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1 Introduction

Despite its growing importance in the provision of government-sponsored health insurance (Einav

and Levin, 2015), the response of market outcomes to the decision of how to set premium subsidies

in a health insurance market is still largely unexplored. A recent and large-scale example of such

market design decision is found in the low-income subsidy introduced by the 2010 US health care

reform (Patient Protection and Affordable Care Act; ACA). Between 2014-2016, under this program

the federal government transferred approximately $40 billion per-year to private insurers, providing

discounts on health insurance premiums — under the form of tax credits — to more than 10 million

US citizens. Knowledge of the relationship between subsidy design and policy-relevant outcomes

such as coverage levels and public spending is critical to evaluate the success of this reform, and

for the design of similar programs in the future.

In this paper I study the dependence of equilibrium outcomes on how subsidies interact with

three important features of private health insurance markets: demand from low-income households,

insurers’ price competition, and selection — correlation between a buyer’s willingness to pay and

expected health cost. Characteristics of demand determine the extent to which subsidies increase

buyers’ participation. Pricing incentives and market power of imperfectly competitive insurers react

to these changes in demand, but also to corresponding changes in average cost driven by differences

in the composition of enrollment pools.

To account for these effects, and compare different subsidy designs, I combine data on enrollment

and claims from the first year of the Californian ACA marketplace — in which 90% of the 1.3 million

buyers (890,000 households) received federal subsidies — with a model of insurers’ competition

customized to include subsidies and other ACA regulations. I discuss identification and estimation

of demand and supply primitives exploiting the details of the regulatory environment and variation

in the composition of buyers across different contracts. I then use these estimates and a model of

equilibrium pricing to carry on quantitative comparisons of different designs of subsidy programs in

terms of prices, enrollment, markups, and public spending. Within this framework, my results imply

that the ACA subsidy scheme leaves room for improvements that are quantitatively significant and

consistent with theoretical predictions. The alternatives I consider can potentially reduce insurers’

market power, and increase incentives for the participation of young buyers that directly affects

average cost, prices, and public spending.

The paper makes three main contributions. First of all, I provide estimates of demand and

cost primitives using detailed data from the largest ACA marketplace. Other research that evalu-

ates the role of ACA regulations using post-reform data (see e.g. Kowalski, 2014; Dafny, Gruber,

and Ody, 2015; Dickstein, Duggan, Orsini, and Tebaldi, 2015; Orsini and Tebaldi, 2015) primar-

ily exploits cross-sectional variation in outcomes across states, or state-level variation over time,

without adopting specific models for demand and cost. Here I combine individual-level enrollment
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data with ex-post realized insurers’ cost. Thanks to the granular variation in prices induced by

ACA regulations within a single georgraphic market, I can estimate demand and cost account-

ing for selection, product differentiation, and for important implications of the ACA regulatory

framework. My main empirical result shows that, at the estimated parameters, a policy change in

which subsidies to relatively older buyers (high-demand and high-cost) are lowered and subsidies

for the “young invincibles” (low-demand and low-cost) are increased can make all buyers better

off, increase variable profits, and lower government spending.

The second contribution consists of highlighting this mechanism from a theoretical perspective. I

show how, in a market with a group of buyers who are cheaper to cover and more price sensitive than

others — adverse selection — , tailoring the generosity of subsidies to favor this group can lead to an

equilibrium where all groups are better off and public spending is lower. Intuitively, shifting subsidy

generosity from the high-cost, high-demand group to the low-cost, low-demand group changes the

relative composition of enrollment pools, lowering average cost and increasing aggregate elasticity.

This puts downward pressure on equilibrium prices, and it can increase quantity purchased for all

groups while also reducing public spending. Importantly, since also the group receiving a lower

subsidy can be made better off, the benefits of heterogeneous subsidization can be achieved while

avoiding redistributive concerns.

The third contribution comes from a more methodological perspective. Many papers in the

empirical literature on selection markets identify heterogeneity in risk and preferences relying on

the availability of individual-level cost data matched to enrollment information, or using external

surveys (see e.g. Einav, Finkelstein, and Cullen, 2010a; Einav, Finkelstein, and Schrimpf, 2010b;

Einav, Finkelstein, Ryan, Schrimpf, and Cullen, 2013; Handel, 2013; Starc, 2014). Here, instead,

I formalize the conditions under which it is possible to identify cost heterogeneity (both observed

and unobserved) across buyers using aggregate, contract-level cost data combined with enrollment

data sufficiently granular to allow the identification of heterogeneous preferences. Although a

similar estimation approach can be found in Bundorf, Levin, and Mahoney (2012), our identification

strategies and empirical contexts are substantially different.1

The structure of my analysis is as follows. I start in Section 2 with a stylized model that

highlights the theoretical implications of the design decisions I consider in the paper. The main one

is whether discounted prices should be equal across all buyers with the same income, or adjusted to

buyers’ age; the second is whether or not price discounts should be fixed (“vouchers”), or calculated

as a function of market prices (“price-linked”; this is the main focus of Jaffe and Shepard (2016)).

Both decisions are closely related to the ACA design, which features price-linked subsidies by

1In Appendix I also show how, were claims data unavailable, cost heterogeneity can be identified assuming optimal
pricing (see also Lustig, 2010) along the tradition of Rosse (1970); Bresnahan (1981); Berry, Levinsohn, and Pakes
(1995). I implement both approaches, showing that cost estimates obtained leveraging on equilibrium assumptions
are similar to those obtained from contract-level cost information.
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which, given income, for subsidized buyers the overall level of discounted prices do not vary by age.

More precisely, given income, all buyers can find a Silver plan at the same price, and indeed the

data shows that the average monthly premium paid by subsidized buyers is indeed approximately

constant in age. The model highlights that vouchers are less distortionary than price-linked subsidy,

and that targeting subsidies in favor of younger buyers can make all buyers better off and reduce per-

person public spending. Importantly, the quantitative impact of different subsidy designs depends

on the primitives of the market, and particularly on the intensity of price competition and the

heterogeneity in price elasticity of demand and cost across different groups. These primitives are

the key estimands of the paper.

In Section 3 I present the regulatory details of ACA marketplaces: contract regulations, rating

rules, and subsidies — the focus of my analysis here —, but also active purchasing, risk-adjustment,

re-insurance, and risk-corridors.2 I go on introducing data on prices, enrollment, and claims,

from the first year of the Californian marketplace. This is the largest among ACA marketplaces,

where subsidy eligible households can choose between different coverage options offered by a set of

participating insurers. This provides me with an attractive setup to estimate demand for coverage

among the low-income uninsured in the newly created marketplaces.

I combine this novel dataset with a discrete-choice model of insurance demand and insurers’

expected cost in Section 4. The main demand specification is a finite-types mixed-logit model à la

Berry, Carnall, and Spiller (1996); Train (2008); Fox et al. (2011).3 Each household can be one of

four types — where a type corresponds to a set of market-specific demand parameters —, and the

probability of being a given type is a function of age, income, household composition, and of the

geographic market of residence. This allows the distribution of willingness-to-pay for insurance to

vary, in every geographic market, both across observable demographic groups and within a given

demographic group. To account for selection, the second key feature of the model is to allow

contract-level claims to vary not only with the characteristics of a contract (insurer, market, and

level of coverage), but also with the characteristics of the contract’s enrollment pool in terms of

demographics and willingness-to-pay for insurance.

The combination of individual-level demographic and enrollment information with the ACA-

rating rules provides two elements that one can rely on for demand identification (Section 5). First,

insurers only set one baseline price for any given contract in any given market; prices are then varied

exogenously across households with different age and income applying a fixed formula. Second, the

characteristics of insurance contracts are standardized by the exchange, and the (unobserved) net-

2Although not relevant for the estimation of demand and cost parameters, I abstract away from some of these
institutional details when analyzing counterfactual designs of the subsidy program. This ensures tractability of the
equilibrium analysis and allows me to focus on the role of heterogeneous subsidies in controlling buyers’ selection into
the market.

3For robustness I also consider a simple logit and a nested logit where buyers first decide whether to enter the
exchange and then which plan to choose.
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work of providers is fixed for a given insurer within a geographic market. With an approach similar

to the one of Chamberlain (1980); Ho and Pakes (2014); Geruso (2016), I exploit these two facts

(and standard functional-form restrictions of the mixed-logit framework) to identify heterogeneity

in preferences across buyers. The key intuition is to compare choices of a large number of different

buyers who face identical choice sets within a market (the level of pricing), and whose prices differ

only for regulatory reasons. Differences in choices across demographic groups identify heterogeneity

in preferences across households with different age and income, dispersion of choices within groups

with similar demographics identifies the heterogeneity conditional on household characteristics.

For identification of insurers’ costs I rely instead on how contracts differ in the composition

of their buyers in terms of demographics and willingness-to-pay for coverage. To gain intuition,

once I obtain demand estimates, I can construct for every contract the composition of buyers in

terms of observables (age and income) and willingness-to-pay for higher coverage (implied by the

demand estimates). Heterogeneity in cost across buyers is identified by variation in realized claims

corresponding to variation in composition of enrollment pools, after controlling for firm, market,

and coverage-level fixed effects.4

In Section 6 I present the resulting estimates, which are largely consistent with previous litera-

ture focusing on age-driven heterogeneity in demand and cost in insurance market (see e.g. Geruso,

2016). For demand I find that willigness-to-pay for coverage significantly increases in household’s

age, and that there is a substantial degree of heterogeneity both across regions and across house-

holds with similar observables. I estimate that households whose average age is less than 30 are

willing to pay (on average) approximately $1,000 per-year to increase their coverage from Bronze

to Gold (or to reduce their deductible from $5,000 to $0). This number is as high as $1,600/year

for buyers older than 50. This heterogeneity translates in differences in the propensity of buyers

to leave (enter) the market if subsidies were lowered (raised). While I estimate that, on average,

5-7% of younger-than-30 would leave the market if all prices increased by $100/year, this number is

estimated to be 2-3% for older-than-50 buyers. The estimates also highlight that households who

enter the market are more willing to pay for extra-coverage. For younger households the estimated

willingness to pay to upgrade from Bronze to Gold conditional on purchasing coverage increases to

$1,500-2,000/year. The same estimate for older households is between $2,800-3,000.

Cost estimates show evidence of adverse selection, both along observable household character-

istics and unobservable preferences within households with the same observables. I find that older

buyers are costlier to cover (on average 1 year of age increases expected cost by 1.6%), and the

4Without claims data one can follow a similar intuition after assuming optimality of prices. Marginal revenues
are equal to marginal cost, which results from a combination of unobserved cost across different demographic and
willingness-to-pay groups. Hence, to estimate cost heterogeneity one can compare marginal revenues/cost between
contracts with differing composition of marginal buyers. This composition can be derived directly from the estimated
heterogeneity in demand. The general identification result is presented in Appendix and it follows from results in
Berry and Haile (2014) combined with a constructive proof partially adapted from Somaini (2011, 2015).
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same is true for buyers who are more willing to pay for generous coverage (even conditional on age,

income, and product chosen). I estimate that, on average, a $1,000/year increase in willingness to

pay to upgrade from Bronze to Platinum corresponds — ceteris paribus — to a 19% increase in

expected cost for the carrier.

These demand and cost estimates are the main inputs for my counterfactual analysis in Section

7. I start by comparing fixed vouchers to the price-linked discounts adopted under the ACA. The

current scheme calculates discounts from market prices to ensure that buyers do not pay more

than a predetermined amount. As a consequence, if all prices increase by $1, low-income buyers do

not face any price change, while government expenditure increases by $1 per buyer. This creates

incentives for insurers to set higher prices than if discounts were instead predetermined vouchers.

Indeed, my simulations imply that equilibrium insurers’ markups are 16% lower if the current

subsidy scheme is replaced by a voucher; under this alternative discounts are of equal amount to

those ACA ones but are not adjusted to insurers’ decisions. This reduction in markups corresponds

to an increase in coverage of approximately 8.4% (buyers face lower net-of-subsidy premiums),

while government spending per-buyer is approximately unchanged.

Importantly, the comparision between vouchers and price-linked subsidies is the key focus of

Jaffe and Shepard (2016), who find a quantitatively similar distortion using data from the pre-ACA

Massachussets health insurance exchange. They also discuss important implementation issues of

an alternative voucher system, with a key role being played by the government’s ability to predict

cost and demand in a market to set vouchers at the correct level. They main finding is that, even

allowing for a sizable range of government’s mismeasurement of market primitives, consumers and

government would be better off using vouchers rather than price-linked subsidies. My analysis of

the voucher vs. price-linked tradeoff is simpler, but complements theirs in measuring the distortion

of price-linked subsidies in a multi-product environment — in MA insurers where only offering one

coverage option —, and comparing the size of this distortion across markets with different levels

of competition. Consistently with simple theoretical considerations, I find that more concentrated

markets (less than 4 insurers) show a much larger distortion than the one I measure in markets

with 5 or more insurers.

The more novel design decision I consider in my analysis is whether the subsidized price that

a buyer pays should vary not only with her income, but also her age. Within a voucher-based

system,5 I find that, by raising vouchers to under 45 by $400 and lowering those to over 45 by

$200, enrollment among the young raises by 50% while enrollment of the older is approximately

unchanged. The reason is that, in equilibrium, a higher share of young enrollees reduces average cost

by 15%, and markups by more than 20% (young buyers have also higher elasticity). Hence prices

are lower, and this offsets the $200 reduction in the subsidy to the older group. At the same time,

5This significantly simplifies equilibrium computations.
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per-insured government expenditure is also reduced by approximately 15% ($600 per-buyer-year).

In addition to the papers discussed earlier, my work relates to numerous studies that use pre-

reform data to study regulations that closely resemble those introduced by the ACA. Many of them

use data from the Massachusetts’ health exchange, a setting similar to ACA marketplaces.6,7 In

this context, Hackmann, Kolstad, and Kowalski (2015) measure the welfare effect of an insurance

mandate, and Ericson and Starc (2015) develop and estimate a demand-supply model to study

several ACA-like regulations, with main focus on the effect of age-based price adjustments for

high-income buyers. My work complements theirs by focusing on the low-income segment of the

population — not making active choices in the MA context —, and precisely studying the subsidy

program for these buyers. Lastly, even outside the ACA setting there is a growing literature

adapting industrial organization techniques to analyze the interaction between regulations and

supply behavior of private health insurers. The cases of Medicare Advantage, Medicare Part D,

Medigap, and Medicaid are the main focus of, among many others, Duggan and Hayford (2013),

Curto et al. (2014), Duggan, Starc, and Vabson (2014), Starc (2014), Clemens (2015), and Decarolis,

Polyakova, and Ryan (2015). Notably, Decarolis (2015) shows distortions of insurers’ decisions due

to the design of subsidies in Medicare Part D, with design optimality (in the same market) being

explicitly considered in Decarolis, Polyakova, and Ryan (2015). In a broad review of this literature

Einav and Levin (2015) explicitly discuss the importance of properly accounting for market power

when designing these programs.

2 Subsidy design in health insurance

2.1 Stylized framework

Consider a market with J health insurers. For now, each offers just one insurance plan j = 1, ..., J ,

with j = 0 denoting the outside option. I relax this assumption and consider multi-plan insurers

later in the context of my application. Non-price characteristics of each plan are fixed, and their

generosity of coverage is the same, so differences in demand across plans are driven by brand

preferences and attributes of the provider networks.

Buyers are of one of two types, say young and old, denoted by τ = Y,O, and I will use

G(τ) ∈ [0, 1] to denote the fraction of type τ buyers in the market. Different types of buyers may

6See also Long et al. (2010); Ericson and Starc (2012b,a, 2013, 2014); Shepard (2014).

7Other studies combine theoretical results and simulations: the impact of insurance mandates and minimum
coverage provisions is studied by Azevedo and Gottlieb (2014); the relationship between risk-adjustment and insurers’
competition by Mahoney and Weyl (2014); the long-run welfare impact of community rating rules by Handel, Hendel,
and Whinston (2015); the interaction between exchange design and labor markets by Aizawa (2015). Differently from
my work, these papers abstract away from various aspects of market structure and imperfect competition observed
in the US insurance market (see e.g. Dafny, 2010; Starc, 2014), and quantifications use data or estimates from
employer-sponsored insurance (e.g. Einav, Finkelstein, and Cullen, 2010a; Handel, 2013).
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have different health status (and thus cost for the insurer) and demand for insurance coverage. In

particular, when selling coverage to a type τ buyer, insurer j expects to incur a cost equal to Cτj .

