us with a unique opportunity 

to examine a two-tiered marketplace where some traders have access to the fastest information 

transmission speeds and others do not. Our results linking precipitation episodes to lower adverse 

selection and trading costs come from this period. 

In winter of 2012-2013, one of the microwave technology providers in the Chicago-New 

York corridor introduced a new business model that democratized microwave transmissions. 

Instead of selling bandwidth that traders could use to outpace others, the provider began to use its 

microwave network to transmit the latest price updates between Chicago and New York and sell 

them to anyone on a subscription basis. As a result, the advantages previously enjoyed by select 

firms that had access to microwave networks were diminished. We find that once information 

transmission is democratized in this manner, adverse selection, trading costs and volatility decline. 

In summary, precipitation events serve as short-term speed equalizers, while the democratization 

event has similar effects in the long run.  

O’Hara (2015) and Brogaard, Hendershott and Riordan (2016) show that fast informed 

traders often use limit orders. Yao and Ye (2015) find that modern traders use speed to establish 

time priority in limit order queues. In the meantime, theory models often assume that fast traders 

choose marketable orders to pick off slower traders (e.g., Biais, Foucault and Moinas, 2015; 

Budish, Cramton and Shim, 2015; Foucault, Hombert and Roşu, 2016; Foucault, Kozhan and 

Tham, 2016). Our results reconcile these notions. First, consistent with the first group of studies, 
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we confirm that quotes usually contribute more to price discovery than trades. Second, consistent 

with the second group, trade price impacts decline significantly when fast traders lose their speed 

advantage, whether due to precipitation or democratization. Taken together, these findings suggest 

that even though limit orders usually lead price discovery, there remains ample room for 

marketable orders to bring information into prices. We note that the use of marketable orders 

should be particularly widespread in assets with tight spreads, in which the traders’ ability to post 

aggressively priced limit orders is diminished. Consistent with this argument, when the microwave 

networks are disrupted, the largest adverse selection reductions occur in assets with tight spreads. 

Our results suggest that liquidity providers are not always on the forefront of the latest 

technology. As such, this study provides a complementary perspective to that of Brogaard, 

Hagströmer, Nordén and Riordan (2015), who show that in the Swedish market speed advantages 

of colocation are mainly sought by liquidity suppliers and as such benefit liquidity. Focusing on 

the U.S. market, we find that even though faster traders may occasionally choose to supply 

liquidity, the net effect of speed differentials on market quality is unfavourable. This study also 

corroborates the findings of Baron, Brogaard, Hagströmer and Kirilenko (2016) and Foucault, 

Kozhan and Tham (2016), who suggest that modern arbitragers often use marketable orders, thus 

increasing order flow toxicity and impairing liquidity. In our setting, traders who transmit 

information discovered in the futures market to the underlying equities (effectively arbitraging 

prices in Chicago and New York) mainly generate marketable orders that adversely select liquidity 

providers. 

Although the financial economics literature has previously explored the effects of weather 

on trader behavior, these effects have been mainly ascribed to investor mood. Although we 

examine a different weather-induced regularity, a technological one, it is important that we address 



5 
 

the possibility that our results come from slower information processing attributed to weather-

induced moods of traders in Chicago and New York (deHaan, Madsen and Piotroski, 2015). To do 

so, we show that our results are robust to focusing exclusively on precipitation in Ohio, a state that 

hosts all microwave network paths yet has a relatively low concentration of financial firms. We 

also confirm the robustness of the results to various sample selection procedures and to alternative 

precipitation variables. 

Our contribution to the existing literature is as follows. First, we shed new light on 

predictions of theory models that examine trader speed differentials. Second, we provide new 

insights into order choices of the fastest traders. Third, we offer evidence complementary to 

existing empirical research that finds that market makers are the ones most interested in accessing 

new trading technology. Finally, we describe a new panel approach to measuring the speed of 

information transmission that, to our knowledge, has not been previously examined in the 

literature. 

The remainder of the paper is as follows. Section 2 describes the physics of information 

transmission, the state of the literature on trading speed, latency arbitrage and information flows 

between the futures and equity markets. Section 3 describes the data and sample. Section 4 contains 

the main empirical tests. Section 5 reports robustness tests. Section 6 concludes. 

2. Institutional background and related literature 

2.1. History and physics of information transmission between Chicago and New York 

In the world of ultra-fast trading, the physics of signal transmission plays an important role. 

The most common way to transmit information over long distances is via a fiber-optic cable. The 

first such cable between Chicago and New York was laid in the mid-1980s; however, its path was 
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not optimal for ultra-fast communications. The cable was placed along the existing rail lines, 

making multiple detours from a straight line, going south to Pittsburgh and thereby exceeding the 

straight-line distance between Chicago and New York by about 300 miles. Realizing potential 

latency reduction from a more linear setup, a technology company Spread Networks laid another 

cable in 2010. The new cable had significantly fewer detours, went through the Appalachian 

Mountains and shaved valuable milliseconds off the signal transmission time. 

Although fiber is a very fast transmission medium, it is not the fastest. Because microwaves 

travel faster through air than photons do through fiber, a network of microwave towers placed in 

a straight line can shave additional milliseconds off the signal transmission time. At the time of 

this study, microwave networks (hereafter, MWNs) advertise round-trip information transmission 

speeds that are about 30% faster than their fiber-optic competitors. 

Although faster than cable, MWNs have a disadvantage – they are relatively easily 

disrupted. Among the most important MWN disruptors are rain droplets and snowflakes, 

especially when rainfall/snowfall is substantial. During weather disruptions, traders who use MW 

links lose their speed advantage and must either stop trading or transition from microwave to fiber 

transmissions. This transition is automatic and does not require human involvement. As such, 

precipitation serves as a natural exogenous equalizer of information transmission speed. 

2.2. Information transmission speed and liquidity 

We use the susceptibility of MWNs to precipitation disruptions to examine the effects of 

differential trader speeds on liquidity. The speed-related effects have been extensively modeled in 

recent literature, with Menkveld (2016) providing a comprehensive review. For instance, Biais, 

Foucault and Moinas (2015), Budish, Cramton and Shim (2015), Foucault, Hombert and Roşu 

(2016) and Foucault, Kozhan and Tham (2016) model a market where some traders receive and 
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act on new information faster than market makers. These traders generate adverse selection that in 

turn may force market makers to seek higher compensation for providing liquidity, thereby 

increasing liquidity costs for all market participants.  

Menkveld and Zoican (2015) suggest that negative liquidity effects may arise even when 

liquidity demanders and liquidity providers are equally fast. In their setting, there are three types 

of market participants: fast informed liquidity takers, fast informed liquidity providers, and slower 

uninformed traders. Allowing the already fast traders to become even faster harms liquidity 

because the probability of encountering a slow trader declines, causing market makers to widen 

their quotes.  

Hoffmann (2014) and Jovanovic and Menkveld (2015) show that when some market 

makers become fast they can avoid being adversely selected and therefore may increase liquidity 

supply. In Hoffmann (2014) however, slower market makers become more exposed to adverse 

selection and widen their quotes. Depending on the relative size and competitiveness of the two 

groups, speeding up of select market makers may have both positive and negative consequences. 

Bongaerts, Kong and Van Achter (2016) show that both liquidity takers and liquidity makers will 

engage in speed competition if one assumes declining marginal gains from trade. Du and Zhu 

(2015) and Roşu (2015) suggest that when some traders are faster than others, volatility may 

increase. 

2.3. Information flows between the futures and equity markets 

We focus on information transmission between Chicago and New York. In the U.S., most 

futures contracts trade on the Chicago Mercantile Exchange (CME), particularly in its data center 

in Aurora, IL. Meanwhile, equities mainly trade at data centers that are located in New Jersey, 

close to New York City. During our sample period, the NYSE data center is in Mahwah, NJ; 



8 
 

NASDAQ data center is in Carteret, NJ; BATS is in Weehawken, NJ; and Direct Edge is in 

Secaucus, NJ. To continue with academic tradition, throughout the paper we refer to the two 

locales as Chicago and New York. 

Information transmission between Chicago and New York is driven by fast arbitrageurs. 

Our data show that when microwave technology allows these arbitrageurs to speed up, both price 

impacts and trading costs increase. This result may appear counterintuitive to some readers 

because arbitrageurs are often viewed as liquidity providers who enhance market efficiency. 

Specifically, several theory models suggest that arbitrageurs may respond to supply and demand 

shocks faster and more effectively than traditional market makers thereby improving liquidity 

(Holden, 1995; Gromb and Vayanos, 2002, 2010). Guided by the insights of Grossman and Stiglitz 

(1980), these models assume that arbitrageurs are passive and therefore provide liquidity when it 

is required by noise traders. 

Recent theory relaxes this assumption and allows arbitrageurs to demand liquidity when it 

is profitable. Foucault, Kozhan and Tham (2016) model a market in which arbitrageurs are faster 

than market makers. When arbitrageurs trade to enforce the law of one price, they often expose 

market makers to adverse selection risk. As in Copeland and Galai (1983), market makers require 

compensation for the risk of being adversely selected, and liquidity becomes more expensive. 

Foucault, Kozhan and Tham (2016) conclude that although arbitrage makes prices more efficient, 

it may hurt liquidity. This conclusion echoes the result in Roll, Schwartz and Subrahmanyam 

(2007), who find that arbitrage opportunities Granger-cause illiquidity. 

3. Data and sample 

 Our analysis is based on millisecond DTAQ data. The sample period spans four years, from 

January 2011 through December 2014. The first two years (2011-2012) are characterised by the 
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proliferation of microwave technology. The latter period (2013-2014) captures the time after the 

technology was democratized. 

