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Abstract

Financial crises and other macroeconomic shocks appear to have long-lasting effects
on investor behavior and to alter aggregate dynamics in the long run. The theoretical
foundations and dynamic implications of such behavior are still debated. Recent evidence
suggests that individuals overweight personal experiences of macroeconomic shocks when
forming beliefs about risky outcomes and making investment decisions. We propose a
simple OLG model that formalizes ‘experience-based learning.’ Risk averse agents can
invest in risky and risk-free assets. They form beliefs about the payoff of the risky asset
(1) based on data observed during their lifetimes so far and (2) exhibiting recency bias,
which are the two key components of experience effects. In equilibrium, prices depend
on past dividends, but only those observed by the generations that are alive, and they
are more sensitive to more recent dividends. Younger generations react more strongly
to recent experiences than older generations. Hence, the young have higher demand
for the risky asset than the old in good times, and lower demand in bad times. The
model generates predictions for stock-market dynamics and trading volume. First, a
recent crisis will increase the average age of agents holding stocks, while booms have the
opposite effect. Second, the stronger the disagreement across generations (e.g. after a
recent shock), the higher is the trade volume. We provide stylized facts from the Survey
of Consumer Finances consistent with the model predictions.
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1 Introduction

Economists and policy-makers alike have long wrestled with the long-lasting effects of financial

crises and other macroeconomic shocks. In the case of the Great Depression, Friedman and

Schwartz (1963) argue that the experience of that time created a “mood of pessimism that

for a long time affected markets.” In the case of the recent financial crisis, Blanchard (2012)

maintains that “the crisis has left deep scars, which will affect both supply and demand

for many years to come.” The notion that longer-lasting crisis effects alter the dynamics of

markets is consistent with growing empirical evidence on experience effects that suggests that

personal experiences of macroeconomic shocks leave an imprint on individuals’ attitudes and

willingness to take risk. For example, Malmendier and Nagel (2011) show that stock-market

experiences predict future willingness to invest in the stock market, and Kaustia and Knüpfer

(2008) argue the same for IPO experiences.1

On the theoretical side, the foundations of such behavior are still debated. Existing models

point to altered investment behavior during recessions, causing “hysteresis effects” (Delong

and Summers (2012)), or argue that we need to revise our understanding of the stochastic

processes governing the economy to explain scaled down investments after a crisis, such as the

“disasterization approach” proposed by Gabaix (2011, 2012). The interpretation of Friedman

and Schwartz (1963) goes in a different direction. Their notion is that the experience of an

economic crisis induces pessimism and alters expectations about the future, as also pointed

out by Cogley and Sargent (2008). In a similar vein, Woodford (2013) has argued that it is

time to step away from the rational-expectations hypothesis, as well as from ad-hoc variations

thereof, in order to understand these and other stylized facts in macro-finance. Confirming

this notion, much of the evidence on experience effects pertains directly to beliefs, e.g.,

expectations of future stock market performance in the UBS/Gallup data (Malmendier and

1 Evidence of experience effects is also present in non-financial settings. For example, Oreopoulos, von
Wachter, and Heisz (2012) show the long-term effects of graduating in a recession on labor market outcomes,
and Alesina and Fuchs-Schundeln (2007) relate the personal experience of living in (communist) Eastern
Germany to political attitudes post-reunification. See also Giuliano and Spilimbergo (2013) who relate the
effects of growing up in a recession to redistribution preferences.
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Nagel (2011)), inflation expectations in the Michigan Survey of Consumers (Malmendier and

Nagel (2016)), or expectations of future unemployment rates and the outlook for durable

consumption, also in the Michigan Survey of Consumers (Malmendier and Shen (2015)).

In this paper, we propose the first formal theoretical framework that captures both of the

main two empirical features of experience effects: (1) over-weighing lifetime experiences and

(2) recency bias. This approach builds closely on the psychology evidence on availability

bias, initiated by Tversky and Kahneman (1974), and on the extensive evidence on the

different effects of description versus experience.2 Our framework is designed to study the

long-term effects of personal experiences on the cross-section of stock-market participation

and of portfolio decisions, as well as on the time series of financial market aggregates, such

as equilibrium prices and trade volume. As such, it generates testable predictions of trading

behavior and of the cross-sectional composition of stock-market investors, which relate to

long-standing empirical puzzles such as the excess volatility puzzle (LeRoy and Porter (1981),

Shiller (1981), LeRoy (2005)) or the predictive power of dividend-price ratios for future stock

returns (Campbell and Shiller (1988)). We take the model predictions to the data, and find

evidence on the cross-section of stock market participation, the cross-section of asset holdings,

and trade volume that are consistent with our model. While more evidence on the exact

process of household-level learning is needed to accompany the theoretical development (see

the discussions in Campbell (2008) and Agarwal, Driscoll, Gabaix, and Laibson (2013)), the

formal framework allows us to explore the aggregate dynamics of an economy with experience-

based learners. It aims to lay the foundation for testing whether experience-based learning

can provide a new modeling framework for expectation formation that would allow to capture

the above mentioned stylized facts from macro-finance.

Specifically, we develop a stylized overlapping generations (OLG) general equilibrium

model in which agents form their beliefs by overweighting their own experiences. Investors

have CARA preferences and live for a finite number of periods. During their lifetimes, they

2 See, for example, Weber, Böckenholt, Hilton, and Wallace (1993), Hertwig, Barron, Weber, and Erev
(2004), and Simonsohn, Karlsson, Loewenstein, and Ariely (2008).
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choose portfolios of a risky and a risk-free security to maximize their per-period payoff. The

risky asset is in unit net supply and pays random dividends every period. The risk-less asset

is in infinitely elastic supply and pays a fixed return. Investors do not know the true mean

of the distribution of dividends, but they learn about it by observing the history of realized

dividends.

The novel feature of the model is that investors are experience-based learners. That is,

they over-weigh the outcomes they have experienced in their lives when forming beliefs about

the mean of dividends. Specifically, we assume that when forming their beliefs agents (i) only

use data observed during their lifetimes, and (ii) may over-weigh more recent observations.

These two assumptions capture, in a simplified form, the psychology evidence on availability

bias as first discussed by Tversky and Kahneman (1974).

Our stylized model allows us to fully isolate the forces introduced by the presence of

experience-based learners. We begin by characterizing the benchmark economy in which

agents know the true mean of dividends. In this setting, the model features constant equi-

librium prices and zero trade volume. Prices are constant because agents’ demands and the

asset supply are constant over time; trade volume is zero due to the lack of disagreements

among agents. Since all agents have the same demand, their holdings of the risky asset in

equilibrium are independent of the mean of dividends and the risky asset is split in equal

shares among all agents in the market. Any departure from this benchmark case can thus be

cleanly attributed to experience-based learning.

By introducing experience-based learning into the model, we identify long-lasting effects of

economic shocks on equilibrium prices, trade volume, and the cross section of asset holdings.

We emphasize two channels. The first channel is through the belief formation process: shocks

to dividends shape agents’ beliefs about future dividends. Each cohort uses the dividends

observed during their lifetimes so far to form their beliefs, and thus the aggregate demand

for the risky asset depends on the weighted sum of cohort’s beliefs about the payoff of this

asset. As a result, the market-clearing price is a function of the history of dividends observed
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by at least one market participant. This implies that agent’s demands for the risky asset also

depend on the history of dividends observed by (at least some) market participants, since

agents care about current, and future, prices. For example, a young investor knows that the

presence in the market of an older cohort that has experienced recession times will depress

the price of the asset. This reflects that agents in our model “agree to disagree” about the

distribution of dividends.

The second channel through which experience-based learning matters for equilibrium out-

comes is the cross-sectional heterogeneity in the population. Different lifetime experiences

generate persistent belief heterogeneity among cohorts. Furthermore, even if different cohorts

have experienced the same history and thus hold the same belief at some point, they will

react differently to the same macroeconomic shock. This is because younger cohorts will

react more strongly to a common shock than older cohorts as this new experience makes up

a larger part of their lifetimes so far. A positive shock will induce younger cohorts to invest

relatively more in the risky asset, while a negative shock will tilt the composition towards

older cohorts. In fact, we show that periods of booms, interpreted as periods with sustained

increases in dividends, result in younger generations holding a larger share of the risky asset

than older generations; and vice-versa.

Relative to the benchmark of agents knowing the distribution of dividends, experienced-

based learning introduces excess volatility and auto-correlation of prices, as well as return

predictability. The extent of these features goes above and beyond the stochastic structure

of the assumed dividend process. In addition, the model also generates implications for the

time series of trade volume. We show that changes in the level of disagreement between

cohorts lead to higher trade volume in equilibrium. The mechanism is intuitive: an increase

(decrease) in dividends induces trade since young agents become more optimistic (pessimistic)

than old agents, and disagreement generates gains from trade.

The model captures an interesting tension between the role of experience-based learning

(that drives belief heterogeneity across cohorts with different experiences), and recency bias
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(that drives beliefs toward the most recent observations, reducing heterogeneity). When

the recency bias is strong, all agents pay a lot of attention to the most recent dividend

realization. Thus, agents reactions to a given shock are closer together: this increases the

aggregate response to a shock, but reduces heterogeneity across cohorts. As a result, price

volatility increases and price auto-correlation and trade volume decrease. The opposite holds

when the recency bias is weak, and agents form their beliefs using their experienced history.

We further explore the connection between demographics and the long-lasting effects of

macroeconomic shocks, and study the effect of a (one time) demographic shock to the economy

(e.g. a baby-boom or a war). We find that shocks to the demographic composition of markets

have important implications for the response to aggregate shocks. For example, the price

response to a shock is stronger when the generation of young agents is relatively large, e.g.,

due to a baby boom. Conversely, a given shock to dividends has a lower impact on prices if

it occurs during periods where the generation of young agents is relatively small, e.g., due to

a war. This highlights the interaction between aggregate shocks and the relative size of the

generations that have experienced these shocks in an economy. Different lifetime experiences

generate persistent belief heterogeneity among cohorts. Furthermore, even if different cohorts

have experienced the same history and thus hold the same belief at some point, they will

react differently to the same macroeconomic shock. This is because younger cohorts will

react more strongly to a common shock than older cohorts as this new experience makes up

a larger part of their lifetimes so far. A positive shock will induce younger cohorts to invest

relatively more in the risky asset, while a negative shock will tilt the composition towards

older cohorts. In fact, we show that periods of booms, interpreted as periods with sustained

increases in dividends, result in younger generations holding a larger share of the risky asset

than older generations; and vice-versa.

Relative to the benchmark of agents knowing the distribution of dividends, experienced-

based learning introduces price volatility and auto-correlation, and return predictability.

These features go above and beyond the stochastic structure of the assumed dividend pro-
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cess. The model also generates implications for the time series of trade volume. We show

that changes in the level of disagreement between cohorts lead to higher trade volume in

equilibrium. The mechanism is intuitive: an increase (decrease) in dividends induces trade

since young agents become more optimistic (pessimistic) than old agents, and disagreement

generates gains from trade.

The model captures an interesting tension between the role of experience-based learning

(that drives belief heterogeneity across cohorts with different experiences), and recency bias

(that drives beliefs toward the most recent observations, reducing heterogeneity). When

the recency bias is strong, all agents pay a lot of attention to the most recent dividend

realization. Thus, agents reactions to a given shock are closer together: this increases the

aggregate response to a shock, but reduces heterogeneity across cohorts. As a result, price

volatility increases and price auto-correlation and trade volume decrease. The opposite holds

when the recency bias is weak, and agents form their beliefs using their experienced history.

We further explore the connection between demographics and the long-lasting effects of

macroeconomic shocks, and study the effect of a (one time) demographic shock to the economy

(e.g. a baby-boom or a war). We find that shocks to the demographic composition of markets

have important implications for the response to aggregate shocks. For example, the price

response to a shock is stronger when the generation of young agents is relatively large, e.g.,

due to a baby boom. Conversely, a given shock to dividends has a lower impact on prices if

it occurs during periods where the generation of young agents is relatively small, e.g., due to

a war. This highlights the interaction between aggregate shocks and the relative size of the

generations that have experienced these shocks in an economy.

Our theoretical predictions are consistent with empirical stylized facts on portfolio decisions

and trade volume. Using the representative sample of the Survey of Consumer Finance,

CRSP, and historical data on stock-market performance, we show that cohorts differ both in

their stock market participation (i.e., on the extensive margin) and in the fraction of liquid

assets they invest in the stock market (i.e., on the intensive margin) in the same way they
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differ in their lifetime stock-market experiences. The cross-cohort differences vary over time

as predicted by the time series of differences in experience. We also show that, in terms of

abnormal trade volume, the de-trended turnover ratio is strongly correlated with differences

in lifetime experiences of stock-market returns across cohorts.

Our theoretical predictions are consistent with empirical stylized facts on portfolio decisions

and trade volume. Using the representative sample of the Survey of Consumer Finance,

CRSP, and historical data on stock-market performance, we show that cohorts differ both in

their stock market participation (i.e., on the extensive margin) and in the fraction of liquid

assets they invest in the stock market (i.e., on the intensive margin) in the same way they

differ in their lifetime stock-market experiences. The cross-cohort differences vary over time

as predicted by the time series of differences in experience. We also show that, in terms of

abnormal trade volume, the de-trended turnover ratio is strongly correlated with differences

in lifetime experiences of stock-market returns across cohorts.

As final step, we investigate to what extent our results might be driven by the (stylized) my-

opic formulation of our model, i.e, how hedging concerns and lifetime horizon effects interact

with experience-based learning. Towards that end, we extend the model of experience-based

learning to a dynamic portfolio set-up where agents re-balance their portfolios every period

to maximize their final period consumption.3 Prior literature has shown that, in a rational

expectations linear equilibrium, the agents’ multi-period investment problem can be parti-

tioned into a sequence of one-period ones (Vives (2010)). Under experience-based learning,

however, such partitioning is no longer possible. Future beliefs and portfolio decisions of

experience-based learners and, as a result, future prices depend on current dividends, making

investors’ wealth in the distant future correlated with next period’s returns. By exploiting

the CARA-Gaussian setup, however, we are able to show that the demand of experience-

based learners coincides with the one in a static problem where dividends are drawn from a

modified Gaussian distribution. That is, we can still partition the multi-period investment

3 This form of modeling of dynamic portfolio choices is standard in the literature, see Vives (2010).
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problem into a sequence of one-period problems, albeit with a probability distribution of

dividends that differs from the original one. This latter result might also be of interest as an

independent technical contribution in solving belief dependencies beyond the specific model

proposed in this paper.

In this dynamic portfolio problem, we decompose agents’ demands for the risky asset into

a belief term, a hedging term, and a horizon term. The belief term is given by the demand of

the myopic agents. Thus, all the forces that are present in our baseline model are captured by

this term. The dynamics inherent to the multi-period problem generate the two additional

demand motives. The hedging term captures that agents anticipate that they will learn

about the risky asset from future dividends, and that this will in turn affect prices and future

returns. In order to hedge their exposure to changes in beliefs, they distort their portfolio

decisions relative to the static model. The horizon term captures that younger agents react

less aggressively to a given change in beliefs due to their longer remaining investment horizon.

In other words, their longer investment horizon makes them behave in a more risk-averse

fashion. We focus on a two-period setting and show that the qualitative results presented

in the baseline model, where agents maximize their per-period utility, pass through to the

dynamic portfolio problem.

In summary, our paper provides a simple formalization of experience effects. It generates

testable implications for individual financial decision-making and the resulting stock-market

dyamics, including the long-term effects of crisis experiences. The model, together with our

empirical findings, suggest that a deeper understanding of the influence of past experiences

is important not only to improve the micro-modeling of financial risk-taking, but also for

our understanding of the aggregate dynamics of financial markets and the long-run effects of

macro-shocks.

Related Literature. The above-cited empirical literature on “experience effects” explains

the long-run effects of macroeconomic shocks by showing that personal experiences of macroe-

conomic shocks leave a lasting imprint and significantly affect individuals’ decision-making
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over lifetimes. Our paper provides a theoretical foundation for such behavior. Closely re-

lated to our approach, Cogley and Sargent (2008) propose a model in which the representative

consumer uses Bayes’ theorem to update estimates of transition probabilities as realizations

accrue. As in our paper, agents use less data than in a standard framework (less “than a

rational-expectations-without-learning econometrician would give them,” as the authors put

it). The main difference to our paper is that, in our setup, agents are not Bayesian and live

for a finite number of periods. Consequently, observations during the agents’ lifetime have

a non-negligible effect on their beliefs. We think that this feature provides an alternative

modeling device to capture Friedman and Schwartz’s idea that economic events, such as the

Great Depression, shape the attitude of agents towards financial markets in the future.

Our paper also relates to the work on extrapolation by Barberis, Greenwood, Jin, and

Shleifer (2015) and Barberis, Greenwood, Jin, and Shleifer (2016). Barberis et al. (2015)

also depart from the Bayesian paradigm by considering a consumption-based asset pricing

model populated by “rational” agents and “extrapolative” agents.4 Extrapolative agents be-

lieve that positive changes in prices will be followed by positive changes. One main difference

to our paper is the approach to modeling agents’ beliefs. In our model, agents hold misspec-

ified beliefs over the expectation of future dividends, but hold correct beliefs of the mapping

between equilibrium prices and dividends. As a second, and perhaps more important differ-

ence, their model of infinitely-lived agents does not allow for cross-sectional heterogeneity.