Demand is instead defined as follows. Each individual buyer i has willingness-to-pay for product

j equal to vij , and the vector vi = (vi1, ..., v
i
J) is drawn i.i.d from the c.d.f. F (v|τ), conditionally on

the buyer’s type. Demand can then be represented by σj(P, τ), a function — derived from F (v|τ)

— indicating the probability that a buyer of type τ chooses j when prices are P = (P1, ..., PJ). I

assume that F (v|τ) is such that σj(P, τ) is strictly decreasing in Pj , and that it is continuous and

differentiable. I also use ητjk ≡
∣∣∣∂σj(P,τ)

∂Pk

∣∣∣ /σj(P, τ) to denote the semi-elasticity of demand for j by

type τ buyers with respect to the price of plan k; in this section this is treated as constant.

As an extreme example of limits to price discrimination (similar to those mandated by the

ACA, see Section 3), insurers cannot vary prices by τ , so each sets a single price Pj that applies to

all buyers. Expected profits are then a weighted average of profits across the two types:

Πj(Pj , P−j) = G(Y ) ·
[
σj(P, Y ) · (Pj − CYj )

]
+G(O) ·

[
σj(P,O) · (Pj − COj )

]
. (1)

In this sense, heterogeneity in demand and cost across types is used to model selection: even if

observable, the type of a buyer is not priced, and neither the average nor the marginal cost curves

of a product are necessarily constant functions of the corresponding pricing decision. To gain

intuition, here I assume complete information, and that prices form a Nash Equilibrium. That is,

each insurer j sets its price Pj to maximize Πj(Pj , P−j) taking P−j as given.8

2.2 Subsidies

To consider the effect of a subsidy program, let a subsidy design be a function S(P, τ) > 0, such that

type τ buyers face the discounted price vector P−S(P, τ) = (P1−S(P, τ), ..., PJ−S(P, τ)). This will

change demand by both types, from σj(P, τ) to σj(P − S(P, τ), τ), and will have a corresponding

effect on profits, equilibrium prices, and government expenditure.

For every chosen design the equilibrium price vector (pre-subsidy) — P ∗,S — is such that, for

every product, the price is the sum of average cost and markup. Characteristics of demand and

cost across different types of buyers determine how average cost and markup depend on the chosen

subsidy design. To see this formally, let αSj (P ) be the share of young buyers of plan j when the

subsidy design S is adopted and prices are P .9 I use this to define the corresponding average cost

— ACSj (·) — and markup — MKS
j (·) — functions under S (see supplementary Appendix S1 for

8Here I also maintain the assumption that (primitives are such that) prices are strategic complements, so that
equilibrium comparative-static results from Vives (1990) can be applied.

9αSj (P ) =
G(Y )σj(P−S(P,Y ),Y )

G(Y )σj(P−S(P,Y ),Y )+G(O)σj(P−S(P,O),O)
.
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detailed derivations):

ACSj (P ) = CYj · αSj (P ) + COj · (1− αSj (P )), (2)

MKS
j (P ) =

1−
[
αSj (P )

(
1− αSj (P )

)(
ηOjj − ηYjj

)(
CYj − COj

)]
ηYjjα

S
j (P ) + ηOjj(1− αSj (P ))

. (3)

Then, P ∗,S is an equilibrium under S if, for each j, P ∗,Sj = ACSj (P ∗,S) +MKS
j (P ∗,S), so that the

problem of the government — if cost and demand primitives are known — amounts to choosing

S knowing that prices will then satisfy this equilibrium condition, and coverage and spending

will respond accordingly. For this I also let gS be the per-insured public spending in equilibrium

corresponding to a subsidy design S.

Targeted or non-targeted subsidies? A first comparison is between a non-targeted subsidy,

for which the subsidy does not depend on τ , so S(P, τ) = S(P ), in contrast to a targeted subsidy

that does. The key result here is that, in a market with adverse selection, tailoring the generosity

of subsidies to favor the cheaper-to-cover and more-price-sensitive group can lead to an equilibrium

where all groups are better off, and the government spends less to subsidize a buyer.

Proposition 1 If prices are strategic complements and CYj < COj , ηYjj > ηOjj for all j:

(a) if S is a non-targeted voucher scheme S (P, τ) = V , for which, at the equilibrium prices P ∗,S,

αSj
(
P ∗,S

)
< 1

2 for all j, then there exists a ∆ > 0 such that, for the targeted voucher scheme

Ŝ (P, Y ) = V + ∆, Ŝ (P,O) = V −∆, P ∗,Ŝ < P ∗,S;

(b) if, moreover, P ∗,Sj − P ∗,Ŝj > ∆ for all j, then equilibrium quantities purchased under Ŝ are

higher in both groups, and gŜ < gS.

I prove this in Appendix A, but the intuition is as follows. The starting situation is one in

which the government uses a non-targeted voucher, fixing an amount V > 0 such that S(P, τ) = V ,

while the alternative is a targeted voucher for which Ŝ(P, τ) = V̂ τ , with V̂ Y > V > V̂ O. For any

given P , the composition of buyers under the two schemes differs, with αSj (P ) < αŜj (P ) for all j

because of quasi-linearity of preferences. Hence, since young buyers are cheaper to cover and more

price sensitive, Ŝ implies lower average cost and markups. Hence, replacing S with Ŝ induces an

equilibrium with lower prices (part (a)). Moreover, if these price reductions are larger than the

amount by which discounts to old buyers are lowered under Ŝ (V − V̂ O), coverage is higher for all

buyers, and spending per-buyer is lower (part (b)).

Price-linked discounts or vouchers? A second relevant design decision is whether subsidies

should be ex ante fixed by the regulator, or computed ex post as a function of market prices, as it is

9



currently done under the ACA (see Section 3). Practically, one can consider a scheme S with price-

linked discounts, for which ∂S(P,τ)
∂Pj

> 0 (for some j), or a voucher program where instead ∂S(P,τ)
∂Pj

= 0

for all j and all P . This is also the main focus of independent work by Jaffe and Shepard (2016),

where they also discuss the welfare consequences and critical implementation issues of this policy

choice under different assumptions about the government’s information on market primitives.

Price-linked discounts may be desirable if the government — not knowing demand and cost

primitives — is unable to predict price. Adjusting subsidies to prices reduces then the possibility

that discounts are too low (or too high) than what would be necessary to induce a target coverage

level. However, adjusting subsidies to prices can distort insurers’ incentives, and lead to an equilib-

rium with higher prices and higher spending by the government than what would result if subsidies

were ex ante fixed. The intuition is straightforward and clearly resembles the difference between

lump-sum as opposed to proportional taxes. If price increases are partly covered by discount ad-

justments, insurers maximize profits as if buyers were less price sensitive, and thus have additional

incentives to set higher prices. The magnitude of this distortion decreases with the intensity of

price competition and with the degree of horizontal differentiation in the market. I formalize this

in Proposition 2 in the supplementary Appendix S1.

Relevant primitives. This discussion considered qualitative effects of different subsidy design

decisions in a simplified setting and under stringent assumptions about market primitives, and

delivered a set of possibility results. Relaxing these assumptions, cost and preferences across

different buyers become the key estimands one needs to determine the direction and magnitude of

the differences between subsidy schemes in a specific context. Looking at the ACA marketplaces,

this is my goal in the rest of the paper.

3 ACA marketplaces

3.1 Institutional context and federal regulations

As of 2013, 17 percent of US citizens younger than 65 did not have health insurance coverage (Smith

et al., 2014). Affordability of the annual premium was a prominent reason why those uninsured did

not purchase coverage in the private market (Tallon, Rowland, and Lyons, 2013), and this was one

of the main motivations for the ACA. In 2014, the ACA instituted health insurance marketplaces

in each of the fifty states. A marketplace is a market in which private insurers offer a variety

of coverage options, and the federal government provides subsidies for low-income participants.

Indeed, in the first two years of their operation, approximately 90 percent of buyers on these

marketplaces received premium subsidies,10 associated with annual government disbursements of

10See e.g. https://aspe.hhs.gov/sites/default/files/pdf/83656/ib_2015mar_enrollment.pdf.
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approximately $40 billion (see Anthony et al., 2015).

ACA marketplaces operate in each state separately, but they all follow similar institutions and

regulations. Each state is divided into geographic rating regions — groups of counties or zipcodes

— defining the level at which decisions by buyers and insurers take place. Every spring, insurers

announce their interest in offering plans in each region in the subsequent calendar year. Entrants

undergo a certification process, after which they offer different coverage options, classified into

five coverage levels: Minimum Coverage, Bronze, Silver, Gold, and Platinum. Minimum Coverage

indicates plans with very high deductible, which cannot be purchased by subsidized buyers, nor by

buyers older than 35. The four metal tiers represent increased coverage options, and are ordered by

an estimate of the actuarial value of their coverage: 60% for Bronze, 70% for Silver, 80% for Gold,

and 90% or more for Platinum plans. Products and prices are set (and made public) at the end

of every summer, and individuals can then compare and purchase plans in their region during the

“open enrollment” period in the late months of each year. Coverage then lasts for the subsequent

calendar year.

Pricing regulations. One important provision of the ACA is that insurers are not allowed to

arbitrarily vary prices depending on buyers’ observable characteristics. The only characteristic

that affects annual premiums is the buyer’s age, but even this adjustment is done in a pre-specified

way (see also Orsini and Tebaldi, 2015). That is, each plan j offered in region r is associated

with a single base price bjr > 0, which is then translated to age-specific premiums using given age

adjustment factors Aτ , equal for all products:

P τjr = Aτ · bjr. (4)

Age adjustments vary between 0.635 (up to 20-year-olds), equal 1 for 21-years-old buyers, and

increase smoothly up to 3 for 64-years-old buyers. Details for all ages are shown in Figure 1.

Premium subsidies. Although P τjr is the premium received by the seller when a τ -year-old buyer

enrolls in plan j in region r, subsidies are provided for all households with annual income below

four times the federal poverty level (FPL; approximately $47,000 for a single individual).

For this, the law establishes a cap on the premium amount the household should pay for the

second-cheapest Silver plan (benchmark plan) in each region. This cap is a function of the income

of the household (see Table 1), ranging — for single buyers — from $684 per-year for the lowest

income group to $4,368 for the highest income group. Importantly, given income this cap amount

does not vary with the age of the buyers.

This subsidy scheme defines a premium discount for each age (τ ; calculated as total age of the
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Figure 1: Age adjustment factors in ACA marketplaces
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Note: For every age τ , the line in the figure shows the corresponding
factor Aτ , which is used to compute the price of a high-income, unsub-
sidized buyer (equation (4)). If the base price of the product is bjr ,
Pτjr = Aτ · bjr . This is also equal to the total amount that the insurer

receives when a subsidized buyer purchases the plan.

Table 1: Price caps for subsidy calculation in ACA marketplaces

Income as % of FPL up to 150% 150-200% 200-250% 250-400%

Max % of income to buy 2nd cheapest Silver 4% 6.3% 8.05% 9.5%

Price cap of 2nd cheapest Silver (single) $684 $1,452 $2,416 $4,368

Price cap of 2nd cheapest Silver (couple+1 child) $1,164 $2,472 $4,008 $7,392
Note: The table shows, as a function of a buyer’s income, the maximum amount that can be spent on the second cheapest Silver
plan in the region. For each age-income pair, the subsidy is computed as the difference between the premium of this product (after
age adjustment) and the corresponding share of annual income for the buyer. The bottom row shows the corresponding price cap on
monthly price for the second cheapest Silver plan in the region for singles and households of three.

household adding up all members) and income (y) in region r equal to

Sτ ,y(br) = max
{
Aτ · b∗r − P

y
, 0
}
, (5)

where P
y

is the premium cap for households with income y, and b∗r is the base price of the benchmark

plan in the region. Since the law establishes that each buyer must pay at least $1, the price of plan

j for a household with total age τ and income y in region r is equal to

P τ ,yjr = max{P τjr − Sτ ,y(br), 1}. (6)

There are two important properties of this subsidy scheme. First, for a given income level each

household can find (one) Silver plan for the same premium, independently from their age. Second,

the difference in premium both across different insurers and across different levels of coverage is

instead increasing in age, while it does not depend on the income of the household.
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Cost-sharing subsidies. Another important regulation in ACA marketplaces is the provision

of cost-sharing subsidies, available for households purchasing a Silver plan and whose income is

lower than 250% of the FPL. For them, the federal government covers part of deductible and out-

of-pocket expenses, increasing the actuarial value of Silver plans from 70% to 95% for income levels

between 100-150% of the FPL, 88% for income levels between 150-200% of the FPL, and 74% for

income levels between 200-250% of the FPL.

Cost-sharing reductions do not directly affect prices, yet make Silver plans increasingly more

attractive the lower the income of the household (see also DeLeire et al., 2016). This is evident

in Figure 2, showing the plan choices as observed in the Californian data that I present in details

below. The share of households purchasing a Silver plan is steadily declining as income increases

— from over .9 to .4 with discontinuous jumps at the discontinuities in cost-sharing — although

the difference in premium between Silver and other levels of coverage does not vary with income.

Figure 2: Cost sharing subsidies and share of households choosing a Silver plan
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Note: The lines show the local polynomial smoothing of the share of household choosing
a Silver plan as a function of the household income as % of the FPL.
All subsidized buyers in Covered California 2014-15, N=1,203,721.

Cost sharing subsidies and share of Silver plans

A second consequence of cost-sharing reductions is that, although the insurer covers approxi-

mately 70% of the health expenses, buyers’ utilization when enrolled in a Silver plan will be as if

the plan provided higher coverage, and therefore likely to be higher (c.f. “moral hazard” in health

insurance, see e.g. Manning et al., 1987; Einav et al., 2013).

Risk adjustment, reinsurance, and risk corridors. The ACA introduced three programs to

mitigate insurers’ incentives to cream skim healthy patients, and to facilitate the stabilization of

the new markets. The programs are called risk-adjustment (permanent), re-insurance (2014-2016
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only), and risk-corridors (2014-2016 only), often referred to as “the three R’s”.11

Risk-adjustment under the ACA determines monetary transfers from insurers with ex-ante

relatively less risky enrollees to those who enroll ex-ante relatively more risky enrollees. Importantly,

this is a budget neutral program. The government only calculates these transfers through a risk-

adjustment formula that is being developed by the Department of Health and Human Services (see

Kautter et al., 2014). If risk profiles (in terms of preexisting conditions, age, gender, tobacco use) do

not differ across insurers, risk-adjustment implies no transfers, even though the overall riskiness of

the market could be very high. The main role of the program is then to mitigate insurers’ incentives

to select the healthiest within market participants. When setting higher prices and offering more

generous plans than competitors, insurers know that, even if they end up with a comparatively

riskier pool, this will be (at least partly) compensated by higher risk-adjustment transfers.

Re-insurance and risk-corridors are instead temporary programs facilitating market stabilization

in the early years, reimbursing insurers for the ex-post realized riskiness of their pools independently

from the one of their competitors. Re-insurance collects a fixed amount for every health insurance

policy sold by any issuer in any market in the US,12 and it compensates every insurer for individual

claims exceeding an attachment point ($45,000 in 2014-15, and $90,000 in 2016) until a cap of

$250,000. The coinsurance rates are 100% in 2014, and 50% in 2015-16. By covering part of

the right tail of risk, this program limits insurers’ incentives to set high-premiums in the fear of

incurring losses due to the riskiness of the newly insured.

While re-insurance reimburses the cost of covering high-cost patients, risk-corridors are intended

to facilitate the targeting of a 20% (variable) profit margin. Every insurer who (across all markets

served in the state) does not spend in claims and administrative costs at least 77% of premiums must

pay into the program. The payment is proportional to the difference between 80% of premiums

and the amount spent. Symmetrically, every insurer who spends more than 83% is eligible for

reimbursement, with amounts being again proportional to the difference between spending and the

80% target. Importantly, this program is not guaranteed to pay out, since it is possible that the

payments due to less profitable insurers are larger than the dues of the more profitable ones.13

Risk-adjustment, re-insurance, and risk-corridors are important drivers of insurers’ incentives

in setting prices, and interact in a complex way with other regulations. Although my focus in

the rest of this paper is on the design of the subsidy program, in Section 7 I will briefly discuss

how these programs could (and should) be incorporated in a richer setup and potentially affect the

calculations of equilibrium outcomes under alternative regulatory frameworks.

