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Abstract

Postings are often used by bureaucracies, especially in emerging economies, in an attempt
to reward or punish their staff. Yet we know little about whether, and how, this type of mech-
anism can help incentivize performance. Using postings to induce performance is challenging,
as heterogeneity in preferences over which postings are desirable non-trivially impacts the ef-
fectiveness of such schemes. We propose and examine the properties of a mechanism, which
we term a performance-ranked serial dictatorship, in which individuals sequentially choose their
desired location, with their rank in the sequence based on their performance. We then evaluate
the effectiveness of this mechanism using a two-year field experiment with over 500 property
tax inspectors in Punjab, Pakistan. We first show that the mechanism is effective: being ran-
domized into the performance-ranked serial dictatorship leads inspectors to increase the growth
rate of tax revenue by between 44 and 80 percent. We then use our model, combined with
preferences collected at baseline from all tax inspectors, to characterize which inspectors face
the highest marginal incentives under the scheme. We find empirically that these inspectors do
in fact increase performance more under this mechanism. We estimate the cost from disruption
caused by transfers to be small, but show that applying the scheme too frequently can reduce
performance. On net the results suggest that bureaucracies have tremendous potential to im-
prove performance by periodically using postings as an incentive, particularly when preferences

over locations have a substantial common component.
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1 Introduction

Governments face many constraints in providing incentives to workers. Pay is often highly regulated
by civil service regulations that make it a mechanical function of tenure and education, with little
room for rewarding performance. Scope for promotion can also be limited and mechanical, often
restricted by legally-protected seniority-based promotion systems, limiting the potential of career
concerns (a la Gibbons and Murphy 1992; Holmstréom 1999) to provide incentives as well.

In such rigid environments, one way in which managers can provide incentives is through their
control of where people are posted. One often hears anecdotal stories of bad performers being sent to
remote and unattractive locations as a punishment, or good performers being sent to an attractive
location as a reward for exemplary performance. And indeed, in many bureaucracies, transfers
occur quite frequently. Yet despite the potential for postings to be used as an incentive device, in
practice, in most bureaucracies, many other factors other than performance — such as personal or
political connections, or idiosyncratic preferences of managers, or simply bureaucratic arbitrariness
— are used to assign positions (Iyer and Mani, 2012). And even to the extent performance matters
for postings, the ambiguity of assignment rules in most contexts limits the degree to which they
provide ex-ante incentives to improve performance.

Even to the extent that one wanted to use postings to provide incentives, doing so in practice is
complicated as workers may have heterogeneous preferences: what is a desirable posting for person
i may be a terrible posting for person j. To use postings as an incentive, managers need to take
these diverse preferences into account. And in so doing, managers face the problem of preference
revelation: the manager must get the workers to truthfully reveal their preferences, knowing that
those preferences will be used to provide them incentives. And even if the incentive aspects of such
a system can be worked out, the allocation of people to tasks induced by such a system, and the
disruption caused by moving people around, may cost the organization more than the performance
gains induced by the incentive effects.

In this paper, we ask whether one can explicitly leverage the ability to transfer as an incentive
device, through a large-scale field experiment in a real-world government bureaucracy: the property
tax department of the Province of Punjab, Pakistan. We randomize entire groups of tax inspectors
into a system where postings will be explicitly based on performance (and where they know this
in advance), or into a control group where postings operate as in the status quo (which we show
empirically has little to do with objective performance measures).

In order to do so, we designed and implemented a novel, strategy-proof transfer mechanism,
which we term a performance-ranked serial dictatorship (henceforth, PRSD). We build on the the-
oretical literature on allocation problems (e.g. Abdulkadirolu and Sénmez 1998; Svensson 1999),
which shows that serial dictatorships — where individuals are ordered somehow, and take turns
choosing among remaining positions — are the unique strategy-proof mechanism for efficiently al-
locating a fixed set of slots to individuals when individuals’ preferences are unknown. In general,
however, this literature is silent on how the individuals should be ordered, and typically they are

ordered randomly, to create what is known as a “random serial dictatorship”.



Our mechanism uses the ordering of individuals in a serial dictatorship to provide incentives.
Specifically, individuals are ordered based on their performance. The highest performing individual
gets first choice of posting, the second-highest performing individual gets second choice, and so
on. Individuals’ incentives come through the fact that as they increase their performance, they
increase their likelihood of getting a higher position in the serial dictatorship, and thus possibly
a more preferable slot. Since performance-ranked serial dictatorships are a special instance of a
serial dictatorship, they are also strategy-proof, in the sense that revealing one’s true preferences
over slots is always a dominant strategy.