In our model, however, different generations (of finitely-lived agents) assign different weights

to past dividends, and such weights change as the generations age. This feature allow us to

explore the impact of cohort heterogeneity and of the demographic structure of an economy

on equilibrium outcomes.

More generally, our paper relates to a large literature in asset pricing that departs from

the correct-beliefs paradigm. For instance, Barsky and DeLong (1993), Timmermann (1993),

Timmermann (1996), and Adam, Marcet, and Nicolini (2012) study the implications of learn-

4 A similar approach is used in Barberis, Greenwood, Jin, and Shleifer (2016) where an extrapolative model
of bubbles is presented.
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ing for stock-return volatility and predictability. Cecchetti, Lam, and Mark (2000) construct a

Lucas asset-pricing model with infinitely-lived agents where the representative agent’s subjec-

tive beliefs about endowment growth are distorted. On a similar note, Jin (2015) rationalizes

financial booms and busts in a model where agents learn about the probability of a crash,

but hold incorrect beliefs about the underlying process of this risk.

At the same time, our approach is different to asset pricing models with asymmetric in-

formation, surveyed in Brunnermeier (2001). A key distinction between experienced-based

learning and models where agents have private information is that, in the former, information

is available to all agents, while in the latter agents want to learn the information their counter

parties hold. Experience-based learners choose to down-weigh the observations they have not

directly observed when forming their beliefs, even though such observations are available to

them (and all other agents).

Finally, there are contemporaneous papers to ours exploring the role of learning in over-

lapping generations models (Collin-Dufresne, Johannes, and Lochstoer (2014), Schraeder

(2015)). The paper most closely related to ours is Ehling, Graniero, and Heyerdahl-Larsen

(2015), who explore the role of experience in portfolio decisions and asset prices in a complete

markets setting. Differently from our paper, they do not aim to actually capture “experience

effects” in the sense of the empirically observed pattern in Malmendier and Nagel (2011),

which involves a declining weighting function and thus recency bias. Instead, they are inter-

ested in the pure effect of individuals restricting their use of data to their lifetimes. Similar

to the Bayesian Learners from Experience in our analysis, agents in their paper start from

a given prior (the truth) which they update only using lifetime observations. The authors

use this setting to develop a theoretical underpinning for trend chasing and the negative

relationship between beliefs about expected returns and realized future returns, as shown by

Greenwood and Shleifer (2014). Instead, our incomplete markets setting allows us to focus on

the cross-section of asset holdings and the relation between trade volume and price behavior

in the presence of recency bias.
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There is a large literature which proposes other mechanisms, such as borrowing constraints,

as the link from demographics, or life-cycle considerations, to asset prices and other equilib-

rium quantities. We view these other mechanisms as complementary to our paper, and are

omitted for the sake of tractability of the model.

2 Model Set-Up

2.1 Lucas Tree Economy

Consider an infinite-horizon economy with overlapping generations of a continuum of risk-

averse agents. At each t ∈ Z, a new generation is born and lives for q periods, with q ∈

{1, 2, 3, ...}. Hence, there are q + 1 generations alive at any t. The generation born at time

t = n is called generation n. Each generation has a mass of q−1 identical agents.

Agents have CARA preferences with risk aversion γ. They are born with no endowment

and can transfer resources across time by investing in financial markets. Trading takes place

at the beginning of each period. At the end of the last period of their lives, agents consume

the wealth they have accumulated. We use nq to indicate the last time at which generation

n trades, nq = n + q − 1. (If the generation is denoted by t we use tq.) Figure 1 illustrates

the timeline of this economy for two-period lived generations (q = 2).

There is a risk-less asset, which is in perfectly elastic supply and pays R > 1 at all times.

There is a single risky asset (a Lucas Tree), which is in unit net supply and pays a random

dividend dt ∼ N
(
θ, σ2

)
at time t. To model uncertainty about fundamentals, we assume that

agents do not know the true mean of dividends θ and use past observations to estimate the

mean. To keep the model tractable, we assume that the variance of dividends σ2 is known

at all times.

For each generation n ∈ Z and any t ∈ {n, ..., n+ q}, the budget constraint is given by

Wn
t = xnt pt + ant , (1)
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t t+1 t+2 t+3 t+4

(t− 2)-cohort
consumes

(t− 1)-cohort
trades

(t− 1)-cohort
consumes

t-cohort
is born and trades

t-cohort
trades

t-cohort
consumes

(t+ 1)-cohort
is born and trades

(t+ 1)-cohort
trades

(t+ 2)-cohort
trades

(t+ 3)-cohort
trades

Figure 1: A timeline for an economy with two-period lived generations, q = 2.

where Wn
t denotes the wealth of generation n at time t, xnt is the investment in the risky

asset (units of Lucas Tree output), ant is the amount invested in the riskless asset, and pt is

the price of one unit of the risky asset at time t. As a result, wealth next period is

Wn
t+1 = xnt (pt+1 + dt+1) + ant R = xnt (pt+1 + dt+1 − ptR) +Wn

t R. (2)

We denote the net (or excess) payoff received in t+1 from investing in one unit of the risky

asset at time t as st+1 ≡ pt+1 +dt+1−ptR. Note that pt+1 +dt+1 is the payoff received at t+1

from investing in one unit of the risky asset at time t, and ptR is the (opportunity) cost of

investing in one unit of the risky asset at time t. Using this notation, Wn
t+1 = xnt st+1 +Wn

t R.

In the baseline version of our model, we assume that agents are myopic and maximize their

per-period utility. This assumption simplifies the maximization problem considerably, and

highlights the main determinant of portfolio choice generated by experience-based learning.

(In Section 7, we remove this assumption and show that the same mechanism is at work.)

For a given initial wealth level Wn
n , the myopic problem of a generation n at each time
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t ∈ {n, ..., nq} is to choose xnt such that it solves maxx∈RE
n
t [− exp(−γWn

t+1)], and hence

xnt ∈ arg max
x∈R

Ent [− exp(−γxst+1)] . (3)

Given that agents only need to learn about the mean of dividends, Ent [·] is just the (sub-

jective) expectation with respect to a Gaussian distribution with variance σ2 and a mean

denoted by θnt . We call θnt the subjective mean of dividends, and we define it below. Note

that, when xnt is negative, generation n is short-selling units of the Lucas tree.

2.2 Experience-Based Learning

In this framework, experienced-based learning (EBL) means that agents overweight observa-

tions received during their lifetimes when forecasting dividends. For simplicity, we assume

that agents only use observations realized during their lifetimes.5 That is, even though they

observe the entire history of dividends, EBL agents choose to disregard observations outside

their lifetimes. Note that, in this full-information setting, prices do not add any additional

information. While it is possible to add private information and learning from prices to

our framework, adding these (realistic) feature would complicate matters without necessarily

adding new intuition.

EBL differs from reinforcement learning-type models in two ways. First, as already dis-

cussed, EBL agents understand the model and know all the primitives, except the mean of the

dividend process. Hence, they do not learn about the equilibrium, they learn in equilibrium.

Second, EBL features a passive learning problem in the sense that actions of the players do

not affect the information they receive. This would be different if we had, say, a participation

decision that would link an action (participate or not) to the type of data obtained and to

learning. We consider this to be an interesting line to explore in the future.

We construct the subjective mean of dividends of generation n at time t following Mal-

5 All we need for our results to hold is that agents discount their pre-lifetime history relative to their
experienced history when forming beliefs.
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mendier and Nagel (2010):

θnt ≡
age∑
k=0

w(k, λ, age)dt−k, (4)

where age = t− n, and where, for all k ≤ age,

w(k, λ, age) =
(age+ 1− k)λ∑age
k′=0(age+ 1− k′)λ (5)

denotes the weight an agent aged age assigns to the dividend observed k periods earlier, and

λ parameterizes this weighting function. That is, agents put weight (age+1)λ∑age

k′=0
(age+1−k′)λ on the

most recent observation, (age+1−1)λ∑age

k′=0
(age+1−k′)λ on the previous one, and so forth for all observations

experienced during their lifetimes so far. The sum of all weights an agent applies to lifetime

experiences is always equal to one,
∑age

k=0w(k, λ, age) = 1,∀ age ∈ {0, 1, ..., q}. For example,

if q = 2, the old generation that has lived for one period uses weights w(0, λ, 1) = 2λ

1+2λ
on

the current realization, dt, and w(1, λ, 1) = 1
1+2λ

on the previous one, dt−1, while the young

generation born in t places full weight, w(0, λ, 0) = 1, on the current observation dt. Note

that the denominator in (5) is a normalizing constant that depends only on age and λ.

The parameter λ regulates the relative weights of earlier and later observations. For λ > 0,

more recent observations receive relatively more weight, whereas for λ < 0 the opposite holds.

Here are three examples of weighing schemes:

Example 2.1 (Linearly Declining Weights, λ = 1). For λ = 1, weights decay linearly, i.e.,

for any 0 ≤ k, k + j ≤ age,

w(k + j, 1, age)− w(k, 1, age) = − j∑age
k′=0(age+ 1− k′) = − 2j

(age+ 1)(age+ 2)
.

Example 2.2 (Equal Weights, λ = 0). For λ = 0, lifetime observations are equal-weighted,

i.e., for any 0 ≤ k ≤ age,

w(k, 0, age) =
1

age+ 1
.
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Example 2.3. For λ→∞, the weight assigned to the most recent observation converges to

1, and all other weights converge to 0, i.e., for any 0 ≤ k ≤ age

w(k, λ, age)→ 1{k=0}.

Remark 2.1. We note that the subjective mean θnt in equation (4) can itself be thought of

as an expectation with respect to the probability measure implied by the weights w(k, λ, age),

i.e.,

Pnt (d) =

age∑
k=0

1{dt−k}(d)w(k, λ, age), ∀d ∈ R (6)

That is, given a realization of past dividends (dτ )tτ=−∞, Pnt (d) constitutes the experience-

based empirical probability measure of generation n at t ∈ {n, ..., n+ q}.6

Observe that by construction, θnt ∼ N(θ, σ2
∑age

k=0(w(k, λ, age))2). Hence, θnt does not

necessarily converge to the truth as t→∞; it depends on whether
∑age

k=0(w(k, λ, age))2 → 0.

This in turn depends how fast the weights for “old” observations decay to zero (i.e., how small

λ is). When agents have finite lives, convergence will not occur. In addition, since separate

cohorts weight different realizations differently, we should expect belief heterogeneity, driven

by different experiences, at any point in time.

We conclude this section by showing a useful property of the weights, which is used in the

characterization results below.

Lemma 2.1. [Single-Crossing Property] Let age′ < age and λ > 0. Then the function

w(·, λ, age)−w(·, λ, age′) changes signs (from negative to positive) exactly once over {0, ..., age′+

1}.7

Proof. See Appendix A.

6 The function x 7→ 1A(x) takes value 1 if x ∈ A, and 0 otherwise.
7 Here and throughout the rest of the paper we set w(k, λ, age) ≡ 0 for all k > age.
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2.3 Comparison to Bayesian Learners

To better understand the experience-effect mechanism, we compare EBL agents to agents

who update their beliefs using Bayes rule. We consider two sub-cases: the standard case of

Bayesian learning, wherein agents use all the available observations to form their beliefs; and

an alternative case where agents “learn from experience” in a Bayesian manner, in the sense

that they only use data realized during their lifetimes, but update their beliefs using Bayes

rule. We call the former case Full Bayesian Learning (FBL), and in the latter case Bayesian

Learning from Experience (BLE).

Full Bayesian Learners. Bayesian learners use all the available observations since the

“beginning of time” to form their beliefs. Formally speaking, there is no “beginning of time”

in our economy since we are analyzing an economy that has been running forever. Hence,

loosely speaking, the beliefs of Bayesian agents who use all available information would have

converged to θ at any point in time t, i.e., Bayesian agents would behave like agents that

know the true mean.

In order to still illustrate the comparison to Bayesian agents learning from a common

sample, we start the economy at an initial time t = 0 (for this analysis), and assume that

all generations of FBL agents consider all observations since time 0 to form their belief. We

denote the prior of FBL agents as N(m, τ2). For simplicity, all generations have the same

prior, though the analysis can easily be extended to heterogeneous Gaussian priors across

generations.8 The posterior mean of any generation alive at time t, γt, is given by

γt =
τ−2

τ−2 + σ−2t
m+

σ−2t

τ−2 + σ−2t

(
1

t

t∑
k=0

dk

)

That is, the belief of an FBL agent is a convex combination of the prior m and the average

of all observations dk available to date. The key difference to EBL agents is that FBL agents

do not differ in their beliefs. All generations alive in any given period have the same belief

8 The assumption of Gaussianity is also not needed but simplifies the exposition greatly.
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about mean of dividends; different past experiences do not play a role, and hence there is no

heterogeneity in posterior beliefs.

Beliefs are non-stationary (depend on the time period). As t → ∞, the posterior mean

eventually converges (almost surely) to the true mean. Hence, with FBL the implications of

learning vanish as time goes to infinity. With EBL, this is not true. Since agents learn from

their own experiences, our model generates learning dynamics even as time diverges.

Bayesian Learners from Experience. For BLE agents, the situation is different. We

assume again that each generation has a prior N(m, τ2) when they are born. Here, the

posterior mean of generation n at period t = n+ age, βnt , is given by

βnt =
τ−2

τ−2 + σ−2(age+ 1)
m+

(age+ 1)σ−2

τ−2 + σ−2(age+ 1)

(
1

age+ 1

t∑
k=n

dk

)
.

That is, the belief of a BLE generation is a convex combination of the prior m and the average

of (only) the lifetime observations dk available to date; in turn this average coincides with

the belief of our learners from experience θnt with λ = 0. Thus, the posterior mean of BLE

agents and the belief of EBL agents with λ = 0 differ in the weight on the prior mean and

in EBL agents not employing a prior. If the prior of the FBL agent is diffuse, i.e., τ → ∞,

then βnn+a coincides with the θnn+a of EBL agents for λ = 0. Additionally, as age increases,

βnn+a gets closer to θnn+a (and both gets, almost surely, closer to the true value θ). For lower

values of age, instead, the prior will introduce a wedge between the BLE and EBL.

These two benchmark comparisons to Bayesian learning illustrate the role of experience-

based learning, i.e., of the assumption that agents only use data observed during their life-

times, in generating heterogeneity in beliefs. Under FBL, beliefs do not differ across agents

and, eventually, will converge to the truth. Under BLE and our main approach, EBL, this

is not true. Cohorts differ in their beliefs. However, BLE does not allow for the empirically

documented recency bias. As such BLE is akin to over-extrapolation from one’s lifetime.

An important difference between EBL, on the one hand, and both types of Bayesian
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agents, on the other hand, is that we assume that our EBL agents do not understand that

their estimate for the mean of dividends is a random variable. A Bayesian agent would

acknowledge that the perceived mean of dividends is random and, hence, her expected payoff

will consist of two expectations – one with respect to dividends and one with respect to

theta. An EBL agent only has the former expectation and not the latter. That is, we assume

that EBL agents, who form their beliefs about the mean as described in equation (4), make

decisions as if this was the true mean of the dividends.

2.4 Equilibrium Definition

We now proceed to define the equilibrium of the economy with EBL agents.

Definition 2.1 (Equilibrium). An equilibrium is a demand profile for the risky asset {xnt },

a demand profile for the riskless asset {ant }, and a price schedule {pt} such that:

1. given the price schedule, {(ant , xnt ) : t ∈ {n, ..., nq}} solve the generation-n problem, and

2. the market clears in all periods, i.e.,

1 = (q)−1
t∑

n=t−q+1

xnt , ∀t ∈ Z. (7)

We will focus the analysis on the class of equilibria with affine prices.

Definition 2.2 (Linear Equilibrium). A linear equilibrium is an equilibrium wherein prices

are an affine function of dividends. That is, there exists a K ∈ N, α ∈ R, and βk ∈ R for all

k ∈ {0, ...,K} such that:

pt = α+
K∑
k=0

βkdt−k. (8)

Thus, the price pt is a linear functions of the current and the last K dividends.

Benchmark with known mean of dividends. For the sake of benchmarking our results

for EBL agents, we characterize the equilibrium of the economy where the mean of dividends,
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θ, is known by all agents, i.e., Ent = θ ∀n, t. In this scenario, there are no disagreements

across cohorts, and the demand of any cohort trading at time t is given by:

xnt ∈ arg max
x∈R

E [− exp(−γxst+1)] (9)

The solution to this problem is standard, and given by:

xnt =
E [st+1]− rpt
γV [st+1]

(10)

for all n ∈ {t − q + 1, ..., t}, and zero otherwise. To solve the problem, we guess that the

solution is pt = P constant. We verify this guess with the market clearing condition (7) and

obtain P = γσ2−θ
1−r . Furthermore, there is no heterogeneity in cohort’s portfolios, and thus, in

equilibrium, xnt = 1 for all n ∈ {t− q + 1, ..., t}, and zero otherwise.