 To achieve the fastest speeds, microwave networks follow paths that are as straight as 

possible and therefore very similar. For illustration, Figure 1 reports tower locations of three select 

networks connecting Chicago to the New York data centers. The data on tower locations is 

obtained from the Federal Communications Commission (https://www.fcc.gov). Going east from 

the CME data center, the networks pass through Illinois, Indiana, Ohio, western Pennsylvania and 

then split in eastern Pennsylvania, with the southern branches going to NASDAQ’s data center in 

Carteret and the northern branches going to the NYSE in Mahwah. To avoid clutter, Figure 1 only 

maps three microwave networks; FCC data show that all networks follow similar paths. 

[Figure 1] 

3.1. Precipitation data 

We obtain precipitation data from the National Oceanic and Atmospheric Administration 

(http://www.noaa.gov). The data contain precipitation statistics collected by weather stations 

across the U.S., in 15-minute intervals. The data also contain precise station locations. The stations 

report in local time, so for stations in Illinois and northwestern Indiana located in the Central time 

zone we add one hour to report times to match DTAQ time stamps. A standard piece of equipment 

at every station is a precipitation tank equipped with an automatic gauge that measures 

accumulated precipitation. We focus on data collected by 83 stations located along the Chicago-

New York corridor (Figure 2). In the robustness section, we examine station samples of different 

sizes. 

[Figure 2] 
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We note that although it may only rain over Indiana or Ohio, the entire microwave network 

will be disrupted. A relatively narrow weather front like the one in Figure 3 will result in weather 

stations located within the front reporting high levels of precipitation. In the meantime, stations 

located outside the front will report no precipitation. To capture relatively narrow bands of intense 

precipitation, our main independent variable ܴܲܲܫܥܧ is computed as the sum of precipitation 

amounts reported by all stations. We examine alternative specifications in the robustness section. 

[Figure 3] 

Statistics reported in Panel A of Table 1 indicate that an average 15-minute sampling 

interval sees 0.155 mm of precipitation. The distribution is rather skewed, with a median of 0.07, 

indicating that periods of low precipitation are occasionally interrupted by significant rain or snow. 

We note that microwave networks are only disrupted when precipitation is substantial. We 

therefore focus on high levels of precipitation and compute two additional metrics, ܴܲ1ܲܫܥܧ and 

 that capture intervals when precipitation is 0.5 and 1 standard deviations above the ,2ܲܫܥܧܴܲ

mean. The two groups contain, respectively, 17% and 10.5% of all intervals, and ܴܲ1ܲܫܥܧ and 

 events last on average 54 and 49 minutes. As such, significant precipitation is observed 2ܲܫܥܧܴܲ

rather frequently but ends quickly, forming a time series with sufficient variability. 

[Table 1] 

3.2 Asset samples 

The importance of information flows between the futures markets in Chicago and the 

equity markets in New York is well recognized in the literature. Some studies find that futures 

markets lead price discovery (Kawaller, Koch, and Koch, 1987; Chan, 1992). Others suggest that 

information may flow both ways (Chan, Chan and Karolyi, 1991; Hasbrouck, 2003; Roll, Schwartz 
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and Subrahmanyam, 2007). Given that the most active futures contracts track baskets of securities 

(e.g., among the most active E-minis are those tracking the S&P 500 and the NASDAQ-100 

indexes), our focus in the equity market is on the ETFs. As long as price discovery via futures 

contracts is non-trivial, the speed of information transmission between Chicago and New York 

should matter for trading costs in ETFs. In a later section, we examine the direction of price 

discovery between the two markets in more detail. The results show that price discovery from 

index futures to the underlying equity ETFs is anything but trivial. 

We use millisecond DTAQ data for two asset samples. The first (small) sample consists of 

five ETFs: SPY (SPDR S&P500), XLF (Financial Select Sector SPDR), TLT (iShares 20+ Year 

Treasury Bond), SDS (ProShares UltraShort S&P500), and GLD (SPDR Gold Shares). These 

assets are among the most active in the New York equity markets and are closely related to the 

active futures contracts that trade in Chicago. SPY in particular is linked to the E-mini – the most 

actively traded index futures. The upside of using this sample is that Laughlin, Aguirre and 

Grundfest (2014) show that price discovery in its five constituents strongly depends on Chicago-

New York information transfers.1 The downside is the small size of the cross section. 

To address the problem posed by the cross section size, we examine an additional (large) 

sample that includes 100 most actively traded ETFs. Among these, 50 ETFs track U.S. equity 

indexes; 22 – international indexes; 20 – corporate or treasury interest rate indexes; 4 – metals 

(i.e., gold and silver); 1 – a real estate portfolio; and 3 – other assets (Panel B of Table 1).  

Many ETFs in our sample track the same baskets of securities as the CME futures contracts. 

For example, the QQQ ETF and the CME’s E-mini NASDAQ 100 futures track the same index. 

                                                 
1 Laughlin, Aguirre and Grundfest (2014) also use VXX (iPath S&P500 VIX ETF). We use this ETF to proxy for 
intraday levels of the VIX index, so we do not include it in the sample. 
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The remaining ETFs do not have perfect futures counterparts, but track baskets similar to those of 

major CME contracts. As an example, the iShares Russell 1000 ETF does not have a corresponding 

CME futures contract; however, a portion of price discovery in this ETF comes from futures on 

other indexes such as the S&P 500.2 As such, we expect these ETFs to react to information 

discovered in Chicago as long as the information is relevant to some of the constituents in the 

underlying basket. 

3.3. DTAQ data and summary statistics 

Following Holden and Jacobsen (2014), we combine the DTAQ NBBO and Quote files to 

obtain the complete NBBO record and merge the resulting dataset with the Trade file. We sign 

trades using the Lee and Ready (1991) algorithm and exclude the first and the last five minutes of 

each trading day to avoid the influence of the opening and closing procedures. Table 2 reports 

descriptive statistics for the two samples: the small sample of 5 ETFs and the large sample of 100 

ETFs. Because precipitation data are in 15-minute intervals, we aggregate the millisecond DTAQ 

data accordingly. 

An average ETF in the small sample has 21,603 NBBO updates every 15 minutes, 

equivalent to 24 updates per second. In addition, this ETF trades 3,228 times every 15 minutes, for 

a total volume of 1,308,086 shares (Panel A). Because the ETFs used by Laughlin, Aguirre and 

Grundfest (2014) are among the most active, quoting and trading activity in the sample of 100 

ETFs (Panel B) is expectedly less intensive. Specifically, an average ETF in this sample has 5,305 

NBBO updates every 15 minutes, equivalent to about 6 updates per second, and trades 500 times 

every 15 minutes, for a total volume of 190,522 shares. 

                                                 
2 The CME delisted E-mini Russell 1000 futures contract in 2007 when Russell Investments sold licensing rights to 
the Intercontinental Exchange. The CME relisted the contract in 2015. 
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[Table 2] 

3.4. Picking-off risk 

Recent literature suggests that fast informed traders increasingly choose to trade via limit 

orders. For instance, Brogaard, Hendershott and Riordan (2015) show that limit orders play a 

significant role in price discovery in the Canadian market. Using a U.S. dataset, O’Hara (2015) 

also argues that fast informed traders often prefer limit to marketable orders. She however suggests 

that most traders do not resort to one order type exclusively, but rather use them interchangeably 

depending on the circumstances.  

One of such circumstances is the constraint introduced by the minimum tick size. A binding 

tick size provides a strong incentive for fast traders to use marketable orders. Assume that a fast 

trader learns that an asset is underpriced. She wants to buy, but if the tick size is binding she cannot 

raise the outstanding bid without locking or crossing the market. Given these considerations, she 

may choose to pick off the outstanding ask quote despite having to pay the spread. As such, 

picking-off risk should be higher in assets with binding tick sizes. 

Our samples, and especially the smaller sample of very active ETFs, are quite liquid and 

therefore are likely to be constrained by the minimum tick size. Panel A of Table 2 shows that the 

NBBOs in the small sample average 1.1 cents, with more than half of NBBOs at exactly 1 cent. 

Tick size is often binding in the large sample as well, with at least 25% of the NBBOs at 1 cent 

(Panel B). Given these constraints, trade-related price discovery and the associated picking-off risk 

should be of considerable importance. 

To further examine this assertion, we compute two metrics. First, we estimate a share of 

price discovery attributable to trades. Second, we compute the price impacts of trades. The share 

of price discovery metric follows Hasbrouck’s (1991 a,b) and decomposes the efficient price 
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variance into the trade-related and trade-unrelated components. The details on this calculation are 

in the Appendix. The results in Table 2 show that the trade-related component amounts to 29.1% 

in the small sample and 29.6% in the large sample. As such, new information is incorporated into 

prices through trades rather often, and therefore concerns with the picking-off risks are warranted. 

Our second proxy for the picking-off risk is the conventional price impact metric, 

computed on a round-trip basis as twice the signed difference between the midquote at a certain 

time after the trade and the midquote at the time of the trade: ܴܲܯܫ ௧ܲ ൌ ௧൫݉݅݀௧ାఊݍ2 െ ݉݅݀௧൯, 

where ݍ௧ is the Lee and Ready (1991) trade direction indicator, ݉݅݀௧ is the midquote computed as 

ሺܱܰܤܤ	݇ݏܣ௧ ൅ ௧ሻ݀݅ܤ	ܱܤܤܰ 2⁄ , and ߛ indicates the time elapsed since the trade. Recent research 

uses ߛs of just a few seconds. For instance, O’Hara (2015) suggests that 5- to 15-second intervals 

may be the most useful, whereas Conrad, Wahal and Xiang (2015) use price impacts up to 20 

seconds. 