The incentives to increase effort embodied in such a mechanism are complex and heterogeneous
across individuals. In particular, the incentive effects depend on an individuals’ own preferences
among slots, the preferences of others, and the expected distribution of performance outcomes. For
example, if an individual 7’s most preferred slot j is ranked very low by everyone else, individual ¢
faces weak incentives, since he will get j with very high probability regardless of his effort. On the
other hand, even if individual ¢ is the only person who ranked slot j as a first choice, if slot j is
highly ranked by others, individual 7 still needs to exert effort to ensure that his slot is not taken
by another individual who doesn’t get his first choice and who prefers slot j to his other remaining
options.

We begin by setting out a simple model that describes the incentives created by the performance-
ranked serial dictatorship as a function of preferences and expected outcomes. We then simulate
the model using rich data we collected on the complete set of preferences over postings that we
elicited at baseline from all of our tax inspectors, as well as predicted performance under the status
quo. This allows to characterize the heterogeneity in incentives across tax inspectors that would
be induced by the scheme based on their preferences, under differing assumptions about how much
inspectors know about the preferences of others and the degree to which certain individuals expect
to perform better than others.

We then analyze the impact of this type of lateral allocation scheme through a randomized field
experiment we conducted over two years in a real bureaucracy. We worked with the Provincial
Excise and Taxation Department of Punjab, Pakistan, which is comprised of 500 tax units, or
‘circles’. Each circle covers a pre-defined geographic area, and is staffed by an ’inspector’. Within
each district (i.e. roughly the same metropolitan area), we randomly assigned circles into groups of
about 10 circles each. There was substantial heterogeneity within groups in circle characteristics —
for example, even within districts, the 90th percentile circle has a tax base more than three times as
large as the 10th percentile circle. An examination of our preference data suggests that while there
are clearly more “popular” circles that many inspectors like, there is also a substantial idiosyncrasy
in preferences, including a substantial status quo bias, such that inspectors face (predictably)
differential incentives under the scheme.

The experiment took place as follows. At the beginning of the first year, inspectors in a
randomly-selected half of the groups were told that, at the end of the first year, their job postings

within the group would be reassigned using a performance-ranked serial dictatorship, where the



ranking was done based on the year-on-year improvement in a metric of circle level tax performance.
(In half the groups, the metric was randomly selected to be year-on-year growth in actual tax
revenue; in the other half, the metric was year-on-year growth in tax assessments; more on this
below.) At the end of the year, postings within the group were re-assigned based on preferences,
as per the mechanism. Control group postings continued under business-as-usual. Groups were
re-randomized at the beginning of year 2, and again treatment groups were told that postings would
be allocated based on a performance-ranked serial dictatorship. The transfers were implemented
again as promised for second year treatment groups at the end of year 2.

We find that overall, the promise of performance-based postings substantially raised revenues.
We estimate that revenues were about 5 log points higher in treatment groups than in control
groups in the first year, and 8 log points higher in treatment groups than in control groups in
the second year. This amounts to an increase in the growth rate of tax revenues of 44 percent
in the first year and of 80 percent in the second year. Note that this is a pure incentive effect —
this is the effect on revenue merely from announcing that the scheme will be applied to determine
postings in the subsequent year. These magnitudes are substantial compared to a performance pay
scheme we evaluated in the same context: a previous randomized trial we conducted showed that
paying the tax inspectors an average of 10 percent of every marginal dollar collected led increased
tax revenues by about 9 log points (Khan, Khwaja, and Olken, 2016). Groups performed broadly
similarly regardless of whether they were incentivized based on revenue or tax assessments.!

We then take the theory to the data to see whether or not those workers whom the theory
predicts should face stronger incentives under the performance-based serial dictatorship do in fact
respond more to the scheme. In particular, we use the model and simulate the marginal returns to
effort implied by the performance-based serial dictatorship, under varying assumptions for two fac-
tors that determine the strengths of these incentives: (i) whether individuals know the preferences
of others and (ii) whether they can can forecast their likely place in the performance distribution
under business-as-usual.

We find substantial evidence that those individuals who were predicted to have stronger incen-
tives indeed increase their revenue more in response to being subject to the performance ranked
serial dictatorship scheme. Of the two factors that predict marginal incentives, inspectors appear
to be primarily using the second (forecasting their likely rank in the distribution), rather than
information derived from the composition of preferences. These results imply that collecting infor-
mation on the expected distribution of outcomes can allow one to reliably predict in which contexts
such incentive schemes have the greatest potential to improve performance. More generally, this is
also — to our knowledge — the first real world evidence outside of sports settings (e.g. golf) on how
tournament-based compensation schemes can reduce effort for individuals who can forecast that

they face small incentives from the tournament (Prendergast, 1999).

