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Abstract

It is conventional wisdom that transparency in cartels� monitoring of competitors�

prices, sales, and pro�ts� facilitates collusion. However, in several recent cases cartels

have instead gone out of their way to preserve the privacy of their participants�actions

and outcomes. Towards explaining this behavior, we show that cartels can sometimes

sustain higher pro�ts when actions and outcomes are only observed privately. We pro-

vide conditions under which maintaining privacy is optimal for cartels that follow the

home-market principle of encouraging �rms to act as local monopolies while refrain-

ing from competing in each other�s markets. On the other hand, we also show that

transparency is always optimal when �rms�pro�t functions satisfy a certain concav-

ity condition that holds in linear Bertrand and Cournot competition. We thus give a

uni�ed theory of both why transparency usually seems to facilitate collusion and why

cartels sometimes bene�t from maintaining privacy.

�For helpful comments, we thank Daron Acemoglu, Nikhil Agarwal, Yu Awaya, Kyle Bagwell, Glenn
Ellison, Vijay Krishna, Kevin Li, Markus Möbius, Juan Ortner, Andy Skrzypacz, Juuso Toikka, Glen Weyl,
Mike Whinston, and participants in several seminars.



1 Introduction

In the half century since the seminal paper of Stigler (1964), it has become conventional

wisdom that transparency in cartels� monitoring of competitors�prices, sales, and pro�ts�

facilitates collusion. As Whinston (2006, p. 40) puts it in his monograph on antitrust eco-

nomics, �Lesser observability, including more noisy signals of price cuts, makes sustaining

a given supracompetitive price harder.�This idea is ubiquitous in textbooks on microeco-

nomics (�Cartel agreements are easier to enforce if detecting violations is easier�� Carlton

and Perlo¤, 1995, p. 136) and antitrust law (�[To sustain collusion,] �rms must be able to

observe and compare each others�prices�� Areeda and Kaplow, 1997, p. 254). It has also

been successfully applied in several well-known empirical studies, such as Albaek, Møllgaard,

and Overgaard�s (1997) work on the Danish ready-mixed concrete industry and Genesove

and Mullin�s (2001) study of the pre-war U.S. sugar industry.

There are also, however, various pieces of evidence which suggest that the conventional

wisdom may not tell the whole story. Most strikingly, several recent cartels uncovered by the

European Commission seem to have gone out of their way to limit transparency by sharing

only coarse, industry-wide data, rather than the full vector of �rm-level data. Harrington

(2006) reports that, in the isostatic graphite cartel, this was achieved by passing around a cal-

culator where each �rm secretly entered its own sales volume, so that at the end only the sum

of the reported sales was observable; �rms could thus compute their own market shares, but

not their competitors�. Similarly, participants in the plasterboard, copper plumbing tubes,

and low density polyethylene cartels reported their individual data to a trusted intermediary

(an industry group in the plasterboard case; a statistical bureau in copper plumbing tubes;

a consulting �rm in low density polyethylene), who then returned only aggregate statistics

to the �rms.1 This behavior is a puzzle for the view that transparency facilitates collusion:

as Harrington writes, �It is unclear why �rms sought to maintain privacy of their market

shares and to what extent e¤ective enforcement could be achieved without market shares

being commonly known among the cartel members,�(p. 54).

There are also theoretical reasons why cartels might strive to maintain privacy rather than

1Furthermore, all of these cases concern hard-core cartels that were clearly engaged in illegal activities,
so this strategy of coarsening information cannot easily be explained as an e¤ort to comply with antitrust
laws. For the details of these and other cases, see Harrington (2006) and Marshall and Marx (2012).
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transparency. It is a familiar idea in economics that giving agents too much information can

hurt their incentives to cooperate by giving them new ways to cheat: Hirshleifer (1971) is a

classic reference. A standard example concerns a one-shot �duopoly�game, where each of

two sellers must bring to a park a cart full of either ice cream or umbrellas. Ice cream is in

demand on sunny days and umbrellas on rainy days, and if both sellers bring the same good

they sell at a reduced price. In the absence of a weatherman, it is an equilibrium for one

seller to bring ice cream, the other to bring umbrellas, and each to receive half monopoly

pro�ts in expectation. But if a weatherman tells the sellers the weather before they pack

their carts, they both bring the in-demand good and split the reduced pro�ts. Thus, in this

simple example, transparency about the weather (though not transparency about the �rms�

actions or outcomes) actually hinders collusion.2

In this paper, we make a �rst attempt at investigating when the conventional wisdom

that transparency facilitates collusion holds, and when on the other hand cartel participants

can bene�t from maintaining the privacy of their prices, sales, and pro�ts.

The core of our analysis concerns a setting where the global market is segmented by

geographic or product characteristics, and each �rm has a cost advantage in its home market.

In this setting, the plan of action that maximizes cartel pro�ts has each �rm price optimally

in its home market and refrain from entering its competitors�home markets. This situation

is typical in many industries (though it is perhaps less well-studied in theoretical models

of collusion). For example, in the choline chloride cartel, which consisted of �rms based

in Europe (Akzo Nobel from the Netherlands; BASF from Germany; UCB from Belgium)

and North America (Bio Products and DuCoa from the US; Chinook from Canada), the

agreement was that the European �rms would exit the North American market while the

North American �rms would exit Europe. Harrington refers to this plan as the �home-market

principle,�and writes, �A common principle to a number of cartels was the �home-market

principle,� whereby cartel members would reduce supply in each other�s home markets,�

(Harrington, 2006, p. 34).3

2This story was told to us by Faruk Gul. Gul attributes it to Howard Rai¤a, who in turn apparently
attributed it to Hirshleifer.

3Harrington documents the home-market principle in a wide range of industrial cartels, including the
isostatic graphite and copper plumbing tubes cartels discussed above. See Section 3 for further discussion.
Another example is perhaps given by the Texas school milk cartel studied by Pesendorfer (2000). Pesendorfer
resports that this cartel operated by dividing the market based on cost advantages and refraining from entry
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Our �rst result provides conditions under which, when demand and cost conditions change

over time (so the environment is given by a stochastic game), the home-market principle is

easier to sustain when �rms observe their competitors�prices and sales less precisely (in the

sense of Blackwell, 1951). The idea is as follows: When the cartel divides the market, each

�rm may not need to know the demand state in the �foreign�markets to price optimally in

its home market. However, revealing informative past behavior in the foreign markets (which

amounts to revealing information about the demand state in the foreign markets) does help

the �rm tailor potential deviations� in which it violates the collusive agreement by entering

the foreign markets� to the current conditions in these markets. Sustaining the home-market

principle therefore requires more patience when �rms observe their competitors�actions more

precisely. The conventional wisdom that transparency facilitates collusion thus fails badly

in stochastic environments where the cartel tries to segment the market.

We also provide some suggestive narrative evidence that our results can help explain some

cartels�e¤orts to maintain the privacy of their members��rm-level data. In particular, we

discuss several cases drawn from the European Commission decisions analyzed by Harrington

(2006) and Marshall and Marx (2012), and show that a number of cartels relied on the

combination of the home-market principle and coarse information-exchange suggested by

our model.

Finally, we present two additional sets of theoretical results aimed at clarifying the bound-

aries of our core model and mechanism. We �rst investigate whether maintaining privacy

can ever be required for sustaining collusion in a standard repeated game setting, with no

payo¤-relevant state variables. In this canonical setting, it is much less clear whether trans-

parency can ever hinder collusion: for example, Kandori (1992) has shown that, when one

restricts attention to public equilibria of repeated games with imperfect public monitoring,

improved observability can only expand the equilibrium payo¤ set, consistent with the con-

ventional wisdom. Nonetheless, we show that maintaining privacy can again be essential for

supporting collusion, even in the simplest entry deterrence game.

Speci�cally, we again consider the home-market principle, but now focus on the par-

ticular market structure where one home �rm (acting as an incumbent according to the

home-market principle) faces the potential entry of a foreign �rm. Costs and demand are

in others�home areas, while occasionally swapping contracts among �rms in response to changing costs.
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stationary, so there is no exogenous source of time variation. We model this situation as a

canonical repeated entry-deterrence game, and show that in this game �rms cannot deter

ine¢ cient entry into their home markets when they perfectly observe each other�s actions,

but that entry can be deterred if the �rms observe only their own actions and pro�ts, while

a mediator (like the consultant or industry group in the examples above) collects this infor-

mation from the �rms and returns only the coarsest aggregate information required to detect

deviations. The intuition is that� despite the stationarity of the physical environment� a

collusive equilibrium must sometimes have a non-stationary path of play, where some histo-

ries represent more tempting times for a �rm to deviate than others. In these cases, revealing

too many details of the history can prompt deviations.

Second, we ask whether there are any broad classes of markets in which maintaining

privacy cannot help sustain collusion. Our last set of results identi�es one such class: for

markets in which, (1) �rms�pro�ts are jointly concave in their own and their competitors�

actions, (2) each �rm�s maximum instantaneous deviation gain is jointly convex in actions,

and (3) a �rm that deviates can be held to its minmax payo¤, we show that no information

structure can sustain higher industry pro�ts than perfect monitoring (i.e., full transparency).

For example, these conditions are satis�ed by Cournot or di¤erentiated-product Bertrand

competition with linear demand curves. This result follows because� as we show� these con-

ditions are su¢ cient for the best collusive equilibrium to have a deterministic path of play

(roughly, if pro�ts are concave and deviation gains are convex, stochastic arrangements de-

crease the gain from collusion and increase the temptation to deviate), and in a deterministic

equilibrium transparency does not give potential deviators any actionable information.

Putting all of our results together, we �nd that transparency about actions and/or out-

comes can hinder collusion, both in stochastic environments where �rms follow the home-

market principle and in repeated entry-deterrence games, but that on the other hand the

conventional wisdom that transparency helps collusion is borne out in repeated games with

su¢ ciently well-behaved stage games. This gives a possible theory both for why the conven-

tional wisdom that transparency facilitates collusion has proved to be so important and for

why it occasionally seems to be contradicted by cartel practices.

Finally, we note a broader implication of our analysis for the problem of managing long-

run relationships. In a �smooth�relationship� one with a deterministic, �cooperative�equi-
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librium path of play� perfect monitoring of actions is the best information structure, because

in a smooth relationship all the information structure needs to do is detect deviations. So, if

a smooth relationship is optimal (which we show is the case for concave games), then perfect

monitoring is optimal. However, in a �rocky�relationship� one where actions, and in par-

ticular the level of cooperation, �uctuate randomly� perfect monitoring may be suboptimal,

as there is now a bene�t from keeping players in the dark regarding the current state of

the relationship. Thus, if a rocky relationship is optimal, then maintaining privacy can be

valuable.4

The reader may wonder how, �fty years after Stigler�s paper, we can describe our paper as

a ��rst attempt�at investigating whether transparency facilitates collusion. The answer is

that the overwhelming majority of the literature on collusion either assumes that monitoring

of actions is perfect (Friedman, 1971; Abreu, 1986; Rotemberg and Saloner, 1986) or assumes

that monitoring is imperfect but restricts attention to equilibria where �rms condition their

actions only on publicly available information (Green and Porter, 1984; Abreu, Pearce, and

Stacchetti, 1986; Athey and Bagwell, 2001). In the latter case, as mentioned above, Kandori

(1992) shows that improved observability can only help collusion: the intuition is that, as

signals become more precise, the �rms always have the option of simply agreeing to condition

their play on a �noised up�version of the signals.5 However, in the more realistic case where

�rms receive private signals, this intuition break down completely, as there is no way to

force a �rm to condition only on a noised up version of its private information. Thus, to

understand whether improved observability helps or hinders collusion, one must consider

repeated games with private monitoring, such as Stigler�s original secret price-cutting game.

Among the relatively few papers that have studied collusion with private monitoring,

several focus on the �folk theorem�question of providing conditions for �rst-best collusion

4A recent paper by Bernheim and Madsen (2016) argues that relationships that are in this sense rocky are
the norm in industrial cartels. Among the cartels in which they report signi�cant discord are those in lysine,
nucleotides, and citric acid. Restricting attention to stationary equilibria, Bernheim and Madsen provide a
complementary model of rocky relationships in cartels, where monitoring is perfect but the presence of �xed
costs of operating in rivals�home markets leads to an equilibrium in mixed strategies.