To check if intervals of these lengths are practical in our setting, Figure 4 traces price 

impacts for 60 seconds after a trade. The results clarify our understanding of price dynamics on 

two levels. First, the data show that price impacts are greater than zero, corroborating the earlier 

assertion that non-trivial amounts of information are incorporated into prices through trades. 

Second, a significant share of information is incorporated into the midquotes within a second after 

the trade and the incorporation is, expectedly, faster in more frequently traded (small sample) 

ETFs. This said, information incorporation continues beyond the first second in both samples and 

takes up to 60 seconds in the less active (large) ETFs. As such, although it may be tempting to 

think that full quote adjustments in modern markets happen in sub-second periods, the data suggest 

that this is not the case. To account for this characteristic, we focus on 15-second intervals, with 

robustness checks examining intervals between 1 and 60 seconds.  



15 
 

[Figure 4] 

It may not be immediately obvious that there should be enough adverse selection in ETFs 

to warrant this result. After all, ETFs are baskets of many securities, and as such the idiosyncratic 

risk associated with these securities is relatively low. This said, as long as sufficient amounts of 

macro information are present, the price impacts in ETFs should be quite sizeable. In fact, the price 

impacts reported in Figure 4 are comparable to those obtained for individual stocks. Specifically, 

in our two samples price impacts are 30-40% of the effective spread. In a study that examines a 

recent sample of large U.S. equities, Chakrabarty, Jain, Shkilko and Sokolov (2015) find that the 

price impact is 35% of the effective spread. As such, adverse selection is a non-trivial component 

of ETF trading costs and is comparable to the levels found in equities. 

3.5. Trading costs and liquidity provider revenues 

Table 2 also reports liquidity costs and liquidity provider revenues proxied by, respectively, 

effective spreads, ܵܧ ௧ܲ, and realized spreads, ܴܵ ௧ܲ. ܲܵܧ is computed as twice the signed 

difference between the prevailing midquote and the trade price, ݌௧: ܵܧ ௧ܲ ൌ ௧݌௧ሺݍ2 െ ݉݅݀௧ሻ. In 

turn, ܴܵ ௧ܲ is computed as twice the difference between the effective spread and the price impact. 

We volume-weight effective and realized spreads. Although the median effective spread is equal 

to the NBBO spread in the small sample (Panel A of Table 2), the average effective spread is 

almost twice as large as the NBBO. This statistic suggests that trades in the small sample 

occasionally occur outside of the best quotes, perhaps due to the use of ISO orders as described by 

Chakravarty, Jain, Upson and Wood (2012). These orders are permitted, in some circumstances, 

to take liquidity located beyond the best quotes (Rule 611 of Reg NMS). 

4. Empirical findings 
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4.1. Connectivity disruptions and picking-off risk 

When the microwave networks are fully functional, their users have a speed advantage. 

Theory models make several assumptions as to how this advantage may be used. Some authors 

model traders, who are faster than others, and therefore their limit orders are less exposed to 

picking-off risk. Others model traders who use their speed advantage to pick off the limit orders 

of others, resulting in greater adverse selection. In this section, we aim to better understand which 

of these assumptions prevails in our setting. 

If speed advantages allow fast traders to pick off outstanding limit orders, connectivity 

disruptions should result in lower price impacts. Alternatively, if fast connections are used to 

incorporate the latest information into quotes, the disruptions may be accompanied by larger price 

impacts. Certainly, it is possible that both explanations have merit, and our data allow us to gauge 

which of them prevails. We focus on the 2011-2012 period when the microwave networks allowed 

for speed differentials among traders. The post-democratization period (2013-2014) is examined 

in a later section. Chung and Chuwonganant (2014) and Malinova, Park and Riordan (2014) argue 

that VIX is a first-order determinant of trading activity and liquidity, and we use their insight in a 

regression setup as follows: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ܫܥܧଵܴܲߚ ௧ܲ ൅ ௧ܺܫଶܸߚ ൅  ௜௧,                          (1)ߝ

where ܴܣܸܲܧܦ is the price impact; ܴܲܲܫܥܧ is total precipitation in the Chicago-New York 

corridor; and ܸܺܫ is the intraday volatility index proxied by the iPath S&P500 VIX ST Futures 

ETF that tracks VIX. As discussed earlier, we also use ܴܲ1ܲܫܥܧ and ܴܲ2ܲܫܥܧ to identify the 

most significant precipitation events. All asset-specific variables are standardized (by demeaning 

and scaling by the standard deviation for each stock), so the regression models control for asset 

fixed effects. Additionally, all time-series variables are standardized by year, and the standard 
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errors are double-clustered along the asset and time dimensions. 

Table 3 shows that price impacts decline during network disruptions. For example in the 

large sample, significant amounts of precipitation captured by ܴܲ2ܲܫܥܧ are associated with a 

0.047 standard deviations, or 7.05%, decline in price impacts (Panel B of Table 3). As such, it 

appears that the fast traders prefer marketable orders on average.  

[Table 3] 

MWN disruptions slow down information transmission by mere milliseconds. Is it 

surprising that we observe changes in price impacts over 15-second periods? We argue that it is 

not. Price impacts are based on midquotes and hence proxy for the speed with which limit orders 

adjust to new information. Not all limit order traders are fast, and Figure 4 shows that full 

adjustments normally happen over multi-second periods. More importantly however, our focus is 

on how (not how fast) information is incorporated into prices. A smaller 15-second price impact 

therefore means that when fast traders lose their speed advantage, more information is incorporated 

into prices through quotes than through trades. 

 Per our earlier suggestion, fast traders may be forced to use marketable orders when the 

tick size is binding. If this is so, microwave network disruptions will have a larger effect on price 

impacts in the most constrained assets. The results in Panel C are consistent with this expectation. 

Price impacts in the most constrained ETFs decline by 0.051 standard deviations, whereas they 

decline by only 0.039 standard deviations in the least constrained ETFs. These results are in line 

with Carrion (2013) and Hendershott and Riordan (2013), who show that algorithmic traders tend 

to supply liquidity when spreads are wide. In our setting however, liquidity taking by the fastest 

traders appears to dominate even when the tick size is not binding.  

4.2. Trading costs and liquidity provider revenues 
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Some theory models assume that traders use speed advantages to post better priced limit 

orders. A loss of the speed advantage may force these traders to price limit orders less aggressively 

to compensate for greater picking-off risk, and trading costs may increase. Other models assume 

that traders use speed advantages to pick off the limit orders of others. A loss of the speed 

advantage may reduce adverse selection and therefore attract better priced limit orders. 

Consequently, trading costs may decline. We note that the abovementioned models are equilibrium 

models. It is not immediately clear how quickly an equilibrium may arise, and if it may arise at all 

given that the precipitation episodes are relatively short. Easley and O’Hara (1992) describe price 

adjustment as a process of learning by market participants. In their model, traders learn by 

observing the time between trades, with spreads decreasing gradually as this time increases. 

Whether trading costs have enough time to adjust to lower adverse selection during microwave 

network disruptions is an empirical question that we examine next. 

In Table 3, we report eq. 1 regression results for effective and realized spreads. The data 

show that effective spreads decline during MWN disruptions, especially in the large sample where 

the tick size is less binding. The ܴܲ2ܲܫܥܧ coefficient suggests that effective spreads decline by 

0.043 standard deviations (Panel B). Expectedly, this result is more pronounced for the least 

constrained assets (Panel C). The results are consistent with predictions of the models that 

emphasize the picking-off risk and are also informative about the speed of adjustment to changing 

levels of adverse selection. Specifically, it appears that the length of an average precipitation 

episode is sufficient for the spreads to adjust. It is however unclear if this adjustment reflects an 

equilibrium. In a later section, we report results based on an exogenous shock that resulted in the 

long-term reduction in speed differentials. This shock further improves our understanding of the 

equilibrium effects. 
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When it comes to realized spreads, they too decline, by 0.021 standard deviations, during 

 events. As such, network disruptions appear to not only reduce liquidity costs, but also 2ܲܫܥܧܴܲ

reduce liquidity provider revenues. There are several possible explanations for this result. One 

explanation involves latent liquidity that stays on the sidelines when the speed differentials are 

present. Chakrabarty, Jain, Shkilko and Sokolov (2015) use limit order book data to show that 

favorable conditions incentivise liquidity providers to reposition existing liquidity from the deeper 

layers of the book to the inside. An alternative explanation may have to do with MWN traders 

switching from taking liquidity to supplying new limit orders. Since our data do not contain trader 

account information or limit order book information, we must rely on future research to reconcile 

these explanations.  

4.3. Trading activity and volatility 

The literature often assumes that lower trading costs attract additional trading interest and 

therefore result in higher trading volume. In our setting, this assumption will not necessarily hold. 

This is because aside from lower costs, network disruptions lead to a reduction in the number of 

picking-off opportunities, reducing the arbitrageurs’ trading interest. The regression results in 

Table 4 are consistent with this notion. For instance, in the large sample, the number of trades 

declines by 0.072 standard deviations during ܴܲ1ܲܫܥܧ events. Trading volume also declines; by 

0.042 standard deviations. 