11See e.g. http://kff.org/health-reform/issue-brief/explaining-health-care-reform-risk-adjustment-reinsurance-and-risk-corridors/.

12State high-risk pools are excluded from the program. The annual per-contract amounts were set at $63 in 2014,
$44 in 2015, and $27 in 2016.

13For example, in 2014 insurers were due a total of $2.8 billion while only owing $362 million. Therefore the
program paid only 12.5% of what was due to insurers who realized lower-than-expected variable margins.
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The role of the exchanges: active purchasers and clearinghouses. In terms of manage-

ment of the marketplaces, state regulators can decide whether to set up a state-based organization

or whether to have local insurers offer plans through a federally-run market platform. There are two

main models of governance: the exchange as active purchaser (CA, CT, KY, MD, MA, NV, NY,

OR, RI, VT), and the exchange as clearinghouse (all other states, where importantly all federally-

run exchanges fall in this group). As illustrated by Krinn, Karaca-Mandic, and Blewett (2015):

clearinghouse models are those in which all health plans that meet published criteria are accepted,

while active purchasers are those in which states negotiate conditions for entry, premiums, provider

networks, number of plans, and benefits.

In California, for example, the exchange needs to approve entry of insurers in any given rating

region, and if a participating insurer leaves the exchange it is not allowed to sell individual health

insurance for several subsequent years. Additionally, like most active purchasers the Californian

exchange imposes strict limits on the number of contracts that each insurer must offer, and opted for

fully standardized combinations of deductible and co-pays within each metal tier (details in Table

2). In this situation, within a rating region insurers are differentiated only in their brand name,

the structure of their provider networks, and the associated premiums. This will be important for

my analysis, because deductible and co-pays are exogenous rather than insurers’ decisions.

The process through which base prices (and thus premiums) are set represents a major difference

between the two models. In clearinghouses, the exchange has no role: rates are set by insurers as

posted prices as long as they comply with existing (federal and local) regulations of health insurance

markets. On the other hand, when exchanges act as active purchasers they have an important

role in the process of setting premiums for the following year of coverage. Using the words of the

administrators of the Californian exchange,14 the exchange “jawbones down premiums to the extent

it can, leveraging its private information on risk mix, competitor rates, and the price elasticity of

demand”.15

Early evidence on how the chosen model of governance affects outcomes is mixed, with the

usual complications arising from cross-states comparisons; see Krinn, Karaca-Mandic, and Blewett

(2015) and Scheffler et al. (2016). Although not relevant for the estimation of demand and cost,

it is still important to consider these institutional details when studying counterfactual designs of

specific regulations. I will discuss this when introducing the simple supply model that I use for my

analysis of alternative subsidy designs in Section 7.

14See http://healthaffairs.org/blog/2015/10/02/whither-health-insurance-exchanges-under-the-affordable-care-act-active-purchasing-versus-passive-marketplaces/.

15In my conversations with exchange staff members directly involved in this process, I learned that exchange
researchers provide insurers with estimates of how many buyers they could expect to gain or lose upon changing base
prices, as well as the corresponding risk composition. The exchange does not want insurers to be surprised, hence
announces when competitors are planning to raise or decrease rates, and provides analyses that insurers can use in
the process of setting their rates accordingly.
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3.2 The case of Covered California

With its 1.3 million enrollees in 2014, the Californian marketplace (Covered California) is the

largest among ACA marketplaces,16 and provides a useful setup to estimate demand and supply

primitives and thus quantify the effect of alternative subsidy designs. The state is divided into 19

rating regions (map in Figure 9 in Appendix), with the number of insurers active in each region

varying between 3 and 6, for a total of 11 participants.

As a leading example of active purchaser, in Covered California financial details of different

levels of coverage are fully standardized as shown in Table 2. Moreover, when selling plans in a

region each insurer must offer one plan in each level of coverage, and although the federal law allows

some premium adjustments for tobacco use, these are not allowed in Covered California.

Table 2: Standardized financial characteristics in Covered California

Annual Maximum Primary care Emergency Specialist Preferred Advertised
decuctible out-of-pocket visit Room visit drugs coverage∗

Catastrophic n.a. $6,600 n.a.(1) n.a.(1) n.a.(1) n.a.(1) n.a.(3)

Bronze $5,000 $6,250 $60 $300(2)
$70(2)

$50(2) 60%
Silver (>250% FPL) $2,250 $6,250 $45 $250 $65 $50 70%
Silver (200-250% FPL) $1,850 $5,200 $40 $250 $50 $35 74%
Gold $0 $6,250 $30 $250 $50 $50 79%
Silver (150-200% FPL) $550 $2,250 $15 $75 $20 $15 88%
Platinum $0 $4,000 $20 $150 $40 $15 88%
Silver (100-150% FPL) $0 $2,250 $3 $25 $5 $5 95%

Source: http://www.coveredca.com/PDFs/2015-Health-Benefits-Table.pdf
(1): Pay the necessary fee (negotiated between carrier and provider) until the maximum out-of-pocket is met. (2): After deductible is met, before

pay the necessary fee (negotiated between carrier and provider). (3): Pay the full cost until maximum out-of-pocket is met ∗: These percentages
are displayed to buyers when comparing products.

3.2.1 Data

In this paper I use three main data sources. The first is an extract of the official records of Covered

California, obtained via Public Records Act (CA Gov §6250). This contains anonymized and non-

identifiable individual-level enrollment information for every purchase in the exchange during the

first open enrollment period (October 2013 - April 2014). Each record shows unique individual and

household identifiers, gender, age at the date of purchase, residence information (county and 5-digit

zipcode), bins for annual household income as % of the FPL, unique identifier for the selected plan

(insurer, region, network type, metal tier), total premium paid by the household, and information

on coverage termination (if occurred).

To use these data, I first restrict my analysis to households with less than 6 members (99.5%

of the buyers are in households of 5 or less). Second, I compute a continuous measure of house-

hold income by inverting formula (6) for the subsidy calculation (I observe the discount, and all

16See http://kff.org/health-reform/issue-brief/data-note-how-has-the-individual-insurance-market-grown-under-the-affordable-care-act/ .
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elements of the formula beside the price ceiling, which can then be mapped to the annual income

of the household). This returns a complete individual-level dataset of 1,291,214 enrollment records

(881,283 households),17 summarized in panel (a) of Table 3.

The second data source is an extract of the 2013 American Community Survey (ACS) accessed

via IPUMS (Ruggles et al., 2015). For the analysis I use only the Californian sample. Using

household weights I construct a dataset containing individual and household identifiers, health

insurance coverage information, age, gender, household annual income, and geographic area.

Importantly, I define potential buyers for Covered California as those who did not have any

coverage or had individually purchased coverage at the end of 2013. This returns a dataset of

8,239,898 potential buyers (3,392,942 households),18 summarized in panel (b) of Table 3.

The third data source consists of the rate-review filings collected by the Center for Medicare and

Medicaid Serices (CMS).19 Every year, insurers still active in the ACA marketplaces must justify

their base prices (transformed in premiums as explained above) with “previous experience” in the

market. In particular, pricing decisions for plans covering 2016 — taken during 2015 — must be

accompained by average, plan-level claims data from coverage during 2014. For every plan still

offered in 2016, the data then shows 2014 enrollment and 2014 average incurred claims for which

the insurer was responsible.

From the CMS filings, I match average claims for 480 out of 490 plans offered in 2014 Covered

California. These cover 98.9% of the exchange enrollment; the two missing insurers (each active

in one region, for a total of 10 plans) covered only 15,313 individuals. Summary statistics for

plan-level enrollment and claims are reported, respectively, in panels (c) and (d) of Table 3.

3.2.2 Descriptive analysis

Premiums and choices by age and income. Premiums that are relevant for buyers’ decisions

are summarized by panels (a) through (d) of Table 4, where to highlight the effect of age adjustments

and subsidies I compare average premium by metal tier across 3 age groups, singles and non-singles,

high-income households and households with income between 200-220% of the FPL.

Premiums for the high-income older than 50 are approximately 3 times larger than those for

high-income younger than 30. These are equal to the amounts received by insurers for each house-

17The dataset originally contains 1,450,477 person-purchase records. For my analysis I discard all records with
missing age or age over 64 (11,461), records with negative premium or subsidized premium higher than non-subsidized
premium (935), records with multiple purchases per-household or different plan selection within household (61,235),
records with plan selections outside the region of residence (30,942), households with more than 5 members (7,295),
and records with missing variables.

18This construction is consistent with external sources, see e.g. the Small Area Health Insurance Estimates
(https://www.census.gov/did/www/sahie/), or estimates from the California Health Care Foundation (http://www.chcf.org/publications/
2016/12/californias-uninsured).

19See: https://www.cms.gov/CCIIO/Resources/Data-Resources/ratereview.html.
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Table 3: Data summary

Individual-level purchases and potential buyers

(a): Covered California 2014 (b): ACS 2013 uninsurance or private insurance

Variable Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

Age 1,291,214 41.96 15.12 0 64 8,239,898 35.23 16.02 0 64
Gender (M=1) 1,291,214 0.47 0.50 0 1 8,239,898 0.53 0.50 0 1
Household size 1,291,214 1.87 1.01 1 5 8,239,898 2.17 1.19 1 5
FPL<400 (Yes=1) 1,291,214 0.93 0.25 0 1 8,239,898 0.60 0.49 0 1
Household income 1,203,721 33.79 15.73 11.90 111.64 4,980,989 35.29 21.42 0 119.00
if subsidized ($1,000)

Plan-level enrollment and claims

(c): Enrollment in 2014 Covered CA (d): 2014 per-person claims ($1,000); CMS filings

Coverage level N. plans Mean Std. Dev. Min Max N. plans Mean Std. Dev. Min Max

Catastr. 80 180 225 1 1,055 78 1.969 2.088 0.283 6.432
Bronze 140 2,427 2,907 1 16,671 138 2.303 1.411 0.366 6.432
Silver 90 10,303 12,477 41 57,363 88 3.415 1.386 1.206 6.784
Gold 90 988 1,265 7 5,511 88 4.514 1.855 1.707 12.268
Platinum 90 889 1,033 8 5,555 84 8.707 5.231 1.812 20.310

hold choosing their plans. Because of the subsidy formula, however, this monotonicity does not

hold for low-income households. For them, the subsidy design implies that Silver plans are available

for approximately the same amount for all ages (the second cheapest Silver for exactly the same

amount for a given income level and household composition). For lower coverage, premiums de-

crease in age, while the opposite is true for Gold and Platinum plans, a pattern that is mechanically

implied by the formula of the subsidy scheme in (5) and (6).

The composition of potential buyers and the decision to purchase coverage are also highly

heterogeneous across households with different age and income, as summarized in panels (e) and

(f) of Table 4. Out of the 5.1 million households that are potential buyers according in the ACS

data, 3.7 million (72%) are eligible for premium subsidies. Among the subsidized, less than one

million households (approximately 23%) have average age higher than 50. The decisions to purchase

coverage in the exchange is very different along these dimensions. First, the average entry rate of

non-subsidized buyers is less than 10%, compared to 38% for subsidized buyers; this group then

makes up for more than 90% of those purchasing plans in the exchange. Second, among subsidized

households, participation rates are significantly higher when the average age is higher than 50

(53.8%) when compared to younger households (30%). Recalling that all households can find the

same plans, and that Silver plans are affordable for a premium that is almost constant in age, these

facts are informative about differences in willingness to pay for insurance across different groups.

To look in further details at the relationship between prices and choices among subsidized
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Table 4: Prices and participation by age and income

Average premium for subsidized buyers (200-220% FPL, $1,000)

(a): Singles (b): Non-singles

Average age of Coverage level Coverage level
household members Catastr. Bronze Silver Gold Platinum Catastr. Bronze Silver Gold Platinum

10-30 n.a. 1.137 1.661 2.068 2.440 n.a. 0.922 2.542 3.967 5.205
30-50 n.a. 0.758 1.691 2.383 3.027 n.a. 0.472 2.525 4.246 5.701
50-64 n.a. 0.370 1.788 3.132 4.346 n.a. 0.340 2.333 4.664 7.208

Average premium for non-subsidized buyers ($1,000)

(c): Singles (d): Non-singles

Average age of Coverage level Coverage level
household members Catastr. Bronze Silver Gold Platinum Catastr. Bronze Silver Gold Platinum

10-30 1.706 1.922 2.473 2.921 3.298 3.748 7.593 9.347 10.915 12.000
30-50 2.355 3.165 4.111 4.846 5.492 4.922 9.862 13.285 13.991 15.276
50-64 n.a. 6.031 7.825 9.275 10.548 n.a. 12.081 15.750 18.014 20.247

Participation in Covered California

(e): Share purchasing coverage (f): Potential buyers (N. of households)

Average age of Income as % of FPL Income as % of FPL
household members 100-150 150-200 200-250 250-400 >400 100-150 150-200 200-250 250-400 >400

10-20 0.229 0.219 0.221 0.230 0.090 225,829 373,035 217,675 328,536 205,913
30-50 0.324 0.479 0.456 0.264 0.051 321,737 500,973 320,667 547,571 610,134
50-64 0.433 0.616 0.715 0.389 0.070 154,487 278,310 160,273 268,210 648,193

buyers — key for demand estimation —, panel (a) of Figure 3 plots the premium paid by single,

subsidized buyers (vertical axis) against the buyer’s age (horizontal axis). The dashed line shows

that the average monthly premium is approximately constant across ages. This confirms that, when

deciding to participate, subsidized buyers spend on average the same amount. Yet, panel (b) shows

again that such participation decision (ratio of enrollees in Covered CA to potential buyers in the

ACS) is not constant in age, in particular it is steadily increasing between mid-30 and 64. This

fact suggests that, on average, older buyers are more willing to pay for coverage than their younger

counterparts. (Between the ages of 20 and 34 the relationship between age and participation is not

monotonic. This is likely due to buyers receiving support from their parents, as suggested by the

peak of participation at 26; this is the age at which dependents cannot be enrolled in the same plan

as their parents.)

Considering only participating buyers, panel (c) of Figure 3 plots the monthly premium paid

by single, subsidized buyers of different ages for Bronze, Silver, and Platinum plans. Enrolling

in a Platinum plan rather than a Silver plan costs a 30-years-old an extra $75/month, while this

difference increases to $250/month for a 60-years-old. Conversely, downgrading coverage from Silver
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Figure 3: Prices and choices for single, subsidized in 2014 Covered California
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to Bronze would save a 30-years-old $50/month, while more than $100/month for a 60-years-old. If

preferences for insurance were not affected by age, these price differences would impact the shares

of buyers choosing different tiers. Yet, as shown in panel (d) the share of buyers choosing Platinum

coverage is approximately constant in age, and the share of those choosing to downgrade to Bronze

coverage is decreasing in age. This is suggestive that, on average, older buyers are more willing to

pay for more generous coverage.

Market structure. Beside prices, population, and enrollment, I will also include in my analysis

variation in the combination of participating insurers and resulting distribution of market shares.

The number of insurers goes from three to six, for a total of eleven participants. Four are large

players — Anthem, Blue Shield, HealthNet, and Kaiser —, operating almost everywhere in the
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state. The remaining seven are smaller, local insurers offering coverage only in a small number of

regions. Insurers are differentially attractive in different regions and for different income groups,

as I summarize in Table 5. Among the four largest carriers, each captures on average between

15-36% of subsidized buyers. Yet these shares range from a minimum of 10% to a maximum of

30% for HealthNet, 50% for Kaiser and Blue Shield, and over 90% for Anthem, the largest insurer

in Covered California.

Table 5: Average market share by insurer in 2014 Covered California

Market share : Subsidized buyers Market share : Unsubsidized buyers
N.