5The result of Abreu, Milgrom, and Pearce (1991) that delaying the arrival of information can reduce the
scope for deviations and increase e¢ ciency involves the consideration of private strategies in a repeated game
with imperfect public monitoring. Like our results, this �nding is based on the idea that pooling information
sets can be good for incentives. But there are also many di¤erences between the results. For example, their
result restricts attention to strongly symmetric equilibria, and their model and result are unrelated to the
home-market principle.
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to be sustainable when the �rms are su¢ ciently patient (Aoyagi, 2007; Hörner and Jamison,

2007). Another set of papers asks when letting �rms communicate is necessary or su¢ cient

for sustaining collusion with private monitoring (Athey and Bagwell, 2001; Aoyagi, 2002;

Harrington and Skrzypacz, 2011; Rahman, 2014; Awaya and Krishna, 2015). In particular,

Rahman and Awaya and Krishna show that communication may be necessary for sustaining

collusion if the quality of monitoring is su¢ ciently poor. This occurs because, in their

models, communication can essentially be used to improve the precision of monitoring, as in

the earlier papers of Compte (1998) and Kandori and Matsushima (1998). However, none of

these papers address our question of whether monitoring can be too precise, in that worse

observability can actually help sustain collusion.6 ;7

A companion paper (Sugaya and Wolitzky, 2016) contains an example where players in a

repeated game bene�t from imperfections in the monitoring technology.8 The example in that

paper is somewhat similar to the entry deterrence example in the current paper; however,

it is substantially more complicated and does not have a clear connection to collusion or

entry deterrence.9 Moreover, the main result of the companion paper is instead a su¢ cient

condition for transparency (i.e., perfect monitoring) to be optimal, like Proposition 7 of the

current paper. The result is however completely di¤erent, as it applies to all two-player

games for su¢ ciently high discount factors with a mediator, rather than to �concave� n-

player games at any discount factor with or without a mediator.

The remainder of the paper is organized as follows. Section 2 presents our main result:

transparency hinders collusion in stochastic games that satisfy the home-market principle.

Section 3 discusses several real-world cartels through the lens of this model. Sections 4 and

5 contain our additional theoretical results: Section 4 shows that transparency also hinders

6Athey and Bagwell (2001) do present a numerical example where �rms bene�t from limiting communi-
cation about payo¤-relevant state variables.

7Another feature of Harrington and Skrzypacz (2011) is that they focus on equilibria that are essentially
stationary (and hence deterministic), with incentives provided by transfers among �rms. Goldlücke and
Kranz (2012) show that, within the class of perfect public equilibria, restricting attention to stationary
equilibria is without loss of generality when transfer are available. This result would not apply to our model
even if we allowed for transfers (we do not), as we do not restrict attention to public equilibria.

8See Kandori (1991a), Sekiguchi (2002), Mailath, Matthews and Sekiguchi (2002), and Miyahara and
Sekiguchi (2013) for examples where players bene�t from imperfections in monitoring in �nitely repeated
games, due to a somewhat di¤erent mechanism.

9On the other hand, the example in the companion paper does not require the players to have access to
a mediator.
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collusion in the repeated entry-deterrence game; and Section 5 shows that transparency

always helps support collusion if the underlying stage game satis�es the concavity/convexity

conditions described above. Section 6 concludes.

2 Transparency can Hinder Collusion in Stochastic Games:

The Home-Market Principle

We begin with our main explanation for the e¤orts of some cartels to preserve the privacy

of their participants�actions: under the home-market principle, collusion is easier to sustain

when �rms have less precise information about their competitors� prices, costs, or sales.

We also provide a parameterized example in which the optimal degree of transparency is

increasing in the discount factor, so that maintaining privacy is most valuable when the

�rms are just patient enough to sustain collusion.

2.1 Model

There are n �rms competing in n distinct markets. The markets can represent niches in

geographic or product attribute space, or can correspond to n large consumers who comprise

the demand side of the market. In every period t = 0; 1; 2; : : :, each �rm i can produce in

market j at constant marginal cost cji � 0, where the vector of cost states c =
�
cji
�
2
�
Cji
�
=

C can change over time as described below. We will assume that cii � cij for all i 6= j and all

c 2 C: that is, �rm i has a cost advantage in its corresponding �home�market, market i.10

In every period t, �rm i chooses a price vector
�
pji
�n
j=1

2 (R+ [ f1g)n, where pji is

�rm i�s price in market j. As we will see, setting pji = 1 corresponds to �staying out�of

market j, or equivalently setting a price so high that no consumer will ever purchase. Let

pj = mini p
j
i be the lowest price in market j. Demand in market j is given by a function

D
�
pj; sj

�
, where sj 2 Sj is the current demand state in market j and Sj is the set of possible

market j demand states. Let s 2 S = (Sj)
n
j=1 denote a vector of market demand states.

Assume that the function D (pj; sj) is continuous, non-negative, and strictly increasing in sj,

10For a recent model of dynamic price competition with a similar distinction between home and foreign
markets, see Bernheim and Madsen (2016).
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with D (pj; sj) pj bounded and D (1; sj) = 0.11 The lowest-price �rms in market j supply

all D
�
pj; sj

�
units at price pj, with the market allocated to the home �rm in case of a

tie (or allocated equally among the lowest-price �rms if the home �rm does not have the

lowest price).12 Denote the vector of sales at price vector p and demand state vector s by

q (p; s) =
�
qji (p

j; sj)
�
. Finally, assume that the vector (ct+1; st) 2 C � S of period t + 1

cost and period t demand states follows a Markov process, with Markov transition function

M : C � S ! �(C � S).

At the end of period t, �rms observe their own period t prices, period t sales, and period

t+1 costs (next period costs), and can also receive signals about the entire vector of period

t prices, period t demand states, and period t+ 1 costs (see below about the initial period).

Speci�cally, there is a �nite set of signals Z = (Zi) and a family of conditional probability

distributions (or �information structure�) on Z, � (zjp; c0; s), such that signal z is realized

with probability � (zjp; c0; s) when p is the vector of prices and (c0; s) is the vector of next

period cost and current demand states. When signal z is realized, �rm i observes only its ith

component, zi. Letting �i denote the marginal distribution over zi, we impose the following

key assumption, which says that a �rm can distinguish between situations in which another

�rm enters its home market and situations in which this does not occur:

Assumption 1 Fix an arbitrary market j and price vectors p and p̂ such that pji =1 for all

i 6= j and p̂ji 6=1 for some i 6= j. Then, for every zj 2 Zj, if �j (zjjp; c0; s) > 0 for some

(c0; s) 2 C � S then �j (zjjp̂; c0; s) = 0 for all (c0; s) 2 C � S; and if �j (zjjp̂; c0; s) > 0

for some (c0; s) 2 C � S then �j (zjjp; c0; s) = 0 for all (c0; s) 2 C � S.

In e¤ect, Assumption 1 says that �rm i can behave so passively in market j that with

probability 1 �rm j cannot misinterpret its behavior as an attempt to steal the market.

Another interpretation is that �rm i can certify to �rm j that it has not tried to sell in market

j. As we discuss further below, we believe that this assumption is reasonably consistent

with applications of the home-market principle in practice, where market segmentation by

geography or by large consumers greatly alleviates the di¢ culty of monitoring entry in one�s

home market. For example, Harrington writes that �An attraction to a customer allocation

11We follow the convention 0 � 1 = 0.
12This tie-breaking rule would emerge endogenously in Bertrand competition with heterogeneous costs if

consumers could choose from whom to purchase.
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scheme is that monitoring is relatively easy since, if a �rm was to supply a particular buyer,

it would surely know whether that buyer ended up buying from someone else,� (2006, p.

46).

We also assume that signals have a product structure, which allows every signal zi to be

decomposed into signals xkj;i of individual prices (�i�s signal of j�s price in market k�) and a

signal yi of the joint vector of current sales and next period cost. This means that signals

of some prices are not directly informative about either other prices or the demand and cost

states� though of course in equilibrium �rms will draw inferences about demand and costs

based on price signals.

Assumption 2 There exist �nite sets Xk
j =

�
Xk
j;i

�
and Y = (Yi) and families of conditional

probability distributions �X
k
j
�
xkj jpkj

�
and �Y (yjp; c0; s) such that

1. Z =
�Q

j;kX
�
� Y ,

2. � ((x; y) jp; c0; s) =
�Q

j;k �
Xk
j
�
xkj jpkj

��
�Y (yjp; c0; s), and

3. �Y (yjp; c0; s) = �Y (yjp̂; c0; s) whenever q (p; s) = q (p̂; s).

Finally, at the beginning of period 0, each �rm i knows its own cost ci;0. We assume that

the distribution of the current state pro�le (si;0)i is determined by (ci;0)i. (For simplicity,

we assume that �rms do not observe additional signals in the initial period, except for

Assumption 4 below.)

The �rms have a common discount factor � < 1. The solution concept is sequential

equilibrium.

2.2 Conditions under which Transparency Hinders Collusion

Our �rst result provides conditions under which transparency weakly hinders collusion, in

that �rms must be more patient in order to sustain the �rst-best collusive scheme under

a more informative information structure. In addition to the maintained Assumptions 1

and 2, the �rst condition is that demand transitions at the level of an individual �rm or

market depend only on that �rm/market�s current demand.13 The economic content of this

13Note that this assumption does not imply that state transitions are independent across �rms or markets.
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assumption is that, if a �rm knows both its own costs and the demand state in its home

market, it does not require information about costs and demand in other markets in order

to price optimally in its own market.

Similarly, we assume that the transition of �rm i�s future cost in market j depends only

on �rm i�s current cost in market j.

Assumption 3 For every market j there is a function MS
j : Sj ! �(Sj) such that

MS
j (s

j) =M (c0; s) jSj for all (c0; s) 2 C �S, where M (c0; s) jSj denotes the projection

of M (c0; s) onto Sj.

Moreover, for each �rm i and market j, there is a function M j;C
i : Cji ! �

�
Cji
�
such that

M j;C
i (cj) =M (c0; s) jCji for all (c

0; s) 2 C�S, whereM (c0; s) jCji denotes the projection

of M (c0; s) onto Cji .

If �rm i were a monopoly in market i and observed the period t vector of demand

states st and next period cost vector ct+1, it would set price pii in period t + 1 to maxi-

mize E
�
D
�
pii; s

i
t+1

� �
pii � cii;t+1

�
jct+1; st

�
, which equals E

�
D
�
pii; s

i
t+1

� �
pii � cii;t+1

�
jcii;t+1; sit

�
by Assumption 3. Let pmi

�
cii;t+1; s

i
t

�
be a solution to this problem. Let pmi (ci;0;; ;) be a

maximizer of E
�
D (pii; s

i
0)
�
pii � cii;0

�
jci;0
�
.

Due to the cost advantage of producing in one�s home market, there is essentially a unique

joint plan of action that sustains �rst-best expected industry pro�ts. Borrowing Harrington�s

terminology, we refer to this action plan as the home-market principle:

� Firms only price competitively in their home markets: in every period, pij � pmi
�
cii;t; s

i
t�1
�

for all
�
cii;t; s

i
t�1
�
2 Cii � Si. Given this, each �rm can perfectly infer the previous

demand state in its home market in every period t > 0 (by the assumption that

D
�
pi; sit�1

�
is strictly increasing in sit�1).

� In period 0, each �rm i sets price pmi (ci;1; ;) in its home market.

� In period t > 0, each �rm i sets price pmi
�
cii;t; s

i
t�1
�
in its home market.

The second and �nal condition is that costs are observable. This condition lets �rms

punish a deviator as harshly as possible by pricing at its cost in its home. (We also present

a version of our result without this assumption below.)
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Assumption 4 Fix each i, each c0 6= ĉ0, and each zi 2 Zi, if �i (zijp; c0; s) > 0 for some

(p; s), then �i (zijp; ĉ0; s) = 0 for all (p; s); and if �i (zijp; ĉ0; s) > 0 for some (p; s), then

�i (zijp; c0; s) = 0 for all (p; s).

Recall that an information structure �0 is (Blackwell) more informative than � for every

�rm i if for all i there exists a function fi : Zi � Zi ! [0; 1] such that
P

zi2Zi fi (zi; z
0
i) = 1

for all z0i 2 Zi and, for all zi 2 Zi, p, c0, and s,

�i (zijp; c0; s) =
X
z0i2Zi

fi (zi; z
0
i)�

0
i (z

0
ijp; c0; s) :

Proposition 1 Under Assumptions 1�4, for any information structure � there is a cuto¤

discount factor �� (�) such that the home-market principle (and thus �rst-best industry prof-

its) can be sustained in equilibrium if and only if � � �� (�); furthermore, if �0 is more

informative than � then �� (�0) � �� (�). In this sense, a more informative information

structure hinders collusion.