3 Illustration: Toy Model

To illustrate the mechanics of the model and to highlight the main results of the paper, we

first solve the model for q = 2. We will generalize this toy model to any q > 1 in the next

section (and solve the non-myopic case in Section 7).

When q = 2, there are three cohorts alive at each point in time: a young cohort, which

enters the market for the first time; a middle-age cohort, which is participating in the market

for the second time; and an old cohort, whose agents simply consume the payoffs from their

lifetime investments. Since the old cohort has no impact on equilibrium prices or quantities,

we focus our analysis on the behavior of the young and middle-aged agents. At time t, the

problem of generations n ∈ {t, t−1} is given by (3), and thus demands for the risky asset are

xtn =
Ent [st+1]

γV n
t [st+1]

We will show in Section 4 that prices depend on the history of dividends observed by the
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oldest generation trading in the market, i.e., that K = q−1 in equation (8). Hence, for q = 2

we have K = 1 and thus

pt = α+ β0dt + β1dt−1.

Given this functional form for prices, demands can be re-written as

xtt =
α+ (1 + β0)Ett [dt+1] + β1dt − ptR

γ (1 + β0)2 σ2

xt−1
t =

α+ (1 + β0)Et−1
t [dt+1] + β1dt − ptR

γ (1 + β0)2 σ2
,

noting that st+1 = pt+1 + dt+1 − ptR. We see that the only difference between the different

cohorts trading in the market is their beliefs about future dividends, Ett [dt+1] and Et−1
t [dt+1].

Since our agents are EBL, each cohort’s beliefs about future dividend dt+1 are given by:

Ett [dt+1] = θtt = dt

Et−1
t [dt+1] = θt−1

t =

(
2λ

1 + 2λ

)
︸ ︷︷ ︸
w(0,λ,1)

dt +

(
1

1 + 2λ

)
︸ ︷︷ ︸
w(1,λ,1)

dt−1

The younger generation has only experienced the dividend dt and expects the dividends to be

identical in the next period. The older generation, having more experience, incorporates the

previous dividend in its weighting scheme. Furthermore, belief heterogeneity is increasing in

the change in dividends, |dt − dt−1|, and decreasing in the recency bias, λ.

Given these demands, we impose the market clearing condition, 1
2(xtt+xt−1

t ) = 1, to derive

the equilibrium price:

1 =
α+ 1

2(1 + β0)
[
dt + 2λ

1+2λ
dt + 1

1+2λ
dt−1

]
+ β1dt −R(α+ β0dt + β1dt−1)

γ (1 + β0)2 σ2

We use the method of undetermined coefficients to solve for {α, β0, β1}. By setting the
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constants and the terms that multiply dt and dt−1 to zero, we obtain the following conditions:

Rα = α− γ (1 + β0)2 σ2

Rβ0 =
1

2
(1 + β0)

(
1 +

2λ

1 + 2λ

)
+ β1

Rβ1 =
1

2
(1 + β0)

(
1

1 + 2λ

)

By solving the above system of equations, we obtain the price constant and the loadings of

present and past dividends on prices:

α =− γ(1 + β0)2σ2

R− 1
(11)

β0 =
2R2

(R− 1)
(

1 + 2R− 2λ

1+2λ

) − 1 (12)

β1 =
R
(

1− 2λ

1+2λ

)
(R− 1)

(
1 + 2R− 2λ

1+2λ

) (13)

The toy model illustrates that, as the recency bias increases, prices become more responsive

to the most recent dividend, ∂β0
∂λ > 0, and less responsive to past dividends, ∂β1

∂λ < 0. The

intuition is straightforward: Under higher recency bias, both cohorts put more weight on the

most recent dividend realization. Thus, prices become more responsive to recent dividends,

and less responsive to past observations.

In addition, we can derive expressions for price volatility and auto-correlation:

V ar(pt+1) =
1 + 2R(1 +R+ 21+2λR+ 21+λ(1 +R))

(R− 1)2(1 + 2(1 + 2λ)R)2
σ2

Corr(pt, pt+j) =


R(1+R+21+λR)

(R−1)2(1+2(1+2λ)R)2
for j = 1

0 for j > 1.

where V ar(·) and Corr(·) denote the unconditional variance and correlation respectively. It

can be shown that the variance of prices is increasing in the recency bias while the price auto-
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correlation is decreasing in the recency bias. When recency bias is large, beliefs and prices

are more dependent on the most recent dividend realization. Since both agents have observed

the most recent dividend, recency bias reduces belief heterogeneity and induces correlated

responses to shocks that generates price volatility and reduces price auto-correlation.

Dividends in this model predict prices, and both actual excess returns:

pt+1 + dt+1

pt
−R =

α+ (1 + β0) dt+1 + β1dt
α+ β0dt + β1dt−1

−R,

and (adding expectation operators Ett and Ett−1 for generation t and t − 1, respectively)

expected excess returns. This equation is a first illustration how our model links demographics

and market participation (which generations are trading in the market) are linked to return

predictability.

4 Results

We now return to the general case, with q > 1, and characterize the portfolio choice and

resulting demand for the risky asset of the different cohorts under affine prices. We then use

market clearing to verify the affine prices guess, and fully characterize demands and prices.

4.1 Characterization of Equilibrium Demands

For any s, t ∈ Z, let ds:t = (ds, ..., dt) denote the history of dividends from time s up to time

t. For simplicity and WLOG, we assume that the initial wealth of all generations is zero,

i.e., Wn
n = 0 for all n ∈ Z. At time t ∈ {n, ..., nq}, an agent of generation n determines her

demand for the risky asset maximizing Ent [− exp (−γxst+1)], as described in (3).

Proposition 4.1. Suppose pt = α +
∑K

k=0 βkdt−k with β0 6= −1. Then, for any generation

n ∈ Z trading in period t ∈ {n, ..., nq}, demands for the risky asset are given by

xnt =
Ent [st+1]

γV [st+1]
=

Ent [st+1]

γ(1 + β0)2σ2
. (14)
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Proof of Proposition 4.1. The result follows by Lemma B.1 in Appendix B.

4.2 Characterization of Equilibrium Prices

To derive equilibrium prices, we note that equation (14) implies that demands at time t

are affine in dt−K:t. It is easy to see, then, that beliefs about future dividends are linear

functions of the dividends observed by each generation participating in the market and thus

prices depend on the history of dividends observed by the oldest generation in the market:

Proposition 4.2. The price in any linear equilibrium is affine in the history of dividends

observed by the oldest generation participating in the market, i.e., for any t ∈ Z

pt = α+

q−1∑
k=0

βkdt−k. (15)

with

α = − 1(
1−∑q−1

j=0
wj
Rj+1

)2

γσ2

R− 1
(16)

βk =

∑q−1−k
j=0

wk+j
Rj+1

1−∑q−1
j=0

wj
Rj+1

k ∈ {0, ..., q − 1} (17)

where wk ≡ 1
q

∑q−1
age=0w (k, λ, age).9

Proof of Proposition 4.2. See Appendix B.

For each k = {0, 1, ..., q − 1}, one can interpret wk as the average weight placed on the

dividend observed at time t− k by all trading generations at time t.

The idea of the proof is as follows. By Lemma D.4, demands at time t are affine in dividends

dt−K:t. However, from these dividends, only dt−q+1:t may matter for forming beliefs; the

dividends dt−K:t−q only enter through the definition of linear equilibrium. The proof shows

that under market clearing, the coefficients accompanying the dividends dt−K:t−q are zero.

9 It is understood that w(k, λ, age) = 0 for all k > age.
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The Proposition also implies that we can apply the same restriction to demands and conclude

that demands at time t only depend on dt−q+1:t.

This result captures the belief channel described by Friedman and Schwartz: prices are a

function of past dividends solely due to the fact that generations form their beliefs using past

data. By studying a general equilibrium model, however, we provide a more nuanced view.

Since observations of older generations affect current prices, they also affect the demand of

younger generations, that did not necessarily experience those observations. As such, we

provide a link between the factors influencing asset prices and demographic composition.

We also observe that ∂βk
∂R < 0 and ∂α

∂R > 0 for any λ. Thus, the theory predicts that, if the

interest rate is higher, the equilibrium price of the risky asset is higher and less volatile, as

the variance of prices is given by σ2
P =

(∑q−1
k=0 β

2
k

)
σ2. Furthermore, higher risk aversion γ

decreases the equilibrium price by lowering α.

The following proposition establishes that when agents form their beliefs by using non-

decreasing weights (i.e., λ ≥ 0) prices are more sensitive to more recent dividends.

Proposition 4.3. For λ > 0, 0 < βq−1 < .... < β1 < β0.

Proof of Proposition 4.3. See Appendix B.

This result reflects the fact that the dividends at time t are observed by all generations

whereas past dividends are only observed by older generations.

Lemma 4.1. β0 is increasing in λ with lim
λ→∞

β0 = (Rq)−1

1−(Rq)−1 and lim
λ→∞

βk > 0.

Proof of Lemma 4.1. See Appendix B.

As λ → ∞, it follows that wk defined in Proposition 4.2 converges to 1{k=0} for all k =

0, 1, ...,K. Therefore, βk → 0 for all k > 0 and β0 → (rq)−1

1−(rq)−1 . In other words, under extreme

recency bias (i.e., λ→∞), only the current dividend affects prices in equilibrium, and at its

maximal value, while the weights of all past dividends vanish.

We now describe some implications of EBL for equilibrium prices and returns.
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Predictability of Excess Returns. We note that the equilibrium excess return at time

t+ j is given by:

pt+j+1 + dt+j+1

pt+j
−R =

α+ (1 + β0)dt+j+1 +
∑q−1

k=1 βkdt+j+1−k

α+
∑q−1

k=0 βkdt+j−k
−R.

Thus, at time t and for j ≤ q − 1, the dividends dt+j−(q−1), ..., dt can be used as factors

for predicting the excess returns. For j > q − 1, our model predicts that excess returns are

independent from dividends at time t. It is worth noting that the predictability of excess

returns is an equilibrium phenomenon that stems solely from our learning mechanism and not

from, say, a build-in dependence in dividends. In fact, our model provides a link between age

profile of agents participating in the stock markets and factor for predicting stock returns.

This theory provides a nuance mechanism that connects past realizations to future returns

through the former’s impact on the level of disagreements across market participants.

Price Dynamics. Our results imply that the variance of prices is given by σ2
P =(∑q−1

k=0 β
2
k

)
σ2 and that the autocorrelation structure for prices is

Cov(pt+j , pt) =


σ2
(∑q−1−j

k=0 βkβk+j

)
for any j ≤ q − 1

0 otherwise.

A direct implication is that, as λ → ∞, the autocorrelation of prices vanishes. That is, as

the recency bias becomes stronger, the prices tend to be uncorrelated.

4.3 Cross-Section of Asset Holdings

The next proposition establishes that younger generations react more optimistically (pes-

simistically) than older generations to positive (negative) changes in current dividends.

Proposition 4.4. For any t ∈ Z and any generation n alive at t, there is a threshold

j0 ≤ t − n − 1 such that for dividends that date back up to j0 periods, younger generations
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react stronger to changes than older generations, while for dividends that date back more than

j0 periods the opposite effect holds, i.e.,

1.
∂xn+1
t

∂dt−j
≥ ∂xnt

∂dt−j
for 0 ≤ j ≤ j0 and

2.
∂xn+1
t

∂dt−j
≤ ∂xnt

∂dt−j
for j0 < j ≤ t.

Proof. See Appendix B.

In our model, the younger generation puts more weight on current dividends when forming

beliefs, so when dt increases, the younger are “overly optimistic” relatively to the older

generation. This reflects that an increase (decrease) in current dividends makes younger

agents more optimistic (pessimistic) about the return of the risky asset than older agents

because they put more weight on recent realizations. This term is only zero when both

agents have the same belief formation (e.g. w(0, λ, 1) = 1). We use Lemma 2.1 to extend

this intuition to the more recent dividends as opposed to just the current one.

Moreover, let ξ(n, k, t) ≡ xnt − xn+k
t be the discrepancy between positions of generation n

and n+ k. By Proposition 4.1, and some algebra it follows that:

ξ(n, k, t) =
Ent [θ]− En+k

t [θ]

γ(1 + β0)σ2
(18)

for any k = {0, ..., t − n}. So the discrepancy between positions of different generations

is entirely explained by the discrepancy in beliefs. Note that as indicated by the indicator

function, 1{j≤t−n−k}, the younger generation does not form beliefs about dividends prior to

their birth. For instance, if for some a > 0, dn:t ≈ dn+a:t+a, then ξ(n+a, k, t+a) ≈ ξ(n, k, t).10

In addition, the next result shows that during “expansions”, understood as periods with in-

creasing dividends, for any two generations born during the expansions, the young generation

has a relatively higher demand for risky assets than the old one.

10 This last claim follows since the inter-temporal change in discrepancies between sets of generations of the
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Proposition 4.5. Suppose λ ≥ 0 and t0 ≤ t1 are two points in time such that dividends are

non-decreasing from t0 up to t1. Then for any two generations n and n + k born between

t0 and t1, the older generation has lower demand of the risky asset (xnt ) than the younger

generation (xn+k
t ) at any point n ≤ t ≤ t1, i.e., ξ(n, k, t) ≤ 0. On the other hand, if dividends

are non-increasing then ξ(n, k, t) ≥ 0.

Proof. See Appendix B.

4.4 Trade Volume

We now study how learning and disagreements affect the volume of trade observed in the

market. We define the total volume of trade in the economy as

TRt ≡
(

t∑
n=t−q

1

q

(
xnt − xnt−1

)2) 1
2

(19)

with xnn−1 = 0. That is, trade volume is the weighted sum (squared) of the change in positions

of all agents in the economy. It can be characterized as follows:

Proposition 4.6. The trade volume defined in (19) can be expressed as

TRt = χ

1

q

t∑
n=t−q

[(
θnt − θnt−1

)
− 1

q

t∑
n=t−q

(
θnt − θnt−1

)]2


1
2

, (20)

where χ = 1
γσ2(1+β0)

.

same age, ξ(n+ a, k, t+ a)− ξ(n, k, t) for a > 0, is given by∑t−n−k
j=0 {w(j, λ, t− n)− w(j, λ, t− n− k)}dt+a−j

γ(1 + β0)σ2
+

∑t−n
j=t−n−k+1 w(j, λ, t− n)dt+a−j

γ(1 + β0)σ2

−
∑t−n−k
j=0 {w(j, λ, t− n)− w(j, λ, t− n− k)}dt−j

γ(1 + β0)σ2
−

∑t−n
j=t−n−k+1 w(j, λ, t− n)dt−j

γ(1 + β0)σ2

=

∑t−n−k
j=0 {w(j, λ, t− n)− w(j, λ, t− n− k)}(dt+a−j − dt−j)

γ(1 + β0)σ2

+

∑t−n
j=t−n−k+1 w(j, λ, t− n)(dt+a−j − dt−j)

γ(1 + β0)σ2
.
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Proof. See Appendix C.

The previous Proposition shows that the presence of learning and disagreements induces

trade volume through changes in beliefs, that in our framework are driven by changes in

the observed history of dividends. Note that the trade volume measure TRt proxies for the

volatility of changes in beliefs. We can see that when the change in each cohorts beliefs is

different from the average change in beliefs, trade volume is increased.

Therefore, to understand the drivers of trade volume, we need to understand the changes in

beliefs across cohorts to a given shock. In our framework, an increase (decrease) in dividends

impacts the belief of both generations in the market, but the effect on beliefs is stronger for the

younger generations. Therefore, an increase (decrease) in dividends should induce trade if it

makes young agents more optimistic (pessimistic) than old agents. This mechanism is solely

due to the presence of experience-based learners, since it is essential that each generation

reacts differently to the same realization of dividends. We can see that if all agents adjust

their beliefs equally, trade volume is zero.

Thought Experiment. Suppose dt0 = dt0+1 = ... = dt−1 = d̄ for t − t0 > q and

that dt 6= d̄. This thought experiment is supposed to capture this economy’s reaction to a

shock after a long period of stability. First, note that all generations alive at time t− 2 and

t − 1 have only observed a constant stream of dividends: d̄. Therefore, θnt−2 = θnt−1 = d̄

for all n = {0, ..., q − 1}. As a result, we know that trade volume in t = 1 should be zero:

TRt−1 = 0. What happens when dividend dt 6= d̄ is observed? Note that now, for each

generation n = {0, .., q− 1}, beliefs are given by θnt = w(0, λ, t− n)(dt− d̄) + d̄ which implies

the following change in beliefs:

θnt − θnt−1 = w(0, λ, t− n)(dt − d̄) (21)

Trade volume in t is then given by:

28



TRt =
∣∣dt − d̄∣∣χ

1

q

q−1∑
n=0

w(0, λ, t− n)2 −
(

1

q

q−1∑
n=0

w(0, λ, t− n)

)2
 1

2

(22)

First, note that trade volume increases proportionally to the change in dividends, inde-

pendently of whether the latter is positive or negative, and to a function that reflects the

dispersion of the weights agents assign to the most recent observation in their belief forma-

tion process. Second, the level of trade volume generated by a given change in dividends will

depend on the level of recency bias of the economy. For example, as λ → ∞, the dispersion

in weights decreases as w(0, λ, a)→ 1 for all a ∈ {0, ..., q− 1}. Thus, our results suggest that

higher recency biases (reflected in higher λ), should generate lower trade volume responses

for a given shock to dividends, and vice-versa.