Carrier name regions Mean St. Dev. Min Max Mean St. Dev. Min Max

Anthem 19 0.363 0.229 0.070 0.909 0.426 0.211 0.100 0.908
Blue Shield 19 0.292 0.131 0.086 0.525 0.226 0.074 0.086 0.352
Kaiser 18 0.209 0.164 0.005 0.511 0.213 0.121 0.006 0.444
HealthNet 13 0.147 0.155 0.010 0.354 0.159 0.066 0.037 0.241
Molina 4 0.021 0.028 0.003 0.063 0.022 0.034 0.001 0.073
Chinese C.H. 2 0.223 0.151 0.116 0.330 0.052 0.025 0.034 0.070
LA Care 2 0.086 0.029 0.066 0.106 0.144 0.019 0.131 0.158
Western 2 0.029 0.017 0.017 0.041 0.075 0.033 0.052 0.098
Sharp 1 0.090 0.000 0.090 0.090 0.224 0.000 0.224 0.224
Valley 1 0.028 0.000 0.028 0.028 0.034 0.000 0.034 0.034
Conta costa 1 0.027 0.000 0.027 0.027 0.029 0.000 0.029 0.029

The comparison between market shares within subsidized to those within high-income buyers

suggests that preferences for insurers may vary by income group. For example, while Anthem has,

on average, a share of high-income buyers of approximately 43%, within subsidized this drops to

36%. In contrast, a similar difference is “gained” in the opposite direction by Blue Shield, whose

share within low-income, subsidized buyers is 6% higher than within high-income. Part of these

differences in the success of large insurers can be explained by the role played by small local insurers.

For instance, Chinese Community Health Plan captures 33% of low-income buyers in San Francisco

region 4, and 12% in San Mateo region 8; within high-income, however, this number drops to less

than 7% in both regions. The opposite pattern is also observed, with Sharp — a local insurer in

San Diego — enrolling 9% of low-income buyers, while 23% of buyers who pay their premiums in

full.

4 Econometric model

4.1 Primitives

Markets, insurers, and products. There are R geographic markets (regions), indexed by

r = 1, ..., R. In each r, a population of households is offered J health insurance plans by N
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insurers, indexed by n = 1, ..., N .20 For each n, Jn ⊂ J is the set of products offered by n, and

with a slight abuse of notation n(j) will denote the seller of product j.

Households. A potential buyer i in region r is defined by a tuple (τ i, yi, hi, vi, ci); superscripts

are used throughout to index buyers (households), while subscripts index regions, insurers, and

products.

The triplet (τ i, yi, hi) ∈ T × Y × H (all finite sets) denotes age, income, and composition of

household i, and it is observed by all agents. Preferences of a buyer are instead unobserved by

sellers, and are described by the vector vi = (vi1, ..., v
i
J) ∈ RJ . This collects i’s willingness to

pay for each of the J products relative to the outside option j = 0. For buyers of type (τ , y, h),

P τ ,y,hr = (P τ ,y,h1r , ..., P τ ,y,hJr ) denotes the “price vector” of differences between the price of each j and

the price of the outside option (e.g. tax penalty for lack of insurance). Hence, i chooses j when

vi ∈ Dj(P τ
i,yi,hi

r ), where

Dj(P τ
i,yi,hi

r ) =

{
v ∈ RJ : argmax

k∈J

{
vk − P τ

i,yi,hi

kr

}
= j , and vj ≥ P τ

i,yi,hi

jr

}
. (7)

Note that I abstract away from how each vi could be derived from a more primitive model of choice

under uncertainty (see Einav et al., 2013, for an example of this derivation with CARA preferences).

The last element characterizing i, ci = (ci1, ..., c
i
J) ∈ RJ+, collects the costs that each insurer

expects to bear if i enrolls in a given product. That is, cij is equal to the amount that the seller

of j expects to spend to reimburse the health services of i under insurance policy j during the

coverage period. Differences in cij across j may reflect different underlying contracts with health

providers, differences in administrative costs, differences in the generosity of coverage, or differences

in expected utilization of health services.

Population. In every region, the composition of potential buyers is observed, with Gr(τ , y, h) ≥ 0

denoting the number of households with type (τ , y, h) in region r. Additionally, conditional on

(τ , y, h), preferences and cost of buyers in region r are distributed according to the continuous

density f̃r(v
i, ci|τ , y, h).

Rather than the entire joint distribution f̃r, the two relevant primitives that I will focus on

throughout are the marginal density of preferences conditional on household type:

fr(v
i|τ , y, h) =

∫
RJ+
f̃r(v

i, ci|τ , y, h) dci, (8)

and the vector of expected costs for each j in region r conditional on household’s type and prefer-

20Having an equal number of insurers and products across regions is a simplification to keep notation uncluttered,
this does not affect the empirical application.
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ences:

ψr(v, τ , y, h) ≡
∫
RJ+
ci · f̃r(v, c

i|τ , y, h)

fr(v|τ , y, h)
dci = E [c|r, v, τ , y, h] . (9)

In words, ψjr(v, τ , y, h) is the insurer’s expected cost when covering under plan j a household of

type (τ , y, h) and preferences v in region r.

Demand. The function στ ,y,hjr (P τ ,y,hr ) denotes the probability that a household of type (τ , y, h)

purchases j when the prices are P τ ,y,hr . Using the above notation this can be expressed as

στ ,y,hjr (P τ ,y,hr ) ≡
∫
Dj(P τ,y,hr )

fr(v
i|τ , y, h) dvi. (10)

4.2 Observables

The econometrician observes, for all products (j) in all regions r, the base price bjr, the product

characteristics (metal tier and insurer) zj , and the realized average cost Cjr.

For every household i, observables include the characteristics (τ i, yi, hi) and the plan selection

Si ∈ {0, 1, ..., J}, where j = 0 denotes the outside option (no purchase). From above, for each

household in region r:

Pr
[
Si = j

]
= στ

i,yi,hi

jr (P τ
i,yi,hi

r ) for j > 0. (11)

4.3 Functional form and other assumptions

Finite-types mixed-logit. The following structure for preferences (similar to Berry, Carnall,

and Spiller, 1996; Train, 2008) is assumed throughout:

vij = αizy
i

jr + ξin(j)r + εijr, (12)

where (αi, ξi) ∼ Pr(α, ξ|τ i, yi, hi), with finite support, and εij ∼Type I extreme value. The vector αi

collects the parameters on the observable product characteristics, while ξi collects the valuations for

the insurer-region specific unobservables. The natural interpretation for this is the money-metric

valuation for the network of medical providers offered by insurer n(j) in region r.

If Pr(α, ξ|τ i, yi, hi) is degenerate and constant across regions, this model is equivalent to a

standard multinomial logit with (τ , y, h)-specific parameters and insurer-region fixed effects. Im-

portantly, in this case the unobservable term ξn(j)r would affect willingness-to-pay for product j

equally for all households. In the mixed-logit specification, however, households with the same ob-

servable characteristics are allowed to have different taste for coverage generosity but also different

preferences for provider networks; Ho and Lee (2016) provide evidence supporting this.
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Conditional on (α, ξ), the probability that household i chooses j in r is

Pr
[
Si = j|α, ξ

]
=

exp
[
−P τ

i,yi,hi

jr + αzy
i

j + ξn(j)r

]
1 +

∑
k exp

[
−P τ

i,yi,hi

kr + αzy
i

k + ξn(k)r

] , (13)

and the age-income-household specific demand function can be re-written as:

στ ,y,hjr (P τ ,y,hr ) =
∑
α,ξ

Pr(α, ξ|τ , y, h) · Pr
[
Si = j|α, ξ

]
. (14)

To model unobserved heterogeneity, in every region (α, ξ) can take four distinct values, and each

point in the support (αkr, ξkr), k = 1, ..., 4, realizes with probability

Pr(αkr, ξkr|τ , y, h) =
exp

[
δk0r + δk1rτ + δk2ry + δk3rh

]∑4
`=1 exp

[
δ`0r + δ`1rτ + δ`2ry + δ`3rh

] , k = 1, 2, 3, 4, (15)

with δ1
0r = δ1

1r = δ1
2r = δ1

3r = 0. The likelihood function in region r is then

L(αr, ξr, δr) =
∏
i

(
4∑

k=1

Pr(αkr, ξkr|τ i, yi, hi) · Pr
[
Si = j|αkr, ξkr

])
, (16)

and the region-specific parameters (αr, ξr, δr) can be estimated via EM-Maximum Likelihood

(Train, 2008); this can be implemented using the command lclogit in Stata®, see Pacifico (2013).

Costs. For every buyer, the ex-post realized cost covered by the insurer, say c̃ij , is the sum of its

expectation cij and an idiosyncratic error term κij , independent from other variables (both observed

and unobserved).

Importantly, I assume that cij and the idiosyncratic preference shock εij are independent. This

is key to my argument for identification of cost without observing individual-level claims data. In

particular, this implies that ψr(v, τ , y, h) = E [c|r, v, τ , y, h] = E [c|r, α, ξ, τ , y, h].

Lastly, the cost function varies across products, insurers, and markets, as a function of product

characteristics zjr and demand parameters: ψjr(α, ξ, τ , y, h) = ψ(α, ξ, τ , y, h, zjr).

Together, these three assumptions imply that

Cjr = κjr +
∑
τ ,y,h,α

ψ(α, ξ, τ , y, h, zjr)
Gr(τ , y, h)Pr(α, ξ|τ , y, h) · στ ,y,hjr (P τ ,y,hr ;α, ξ)∑

τ ,y,hGr(τ , y, h)στ ,y,hjr (P τ ,y,hr )
, (17)

where E[κjr] = 0. In my main specification I will set ψ(α, τ , y, h, zjr) = βαα + βττ + βyy + γzjr,

allowing cost to vary with the buyer’s age, income, willingness-to-pay for low-deductible, and

insurer, coverage level, and region fixed-effects.
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5 Identification

Demand. Identification of demand relies on the observability of individual-level choices and de-

mographics, and on the institutional details of Covered Calfornia. Within a region, all buyers

face identical choice sets, and, most importantly, the unobservable characteristics of these prod-

ucts (where a primary concern arises from the unobservability of provider networks) are equal for

all buyers within a rating region. At the same time, prices and the observed financial generosity

of Silver plans vary significantly across households within a region, but this is not the result of

supply-side decisions, but rather the consequence of rating regulations, premiums subsidies, and

cost sharing subsidies.

This is then a unique setting in which one does not need to rely on regional variation in prices

(which could be driven by differences in providers, or properties of demand or cost across regions)

to identify the parameters of the demand system. Instead, the variation in prices within the

level at which insurers engage in supply-decisions is sufficient to identify demand region-by-region,

estimating directly the insurer-region specific (unobservable) fixed-effect. This closely resembles the

strategy adopted by Ho and Pakes (2014); Geruso (2016), and relates to the approach originally

introduced by Chamberlain (1980).

The main intuition can be seen easily in the simple multinomial logit case, where for a household

with characteristics (τ , y, h) the indirect utility from purchasing a plan is in which one has ατ ,y,hr

being the collection of demand parameters for a given household type, and ξn(j)r being the insurer-

region specific unobservable that is potentially correlated with the base price bjr. Given a pair of

competing products j and k one has:

ln

(
Pr[Si = j|τ , y, h, r]
Pr[Si = k|τ , y, h, r]

)
= −

(
P τ ,y,hjr − P τ ,y,hkr

)
+ ατ ,y,hr

(
zyj − z

y
k

)
+ ξn(j)r − ξn(k)r. (18)

The empirical analog of the left-hand side is observed for all j, all k, and all (τ , y, h). Then, one can

consider a second type (τ ′, y′, h′) and express the difference
(
ατ ,y,hr − ατ

′,y′,h′
r

)
as a function of only

observables, cancelling out the unknown term ξn(j)r− ξn(k)r. Moreover, when the two products are

offered by the same insurer, n(j) = n(k), the above expression can be used directly to obtain the

parameters ατ ,y,hr . These are then identified exploiting only within-region variation.

In the richer setting in which (α, ξ) are drawn from Pr(α, ξ|τ , y, h) two main assumptions are re-

laxed. First, independence from irrelevant alternatives (IIA) imposed by the standard-logit frame-

work does not need to hold. Second, the model allows different households to have a different

valuation for the unobserved insurer-region specific provider network.

As discussed in Berry, Carnall, and Spiller (1996), the variation underlying the identification

of heterogeneity in demand parameters within similar demogrpahic groups consists of violations of

IIA in the data when similar consumers face different prices (because of age-rating and subsidies)
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and/or different generosity of coverage for otherwise similar prices (due to the discontinuities in

actuarial value induced by the cost-sharing subsidies). In particular, the standard logit framework

— imposing IIA — requires that the values of (α, ξ) calculated comparing choice probabilities of

Bronze and Silver plans are equal to those calculated comparing choice probabilities of Bronze

and Platinum plans. When this is not the case, the residual variation in choice probabilities is

informative about heterogeneity in preferences within each group.

Importantly, the functional form restriction on the way in which Pr(α, ξ|τ , y, h) varies with

household demographics also plays a role. If this was fully unrestricted preferences could not be

identified, as there would be no variation left in prices within region and (τ , y, h) combination.

Instead, I assume that the distribution of (α, ξ) evolves according to (15), a smooth and continuous

function. Then, while the variation in choices and prices within similar demographics (e.g. 20-

22-year-olds, single, with the same income) identifies the distribution of (α, ξ) within this group,

the way in which this differs over the entire support of (τ , y, h) identifies the parameters δ, hence

Pr(α, ξ|τ , y, h).

Cost. A more critical challenge for identification of the model’s primitives is that, differently

from a market without selection, costs for insurers may not only vary by product, but also with

the characteristics of the buyer. My approach here formalizes the conditions for identification

of cost heterogeneity in this context, leveraging on the availability of plan-level cost information

(as in Bundorf, Levin, and Mahoney, 2012). In Appendix I also provide a formal argument for

identification on cost when no cost data are available, leveraging on supply-side assumptions (as in

Lustig, 2010, and a previous version of this paper).

When demand is identified, the functions Pr(α, ξ|τ , y, h), and Pr
[
Si = j|α, ξ

]
are known. There-

fore, the expression in (17) is known up to κjr and the cost function ψ(α, ξ, τ , y, h, zjr), which

enters linearly on the right-hand side. Letting M be the dimensionality of the cartesian product

supp(α, ξ) × T × Y × H. A set of sufficient conditions for identification of ψ(·, ·, ·, ·, zjr) is the

following:

1. There are at least M products for which zjr = z, for some z;

2. Within these products, the matrix in which: a row is a product j, a column is a combination

(α, ξ, τ , y, h), and each entry is the term

Gr(τ , y, h)Pr(α, ξ|τ , y, h) · στ ,y,hjr (P τ ,y,hr ;α, ξ)∑
τ ,y,hGr(τ , y, h)στ ,y,hjr (P τ ,y,hr )

(19)

is full-column-rank.

Under these conditions, regressing Cjr on the collection of (19) for all (α, ξ, τ , y, h) for the group of

products for which zjr = z returns the function ψ(·, ·, ·, ·, z).
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Intuitively, the above conditions require that, within groups of products that have the same

characteristics, there is a varying composition of enrollment in terms of observable buyers’ charac-

teristics and preferences for insurance. This can be driven by changes in the set of competitors,

competitors’ prices, or characteristics of the population in the market.

In practice, conditions 1 and 2 above can be very demanding, but one can combine the same

intuition with a parametrization of ψ and a similar identification strategy follows. For instance,

one may let

ψ(α, ξ, τ , y, h, zjr) = βαα+ βξξ + βττ + βyy + βhh+ γzjr.

Then the expression in (17) simplifies to

Cjr = κjr + γzjr + βααjr + βξξjr + βττ jr + βyyjr + βhhjr, (20)

where αjr is the average α among buyers of j in r, and similarly for ξ, τ , y, and h. Here the

condition for identification of γ and β is that the matrix collecting (zjr, αjr, ξjr, τ jr, yjr, hjr) is

full-column rank, requiring again variation in the composition of buyers in terms of preferences and

observables after controlling for product characteristics.

6 Estimates with Covered California data

6.1 Demand

6.1.1 Logit

I start by showing estimates from a simple logit and nested logit models, in which I do not allow

for unobserved heterogeneity in preferences.

Table 6 shows estimates of a standard logit with the sensitivity to premium varying with house-

hold demographics and various sets of fixed-effects. Following the derivation in Berry (1994) the

estimating equation is

ln

(
sτ ,y,hjr

sτ ,y,h0r

)
= −(ατ + αh + αy)P τ ,y,hjr + βAV y

j + ξ0−49
n(j)r1[τ < 50] + ξ50−64

n(j)r 1[τ ≥ 50] + ετ ,y,hjr , (21)

in which sτ ,y,hjr denotes the share of households with demographics (τ , y, h) choosing j in region r.