Proof. We show that if there is an equilibrium �0 satisfying the home-market principle with

information structure �0, then with any less informative information structure � there is an

equilibrium where �rms follow the home-market principle while always pricing at1 outside

their home markets (on path). To see this, consider the strategy pro�le � where �rms follow

the home-market principle while always pricing at 1 outside their home markets, and if

any �rm i either enters a foreign market or detects entry in its home market it sets price

pji;t = cjj;t for all j in every subsequent period t. (Note that this feasible by Assumption

4.) This strategy pro�le holds a deviator to its minmax payo¤ of 0. It is also sequentially

rational at o¤-path histories, because �rms are willing to price below cost outside their home

markets as they make no sales at these prices due to the tie-breaking rule. It thus remains

only to show that this strategy pro�le is sequentially rational at on-path histories.

By Assumption 3, �rm i�s on-path period t continuation payo¤ (i.e., its expectation at

the beginning of period t of its payo¤ starting in period t + 1) depends only on its current

cost cii;t and the previous demand state in its home market s
i
t�1, which �rm i can perfectly

infer in any equilibrium satisfying the home market principle, for any information structure.

Denote this continuation payo¤ by Vi
�
cii;t; s

i
t�1
�
. Next, denote �rm i�s maximum gain from

11



a deviation at history hti = (pi;� ; ci;0; ci;�+1; qi;� ; xi;� ; yi;� )
t�1
�=0 (qi;� is period-� quantity vector)

under strategy pro�le �0 and information structure �0 by

d�
0;�0

i

�
hti
�
=
X
j 6=i

max
pji

Pr�
0;�0
�
pji < p

j
j;tjhti

�
E�0;�0

�
D
�
pji ; s

j
t

� �
pji � c

j
i;t

�
jhti; p

j
i < p

j
j;t

�
:

As �0 is an equilibrium with information structure �0 and each �rm�s minmax payo¤ is 0,

we have �Vi
�
cii;t; s

i
t�1
�
� (1� �) d�

0;�0

i (hti) for all i, c
i
i;t, and s

i
t�1, and all histories h

t
i that

lie on path under strategy pro�le �0 with information structure �0 and are consistent with�
cii;t; s

i
t�1
�
. Denote this set of histories by H t

i

�
�0; �0; cii;t; s

i
t�1
�
. On the other hand, the strat-

egy pro�le described above is sequentially rational with � if �Vi
�
cii;t; s

i
t�1
�
� (1� �) d�;�i (hti)

for all i, cii;t, and s
i
t�1, and all histories h

t
i 2 H t

i

�
�; �; cii;t; s

i
t�1
�
, the set of on-path histories

with strategy pro�le � and information structure � consistent with
�
cii;t; s

i
t�1
�
. Hence, it suf-

�ces to show that suphti2Ht
i(�0;�0;cii;t;sit�1)

d�
0;�0

i (hti) � suphti2Ht
i(�;�;cii;t;sit�1)

d�;�i (hti) for all �rms

i and all
�
cii;t; s

i
t�1
�
2 Cii � Si.

Let �ti (�; �) be the distribution over histories h
t
i under strategy pro�le � with information

structure �. Let �tij(Xj
j )�Y

(�; �) be projection of �ti (�; �) onto
��
Xj
j;i

�n
j=1
� Y �i

�t�1
�=0
. For

any strategy pro�le �̂ satisfying the home-market principle and any information structure

�̂, d�̂;�̂i (hti) depends on h
t
i only through �rm i�s belief about the vector of cost

�
cjt
�
j
and

demand state
�
sjt�1

�
j
, as the distribution over both �rm i�s opponents� period t actions

(pj;t)j and the period t vector of demand states
�
sjt
�
j
are determined by

�
cj;t; s

j
t�1
�
j
. Under

strategy pro�le �, as all �rms price at1 outside their home markets, at any on-path history

�rm i�s beliefs about
�
cjt ; s

j
t�1
�
j
depend only on

�
cjt
�
j
, sit�1,

��
xjj;i
�n
j=1

�t�1
�=0
, and (y�i )

t�1
�=0

(by Assumption 2).14 Now, the assumption that �0 is more informative than � for i implies

that �tij(Xj
j )�Y

(�; �0) is more informative than �tij(Xj
j )�Y

(�; �) (viewing �tij(Xj
j )�Y

(�; �0) and

�tij(Xj
j )�Y

(�; �) as mappings from realizations of
�
c0;
�
(cj;�+1; s

j
� )j

�t�1
�=0

�
to distributions

over
��
Xj
j;i

�n
j=1
� Y �i

�t�1
�=0
); this may be proved by induction on t. It is immediate from

Bayes� rule that if �tij(Xj
j )�Y

(�; �0) is more informative than �tij(Xj
j )�Y

(�; �), then �rm

i�s belief about any
��
Xj
j;i

�n
j=1
� Y �i

�t�1
�=0
-measurable random variable after any observation

14Under Assumption 4, a �rm�s belief about (cj;t)j is degenerate, so we could omit this argument. We
include it to highlight that the same argument applies for Proposition 2, where Assumption 4 is dropped.
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from �tij(Xj
j )�Y

(�; �) is a convex combination of its beliefs after various observations from

�tij(Xj
j )�Y

(�; �0). Hence, �rm i�s belief about
�
cj;t; s

j
t�1
�
j
at any history hti 2 H t

i (�; �) under

strategy pro�le � with information structure � is a convex combination of its beliefs about�
cj;t; s

j
t�1
�
j
at various histories hti 2 H t

i (�; �
0) under strategy pro�le � with information

structure �0. In addition, for every realization of
�
c0;
�
(cj;�+1; s

j
� )j

�t�1
�=0

�
, realized home-

market prices and sales are the same under � and �0, so �tij(Xj
j )�Y

(�; �0) = �tij(Xj
j )�Y

(�0; �0).

As �rm i�s beliefs about
�
cj;t; s

j
t�1
�
j
under strategy pro�le � with information structure

�0 are
��
Xj
j;i

�n
j=1
� Y �i

�t�1
�=0
-measurable, this implies that �rm i�s belief about

�
cj;t; s

j
t�1
�
j

at any history hti 2 H t
i (�; �

0) under strategy pro�le � with information structure �0 is a

convex combination of its beliefs about
�
cj;t; s

j
t�1
�
j
at various histories hti 2 H t

i (�
0; �0) under

strategy pro�le �0 with information structure �0. Combining these observations, we see that

�rm i�s belief about
�
cj;t; s

j
t�1
�
j
at any history hti 2 H t

i (�; �) under strategy pro�le � with

information structure � is a convex combination of its beliefs about
�
cj;t; s

j
t�1
�
j
at various

histories hti 2 H t
i (�

0; �0) under strategy pro�le �0 with information structure �0. Hence,

suphti2Ht
i(�0;�0;cii;t;sit�1)

d�
0;�0

i (hti) � suphti2Ht
i(�;�;cii;t;sit�1)

d�;�i (hti) for all
�
cii;t; s

i
t�1
�
2 Cii � Si.

The intuition for Proposition 1 is as follows. First, a key feature of the home market

principle is that it does not require �rms to have any information about their competitors�

prices, costs, and sales to price optimally in their own markets (by Assumption 3). Second,

such information is also not required to identify deviations, as a �rm can always detect

entry into its home market (by Assumption 1). On the other hand, this information is

useful for predicting prices and demand in the foreign markets, which in turn gives a �rm

access to deviations which are better tailored to foreign market conditions� and hence are

more pro�table. Providing this information thus increases the discount factor required for

sustaining collusion.15

Of course, in reality information about competitors�prices, costs, and sales can sometimes

provide additional information about own-market conditions and can help identify violations

of market segmentation. For example, this would occur if we dropped Assumption 3, as we

do in Section 2.4. The point of Proposition 1 is simply to highlight an opposing force favoring

15The role of Assumption 2 is more subtle. Without this assumption, letting �rm i enter market j with
a �nite but uncompetitive price pji could have the advantage of obscuring information about other prices
or cost or demand states. In this case, more precise monitoring of pji could paradoxically help the �rms by
sustaining less precise monitoring of other variables.
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privacy that, in the context of a particular market application, would need to be weighed

against the well-known advantages of transparency.

We conclude this section with a comment on two of the assumptions underlying Propo-

sition 1: the assumption that costs are observable (Assumption 4) and the assumption that

�rms are willing to price below cost outside their home markets to punish deviators, so

long as they do not expect to make any sales at these unpro�table prices. Interestingly,

Proposition 1 continues to hold if we instead make the opposite assumptions, namely that

costs are completely unobservable beyond the correlation among their costs (cj)j (and in

particular cannot be inferred from information about prices or demand) and �rms never

post unpro�table prices.

To this end, we impose the following conditions:

Assumption 5 1. There exist functions MC : C ! �(C) and MS : S ! �(S) such

that M (c0; s) =MC (c0)MS (s) for all (c0; s) 2 C � S.

2. �X
k
j
�
xkj jpkj

�
= �X

k
j
�
xkj jp̂kj

�
for all signals xkj and all prices p

k
j ; p̂

k
j <1.

3. �Y (yjp; c0; s) = �Y (yjp̂; ĉ0; s) for all p; p̂; c0; ĉ0.

De�nition 1 An equilibrium is cautious if it satis�es pji � c
j
i;t for every �rm i, market j,

history hti (on or o¤ path), and price p
j
i played with positive probability at history h

t
i. (Note

that cji;t is known to �rm i at the beginning of period t even without Assumption 4, as a �rm

always observes its own period t+ 1 costs at the end of period t.)

In a cautious equilibrium, the harshest punishment for �rm i involves every �rm j pricing

at cij;t in market i. Assumption 5 ensures that �rm i does not obtain any information but

(ci;� )
t
�=0 about how the severity of this punishment evolves over the course of the game.

Proposition 2 Under Assumptions 1�3 and 5, for any information structure � there is

a cuto¤ discount factor ~� (�) such that the home-market principle can be sustained in a

cautious equilibrium if and only if � � ~� (�); furthermore, if �0 is more information than �

then ~� (�0) � ~� (�).

Proof. In the de�nition of strategy pro�le � in the proof of Proposition 1, replace the

o¤-path threat of pricing at cjj;t (in every market j 6= i and period t) with the threat of

14



pricing at cji;t. Under Assumption 3, this continuation strategy holds every �rm to its lowest

continuation payo¤ in any cautious equilibrium. Let W �;�
i (hti) denote �rm i�s continuation

payo¤ with information structure � at history hti when each of its competitors follows this

strategy from period t+1 onward. Then, arguing as in the proof of Proposition 1, the home-

market principle can be sustained in a cautious equilibrium with information structure �

if and only if �Vi
�
cii;t; s

i
t�1
�
� (1� �) d�;�i (hti) + �W

�;�
i (hti) for all i, c

i
i;t, s

i
t�1, and on-path

histories hti consistent with
�
cii;t; s

i
t�1
�
.

Now, under Assumption 5, W �;�
i (hti) depends only on

�
(ci;� )

t
�=0 ; s

i
t�1
�
. To see why, recall

that we assume cii � cij for all i 6= j and all c 2 C, and so the harshest punishment with

the causious equilibrium implies that �rm j (and at least one other �rm) charge the price

equal to the lowest marginal cost among �rms �j, and so �rm i cannot obtain the positive

pro�t from market j 6= i. Hence it su¢ ces to infer the other �rms�future costs in market

i and future demand in market i. Assumption 5 ensures only (ci;� )
t
�=0 is informative about

the former; and Assumption 2 ensures that sit�1 is su¢ cient to infer the latter. In particular,

W �;�
i (hti) does not depend on � or �.

It therefore su¢ ces to show that the maximum deviation gain d�;�i (hti) is greater under

a more informative information structure. The proof of this fact is as in Proposition 1.

2.3 An Example where Transparency Strictly Hinders Collusion

Proposition 1 shows that, under Assumptions 1�4, giving �rms more information about their

competitors�prices, costs, and sales makes sustaining �rst-best collusion weakly more di¢ -

cult. We now present a simple example� which satis�es Assumption 1�4� where collusion

is strictly more di¢ cult to sustain when �rms have perfect information than when they

observe only aggregate industry demand. Note that this variation in the information struc-

ture corresponds to the cartel examples described in the introduction (and discussed further

in Section 3). In particular, in this example transparency about �rms�actions alone� and

not necessarily also transparency about the payo¤-relevant cost and demand states� hinders

collusion.