Note that after the design for this project was finalized, analysis we conducted in Khan, Khwaja, and Olken
(2016) showed that the main mechanism for raising revenue in that study was actually increasing tax assessments.
Given this, it is not surprising that the two performance metrics used — revenue and size of tax base — end up being
quite similar in this context (See Appendix Table A.8).



These effects thus far have focused only on the year the program was announced — when the
program had incentive effects, but the allocation effects had not been realized. By re-randomizing
treatments in the second year, we can also examine dynamic effects of the program. We find that
the effects on revenue persist in the second year even for those inspectors no longer exposed to
incentives, but after the postings from the scheme had been implemented. One reason for this may
be that, in this context, the prime mechanism to increase tax revenues is to add new properties to
the tax rolls; once added, they continue to pay taxes. The results are no greater, however, suggesting
that allocating people to their preferred slots does not substantially raise revenue, either.

We include one cautionary note, however: the effects disappear in the second year if an inspector
is (randomly) exposed to the scheme for two years in a row. On net, these results suggest that a) it
is predominantly the incentive effects that appear to matter, rather than the allocation effects, as
the effects appear immediately once incentives are put in place and don’t increase after allocations
have taken place, but b) these incentives can only be applied periodically, as applying them too
frequently diminishes their effectiveness.

The remainder of this paper is organized as follows. Section 2 describes the context we are
working in, the data and intervention. Section 3 outlines a model that characterizes the marginal
incentives implied by the performance-ranked serial dictatorships. Section 4 presents the experi-
mental design and empirical strategy. Section 5 then presents the main empirical findings as well
as additional results, including the heterogeneous impacts implied by the model and the dynamics

of such schemes. Section 6 concludes.

2 Setting, Data and Intervention

2.1 Property Tax Administration in Urban Punjab, Pakistan

Punjab is Pakistan’s most populous province: its population of over 80 million would rank fifteenth
in the world were it a country. Punjab’s urban property tax is computed based on a formula that
takes into account the square footage of land and buildings on the property, multiplied by stan-
dardized values from a table that depends on neighborhood wealth status, residential, commercial
or industrial property status, whether the property is owner-occupied or rented, and location (i.e.
on or off a main road). More details about the tax system can be found in Khan, Khwaja, and
Olken (2016).

The primary unit of tax collection is the “circle,”

a predefined geographical area that covers
anywhere from two to ten thousand unique properties. Within each circle there is a team of three
tax officers: an “inspector” who leads the team, determines tax assessments and issues notices that
demand payment; a “clerk” in charge of record keeping; and a “constable” who assists the inspector
in the field. Together they maintain a record of all properties and their attributes (size, type of
use, etc.), apply the valuation tables to each property, and determine which exemptions apply.
The inspector determines each property’s tax liability and sends an annual tax bill to the property

owner.



Although property tax should be formulaic, property tax inspectors play a key role in tax
administration, because they are the only source the government has for the inputs into this formula,
how the formula is applied, and for even discovering which properties exist in the first place and
should be taxed. Not surprisingly, collusion between taxpayer and tax inspectors is thought to be
widespread, reducing government revenue.

As is common for civil servants in developing economies, tax officials receive fairly low wages
that are rarely, if ever, tied to performance. In our previous study (Khan, Khwaja, and Olken,
2016), we showed that tax inspectors respond to performance pay — offering the three tax officers
performance pay equal to a total of 30 percent of all taxes collected above a historical benchmark
increases taxes by 9 log points. However, even though Khan, Khwaja, and Olken (2016) shows
that it is cost-effective, given the substantial costs of performance pay to the government, after the
experimental period ended they have yet to adopt it as a policy.

Instead, with limited reward mechanisms or vertical mobility, postings — either to better or
worse assignments — are the primary tool available to supervisors who want to improve performance.
There is substantial heterogeneity in circles in terms of number of properties — for example, the 90th
percentile circle has more than three times as many taxable properties as the 10th percentile circle.
Even more important is heterogeneity in ease of collecting taxes, opportunities for corruption, and
amenities, all of which can be used to provide incentives. However, in practice, the transfer process
is opaque and subject to political influence, so their use as an incentive device is in practice limited.
The fact that political influence and other factors other than performance often influence postings
is common in many settings, particularly for those outside the very top of the civil service (see, e.g.
Iyer and Mani 2012).