AV y
j is the actuarial value of contract j (varying with the household’s income), and the terms in ξ

collect the insurer-region specific unobservables (network of providers). These are allowed to differ

for households with average age below 50 and above 50. The error term ετ ,y,hjr is assumed to be

mean zero conditional on P , AV , and ξ.

The estimates in Table 6 show a large degree of heterogeneity in sensitivity to premium across

households with different age, and composition, reflecting the variation in the data presented in
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Table 6: Standard logit estimates, equation (21)

ln(sτ,y,hjr )− ln(sτ,y,h0r )

(1) (2) (3) (4) (5) (6) (7)

Premium coefficient, all buyers

Premium ($1,000) -0.14∗∗∗ -0.16∗∗∗ -0.16∗∗∗

(0.0067) (0.0072) (0.0072)

Premium coefficient, single subsidized

Premium ($1,000) ×Age ∈ [10, 19) -0.37∗∗∗ -0.45∗∗∗ -0.44∗∗∗ -0.40∗∗∗

(0.040) (0.029) (0.031) (0.031)

Premium ($1,000) ×Age ∈ [20, 29) -0.43∗∗∗ -0.51∗∗∗ -0.49∗∗∗ -0.46∗∗∗

(0.034) (0.021) (0.023) (0.023)

Premium ($1,000) ×Age ∈ [30, 39) -0.40∗∗∗ -0.47∗∗∗ -0.45∗∗∗ -0.42∗∗∗

(0.029) (0.020) (0.020) (0.021)

Premium ($1,000) ×Age ∈ [30, 49) -0.35∗∗∗ -0.41∗∗∗ -0.40∗∗∗ -0.37∗∗∗

(0.023) (0.015) (0.016) (0.016)

Premium ($1,000) ×Age ∈ [50, 59) -0.24∗∗∗ -0.28∗∗∗ -0.27∗∗∗ -0.37∗∗∗

(0.019) (0.013) (0.014) (0.019)

Premium ($1,000) ×Age ∈ [60, 64] -0.17∗∗∗ -0.21∗∗∗ -0.19∗∗∗ -0.28∗∗∗

(0.017) (0.013) (0.014) (0.015)

Difference in premium coefficient, other groups

Non-subsidized -0.047∗∗∗ -0.048∗∗∗ -0.051∗∗∗ -0.047∗∗∗

(0.0090) (0.0078) (0.0083) (0.0082)

Household of 2 0.076∗∗∗ 0.098∗∗∗ 0.090∗∗∗ 0.11∗∗∗

(0.017) (0.013) (0.013) (0.013)

Household of 3 0.21∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.23∗∗∗

(0.026) (0.019) (0.019) (0.018)

Household of 4 0.31∗∗∗ 0.36∗∗∗ 0.35∗∗∗ 0.34∗∗∗

(0.032) (0.023) (0.023) (0.023)

Household of 5 0.34∗∗∗ 0.40∗∗∗ 0.39∗∗∗ 0.37∗∗∗

(0.035) (0.025) (0.025) (0.025)

Actuarial value (%) -0.0023∗∗ 0.0026∗∗ -0.0021∗ 0.0044∗∗∗ -0.0032∗∗ 0.0030∗∗ 0.0027∗∗

(0.0010) (0.00094) (0.0011) (0.0012) (0.0012) (0.0012) (0.0012)

Insurer FE N N Y Y N N N
Region FE N N Y Y N N N
Insurer×Region FE N N N N Y Y N
Insurer×Region×over-50 FE N N N N N N Y

Observations 26521 26521 26521 26521 26521 26521 26521
Adjusted R2 0.115 0.215 0.202 0.325 0.234 0.350 0.373

Standard errors in parentheses, clustered at the region level (19 clusters).
An observation corresponds to a unique combination of (insurer-tier-region-age-income-household size).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Section 3. In the most conservative specification — column (7) with insurer-region fixed effects

allowed to differ for households with average age higher than 50 — the premium (in $1,000/year)

coefficient decreases from -0.40 for the younger households, to -0.28 for the older ones. Moreover,

huseholds with children have a higher willingness to pay, ceteris paribus.

Interpreting this estimates, one can calculate the willingness-to-pay for a 20% increase in ac-

tuarial value; this corresponds to an increase in coverage from Bronze to Gold, or a reduction in

deductible from $5,000 to $0. This number goes from approximately $300/year for younger-than-45

households, to $700/year for households whose members are, on average, older than 60. Without

allowing for richer heterogeneity, these estimates are likely to present a severe bias toward zero,

driven by the imposition of IIA with a large fraction of households choosing to stay out of the

exchange. The richer specifications I consider next relax this assumption.

6.1.2 Nested logit

Next I consider a two-groups nested logit model, in which households first decide whether to

participate or not, then which plan to purchase. As discussed in Berry (1994), this is equivalent to

allowing for a random coefficient on the value of the outside good, imposing IIA for products in the

exchange but not between these products and the choice to not purchase coverage. I let ζ denote

the nesting parameter, which represents the correlation between the utility of alternative options

inside the market. As ζ goes to one, households would only choose whether or not to purchase,

but would be completely indifferent between different alternatives. As ζ goes to zero, the model is

equivalent to the standard logit presented above.

The estimating equation is:

ln

(
sτ ,y,hjr

sτ ,y,h0r

)
= −(ατ+αh+αy)P τ ,y,hjr +βAV y

j +ξ0−49
n(j)r1[τ < 50]+ξ50−64

n(j)r 1[τ ≥ 50]+ζ ln(sτ ,y,hjr|IN )+ετ ,y,hjr ,

(22)

in which sτ ,y,hjr|IN denotes the share of buyers with characteristics (τ , y, h) choosing j in r conditional

on choosing some product in the market (j 6= 0).

I show the resulting estimates in Table 7. In the more conservative specification in column (7)

the nesting parameter is 0.48, confirming that the choice data reveals a significant departure from

IIA: the substitution patterns between inside products are different from the substitution between

these products and the outside good.

This first relaxation of IIA immediately affects the estimates of premium coefficients and the

resulting quantification of willigness-to-pay for coverage. For all demographics, the estimated pre-

mium coefficient is lower than in the standard logit model. This is now equal to -0.30 for the

younger households, and decreases to -0.20 for the older ones. At the same time, allowing a flexible

substitution pattern between outside option and products in the exchange leads a larger estimate
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Table 7: Nested logit estimates, equation (22)

ln(sτ,y,hjr )− ln(sτ,y,h0r )

(1) (2) (3) (4) (5) (6) (7)

Premium coefficient, all buyers

Premium ($1,000) -0.14∗∗∗ -0.16∗∗∗ -0.16∗∗∗

(0.0068) (0.0077) (0.0076)

Premium coefficient, single subsidized

Premium ($1,000) ×Age ∈ [10, 19) -0.26∗∗∗ -0.33∗∗∗ -0.34∗∗∗ -0.30∗∗∗

(0.037) (0.031) (0.032) (0.032)

Premium ($1,000) ×Age ∈ [20, 29) -0.29∗∗∗ -0.36∗∗∗ -0.37∗∗∗ -0.33∗∗∗

(0.032) (0.023) (0.024) (0.024)

Premium ($1,000) ×Age ∈ [30, 39) -0.25∗∗∗ -0.32∗∗∗ -0.32∗∗∗ -0.29∗∗∗

(0.028) (0.022) (0.022) (0.023)

Premium ($1,000) ×Age ∈ [40, 49) -0.22∗∗∗ -0.28∗∗∗ -0.28∗∗∗ -0.26∗∗∗

(0.021) (0.016) (0.016) (0.017)

Premium ($1,000) ×Age ∈ [50, 59) -0.12∗∗∗ -0.16∗∗∗ -0.17∗∗∗ -0.27∗∗∗

(0.017) (0.014) (0.015) (0.020)

Premium ($1,000) ×Age ∈ [60, 64] -0.069∗∗∗ -0.11∗∗∗ -0.11∗∗∗ -0.20∗∗∗

(0.016) (0.014) (0.015) (0.016)

Difference in premium coefficient, other groups

Non-subsidized -0.082∗∗∗ -0.082∗∗∗ -0.080∗∗∗ -0.076∗∗∗

(0.0082) (0.0082) (0.0083) (0.0082)

Household of 2 0.017 0.041∗∗∗ 0.043∗∗∗ 0.063∗∗∗

(0.017) (0.014) (0.014) (0.014)

Household of 3 0.11∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.15∗∗∗

(0.026) (0.020) (0.020) (0.020)

Household of 4 0.20∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.24∗∗∗

(0.033) (0.025) (0.025) (0.025)

Household of 5 0.21∗∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.26∗∗∗

(0.036) (0.026) (0.027) (0.027)

Actuarial value (%) 0.0092∗∗∗ 0.0084∗∗∗ 0.0090∗∗∗ 0.0095∗∗∗ 0.0084∗∗∗ 0.0089∗∗∗ 0.0085∗∗∗

(0.00071) (0.00096) (0.00089) (0.0013) (0.00093) (0.0013) (0.0013)

Nesting parameter 0.60∗∗∗ 0.57∗∗∗ 0.56∗∗∗ 0.51∗∗∗ 0.54∗∗∗ 0.48∗∗∗ 0.48∗∗∗

(0.018) (0.024) (0.013) (0.014) (0.012) (0.013) (0.013)

Insurer FE N N Y Y N N N
Region FE N N Y Y N N N
Insurer×Region FE N N N N Y Y N
Insurer×Region×over-50 FE N N N N N N Y

Observations 26521 26521 26521 26521 26521 26521 26521
Adjusted R2 0.318 0.386 0.352 0.434 0.354 0.437 0.459

Standard errors in parentheses, clustered at the region level (19 clusters).
An observation corresponds to a unique combination of (insurer-tier-region-age-income-household size).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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for the value of generous coverage, with the coefficient on actuarial value increasing from 0.0027

to 0.0085. Consequently, as one would expect the estimates of willingness-to-pay for insurance are

significantly larger than before. Younger households are now estimated to value a $5,000 decrease

in annual deductible approximately $1,000/year, household with age between 40-50 approximately

$1,500/year, and the older group of households approximately $3,000/year.

6.1.3 Mixed logit

The richer specification introduced in Section 4 imposes even weaker assumptions on substitution

patterns, allows preferences for contract generosity to differ across markets, and introduces unob-

served heterogeneity in preferences for contract generosity and provider networks within households

with similar demographics in the same market.

To illustrate the results, here I primarily focus on the average posterior of wilingness-to-pay (in

$/year) for an increase of 20% of the actuarial value of the insurance coverage (WTP henceforth),

or to reduce the annual deductible from $5,000 to $0. In Covered California this is equivalent to

upgrading from Bronze to Gold, or from Silver to Platinum for buyers who are not eligible for

cost-sharing subsidies.

Table 8: Estimated WTP for +20% coverage (from $5,000 to $0 deductible)

Age of Subsidized households
household members No purchase Purchase in Covered CA

Mean St. Dev. Cross-region Mean St. Dev. Cross-region
St. Dev. St. Dev.

10-20 1,111 1,256 917 2,288 1,288 371
20-30 1,066 1,109 609 1,586 916 266
30-40 1,070 1,048 423 2,139 1,068 288
40-50 1,245 1,096 434 2,533 987 333
50-60 1,278 1,013 423 2,803 842 354
60-64 1,611 1,277 651 3,031 741 410

Insurer-Region FE Y Y

Non subsidized households
No purchase Purchase in Covered CA

Mean St. Dev. Cross-region Mean St. Dev. Cross-region
St. Dev. St. Dev.

10-20 405 235 210 2,924 152 131
20-30 532 210 125 2,972 196 103
30-40 600 190 118 2,926 276 98
40-50 552 177 85 2,596 634 357
50-60 634 116 21 2,691 535 230
60-64 752 71 20 2,942 210 63

Insurer-Region FE Y Y

In Table 8 I summarize WTP as estimated for different groups of households, distinguishing
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between average age of household memebers, subsidized and not, and conditioning on the observed

choice (no purchase vs. purchase in Covered California). As the table highlights I estimate that

WTP is highly heterogeneous across households with different age and income, within households

with the same age and income, and across regions.

Focusing on the low-income, subsidized buyers, represeting 90% of enrollees in Covered Califor-

nia, I find that comparatively older households are significantly more willing to pay for coverage.

From $1,600/year among 20-30-years-old households, WTP for $0 deductible raises to $2,800-

3,000/year among households whose members are, on average, older than 50. Within each group,

the standard deviation of WTP varies between $700 and $1,000, with 30-50% of this variation being

driven by cross-region heterogeneity. The model predicts that buyers who decide not to purchase

coverage have significantly lower WTP, with a difference varying between $1,000 for the younger

households and $1,500 for the relatively older ones. For the higher-income, unsubsidized buyers

this difference is estimated to be larger than $2,000.

Figure 4 shows the estimated distribution of WTP among subsidized buyers, distinguishing

between single, non-single, and highlighting differences between age groups, and differences between

purchase decision. This clearly shows the large differences between these groups, and the large

degree of residual heterogeneity after conditioning on choice and household age. In particular, the

entire distribution of WTP is shifted to the right for older households, and for households who

Figure 4: Histogram of estimated WTP for +20% coverage
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chose to purchase coverage. This shift is estimated to be significantly larger for non-singles.

To investigate this further, in Figure 5 I plot the average WTP within each age group distin-

guishing between single, non single, and by coverage choice. As anticipated, older households have,

on average, higher WTP, but this relationship is very different for singles and non-singles. Except

for the (very few) households with exceptionally low average age (e.g. single mothers), I estimate

that among non-singles who purchase coverage WTP is growing from $3,000 for the younger house-

holds to $3,500 for the older ones. This age-driven heterogeneity is significantly larger for single

buyers, where WTP grows from less than $1,500 to over $3,000.

Figure 5: Average WTP by age, household type, and coverage choice
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Essential to the analysis of the subsidy program, these estimates imply that the semi-elasticity

of demand at the extensive margin, defined as total % drop in participation in the exchange due to

a $100/year increase in all premiums (equivalent to a $100 decrease in the subsidy) is also highly

heterogeneous in age. In Figure 6 I show how this varies by age and income, distinguishing again

between singles and non-singles. Within each group, older househols would leave the market at

a slower rate if subsidies were reduced. The difference from the youngest to the oldest group is

between 2% for single, subsidized (from 4.5% to 2.2%) and 5% for non-single, subsidized (from 7%

to 2%). The estimated semielasticity is much lower among non-subsidized households: as discussed

earlier, these are very unlikely to participate, but when doing so their are not very responsive to

small price changes.
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Figure 6: Semielasticity by age, household type, and subsidy status
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6.2 Cost

Combining plan-level cost data, enrollment information, and the demand estimates described above,

I obtain estimates of individual (expected) cost as a function of product, insurer, and region char-

acteristics, but also varying with buyers’ characteristics and preferences. Specifically, for any plan

I regress the (log) average incurred claims on average age of buyers, average income (as % of FPL),

average WTP (estimated above), actuarial value dummies, insurer dummies, and regional dummies.

The results are shown in Table 9 below, where column (5) is the most comprehensive specification.

Interpreting these estimates, I find a substantial degree of heterogeneity of cost across buyers.

Even after controlling for insurer, coverage level, and region fixed-effects, buyers are costlier to cover

as they get older, and when they are more willing to pay for higher coverage. The magnitudes of

these coefficients are robust across specifications, while this is not the case for the effect of income,

vanishing when controlling for contract, insurer, and region FE.

Quantitatively, the estimated parameters indicate that, on average, a 10-years increase in aver-

age age of the enrollment pool (this number ranges from 18 to 61, with a standard deviation of 7.4)

increases ceteris paribus expected average claims by 16%. Consistenly with a substantial degree of

adverse selection, i.e. a positive relationship between willingness-to-pay for insurance and expected

cost, a $1,000/year increase in WTP corresponds to a 20% increase in average claims.