The example is as follows:

� The number of �rms and markets n is even and � 4.
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� cii = 0 and c
j
i = c > 0 for all i 6= j.

� In each market, the period 0 demand state is sL or sH with equal probability, with

c < sL < sH . Subsequently, the period t+1 state is identical to the period t state with

probability � and switches to the other state with probability 1��, where 1=2 < � < 1.

Demand is thus positively persistent. In addition, for k odd, the demand states in

markets k and k + 1 are perfectly negatively correlated, while the demand states in

markets k and k + 1 are independent of the demand states in the other markets. In

particular, in every period exactly half of the markets are in each demand state.16

� Market demand curves are linear: D
�
pj; sj

�
= sj � pj.

� Firms observe only their own prices and sales, as well as total industry demandP
j D (p

j; sj).

Let ~sL = �sL+(1� �) sH , ~sH = (1� �) sL+�sH , and �s = (sH + sL) =2. Monopoly prices

are given by pmi (0; sL) = ~sL=2, p
m
i (0; sH) = ~sH=2, and p

m
i (;; ;) = �s=2. Finally, assume that

sL > ~sH=2 and ~sL=2 > c. Note that �rst-best industry pro�ts are given by

n

�
(1� �) �s

2

4
+ �

�
~s2L
8
+
~s2H
8

��
:

Proposition 3 Let �� (resp., ���) be the cuto¤ discount factors above which �rst-best indus-

try pro�ts can be sustained in equilibrium when �rms observe only industry demand (resp.,

observe all prices and sales). Then �� < ���. In particular, if � 2 (��; ���) then �rst-best

industry pro�ts can be sustained if �rms observe only industry demand, but not if �rms also

observe each of their competitor�s prices and sales.

The intuition is simple. Under the home-market principle, the most tempting deviation

is to set the myopically optimal prices in all markets, in a period when demand in one�s home

market was just low. The home-market principle is therefore sustainable if and only if this

deviation is deterred by the threat of reverting to zero prices in all markets. This threat is

equally e¤ective whether �rms observe only industry demand or also observe the full vector

16This extreme assumption on the correlation structure could easily be relaxed. As will become clear, all
that is really needed is that a �rm cannot determine its myopically optimal price in each market on the basis
of industry demand alone.
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of prices and quantities. However, the temptation to deviate is less when �rms observe

only industry demand. In this case, a �rm holds uniform beliefs over the demand state in

all markets other than its home market (and the market whose demand state is perfectly

negatively correlated with its home market�s). In particular, the �rm believes that in each

of these unknown markets the home �rm will price at ~sL=2 or ~sH=2 with equal probability.

Hence, its best deviation is in every unknown market to price at either ~sL=2 (winning the

market for sure) or ~sH=2 (winning the market with probability 1=2), for a total deviation

gain of

(n� 2)max
�
~sL (~sL � 2c)

4
;
~sH (~sH � 2c)

8

�
+
~sH (~sH � 2c)

4
;

where the last term is the deviation gain in the correlated market.

On the other hand, when the full vector of prices and quantities is observable, a deviator

can perfectly infer the demand state in all markets, so its deviation gain becomes

(n� 2)
�
~sL (~sL � 2c)

8
+
~sH (~sH � 2c)

8

�
+
~sH (~sH � 2c)

4
:

Clearly, the deviation gain is strictly larger when all prices and quantities are observable.

Hence, in this case �rms must be strictly more patient to sustain �rst-best industry pro�ts.

Two remarks on this example:

(1) In the example, there is no advantage to �rms�observing industry demand rather than

observing nothing beyond their own prices and sales. Why might it be bene�cial for �rms

to observe industry demand? Suppose that, unlike in the example, minmaxing a deviator

requires Nash reversion by all �rms, rather than only a single �rms. (For instance, this would

be the case if �rms have capacity constraints that lie between the monopoly and competitive

quantities, so that a single �rm can ful�ll monopoly demand in her home market but cannot

ful�ll the competitive demand in any market.) Then there is a bene�t to alerting all �rms

whenever a price cut occurs in any market. In the current setting with no aggregate demand

uncertainty, a simple way of doing this is by letting the �rms observe industry demand.

(2) Suppose �rms can also observe each other�s prices, while still observing only their

own sales and industry demand. (Note that this is the version of the model with perfect

monitoring of actions but no monitoring of the payo¤-relevant demand state). Under the
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�rst-best action plan, a �rm�s price in period t � 1 perfectly reveals her home market�s

demand state in period t� 2. Hence, a �rm contemplating a deviation in period t can infer

all markets�demand states in period t � 2. If the �rm prices at ~sL=2 in markets with low

demand at t�2 and prices at ~sH=2 in markets with high demand at t�2, it receives expected

payo¤
~sL (~sL � 2c)

8
+ �

~sH (~sH � 2c)
8

:

A �rm�s maximum deviation gain in this model is therefore

(n� 2)max
�
~sL (~sL � 2c)

4
;
~sH (~sH � 2c)

8
;
~sL (~sL � 2c)

8
+ �

~sH (~sH � 2c)
8

�
+
~sH (~sH � 2c)

4
:

As � < 1, it follows that the critical discount factor for �rst-best industry pro�ts to be

sustainable when only prices are observable lies in the interval [��; ���). Thus, for some

discount factors �rst-best pro�ts are ruled out when all �rms�prices are observable, even if

their sales remain unknown.

2.4 An Example where the Optimal Level of Transparency Varies

with the Discount Factor

In the next example, Assumption 3 is violated and the optimal level of transparency varies

with the discount factor (and may be intermediate between full transparency and full pri-

vacy). Speci�cally, the more patient are the �rms, the higher is the level of transparency

that maximizes sustainable industry pro�ts. Full transparency is thus optimal for su¢ ciently

patient �rms, but not for impatient ones.

There are two �rms, two markets, and two market demand states: sL and sH . Period

t + 1 demand in the two markets is perfectly correlated, and is also perfectly correlated

with a random variable s3t that realizes in period t. (The notation indicates that this ran-

dom variable can be interpreted as the period t demand state in a third, �dummy�market

in which all �rms have in�nite production costs.) The state s3t is i.i.d. across periods

with Pr (s3t = sL) = Pr (s3t = sH) = 1=2. Demand in each market j = 1; 2 is again linear:

D
�
pj; sj

�
= sj � pj. Each �rm can produce at zero cost in either market.17 Assume that

17For this example, it would be equivalent to assume that there is only a single market and that ties are
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� � 1=2.

At the end of period t, the �rms observe a common signal zt of the state s3t , with

zt 2 fzL; zHg and

� (zLjsL) = � (zH jsH) = �;

where � � 1=2 now measures the informativeness of the signal. (This reuse of notation from

the previous example will also let us use the same notation for ~sL and ~sH .) For example, if

� = 1 then at the end of period t the �rms perfectly learn the period t+ 1 demand state in

both markets, while if � = 1=2 they obtain no information about the period t + 1 demand

state.

This information structure violates Assumption 3, as (for instance) s1t+1 is not indepen-

dent of s3t conditional on s
1
t . Intuitively, making the signal zt more informative now comes

with the bene�t of allowing more accurate pricing in each �rm�s home market, as well as

the cost of allowing more accurate deviations in the foreign market. We are interested in

solving for the level of informativeness � that allows for the greatest industry pro�ts and in

investigating how this depends on the parameters of the model.

To do this, �x an arbitrary Markovian equilibrium and let uL and uH be a �rm�s period

t + 1 pro�ts when zt equals zL and zH , respectively.18 As st� and therefore zt� are i.i.d.

across periods with equal probability on each realization, a �rm�s incentive compatibility

constraints following signals zL and zH are respectively

(1� �)uL � �
�uL
2
+
uH
2

�
and

(1� �)uH � �
�uL
2
+
uH
2

�
:

Consider the problem of maximizing pro�ts (uL + uH) =2 subject to these constraints. As-

suming that only the second constraint binds at the optimum for � � 1
2
(as can be checked),

it is optimal to set uL = ~s2L=4, and the binding constraint becomes

uH �
�

�

2� 3�

�
~s2L
4
:

broken randomly rather than in favor of the home �rm.
18A Markovian equilibrium is one in which on-path play in period t+1 is a function only of zt. We restrict

attention to Markovian equilibrium only in the current example.
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The optimal equilibrium is therefore given by setting uL = ~s2L=4 and

uH = min

��
�

2� 3�

�
~s2L
4
;
~s2H
4

�
:

Hence, optimal (per market) industry pro�ts equal

V � = min

�
1

2

�
1 +

�

2� 3�

�
~s2L
4
;
1

2

�
~s2L
4
+
~s2H
4

��
:

How does V � vary with � and �? Let �� (�) be the value of � that equalizes the bracketed

terms. Note that ~s2L is decreasing in � while ~s
2
L+~s

2
H is increasing in � (by Jensen�s inequality),

so �� (�) is increasing in �. In addition, �� (1=2) = 1=2, and

�� (1) =
2

3 +
�
sL
sH

�2 :
There are two cases:

1. If � < �� (�), then V � = 1
2

�
1 + �

2�3�
� ~s2L
4
, and V � is increasing in � and decreasing in �.

2. If � > �� (�), then V � = 1
2

�
~s2L
4
+

~s2H
4

�
, and V � is constant in � and increasing in �.

We can now read o¤ the optimal value of �. Let �� (�) = f� : �� (�) = �g, and note that

�� (�) is an increasing function on � 2 [1=2; �� (1)].

Proposition 4 The level of informativeness � that maximizes industry pro�ts V � is given

by � = min f�� (�) ; 1g.

Proof. Follows because V � is increasing in � if � < �� (�) and decreasing in � if � > �� (�).

Thus, the optimal level of informativeness is increasing in �, and it lies strictly between

0 and 1 when � 2 (1=2; �� (1)).19

To understand this result, note that giving the �rms more information about the state al-

ways increases unconditional expected �rst-best pro�ts, (~s2L + ~s
2
H) =8, but decreases expected

19The analysis here would also be exactly the same if demand in the two markets were perfectly negatively
correlated, rather than positively correlated. The only di¤erence is that incentive compatibility would bind
for one �rm after each signal, rather than binding for both �rms after the high signal.
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�rst-best pro�ts after the bad signal, ~s2L=4 . If � is close to 1=2, then incentive compatibility

implies that pro�ts in the low and high states cannot be too di¤erent, which implies that

pro�ts in both states must be close to ~s2L=4.
20 Therefore, if � is close to 1=2 then the optimal

information structure is less informative (to maximize ~s2L=4), while if � is close to 1 then the

optimal information structure is more informative (to maximize (~s2L + ~s
2
H) =8).

21

3 Coarse Information and the Home-Market Principle

in European Industrial Cartels

The inner workings of real-world cartels are inevitably far more complicated and nuanced

than those of any theoretical model. Nonetheless, we believe that some of the key mecha-

nisms underlying several recent major industrial cartels are quite consistent with the results

presented thus far. In this sense, our results may be viewed as one possible explanation for

some aspects of the behavior of these cartels, especially the puzzling e¤orts on the part of

some cartels to maintain the privacy of their participants��rm-level data in support of the

home-market principle. Of course, for all of the cartels discussed in this section, our model

does not provide the only possible explanation for the documented behavior, and our aim

is not to rule out other explanations. The goal is only to connect our theory with some

observed cartels and to highlight the theory�s plausibility.

The discussion of the following cases is based on antitrust decisions of the European

Commission (EC), as well as on summaries and analysis of these decisions by Harrington

(2006) and Marshall and Marx (2012).

Copper Plumbing Tubes: �Copper plumbing tubes are used for water, oil, gas and

heating installations in the construction industry. The main customers are distributors,

wholesalers, and retailers that sell the plumbing tubes to installers and other end consumers,�

(Harrington, p. 85; EC� Copper Plumbing Tubes, pp. 10�11). From 1988 to 2001, the Eu-

ropean copper plumbing tubes industry� a roughly 1 billion Euro industry� was cartelized

20This is also an implication of Proposition 4 of Kandori (1991b).
21The same argument implies that, in standard price competition models with time-varying demand�

such as Rotemberg and Saloner (1986), Haltiwanger and Harrington (1991), Kandori (1991b), and Bagwell
and Staiger (1997)� collusion can be easier to sustain if the �rms do not observe the current demand state.
Hochman and Segev (2010) derive a similar result in a model of repeated international trade policy.
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by a group of �ve to nine �rms that jointly accounted for approximately 65% to 80% of

the market (EC, pp. 15�16). The operation of the European copper plumbing tubes cartel

re�ects several key features of our model.