2.2 Data and Summary Statistics

Our primary data source is circle-level administrative data on tax performance. The administrative
data is based on the quarterly reports that each inspector files, which show their overall collections
(separately for current year and past years/arrears collections) and the total assessed tax base. We
digitized these reports for all tax circles and selected a random sample to be verified each year
by aggregating (thousands of) bank-verified receipts of individual payments. We found no statisti-
cally or economically significant discrepancy between the administrative data and our independent
verifications.

Summary statistics for key variables from the administrative data are shown in Appendix Table
A.1 for the second year of the experiment (FY 2015). First, current year revenues are substantially
larger than arrears (i.e. collections against past years’ unpaid taxes) — the mean of log current
revenues is 16.00 compared with just 13.54 for log arrears, implying that, on average, current
revenue is about 12 times as large as arrears. This suggests that the main impacts on total revenue
will likely be felt through increases in current year revenue. Second, the log recovery rate (the log
of tax revenue divided by the tax base net of exemptions) is -0.08 for current year taxes, which

implies that about 92% percent of all taxes that are demanded by the government are in fact



paid. In addition to non-payment, a substantial issue is that many properties are either under-
assessed or not assessed at all (see Khan, Khwaja, and Olken (2016) for detailed discussion of this
issue.) Tax inspectors can therefore respond to performance incentives by adding new properties
to the tax rolls, assessing existing properties more accurately, and increasing collections of existing
assessments.

In addition, we also collected rank-order baseline preference data from all inspectors over all
circles in their (randomly-assigned) groups, which consisted of an average of 10 circles from within
the same metropolitan area. (More details on the construction of these groups below.) Inspectors
were given a preference form prior to the assignment of treatment status, and were told to rank all
circles in their group from 1 to J, with 1 as the highest ranked circle. 2

Before beginning our analysis of incentive effects, it is useful to examine the preference data a
bit further. We find that while there are clearly popular circles, inspectors also have idiosyncratic
preferences. One way to see this is by examining inspectors’ preferences for their status quo circle.
Figure la shows the distribution of inspectors’ ranks of their current position at baseline. We
normalize ranks such that 1 is the highest rank and 0 is the lowest rank. Figure la shows that
about half — 53 percent — of inspectors rank their own circle as their most preferred, with the rest
expressing a desire to move.

Another way to characterize the ranks is to examine the distribution of average rank for circle j,
averaging among over all inspectors ¢. This distribution is shown in Figure 1b. To interpret this, it
is useful to consider two counterfactual distributions. First, Figure 1b also shows, in outline, what
this distribution would look like if inspectors preferences were 7id random. Second, if inspectors
completely agreed on the distribution of preferences for circles, the distribution would be uniform.
The results in Figure 1b show that there is some agreement among inspectors — the distribution
of average ranks is much more spread out than would be predicted simply by random chance.
Combined, these two figures suggest two salient facts about the preference distribution: there is a
substantial but not complete ’status quo bias’, but there is also a non-trivial degree of agreement
over which circles are most desirable. This common component of preferences will help generate
strong incentives under the PRSD scheme, as we discuss in more detail below.

Given this preference data, it is also useful to estimate the degree to which the current allocation
is Pareto inefficient, from the perspective of maximizing inspectors’ utility. Note that any allocation
that results from a serial dictatorship will always be Pareto efficient in this sense, so to the degree
the current allocation is far from the Pareto frontier, there may be large gains in inspector utility
from implementing the scheme even holding effort constant. One way to characterize this is to
calculate the core allocation of inspectors to circles, using Gale’s Top Trading Cycle algorithm
(Shapley and Scarf, 1974). This algorithm computes the unique allocation of inspectors to circles

such that no inspector is worse off than he is in the status quo, and no inspector or group of

2Inspectors had incentives to reveal their true preferences. The scheme was explained briefly to inspectors, so they
could understand that truthful revelation was a dominant strategy, and inspectors were told that if they were chosen
for the scheme, these preferences would be used in assignment (though they were, ex-post, given an opportunity to
revise preferences).



inspectors would want to deviate. The difference between the status quo and the core is a measure
of how inefficient the current allocation is. We find that 15 percent inspectors would be able to
move to a posting they strictly prefer to the status quo in the core. Conditional on moving, these
individuals move up circles ranked about 30 percentiles higher in their preference ordering. The
relatively small number of movements suggests that while there is some Pareto-improving room
for improvement on the status quo, it is limited. The re-allocations induced by the scheme will
therefore largely be non-Pareto improving, in the sense that increases in utility for some are likely
to lead to decreases in utility for others. We will return to this when we consider heterogeneous

impact of the scheme.

2.3 The Performance-Ranked Serial Dictatorship Scheme

We now describe the basic design of the Performance-Ranked Serial Dictatorship Scheme that was
introduced in collaboration with the Excise & Taxation department for a two year period beginning
in 2013. We describe the theoretical properties of this scheme in the subsequent section.