Lastly, more generous plans have higher expected costs. In particular, the $0 deductible Plat-
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Table 9: Average cost as a function of buyers’ composition and plan characteristics

Log Plan-level claims
(1) (2) (3) (4) (5)

Buyers’ characteristics

Average enrollee’s age 0.058 0.029 0.017 0.014 0.016
(0.000) (0.000) (0.070) (0.076) (0.078)

Average enrollee’s income 0.004 0.004 0.001 0.000 -0.001
(0.000) (0.000) (0.400) (0.984) (0.403)

Average enrollee’s WTP 0.441 0.216 0.215 0.195
for +20% actuarial value (0.000) (0.002) (0.001) (0.021)
($1,000/year)

Product and market characteristics

Actuarial value

50 — Catastrophic - - -

60 — Bronze 0.036 0.069 -0.004
(0.872) (0.718) (0.985)

70 — Silver 0.290 0.259 0.148
(0.304) (0.272) (0.593)

80 — Gold 0.582 0.622 0.573
(0.009) (0.001) (0.009)

90 — Platinum 1.109 1.141 1.093
(0.000) (0.000) (0.000)

Insurer FE N N N Y Y
Region FE N N N N Y

Obs 404 404 404 404 404
Adjusted R2 0.21 0.28 0.47 0.58 0.57

Note: Estimates obtained via OLS regression of ln(Cjr) (columns (1)-(5)) and Cjr
(columns (6)-(10)) on average age, income, and estimated WTP of buyers choosing j in
r, actuarial value dummies, insurer and region FE. Standard errors are clustered at the
region level and two-sided p-values reported in parentheses.

inum plans are for the issuer twice as costly as Bronze plans, and 80% costlier than Silver plans.

Importantly for interpretation, these differences can be driven by the higher coverage for the same

health-risk and utilization, but also by an increase in utilization (moral hazard). Such difference is

not distinguishable in my empirical setting. Although this is not essential to study counterfactual

prices and quantities under different subsidy schemes, it would be important to engage in welfare

calculations. This is one of the main reasons why, although the model would allow me to do so, I

choose to not discuss welfare in this paper.
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7 Equilibrium under different subsidy designs [Preliminary]

Building on the theoretical insights from Section 2, and using the richer model with estimates from

Covered California, I can now compare equilibrium under different designs of the subsidy program.

Throughout, I will assume that insurers maximize expected profits knowing market primitives, and

that base prices form a Nash equilibrium of the static pricing game.

7.1 Vouchers vs. price-linked discounts

My first comparison is between the ACA subsidy design and an “equivalent” voucher program,

where buyers receive fixed discounts equal to those resulting in equilibrium under the current

scheme. To start, recall that under the ACA design if base prices are bACAr buyers receive price-

linked discounts Sτ ,y(bACAr ) computed via equation (5). I compare this to the alternative design Ŝ,

under which buyers receive a fixed discount (“equivalent voucher”) Ŝτ ,yr = Sτ ,y(bACAr ), which is not

adjusted as insurers’ pricing decisions br vary. Because young buyers are more price-sensitive and

cheaper to cover, insurers’ marginal profit functions under Ŝ lay below marginal profit functions

under S (discussion in Section 2). Therefore, even in this richer model insurers set lower base

prices under the voucher scheme Ŝ than under the ACA design, and relevant equilibrium quantities

respond accordingly.

To quantify these differences I start off by computing equilibrium base prices bACAr under the

status quo subsidy design. For this, I use demand and cost estimates from Covered California,

and assume that insurers use the observed age-income composition Gr to compute expected profits

in each region. I then carry on the same equilibrium computation under the equivalent voucher

scheme Ŝ and compare the two equilibria in terms of enrollment by age group, average cost, average

markups (difference between total per-person amount received by the insurer and average cost),

and subsidy expenditure.

Table 10 reports the results of this comparison, showing that differences between the two de-

signs are indeed sizable. In particular, under fixed vouchers equilibrium markups are 15% lower

(approximately $200 per-year). This is driven by insurers setting lower base prices, yielding to

lower pre-discount premiums. At these lower premiums, because vouchers are not adjusted dis-

counted prices are lower than under the ACA design, and enrollment is higher (+7% among under

45, and +9% for the older group). With these changes in enrollment the age-composition of buyers

remains almost unaltered, and this reflects into average cost being approximately the same in the

two equilibria (+1%). Markups reductions are then largely explained by a lower per-person amount

received by insurers, combination of lower average subsidy provided by the government (−5%), and

lower contribution paid by buyers (−11%).

36



Table 10: Comparison between ACA price-linked discount and vouchers

Enrollment Enrollment Average Average Per-person Total
20-44 45-64 cost markup subsidy spending

ACA status quo levels: 460,423 543,029 $4,061 $1,753 $3,944 $4.45 billion
(endeogenous discount)

Percentage change under +7% +9% +1% -15% -5% +3%

equivalent voucher (1)

Note: Market outcomes in the simulated equilibrium under the ACA (fit of baseline model) and relative change in

these outcomes in the equilibrium under a voucher program that provides, in every region, discounts equal to those

resulting in equilibrium under the ACA. The average “equivalent” voucher is $1,500 for the under 45 and $6,500 for

the over 45.

7.2 Age-adjusted vouchers

Next I quantify the difference in equilibrium outcomes induced by variations in the voucher amount

across different age groups; this allows me to explore the potential gains from age-targeted subsidies.

I consider fixed vouchers analogous to Ŝ, where instead of setting voucher values equal to the

discounts provided under the ACA scheme, for any age group τ there is an amount V τ > 0 for

which Ŝτ = V τ . (I omit y from the notation since I observe only one income level in my data.)

The discussion in Section 2 highlights that, within this class of subsidy schemes, reducing vouchers

for the old and increasing those for the young can yield to lower average cost, higher coverage, and

lower per-buyer spending. Intuitively, increasing the relative share of young buyers in enrollment

pools lowers average cost and markups (by raising average elasticities), thus induces insurers to set

lower prices. If this price reduction exceeds the amount by which the voucher of the older group was

raised, all buyers are better off. Additionally, if the enrollment increase is sufficient to compensate

the lower per-enrollee markup, also total profits are higher, so that insurers are not worse off either.

To investigate this mechanism, I simulate and report equilibrium outcomes for different pairs

of voucher values (V 20-44, V 45-64), varying these over a two-dimensional grid of $100 increments. In

Figure 7 I plot level curves (in the space of voucher values) for equilibrium outcomes that would

likely enter the government’s objective: average cost, average premium received by insurers, enroll-

ment for different age groups, and subsidy expenditure (both per-insured person and aggregate).

To facilitate comparisons, for each outcome I highlight the curve corresponding to the equilibrium

level under the ACA design, and each other curve corresponds to a 10% increase (or decrease) from

this level. Panel (c) and (d) show how equilibrium enrollment in the two age groups varies as a

function of vouchers. Because they are less price sensitive, for old buyers level curves of enrollment
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are significantly sparser than those of the young, corresponding to a flatter surface. In practice,

a $100 increase in V 20-44 yields to a much larger increase in enrollment among the young than

the drop in enrollment among the old implied by a $100 reduction in V 45-64. The effect of age

adjustments to vouchers follows, as it is shown directly by the downward sloping curves in panel

(d): one can increase V 20-44, reduce V 45-64, and obtain higher coverage for both groups, with lower

cost (panel (a)) and lower per-person public spending (panel (e)).
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Figure 7: Equilibrium outcomes: ACA scheme vs. age-specific vouchers
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(b) Average premium (ACA level = $5,814)

+10%

-10%

-20%

ACA
level

5500

5600

5700

5800

5900

6000

6100

6200

6300

6400

6500

45
-6

4 
vo

uc
he

r 
($

)

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

20-44 voucher ($)

(c) Enrollment 20-44 (ACA level = 460,423)
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(d) Enrollment 45-64 (ACA level = 543,029)
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(e) Average subsidy (ACA level = $3,944)
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(f) Total subsidy expenditure (ACA level = $4.45 billion)
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The figure shows level curves of equilibrium outcomes resulting under an age-adjusted voucher as functions of the voucher for the under 45
(x-axis) and voucher for the over 45 (y-axis). The level corresponding to the baseline ACA equilibrium (model fit) is highlighted in red, and
every level curve corresponds to a 10% increase (decrease) for that level. The graph is obtained simulating equilibrium base prices — zeroing

first-order conditions — as vouchers value vary over the grid in $100 increments.
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In Table 11 I compare with more precision equilibrium outcomes along two level curves depicted

in panel (d), with voucher values for which enrollment of the over 45 is approximately constant

at either 1.08 or 1.02 times the equilibrium level under the ACA. In both situations a $400 in-

crease in V 20-44 and a simultaneous $200 reduction V 45-64 maintain enrollment of the older group

approximately invariant. At the same time, however, enrollment among under 45 increases by

approximately 60%, and average cost is 10-15% lower. Since young buyers are more price-sensitive

markups are also lowered, up to a 25% drop from ACA levels (approximately $448 per-person-year),

and per-person public expenditure is reduced by more than 15% (or $600 per-person-year). Lastly,

the large increase in enrollment compensates the reduction in per-person markup, and insurers are

also better off when the markets has more young buyers; total profits go from $1.76 to $1.89 billion.

Table 11: Equilibrium outcomes under different age-adjusted vouchers

Enrollment Enrollment Average Average Per-person Total
20-44 45-64 cost markup subsidy spending

Vouchers at which 45-64 enrollment ≈ 1.07-1.10 times the ACA level

V [20,44] V [45,64] (ACA =1) (ACA =1) (ACA =1) (ACA =1) (ACA =1) (ACA =1)

1500(1) 6500(1) 1.07 1.09 1.01 0.85 0.95 1.03
1600 6500 1.22 1.10 0.98 0.83 0.93 1.08
1700 6400 1.38 1.10 0.93 0.79 0.90 1.10
1900 6300 1.70 1.07 0.87 0.79 0.85 1.16

Vouchers at which 45-64 enrollment ≈ 1.02-1.03 times the ACA level

V [20,44] V [45,64] (ACA =1) (ACA =1) (ACA =1) (ACA =1) (ACA =1) (ACA =1)

1500 6300 1.07 1.02 0.99 0.83 0.91 0.95
1700 6200 1.40 1.03 0.91 0.79 0.86 1.03
1800 6200 1.55 1.03 0.88 0.78 0.84 1.07
1900 6100 1.75 1.02 0.84 0.76 0.82 1.10

Note: Market outcomes (relative to the ACA equilibrium in the baseline model) in the simulated equilibrium under

alternative pairs of age-adjusted vouchers. Both panels show market outcomes changing as the voucher for the

under 45 is raised and the voucher for the over 45 is lowered. The top panel corresponds to a level curve of over 45

enrollment equal to 102-103% of the ACA level, while the bottom panel corresponds to a level curve of over 45

enrollment equal to 107-110% of the ACA level; see also Figure 7.

7.3 ACA price-linked discounts with age-specific price caps

My results thus far suggest that the use of age-adjusted vouchers might be preferable to the current

ACA scheme (price-linked discounts not tailored by age). However, price-linked discounts have the

important advantage of ensuring the final price for the buyer. The government needs to know less
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about the determinants of insurers’ and buyers’ decisions, and can avoid the risk of setting vouchers

that are either too high or too low. Nevertheless, even if only price-linked discounts are feasible,

age adjustments might still be desirable due to age-heterogeneity in demand and cost.

In my last counterfactual I consider this, comparing the ACA scheme (where price caps used

to compute discounts are equal to $1,400 for all ages) to a scheme with price-linked discounts but

with premium caps varying by age. Practically, I consider a scheme Ŝ such that

Ŝτ ,y(br) = max
{
Aτ · b∗r − P

τ ,y
, 0
}
, (23)

in which P
20-44,y

< P
45-64,y

, and b∗r is the second-cheapest base price of Silver plans in the region.

This is then the same scheme S as implemented under the ACA (equation (5)), with the only

difference being that price caps vary also by age (under S one has P
20-44,y

= P
45-64,y

= P
y
).

Practically, one can also think of this as a scenario in which the government provides — on top

of the current subsidy program — additional incentives for the participation of young buyers with

different fiscal instruments.

The results of this comparison are reported in Table 12, where I show how equilibrium outcomes

respond to progressively lower price caps for the under 45. Higher generosity of the subsidy scheme

for young buyers yields again to large increases in their participation, and a corresponding reduction

in average cost and per-buyer subsidy outlays. Yet, gains relative to the ACA scheme are smaller

than under age-adjusted vouchers, since markup reductions are lower (from over 20% to less than

10%), a consequence of the additional distortions induced by price-linked discounts.

Table 12: Equilibrium outcomes under the ACA scheme with lower price caps for under 45

Enrollment Enrollment Average Average Per-person Total
20-44 45-64 cost markup subsidy spending

P
[20,44]

P
[45,64]

(ACA =1) (ACA =1) (ACA =1) (ACA =1) (ACA =1) (ACA =1)

1400 1400 1 1 1 1 1 1
1300 1400 1.13 1 0.97 0.99 0.98 1.04
1200 1400 1.28 1 0.95 0.97 0.96 1.08
1100 1400 1.42 1 0.93 0.95 0.94 1.12
900 1400 1.75 1 0.88 0.91 0.91 1.22
800 1400 1.94 1 0.86 0.91 0.90 1.29

Note: Market outcomes (relative to the ACA equilibrium in the baseline model) in the simulated equilibrium under

alternative pairs of age-adjusted price-linked subsidies. The table shows market outcomes changing as the price cap

on the second-cheapest Silver plan in the region for the under 45 is progressively lowered.
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7.4 Summary of equilibrium comparative statics under different designs

I summarize the above comparisons in Figure 8, where I express differences between the ACA design

and possible alternatives in head-counts (for enrollment) and dollars (for average cost, markup, and

subsidy).

Figure 8: Summary of differences between ACA scheme and counterfactual alternatives
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The figure summarizes the comparison between the ACA subsidy design and the three alternatives I consider in my
counterfactuals: fixed vouchers with amounts equivalent to the discounts in the equilibrium under the ACA —

black bars — , age-adjusted vouchers chosen to be such that over 45 enrollment is 3% higher than under the ACA
— crosshatched bars — , and age-adjusted price-linked discounts where the price ceiling on Silver coverage for the

under 45 is raised to have the same enrollment as under age-adjusted vouchers — shaded bars.

The bars are derived from Tables 10, 11, and 12.

The figure highlights the different role played by the two aspects of subsidy design that I focused

on. On the one hand, using vouchers instead of price-linked subsidies increases price competition,

and thus lowers markups and the cost for the government of covering a low-income buyer. On the
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other hand, tailoring discounted prices to age does not imply a redistributive trade-off, but rather

is a powerful tool to affect the market average cost, insurers’ markups, and per-buyer government

expenditure. Importantly, the two mechanisms co-exist and either complement or offset each other

under different design alternatives.

8 Conclusions [Preliminary]

The recent changes to the US health care system, primarily induced by the 2010 national reform,

opened many questions for regulators and economists. Within the growing body of work on regu-

lation of private insurance, in this paper I used an empirically tractable model of imperfect com-

petition between insurers to study (static) equilibrium under different designs of the ACA subsidy

program. The applied contribution is two-folded. First, I estimated the model in the post-reform

status quo, regulated by the ACA and in which the vast majority of buyers are low-income and

thus subsidy eligible. Second, my counterfactuals highlighted that the ACA subsidy scheme leaves

room for possible improvements that are quantitatively significant and consistent with theoretical

predictions.

In my application I used data from the first year of operations of the Californian marketplace

to obtain estimates of demand and cost. Importantly, the buyers in this market belong to a

segment of the population that was largely underrepresented in previous studies, and I found a

large degree of heterogeneity (both in demand and cost) across buyers of different age. These

estimates are the drivers of my counterfactual results. Price-linked subsidies as mandated by

the ACA increase insurers’ market power, implying higher markups, lower coverage, and higher

spending when compared to a mechanism where low-income discounts are not adjusted to prices. I

quantified this distortion to be approximately $200 per-person-year (15%). A second result is that

age-adjustments of subsidized premiums within a given income level might lead to better outcomes,

both in terms of enrollment levels and efficiency in the use of public funds. This alternative might be

easier to implement than exogenous vouchers, and the gains follow directly from the heterogeneity in

cost across buyers: Raising the participation of “young invincibles” generates a positive externality

on the entire market, reducing costs, prices, and the public spending for every insured buyer.