First, as the cartel grew and intensi�ed, it developed an increasingly sophisticated and

formalized approach to information-sharing among its members. Over time, the cartel shifted

from informally self-reporting prices and sales, to reporting to a trade association� the Inter-

national Wrought Copper Council (IWCC)� and �nally to reporting to the World Bureau of

Metal Statistics (WBMS), a statistical bureau. The WBMS was eventually so linked to the

cartel that the EC viewed providing information to the WBMS as prima facie evidence of

participation in the cartel, ruling that in the case of one �rm (�Halcor�) �Halcor�s continued

supply of sales volumes to the WBMS can only be understood as meaning that Halcor had

not taken a �nal decision to completely withdraw entirely from the illegal arrangements,�

(p. 129).

What is most interesting from the perspective of our model is that� despite being en-

gaged in clearly illegal activities� the cartel participants seemed to exchange less detailed

information as their means of exchanging information improved. In the early period in which

the cartel relied on informal self-reporting, �Each producer provided Mr. [. . . ] with its vol-

ume �gures of deliveries on a country-by-country basis on a monthly or quarterly basis.

With these �gures, Mr. [. . . ] prepared a �spreadsheet�that contained the collected data,�

(p. 57). But, later on, �As of 1 January 1998, a data exchange took place initially on a

monthly, later on a quarterly basis through the [WBMS]. WBMS statistics only contained

aggregated �gures and no company speci�c information,�(p. 52) with the aim of �enabling

each individual participant to calculate his share of the business as a percentage of the total

business of the participants,�(p. 75). It thus appears that the cartel shifted from sharing

�rm-level data to aggregate data as cooperation within the cartel intensi�ed.

Consistent with its reliance on coarse information, the copper plumbing tubes cartel

operated on the home-market principle. The EC ruled that �. . . the basic goal of the [car-

tel] meetings was to protect the main producers�home markets and to freeze the market

shares. . . �(p. 57). In addition, as in our model, designated �market leaders�were responsi-

ble for setting prices and monitoring adherence to the collusive agreement within their home

markets: �Indeed, part of the arrangements concerned the organisation of a mechanism of
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market segregation: national markets were given a market leader who would decide the price

variations,� (p. 169). In summarizing its decision, the EC wrote that the cartel �ensured

implementation of the market allocation and price agreements/coordination by a monitoring

system consisting of a market leader arrangement for various European territories,�(p. 115).

The European copper plumbing tubes cartel was thus based on the home-market principle

and sustained collusion by exchanging only aggregate data, despite its apparent ability to

exchange more detailed information. This combination of features is consistent with the

predictions of our model.

Isostatic Graphite: Isostatic graphite is a graphite product used in industrial appli-

cations such as the production of certain types of electrodes and semiconductors (EC�

Specialty Graphite, p. 6). The EC prosecuted eight �rms for cartelizing the European

isostatic graphite industry (roughly a 500 million Euro industry) in the mid-1990�s. The

cartel operated through meetings at both the European and country levels. The striking

example of using a calculator to keep �rm-level sales secret comes from the Italian country-

level meetings. According to the EC, �A common practice in the meeting. . . consisted in

trying to determine the size of the market by passing around a calculator where each par-

ticipant entered its company�s sales volumes of isostatic products. This ensured that no one

saw the individual companies�volumes, but only aggregate sales to the Italian market,�(p.

61). The isostatic graphite cartel also relied on the home-market principle, �xing national

market shares in the European meetings and dividing up large customers in the country-level

meetings: �in particular at local level, the exchanges of information concerned the reparti-

tion of major customers,�(p. 25). In the Italian market, �a list of sixteen major customers

was prepared and it was agreed to freeze the respective sales shares for them,�(p. 63). It

thus appears that� at least in the Italian market� the isostatic graphite cartel also relied

on a combination of the home-market principle and the deliberate coarsening of exchanged

information.

Other cartels: While the wealth of institutional detail surrounding major cartels can

make it hard to pinpoint the exact mechanisms used to support collusion, references to

information coarsening and (especially) the home-market principle are common in the EC

decisions. The home-market principle (implemented through either exclusive territories or

the allocation of individual large customers) was the basis of the cartels in choline chlo-
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ride, district heating pipes, electrical and mechanical carbon graphite, lysine, methionine,

nucleotides, seamless steel tubes, soda ash, vitamins, and zinc phosphate (Harrington, pp.

34�40), in addition to the copper plumbing tubes and isostatic graphite cartels already

discussed. Information coarsening� in particular, the practice of �rms�reporting detailed

individual-level data to an intermediary, which then returned only aggregate data to the

�rms� also seems have played an important role in the cartels in plasterboard (Harrington,

p. 54) and low density polyethylene (Marshall and Marx, p. 132). For example, in the

plasterboard cartel, �Four �rms set up a system for exchanging information through an in-

dependent expert, Mr. [U, independent consultant]. The operation was placed under the

aegis of the Plasterboard Industry Group. Each producer gave its �gure to Mr. [U] on a

con�dential basis and the results were compiled in the latter�s o¢ ce, giving an aggregate

�gure, which was then sent to the participants. This �gure enabled each producer to cal-

culate its own market share, but not that of the others,�(EU� Plasterboard, p. 54). The

plasterboard cartel also seemed to rely to some extent on the home-market principle: in the

EC�s summary of the cartel�s infringement, it found that the participants had �a view to

sharing out or at least stabilising the German market,�(p. 6).

In sum, both information coarsening and the home-market principle appear to have been

important features of several major European industrial cartels.

4 Transparency can Hinder Collusion in Repeated Games:

Optimally Rocky Relationships

In the model considered so far, optimal collusive equilibria were �rocky�� that is, stochastic�

for the obvious reason that the underlying �rm costs and market demand states were assumed

to be stochastic. As we have seen, this stochasticity opened up the possibility that a trans-

parent information structure could give too much information to potential deviators and

thereby hinder collusion. In reality, there could be a variety of reasons why a cartel would

like to rely on a stochastic collusive agreement: for example, such an agreement could be

harder for antitrust authorities to detect or could be less susceptible to attack by outside

entrants. In any such situation, the mechanism identi�ed in Proposition 1 will encourage
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the cartel to adopt a non-transparent information structure.

In this section, we probe the limits of this theoretical mechanism by asking whether

it can also be optimal for a cartel to follow a stochastic equilibrium even if the physical

environment is completely stationary and free of exogenous factors favoring stochasticity.

Perhaps surprisingly, we show that the answer is yes. The key idea is that� even in a

stationary physical environment� the need to provide intertemporal incentives alone can

lead the cartel to follow a stochastic equilibrium. This again opens up the possibility that

transparency can hinder collusion. Speci�cally, we exhibit an example of a repeated game

in which higher joint pro�ts can be sustained when �rms observe only their own actions and

pro�ts than when they also observe their competitors�actions.

Our example is the following canonical normal-form entry deterrence game:

Out In

Fight 3; 0 �3;�3

Accommodate 4; 0 0; 3

(1)

While the entry deterrence game is not an obvious model of collusion, this game can easily

arise within a cartel that is attempting to implement the home-market principle: Suppose

there are two �rms and two markets, and that �rm 1 is unable to enter �rm 2�s market

while �rm 2 is able to enter �rm 1�s market but has a cost disadvantage in this market. (For

example, a tari¤ or technological barrier may make it unpro�table for �rm 1 to enter �rm

2�s market, while no such exogenous protection applies to �rm 1�s market.) Suppose further

that �rm 1 can either price low to deter entry by �rm 2 (Fight) or price high to extract

surplus from the consumers in her market (Accommodate). In this setting, �rm 2 will always

obtain monopoly pro�ts in its home market (which can thus be ignored in the analysis), and

the remaining game in �rm 1�s market corresponds to the entry deterrence game. With this

interpretation, the problem of maximizing cartel pro�ts across the two markets reduces to

maximizing the sum of payo¤s in the entry deterrence game.

We will show that, when the �rms�actions are perfectly observable and the discount

factor equals 0:21, the only repeated game equilibrium is the in�nite repetition of the static

Nash equilibrium (Accommodate; In), yielding a joint pro�t of 3. This remains true when
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the �rms can use a mediator to help them correlate their actions. On the other hand, when

each �rm observes only its own action and pro�t, we will show that with the assistance of a

mediator the �rms can attain a joint pro�t of at least 3:5.

Before stating the result formally, let us comment on the assumption that the �rms have

access to a mediator. This assumption seems quite realistic in light of the examples discussed

above: many real-world cartels do rely on intermediaries to help them collude, and one of the

intermediary�s roles is often summarizing (and thus coarsening) more detailed information

about the cartel participants�behavior.22 Nonetheless, an alternative interpretation is that

the mediator is simply a stand-in for the various imperfect private monitoring structures

under which the �rms could interact: with this interpretation, a �message�of the mediator�s

would instead be interpreted as a �rm�s signal of its competitors�behavior. In Sugaya and

Wolitzky (2016), we discuss what properties such a private monitoring structure would need

to have to justify this interpretation.23

4.1 Impossibility of Entry Deterrence withMediated Perfect Mon-

itoring

We �rst show that non-Nash outcomes of the entry deterrence game cannot be sustained

under perfect monitoring, even if the �rms have access to a mediator who also perfectly

observes their actions.24 A standard application of the revelation principle (Forges, 1986;

Myerson, 1986) implies that in such games there is no loss of generality in restricting attention

to so-called obedient equilibria, where in each period the game proceeds as follows:25

1. The mediator makes a private action recommendation ri;t 2 Ai to each �rm i = 1; 2.

This recommendation may be conditioned on the mediator�s private history, ht =

22Levenstein and Suslow (2006, p. 69) report that �Industry associations often engage in the collection
and dissemination of information, which may facilitate collusion. Between a quarter and a half of the cartels
in U.S. cross-section studies report the involvement of trade associations.�
23There is also a methodological reason for allowing a mediator: without a mediator, �rms could bene�t

from observing noisier signals simply because this gives them new ways to correlate their actions, rather
than because they bene�t from the lack of transparency per se.
24When we consider imperfect monitoring in Section 4.2, we will ultimately require the mediator to rely

on the �rms�reports of their own actions. If anything, this di¤erence in the mediator�s information structure
stacks the deck in favor of perfect monitoring.
25For a more detailed exposition of repeated games with mediated perfect monitoring, see Sugaya and

Wolitzky (2016).
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(r� ; a� )
t�1
�=0, which consists of the entire history of both private recommendation pro�les

and public action pro�les.

2. Each �rm i takes an action ai;t 2 Ai. This action may be conditioned on �rm i�s private

history, hti = (ri;� ; a� )
t�1
�=0, which consists of the history of private recommendations to

�rm i and public action pro�les. By de�nition of an obedient equilibrium, �rm i obeys

the mediator�s recommendation (i.e., plays ai;t = ri;t) on the equilibrium path.

3. Both the mediator and the �rms observe the realized action pro�le at.

Proposition 5 In the entry deterrence game with � = 0:21, the only sequential equilibrium

with mediated perfect monitoring is the in�nite repetition of (Accommodate; In), which yields

a joint pro�t of 3.

Proof. We show that, in every sequential equilibrium, �rm 1 plays Accommodate at every

history. Given this, the only equilibrium is the in�nite repetition of (Accommodate; In).

Suppose �rm 1 plays Fight with positive probability at some period t history. When

recommended Fight, �rm 1 can gain instantaneous utility 1 by deviating. Hence, for Fight

to be incentive compatible, (Accommodate; Out) must then be played in period t + 1 with

probability at least x such that

(1� �) (1)|{z}
deviation gain

+ � (0)|{z}
minmax payo¤

= � (1� �) [x (4) + (1� x) (3)]| {z }
maximum period t+1 payo¤

+ �2 (4)|{z}
maximum payo¤

;

or

x =
1� 4� � �2

� (1� �) � 0:699 > 0:65:

Therefore, when Fight is played in period t and �rm 2 is then recommended Out in period

t + 1, �rm 2 believes that �rm 1 will play Accommodate with probability at least 0:65.

However, for Out to be incentive compatible for �rm 2, this probability cannot exceed y

such that

(1� �) [y (3) + (1� y) (�3)]| {z }
deviation gain

+ � (0)|{z}
minmax payo¤

= � (3)|{z}
maximum payo¤

;

or

y =
1

2 (1� �) � 0:633:
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This is a contradiction.