Volume of Trade in the Toy Model. We can compute the trade volume of the economy

with q = 2. At time t, the trade volume as stated in Proposition 4.6 can be re-written as:

TRt =
1

γσ2 (1 + β0)

[
1

2

(
θtt − θ̄t

)2
+

1

2

(
θt−1
t − θ̄t

)2] 1
2

=
|θtt − θt−1

t |
2γσ2 (1 + β0)

=

(
1− 2λ

1+2λ

)
|dt − dt−1|

2γσ2 (1 + β0)

where θ̄ = 0.5
(
θtt + θt−1

t

)
. We can see that the trade volume is decreasing in the recency

bias, λ, and is increasing in the change in dividends, |dt − dt−1|.

5 Demographics and Equilibrium Prices

In this extension, we study the effect of one-time unexpected demographic shock in our toy

economy with q = 2. We model this as a shock to the mass of young people entering the

economy at time t = τ . At any time t, we denote the mass of young agents by yt and the

total mass of agents by mt = yt + yt−1. We assume that yt = y and thus mt = 2y = m for all

t < τ and t > τ + 1. We consider two types of demographic shocks: a positive shock, yτ > y,
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and a negative shock, with yτ < y. The former can be interpreted as a baby-boom and the

latter as a war that occur at t = τ .

We know from our previous results that the for t < τ and t > τ + 1 prices are given by

pt = α + β0dt + β1dt−1 where {α, β0, β1} are given by equations 11-13 since for these time

periods the economy is as the one described in Section 3. Thus, we are left to characterize

demands and prices for τ and τ+1, where the shock generation is young and old respectively.

To do so, we make the following guesses:

pτ = ay + by0dτ + by1dτ−1

pτ+1 = ao + bo0dτ+1 + bo1dτ

We solve the problem by backwards induction. Note that the form of agent’s demands

remains unchanged. Market clearing in τ + 1, with mass y of young agents and yτ of old

agents, states:

1 = y
Eτ+1
τ+1 [pτ+2 + dτ+2]− rpτ+1

γ (1 + β0)2 σ2
+ yτ

Eττ+1 [pτ+2 + dτ+2]− rpτ+1

γ (1 + β0)2 σ2

where ω ≡ 2λ

1+2λ
. Our guess is verified, and we obtain the following coefficients for the price

function in τ + 1:

ao = α
1

r

[
1 +

r − 1

mτ

]
bo0 = β0

[
1 +

1

r

(
mτ − yτ
mτ

+
yτ
mτ

ω − y

m
(1 + ω)

)]
+

1

r

(
mτ − yτ
mτ

+
yτ
mτ

ω − y

n
(1 + ω)

)
bo1 = β1

yτ
mτ

m

y

where mτ = y + yτ . First, note that for yτ = y, the coefficients are as those in the baseline

model in equations 11-13. Second, and most importantly, note that the total mass of agents,

mτ , only affects the constant ao, while the loadings bo0 and bo1 are only a function of the fraction
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Figure 2: Demographic Shocks and Price Coefficients.

Note: This figure plots coefficients {β0, by0 , bo0}, {β1, b
y
1 , b

o
1}, and {α, ay, ao}, respectively, as a function of the

demographic shock yτ . The results are for y = 0.5, γ = 1, λ = 3, σ = 1, and R = 1.1.

of young agents in the economy. Finally, given this, the demands and market clearing at time

τ imply:

1 = yτ
Eττ [pτ+1 + dτ+1]− rpτ

γ (1 + bo0)2 σ2
+ y

Eτ−1
τ [pτ+1 + dτ+1]− rpτ

γ (1 + bo0)2 σ2

Our guess is verified, and we obtain the following coefficients for the price function at τ :

ay =
1

r

[
ao − γ (1 + bo0)2 σ2

mτ

]

by0 =
1

r
(1 + bo0)

(
yτ
mτ

+
mτ − yτ
mτ

ω

)
+

1

r2
(1 + β0)

yτ
mτ

(1− ω)

by1 =
1

r
(1 + bo0)

mτ − yτ
mτ

(1− ω)

Figure 2 shows how the the reliance of prices on dividend realizations changes as a function

of the size and direction of the demographic shock. From the first two panels, we can see that

a positive demographic shock generates a stronger response of prices to the contemporaneous

dividend and a weaker response to past prices; and that this response increases in the size of
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Figure 3: Demographics and Dividend Shock.

Note: This figure plots the response of prices and excess returns to a 1% one-period-only increase in dividends
in t = 4. The results are for γ = 1, λ = 3, σ = 1, and R = 1.1. In the Baby Boom line there is a positive
demographic shock in t = 4 as well, y4 = 0.75, while the War line shows a negative demographic shock,
y4 = 0.25. In the Baseline case, there are no demographic shocks, y = 0.5 for all t.

the shock. This is because there is more young people in the market who pay no attention

to past dividends. Consistent with this, when the τ -generation is old, prices depend less

on contemporaneous dividends and more on past dividends than in the baseline case. In

addition, the third panel shows that there is a level increase in prices that is captured in an

increase in the price constant; this is because there is a higher overall demand for the risky

asset since there are more people in the market. These predictions are reversed for a negative

demographic shock.

Figure 3 shows how prices and excess returns respond to a positive dividend shock that

is contemporaneous to a Baby-Boom or to a War. We can see that for the baby-boom case,

prices over-react relative to the baseline case, and that this over-reaction is still present, but

less severe, when the baby-boom generation is old. This is because when the baby-boomers

are young, there is more people in the market that only pay attention to the present dividends,

relative to the baseline case. When this generation ages, however, the over-reliance is softened
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because the old baby-boomers update their beliefs and reduce the weight they put on past

dividends, and also a new generation of young agents that disregards past dividends will enter

the market. Consistent with this, returns are positive in response to the shock, and negative

following the shock. We can also see that the reaction of prices and returns is reversed when

the positive shock occurs during a war. In this particular example, the fall in the overall

demand for the risky asset (since less people are present in the market) is strong enough to

generate a fall in prices in response to the chosen positive dividend shock.

6 Stylized Empirical Facts

In this section, we examine whether our model is consistent with aggregate facts about equity

holdings and stock turnover. The model generates at least two predictions that are directly

testable: first, the stronger response of the younger generations’ risky asset demand to recent

dividends; and second the relationship between differences in experience-based beliefs and

trade volume.

To test these model implications, we combine historical data on stock-market performance,

obtained from Robert Shiller’s website, with data on stock holdings from the Survey of

Consumer Finances (SCF) and stock turnover data from the Center for Research in Security

Prices (CRSP).

Dividends in our model do not translate one-to-one to dividends in the real world. Rather,

the role of dividends in this Lucas-tree economy capture news about firm performance. Real-

world dividends, instead, may not reflect how well a firm is doing, for example, because a

firm might decide to retain earnings rather than distributing them to shareholders, or because

management might have incentives to smooth dividends.11 We therefore turn to stock market

returns rather than dividends as a measure of stock market performance.12

11 We also note that dividends exhibit an increasing time trend, which would need to be corrected. Never-
theless our results remain very similar when we include dividends into the return calculation. The appendix
contains figures based on returns including dividends.

12 Another possible measure for (theoretical) dividends would be earnings but, similar to dividends, earnings
do not necessarily reflect profitability, and they exhibit a similar time trend.
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Correspondingly, we calculate the lifetime experiences of “dividends” of the different gener-

ations as the weighted average of the performance over their lifetimes, using linearly declining

weights and λ = 3. As described above, stock market performance is measured by annual

returns of the SP500 Index. All performance measures are de-trended using the consumer

price index (CPI). We construct two measures of disagreement between cohorts based on

their past experiences. First, we take the difference between the experienced performance by

an older age group (60 years and older) and a younger age group (40 years and younger). For

each age group, the experienced performance is calculated as the weighted average of each

cohort within that age range.13 Each cohort-year is weighted by the total number of people

of that cohort in that year. Second, disagreement is approximated by the standard deviation

of experienced performances across cohorts in a given year. Again, we use the total number

of individuals in each cohort in a given year to weight the observations.

The SCF includes data on dollar stock holdings and liquid by individuals from 1960 to 2013

on a household level.14 With these two variables, we code a measure for the extensive margin

of stock holding, i.e., whether the household has invested a positive amount into stock, and a

measure for the intensive margin, i.e., how much of the liquid assets are invested into stocks.

For the intensive margin, we drop all households that have no money in stocks. Since the age

of the head of the household is known, we can match our experienced performance measures

to each household. We then aggregate the household into the aforementioned age groups

by taking the unweighted average of the intensive and extensive margin over all households

whose head falls into that particular age-group.15

Figure 4 depicts the relationship between the extensive and intensive margin of stock

holdings and difference in experienced returns between the above-60 age-group and the below-

40 age-group for weights of past returns. In graphs 4(a) and 4(c), experienced returns are

13 We assume that every individual in the survey is born on January 1 and experiences those returns. We
further assume that the SCF is also conducted on January 1. The results are unchanged if either, birthday or
date of survey, or both are assumed to be December 31.

14 Appendix E provides a more detailed description
15 Note that the extent of the survey has changed over time. Hence, both, the intensive and extensive margin

is weighted by sample weights included in the SCF.
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calculated from equation (5), with λ set to one, corresponding to linearly declining weights.

For graphs 4(b) and 4(d), λ is set to three, which corresponds more closely to previous

estimations. The results are in line with the predictions for either calibration. If the older

age-group experienced higher stock returns, they are more likely to hold stock compared

to the younger age-group as in graph 4(a)). Likewise, the above-60 age group invests a

relatively higher share of the their liquid assets into stocks vis-à-vis the younger age-group

if their experienced returns are higher than those of the younger age-group; see graphs 4(c)

and 4(d)).16

Our model suggests that trade volume is high when disagreement among investors is high.

To validate this postulate, we examine the co-movement of trade volume and the evolution

of the standard deviation of experienced performance, the aforementioned measure of dis-

agreement. We obtain monthly data on the number of traded shares, number of outstanding

shares and stock price for every ordinary common share in CRSP from 1960 to 2007. For

each month the traded value is calculate as the number of traded shares times the average

share price.17 To account for changes in capitalization, we scale the traded volume by the

market capitalization of the firm. The market capitalization is calculated as the number of

outstanding shares times the average stock price. We refer to the scaled traded volume as

turnover ratio. To align the turnover ratio with the frequency of our disagreement variable,

we calculate the annual turnover ratio as the average of the monthly turnover ratios. Since

the trade volume is likely driven by a number of factors not related to disagreement, for

instance technological progress, we de-trend the turnover ratio as follows. First, we take

the log of the turnover ratio. Second, the logged turnover series are regressed on a linear

time trend. The residuals are averaged for each year to obtain a measure of deviation of the

trading activity from the trend.

The co-movement of trading volume and disagreement are generally in line with our pre-

16 The results are less clear-cut for the other performance measure, such as experienced dividends and
earnings; see Appendix E.

17 In particular, we obtain the items prc for the monthly stock price, ”vol” for the number of traded shares
in a month and shrout for the number of shares outstanding from CRSP.
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(a) Stock Market Participation. (λ = 1)
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(b) Stock Market Participation. (λ = 3)
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(c) Fraction of Stock of Financial Assets. (λ = 1)
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(d) Fraction of Stock of Financial Assets. (λ = 3)

Figure 4: Experienced Returns and Stock Holding

Difference in experienced returns is calculated as the experienced returns of the SP500 Index. More distant
experienced receive a lower weight. The weights either decline linearly (λ = 1) or super-linear (λ = 3) as in
equation (5). Stock Market Participation is measured as the fraction of households that either directly held
stock or indirectly, e.g. via mutuals or retirement accounts. We classify households whose head is aged 60 or
older as “old” and households whose head is younger than 40 as “young”. Difference in stockholdings, the
y-axis in graphs (a) and (b), is calculated as the difference between the logs of the fraction of stock-holding
households of the old and young age group. Percentage stock, the y-axis in graphs (c) and (d), is the fraction
of assets invested in stock. The red line depicts the linear trend.
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diction. (See Figure 5.) If disagreement among investors, approximated by the standard

deviation of experienced performance, is higher, the actual turnover ratio is higher than the

trend turnover ratio.18

7 Extension: Model with Non-myopic Agents

In this section, we consider non-myopic agents who choose their portfolios by looking at their

entire lifetime. We assume that agents consume only in their final period, i.e., they consume

their final wealth. We first characterize the demands for risky assets. Even though demands

for risky assets are linear (in accordance with Proposition 4.1), the functional form contains

an additional term that accounts for the dynamic nature of the non-myopic problem. Due

to the aforementioned linearity in risky demands, we are then able to show that the result in

Proposition 4.2 continues to hold: Prices are affine functions of past dividends observed by

the generations that are trading.

7.1 Characterization of risky demands for non-myopic agents.

For any s, t ∈ Z, let ds:t = (ds, ..., dt) denote the history of dividends from time s up to time

t. At time n, a n-generation agent solves the following problem:

max
x∈Rq

Enn
[
− exp

(
−γWn

n+q(x)
)]

(23)

s.t. Wn
n+q(x) =

nq∑
τ=n

Rnq−τxτsτ+1 (24)

where x ∈ Rq are the q trading decisions from n up to nq. Note that, by moving from

maximizing next period’s wealth under the myopic formulation to maximizing final-period

wealth, the non-myopic formulation introduces discounting with factor Rnq−τ .

We continue to assume that the initial wealth of all generations is zero, i.e., Wn
n = 0,∀n.

18 Again, the results are less clear for experienced dividends and earnings.
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(c) Moving Average with 5 Lags

Figure 5: Turnover Ratio and Disagreement in Experienced Returns

The dashed line depicts the turnover ratio from its trend. The turnover ratio is calculated as the ratio of the
value of traded stocks and the value of stocks outstanding. We de-trend the turnover ratio by first taking the
log and then remove a linear trend. Finally, turnover ratio is smoothed by taking the moving average with 1,
3 and 5 lags.The solid line shows the standard deviation of experienced stock returns for a given year. For the
the calculation of the standard deviation, we weight each age-group with the number of persons of that age.
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We can cast this problem iteratively — by solving from nq backwards — as

V n
nq(dnq−K:nq) = max

x∈R
Ennq [− exp (−γsn+qx)] and (25)

V n
τ (dτ−K:τ ) = max

x∈R
Enτ
[
V n
τ+1(dτ+1−K:τ+1) exp (−γsτ+1x)

]
, ∀ τ ∈ {n, ..., nq − 1} (26)

Remark 7.1. Notice that V n
τ does not include the wealth at time τ , that is, from equation

(??), the optimization problem can be cast as maxx∈R exp{−γRWn
nq}Ennq [− exp (−γsn+qx)].

However, our definition of V n
nq omits the term exp{−γRWn

nq} since it does not affect the

maximization.

This shows that, although the n-generation’s problem at nq is a static portfolio problem, for

any other τ ∈ {n, ..., nq−1}, it is not because V n
τ+1 is correlated with sτ+1 through dividends.

That is, dividend realization dτ+1 impacts (i) the net payoff obtained from investing xτ in

the risky asset at time τ , and (ii) the continuation value V n
τ+1(dτ+1−K:τ+1) by affecting the

beliefs of the n-generation at τ + 1, and the resulting portfolio decision.

First, we characterize the portfolio choice and resulting demand for the risky asset of the

different cohorts under affine prices. We begin by highlighting that the dynamic portfolio

problem of agents in this economy cannot be expressed as a succession of static problems, as

is standard in the literature (see Vives (2010)). This is because of learning and the fact that

agents are sophisticated enough to understand how their beliefs evolve over their lifetime.

These features introduce a correlation between future returns and continuation values that

distorts the portfolio decisions. In what follows, however, we show that the agents dynamic

portfolio problem can be expressed as an adjusted static problem where dividends follow a

normal distribution with adjusted mean and variance. Intuitively, agents recognize that very

high and very low realizations of future dividends will lead to more disagreement, which they

will exploit in their future trades. As a result, extreme realizations are now associated with

higher continuation values, leading to a downward adjustment of the variance.

Let EN(µ,σ2)[.] and VN(µ,σ2)[.] be the expectation and variance with respect to a Gaussian
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pdf with mean µ and σ2.