[Table 4] 

The finance literature has not yet come to a consensus on the relation between electronic 

trading and volatility. While some studies report that the relation is negative (Hasbrouck and Saar, 

2013; Brogaard, Hendershott and Riordan, 2014), others find it to be positive (Boehmer, Fong and 

Wu, 2015). Closest to our setting, a model by Roşu (2015) suggests that as fast traders pick off 
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market makers’ quotes, volatility may increase. Du and Zhu (2015) also show that when some 

traders are faster than others, liquidity shocks result in greater volatility. Our results are consistent 

with these insights; volatility, which we define as the difference between the high and low price 

during an interval scaled by the average price, declines by 0.118 (0.109 standard deviations) in the 

large (small) sample during ܴܲ2ܲܫܥܧ events. 

As we point our earlier, fast traders have more maneuvering room in assets with wider 

spreads. In such assets, new information may be incorporated into prices through both marketable 

orders and better priced limit orders. Meanwhile, in assets whose spreads are constrained by the 

minimum tick size, fast traders are not always able to improve the NBBO and occasionally have 

to rely on marketable orders. Naturally, these considerations should affect changes in trading 

activity during network downtimes. Panel C shows that the number of trades and trading volume 

decline in the most constrained assets, yet remain the same in the least constrained assets. These 

results corroborate two of our earlier conjectures: (i) that fast traders use fewer marketable orders 

in the least constrained stocks and (ii) that trading volume may increase in response to lower 

trading costs. 

Overall, the results suggest that even though lower spreads may attract additional trading 

interest, trading volume generated by this interest is not larger than the lost arbitrage volume. One 

possibility is that the disruptions are not long enough or sufficiently predictable for additional 

trading interest to emerge. A trading strategy that is highly sensitive to transaction costs may not 

be viable in a high cost environment, even though the high cost periods are occasionally interrupted 

by the lower cost periods. This said, an extended period of lower spreads may make the strategy 

viable, thus generating new trading interest. In a later section, we examine this possibility by 

studying an event that resulted in a long-lasting loss of speed advantage by the network users. 
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4.4. The futures market during microwave network disruptions 

Our main analysis focuses on the effects of speed differentials on the equity markets in 

New York. In this section, we ask if the differentials also affect the futures market in Chicago. On 

the one hand, fast traders may carry information not only from futures to equities but also in the 

opposite direction. If this is the case, speed differentials may negatively affect CME liquidity. On 

the other hand, prior research shows that futures provide the lion’s share of price discovery in 

index instruments. If so, it would be wasteful to use the limited microwave bandwidth to transmit 

information from the ETFs to futures. As such, speed differentials may not have much of an effect 

on the CME liquidity. 

To examine futures liquidity, we obtain 2012 intraday CME data for four e-mini contracts: 

S&P 500, S&P MidCap 400, Nasdaq 100 and Financial Sector Select. Intraday data for these four 

contracts are sold by the CME as a bundle. First, we ask how the futures and equity markets react 

to each other’s trades. Using S&P 500 contract as an example, Figure 5 reports a significant 

reaction of the ETF to trades in the futures, but not vice versa. The ETF reaction begins about five 

milliseconds after a CME trade, the time required for a signal from Chicago to reach New York. 

As such, it appears that the futures market leads equities.  

[Figure 5] 

To confirm this graphic result, we compute information shares as in Hasbrouck (1995) and 

Westerlund, Reese and Narayan (2014) for all four futures-ETF pairs. The details of the 

methodologies are in the Appendix. These methodologies corroborate the graphic result; in all 

sample contracts, price discovery occurs virtually entirely on the CME (not tabulated). Finally, we 

examine CME liquidity during precipitation episodes. Consistent with limited price discovery 
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from ETFs to futures, the data show that precipitation does not affect adverse selection and trading 

costs on the CME (Table 5). 

[Table 5] 

4.5. Democratization of MWN access 

In late December 2012 – early January 2013, one of the microwave technology providers 

disrupted the business model used by the MWN firms. Instead of selling bandwidth on its network 

to select traders, it began selling information transmitted by the network to everyone who was 

willing to pay a nominal fee. Subscribers to this service obtained access to an affordable and non-

exclusive channel of information transmission that was at least equally as fast as (if not faster than) 

the existing MWNs. The offer was soon replicated by other providers, and the market for 

microwave transmissions was democratized. Put differently, existing microwave users lost their 

speed advantage. 

Given our findings so far, democratization of access to higher information transmission 

speeds may lead to two outcomes. First, the relation between precipitation and market quality 

observed in the 2011-2012 period may diminish. Second, the democratization should result in 

market quality changes similar to those observed during precipitation events. In this sense, 

precipitation episodes in 2011-2012 may be viewed as periods of short-term democratization, 

whereas the 2012-2013 event may be viewed as long-term democratization. 

In Table 6, we report the coefficients of the ܴܲ2ܲܫܥܧ variable obtained from estimating 

eq. 1 during the post-democratization period. The results confirm the abovementioned 

expectations. Precipitation episodes no longer have an effect on price impacts, effective spreads, 

realized spreads, volatility and trading activity. The change is observed for both samples (small 
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and large) and for the most and least constrained subsamples. As such, democratization was a 

significant market disruptor. 

[Table 6] 

Given the significance of the move, the relations associated with the loss of speed 

advantages discussed in the previous sections should reappear around the event. To examine if this 

is the case, we estimate an event study regression that compares market quality and activity 

variables in the three-month pre-event window (September – November 2012) and the post-event 

window (February – April 2013). We exclude December 2012 and January 2013 to allow for a 

transition period, yet the results are similar when these months are included. The regression model 

for the event study is set up as follows: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ଵܱܲܵߚ ௧ܶ ൅ ௧ܺܫଶܸߚ ൅  ሺ2ሻ																																										௜௧,ߝ

where ܴܣܸܲܧܦ௜௧ is one of the following variables (price impacts, effective spreads, realized 

spreads, the number of trades, traded volume, or volatility) in asset ݅ on day ݐ, ܱܲܵܶ is a dummy 

variable that equals to one in February-April 2013, and ܸܺܫ is the volatility index. All variables 

are standardized, and as such the regression models control for asset fixed effects. The standard 

errors (in parentheses) are double-clustered along the asset and time dimensions. 

The main variable of interest in eq. 2 is ܲ ܱܵܶ as it captures the difference between the pre- 

and post-democratization periods. The regression results for the large sample indicate that price 

impacts, effective spreads, realized spreads and volatility decline post-democratization (Table 7). 

As such, the event study findings are consistent with the panel findings discussed earlier.  

[Table 7] 

One notable difference between the event study and the panel findings comes from the 
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trade-related variables: number of trades and volume. In the large sample, both of these variables 

increase post-democratization. As such, the results corroborate our earlier suggestion that lower 

trading costs may generate new trading interest over periods of time that are longer than the 

weather-related MWN disruptions. Finally, the results for the most and least constrained samples 

generally confirm our earlier findings. Notably, the loss of arbitrage opportunities in the most 

constrained ETFs (including the small sample ETFs) appears to be equivalent to the gain from new 

trading interest, resulting in the absence of changes in trading activity. 

It may not be immediately clear what drove the technology provider to disrupt the status 

quo in the market for microwave transmissions. Cespa and Foucault (2014) argue that it may be in 

data providers’ best interests to restrict dissemination of pricing data to select traders. Their model 

shows that information that is accessible to many is less valuable to the few, who may be willing 

to pay a premium for the exclusive use of this information. Our investigation into the technology 

firm’s motives suggests that the firm believed that increasing the customer base was more 

profitable than providing restricted access to a small group of clients. As long as the firm 

maintained its latency advantage, it expected to always maintain a sufficiently large customer base. 

It remains unclear whether this belief was correct given that many other connectivity providers 

launched similar offerings in the months after the democratization, possibly driving down the price 

of the service. This said, the firm continues to offer the service to this day and has expanded it to 

several continents. 

5. Robustness 

A rich literature examines the effects of weather on the behavior of market participants and 

finds that poor weather is associated with investor pessimism, which reflects in stock returns 

(Hirshleifer and Shumway, 2003). The pessimism affects even the sophisticated investors 
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(Goetzmann, Kim, Kumar and Wang, 2015). Furthermore, deHaan, Madsen and Piotroski (2015) 

show that pessimistic moods induced by poor weather often delay equilibrium price adjustments 

following earnings announcements. As such, the reduction in adverse selection that we document 

in the previous section may be attributed (at least in part) to slower price discovery caused by the 

poor weather in Chicago and/or New York rather than to the MWN disruptions. 

To examine this possibility, we recalculate the ܴܲ2ܲܫܥܧ variable to capture time periods 

when the networks are disrupted, yet the moods of traders in Chicago and New York are not 

altered. Specifically, we compute ܴܲ2ܲܫܥܧ that satisfies the following two conditions: (i) only 

weather stations in Ohio indicate high levels of precipitation, and (ii) weather stations in the 

western and eastern parts of the Chicago-New York corridor indicate near-zero precipitation. We 

then re-estimate eq. 1 for the large ETF sample in 2011-2012 and report the results in the mood 

control specification in Panel A of Table 8. The effects are consistent with those reported in the 

earlier tables. The results for the small sample and the two subsamples are similar. As such, trader 

moods do not seem to be the source of our findings. 