4.2 Possibility of Entry Deterrence with Mediated Private Moni-

toring

We now construct a sequential equilibrium with mediated private monitoring with joint pro�t

3:5. Given Proposition 5, this shows that transparency (i.e., perfect monitoring of actions)

can hinder entry deterrence, and thus collusion.

In this section, we assume that in every period each �rm i observe its own action ai and

pro�t ui, but not its competitor�s action a�i. Meanwhile, the mediator observes the entire

realized action pro�le a = (a1; a2). We return to the assumption that the mediator is in this

sense �omniscient�at the end of the section.

Formally, in each period the game is as follows:

1. The mediator makes a private action recommendation ri;t 2 Ai to each �rm i. This

recommendation may be conditioned on the mediator�s private history ht = (r� ; a� )
t�1
�=0.

2. Each �rm i takes an action ai;t 2 Ai. This action may be conditioned on �rm i�s private

history, hti = (ri;� ; ai;� ; ui;� )
t�1
�=0. (Note the distinction with the perfect monitoring case,

where �rm i can also condition its action on (a�i;� )
t�1
�=0.)

3. Firm i observes its payo¤ ui;t = ui (at). The mediator observes the realized action

pro�le at.

Compared to the mediated perfect monitoring case, mediated private monitoring o¤ers

less feedback to each �rm. Imagine that the mediator is a dynamic mechanism designer

who wants to implement an e¢ cient action path while facing incentive compatibility con-

straints for each �rm. Giving a �rmmore information splits its information sets and therefore

tightens the incentive compatibility constraints. An omniscient mediator has the same infor-

mation as the mediator with perfect monitoring, while the �rms have less information under

mediated private monitoring than under mediated perfect monitoring. This implies that the

equilibrium payo¤ set with mediated private monitoring (with an omniscient mediator) is
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always at least weakly larger than that with mediated perfect monitoring. Our contribution

here is to show that it is strictly larger in the entry deterrence game.26

Proposition 6 In the entry deterrence game with � = 0:21, there exists a sequential equi-

librium with mediated private monitoring which yields a joint pro�t of 3:5.

Proof. Consider the following strategy for the mediator, which yields joint pro�t 3:5 when

the �rms follow their recommendations:

� To determine �rm 1�s recommendation, �ip a fair coin at the beginning of the game.

If it comes up heads, recommend Fight in odd periods and Accommodate in even

periods. If it comes up tails, recommend Fight in even periods and Accommodate in

odd periods. Crucially, do not disclose the result of the coin toss to �rm 2.

� Always recommend Out to �rm 2.

� If �rm 1 ever unilaterally disobeys its recommendation, recommend (Accommodate; In)

forever.

� If �rm 2 ever unilaterally disobeys its recommendation, restart the strategy pro�le,

�ipping a fresh coin to determine �rm 1�s recommendations.

To see that this is an equilibrium, �rst note that playing Out is incentive compatible

for �rm 2 because �rm 2 always assigns equal probability to Fight and Accommodate (so

both �rm 2�s instantaneous payo¤ and continuation payo¤ from both Out and In are always

equal to zero).27 Finally, the non-trivial incentive constraint for �rm 1 comes when she is

recommended Fight, and is given by

(1� �) (1) + � (0) � �

1 + �
(4) +

�2

1 + �
(3) ;

26This discussion also implies the following characterization of when transparency hinders collusion: Fix
an equilibrium with uninformed �rms and an omniscient mediator that maximizes industry pro�ts. If, for
every such equilibrium, revealing all �rms�past actions leads to the violation of an incentive constraint, then
maximimum industry pro�ts are strictly higher with mediated private monitoring than with mediated perfect
monitoring. Of course, the problem with this characterization is that determining the optimal equilibrium
with uninformed �rms and mediated private monitoring is typically intractable. This is why we content
ourselves with showing that transparency can hinder collusion by means of an example.
27Unless the mediator has switched to recommending (Accommodate; In), in which case In is clearly

incentive compatible.
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or

� >
1

2

�p
2� 1

�
� 0:207:

As � = 0:21, we have an equilibrium.

What is the intuition for why transparency prevents collusion in this example? The key

observation is that �rm 1 is so impatient that she is willing to play Fight only if she is

rewarded with the pro�le (Accommodate; Out) with high probability in the very next period.

With perfect monitoring, this means that, when �rm 1 plays Fight in period t, �rm 2

observes this action and then knows to expect Accommodate with high probability in period

t + 1. But �rm 2 is too impatient to play Out when �rm 1 is playing Accommodate with

high probability, so he will deviate to In. This implies that �rm 1 will never play Fight.

Hence, ine¢ cient entry cannot be deterred under perfect monitoring.

With private monitoring, however, the mediator can recommend that �rm 1 mixes be-

tween Fight and Accommodate without informing �rm 2 of the outcome of this randomiza-

tion. Firm 2 therefore never expects �rm 1 to play Accommodate with probability greater

than 50% and is thus willing to play Out. (And �rm 2�s payo¤ from Out is zero regardless

of �rm 1�s action, so �rm 2 does not learn anything from observing his own payo¤s.) Mean-

while, as �rm 1 always plays Accommodate in period t+1 after playing Fight in period t, she

receives the reward of (Accommodate; Out) required to make Fight incentive compatible.

This arrangement therefore succeeds in deterring entry.

Concisely put, in this example collusion requires a stochastic intertemporal dependence

between plays of Fight and Accommodate, and along such a rocky path of play revealing

�rm 1�s past actions will prompt a deviation by �rm 2.

Finally, thus far we have simpli�ed the exposition by assuming that the mediator directly

observes the �rms�actions and in particular does not need to rely on self-reports by the �rms.

This assumption may be realistic: according to Harrington (2006), the industry groups and

accounting �rms supporting the vitamins, plasterboard, and citric acid cartels directly au-

dited cartel participants to make sure they were reporting their sales truthfully. Nonetheless,

we show in Appendix B that the assumption that the mediator is omniscient can be com-

pletely dispensed with if �rm pro�ts are noisy and the game is augmented with a mutual

minmax Nash equilibrium action pro�le. This augmentation of the game� corresponding
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for example to the possibility of a mutually destructive price war in �rm 1�s market� is

necessary for the construction because, when the mediator must rely on self-reports by the

�rms to detect a deviation, it will not be able to distinguish between misreports by �rm 1

and misreports by �rm 2, so there must be a single action pro�le that can be used to punish

both �rms simultaneously.

5 Transparency Helps Collusion in Concave Repeated

Games: Optimally Smooth Relationships

Our analysis so far has been concerned with deriving conditions under which �rms can

bene�t from maintaining privacy within a cartel. To better understand the boundaries of

these results, we now turn to the converse question of whether there exist natural classes of

games in which the conventional wisdom that transparency can only help support collusion

is borne out. In contrast to our results so far, we show that the answer is yes. In particular,

we show that transparency always favors collusion in repeated (non-stochastic) games when

the stage game is in the following class.

De�nition 2 A stage game G = (N;A; u) is concave if the following conditions hold for all

i 2 N :

� Ai is a compact and convex subset of Rm for some m 2 N.

� ui (a) is continuous and jointly concave in the action pro�le a.

� De�ne �rm i�s maximum deviation gain against a mixed action pro�le of her opponents�

��i 2 �(A�i) by

di (��i) = max
ai;~ai2Ai

E��i [ui (~ai; a�i)� ui (ai; ��i)] :

We assume this deviation gain is convex: For each ��i, �0�i, �
00
�i 2 �(A�i) with

��i = ��
0
�i + (1� �)�00�i, we have

di (��i) � �di
�
�0�i
�
+ (1� �) di

�
�00�i
�
:
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We show below that this class of games includes n-player linear Cournot and di¤erentiated-

product Bertrand competition.28 Note that, de�ning �rm i�s maximum deviation gain given

its own action ai by

d̂i (ai; ��i) = max
~ai2Ai

E��i [ui (~ai; a�i)� ui (ai; ��i)] ;

the devaation gain di de�ned in part 3 is related to this d̂i by

d̂i (ai; ��i) = di (��i)� ui (ai; ��i) :

The economic content of the de�nition is that, in a concave game, replacing a distribution

of actions with its expectation increases players� payo¤s (part 2 of the de�nition) while

reducing their incentives to deviate (part 3). Hence replacing the distribution of actions

with the expectation reduces each player�s deviation gain even conditional on the player�s

information (action).

Therefore, optimal equilibria in concave games have deterministic equilibrium paths of

play. In addition, if an equilibrium has a deterministic path of play, then transparency

gives deviators no actionable information. Hence, transparency is the optimal information

structure in a concave game.

Denote �rm i�s correlated minmax payo¤ by

ui = min
��i2�(A�i)

max
ai2Ai

ui (ai; ��i) :

We show that, if it is possible to hold a deviant �rm to its minmax payo¤, full transparency

always favors collusion in the sense of letting the �rms sustain higher pro�ts.

Proposition 7 Suppose the stage game is concave, and suppose that, with perfect monitor-

ing, for each �rm i there exists a subgame perfect equilibrium that gives �rm i payo¤ ui.

Then, for any monitoring structure (perfect or imperfect, with or without a mediator) and

any payo¤ vector v 2 Rn sustainable in Nash equilibrium under that monitoring structure,

there exists a subgame perfect equilibrium under perfect monitoring that Pareto dominates v.

28Under linear di¤erentiated-product Bertrand competition, ui (a) is not concave, but
P

i ui (a) is. Propo-
sition 8 below shows that this is su¢ cient for full transparency to maximize industry pro�ts.
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Proof. Fix a monitoring structure and a Nash equilibrium. Letting E [�] denote ex ante

expectation as taken at the beginning of the game under this equilibrium, consider the

following strategy pro�le under perfect monitoring:

� On path, player i plays E [ai;t] in period t.29

� If player i unilaterally deviates (on or o¤path), switch to a subgame perfect equilibrium

that gives her payo¤ ui. Ignore simultaneous deviations.

Since ui is concave for all i, this strategy pro�le Pareto dominates the original equilibrium.

We show that it is a subgame perfect equilibrium.

Under the original equilibrium, for every player i and every on-path period t private

history hti, we have

d̂i
�
ai;t; ��i;tjhti

�
�

1X
s=1

�sE
�
ui (as+t)� ujhti

�
; (2)

where ��ijhti 2 �(A�i) denotes the distribution over player �i�s actions conditional on

reaching history hti. Since

d̂i
�
ai;t; ��i;tjhti

�
= di

�
��i;tjhti

�
� ui

�
ai;t; ��i;tjhti

�
;

(2) is equivalent to

di
�
��i;tjhti

�
�

1X
s=1

�sE
�
ui (as+t)� ujhti

�
+ ui

�
ai;t; ��i;tjhti

�
=

1X
s=0

�sE
�
ui (as+t) jhti

�
�

1X
s=1

�su: (3)

Note that

E
�
E
�
ui (as+t) jhti

��
� ui (E [as+t]) ;

by concavity of ui and the law of iterated expectation, and

E
�
di
�
��i;tjhti

��
� di

�
E
��
��i;tjhti

���
(by the convexity of di)

= di (E [��i;t]) : (4)

29Note that E [ai;t] 2 Ai because Ai is convex.

33



Hence, taking expectations of both sides of (2), we have

d (E [a�i;t]) �
1X
s=0

�sui (E [as+t])�
1X
s=1

�su for all i and t;

or

d (E [ai;t] ;E [a�i;t]) �
1X
s=1

�sui (E [as+t])�
1X
s=1

�su for all i and t:

This is precisely the condition for the constructed strategy pro�le to be a subgame perfect

equilibrium under perfect monitoring.

If in addition the stage game is symmetric and our concern is maximizing total industry

pro�ts, then we can establish the stronger result that a stationary equilibrium is optimal. It

also su¢ ces for this result to assume that only total industry pro�ts V (a) =
P

i ui (a) are

concave in actions, rather than assuming that ui (a) is concave for all i; this modi�cation

allows the current result to cover linear di¤erentiated-product Bertrand competition. Let

A� =

(
a 2 A :

X
i

d̂i (a) �
�

1� � [V (a)� nu]
)
:

Thus, A� is the set of pure action pro�les a such that, when a is to be played forever in

equilibrium, the sum of the �rms�deviation gains at a does not exceed the present value of

the continuation value that would be lost from permanently switching to a mutual minmax

pro�le. Note that A� is a convex, closed, and symmetric set, as A is a convex, closed, and

symmetric set, and V is concave. Let V � = maxa2A� V (a), and let a� 2 A� be a symmetric

action pro�le with V (a�) = V �.