Proposition 7.1. Suppose pt = α+
∑K

k=0 βkdt−k with β0 6= −1. Then, for any generation n

in period n+ j for j ∈ {0, ..., q − 1} (the age of the generation), demands for the risky asset

are given by:

xnn+j =
EN(mj ,σ2

j )[sn+j+1]

γRq−1−jVN(mj ,σ2
j )[sn+j+1]

(27)

where:

mj ≡
θnn+j − σ2

(
bj +

∑K
k=1 bj(k)dn+j−k

)
2cjσ2 + 1

(28)

σ2
j ≡

σ2

2cjσ2 + 1
(29)

for {{bj(k)}q−1
k=1, bj , cj} constants that change with the agent’s age (j) (for exact expressions

see the proof).

Proof of Proposition 7.1. See Appendix D.

The intuition of the proof is as follows. By solving the problem backwards we note that

at time nq the problem is in fact a static one (see equation (25)). In particular we show

that V n
nq is of the form exponential-quadratic in dnq (see Lemma B.1 in the Appendix). We

then show that the exponential-quadratic term times the Gaussian distribution of dividends

imply a new Gaussian distribution with an slanted mean and variance (see Lemma D.1 in

the Appendix). Thus the problem at time nq − 1 can be viewed as a static problem with

a modified Gaussian distribution, and consequently (a) demands are of the form of 27 and

V n
nq−1 is also of the exponential-quadratic form. The process thus continues until time n.

40



After straightforward algebra, we can cast equation (27), as 19

xnn+j =
1

Rq−1−j

EN(θnn+j ,σ
2)[sn+j+1]

γVN(θnn+j ,σ
2)[sn+j+1]

− (bj +
∑K

k=1 bj(k)dn+j−k)

γRq−1−j(1 + β0)
(30)

≡ 1

Rq−1−j x̃
n
n+j + ∆n

n+j

The term x̃nn+j coincides with the demand of a static portfolio problem for an agent with

beliefs θnn+j ; see Proposition 4.1. We coin this term the myopic component of the demand for

risky assets. The scaling by 1/Rq−1−j arise because agents discount the future by R. The

second term ∆n
n+j ≡ −

(bj+
∑K
k=1 bj(k)dn−k)

γRq−1−j(1+β0)
, is an adjustment which accounts for the dynamic

nature of the problem, and thus, we call it the dynamic component. It arises because agents

understand that they are learning about the risky asset, and thus understand that the value

function is correlated with the one-period-ahead returns.

7.2 Characterization of equilibrium prices for non-myopic agents

The following proposition shows that in a linear equilibrium prices at any time t only depend

on the dividends observed by the generations trading at time t. This result shows that the

insights in Proposition 4.2 continue to hold in this setup with non-myopic agents.

Proposition 7.2. For R > 1, the price in any linear equilibrium with β0 6= −1 is affine in

the history of dividends observed by the oldest generation participating in the market. For

any t ∈ Z, q ≥ 1, 20

pt = α+

q−1∑
k=0

βkdt−k. (31)

Proof of Proposition 7.2. See Appendix D.

The idea of the proof is as the one discussed for the myopic case.

19 Note that EN(b+a,s)[sn+1] = EN(a,s)[sn+1] + (1 + β0)b.
20 Heuristically, an equilibrium with β0 = −1 is not well-defined since in this case the excess payoff, say,

st+q−1 is deterministic given the information at time t+ q − 2 and thus the agent will take infinite positions
depending on dt+q−1 + pt+q−1 − rpt+q−2.
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7.3 The q = 2 Case.

We now specialize our results to the case with q = 2. By doing so, we are able to sharpen

our previous results regarding the behavior of prices and risky demands in equilibrium.

The next lemma shows that {α, β0, β1} solve a complicated system of non-linear equations

Lemma 7.1. For R > 1 in any linear equilibrium prices are given by:

pt = α+ β0dt + β1dt−1 ∀t ∈ Z (32)

where the coefficients {α, β0, β1} are uniquely determined by a set of three non-linear equations

specified in the appendix.

Proof of Lemma 7.1. See Appendix D.

Although the equations in the lemma form a complicated system of non-linear equations,

we are able to establish that prices react positively to dividends dt and dt−1. Formally,

Proposition 7.3. For λ > 0, α ≤ 0 and 0 < β1 < rβ0.

Proof of Proposition 7.3. See Appendix D.

This proposition is analogous to Proposition 4.3 and establishes that when agents form

their beliefs by using non-decreasing weights (i.e., λ ≥ 0) β0R is larger than β1. This result

reflects the fact that the dividends at time t are observed by both generations whereas dt−1

is only observed by the old generation; in fact it is not hard to see from the equations that in

the case w(1, λ, 0) = 0 –agents do not put any weight on the previous dividend,– then β1 = 0.

Figure 6 depicts the behavior of {β0, β1} for different values of (λ,R). Note that the values

of {β0, β1} are independent of the process for dividends, σ2, and of the coefficient of risk

aversion, γ. Thus, the results shown in the figure do not depend on parameter values other

than the ones used for comparative statics: (λ,R).
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Figure 6: Comparative Statics: Sensitivity of Prices to Dividends for the q=2 Case.

The next proposition establishes that, as before, the demand of the young generation

(decreases) increases, while the one of the old generation (increases) decreases, when current

dividends (decrease) increase; and the opposite holds for the dividends last period.

Proposition 7.4. For λ > 0: (1)
∂xtt
∂dt

> 0 >
∂xt−1
t
∂dt

, and (2)
∂xtt
∂dt−1

< 0 <
∂xt−1
t

∂dt−1
.

Proof of Proposition 7.4. See Appendix D.

In our model, the young generation puts more weight on current dividends when forming

beliefs, so when dt increase, they young are ”overly optimistic” relatively to the old generation.

This effect contributes to the result (1) (and similar reasoning contributes to results (2));

however, this is not the only effect to consider. There additional effects due to the fact that

the young are confronted with a different horizon investment.
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In order to shed some light on the different effects, recall that in equation (30) we decom-

posed the demand for risky asset into two components: The myopic one and the dynamic one.

For the particular case of q = 2 these decomposition yields xt−1
t = x̃t−1

t and xtt = x̃tt + ∆t
t,

where

x̃t−1
t =

α (1−R)

γ (1 + β0)2 σ2
+

(1 + β0)w(0, λ, 1) + β1 −Rβ0

γ (1 + β0)2 σ2
dt +

(1 + β0)(1− w(0, λ, 1))−Rβ1

γ (1 + β0)2 σ2
dt−1,

x̃tt =
α (1−R)

γR (1 + β0)2 σ2
+

1 + β0 + β1 −Rβ0

γR (1 + β0)2 σ2
dt +

−Rβ1

γR (1 + β0)2 σ2
dt−1

and

∆t
t ≡

α (1−R) + (β1 −Rβ0) dt −Rβ1dt−1

γR (1 + β0)2

(
1

s2
− 1

σ2

)
+

1

γR (1 + β0)

(
m

s2
− dt
σ2

)

where s2 = σ2 (1+β0)2

(1+β0)2+((1+β0)w(0,λ,0)+β1−Rβ0)2
.

We focus first on understanding the changes in the myopic term. Let

∂
(
x̃tt − x̃t−1

t

)
∂dt

=
(1 + β0) (1− w(0, λ, 1))

γ (1 + β0)2 σ2︸ ︷︷ ︸
Beliefs Term

+
1 + β0 + β1 −Rβ0

γ (1 + β0)2 σ2

(
−R− 1

R

)
︸ ︷︷ ︸

Discount Term

We refer to the first term as the Beliefs Term. This term is positive, and it reflects that an

increase (decrease) in dividends makes young agents more optimistic (pessimistic) about the

return of the risky asset than adult agents because the put more weight on recent realizations.

This term is zero when both agents have the same belief formation (e.g. w(0, λ, 1) = 1). The

second term is the Discount Term, which is negative (see Lemma D.5 in Appendix). Even

when agents share beliefs, young agents react less aggressively to a change in dividends (in

their beliefs) because they discount the future more than old agents since R > 1.
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Figure 7: Comparative Statics: Sensitivity of Demands to Dividends for the q=2 Case.

Decomposition of
∂(xt

t−xt−1
t )

∂dt
into the Belief, Horizon, and Hedging Terms.

Regarding the hedging term, observe that

∂∆t
t

∂dt
=

β1 −Rβ0

γ (1 + β0)2 σ2

1

R

(
σ2

s2
− 1

)
− (1 + β0)

γ (1 + β0)2 σ2

(
l(1, 1)l (0, 1)

(1 + β0)2R

)

Because the first term in the RHS is negative but the second term is positive (see the proof

of Proposition 7.4), we can not pin down the sign of
∂∆t

t
∂dt

.

Therefore, even though the behavior
∂(xtt−x

t−1
t )

∂dt
is affected by all these terms, we are able

to show that the belief term dominates and thus the overall sign of
∂(xtt−x

t−1
t )

∂dt
is positive.

In figure 7 we show the behavior of each of the terms for different values of (R, λ). Impor-

tantly, as λ increases, the “old” generation puts less weight to past dividends, and thus the
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discrepancy between the beliefs of the old and the young vanishes.

8 Conclusion

In this paper, we have proposed a simple OLG general equilibrium framework to study the

effect of personal experiences of macroeconomic shocks on future economic outcomes such

as the cross-section of asset holdings, asset prices, and market volatility. We have done so

by incorporating the two main empirical features of experience effects, the over-weighing of

lifetime experiences and recency bias, into the belief formation process of agents. We find that

through our mechanism, macroeconomic shocks can have long-lasting effects on an economy,

as suggested by Friedman and Schwartz (1963) and Blanchard (2012).

We highlight two channels through which shocks have long-lasting effects on economic

outcomes. The first is the belief formation process, since all agents update their beliefs about

the future after observing a given shock. The second is the cross-sectional heterogeneity in the

population, since different experiences generate belief heterogeneity. Furthermore, we show

that the demographic composition of an economy has important implications for the extent

to which macroeconomic shocks can have long-lasting effects through the above described

channels. Most importantly, we take our model predictions to the data, and find that they

are consistent with empirical stylized facts on portfolio decisions and trade volume.

The results of this paper underline the importance of formally modeling the belief formation

process of agents. This is not only relevant for improving our understanding of economic

behavior, but also for effective policy making. We believe that the next step is two-fold.

First, we need to continue improving our understanding of how agents form their beliefs

about future economic outcomes. Second, it is important that these findings are formalized

and incorporated to standard models to continue shaping our understanding of the way

economies operate.
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Appendix A Proofs of Section 2

Proof of Lemma 2.1. Let ∆(k) ≡ w(k, λ, age)−w(k, λ, age′) for all k ∈ {0, ..., age}. We need
to show that ∃k0 ∈ {0, ..., age′} such that ∆(k) < 0 for all k ≤ k0, and ∆(k) ≥ 0 for all
k > k0, with the last inequality holding strictly for some k.

For k > age′, ∆(k) > 0 since w(k, λ, age′) ≡ 0, and hence ∆(k) = w(k, λ, age) > 0, for all
k ∈ {age′ + 1, ..., age}.

For k ≤ age′, we note that

∆(k) > 0 ⇐⇒ Q(k) :=
w(k, λ, age)

w(k, λ, age′)
> 1. (33)

Hence, it remains to be shown that ∃k0 ∈ {0, ..., age′} such that Q(k) < 1 for all k ≤ k0,
and Q(k) ≥ 1 for all k > k0. Since the normalizing constants used in the weights w(k, λ, age)
are independent of k (see the definition in (5)), we absorb them in a constant c ∈ R+ and
rewrite

Q(k) = c · (age+ 1− k)λ

(age′ + 1− k)λ
= c ·

[ age+ 1− k
age′ + 1− k

]λ
= c · α(k)λ ∀k ∈ {0, ..., age′}. (34)

The function x 7→ α(x) = age+1−x
age′+1−x has derivative α′(x) = age−age′

(age′+1−x)2
> 0 for x ∈ [0, age′+

1), and hence Q(·) is strictly increasing over {0, ..., age′}. Thus, to complete the proof, we
only have to show that Q(k) < 1 or, equivalently, ∆(k) < 0 for some k ∈ {0, ..., age′}. We

know that
∑age

k=0 ∆(k) = 0 because
∑age

k=0w(k, λ, age) =
∑age′

k=0w(k, λ, age′) = 1, and we also
know that

∑age
k=age′+1 ∆(k) > 0 since ∆(k) = w(k, λ, age) > 0 for all k ∈ {age′ + 1, ..., age}.

Hence, it must be that ∆(k) < 0 for some k < age′.

Appendix B Proofs of Section 4

Proposition 4.1 directly follows from the following Lemma.

Lemma B.1. Let z ∼ N(µ, σ2), then for any a > 0,

x∗ = arg max
x

E[− exp{−axz}] =
µ

aσ2

and

max
x

E[− exp−axz] =− exp

{
−1

2
(σax∗)2

}
= − exp

(
−1

2

µ2

σ2

)
.

Proof of Lemma B.1. Since z ∼ N(µ, σ2), we can re-write the problem as follows:

x∗ = arg max
x
− exp

(
−axE[z] +

1

2
a2x2V [z]

)
= arg max

x
axµ− 1

2
a2x2σ2
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From FOC, x∗ = µ
aσ2 . Plugging x∗ in − exp

(
−ax∗µ+ 1

2a
2(x∗)2σ2

)
the second result follows.

Proof of Proposition 4.2. We start from the proposed guess pt = α+ β0dt + ...+ βq−1dt−q+1.

From Lemma B.1, agents’ demand for the risky asset is given by xnt =
Ent [st+1]
γV [st+1] . Plugging in

our guess for prices, and for β0 6= −1, we obtain:

xnt =
(1 + β0) θnt + α+ β1dt + ...+ βqdt−q+1 − ptR

γ (1 + β0)2 σ2
(35)

By market clearing, 1
q

∑t
n=t−q+1 x

n
t = 1, which implies that

(1 + β0) 1
q

∑t
n=t−q+1 θ

n
t

γ (1 + β0)2 σ2
+
α+ β1dt + ...+ βqdt−q+1 − ptR

γ (1 + β0)2 σ2
= 1.

By straightforward algebra and the definition of θnt , it follows that

(1 + β0)
1

q

t∑
n=t−q+1

[
t−n∑
k=0

w (k, λ, t− n) dt−k

]
+
[
α− γ (1 + β0)2 σ2

]
+ β1dt + ...+ βqdt−q+1 = ptR.

Using the method of undetermined coefficients we find the expressions for α and the β’s:

−γ (1 + β0)2 σ2

R− 1
= α (36)

(1 + β0)
1

q

t−k∑
n=t−q+1

w (k, λ, t− n) + βk+1 = βkR ∀k ∈ {0, 1, ..., q − 1} (37)

0 = βqR (38)

As defined in Proposition 4.1, wk is the average of the weights assigned to dividend dt−k by
each generation in the market, wk = 1

q

∑t
n=t−q+1w (k, λ, t− n). Given that a weight of zero

is assigned to dividends that a generation did not observe, i.e., for k > t− n, we can rewrite
wk = 1

q

∑t−k
n=t−q+1w (k, λ, t− n). Also using βq = 0 we obtain:

(1 + β0)wk + βk+1 = βkR ∀k ∈ {0, 1, ..., q − 2} (39)

(1 + β0)wq−1 = βq−1R (40)

By solving this system of equations we obtain the expressions in the proposition. In particular,
(1 + β0) (wq−2+wq−1/R) = βq−2R for k = q−2, (1 + β0) (wq−3+wq−2/R+wq−1/R

2) = βq−3R
for k = q − 3, and so on, allow us to express (39) as

(1 + β0)
k−1∑
j=0

wq−(k−j)/R
j = βq−kR, for k = 2, ..., q. (41)
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The last expression (41) implies, in particular, β0 =
∑q−1
j=0 wj/R

j

R−
∑q−1
j=0 wj/R

j
=

∑q−1
j=0 wj/R

j+1

1−
∑q−1
j=0 wj/R

j+1
(from

plugging in k = q), which, plugged into (36) allows us to obtain the expression for α from (16)

in Proposition 4.2. And expression (41) implies βk =
∑q−1−k
j=0 wk+j/R

j+1

1−
∑q−1
j=0 wj/R

j+1
(from substituting k

in (41) with q − k, and using the expression for β0) as expressed in equation (17) of the
Proposition. The latter also subsumes equation (40), solved for βq−1, and the above formula
for β0 and hence holds for k = 0, ...q − 1.

Proof of Proposition 4.3. For this proof, we will use equations (39) and (40). In addition,
note that by construction, wk < wk−1 for λ > 0 since for all generations, w(k, λ, age) is
decreasing in k and more agents observe the realization of dt−(k−1) than dt−k. Given this, it
follows that since β0 > 0 then βq−1 > 0 and

βq−1 =
1

R
[(1 + β0)wq−1] <

1

R
[(1 + β0)wq−2 + βq−1] = βq−2 (42)

In addition, if βk < βk−1, then:

βk−1 =
1

R
[(1 + β0)wk−1 + βk] <

1

R
[(1 + β0)wk−2 + βk−1] = βk−2 (43)

Thus, the proof that βk < βk−1 for all k ∈ {1, ..., q − 1} follows by induction.