[Table 8] 

Our sample of weather stations is selected to capture the area closely surrounding the 

MWN paths. As with any such selection procedure, it is important to show that the results are not 

driven by the choice of the specific set of stations. The mood control specification takes the first 

step in this direction by restricting the sample to Ohio stations. In two additional Table 8 

specifications, we show that using information from an expanded area surrounding the MWN paths 

leads to similar conclusions, while precipitation in the placebo area over Colorado, Utah and 

Wyoming (far removed from the Chicago-New York corridor) has no effect on the variables of 

interest. 
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Information asymmetry, trading costs and trading activity vary throughout the day. For 

instance, effective spreads follow an intraday J-pattern, with wider spreads in the morning that 

then narrow in the afternoon (Figure 6). Notably, intraday precipitation too follows a reverse J-

pattern, with precipitation amounts being lower in the morning hours. Since the results in previous 

section point to a negative relation between precipitation and spreads, we must make sure that the 

findings are not due to these intraday patterns. 

[Figure 6] 

We examine this possibility in two additional specifications in Panel A of Table 8. First, 

we focus on the afternoon period, when spreads and precipitation are relatively flat. Our results 

hold for every variable of interest. Second, the results continue to hold when we add intraday fixed 

effects to eq. 1. As such, the relations between precipitation and spreads observed in the earlier 

sections are independent of intraday patterns.  

Specifications that focus on the afternoon period bring an extra benefit as they take away 

the possibility that the results are driven by an occasional morning fog. Like rain and snow, fog 

droplets disrupt microwave transmissions, yet they are suspended in the air and may not register 

accurately with the weather stations. Along the MWN paths, fog is mainly observed at night and 

in the early morning hours before the markets open, as such it is not a significant concern for our 

main analysis. Still, it is encouraging that the results remain strong during the afternoon periods 

when fog is normally absent. 

Recall that the ܴܲܲܫܥܧ variable estimates total precipitation in the Chicago-New York 

corridor. This variable is well-suited to capture periods of high precipitation over small areas, but 

may occasionally acquire high values if relatively minor events, such as atmospheric pressure 

changes or dew accumulations, extend over the entire corridor. This possibility is the reason for 
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our focus on ܲ  that captures very high precipitation totals not likely to be achieved through 2ܲܫܥܧܴ

anything other than significant precipitation. To provide another alternative to ܴܲܲܫܥܧ, in Panel 

B of Table 8 we report the results using the average precipitation per station, ܲܫܥܧܴܲܯ, and its 

variations, 1ܲܫܥܧܴܲܯ and 2ܲܫܥܧܴܲܯ, that capture periods when average precipitation is 0.5 

and 1 standard deviations above the mean. We note that although these variables mitigate the 

abovementioned concern, they potentially reduce our ability to detect relatively narrow bands of 

strong precipitation, especially those accompanied by near-zero precipitation in the rest of the 

corridor (Figure 3). Corroborating this reasoning, the results for ܲܫܥܧܴܲܯ are weaker than those 

reported earlier for ܴܲܲܫܥܧ, yet the results for 1ܲܫܥܧܴܲܯ and 2ܲܫܥܧܴܲܯ are generally equally 

as strong as those for their counterparts computed using total precipitation. 

In the main analysis, we compute the effective spreads and their components on a volume-

weighted basis. As such, large trades have a stronger effect on the estimates than small trades. To 

shed more light on the effects of network disruptions on small trades, in Table 9 we report eq. 1 

regression results for the equally-weighted variables. The results reported earlier hold for both 

samples (small and large) and both the most and least tick-constrained sub-samples.  

[Table 9] 

The results for the volume-weighted effective spreads and their components reported in 

earlier tables use raw dollar metrics. Naturally, raw spreads may vary in the price of the asset. 

Although our regressions account for the overall price levels by using asset fixed effects, intraday 

price changes remain unaccounted for. The ܸ ܹܲ_ specifications in Table 9 address this issue using 

effective spreads, price impacts and realized spreads scaled by the midquote at the time of trade. 

The results corroborate those reported in the earlier tables. 
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In the previous sections, we discuss the effects of network disruptions on effective spreads. 

We also show that the effects differ between the assets most and least constrained by the minimum 

tick size. In Table 10, we estimate eq. 1 for two additional variables – quoted NBBO spread and 

quoted depth. Whereas effective spreads capture the realized trading costs, the quoted spreads 

summarize liquidity that is available at all times. As long as investors choose to trade when trading 

costs are low, effective spreads may not be fully indicative of changes in available liquidity. Table 

10 shows that quoted spreads decline when the networks are down across all sample groups aside 

from the small sample. The coefficients repeat the patterns reported for effective spreads, with 

quoted spreads declining more for the least constrained ETFs, in which more price improvement 

is possible. 

[Table 10] 

Table 10 also reports the results for quoted NBBO depth, which increases during network 

disruptions, but only for the most constrained ETFs. This finding is consistent with our previous 

discussions. In the most constrained ETFs, there is not always room to improve the spread, but 

there is room to improve quoted depth. Notably, the depth does not increase in the least constrained 

ETFs; it appears that in these assets latent liquidity invoked by the network disruptions mainly 

improves the spreads. 

6. Conclusions 

 This study examines the effects of speed differentials on liquidity. During our sample 

period, microwave networks stretched from Chicago to New York allow for the fastest information 

transmission and are only available to select trading firms. When it rains or snows in the area 

between the two cities, the networks are disrupted because rain droplets and snowflakes block the 

microwave paths. With the networks temporarily down, information transmission falls back onto 
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the fiber-optic cable – a more reliable, yet slower transmission medium – effectively eliminating 

the speed advantages of the fastest traders. We show that when this happens, adverse selection and 

trading costs decline. This result is consistent with predictions of theory models that show that 

speed differentials among traders may be associated with lower liquidity. 

 Our results also shed new light on traders’ order choices. Recent research suggests that 

informed fast traders may prefer to trade via limit orders. Our results confirm that this is the case, 

yet this preference varies in the cross-section. Specifically, in assets with binding tick sizes, trading 

on short-lived information through limit orders is difficult due to long queues. In such assets, 

traders prefer marketable orders.  

Finally, the results shed light on latent liquidity. We show that when speed differentials 

among traders decline due to precipitation, the emergence of latent liquidity narrows spreads more 

than one would expect based only on the decline in adverse selection. We also find that in assets 

where spread reductions are not possible due to the binding tick size, latent liquidity improves 

quoted depths.  

 Our results are confirmed in an event-study setting. In winter of 2012-2013, one of the 

technology providers democratized microwave transmissions by introducing a new business 

model. Instead of selling bandwidth on its network, the firm began selling information on both 

sides of the Chicago-New York corridor. This one-time event had positive consequences for 

market quality similar to precipitation-related network disruptions. This result further supports the 

claim that the technological race that leads to a market with speed differentials may be suboptimal 

for market quality. 

The technological race continues to drive spending in the trading industry. A recent 

example is a new data transmission tower proposed by the telecommunications company Vigilant 
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Global to connect the U.K. and European markets. The tower will be among the tallest structures 

in the U.K. and will rival the height of the Eiffel Tower. It will provide trading firms with a 

completely unobstructed optical and radio line of sight, never previously offered in Europe, 

increasing signal transmission speed. In the meantime, traders in the U.S. have been switching 

from microwave transmissions to more reliable, yet costly, laser links. Our findings shed light on 

the possible consequences of these developments.  
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Table 1: Descriptive statistics 
The table reports descriptive statistics for precipitation and for the sample of 100 ETFs. In Panel A, ܴܲܲܫܥܧ is the 
variable that captures total precipitation recorded by the weather stations along the Chicago-New York corridor. Along 
with precipitation statistics (in mm per a 15-minute sampling interval), we report the percent share of intervals with 
 greater than 1 standard deviation ܲܫܥܧܴܲ and with (1ܲܫܥܧܴܲ) greater than 0.5 standard deviations ܲܫܥܧܴܲ
 as well as 2ܲܫܥܧܴܲ and 1ܲܫܥܧܴܲ Finally, we report the length of an average period with consecutive .(2ܲܫܥܧܴܲ)
the percent share of days with episodes of ܴܲ1ܲܫܥܧ or ܴܲ2ܲܫܥܧ. Panel B classifies 100 sample ETFs into categories 
according to the underlying asset basket. 
 

Panel A: Precipitation   
  mm/interval ,ܲܫܥܧܴܲ

mean 0.155 
median 0.070 
std. dev. 0.218 

  

% intervals with ܴܲ17.0 1ܲܫܥܧ 
% intervals with	ܴܲ10.5 2ܲܫܥܧ 

  

length ܴܲ1ܲܫܥܧ, min 54.2 
length ܴܲ2ܲܫܥܧ, min 49.1 
  

Panel B: 100 ETFs  
Equities  

US index 50 
International index 22 

Interest rate products 20 
Metals 4 
Real estate 1 
Other 3 
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Table 2. Market activity statistics 
The table contains summary statistics for two samples: the sample of 5 ETFs (Panel A) and 100 ETFs (Panel B). 
Statistics are derived from the millisecond DTAQ data and aggregated into 15-minute intervals to match the 
precipitation data. Volatility is defined as the difference between the high and low price in a 15-minute interval 
scaled by the average price. Trade price discovery is the percentage of efficient price variance that may be attributed 
to trades (Hasbrouck, 1991).  the National Best Bid and Offer defined as the difference between the lowest offer 
quote and the highest bid quote across all markets. In Panel B, we separate the assets into terciles by their average 
NBBO. Assets with the smallest (largest) NBBOs are considered the most (least) tick-constrained. Price impact is 
defined as twice the signed difference between the NBBO midquote 15 seconds after the trade and the midquote at 
the time of the trade. Effective spread is twice the signed difference between the trade price and the corresponding 
midquote. Realized spread is the difference between the effective spread and the corresponding price impact. 