Proposition 8 Suppose the stage game is symmetric and concave, with the requirement that

ui (a) is concave for all i replaced by the weaker requirement that V (a) is concave.

1. For any monitoring structure, expected per-period industry pro�ts do not exceed V � in

any Nash equilibrium.

2. With perfect monitoring, if there exists a subgame perfect equilibrium that gives a �rm

payo¤ u, then the in�nite repetition of a� is a subgame perfect equilibrium outcome

yielding per-period industry pro�ts V �.
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Proof. Consider the problem of maximizing expected per-period industry pro�ts (1� �)
P1

t=0 �
tE [V (at)]

over all monitoring structures and all Nash equilibria. Summing (3) over players and taking

expectations, a necessary condition for a strategy pro�le to be a Nash equilibrium is

X
i

d (E [a�i;t]) �
1X
s=0

�sE [V (as+t)]�
1X
s=1

�snu for all t: (5)

Note that we have
P

i d (E [��i;t]) =
P

i d (E [a�i;t]) instead of
P

i E
�
d
�
��i;tjhti

��
by the same

reasoning as (4). Therefore, a relaxed version of this problem is

max (1� �)
1X
t=0

�tE [V (at)]

subject to (5). Call this relaxed problem Problem 1. Note that Problem 1 has a solution by

continuity and compactness.

We claim that for any (possibly non-concave) stage game G there exists a stationary

solution to Problem 1. To see this, let V = supt E [V (at)]. Then any solution to Problem 1

must satisfy X
i

d (E [a�i;t]) �
1

1� �V �
�

1� �nu for all t:

Hence, if we take any solution to Problem 1 and, for every t, replace �t with �~t for some

~t 2 argmax~t E [V (a~t)], the resulting stationary mixed action path is another solution to

Problem 1.

Hence, the value of Problem 1 is the same as the value of the problem

max
�2�(A)

E� [V (a)]

subject to X
i

d (E� [a�i]) �
1

1� �E
� [V (a)]� �

1� �nu:

Call this Problem 2.

Next, since A is convex and V is concave, there exists a deterministic solution to Problem

2. This follows because, under these assumptions, replacing � with its expectation increases

the objective and relaxes the constraint.

35



Finally, when one restricts attention to deterministic pro�les �, Problem 2 becomes

exactly the program de�ning V �. This shows that equilibrium industry pro�ts cannot exceed

V � for any monitoring structure.

To complete the proof, we claim that in�nite repetition of a�, supported by the threat

of transitioning to a subgame perfect equilibrium that minmaxes the deviator, is a subgame

perfect equilibrium under perfect monitoring. As a� is a symmetric action pro�le, in this

strategy pro�le each �rm�s incentive compatibility constraint is

d
�
a��i
�
� 1

n
V (a�) � �

1� �

�
1

n
V (a�)� u

�

since

d
�
a��i
�
� 1

n
V (a�)

= d
�
a��i
�
� ui (a�) by symmetry

= d̂i
�
a�i ; a

�
�i
�
:

Adding 1
n
V (a�) to both sides and multiplying both sides by n, this is equivalent to the

condition that a� 2 A�.

An example of a game satisfying the conditions of Proposition 8 is n-player linear Cournot

oligopoly, where the market price at quantity vector q is given by

max

(
a�

X
j

qj; 0

)

for a constant a > 0, so pro�ts are given by

ui (q) = max

( 
a�

X
j

qj

!
qi; 0

)
:
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Restricting attention to equilibria with positive prices along the equilibrium path, ui (q) is a

concave function of q. Next, letting ~q�i denote a distribution over q�i, we have

d (~q�i) = max
qi

1

4

 
a� E~q�i

"X
j 6=i

qj

#!2
�
 
a� E~q�i

"X
j 6=i

qj

#
� qi

!
qi

=
1

4

 
a� E~q�i

"X
j 6=i

qj

#!2
;

where the maximum is attained by qi = a� E~q�i
hP

j 6=i qj

i
. Since 1

4
(x)2 is convex in x and

E~q�i
hP

j 6=i qj

i
is linear in ~q�i, the deviation gain d (~q�i) is convex. The game is therefore

concave. Finally, in the current formulation without production costs, the game also admits

a mutual minmax Nash equilibrium, so there is always a subgame perfect equilibrium that

minmaxes a deviator.30

A second example is given by n-player linear di¤erentiated-product Bertrand oligopoly.

We verify that this game satis�es the conditions of Proposition 8 in Appendix C.

As a �nal example, we describe why the entry deterrence game in Section 4 is not concave.

The simplest condition of De�nition 2 it violates is that action sets are not convex subsets

of R. In particular, suppose we add a third action, :5Fight + :5Accommodate, for �rm 1,

with payo¤s given by interpolating between Fight and Accommodate:

Out In

Fight 3; 0 �3;�3

:5Fight+ :5Accommodate 3:5; 0 �1:5; 0

Accommodate 4; 0 0; 3

The in�nite repetition of (:5Fight+ :5Accommodate; Out) could then be sustained in equi-

librium with perfect monitoring, yielding a joint pro�t of 3:5.

The argument behind Proposition 8 can also be used to the show that, in symmetric,

concave games where the worst subgame perfect equilibrium payo¤ is something other than

u, the equilibrium that maximizes industry pro�ts with perfect monitoring is stationary. This

30In the more realistic version with production costs, the game does not admit a mutual minmax static
Nash equilibrium, but it nonetheless admits a subgame perfect equilibrium yielding payo¤u if � is su¢ ciently
high. The argument is as in the Bertrand case (or see Abreu, 1986).
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resolves an issue in the theoretical literature on collusion with perfect monitoring following

Abreu (1986) (e.g., Lambson, 1987; Wernerfelt, 1989; Chang, 1991; Ross, 1992; Häckner,

1996; Compte, Jeny, and Rey, 2002), which, while focusing on computing optimal punishment

paths under various assumptions, typically assumes without formal justi�cation that the

cartel�s goal is sustaining the best possible stationary path of play. At least for the linear

demand curves typically considered in the literature, Proposition 8 provides a justi�cation

for this approach.

Finally, we brie�y comment on the relationship between Proposition 7 and Theorem

1 of our companion paper, Sugaya and Wolitzky (2016). Theorem 1 of that paper shows

that, in two-player games, there exists a critical discount factor �� such that if � > ��

then the sequential equilibrium payo¤ set with mediated perfect monitoring dominates the

sequential equilibrium payo¤ set with any monitoring structure for all non-negative Pareto

weights. Thus, that result applies to all, two-player games, with a mediator, and with � > ��;

while Proposition 7 applies to concave, n-player games, with and without a mediator, for

all discount factors. The contents of the two results are therefore quite di¤erent, and the

intuition and proof techniques behind them are even more dissimilar.

6 Conclusion

The goal of this paper has been a reassessment of Stigler�s path-breaking idea that trans-

parency within a cartel facilitates collusion. In contrast to this idea, we �nd that� under

fairly general conditions� transparency hinders collusion when the cartel�s objective is to

segment the market according to the home-market principle. Consistent with our model,

several recent European industrial cartels that operated under the home-market principle

appear to have gone out of their way to preserve the privacy of their participants� sales.

We have also probed the theoretical limits of this result by showing that, while in general

it is possible for transparency to hinder collusion even in a completely stationary physical

environment, this cannot occur if �rms�pro�t functions satisfy a concavity condition that

holds under linear Cournot and di¤erentiated-product Bertrand competition. We therefore

identify some settings where the standard view that transparency favors collusion is borne

out, while also pointing out some little-recognized limitations of this view.
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All of the results in this paper concern the comparison of information structures within

a cartel: when is a cartel better-o¤ when more or less information is exogenously available?

A closely related question is that of how the desire to maintain privacy or transparency

in�uences cartel behavior under a �xed information structure. From this perspective, we

believe that our approach can o¤er a new explanation for the well-documented phenomenon

of price rigidity in cartels, one which is quite di¤erent from existing approaches (Athey,

Bagwell, and Sanchirico, 2004; Harrington and Chen, 2006). Consider an example similar to

that in Sections 2.3 and 2.4: There are two �rms, two markets, and two demand states, which

are independent across markets and positively persistent across time. Prices are monitored

perfectly. In a �exible price equilibrium, prices are tailored to current demand states: this has

the advantage of allowing for higher pro�ts in principle, but has the disadvantage of revealing

the current demand state� and hence revealing information about future demand states� to

one�s competitor. In a rigid price equilibrium, prices are constant on-path. In this example,

we have been able to show that, if the discount factor is intermediate and the gap between

the low and high demand states is su¢ ciently large, then the best rigid price equilibrium

yields higher pro�ts than the best �exible price equilibrium. It seems quite plausible that

the desire to maintain the privacy of one�s home-market demand state is a rationale for rigid

pricing more generally. Developing this idea further is an interesting direction for future

research.

More broadly, we hope to draw renewed attention to the role of information-sharing

within cartels in supporting collusion. By assuming that cartel participants condition their

behavior only on information that is common knowledge within the cartel, the existing

theoretical literature on collusion has largely neglected the bene�ts that colluding �rms

can reap� at consumers�expense� from keeping their behavior private. Acknowledging the

bene�ts as well as the costs of maintaining privacy in cartels may thus be a �rst step in

improving our understanding of this aspect of antitrust economics.
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Appendix A: Proof of Proposition 3

Under the �rst-best action plan, a �rm�s future pro�t when the previous demand state in its

home market was low and high, respectively, is given by

VL =
~s2L
4
+ � [�VL + (1� �)VH ]

VH =
~s2H
4
+ � [�VH + (1� �)VL] :

Solving for VL and VH gives

VL =
1

(1� �) (1 + � � 2��)

�
(1� ��) ~s

2
L

4
+ � (1� �) ~s

2
H

4

�
VH =

1

(1� �) (1 + � � 2��)

�
(1� ��) ~s

2
H

4
+ � (1� �) ~s

2
L

4

�
:

As ~sL < ~sH , we have VL < VH . We also note that VL and VH are increasing in � and go to

in�nity as � ! 1.

Suppose �rms observe only industry demand. Then, as a deviator can be held to her

minmax payo¤ of 0 (as we have seen), the �rst-best action plan is sequentially rational on

path at t > 0 if and only if

VL �
~s2L
4
+ (n� 2)max

�
~sL (~sL � 2c)

4
;
~sH (~sH � 2c)

8

�
+
~sH (~sH � 2c)

4

and

VH �
~s2H
4
+ (n� 2)max

�
~sL (~sL � 2c)

4
;
~sH (~sH � 2c)

8

�
+
~sL (~sL � 2c)

4
;

or equivalently

� [�VL + (1� �)VH ] � (n� 2)max
�
~sL (~sL � 2c)

4
;
~sH (~sH � 2c)

8

�
+
~sH (~sH � 2c)

4
(6)

and

� [�VH + (1� �)VL] � (n� 2)max
�
~sL (~sL � 2c)

4
;
~sH (~sH � 2c)

8

�
+
~sL (~sL � 2c)

4
:
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As � > 1=2, VH > VL, and ~sH > ~sL, the former inequality implies the latter. Furthermore,

noting that setting price �s=2 in all markets is the most tempting deviation at t = 0, sequential

rationality holds at t = 0 if and only if

�

�
1

2
VL +

1

2
VH

�
� (n� 1) �s (�s� 2c)

4
: (7)

Hence, �rst-best industry pro�ts are sustainable if and only if (6) and (7) hold. Finally,

note that the left-hand sides of (6) and (7) are increasing in � (and go to zero and in�nity

as � ! 0 and 1), and let �� be the cuto¤ value of � such that one of (6) and (7) hold with

equality while the other is satis�ed.

Next, suppose �rms observe all prices and sales. In this case, the �rst-best action plan is

sustainable if and only if

� [�VL + (1� �)VH ] � (n� 2)
�
~sL (~sL � 2c)

8
+
~sH (~sH � 2c)

8

�
+
~sH (~sH � 2c)

4
(8)

and (7) holds. However, as �s = (~sL + ~sH) =2, Jensen�s inequality implies that

�s (�s� 2c)
4

<
~sL (~sL � 2c)

8
+
~sH (~sH � 2c)

8
:

Since � > 1=2, VH > VL, and ~sH > �s, this means that (8) implies (7), so �rst-best industry

pro�ts are in fact sustainable if and only if (8) holds.