Proof of Lemma 4.1. A. β0 is increasing in λ. Let Gq(λ) =
∑q−1

j=0 c
j+1wj where c = 1

R . Thus

β0 =
Gq(λ)

1−Gq(λ) , and it suffices to show that G′q(λ) > 0, ∀q > 0, ∀λ > 0. After some algebra,

the terms in Gq(·) can be re-organized as follows:

Gq(λ) =

q−1∑
a=0

1

q

a∑
j=0

cj+1w(j, λ, a) (44)

Note that for any a ∈ {0, ..., q − 1}: (i)
∑a

j=0w(j, λ, a) = 1 and (ii) for any λ1, λ2 such
that λ1 > λ2 > 0,

∑a
j=k w(j, λ1, a) <

∑a
j=k w(j, λ2, a) . Thus, the weight distribution

given by λ1 first-order stochastically dominates the weight distribution given by λ2. Since
c > c2 > c3 > ... > cq−1 then stochastic dominance implies that for all a ∈ {0, ..., q − 1},∑a

j=0 c
j+1w(j, λ1, a) >

∑a
j=0 c

j+1w(j, λ2, a), and thus Gq(λ1) > Gq(λ2).

Proof of Proposition 4.4. From Proposition 4.1, for any k and t,

∂xkt
∂dt

=
1

V [st+1]

(
(1 + β0)

∂θkt
∂dt−j

−Rβ0

)
.

It follows that
∂θkt
∂dt−j

= w(j, λ, k). Hence, it suffices to show that w(j, λ, t − n) < w(j, λ, t −
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(n+ 1)). First lets consider the case for j = 0. For any age,

w(0, λ, age) =
(age+ 1)λ∑age

k=0(age+ 1− k)λ
=

(
age∑
k=0

(
age+ 1− k
age+ 1

)λ)−1

=

(
1 +

age−1∑
k=0

(
age− k
age+ 1

)λ)−1

,

and

w(0, λ, age+ 1) =
(age+ 2)λ∑age

k=0(age+ 2− k)λ

=

(
age+1∑
k=0

(
age+ 2− k
age+ 2

)λ)−1

=

(
1 +

age∑
k=0

(
age+ 1− k
age+ 2

)λ)−1

,

So to establish w(0, λ, age+ 1) < w(0, λ, age) with age = t− n− 1, it suffices to show that

age−1∑
k=0

(
age− k
age+ 1

)λ
<

age∑
k=0

(
age+ 1− k
age+ 2

)λ
We note that in the second expression, there are age + 1 terms whereas in the first one

there are age. We show that age−l
age+1 <

age+1−l
age+2 for any l = 0, ..., age. The inequality holds iff

(age− l)(age+ 2) < (age+ 1− l)(age+ 1) iff age2 + 2age− l(age+ 2) < age2 + (1− l)age+
age+ (1− l) iff −2l < 1− l for holds for any l ≥ 0.

Therefore, w(0, λ, t−n) < w(0, λ, t− (n+1)). From Lemma 2.1, there exists a j0 such that
w(j, λ, t−n) < w(j, λ, t− (n+ 1)) for all j ∈ {0, ..., j0} and w(j, λ, t−n) ≥ w(j, λ, t− (n+ 1))
for the rest of the j’s.

The proof of Proposition 4.5 relies on the following First order stochastic dominance result.

Lemma B.2. Let F (m, a) ≡ ∑m
j=0w(j, λ, a). If j 7→ w(j, λ, a) − w(j, λ, a′) for a′ < a is

increasing in j, then F (m, a) ≤ F (m, a′) for all m ∈ {0, ..., a}.

Proof. From Lemma 2.1, we know that there exists a unique j0 where w(j0, λ, a
′) = w(j0, λ, a).

Thus, for m ≤ j0, the result is true because w(j, λ, a′) > w(j, λ, a) for all j ∈ {0, ...m}. For
m > j0, the result follows from the fact that w(j, λ, a′) < w(j, λ, a) for all j ∈ {m, ...a} and
F (a, a) = F (a′, a′) = 1.

Proof of Proposition 4.5. We first introduce some notation. For any j = t−n−k, ..., t−n, let
w(j, λ, n−t−k) = 0; i.e., we define to be zero the weights of generation n+k for time periods
before they were born. Thus,

∑t−n−k
j=0 w(j, λ, t − n − k)dt−j =

∑t−n
j=0 w(j, λ, t − n)dt−j . In

addition, we note that (w(j, λ, t− n− k))t−nj=0 and (w(j, λ, t− n))t−nj=0 are sequences of positive
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weights that add to one. Let for any m = 0, ..., t− n,

F (m, t− n− k) =

m∑
j=0

w(j, λ, t− n− k), and F (m, t− n) =

m∑
j=0

w(j, λ, t− n).

It follows that the quantities above, as functions of m, are non-decreasing and F (t−n, t−n−
k) = F (t−n, t−n) = 1 and F (−1, t−n−k) = F (−1, t−n) = 0. Moreover, F (m+ 1, t−n−
k)−F (m, t−n−k) = w(m+1, λ, t−n−k) and F (m+1, t−n)−F (m, t−n) = w(m+1, λ, t−n).

By these observations and our previous derivations for ξ(n, k, t), it follows that,

ξ(n, k, t)

=

∑t−n
m=0(F (m, t− n)− F (m− 1, t− n))dt−m −

∑t−n
m=0(F (m, t− n− k)− F (m− 1, t− n− k))dt−m

γ(1 + β0)σ2

=
F (0, t− n)dt + (F (1, t− n)− F (0, t− n))dt−1 + ...+ (1− F (t− n− 1, t− n))dn

γ(1 + β0)σ2

− F (0, t− n− k)dt + (F (1, t− n− k)− F (0, t− n− k))dt−1 + ...+ (1− F (t− n− 1, t− n− k))dn
γ(1 + β0)σ2

=
(dt − dt−1)F (0, t− n) + (dt−1 − dt−2)F (1, t− n) + ...+ (dn−1 − dn)F (1, t− n) + dn

γ(1 + β0)σ2

− (dt − dt−1)F (0, t− n− k) + (dt−1 − dt−2)F (1, t− n− k) + ...+ (dn−1 − dn)F (1, t− n− k) + dn
γ(1 + β0)σ2

=

∑t−n+1
j=0 (dt−j − dt−j−1)(F (j, t− n)− F (j, t− n− k))

γ(1 + β0)σ2
.

By assumption dt−j − dt−j−1 ≥ 0 for all j = 0, ..., t − n + 1 in the case that dividends
are non-decreasing. Thus, it suffices to show that F (j, t − n) ≤ F (j, t − n − k) for all
j = 0, ..., t− n+ 1. To show this, we note that by Lemma 2.1 the hypothesis in Lemma B.2
holds. Thus, the result follows from applying the latter lemma with a = t−n > t−n−k = a′

and j ∈ {0, ..., t− n}.
Note that if the weights are non-increasing, then dt−j − dt−j−1 ≤ 0. Therefore, the sign of

ξ(n, k, t) changes accordingly.

Appendix C Proofs of Subsection 4.4

Proof of Proposition 4.6. By Proposition 4.1 and 4.2, it follows that

xnt =
1

γσ2 (1 + β0)2

(
α0 + (1 + β0)θnt +

q−1∑
k=1

βkdt+1−k −R
(
α0 +

q−1∑
k=0

βkdt−k

))

=
1

γσ2 (1 + β0)2

(
α0(1−R) + (1 + β0)θnt −Rβ0dt +

q−1∑
k=1

βk(dt+1−k −Rdt−k)
)
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and thus for n ∈ [t− 1, ..., t− q − 1]

xnt − xnt−1 =
(1 + β0)(θnt − θnt−1) + T (dt:t−q)

γσ2 (1 + β0)2

where T (dt:t−q) ≡
∑q−1

k=1 βk(dt+1−k − dt−k −R(dt−k − dt−1−k))−Rβ0(dt− dt−1) is not cohort

specific, that is, does not depend on n. Since xtt − xtt−1 = xtt and xt−qt − xt−qt−1 = −xt−qt−1 we
have instead:

xtt − xt−qt =
(1 + β0)(θtt − θt−qt−1) + T (dt:t−q)

γσ2 (1 + β0)2

In addition, from market clearing and after some algebra, we have that:

1

q

(
t∑

n=t−q
xnt − xnt−1

)
=

1

q

t∑
n=t−q

(1 + β0)(θnt − θnt−1) + T (dt:t−q)

γσ2 (1 + β0)2 = 0

⇒ 1

q

t∑
n=t−q

(1 + β0)(θnt − θnt−1)

γσ2 (1 + β0)2 =− 1

q

t∑
n=t−q

T (dt:t−q)

γσ2 (1 + β0)2 = − T (dt:t−q)

γσ2 (1 + β0)2

where θtt−1 = 0 and θt−qt = 0. As a result, we can express the change in individual demands
as follows:

xnt − xnt−1 = χ

[(
θnt − θnt−1

)
− 1

q

t∑
n=t−q

(
θnt − θnt−1

)]

where χ ≡ 1
γσ2(1+β0)

. From our TV formula, we focus on TV 2

χ :

TV 2

χ
=

1

q

t∑
n=t−q

[(
θnt − θnt−1

)
− 1

q

t∑
n=t−q

(
θnt − θnt−1

)]2
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Appendix D Proofs for Section 7

To establish the results in this section we need the following lemmas (the proofs are relagated
the end of this section).

Lemma D.1. Suppose z ∼ N(µ, σ2), then for any A,B ∈ R and C ≥ 0, z 7→ K−1 exp{−A−
Bz −Cz2}φ(z;µ, σ2) is Gaussian with mean m ≡ −Σ2B + Σ2σ−2µ and Σ2 ≡ σ2

2Cσ2+1
, where

K = EN(µ,σ2)[exp{−A−Bz − Cz2}] =
1√

2σ2C + 1
exp{−(A+ 0.5σ−2µ2) +

m2

2Σ2
}

Lemma D.2. Demands for the risky asset in the last two period of an agent’s life are given

by: xt−qt = 0 and xt−q+1
t =

Et−q+1
t [st+1]

γσ2
∗

, ∀t ∈ Z,q ≥ 1.

Lemma D.3. Let z ∼ N(µ, σ2). Let A,B ∈ R and C ≥ 0, and z 7→ h (z) ≡ f + ez for any
e, f ∈ R.Then

max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] = − 1√
2σ2C + 1

exp

[
−A− 1

2

(
µ2

σ2
− m2

s2

)]
exp

[
−1

2

µ̃
(
m, s2

)2
σ̃2 (m, s2)

]

arg max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =
µ̃
(
m, s2

)
aσ̃2 (m, s2)

with m = s2
[
σ−2µ−B

]
, s2 = σ2

2Cσ2+1
, µ̃
(
m, s2

)
= EN(m,s2) [h (z)] , σ2

(
m, s2

)
= VN(m,s2) [h (z)].

Let β(k) = βk+1 − rβk for k ∈ {0, ...,K − 1} and β(K) = −rβK .

Lemma D.4. Suppose pt = α+
∑K

k=0 βkdt−k with β0 6= −1. Then the demand for risky assets
of any cohort alive at time t is an affine function of past dividends, where the coefficients
associated with a given dividend will depend on the agent’s age, age. That is,

xt−aget = δ(age) +
K∑
k=0

δk(age)dt−k, for age ∈ {0, ..., q} (45)

with

δ(q) = δk(q) = 0, ∀k ∈ {0, ...,K} (46)

δ(q − 1) =
α(1−R)

γ((1 + β0)σ)2
, δk(q − 1) =

(1 + β0)w(k, λ, q − 1) + β(k)

γ((1 + β0)σ)2
, ∀k ∈ {0, ..., q − 1}

(47)

δk(q − 1) =
β(k)

γ((1 + β0)σ)2
, ∀k ∈ {q, ...,K}, (48)
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and for age ∈ {0, ..., q − 2},

δ(age) =
α(1−R)− s2

age(1 + β0)δ0(age+ 1)δ(age+ 1)(Rq−1−(age+1)γ)2((1 + β0)sage+1)2

Rq−1−(age)γ((1 + β0)sage)2
,

(49)

δk(age) =
(1 + β0)s2

age(σ
−2w(k, λ, age)− [(Rq−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)]) + β(k)

Rq−1−(age)γ((1 + β0)sage)2

(50)

k ∈ {0, ..., q − 1}, (51)

δk(age) =
−(1 + β0)s2

age[(R
q−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)] + β(k)

Rq−1−(age)γ((1 + β0)sage)2
, k ∈ {q, ...,K − 1}

(52)

δK(age) =
β(K)

Rq−1−(age)γ((1 + β0)sage)2
, (53)

and sq−1 = σ and s2
age ≡ σ2

(Rq−1−(age+1)γ)2((1+β0)sage+1)2(δ0(age+1))2σ2+1

The expressions for bj , bj(k) and cj for j ∈ {0, ..., q − 1} are:

bj ≡(Rq−1−jγ)2((1 + β0)σj)
2δ(j)δ0(j)

bj(k) ≡δk(j)δ0(j)(Rq−1−jγ)2((1 + β0)σj)
2

and, cq−1 = 1 and

cj−1 = 0.5(Rq−1−(j+1)γ)(1 + β0)σj+1δ0(j + 1)

for j ∈ {0, ..., q − 2}.

Proof of Proposition 7.1. By lemma B.1,

xttq =
EN(mq−1,σ2

q−1)[st+q]

γVN(mq−1,σ2
q−1)[st+q]

with mq−1 = θttq and σq−1 = σ, and

V t
tq = − exp{−0.5

(
(1 + β0)σγxttq

)2
}.

By lemma D.4, xttq is affine in dtq−K:tq and thus V t
tq = − exp{−A−Bdtq −C(dtq)

2} where
A, B and C depend on primitives and on dtq−K:t+q−2, in particular B is affine in dtq−K:tq−1
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and C is constant with respect to dtq−K:tq :

C ≡1

2
γ2((1 + β0)σq−1)2 (δ0(q − 1))2

B ≡γ2((1 + β0)σq−1)2

δ(q − 1) +
K∑
j=1

δk(q − 1)dtq−j

 δ0(q − 1)

A ≡1

2
γ2((1 + β0)σq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dtq−j

2

.

(see Lemma D.4 for the expressions for δ(q − 1) and (δk(q − 1))Kk=1).
At time t+ q − 2, by equation (26),

xtt+q−2 = arg max
x∈R

Ett+q−2

[
V t
tq(dtq−K:tq) exp

(
−γstqx

)]
where the expectation is taken with respect N(θtt+q−2, σ

2). Hence, by lemma D.1, this prob-
lem can be cast as

xtt+q−2 = arg max
x∈R

EN(mq−2,σq−2)

[
− exp

(
−Rγstqx

)]
where mq−2 = σq−2(

θtt+q−2

σ2 −B) and σ2
q−2 = σ2

2Cσ2+1
. Hence, by lemma B.1

xtt+q−2 =
EN(mq−2,σ2

q−2)[stq ]

γRVN(mq−2,σ2
q−2)[stq ]

,

Also, by lemma B.1, V t
t+q−2 = − exp{−0.5

(
VN(mq−2,σ2

q−2)[stq ]Rγx
t
t+q−2

)2
}. By lemma

D.4, xtt+q−2 is affine and thus V t
t+q−2 = − exp{−A−Bdt+q−2−C(dt+q−2)2} where A, B and

C depend on primitives and on dt+q−2−K:t+q−3, in particular B is affine in dt+q−2−K:t+q−3

and C is constant with respect to dtq−K:tq :

C ≡1

2
(Rγ)2((1 + β0)σq−2)2 (δ0(q − 2))2

B ≡(Rγ)2((1 + β0)σq−2)2

δ(q − 2) +

K∑
j=1

δk(q − 2)dt+q−2−j

 δ0(q − 2)

A ≡1

2
(Rγ)2((1 + β0)σq−2)2

δ(q − 2) +

K∑
j=1

δk(q − 2)dt+q−2−j

2

.

(observe that the A and B and C are not the same as the previous ones; the expressions for
δ(q − 2) and (δk(q − 2))Kk=1 can be found in the statement of lemma D.4).
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The result for j ∈ {0, ..., q − 3} follows by iteration.

Proof of Proposition 7.2. Market Clearing and Lemma D.4 imply that, for all k ∈ {0, ...,K},
q−1∑
age=0

δk(age) = 0 (54)

and

q−1∑
age=0

δ(age) = q.

For k = K, it follows from equations 48 and 53

q−1∑
age=0

δK(age) = β(K)

 q−1∑
age=0

1

Rq−1−ageγ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2


therefore β(K) = 0 which implies that βK = 0 and β(K − 1) = −RβK−1 and δK(age) = 0
for any age.

For k = K − 1, by equations 48 and 52

q−1∑
age=0

δK−1(age) = β(K − 1)

 q−2∑
age=0

1

Rq−1γ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2


and thus β(K−1) = 0 which implies that βK−1 = 0 and β(K−2) = −RβK−2 and δK−1(age) =
0 for any age.