  mean std. dev. 25% median 75% 
Panel A: 5 ETFs           
# NBBO updates 21,603 17,538 11,012 14,083 27,224 
# trades 3,228 3,797 1,146 1,426 3,838 
volume, sh. 1,308,086 1,361,369 347,474 815,054 1,809,586 
price, $ 80.92 62.92 28.58 70.17 144.03 
trade size, sh. 511 394 233 342 674 
volatility, % 0.336 0.221 0.190 0.272 0.360 
      

NBBO, $ 0.011 0.005 0.010 0.010 0.011 
      

trade price disc., % 0.291 0.156 0.185 0.246 0.341 
price impact, $ 0.008 0.007 0.006 0.009 0.012 
effective spread, $ 0.020 0.058 0.010 0.011 0.013 
realized spread, $ 0.011 0.059 0.000 0.003 0.006 
Panel B: 100 ETFs 
# NBBO updates 5,305 8,169 608 2,470 6,953 
# trades 500 1,233 39 113 432 
volume, sh. 190,522 485,076 13,438 32,171 120,444 
price, $ 71.69 36.67 42.08 69.61 92.06 
trade size, sh. 448 852 246 311 425 
volatility, % 0.154 0.076 0.111 0.158 0.195 
      

NBBO, $ 0.019 0.024 0.010 0.012 0.019 
most constrained 0.010 0.003 0.010 0.010 0.010 
least constrained 0.036 0.037 0.018 0.028 0.042 
      

trade price disc., % 0.296 0.159 0.194 0.261 0.350 
price impact, $ 0.006 0.009 0.000 0.004 0.009 
effective spread, $ 0.019 0.032 0.010 0.011 0.018 
realized spread, $ 0.013 0.033 0.002 0.007 0.014 
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Table 3. Microwave connectivity and trading costs 
The table contains coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ܫܥܧଵܴܲߚ ௧ܲ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following variables: the price impact, ܲܲܯܫ, the effective spread, ܲܵܧ, or the realized spread, ܴܵܲ, in asset ݅; ܴܲܲܫܥܧ is total 
precipitation in the Chicago-New York corridor; and ܸܺܫ is the volatility index. We also use ܴܲ1ܲܫܥܧ and ܴܲ2ܲܫܥܧ to identify the most significant precipitation 
events. All variables are standardized (by demeaning and scaling by the standard deviation for each stock) and as such the regression models control for asset fixed 
effects, and the standard errors (in parentheses) are double-clustered along the asset and time dimensions. The data are from the 2011-2012 period. Panel A examines 
5 ETFs in the small sample, Panel B examines 100 ETFs in the large sample, and Panel C separately examines the assets for which the minimum tick size is the 
least (most) binding. For this test, we separate the assets into terciles by their average NBBO on the previous day. Assets with the smallest (largest) NBBOs are 
considered the most (least) tick-constrained. Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

ܲܯܫܲ  ܲܵܧ   ܴܵܲ
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Panel A: Small sample 
   *008.-    003.-    ***012.- ܲܫܥܧܴܲ

 (.004)    (.004)    (.004)   
  **024.-    011.-    ***035.-  1ܲܫܥܧܴܲ

  (.011)    (.011)    (.011)  
 **028.-    *023.-    ***051.-   2ܲܫܥܧܴܲ

   (.014)    (.014)    (.012) 
 007.- 007.- 007.-  ***052. ***052. ***052.  ***111. ***111. ***110. ܺܫܸ

 (.004) (.004) (.004)  (.004) (.004) (.004)  (.018) (.018) (.018) 
Panel B: Large sample 
   **005.-    ***010.-    ***010.- ܲܫܥܧܴܲ

 (.004)    (.003)    (.002)   
  ***024.-    ***041.-    ***035.-  1ܲܫܥܧܴܲ

  (.012)    (.010)    (.007)  
 ***021.-    ***043.-    ***047.-   2ܲܫܥܧܴܲ

   (.013)    (.011)    (.008) 
 ***036. ***036. ***036.  ***057. ***058. ***057.  ***035. ***035. ***035. ܺܫܸ

 (.009) (.009) (.009)  (.008) (.008) (.008)  (.006) (.006) (.006) 
Panel C: Effects of ܴܲ2ܲܫܥܧ for assets that are the most (least) constrained by the minimum tick size (large sample) 
 ܴܲܵ ܲܵܧ  ܲܯܫܲ 
 most  least  most  least  most  least 
 ***058.-  006.- ***079.-  ***023.-  ***039.-  ***051.- 2ܲܫܥܧܴܲ

 (.017)  (.010)  (.008)  (.020) (.007)  (.017) 
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Table 4. Microwave connectivity, trading activity and volatility 
The table contains coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ܫܥܧଵܴܲߚ ௧ܲ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following three variables (the number of trades, traded volume, or volatility) in asset ݅ during a 15-minute interval ܲܫܥܧܴܲ ;ݐ is 
total precipitation in the Chicago-New York corridor; and ܸܺܫ is the volatility index. We also use ܴܲ1ܲܫܥܧ and ܴܲ2ܲܫܥܧ to identify the most significant 
precipitation events. All variables are standardized and as such the regression models control for asset fixed effects, and the standard errors (in parentheses) are 
double-clustered along the asset and time dimensions. The data are from the 2011-2012 period. Panel A examines 5 ETFs in the small sample, Panel B examines 
100 ETFs in the large sample, Panel C separately examines the assets for which the minimum tick size is the least (most) binding. For this test, we separate the 
assets into terciles by their average NBBO on the previous day. Assets with the smallest (largest) NBBOs are considered the most (least) tick-constrained. Asterisks 
***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

 trades  volume  volatility 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Panel A: Small sample 
   ***024.-    ***035.-    021.- ܲܫܥܧܴܲ

 (.013)    (.014)    (.008)   
  ***089.-    ***138.-    ***106.-  1ܲܫܥܧܴܲ

  (.039)    (.040)    (.027)  
 ***109.-    ***146.-    **112.-   2ܲܫܥܧܴܲ

   (.045)    (.046)    (.032) 
 ***144. ***145. ***144.  ***107. ***108. ***106.  ***143. ***145. ***143. ܺܫܸ

 (.053) (.053) (.053)  (.033) (.033) (.033)  (.036) (.036) (.036) 
Panel B: Large sample 
   **025.-    ***012.-    ***010.- ܲܫܥܧܴܲ

 (.006)    (.004)    (.010)   
  ***103.-    ***044.-    ***070.-  1ܲܫܥܧܴܲ

  (.020)    (.013)    (.032)  
 ***118.-    ***042.-    ***072.-   2ܲܫܥܧܴܲ

   (.023)    (.015)    (.036) 
 ***185. ***186. ***185.  ***049. ***050. ***049.  ***079. ***079. ***079. ܺܫܸ

 (.015) (.015) (.015)  (.009) (.009) (.009)  (.024) (.024) (.024) 
Panel C: Effects of ܴܲ2ܲܫܥܧ for assets that are the most (least) constrained by the minimum tick size (large sample) 
 trades  volume volatility 
 most  least  most  least  most  least 
 ***109.-  ***119.- 010.-  ***064.-  015.-  ***111.- 2ܲܫܥܧܴܲ

 (.034)  (.021)  (.025)  (.013) (.038)  (.032) 
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Table 5. Microwave connectivity and trading costs on the CME 
The table contains coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ܫܥܧଵܴܲߚ ௧ܲ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following variables: the price impact, ܲܲܯܫ, the effective spread, ܲܵܧ, or the realized 
spread, ܴܵܲ, in the futures contract ݅; ܴܲܲܫܥܧ is total precipitation in the Chicago-New York corridor; and ܸܺܫ is 
the volatility index. We also use ܴܲ1ܲܫܥܧ and ܴܲ2ܲܫܥܧ to identify the most significant precipitation events. All 
variables are standardized, and as such the regression models control for asset fixed effects, and the standard errors 
(in parentheses) are double-clustered along the asset and time dimensions. The data are from 2012 and cover four e-
mini futures contracts: S&P 500, S&P MidCap 400, Nasdaq 100 and Financial Sector Select. Asterisks ***, ** and * 
denote statistical significance at the 1%, 5% and 10% levels. 

ܲܵܧ  ܲܯܫܲ   ܴܵܲ 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

   001.-    043.-    026.- ܲܫܥܧܴܲ
 (.017)    (.034)    (.002)   

  005.-    011.-    057.-  1ܲܫܥܧܴܲ

  (.037)    (.081)    (.006)  
 016.-    115.-    039.-   2ܲܫܥܧܴܲ

   (.044)    (.083)    (.012) 
 023. 022. 022.  ***016. ***018. ***017.  ***030. ***029. ***030. ܺܫܸ

 (.006) (.006) (.006)  (.007) (.008) (.007)  (.023) (.023) (.023) 
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Table 6. Post-democratization period 
The table reports the ߚଵ coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ 2௧ܲܫܥܧଵܴܲߚ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following four variables (price impacts, effective spreads, realized spreads, number of 
trades, traded volume, or volatility) in asset ݅ during a 15-minute interval 2ܲܫܥܧܴܲ ;ݐ is a dummy variable that 
captures periods when total precipitation in the Chicago-New York corridor exceeds one standard deviation; and ܸܺܫ 
is the volatility index. All variables are standardized and as such the regression models control for asset fixed effects, 
and the standard errors (in parentheses) are double-clustered along the asset and time dimensions. The data are from 
the 2013-2014 period. We examine four groups of assets: (i) 5 ETFs in the small sample, (ii) 100 ETFs in the large 
sample, and (iii/iv) terciles of ETFs for which the tick size is the most (least) binding. Asterisks ***, ** and * denote 
statistical significance at the 1%, 5% and 10% levels. 