Supporting intuition, my simulations suggested that potential gains are sizable: One can maintain

enrollment among buyers who are older than 45 approximately unaltered, increase enrollment

among younger buyer by more than 50%, while reducing per-insured public spending by $600 per-

year. With the government intent to increase coverage while limiting spending, a modification of

the subsidy scheme to allow for age-specific premium even among low-income buyers could then

improve upon the current regulation.

Looking at ACA marketplaces, here I focused on the design of the subsidy program, with a

partial equilibrium analysis that holds other parts of the regulations unchanged. Subsidies are
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indeed only one piece of the large regulatory innovation mandated by the reform, and different

rules complement each other in generating market outcomes. Versions of the model I employed

here could also be used to study other ACA regulations, such as age-rating restrictions, cost-sharing

support, risk-adjustment mechanisms, or tax-penalties for the uninsured.

Pricing decisions can be arguably seen as a natural starting point to analyze insurers’ compe-

tition in a new institutional context. However, pricing incentives are just one part of the complex

puzzle that economists and regulators need to consider. Dynamic incentives of buyers — e.g. choice

inertia (Handel, 2013) — and insurers — e.g. entry and network-setting decisions (Ho and Lee,

2016) — could also play a relevant role in determining outcomes in this market. As the market-

places are now entering the fourth year of operations, in the future it will be possible to use richer

models and data to account for these additional dimensions.
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APPENDIX

Appendix A. Proof of Proposition 1

I prove part (a), and part (b) follows immediately by simple algebra.

Note that for any τ the probability that a buyer chooses j at the prices P is

σj(P, τ) =

∫
{vj≥Pj}∩{vj−vk≥Pj−Pk∀k}

dF (v|τ). (24)

Then, when all prices are lowered by ∆ for Y buyers:

σj(P −∆, Y ) =

∫
{vj≥Pj−∆}∩{vj−vk≥Pj−Pk∀k}

dF (v|Y ) > σj(P, Y ). (25)

Symmetrically, when all prices are increased by ∆ for O buyers:

σj(P + ∆, O) =

∫
{vj≥Pj+∆}∩{vj−vk≥Pj−Pk∀k}

dF (v|O) < σj(P, Y ). (26)

It follows that for all P αSj (P ) < αŜj (P ). From this, and recalling that CYj < COj , AC Ŝj (P ) <

ACSj (P ). Moreover, since ηYjj > ηOjj , the denominator in MKS
j (P ) is smaller than the denominator

in MK Ŝ
j (P ). Then, if for some ∆ > 0, the numerator in MKS

j (P ) is larger than the numerator in

MK Ŝ
j (P ) — at least in a neighborhood of P ∗,S —, then the right-hand side of (??) is lower under

Ŝ than under S, and since prices are strategic complements Vives (1990) implies P ∗,Ŝ < P ∗,S . To

obtain the result it is then sufficient to consider the equilibrium point P ∗,S , and setting α̃∗,Sj (∆) ≡
αŜj
(
P ∗,S

)
check that the function

Φj (∆) = 1−
(
CYj − COj

) (
ηOjj − ηYjj

)
α̃∗,Sj (∆)

(
1− α̃∗,Sj (∆)

)
is decreasing in ∆ ∈

[
0,∆

]
for some ∆ > 0. Since α̃∗,Sj (0) < 1

2 ,
dα̃∗,Sj (0)

d∆ > 0, one has

Φ′j (0) = −
(
CYj − COj

) (
ηOjj − ηYjj

) dα̃∗,Sj (0)

d∆
< 0,

and the result follows.�
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Appendix B. Nonparametric identification without claims data

In this appendix I provide conditions for nonparametric identification of the distribution of will-

ingness to pay and of cost conditional on willingness to pay, assuming that observables consists of

choices, prices, and products’ characteristics.21

For this I use a model that is not tailored to my specific application, omitting subsidies and

other regulations. This allows me to focus on, and highlight, the novel aspect of the identification

argument, which is to use equilibrium assumptions and variation in the preferences of marginal

buyers to identify cross-buyer cost heterogeneity. I provide a positive result for the case of single-

plan insurers (or plan-level pricing decisions), an important simplification that leaves open questions

for future work. In fact, multi-product pricing decisions introduce several complications, with the

need of additional conditions, a different constructive proof, or specific functional form assumptions

(e.g. those in the empirical application in this paper, or in Lustig, 2010).

B1. Model and observables

I start by adopting the model of demand used in Berry and Haile (2014) (BH), and then model

supply allowing costs to vary with buyers’ willingness to pay, and assuming that a Nash-in-prices

equilibrium realizes in each market.

Demand (adapted from BH). Each consumer i in market r chooses a plan (or product) from a

set J = {0, 1, ..., J}. A market consists of a continuum of consumers in the same choice environment

(e.g. geographic region). Formally a market r for the J products is a tuple χr = (xr, pr, ξr),

collecting characteristics of the products or of the market itself. Observed exogenous characteristics

are represented by xr = (x1r, ..., xJr), where each xjr ∈ RK . The vector ξr = (ξ1r, ..., ξJr), with

ξjr ∈ R, represents unobservables at the level of the product-market. Finally, pr = (p1r, ..., pJr),

with each pjr ∈ R, represents (endogenous) prices.

Consumer preferences are represented with a random utility model quasilinear in prices (Section

4.2 in BH). Consumer i in market r derives (indirect) utility uijr = vijr − pjr when purchasing j,

with the usual normalization vi0r = 0, for all i, all r. Given prices, the choice of each buyer is then

determined by the vector vir = (vi1r, ..., v
i
Jr). For each buyer in market r, vir is drawn i.i.d. from a

continuous density fr(v). This satisfies the following:

D1. BH Demand structure: There is a partition of xjr into (x
(1)
jr , x

(2)
jr ), where x

(1)
jr ∈ R, such that

given indexes δr = (δ1r, ..., δJr), with δjr = x
(1)
jr + ξjr, fr(v) = f(v|δr, x(2)

r ).

21This is the main difference between my approach and existing work on identification of demand and cost in
selection markets, where the observability of costs (e.g. ex-post claims) has been assumed (c.f. Einav, Finkelstein,
and Cullen, 2010a; Bundorf, Levin, and Mahoney, 2012, and many others). One exception is Lustig (2010), who
like me estimates costs using equilibrium pricing conditions. While our estimators are similar, my point here is to
formalize which variation is sufficient for identification.
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Therefore, assuming that arg maxj∈J u
i
jr is unique with probability one in all markets, choice prob-

abilities (market shares) are defined by

sjr = σj(χr) =

∫
Dj(pr)

f(v|δr, x(2)
r ) dv, j = 0, 1, ..., J, (27)

Dj(pr) = {v : vj − vk ≥ pj − pk, for all k 6= j} . (28)

Observables. Let zr = (z1r, ..., zJr), zjr ∈ RL, denote a vector of cost shifters excluded from the

demand model. The econometrician observes (pjr, sjr, xjr, zjr) for all r and all j = 1, 2, ..., J .

Supply. Let wjr = (ξjr, xjr, zjr) ∈ RK+L+1 collect characteristics (observable and unobservable)

and cost shifters of product j in r. When purchasing j, a buyer i with valuations vi = v in market

r increases the total expected cost for the insurer by ψj(v, wjr), ψj : RJ × RK+L+1 → R.

The function ψj(·, wjr) is continuous and bounded for all j, and describes how the expected

cost of covering the buyer varies with her vector of valuations after conditioning on wjr.
22

At the prices pr the seller of j realizes profits in market r equal to

Πjr(χr) = pjr · σj(χr)−
∫
Dj(pr)

ψj(v, wjr) · f(v|δr, x(2)
r ) dv. (29)

I assume that in each market prices are set in a complete information Nash equilibrium in pure-

strategies. To formalize this, the set of marginal buyers of product j can be described by

∂Dj(pr) = {v : vj − vk = pjr − pkr for some k 6= j} (30)

= lim
ε↓0

{
Dj(pr) ∩

(
RJ \ Dj(pjr + ε, p−jr)

)}
. (31)

Then, following Uryas’ev (1994); Weyl and Veiga (2014), quasilinearity of indirect utility with

respect to price implies that, in equilibrium, in every market r:

S1. Equilibrium: For all j = 1, ..., J , mrjr = mcjr, where

mrjr = σj(χr)− pjr ·
∫
∂Dj(pr)

f(v|δr, x(2)
r ) dv, (32)

mcjr = −
∫
∂Dj(pr)

ψj(v, wjr) · f(v|δr, x(2)
r ) dv. (33)

From S1, marginal revenues are equal to marginal costs, which must be true in a Nash-in-prices

equilibrium. The integrals in mrjr and mcjr are well defined because f(·|δr, x(2)
r ) and ψj(·, wjr) are

both continuous and bounded functions of v.

22As in Section 4, ψ and f(v) could be derived from a more primitive joint distribution h(v, c) over individual
preferences and cost, as shown in equations (8) and (9). If this joint distribution admits a continuous density, the
resulting ψj is continuous in v, which here is a maintained assumption.
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B2. Conditions for identification

Identification is defined as in Roehrig (1988); Matzkin (2008): if the unobservables differ (almost

surely), then the distribution of observables differ (almost surely), where probabilities and expec-

tations are defined with respect to the distribution of (χr, sr, zr) across markets.

My result is obtained combining conditions for identification of demand provided in BH —

yielding to identification of ξr and then of f(v|δr, x(2)
r ) — with a constructive proof to identify

ψj which I adapted from Somaini (2011, 2015).23 To simplify notation without loss of generality,

as in BH I condition on x
(2)
r — which unlike x

(1)
r can affect the distribution of preferences quite

arbitrarily — and suppress it.

Beside the demand and supply assumptions D1 and S1, I will use the following conditions:

C1. BH Exogeneity of cost shifters: For all j = 1, ..., J , E[ξjr|zr, xr] = E[ξjr] = 0.

C2. BH Completeness: For all functions B(sr, pr) with finite expectations, if E[B(sr, pr)|zr, xr] = 0

with probability one, then B(sr, pr) = 0 with probability one.

C3. Large support : For every j, supp vr|δr, wjr ⊂ supp pr|δr, wjr ⊂ P , with P bounded.

Condition C1 is a standard exclusion restriction, requiring mean independence between demand

instruments and the structural erros ξjr. Condition C2 is a completeness assumption, requiring

instruments to move market shares and prices sufficiently to distinguish between different functions

of these variables through the exogenous variation in these instruments. C3 is a large support

assumption, requiring cost shifters excluded from ψj to move prices in a set that covers the support

of (conditional) valuations. This is a stronger requirement than the large support assumption suf-

ficient to identify the distributions f(v|δr), which would only require supp vr|δr ⊂ supp pr|δr. The

stronger condition in C3 allows to prove that cost functions ψj are also identified. In supplemen-

tary Appendix S3 I discuss conditions for identification that do not require C3, hence — although

imposing stronger restrictions on the model — are more operational in many applications.

One then has:

Theorem 1 Under D1, S1, C1, C2, C3, ξr, f(v|δr), and ψj are identified.

Proof of Theorem 1. Condition C3 implies supp vr|δr ⊂ supp pr|δr, and demand is identified:

Lemma 1 (Berry and Haile, 2014) Under D1, C1, C2, ξr is identified, and f(v|δr) is also identified

if, additionally, supp vr|δr ⊂ supp pr|δr.

23This highlights the parallelism between auctions with interdependent costs and selection markets. In the former
case (expected) marginal costs depend on the competitors’ signals, varying with differences of bids between competi-
tors. In a selection market (expected) marginal costs depend on the preferences of buyers choosing the plan, varying
with differences of prices between competitors.
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Proof. Follows from Theorem 1 and Section 4.2 in BH.�

Similarly to Somaini (2011, 2015), the rest of the proof amounts to approximating for every j, every

wjr, and every v̂ ∈ supp vr|δr, wjr, the integral of cost conditional on Dj(v̂):

Ψj(v̂;wjr, δr) =

∫
Dj(v̂)

ψj(v, wjr) · f(v|δr) dv. (34)

The mixed-partial J-1 derivative with respect to v̂−j yields then identification of the unknown cost

function ψj , since

dJ−1Ψj(v̂;wjr, δr)

dv̂−j
= ψj(v̂, wjr) · f(v̂|δr) (35)

and f(v̂|δr) is identified by Lemma 1. This exploits the fact that price enters linearly in buyers’

indirect utility, hence the set Dj(v̂) is described by a set of inequalities which defines a cone in RJ

with vertex v̂. The boundary of this cone is the set ∂Dj(v̂) defined in (30); see also Figure 1 in BH.

To approximate Ψj(v̂;wjr, δr), fix j, wjr, and v̂ ∈ supp vr|δr, wjr. Consider then a para-

metric curve η : R+ → R, with η(`) = v̂j + `, and with this define the function Ψ̂j(`) =

Ψj((η(`), v̂−j);wjr, δr). Differentiating Ψ̂j(`) (and using again Uryas’ev, 1994; Weyl and Veiga,

2014) yields

dΨ̂j(`)

d`
= −

∫
∂Dj((η(`),v̂−j))

ψj(v, wjr) · f(v|δr) dv. (36)

The function φj(`) ≡
dΨ̂j(`)

d` is bounded and continuous, and hence Riemann integrable over [0, T ],

where by C3 the upper bound T can be chosen to be such that Ψ̂j(T ) = 0. Therefore,

Ψj(v̂;wjr, δr) = Ψ̂j(0) = −
∫ T

0
φj(`) d`. (37)

The integral in (37) can be approximated with arbitrary precision. For this, one can choose a

sequence {`n}Nn=0 for which 0 = `1 < `2, ..., < `N−1 < `N = T , and using C3 build a corresponding

sequence {χnr }
N
n=0 ∈ supp χr|δr, wjr, such that pnr = (η(`n), v̂−j). Then, as maxn{`n − `n−1}

becomes arbitrarily small
N−1∑
n=0

φj(`
n)(`n+1 − `n) ≈

∫ T

0
φj(`) d`, (38)

where by all the elements in the Riemann sum are identified since by S1 each φj(`
n) can be replaced

by

mrnjr = σj(χ
n
r )− pnjr ·

∫
∂Dj(pnr )

f(v|δnr ) dv, (39)

which is identified by Lemma 1.�
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ADDITIONAL FIGURES

Figure 9: Rating regions in Covered California

Source: www.CoveredCA.com

The map shows the 19 rating regions in Covered California. In each region, every spring insurers can announce

their participation in the following year’s open enrollment. The marketplace needs to authorize entry, and requires

the insurer to offer five coverage levels with pre-determined financial characteristics (Table 2). In the summer

insurers set one base price for every level of coverage in every region where they entered, prices and subsidies are

then calculated from base prices applying ACA regulations (Section 3).
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SUPPLEMENTARY APPENDIX
FOR ONLINE PUBLICATION ONLY

S1: Supplementary Appendix to Section 2

S1.1. Derivation of equilibrium condition (??)

Given a subsidy design S, rewrite the profit function for product j as

ΠS
j (Pj , P−j) = QSj (Pj , P−j)

(
Pj −ACSj (Pj , P−j)

)
, (40)

whereACSj (·) is defined in (3) andQSj (P ) = G (Y )σj (P − S (P, Y ) , Y )+G (O)σj (P − S (P,O) , O) .

If P ∗ is an equilibrium one has

∂Πj

(
P ∗j , P

∗
−j

)
∂Pj

=
∂QSj

(
P ∗j , P

∗
−j

)
∂Pj

(
P ∗j −ACSj

(
P ∗j , P

∗
−j
))

+QSj
(
P ∗j , P

∗
−j
)1−

∂ACSj

(
P ∗j , P

∗
−j

)
∂Pj


= 0;

and rearranging terms leads to P ∗j = ACSj
(
P ∗j , P

∗
−j
)
−
QSj

(
P ∗j , P

∗
−j

)
∂QSj (P ∗j ,P ∗−j)

∂Pj

1−
∂ACSj

(
P ∗j , P

∗
−j

)
∂Pj

 .