By induction, for any k ∈ {q, ...,K − 2}, taking βk+1 = 0, it follows by equations 48 and
52, that

q−1∑
age=0

δk(age) = β(k)

 q−2∑
age=0

1

Rq−1−ageγ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2


and thus β(k) = 0 which implies βk = 0 and β(k − 1) = −Rβk−1 and δk(age) = 0 for any
age ∈ {q, ...,K}.
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Proof of Lemma 7.1. By Proposition 7.1, we have the following demands:

xt−2
t = 0 (55)

xt−1
t =

Et−1
t [st+1]

γR (1 + β0)σ2
=
α (1−R) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2
(56)

xtt =
EΦ(m,s2) [st+1]

γR (1 + β0) s2
=
α (1−R) + (β1 −Rβ0) dt −Rβ1dt−1 + (1 + β0)m

γR (1 + β0)2 s2
(57)

where l(0, 1) ≡ (1 + β0)w(0, λ, 0) + β1 −Rβ0, l(1, 1) ≡ (1 + β0)w(1, λ, 0)−Rβ1,

m =
s2

σ2

[
dt − σ2Bt+1 (1)

]
s2 =

σ2

2C (1)σ2 + 1
,

and

Bt+1 (1) =
α (1−R) l (0, 1)

(1 + β0)2 σ2
+
l(1, 1)l (0, 1)

(1 + β0)2 σ2
dt

C (1) =
l (0, 1)2

(1 + β0)2 σ2

Therefore:

m =
s2

σ2

[
dt −

α (1−R) l (0, 1)

(1 + β0)2 − l(1, 1)l (0, 1)

(1 + β0)2 dt

]
=
s2

σ2

[
−α (1−R) l (0, 1)

(1 + β0)2 +

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)
dt

]
s2 =

σ2

2 l(0,1)2

(1+β0)2σ2
σ2 + 1

=
(1 + β0)2

l (0, 1)2 + (1 + β0)2σ
2.

Plugging this in the expression for xtt, it follows that

xtt =
α (1−R) + (β1 −Rβ0) dt −Rβ1dt−1 + (1 + β0) s2

σ2

[
−α(1−R)l(0,1)

(1+β0)2
+
(

1− l(1,1)l(0,1)

(1+β0)2

)
dt

]
γR (1 + β0)2 s2

=
α (1−R)

[
1− s2

σ2
l(0,1)

(1+β0)

]
+
[
β1 −Rβ0 + (1 + β0) s2

σ2

(
1− l(1,1)l(0,1)

(1+β0)2

)]
dt −Rβ1dt−1

γR (1 + β0)2 s2
.
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By Market clearing:

1 =
1

2

(
α (1−R) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2

)

+
1

2

α (1−R)
[
1− s2

σ2
l(0,1)

(1+β0)

]
+
[
β1 −Rβ0 + s2

σ2 (1 + β0)
(

1− l(1,1)l(0,1)

(1+β0)2

)]
dt −Rβ1dt−1

γR (1 + β0)2 s2


=

1

2

(
α (1−R) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2

)

+
1

2

α (1−R) σ
2

s2

[
1− s2

σ2
l(0,1)

(1+β0)

]
+
[
σ2

s2
(β1 −Rβ0) + (1 + β0)

(
1− l(1,1)l(0,1)

(1+β0)2

)]
dt − σ2

s2
Rβ1dt−1

γR (1 + β0)2 σ2

 ,

which implies

2γ (1 + β0)2 σ2 = (α (1−R) + l (0, 1) dt + l (1, 1) dt−1)

+
1

R

[
α (1−R)

σ2

s2

[
1− s2

σ2

l (0, 1)

(1 + β0)

]]
+

1

R

[[
σ2

s2
(β1 −Rβ0) + (1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)]
dt −

σ2

s2
Rβ1dt−1

]
=α (1−R)

1

R

[
R+

σ2

s2
− l (0, 1)

(1 + β0)

]
+

[
l (0, 1) +

1

R

σ2

s2
(β1 −Rβ0) +

1

R
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)]
dt +

[
l (1, 1)− σ2

s2
β1

]
dt−1.

Therefore {α, β0, β1} solve the following system of equations:

0 = α (1−R)

[
R+

σ2

s2
− l (0, 1)

1 + β0

]
− 2Rγ (1 + β0)2 σ2 (58)

0 = l (0, 1) +
1

R

σ2

s2
(β1 −Rβ0) +

1

R
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)
(59)

0 = l (1, 1)− σ2

s2
β1 (60)

where l(0, 1) ≡ [(1 + β0)w(0, λ, 0) + β1 −Rβ0] and l(1, 1) ≡ [(1 + β0)w(1, λ, 0)−Rβ1].

Proof of Proposition 7.3. Throughout the proof, let w0 ≡ w(0, λ, 0).
We know from Lemma 7.1 that {α, β0, β1} solve the system of equations given by (59) and

(60) and 58.
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Step 1. By equation (58),

2Rγ (1 + β0)2 σ2 = α (1−R)

[
R+

σ2

s2
− [(1 + β0)w(0, λ, 0) + β1 −Rβ0]

1 + β0

]
.

We note thatR > 1 ≥ w(0, λ, 0), thus, if 0 < β1 < Rβ0 and 1+β0 > 0, then
[
R+ σ2

s2
− [(1+β0)w(0,λ,0)+β1−Rβ0]

1+β0

]
>

0 and α ≤ 0.

Step 2. We show that if 1 + β0 > 0, then 0 < β1 < Rβ0.
For 1+β0 > 0, equation (60) implies β1 > 0 and l (1, 1) > 0. Now assume that β1−Rβ0 > 0,

this implies that l (0, 1) > 0. For equation (59) to hold it must be that 1− 1
R
l(1,1)
1+β0

< 0.

1− 1

R

l(1, 1)

(1 + β0)2 = 1− 1

R

(1 + β0) (1− w0)−Rβ1

(1 + β0)
(61)

= 1− 1

R
(1− w0) +

β1

1 + β0
> 0 (62)

Since R > 1, w0 < 1, and β1 > 1. Contradiction. Then, 1 + β0 > 0⇒ β1 −Rβ0 < 0.

Step 3. We now show that 1 + β0 > 0. Let φ ≡ σ2

s2
> 1. From equation (60):

(1 + β0) (1− w0)

φ+R
= β1.

We plug this into equation (59) and we obtain:

φ

(
−β0R+

(1 + β0) (1− w0)

φ+R

)
+R

[
(1 + β0) (1− w0)

φ+ r
+ (1 + β0)w0 − β0R

]
+

+

[
1 + β0 −

φ(1− w0)
(
1 + β0 − β0φR− β0R

2 + (1 + β0) (φ+R− 1)w0

)
(φ+R)2

]
= 0.

Note that this is a linear equation on β0, i.e.,

β0{φ
(

1− w0

φ+R
−R

)
+R

[
1− w0

φ+R
+ w0 −R

]
+ 1− φ(1− w0)

(
1− φR−R2 + (φ+R− 1)w0

)
(φ+R)2 }

+ φ

(
1− w0

φ+R

)
+R

[
(1− w0)

φ+R
+ w0

]
+

[
1− φ(1− w0) (1 + (φ+R− 1)w0)

(φ+R)2

]
.

Therefore,

β0 = −
2− w0(1−R)− φ(1−w0)(1+(φ+R−1)w0)

(φ+R)2

2− w0(1−R)− φ(1−w0)(1+(φ+R−1)w0)

(φ+R)2
− (Rφ+R2)

[
1− φ(1−w0)

(φ+R)2

] ≡ − A

A− x.

where A ≡ 2 − w0(1 − R) − φ(1−w0)(1+(φ+R−1)w0)

(φ+R)2
and x ≡

(
Rφ+R2

) [
1− φ(1−w0)

(φ+R)2

]
> 0.
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Note that for x = 0 ⇒ β0 = −1. Then, it suffices to show that ∂β0
∂x = A

(A−x)2
≥ 0, that is,

A ≥ 0. For w0 = 0.5, which corresponds to λ = 0, A is positive, i.e., A(0.5) > 0. In addition,
∂A
∂w0

= (φ+R−1)(R2+φ(R−2(1−w0)))
(φ+R)2

> 0 for w0 ≥ 0.5. Therefore, A > 0 for w0 ≥ 0.5.

If we are interested in λ < 0 cases, since A(0) > 0, all we need to ensure that A is positive,
and thus the result holds for w0 ∈ [0, 0.5), is that R ≥ 2(1− w0).

In order to show Proposition 7.4, we need the following Lemmas (their proofs are relegated
to the end of the section).

Lemma D.5. For λ ≥ 0, 1 + β0 + β1 − rβ0 > 0.

Lemma D.6. Given our linear guess for prices (8), when q = 2, at time t:

xt−1
t =

Et−1
t [st+1]

γR (1 + β0)σ2
=

α (1−R)

γ (1 + β0)2 σ2
+

l (0, 1)

γ (1 + β0)2 σ2
dt +

l (1, 1)

γ (1 + β0)2 σ2
dt−1 (63)

xtt =
EΦ(m,s2) [st+1]

R(1 + β0)s2
= δ(0) + δ0(0)dt + δ1(0)dt−1 (64)

with l(0, 1) ≡ [(1 + β0)w(0, λ, 0) + β1 − Rβ0] and l(1, 1) ≡ [(1 + β0)w(1, λ, 0) − Rβ1], and

δ(0) =
α(1−R)

[
1− s2

σ2
l(0,1)
(1+β0)

]
γR(1+β0)2s2

, δ0(0) =
β1−Rβ0+(1+β0) s

2

σ2

(
1− l(1,1)l(0,1)

(1+β0)
2

)
γR(1+β0)2s2

, and δ1(0) = − Rβ1
Rγ(1+β0)s2

.

Proof of Proposition 7.4. By lemma D.6 and Market Clearing, it follows that

δ0(0) +
l (0, 1)

γ (1 + β0)2 σ2
= 0,

and

δ1(0) +
l (1, 1)

γ (1 + β0)2 σ2
= 0.

And
∂xtt
∂dt

= δ0(0) = −∂xt−1
t
∂dt

,
∂xtt
∂dt−1

= δ1(0), and
∂xt−1
t
∂dt

= l(0,1)

γ(1+β0)2σ2
and

∂xt−1
t

∂dt−1
= l(1,1)

γ(1+β0)2σ2
=

− ∂xtt
∂dt−1

.

Therefore, it suffices to show that l(0, 1) < 0 and δ1(0) < 0.
By proposition 7.3, β1 > 0 and β0 > 0 and thus δ1(0) = − Rβ1

Rγ(1+β0)s2
< 0. So it only

remains to show that l(0, 1) < 0.
We now show that l(0, 1) < 0. From the equilibrium condition (59) we have:

0 =

[
R− l(1, 1)

(1 + β0)

]
l (0, 1) +

l (0, 1)2

(1 + β0)2 (β1 −Rβ0) + [1 + β0 + β1 −Rβ0]

From Lemma D.5, 1 + β0 + β1 −Rβ0 > 0. Let x = l(0,1)
1+β0

, then

0 = [R (1 + β0)− l(1, 1)]x+ x2 (β1 −Rβ0) + [1 + β0 + β1 −Rβ0]
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F (x) ≡ ax2 + bx+ c

with a = β1 − Rβ0 < 0 (by Proposition 7.3), b = R (1 + β0) − l(1, 1) = R (1 + β0) − (1 +
β0)w(1, λ, 0) + Rβ1 > 0 (by Proposition 7.3) and c = 1 + β0 + β1 − Rβ0 > 0 ( by Lemma
D.5). Thus: F is convex and F (0) = c > 0. From FOC a2x∗ + b = 0 ⇒ x∗ = − b

2a > 0.
Let’s focus on x2. Therefore, F (x) has two roots x1, x2 with x1 < 0 < x∗ < x2, where
x∗ = arg maxx∈R F (x).

We now show that x2 = l(0,1)
1+β0

cannot be a solution. Suppose not, that is assume that our

solution is the positive root l(0,1)
1+β0

= x2, then:

− b

2a
<
l (0, 1)

1 + β0
(65)

R (1 + β0)− l(1, 1)

2 [− (β1 −Rβ0)]
<
l (0, 1)

1 + β0
(66)

R (1 + β0)− l(1, 1)

2
< l (0, 1)

Rβ0 − β1

1 + β0
(67)

Let Z ≡ −β1−Rβ0
1+β0

R (1 + β0)− (1 + β0) (1− w0) +Rβ1 <2l (0, 1)Z

R (1 + β0)− (1 + β0) (1− w0) +Rβ1 <2Z [(1 + β0)w0 + β1 −Rβ0]

R− 1 + w0 +R
β1

(1 + β0)
<2Z

[
w0 +

β1 −Rβ0

(1 + β0)

]
Z (w0 − Z) >0.5w0 +

1

2

[
R− 1 +R

β1

1 + β0

]
w0

4
>0.5w0 +

1

2

[
R− 1 +R

β1

1 + β0

]
.

Observe that 1
2

[
R− 1 +R β1

1+β0

]
> 0 and thus a contradiction follows. The solution must be

the negative root.
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D.1 Proof of Lemmas D.1, D.2, D.3, D.4 and D.5 and D.6

Proof of Lemma D.1. Let ϕ(z) ≡ K exp{−(A + Bz + Cz2)}φ(z;µ, σ2). By definition of K,∫
ϕ(z)dz = 1 and ϕ ≥ 0, so it is a pdf. Moreover,

ϕ(z) =
K−1

√
2πσ

exp{−A−Bz − Cz2 − 0.5σ−2(z − µ)2}

=
1

K
√

2πσ
exp{−z2(C + 0.5σ−2)− 2z(0.5B − 0.5σ−2µ)− (A+ 0.5σ−2µ2)}

=
1

K
√

2πσ
exp{−(A+ 0.5σ−2µ2)} exp{−0.5(2C + σ−2)

(
z2 − 2z

(−B + σ−2µ)

(2C + σ−2)

)
}.

Let Σ2 ≡ (2c+σ−2)−1, m ≡ Σ2(σ−2µ−b), and K = 1√
2σ2C+1

exp{−(A+0.5σ−2µ2)+ m2

2Σ2 }:

ϕ(z) =
1

K
√

2πσ
exp{−(a+ 0.5

µ2

σ2
) +

m2

2Σ2
} exp{−z

2 − 2zm+m2

2Σ2
}

=
1

K
√

2πσ
exp{−(a+ 0.5σ−2µ2) +

m2

2Σ2
} exp{−(z −m)2

2Σ2
} =

1√
2πΣ

exp{−(z −m)2

2Σ2
}

=
1√

2πΣ2
exp{−(z −m)2

2Σ2
}

Proof of Lemma D.2. At time t + q, an agent born in t is in the last period of his life,
consuming all of its wealth. Therefore, he will sell all of its claims to the assets it holds and
consume. The gain from saving is zero, and therefore the holding of financial assets is also
zero by the end of this period: xtt+q = 0, att+q = 0. Given this, we can compute the portfolio
choice of an agent with age q− 1, who does want to save for next period when all wealth will
be consumed. The agent’s problem is a standard static portfolio problem, with initial wealth
W t
tq :

max
x

Ettq

[
− exp

(
−γ
(
W t
tq + xst+q

))]
= max

x
Ettq [− exp (−γxst+q)] (68)

At time tq, the only random variable is dt+q, which is normally distributed, and thus

st+q ∼ N
(
Ettq [st+q] ; (1 + β0)σ2

)
. Given this, the agent’s problem becomes:

V t−q
t−1 ≡max

x

[
− exp

(
−γxEt−qt−1 [st] +

1

2
γ2x2 (1 + β0)σ2

)]
(69)

max
x

xEt−qt−1 [st]−
1

2
γx2 (1 + β0)2 σ2 (70)

And therefore, by FOC:

xttq =
Ettq [st+q]

γσ2
∗

(71)
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Proof of Lemma D.3. Note that E[− exp{−A−Bz−Cz2} exp{−axh (z)}] can be written as:∫
exp{−axh (z)} − exp{−A−Bz − Cz2} 1√

2πσ2
exp

{
−1

2

z − µ
σ2

}
dz

By Lemma D.1, we know that his can be re-written as:

1√
2σ2C + 1

exp

{
−A− 0.5

(
µ2

σ2
− m2

s2

)}∫
− exp{−axh (z)}Φ

(
m, s2

)
dz

with m = −s2B + sσ−2µ and s2 = σ2

2Cσ2+1
. Therefore, the maximization problem becomes:

max
x

EN(m,s2)[− exp{−axh (z)}]

with EN(m,s2) [·] being the expectations operator over z ∼ N
(
m, s2

)
. Since h(z) is linear, we

know that h (z) ∼ N
(
µ̃
(
m, s2

)
, σ̃
(
m, s2

)2)
, with µ̃

(
m, s2

)
= EN(m,s2) [h (z)], σ̃

(
m, s2

)2
=

VN(m,s2) [h (z)], by Lemma B.1, we know that

arg max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =
µ̃
(
m, s2

)
aσ̃ (m, s2)2

max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =− 1√
2σ2C + 1

exp

[
−A− 0.5

(
µ2

σ2
− m2

s2

)]
× exp

[
−0.5

µ̃
(
m, s2

)2
σ̃ (m, s2)2

]

Let t 7→ ρ(t) ≡ γt2 and let

Λ(dt−K , ..., dt) ≡α(1−R) +
K∑
k=1

βkdt+1−k −R
K∑
k=0

βkdt−k

=α(1−R) +
K−1∑
j=0

βj+1dt−j −R
K∑
k=0

βkdt−k = α(1−R) +
K∑
k=0

β(k)dt−k

with β(k) = βk+1 − Rβk for k ∈ {0, ...,K − 1} and β(K) = −RβK . We use Λτ to denote
Λ(dτ−K , ..., dτ ).