Finally, as ~sH > ~sL, the right-hand side of (8) is strictly greater than the right-hand side

of (6). Hence, letting ��� be the cuto¤ value of � such that (8) holds with equality, we have

�� < ���.

Appendix B: Entry Deterrence with a Non-Omniscient

Mediator

We extend the construction of Section 4.2 to the case where the mediator does not directly

observe the �rms�actions or pro�ts and must instead rely on the �rms themselves to report

these quantities. We do so by making two changes to the game from Section 4.2. First, we
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augment the stage game by adding a mutual minmax Nash equilibrium action pro�le, so the

payo¤ matrix is now

Out In PriceWar

Fight 3; 0 �3;�3 0; 0

Accommodate 4; 0 0; 3 0; 0

PriceWar 0; 0 0; 0 0; 0

(9)

Second, we assume that pro�ts are stochastic conditional on actions (so payo¤ matrix

(9) now represents expected rather than realized pro�ts). Speci�cally, letting ui denote �rm

i�s expected pro�t function in (9), we assume that realized pro�ts in period t are given by

�i;t (at; "i;t) = ui (at) + "i;t;

where "i;t is distributed uniformly on [�1; 1], independently across periods. We assume

further that "1;t and "2;t are perfectly negatively correlated (so that "1;t + "2;t = 0 with

probability 1) if the action pro�le is (Fight; Out), but are independent otherwise. (This

assumption implies that �rm 1 loses information about �rm 2�s payo¤ following a deviation

to Accommodate, which will be used to give �rm 1 the required incentive to play Fight.)

The game in each period proceeds as follows:

1. The mediator makes a private action recommendation ri;t 2 Ai to each �rm i.

2. Firm i takes an action ai;t 2 Ai.

3. Firm i observes its realized pro�t �i;t. The mediator observes nothing.

4. Firm i makes a private report of its pro�t �̂i;t to the mediator.

Proposition 9 In this augmented entry deterrence game with � = 0:21, there exists a se-

quential equilibrium with (non-omniscient) mediated private monitoring which yields a joint

pro�t of 3:5.

Proof. Consider the following strategy for the mediator:

� Say that a deviation is detected in period t if either of the following events occurs:
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1. Fight is recommended to �rm 1 and the �rms�reports satisfy �̂1;t + �̂2;t 6= 3.

2. Accommodate is recommended to �rm 1 and the �rms�reports satisfy (at least

one of) �̂1;t < 2, �̂2;t > 1, or �̂2;t < �1.

� If no deviation has been detected in any earlier period, issue recommendations as in

the �rst two bullet points of the construction in the proof of Proposition 6.

� If a deviation has been detected in some earlier period, recommend (PriceWar; PriceWar).

We show that it is an equilibrium for the �rms to follow their action recommendations

and report their pro�ts truthfully.

Start by considering �rms� incentives to misreport their pro�ts. Note that the �rms�

reports matter only if no deviation has been detected so far: thus, in deciding what to

report, the �rms can condition on the event that no deviation has been detected. If �rm 1

was recommended Fight, played Fight, and received pro�t �1;t � 2, then she can infer that

�rm 2 playedOut, so (given that �rm 2 reports truthfully) with probability 1 only the truthful

report �̂1;t = �1;t satis�es �̂1;t+ �̂2;t = 3, and therefore �rm 1 receives a positive continuation

payo¤ from reporting truthfully and a zero continuation payo¤ from misreporting. If �rm

1 was recommended Fight but deviated or received pro�t �1;t < 2, then she can infer that

the action pro�le was not (Fight; Out), so that (given that �rm 2 reports truthfully) every

possible report �̂1;t will satisfy �̂1;t+ �̂2;t 6= 3 with probability 1, so �rm 1 may as well report

truthfully. If �rm 1 was recommended Accommodate and received pro�t �1;t � 2, then she

can infer that �rm 2 played In, and a deviation will not be detected if she reports truthfully.

Finally, if �rm 1 was recommended Accommodate and received pro�t �1;t < 2, then she can

infer that �rm 2 played Out, and a deviation will be detected whatever she reports (given

that �rm 2 reports truthfully).

Turning to �rm 2, if �rm 2 playedOut, then if �rm 1 played Fight (and reports truthfully)

then with probability 1 only the truthful report �̂2;t = �2;t satis�es �̂1;t+ �̂2;t = 3, so truthful

reporting is optimal; while if �rm 1 played Accommodate then truthful reporting again does

not lead to the detection of a deviation. If instead �rm 2 played In, then (given that �rm

1 reports truthfully) a deviation will be detected with probability 1 for either action of �rm

1�s and every report �̂2;t, so �rm 2 may as well report truthfully. (This follows because if
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�rm 1 plays Fight then �̂1;t+ �̂2;t 6= 3 with probability 1, while if �rm 1 plays Accommodate

and reports truthfully then �̂1;t < 2.)

Finally, to see that following the mediator�s action recommendations is optimal, note that

the only tempting deviation is for �rm 1 to deviate to Accommodate when recommended

Fight. But, since "1;t and "2;t are independent when �rm 1 plays Accommodate, the �rms�

reports will then satisfy �̂1;t + �̂2;t 6= 0 with probability 1. Since �rm 1 was recommended

Fight, this leads the mediator to recommend (PriceWar; PriceWar) forever, which gives

�rm 1 a continuation payo¤ of 0. This implies that �rm 1�s incentive constraint is exactly

the same as in the proof of Proposition 6, so this constraint is satis�ed.

In fact, it is also possible to establish this result with the original payo¤ matrix (1), at

the cost of a substantially more complicated equilibrium construction. The idea is to utilize

a trick from our companion paper, Sugaya and Wolitzky (2016), whereby the mediator

recommends every action pro�le with positive probability along the equilibrium path, so

that a deviation by one �rm is detectable by the mediator but not by the other �rm. The

other �rm can then be induced to minmax the deviator without being made aware that a

deviation has occurred. With this approach, it is possible to design a strategy pro�le where

a deviant �rm always receives its minmax payo¤, despite the absence of a mutual minmax

Nash equilibrium action pro�le. The details are available from the authors.

Appendix C: Linear Bertrand Competition

Consider n-player linear di¤erentiated-product Bertrand competition, where �rm i�s demand

at price vector p is given by

max

(
a+ b

X
j 6=i

pj � pi; 0
)

for constants a; b > 0, so pro�ts are given by

ui (p) = max

(
a+ b

X
j 6=i

pj � pi; 0
)
pi:

(Note that we allow negative prices but not negative quantities.) Restricting attention to

equilibria with positive quantities along the equilibrium path, this game is concave (under
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the weaker requirement that industry pro�ts are concave) if and only if b � 1= (n� 1). To

see this, �rst note that

V (p) = a
X
i

pi + b
X
i

X
j:i6=j

pipj �
X

p2i :

The Hessian matrix of V (p) thus consists of �2�s on the diagonal and 2b�s o¤ the diagonal,

so this matrix is negative semi-de�nite if and only if

�
 X

i

x2i � b
X
i

X
j 6=i

xixj

!
= � (1 + b)

X
i

x2i + b

 X
i

xi

!2
� 0 for all x 2 Rn:

This in turn holds if and only if 1+ b � nb, or b � 1= (n� 1). In addition, letting ~p�i denote

a distribution over p�i, we have

d (~p�i) = max
pi

1

4

 
a+ bE~p�i

"X
j 6=i

pj

#!2
�
 
a+ bE~p�i

"X
j 6=i

pj

#
� pi

!
pi

=
1

4

 
a+ bE~p�i

"X
j 6=i

pj

#!2
;

where the maximum is obtained at pi = 0 if we require quantity
�
a+ bE~p�i

hP
j 6=i pj

i
� pi

�
�

0. Since 1
4
(a+ bx)2 is convex in x and E~p�i

hP
j 6=i pj

i
is linear in ~p�i, the deviation gain

d (~p�i) is convex. In sum, the game is concave if and only if b � 1= (n� 1). Finally, unlike in

the Cournot case, this game does not admit a mutual minmax Nash equilibrium. However, it

follows from standard arguments (similar to Abreu, 1986) that it admits a subgame perfect

equilibrium yielding payo¤ u whenever � is su¢ ciently high. For example, this can be

attained by a �stick-and-carrot�equilibrium path consisting of one period of large negative

prices followed by an in�nite stream of constant, positive prices. To complete the argument,

we now verify that such a minmaxing stick-and-carrot equilibrium exists at a discount factor

low enough such that �rst-best industry pro�ts are unattainable� so that the conclusion of

Proposition 8 is not trivial� whenever b (n� 1) < 0:933.
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To see this, note that the �rst-best price pm is given by

argmax
p
(a+ b (n� 1) p� p) p;

or

pm =
a

2 (1� b (n� 1)) :

Corresponding �rm pro�ts um are given by

um = (a+ b (n� 1) pm � pm) pm = a2

4 (1� b (n� 1)) :

Let �1 be lowest discount factor such that we can minmax a deviator with a stick-and-

carrot equilibrium, where after a deviation all �rms price at some level p for one period and

then price at some level �p forever. Let �2 be lowest discount factor such that price pm is

sustainable when deviators can be minmaxed. If �1 < �2, then Proposition 8 applies (and

yields a non-trivial conclusion) whenever � 2 (�1; �2).

Proposition 10 If b (n� 1) < 0:933 then �1 < �2.

Proof. In a stick-and-carrot equilibrium, the incentive compatibility constraint in the �car-

rot�state (pricing at �p) is

(a+ b (n� 1) �p� �p) �p � (1� �)
�
a+ b (n� 1) �p

2

�2
+ � (0) : (10)

The incentive compatibility constraint in the �stick�state (pricing at p) is

(1� �)
�
a+ b (n� 1) p� p

�
p+ � (a+ b (n� 1) �p� �p) �p �

�
a+ b (n� 1) p

2

�2
: (11)

Also, if utility in the stick state equals the minmax payo¤ of 0, we must have

(1� �)
�
a+ b (n� 1) p� p

�
p+ � (a+ b (n� 1) �p� �p) �p = 0

and

a+ b (n� 1) p = 0, p =
a

b (n� 1) ;
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where the latter equation follows from (11).

Given this value of p, we have

�
a+ b (n� 1) p� p

�
p = �

�
a

b (n� 1)

�2
;

so (11) becomes

� (a+ b (n� 1) �p� �p) �p � (1� �)
�

a

b (n� 1)

�2
: (12)

This is a necessary and su¢ cient condition for the existence of a stick-and-carrot equilibrium

with carrot price �p that yields the minmax payo¤ in the stick state. Let �1 be the minimum

discount factor for which there exists a price �p that satis�es (10) and (12).

On the other hand, the condition for a constant price of pm to be sustainable when

deviators can be minmaxed is

(a+ b (n� 1) pm � pm) pm � (1� �)
�
a+ b (n� 1) pm

2

�2
+ � (0) : (13)

Let �2 be the minimum discount factor that satis�es (13).

We wish to �nd a condition under which �1 < �2. First note that, if (12) holds with strict

inequality at � = �2 and �p = pm, then �1 < �2. This follows because reducing �p relaxes (10),

so if (12) holds with strict inequality at �p = pm then there exists " > 0 and � < �2 such that

both (10) and (12) are satis�ed at discount factor � when �p = pm � ".

Thus, it su¢ ces to show that, when �p = pm, the minimum discount factor at which (12)

holds is less than the minimum discount factor at which (13) holds. Recalling the formula

for um, rewrite (12) as

�
a2

4 (1� b (n� 1)) � (1� �)
�

a

b (n� 1)

�2
;

or equivalently
1

1� � � 4
1� b (n� 1)
(b (n� 1))2

+ 1:

Similarly, noting that
a+ b (n� 1) pm

2
=
a

4

�
2� b (n� 1)
1� b (n� 1)

�
;
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rewrite (13) as
1

1� � �
1

4

(2� b (n� 1))2

1� b (n� 1) :

Hence, the minimum discount factor at which (12) holds is less than the minimum discount

factor at which (13) holds if and only if

4
1� b (n� 1)
(b (n� 1))2

+ 1 <
1

4

(2� b (n� 1))2

1� b (n� 1) :

Letting z = b (n� 1), this is equivalent to

16 <
(2� z)2 z2

(1� z) (1� z + z2) :

This holds for all z < 0:933.
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