To simplify this further, rewrite

−
QSj

(
P ∗j , P

∗
−j

)
∂QSj (P ∗j ,P ∗−j)

∂Pj

=
QSj

(
P ∗j , P

∗
−j

)
G (Y )σj (P ∗ − S (P ∗, Y ) , Y ) ηYjj +G (Y )σj (P ∗ − S (P ∗, O) , O) ηOjj

=
1

αSj (P ∗) ηYjj +
(

1− αSj (P ∗)
)
ηOjj

; (41)

∂ACSj

(
P ∗j , P

∗
−j

)
∂Pj

=
(
CYj − COj

) ∂αSj (P ∗)

∂Pj
=

=
(
CYj − COj

) ∂(G(Y )σj(P
∗−S(P ∗,Y ),Y ))
∂Pj

QSj (P ∗)−G (Y )σj (P ∗ − S (P ∗, Y ) , Y )
∂QSj (P ∗)

∂Pj(
QSj (P ∗)

)2

=
(
CYj − COj

) (
ηOjj − ηYjj

)
αSj (P ∗)

(
1− αSj (P ∗)

)
. (42)

1



Putting together (41) and (42) gives the expression for the equilibrium price in (??):

P ∗j = ACSj
(
P ∗j , P

∗
−j
)

+
1−

(
CYj − COj

)(
ηOjj − ηYjj

)
αSj (P ∗)

(
1− αSj (P ∗)

)
αSj (P ∗) ηYjj +

(
1− αSj (P ∗)

)
ηOjj︸ ︷︷ ︸

MKS
j (P ∗j ,P

∗
−j)

. (43)

S1.2. Price-linked discounts vs. vouchers

The following proposition shows that, as long as there is a group of buyers who are more price

sensitive and cheaper to cover, given price-linked subsidies it is possible to find a voucher scheme

leading to an equilibrium with lower prices.

Proposition 2 Assume that prices are strategic complements, and let S be a subsidy design for

which at any P , ∂S(P,τ)
∂Pj

= δ > 0, for some j (which may depend on P ). Then, if CYj < COj ,

and ηY0j > ηO0j for all j, a voucher scheme Ŝ such that Ŝ (P, τ) = V̂ τ = S
(
P ∗,S , τ

)
is such that

P ∗,Ŝ < P ∗,S.

Proof. From the equilibrium comparative static results formalized in Vives (1990), the proof

amounts to show that, for all P at which all products make weakly positive profits, setting Ŝ (P, τ) =

V̂ τ = S (P, τ) implies

∂ΠS
j (Pj , P−j)

∂Pj
≥
∂ΠŜ

j (Pj , P−j)

∂Pj
for all j, (44)

with a strict inequality for at least one j. (This immediately implies that
∂ΠŜj (P ∗,S)

∂Pj
< 0 for at least

one j: At the equilibrium prices under S, if the vouchers Ŝ are adopted, at least one insurer wants

to lower its price).

To show (44), given that at prices P for at least one j, ∂S(P,τ)
∂Pj

= δ > 0, and for all k, Pk ≥
ACSk (P ), one has that for any j:

∂ΠS
j (Pj , P−j)

∂Pj
−
∂ΠŜ

j (Pj , P−j)

∂Pj
≥ δ

(
∂QSj (P )

∂P0

(
Pj −ACSj (Pj , P−j)

)
−QSj (P )

∂ACSj (P )

∂P0

)

= δ

Pj −ACSj (Pj , P−j)︸ ︷︷ ︸
>0

−
QSj (P )

∂QSj (P )

∂P0︸ ︷︷ ︸
>0

∂ACSj (P )

∂P0

 .

Hence (44) follows if
∂ACSj (P )

∂P0
< 0: raising the price of the outside good (or equivalently the subsidy)

2



lowers average cost. This is indeed the case as long as CYj < COj , and ηY0j > ηO0j :

∂ACSj (P )

∂P0
=

(
CYj − COj

) ∂αSj (P )

∂P0

=
(
CYj − COj

) ∂(G(Y )σj(P−S(P ),Y ))
∂P0

QSj (P )−G (Y )σj (P − S (P, Y ) , Y )
∂QSj (P )

P0(
QSj (P )

)2

=
(
CYj − COj

) (
ηY0j − ηO0j

) (
1− αSj (P )

)
< 0.

Therefore (44) holds and, by Vives (1990), P ∗,Ŝ < P ∗,S .
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S3: Identification without a large support assumption

Setup.

� J products are offered in R markets.

� A buyer i in market r is a pair (zir, vir). zir ∈ RQ is a collection of buyer-specific observables

(e.g. age, income, gender, zip-code); zir ∈ Z = {z1, ..., zT }, a finite set. vir = (vi1r, ..., viJr) ∈ V
is a vector of (money-metric) valuations collecting the buyer’s willingness-to-pay for each of the

J products.

� The probability that a buyer has characteristics ẑ ∈ Z in market r is µr(ẑ) ≥ 0;
∑
ẑ∈Z

µr(ẑ) = 1.

� Conditional on zir = ẑ, in market r vir is drawn i.i.d from the density f(vir|zir, xr, ξr), with

support V.

xr = (x1r, ..., xJr) collects observed characteristics of the J products in r, with each xjr ∈ RK .

ξr = (ξ1r, ..., ξJr) collects unobserved characteristics of the J products in r affecting preferences,

with each ξjr ∈ R.

� Prices are equal for all buyers in a market, and are collected in the vector pr = (p1r, ..., pJr),

pjr ∈ R.

Given prices, the set of valuations of buyers choosing j isDj(pr) = {v ∈ V : vj − pj ≥ vk − pk, ∀k} .
Given prices, the set of marginal buyers for j is ∂Dj(pr) = {v ∈ V : vj − pj = vk − pk for some k}.

� The (expected) cost for the seller when a buyer with (zir, vir) = (ẑ, v̂) purchases j in r is ψjr(ẑ, v̂).

The function ψjr : Z×V → R+ is not assumed to be constant, thus this is market with selection.

� Setting χr = (pr, xr, ξr), the probability that a buyer with characteristics zir = ẑ chooses j in r

is

sjr(ẑ) = σj(ẑ, χr) =

∫
Dj(pr)

f(v̂|ẑ, xr, ξr) dv̂. Expected profits for the seller of j in r are then

Πjr(χr) = pjr
∑
ẑ∈Z

µr(ẑ)σj(ẑ, χr)︸ ︷︷ ︸
Revenues

−
∑
ẑ∈Z

µr(ẑ)

∫
Dj(pr)

ψjr(ẑ, v̂)f(v̂|ẑ, xr, ξr) dv̂︸ ︷︷ ︸
Cost

.

Observables and demand identification. Let wr = (w1r, ..., wJr) denote product/market-

specific cost-shifters excluded from buyers’ preferences (e.g. service fees for hospitals and clinics

covered by a given j); each wjr ∈ RL. The econometrician observes, for all r, all j, and all z, the

collection (µr(z), sjr(z), pjr, xjr, wjr). Berry and Haile (2014, 2015) provide sufficient conditions

under which ξr and f(·|·, xr, ξr) are identified. I impose these conditions and treat these demand

4



primitives as known henceforth.24

Cost identification — two types. The remaining unknown primitives — one value for each

ψjr(ẑ, v̂) — are more numerous than the observed supply decisions — say N , one value for each

price pjr.
25

I start by considering the simple case in which cost only depends on observable characteristics

of the buyer, i.e. ψjr(ẑ, v̂) = ψjr(ẑ); this reduces the number of unknowns to N × T . To make

things even simpler, suppose that T = 2, i.e. Z = {z1, z2}, so that there are only two unknowns

ψjr(z
1), ψjr(z

2) for each observed pair jr.

The first step is to assume that prices are set optimally by sellers, implying that mrjr = mcjr.

In this expression: mrjr =

2∑
`=1

µr(z
`)

(
σj(z

`, χr)− pjr
∫
∂Dj(pr)

f(v̂|z`, xr, ξr) dv̂

)
, while the right-

hand side (marginal cost) is

mcjr =
2∑
`=1

µr(z
`)

∫
∂Dj(pr)

ψjr(z
`, v̂)f(v̂|z`, xr, ξr) dv̂ =

2∑
`=1

ψjr(z
`)

(
µr(z

`)

∫
∂Dj(pr)

f(v̂|z`, xr, ξr) dv̂

)
.

I then assume that ψjr(·) = ψ(·;xjr, ξjr, wjr), letting cost functions vary only with product charac-

teristics and cost shifters. Then, for any given triplet (xjr, ξjr, wjr), sufficient conditions to identify

ψ(·;xjr, ξjr, wjr) are

(i) there are at least two products jr and j̃r with (xjr, ξjr, wjr) = (xj̃r, ξj̃r, wj̃r) = (xjr, ξjr, wjr);

and

(ii) the two products have a different composition of marginal buyers in terms of z1 and z2:

µr(z
1)
∫
∂Dj(pr)

f(v̂|z1, xr, ξr) dv̂

µr(z
2)
∫
∂Dj(pr)

f(v̂|z2, xr, ξr) dv̂
6=
µr̃(z

1)
∫
∂Dj̃(pr̃)

f(v̂|z1, xr̃, ξr̃) dv̂

µr̃(z
2)
∫
∂Dj̃(pr̃)

f(v̂|z2, xr̃, ξr̃) dv̂
.

If this is the case
[
ψ(z1;xjr, ξjr, wjr), ψ(z2;xjr, ξjr, wjr)

]
is the unique solution of the linear system

describing the first-order conditions that must hold for both products:

[
mrjr

mrj̃r

]
=

 µr(z
1)
∫
∂Dj(pr)

f(v̂|z1, xr, ξr) dv̂ µr(z
2)
∫
∂Dj(pr)

f(v̂|z2, xr, ξr) dv̂

µr̃(z
1)
∫
∂Dj̃(pr̃)

f(v̂|z1, xr̃, ξr̃) dv̂ µr̃(z
2)
∫
∂Dj̃(pr̃)

f(v̂|z2, xr̃, ξr̃) dv̂

[ ψ(z1;xjr, ξjr, wjr)

ψ(z2;xjr, ξjr, wjr)

]
.

In words: With two types of buyers which may imply different cost for the same product jr, it is

necessary to observe two products with the same characteristics, and that variation in the charac-

teristics of their competitors and/or market composition — and thus prices — induce variation in

24See conditions D1, C1, C2, C3 in Appendix B; or Theorem 1 and Section 4.2 in Berry and Haile (2014). Berry
and Haile (2015) (see in particular Section 4.2) provide a rich discussion on the advantages of rich variation in
individual level data to trace out the heterogeneity in preferences in each market relaxing specific functional form
and parametric assumptions.

25With ψjr(ẑ, v̂) ≡ cjr, i.e. assuming away selection, this would not be the case, and one could use the traditional
cost-identification results discussed in Rosse (1970); Bresnahan (1981).
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the composition of their marginal buyers in terms of the two types. If the two types are YOUNG

and OLD, if one product has a 50:50 ratio of marginal buyers across YOUNG and OLD, it is

necessary to observe another product for which (i) one assumes the same cost function and (ii) the

ratio of marginal buyers across YOUNG and OLD is not 50:50.

Cost identification — general case. This approach can be extended to the general model.

What follows differs slightly from Appendix B, yet the main point is conceptually the same.26 As

above I impose:

A1. For all j and all r, mrjr = mcjr, wheremrjr =
∑
ẑ∈Z

µr(ẑ)

(
σj(ẑ, χr)− pjr

∫
∂Dj(pr)

f(v̂|ẑ, xr, ξr) dv̂

)
,

and

mcjr =
∑
ẑ∈Z

µr(ẑ)

∫
∂Dj(pr)

ψjr(ẑ, v̂)f(v̂|ẑ, xr, ξr) dv̂.

A2: For any j, ψjr(ẑ, v̂) = ψ(ẑ, v̂, xjr, ξjr, wjr), where xjr may include the identity of the seller.

Then I restrict the number of “cost-types” to be finite, the key assumption for my argument:27

A3: There exists a finite (disjoint) partition of V, say
{
V1,V2, ...,VM

}
such that, for any ẑ ∈ Z, if

v̂, ṽ ∈ Vm for some m = 1, ...,M , then ψ(ẑ, v̂, xjr, ξjr, wjr) = ψ(ẑ, ṽ, xjr, ξjr, wjr).

Using ∂Djr(Vm, z`) =

(
µr(z

`)

∫
∂Dj(pr)∩Vm

f(v̂|z`, xr, ξr) dv̂

)
to denote the density of marginal

buyers for j in r with characteristics z` and valuations v̂ ∈ Vm I then have the following:

Proposition 3 Under A1-A3, ψ(·, ·, xjr, ξjr, wjr) is identified if there exists a set of H ≥ T ×M
pairs j̃r such that

(i) (xj̃r, ξj̃r, wj̃r) = (xjr, ξjr, wjr) for all j̃r = 1, ...,H; and

(ii) the H-by-(T ×M) matrix of marginal buyers

26In Appendix B I focus only on heterogeneity in cost due to differences in preferences, ignoring observable
heterogeneity across buyers. I impose cross-product restrictions, and use a large support condition on prices that
is extremely demanding on the data. This stronger condition allows me to provide a constructive proof for the
identification of cost functions using variation in the set of marginal buyers, without assuming that selection is limited
to a finite set of possible preference types. Here I impose more assumptions, but the conditions for identification
become more transparent and operational.

27For example, suppose I was to estimate the following parametric model:
Facing prices pr, the indirect utility that buyer i derives from j in r is

uijr = −αipjr + βixjr + ξjr + εijr,

where (αi, βi) collects random parameters drawn from a distribution G(α, β|zir) with finite support A × B (similar
to the demand system in Berry, Carnall, and Spiller, 1996).
Assumption A3 then holds by assuming that ψ(α, β, ε, xjr, ξjr, wjr) = ψ(α, β, xjr, ξjr, wjr), requiring that the id-
iosyncratic preference shock ε is uninformative about the buyer’s risk.
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h = 1
...

h = H


∂Dj̃r(V

1, z1) ∂Dj̃r(V
2, z1) ... ∂Dj̃r(V

M , z1) ∂Dj̃r(V
1, z2) ... ∂Dj̃r(V

M , zT )
...

...
...

...
...

∂D
j̃′r′

(V1, z1) ∂D
j̃′r′

(V2, z1) ... ∂D
j̃′r′

(VM , z1) ∂D
j̃′r′

(V1, z2) ... ∂D
j̃′r′

(VM , zT )


is full-column rank w.p.1 with respect to the (conditional) distribution of

(
(µr, x−jr, ξ−jr, w−jr)

∣∣(xjr, ξjr, wjr)) .
Beside the simple proof that I report below, the intuition is similar to the 2-types case analyzed

earlier. To identify differences in the cost of a product j induced by differences in the type of

buyer, one can use variation in the composition of marginal buyers within groups of products

with otherwise (assumed) equal cost structures. This variation is induced by variation in the

characteristics of opponents (x−jr, ξ−jr, w−jr), or variation in the composition of potential buyers

in the market µr(·). Both induce variation in prices and choices, thus marginal buyers’ composition,

but do not directly affect individual cost functions for product j.

Since the number of possible “cost-types” that can be identified is bounded by the number

of “preference types” distinguished by the demand system, the availability of rich individual-level

observables and large variation in prices is important: Both can allow the estimation of a de-

mand system with richer heterogeneity (see Berry and Haile, 2015), and this can then lead to the

estimation of cost functions with less limits on selection.

Proof of Proposition 3

Assume that there are two functions ψ(·, ·, xjr, ξjr, wjr) 6= ψ̂(·, ·, xjr, ξjr, wjr) for which observables

are the same with strictly positive probability. Pick for any m = 1, ...,M an arbitrary vm ∈ Vm.

By A1-A3, with positive probability, for all pairs jr with (xjr, ξjr, wjr) = (xjr, ξjr, wjr)

mrjr =

M,T∑
m,`

ψ(z`, vm, xjr, ξjr, wjr)∂Djr(Vm, z`)

mrjr =

M,T∑
m,`

ψ̂(z`, vm, xjr, ξjr, wjr)∂Djr(Vm, z`),

thus
M,T∑
m,`

(
ψ(z`, vm, xjr, ξjr, wjr)− ψ̂(z`, vm, xjr, ξjr, wjr)

)
∂Djr(Vm, z`) = 0.

Conditions (i) and (ii) imply then that ψ(·, ·, xjr, ξjr, wjr) = ψ̂(·, ·, xjr, ξjr, wjr) w.p.1, a contradiction.�
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