Proof of Lemma D.4. We divide the proof into several steps.

STEP 1. It is straightforward that demand for risky assets can only be positive for a
generation that is alive. From Lemma D.2, we know that xt−qt = 0 and that xt−q+1

t =
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Et−q+1
t [st+1]
γ((1+β0)σ)2

. Therefore,

δ(q) = δk(q) = 0, ∀k ∈ {0, ...,K} (72)

δ(q − 1) =
α(1−R)

γ((1 + β0)σ)2
, δk(q − 1) =

(1 + β0)w(k, λ, q − 1) + β(k)

γ((1 + β0)σ)2
, ∀k ∈ {0, ..., q − 1}

(73)

δk(q − 1) =
β(k)

γ((1 + β0)σ)2
, ∀k ∈ {q, ...,K}. (74)

We also know from Lemma B.1 that

V q−1(dt−K , ..., dt) = − exp

−1

2

dtδ0(q − 1) + δ(q − 1) +
K∑
j=1

δk(q − 1)dt−j

2

γ2((1 + β0)sq−1)2


where sq−1 = σ2. Henceforth, we denote V q−1(dt−K , ..., dt) by V t−q+1

t . In particular,

V t+1−q+1
t+1 = V t−q+2

t+1 = V q−1(dt+1−K , ..., dt+1).

STEP 2. We now derive the risky demand and continuation value for generation aged
q − 2. The problem of generation aged q − 2 at time t is given by,

max
x

Et−q+2
t

[
V t−q+2
t+1 exp (−γRxst+1)

]
. (75)

By the calculations in step 1, and using Λt as defined in (72), this problem becomes:

V q−2(dt−K , ..., dt) (76)

= max
x

Et−q+2
t

[
− exp

(
−1

2

(
xq−1
t

)2
γ2((1 + β0)sq−1)2 − γRx((1 + β0)dt+1 + Λt)

)]
. (77)

with xq−1
t = dt+1δ0(q − 1) + δ(q − 1) +

∑K
j=1 δk(q − 1)dt+1−j .

Observe that

− 1

2

dt+1δ0(q − 1) + δ(q − 1) +
K∑
j=1

δk(q − 1)dt+1−j

2

γ2((1 + β0)sq−1)2

=− 1

2
γ2((1 + β0)sq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

2

− γ2((1 + β0)sq−1)2

δ(q − 1) +
K∑
j=1

δk(q − 1)dt+1−j

 δ0(q − 1)dt+1

− 1

2
γ2((1 + β0)sq−1)2 (δ0(q − 1))2 d2

t+1,
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and that future dividends are the only random variable, with dt+1 ∼ N
(
θt−q+2
t , σ2

)
. There-

fore, by Lemma D.3, and with:

A =
1

2
γ2((1 + β0)sq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

2

B =γ2((1 + β0)sq−1)2

δ(q − 1) +
K∑
j=1

δk(q − 1)dt+1−j

 δ0(q − 1)

C =
1

2
γ2((1 + β0)sq−1)2 (δ0(q − 1))2

we obtain:

x
t−(q−2)
t =

(1 + β0)s2
q−2(σ−2θ

t−(q−2)
t −B) + Λt

Rγ((1 + β0)sq−2)2

with s2
q−2 ≡ σ2

γ2((1+β0)sq−1)2(δ0(q−1))2σ2+1
. Therefore,

δ(q − 2) =
α(1−R)− s2

q−2(1 + β0)δ0(q − 1)δ(q − 1)γ2((1 + β0)sq−1)2

Rγ((1 + β0)sq−2)2

δk(q − 2) =
(1 + β0)s2

q−2(σ−2w(k, λ, q − 2)− [γ2((1 + β0)sq−1)2δk+1(q − 1)δ0(q − 1)]) + β(k)

Rγ((1 + β0)sq−2)2
, k ∈ {0, ..., q − 1}

δk(q − 2) =
−(1 + β0)s2

q−2[γ2((1 + β0)sq−1)2δk+1(q − 1)δ0(q − 1)] + β(k)

Rγ((1 + β0)sq−2)2
, k ∈ {q, ...,K − 1}

δK(q − 2) =
β(K)

Rγ((1 + β0)sq−2)2
.

By lemma D.1, dt+1 ∼ N(mt, s
2
q−2) with mt ≡ −s2

q−2B + s2
q−2σ

−2θt−q+2
t . Thus, invoking

lemma B.1 for this distribution for dividends and a = Rγ(1 + β0) implies that

V q−2(dt−K , ..., dt) �− exp

(
−1

2

(
x
t−(q−2)
t

)2
(Rγ)2((1 + β0)sq−2)2

)

=− exp

−1

2

dtδ0(q − 2) + δ(q − 2) +

K∑
j=1

δk(q − 2)dt−j

2

(Rγ)2((1 + β0)sq−2)2


(the symbol � means that equality holds up to a positive constant).

STEP 3. We now consider the problem for agents of age age ≤ q − 3. Suppose the
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problem at age age+ 1 is solved, that is, suppose

V t−age−1
t+1 =V age+1(dt+1−K , ..., dt+1)

�− exp

−1

2

dt+1δ0(age+ 1) + δ(age+ 1) +

K∑
j=1

δj(age+ 1)dt+1−j

2

(Rq−1−(age+1)γ)2((1 + β0)sage+1)2

 .

The maximization problem is given by:

V age(dt−K , ..., dt) ≡ max
x

Et−aget

[
V t−age−1
t+1 exp

(
−γRq−1−agex((1 + β0)dt+1 + Λt)

)]
. (78)

By similar calculations to step 2 and Lemma D.3,

xt−aget =
(1 + β0)s2

age(σ
−2θt−aget −B) + Λt

Rq−1−(age)γ((1 + β0)sage)2

with s2
age ≡ σ2

(Rq−1−(age+1)γ)2((1+β0)sage+1)2(δ0(age+1))2σ2+1
, and

B ≡ (Rq−1−(age+1)γ)2((1 + β0)sage+1)2

δ(age+ 1) +
K∑
j=1

δj(age+ 1)dt+1−j

 δ0(age+ 1).

Therefore

δ(age) =
α(1−R)− s2

age(1 + β0)δ0(age+ 1)δ(age+ 1)(Rq−1−(age+1)γ)2((1 + β0)sage+1)2

Rq−1−(age)γ((1 + β0)sage)2
,

δk(age) =
(1 + β0)s2

age(σ
−2w(k, λ, age)− [(Rq−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)]) + β(k)

Rq−1−(age)γ((1 + β0)sage)2

k ∈ {0, ..., q − 1},

δk(age) =
−(1 + β0)s2

age[(R
q−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)] + β(k)

Rq−1−(age)γ((1 + β0)sage)2
, k ∈ {q, ...,K − 1}

δK(age) =
β(K)

Rq−1−(age)γ((1 + β0)sage)2
.

By lemma D.1, dt+1 ∼ N(mt, s
2
age) with mt ≡ −s2

ageB + s2
ageσ

−2θt−q+2
t . Thus, invoking

lemma B.1 for this distribution for dividends and a = Rq−1−ageγ(1 + β0) implies that

V age(dt−K , ..., dt) �− exp

(
−1

2

(
x
t−(age)
t

)2
(Rq−1−(age)γ)2((1 + β0)sage)

2

)

=− exp

−1

2

dtδ0(age) + δ(age) +
K∑
j=1

δk(age)dt−j

2

(Rq−1−(age)γ)2((1 + β0)sage)
2

 .
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Proof of Lemma D.5. Assume it is not: 1 + β0 + β1 − Rβ0 ≤ 0. This implies that l(0, 1) =
(1 + β0)w0 + β1 −Rβ0 ≤ 0. From condition (59) we have:

0 =

[
R− l(1, 1)

(1 + β0)

]
l (0, 1) +

l (0, 1)2

(1 + β0)2 (β1 −Rβ0) + [1 + β0 + β1 −Rβ0]

Then, since β1 −Rβ0 ≤ 0 by proposition 7.3, for the previous equation to hold it must be

that
[
R− l(1,1)

(1+β0)

]
≤ 0.[

R− (1 + β0) (1− w0)−Rβ1

(1 + β0)

]
=

[
R+

Rβ1

1 + β0
− (1− w0)

]
> 0

Thus, [1 + β0 + β1 −Rβ0] > 0.

Proof of Lemma D.6. From Lemma B.1, we know that xt−1
t =

Et−1
t [st+1]

γ(1+β0)σ2 . Therefore, given

our guess for prices and Lemma 7.2, we have:

xt−1
t =

Et−1
t [dt+1 + pt+1 − ptR]

γ(1 + β0)σ2
(79)

=
(1 + β0)θt−1

t + α(1−R) + (β1 −Rβ0)dt −Rβ1dt−1

γ(1 + β0)σ2
(80)

since θt−1
t = w0dt+(1−w0)dt−1, we obtain equation (63), where l(0, 1) = (1+β0)w0+β1−Rβ0

and l(1, 1) = (1 + β0)(1− w0)−Rβ1. We also know from Lemma D.2 that

V t−1
t =− exp

(
−1

2

Et−q+1
t [st+1]2

γ(1 + β0)σ2

)

=− exp

(
−1

2

(α(1−R) + l(1, 1)dt−1 + l(0, 1)dt)
2

γ(1 + β0)σ2

)

=− exp

(
−1

2

(Lt(1, 1) + l(0, 1)dt)
2

γ(1 + β0)σ2

)

where Lt(1, 1) ≡ α(1−R)+l(1, 1)dt−1. Thus, we can write the value function of the generation
who is investing for the last time on the market as follows:

V t−1
t = − exp(−At −Btdt − Cd2

t ) (81)

where At ≡ Lt(1,1)2

2γ(1+β0)2σ2 , Bt ≡ Lt(1,1)l(0,1)
γ(1+β0)2σ2 , C ≡ l(0,1)2

2γ(1+β0)2σ2 . Using this results to obtain

V t
t+1, the problem of the young generation at time t is given by:

max
x

Ett
[
V t
t+1 exp (−γRxst+1)

]
(82)
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From Lemma D.3:

xtt =
µ̃
(
m, s2

)
γRσ̃ (m, s2)2

Where,

µ̃
(
m, s2

)
= EΦ(m,s2) [h (z)] = α(1−R) + (β1 −Rβ0)dt −Rβ1dt−1 + (1 + β0)m

σ̃
(
m, s2

)2
= VΦ(m,s2) [h (dt+1)] = (1 + β0)2s2

with m =
θtt−σ2Bt+1

2Cσ2+1
, s2 = σ2

2Cσ2+1
. Incorporating the fact that Bt+1 = (α(R−1)+l(1,1)dt)l(0,1)

(1+β0)2σ2

and θtt = dt we obtain equation (64) and the respective δs.

Appendix E Data Appendix

Our source of household-level microdata is the Survey of Consumer Finances (SCF), which
provides repeated cross-section observations on asset holdings and various household back-
ground characteristics. Our sample has two parts. The first one is the standard SCF from
1983 to 2013, obtained from the Board of Governors of the Federal Reserve System and avail-
able every three years. The second source is the precursor of the ?modern? SCF, obtained
from the Inter-university Consortium for Political and Social Research at the University of
Michigan. The precursor surveys start in 1947, partly annually, but with some gaps. The
data before 1960 contains information in stock holdings in some years, but age is measured in
5 or 10-year brackets, which would make our measurement of experienced returns imprecise,
particularly for younger individuals. For this reason, we start in 1960 and use all survey waves
that offer stock-market participation information, i.e., the 1960, 1962, 1963, 1964, 1967, 1968,
1969, 1970, 1971, and 1977 surveys.

The first measure is a binary variable for stock-market participation, available in each
survey wave from 1960-2013. It indicates whether a household holds more than zero dollars
worth of stocks. We define stock holdings as the sum of directly held stocks (including stock
held through investment clubs) and the equity portion of mutual fund holdings. In our main
tests, we include stocks held in retirement accounts (e.g., IRA, Keogh, and 401(k) plans).
For 1983 and 1986, we need to impute the stock component of retirement assets from the
type of the account or the institution at which they are held and allocation information
from 1989. From 1989 to 2004, the SCF offers only coarse information on retirement assets
(e.g., mostly stocks, mostly interest bearing, or split), and we follow a refined version of the
Federal Reserve Board?s conventions in assigning portfolio shares. The Appendix provides
the details. Online Appendix F reports robustness checks that exclude retirement account
holdings from the analysis.

Our second measure of stock market participation is the fraction of liquid assets invested
in stocks. The share of directly held stocks plus the equity share of mutual funds can be
calculated in all surveys from 1960-2013 other than 1971. Liquid assets are defined as stock
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holdings plus bonds plus cash and short-term instruments (checking and savings accounts,
money market mutual funds, certificates of deposit).

The 1983-2013 waves of the SCF oversample high-income households. The oversampling
provides a substantial number of observations on households with significant stock holdings,
which is helpful for our analysis of asset allocation, but could also induce selection bias. In our
main tests, we weight the data using SCF sample weights, which undo the overweighting of
high-income households and which also adjust for non-response bias. The weighted estimates
are representative of the U.S. population.

Appendix F Appendix Figures
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(a) Stock Market Participation. (λ = 1)
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(b) Stock Market Participation. (λ = 3)
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(c) Fraction of Stock of Financial Assets. (λ = 1)
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(d) Fraction of Stock of Financial Assets. (λ = 3)

Appendix Figure A.1 : Experienced Returns (including dividends) and Stock Holding

Difference in experienced returns is calculated as the experienced returns of the SP500 Index plus the dividend
paid in that year. More distant experienced receive a lower weight. The weights either decline linearly (λ = 1)
or super-linear (λ = 3) as in equation (5). Stock Market Participation is measured as the fraction of households
that either directly held stock or indirectly, e.g. via mutuals or retirement accounts. We classify households
whose head is aged 60 or older as “old” and households whose head is younger than 40 as “young”. Difference
in stockholdings, the y-axis in figures and , is calculated as the difference between the logs of the fraction of
stock-holding households of the old and young age group. Percentage stock, the y-axis in figures and , is the
fraction of assets invested in stock. The red line depicts the linear trend.
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Online Appendix
In this Appendix, we explore the implications of having two-period live OLG where the

mass of young agents born every period grows at rate g. To do so, we need to define an initial
date for the economy, t = 0. Let yt denote the mass of young agents born at time t, then
yt+1 = (1 + g) yt = y0(1 + g)t and let nt = yt + yt−1 = (2 + g) yt−1 denote the total mass of
people at any point in time t > 0. It is easy to check that nt = (1 + g)nt−1; that is, total
population grows at rate g.

The model is as the one presented in Section 3 in the paper. The main difference is that
now population is growing over time. As a result, we make a different guess for the price
function:

pt = α0 (1 + g)−t + β0dt + β1dt−1

We verify this guess with our market clearing condition, where the demand of the young and
the old need to add up to total supply of the asset, one:

1 = yt
Eyt [pt+1 + dt+1]− rpt
γV [pt+1 + dt+1]

+ yt−1
Eot [pt+1 + dt+1]− rpt
γV [pt+1 + dt+1]

1 =
y0 (1 + g)t−1

γ (1 + β0)2 σ2

[
(1 + β0) [(1 + g)Eyt [dt+1] + Eot [dt+1]] + (2 + g)

[
α0 (1 + g)−(t+1) + β1dt − rpt

]]
rpt = (1 + β0)

{
(1 + g)

(2 + g)
dt +

1

(2 + g)
Eot [(1− ω) dt−1 + ωdt]

}
+ α0 (1 + g)−(t+1) + β1dt −

γV [pt+1 + dt+1]

y0 (2 + g) (1 + g)t−1

We plug in pt = α0 (1 + g)−t + β0dt + β1dt−1 and we use the method of undetermined
coefficients to obtain:

α0 = −γ (1 + β0)2 σ2

r − 1
1+g

(1 + g)

y0 (2 + g)

rβ0 = (1 + β0)

(
1 + g

2 + g
+

1

2 + g
ω

)
+ β1

rβ1 = (1 + β0)
1− ω
2 + g

Let αt ≡ α0(1+g)−t and γ ≡ yt
nt

denote the fraction of young agents, which is easy to verity
is constant over time. Then, we see that the total mass of agents in the market is reflected
only in the price constant, while the fraction of young people in the market determines the
dividend loadings β0 and β1:

αt = −γ (1 + β0)2 σ2

r − 1
1+g

1 + g

nt

rβ0 = (1 + β0) (γ + (1− γ)ω) + β1

rβ1 = (1 + β0) (1− γ)(1− ω)
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