 trades volume volatility ܴܲܵ ܲܵܧ ܲܯܫܲ 
small sample .006 .011 .008 .024 .008 -.002 
 (.019) (.011) (.013) (.035) (.033) (.028) 
large sample .007 .001 -.003 .027 .007 .016 
 (.013) (.012) (.009) (.018) (.012) (.033) 
most constr. -.016 .003 .010 .024 .009 .001 
 (.015) (.008) (.007) (.023) (.018) (.031) 
least constr. .014 .002 -.006 .031 .005 .023 
 (.012) (.021) (.016) (.021) (.009) (.032) 
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Table 7. Network democratization: Event study 
The event window spans the months of September 2012 to April 2013. In this window, the months of September, 
October and November capture the period prior to the democratization, and the months of February, March and April 
capture the post-democratization period. We report the coefficient estimates ߚଵ from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ଵܱܲܵߚ ௧ܶ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following variables (price impacts, effective spreads, realized spreads, number of 
trades, traded volume, or volatility) in asset ݅ on day ݐ; ܱܲܵܶ is a dummy variable that equals to one in February-
April 2013; and ܸܺܫ is the volatility index. All variables are standardized and as such the regression models control 
for asset fixed effects, and the standard errors (in parentheses) are double-clustered along the asset and time 
dimensions. We examine four groups of assets: (i) 5 ETFs in the small sample, (ii) 100 ETFs in the large sample, and 
(iii/iv) terciles of ETFs for which the tick size is the most (least) binding. Asterisks ***, ** and * denote statistical 
significance at the 1%, 5% and 10% levels. 

ܲܵܧ ܲܯܫܲ  ܴܵܲ trades volume volatility 
Panel A: Small sample 
small sample -.475*** -.337*** -.148* .173 .028 -.318 
 (.176) (.097) (.089) (.223) (.266) (.216) 
large sample -.295*** -.342*** -.262*** .159** .186*** -.253** 
 (.071) (.058) (.057) (.065) (.062) (.113) 
most constr. -.370*** -.238*** -.102 .019 .106 -.325*** 
 (.122) (.068) (.081) (.110) (.100) (.130) 
least constr. -.319*** -.352*** -.320*** .158** .167*** -.173* 
 (.075) (.108) (.105) (.067) (.066) (.103) 
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Table 8. Robustness: alternative sampling and regression setup 
The table reports the ߚଵ coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ ௧ݔܲܫܥܧଵܴܲߚ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following variables (price impacts, effective spreads, realized spreads, number of 
trades, traded volume, or volatility) in asset ݅ during a 15-minute interval 2ܲܫܥܧܴܲ ;ݐ is a dummy variable that 
captures periods when total precipitation in the Chicago-New York corridor exceeds one standard deviation (Panel 
A); and ܸܺܫ is the volatility index. We examine several specifications of the model. The mood control specification 
restricts precipitation episodes to those occurring in Ohio when precipitation is near-zero in the eastern and western 
parts of the Chicago-New York corridor. The expanded area specification uses additional weather stations, forming a 
wider area around the corridor. The placebo area specification uses data from the weather stations located in Colorado, 
Utah and Wyoming, away from the corridor. The afternoon only specification uses data between noon and the market 
close. The intraday FE specification adds intraday fixed effects. Finally, Panel B replaces total precipitation across all 
stations with the average precipitation per station ܲܫܥܧܴܲܯ, and its two variations, 1ܲܫܥܧܴܲܯ and 2ܲܫܥܧܴܲܯ, 
which are dummies that capture episodes when the average precipitation is more than 0.5 and 1 standard deviation 
removed from the mean. All variables are standardized and as such the regression models control for asset fixed 
effects, and the standard errors (in parentheses) are double-clustered along the asset and time dimensions. The data 
are from the 2011-2012 period, and we examine the sample of 100 ETFs. Asterisks ***, ** and * denote statistical 
significance at the 1%, 5% and 10% levels. 

ܲܵܧ ܲܯܫܲ  ܴܵܲ trades volume volatility 
Panel A: ܴܲݔܲܫܥܧ	=	2ܲܫܥܧܴܲ 
mood control -.060*** -.061*** -.026*** -.094*** -.053*** -.166*** 
 (.013) (.012) (.009) (.024) (.016) (.035) 
expanded area -.034*** -.040*** -.020** -.055** -.032** -.087** 
 (.013) (.012) (.008) (.023) (.015) (.039) 
placebo area .006 -.012 -.001 .015 .003 -.036 
 (.016) (.025) (.019) (.024) (.016) (.038) 
afternoon only -.061*** -.063*** -.028*** -.080*** -.048*** -.147*** 
 (.015) (.014) (.010) (.026) (.018) (.040) 
intraday FE -.054*** -.060*** -.028*** -.067*** -.043*** -.141*** 
 (.012) (.012) (.008) (.021) (.014) (.035) 
       

Panel B: ܴܲݔܲܫܥܧ	 ∈ ሼ2ܲܫܥܧܴܲܯ,1ܲܫܥܧܴܲܯ,ܲܫܥܧܴܲܯሽ 
 013.- **009.- **014.- 003.- *006.- *007.- ܲܫܥܧܴܲܯ
 (.004) (.004) (.002) (.006) (.004) (.011) 
 *057.- **030.- ***051.- *013.- **027.- **024.- 1ܲܫܥܧܴܲܯ
 (.012) (.011) (.007) (.020) (.013) (.034) 
 ***096.- ***037.- ***067.- *014.- ***039.- ***043.- 2ܲܫܥܧܴܲܯ
 (.012) (.011) (.008) (.021) (.014) (.035) 
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Table 9. Robustness: alternative variables of interest 
The table reports the ߚଵ coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ 2௧ܲܫܥܧଵܴܲߚ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following three variables: price impacts (ܴܲܲܯܫ), effective spreads (ܲܵܧ) and realized 
spreads (ܴܵܲ). Each variable is computed as equally-weighted (ܹܧ_) or volume-weighted scaled by the 
corresponding midquote (ܸܹܲ_); ܴܲ2ܲܫܥܧ is a dummy variable that captures periods when total precipitation in the 
Chicago-New York corridor exceeds one standard deviation; and ܸܺܫ is the volatility index. All variables are 
standardized and as such the regression models control for asset fixed effects, and the standard errors (in parentheses) 
are double-clustered along the asset and time dimensions. The data are from the 2011-2012 period. We examine four 
groups of assets: (i) 5 ETFs in the small sample, (ii) 100 ETFs in the large sample, and (iii/iv) terciles of ETFs for 
which the tick size is the most (least) binding. Asterisks ***, ** and * denote statistical significance at the 1%, 5% 
and 10% levels. 

ܲܯܫܲ_ܹܸܲ ܲܯܫܲ_ܹܧ  ܲܵܧ_ܹܧ VWܲ_ܹܧ ܲܵܧ_ܴܵܲ ܸܹܲ_ܴܵܲ
small sample -.071*** -.120** -.093*** -.110*** .021 -.025 
 (.015) (.050) (.019) (.017) (.047) (.028) 
large sample -.064*** -.059*** -.089*** -.067*** -.008 -.032*** 
 (.018) (.014) (.021) (.015) (.012) (.010) 
most constr. -.079*** -.069*** -.086*** -.035*** .030* -.005 
 (.026) (.020) (.020) (.010) (.018) (.008) 
least constr. -.046*** -.047*** -.105*** -.109*** -.067*** -.077*** 
 (.014) (.011) (.030) (.027) (.026) (.022) 
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Table 10. Quoted spread and inside depth 
The table reports the ߚଵ coefficient estimates from the following panel regression: 

௜௧ܴܣܸܲܧܦ ൌ ଴ߙ ൅ 2௧ܲܫܥܧଵܴܲߚ ൅ ௧ܺܫଶܸߚ ൅  ,௜௧ߝ
where ܴܣܸܲܧܦ௜௧ is one of the following four variables (NBBO spread or NBBO inside depth) in asset ݅ during a 15-
minute interval 2ܲܫܥܧܴܲ ;ݐ is a dummy variable that captures periods when total precipitation in the Chicago-New 
York corridor exceeds one standard deviation; and ܸܺܫ is the volatility index. All variables are standardized and as 
such the regression models control for asset fixed effects, and the standard errors (in parentheses) are double-clustered 
along the asset and time dimensions. The data are from the 2011-2012 period. We examine four groups of assets: (i) 
5 ETFs in the small sample, (ii) 100 ETFs in the large sample, and (iii/iv) terciles of ETFs for which the tick size is 
the most (least) binding. Asterisks ***, ** and * denote statistical significance at the 1%, 5% and 10% levels. 

 ܳܵܲ ܪܶܲܧܦ
small sample -.009 -.004 
 (.039) (.023) 
large sample -.065*** .014 
 (.020) (.029) 
most constr. -.026** .118*** 
 (.012) (.045) 
least constr. -.105*** -.013 
 (.034) (.034) 
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Figure 1. Microwave network paths 
The figure maps tower locations of three microwave networks (blue, yellow and purple icons) obtained from the 
Federal Communications Commission. There are more than three microwave networks between Chicago and New 
York during our sample period; however, we plot only three to avoid clutter. The remaining networks follow very 
similar paths. The red markers indicate locations of the CME’s data center in Aurora, IL (marker A); the NYSE data 
center in Mahwah, NJ (marker M); NASDAQ data center in Carteret, NJ (marker C); BATS data center in 
Weehawken, NJ (marker W); and Direct Edge data center in Secaucus, NJ (marker S). 
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Figure 2. Locations of microwave networks and weather stations 
The figure maps the weather stations (green icons) located near the microwave network paths. Station data are obtained 
from the National Oceanic and Atmospheric Administration. The red markers indicate locations of the CME’s data 
center in Aurora, IL (marker A); the NYSE data center in Mahwah, NJ (marker M); NASDAQ data center in Carteret, 
NJ (marker C); BATS data center in Weehawken, NJ (marker W); and Direct Edge data center in Secaucus, NJ (marker 
S). 
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Figure 3. A typical weather front 
As a weather front moves over the microwave paths, it disrupts data transmission forcing trading firms to fall back on 
the fiber-optic cable. 
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Figure 4. Price impacts 
The figure reports price impacts computed as the signed scaled difference between a midquote at a certain time after 
the trade and the midquote at the time of the trade: ܴܲܯܫ ௧ܲ ൌ ௧൫݉݅݀௧ାఊݍ െ ݉݅݀௧൯ ݉݅݀௧⁄ , where ݍ௧ is the trade 
direction indicator, ݉݅݀௧ is the midquote computed as ሺܱܰܤܤ	݇ݏܣ௧ ൅ ௧ሻ݀݅ܤ	ܱܤܤܰ 2⁄ , and ߛ indicates the time 
elapsed since the trade, with ߛ ∈ ሼ1ݏ, ,ݏ5 ,ݏ15 ,ݏ30  .ሽݏ60
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Figure 5. Interaction between futures and equities (S&P 500 index) 
The figure contains the results from two tests. The first test counts the average number of ETF trades following a 
futures trade at ݐ଴ (green bars), and the second test counts the average number of futures trades following an ETF trade 
at ݐ଴ (black bars). In the first (second) test, we focus on the standalone ݐ଴ futures (ETF) trades – those not preceded 
by another futures (ETF) trade in the previous 100 milliseconds. For illustration purposes, we demean the trade counts. 
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Figure 6. Intraday patterns 
The figure reports intraday patterns for ܴܲܲܫܥܧ (in mm average per intraday period, left axis), ܴܲ1ܲܫܥܧ and 
 scaled by 10000 for display) ܲܵܧ and ,(both in number of occasions per intraday period, right axis) 2ܲܫܥܧܴܲ
purposes, right axis). 
 
  

0

50

100

150

200

250

300

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

PRECIP PRECIP1 PRECIP2 ESP



50 
 

Appendix to “Every cloud has a silver lining:  
Fast trading, microwave connectivity and trading costs” by A. Shkilko and K. Sokolov 

 
A1. Price discovery via trades and quotes 

To examine price discovery via trades and quotes, we use the methodology described in Hasbrouck 

(1991 a,b) to decompose the efficient price variance into the trade-related and trade-unrelated components. 

We begin with an assumption that the observed midquotes ݌௧ follow a random walk with two components: 

௧݌ ൌ ݉௧ ൅  ,௧ݏ

where ݉௧ is the efficient price (the expectation of price conditioned on all available information at time ݐ), 

and ݏ௧ is a deviation of the price from the efficient price. We then estimate the VAR with ten lags as follows: 

௧ݎ ൌ ܽଵݎ௧ିଵ ൅ ܽଶݎ௧ିଶ ൅ ⋯൅ ܾ଴ݍ௧ ൅	ܾଵݍ௧ିଵ ൅ ܾଶݍ௧ିଶ ൅ ⋯	൅	ݒ௥,௧ 

௧ݍ ൌ ܿଵݎ௧ିଵ ൅ ܿଶݎ௧ିଶ ൅ ⋯൅ ݀ଵݍ௧ିଵ ൅ ݀ଶݍ௧ିଶ ൅ ⋯	൅	ݒ௤,௧, 

where ݎ௧ is the difference in log-midquotes, and ݍ௧ is a vector of three trade-related variables, including a 

trade direction indicator, signed volume and signed square root of volume. The VAR is then converted into 

the VMA model: 

௧ݎ ൌ ܽଵ
௥,௧ିଵݒ∗ ൅ ܽଶ

௥,௧ିଶݒ∗ ൅ ⋯൅ ܾ଴
௤,௧ݒ∗ ൅ ܾଵ

௤,௧ିଵݒ∗ ൅ ܾଶ
௤,௧ିଶݒ∗ ൅ ⋯ 

௧ݍ ൌ ܿଵ
௥,௧ିଵݒ∗ ൅ ܿଶ

௥,௧ିଶݒ∗ ൅ ⋯൅ ݀ଵ
௤,௧ିଵݒ∗ ൅ ݀ଶ

௤,௧ିଶݒ∗ ൅ ⋯ , 

and the total variance of the random walk component is given by: 

௪ଶߪ ൌ ሺ1 ൅ ∑ ܽ௜
∗ஶ

௜ୀଵ ሻଶߪ௥ଶ ൅ ሺ∑ ܾ௜
∗ஶ

௜ୀ଴ ሻΩሺ∑ ܾ௜
∗′ஶ

௜ୀ଴ ሻ,	

where the first term corresponds to the trade-unrelated component of the efficient price innovation, and the 

second term corresponds to the trade-related component of this innovation. The model is estimated in event 

time, with ݐs indexing every new midquote. 

A2. Information share estimation 

To compute information shares using the methodology in Hasbrouck (1995), we first 

estimate the following vector error correction model (VECM) for each futures-ETF pair: 

Δ݌௙,௧ ൌ ௙,௧ିଵ݌ଵΔߙ ൅ ⋯൅ ௙,௧ି௞݌௞Δߙ ൅ ௘,௧ିଵ݌଴Δߚ ൅ ⋯൅ ௘,௧ି௞݌௞Δߚ ൅ ݃ଵ൫݌௙,௧ିଵ െ ௘,௧ିଵ݌ െ ൯ߤ ൅ ௙,௧ݑ
Δ݌௘,௧ ൌ ௙,௧ିଵ݌ଵΔߛ ൅ ⋯൅ ௙,௧ି௞݌௞Δߛ ൅ ௘,௧ିଵ݌଴Δߜ ൅ ⋯൅ ௘,௧ି௞݌௞Δߜ ൅ ݃ଶ൫݌௙,௧ିଵ െ ௘,௧ିଵ݌ െ ൯ߤ ൅ ,௘,௧ݑ
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where Δ݌௙,௧ (Δ݌௘,௧) is the difference between the current and lagged prices of the futures (ETF), 

and ߤ is the mean difference between the price of the futures and the ETF. 

In the second step, we obtain the VMA representation of the above model: 

Δ݌௙,௧ ൌ ܽ଴ݑ௙,௧ ൅ ⋯൅ ܽ௞ݑ௙,௧ି௞ ൅ ܾ଴ݑ௘,௧ ൅ ⋯൅ ܾ௞ݑ௘,௧ି௞
Δ݌௘,௧ ൌ ܿ଴ݑ௙,௧ ൅ ⋯൅ ܿ௞ݑ௙,௧ି௞ ൅ ݀଴ݑ௘,௧ ൅ ⋯൅ ݀௞ݑ௘,௧ି௞

 

and add the coefficients ܣ ൌ ∑ ܽ௜
௞
଴  and	ܤ ൌ ∑ ܾ௜.

௞
଴  Next we obtain the covariance matrix of the 

residuals: 

Ω ൌ ቈ
௙ߪ
ଶ ௘௙ߪ

௘௙ߪ ௘ଶߪ
቉, 

and finally, the information share (IS) of the futures market is calculated as:  

ܫ ௙ܵ ൌ
஺మఙ೑

మ

ఙೈ
మ , where ߪௐ

ଶ ൌ ቂܣ
ܤ
ቃ
ᇱ
ቈ
௙ߪ
ଶ ௘௙ߪ

௘௙ߪ ௘ଶߪ
቉ ቂܣ
ܤ
ቃ. 

Since some price innovations happen in both markets within the same millisecond, ߪ௘௙ ് 0. 

To address this, we follow Hasbrouck (1995) and orthogonalize Ω. Orthogonalization maximises 

(minimises) the variance of the futures market and gives the upper (lower) bound of the true 

variance. 

To confirm IS results, we use the panel information share (PIS) methodology developed by 

Westerlund, Reese and Narayan (2014). The key difference between IS and PIS is that PIS relies 

on the common factor model instead of the VECM. Specifically, for each of the two markets we 

estimate the unobserved factors and loadings of the following model: 

Δ݌௜,௧ ൌ ௜ߣ ௧݂ ൅  ,௜,௧ݑ

where ௧݂ is the common price innovation component, and ߣ௜ is the market-specific loading. 

Following Pesaran (2006), we estimate factors መ݂௧ ൌ
∑ ୼௣೔,೟
ಿ
೔సభ

ே
, loadings ߣመ௜ ൌ

∑ ୼௣೔,೟௙መ೟
೅
೟సమ

∑ ௙መ೟
మ೅

೟సమ
 and obtain 

the cumulative residuals ෡ܷ௜,௧ ൌ ∑ ො௜,௡௧ݑ
௡ୀଶ . Then panel information share is computed as: 

෢ܵܫܲ ௜ ൌ
ఒ෡೔
మఙෝആమఙෝೆ,೔

షమ

∑ ఒ෡೔
మಿ

೙సభ ఙෝആ
మఙෝೆ,೙

షమ , 

where ߪොఎଶ ൌ
∑ ௙መ೟

మ೅
೟సమ

்
 and ߪො௎,௜

ଶ ൌ
∑ ௎෡೔,೟
೅
೟సమ

்
. 