The primary goal of the scheme was to incentivize performance by linking performance explicitly
to postings. The scheme was known formally within the Excise and Taxation department as the
“Merit Based Transfers and Postings” (MBTP) scheme to make this link clear.

The scheme worked as follows. Within each of the 10 major metropolitan areas in Punjab, we
randomly allocated circles into groups of approximately 10 circles each.? At the beginning of the
tax year (i.e. in July), groups were randomly selected to either participate in the MBTP scheme
or to remain in the status quo.

For groups selected to be in the MBTP scheme, all inspectors were told that they would be
ranked based on their performance, and then based on this ranking, would be given a choice of circles
within their group. Specifically, inspectors were told that if they were the top-ranked inspectors in a
group they would be posted in their first-choice circle, the next ranked inspectors would be posted in
their top preference from the remaining circles, and so on.* Performance was calculated in two ways
(randomized by group): for one sub-treatment (the “recovery” group), inspectors’ performance was
calculated as the year-on-year percent increase in their current circles’ recovery collected during
a fiscal year; for the other sub-treatment (the “demand” group), inspectors’ performance was
calculated as the year-on-year percent increase in their current circles’ assessed tax base.

The scheme was implemented as promised. At the end of the fiscal year (but before final
performance had been calculated), inspectors submitted their final, binding set of preferences over

all circles in their group.® Postings were then carried out as described: the top-rank inspector

3The major metropolitan areas correspond to “divisions” in the tax department, with the exception of the capital
city of Lahore. Lahore consists of two divisions, but they were combined to form a single metropolitan area for the
purposes of forming groups.

4In order to convince inspectors in the first year that postings would be made as promised, an additional group
of 10 inspectors was randomly selected to have the merit-based postings implemented at the start of year 1 based on
performance in the previous year following the same performance-ranked serial dictatorship scheme. postings were
indeed implemented as promised.

5 Although final postings were made on the basis of total performance during the fiscal year, inspectors were given



was given his first choice of posting, the second-rank inspector was given his top choice among
remaining circles, and so on.

Note that postings were done within groups, which as described above were randomly selected
groups of 10 circles within metropolitan areas. The fact that the scheme was done within metropoli-
tan areas ensured that no inspector would need to physically move his family as a result of the
scheme. The fact that choice was constrained to groups of 10 circles was for experimental feasibility,
so that there would be both treatment and control areas within each metropolitan area. While
10 circles still entails substantial heterogeneity — within groups, the 90th percentile circle has tax
revenue almost nine times larger than the 10th percentile circle —the incentive effects we find here
are most likely an under-estimate of the incentive effects that would be generated if choice was

given over a larger number of locations.

3 Modelling Incentives under PRSD

The incentives created by the performance-ranked serial dictatorship (PRSD) are complex, and
depend on the relationship of an inspector’s preferences with those of everyone else, how he expects
his performance to compare to others, and the utility difference he receives from different postings.
This section describes a simple model to characterize these incentives, and then applies the model
using preference data we collected at baseline to better understand the heterogeneity in incentives

under the scheme.

3.1 Allocation under the Performance-Ranked Serial Dictatorship Scheme

Suppose that inspector ¢ obtains utility wu;; from being assigned to circle j. This determines a
preference ordering over circles for each inspector i. We denote the overall preference matrix
implied by these preferences from all inspectors by P. Further, suppose that the outcome (in our

case, growth in tax revenue) for inspector i is given by
Yi =Yio + € + € (1)

where e; is the effort from inspector i, y;o is the growth rate that would be observed in the absence
of effort (which may differ across circles), and ¢; is an iid error term with standard deviation o..
For any vector of outcomes y, the performance-ranked serial dictatorship allocation mechanism,
combined with the preference matrix P, yields an allocation r;(y, P); that is, for a given preference
matrix P, any realization of outcomes y yields a mapping of assignments of inspectors to new
circles given by r;(y, P), defined such that inspector i is allocated to circle j if j = r;(y,P). The
function 7;(y, P) implements the serial dictatorship given preferences P and the ordering from y;
that is, for a given group g (we suppress group classifiers for notational simplicity) the inspector i

with the highest y; is given his first choice circle amongst the set of circles in group g, the inspector

information at the end of the third quarter as to their tentative ranking before submitting their final preferences.



1 with the second highest y; is given his first choice from among all remaining circles, and so on.
Suppose that the cost of effort for inspector i is given by the convex function c¢(e;). Then

inspector ¢ will choose effort to maximize his expected utility:

J

max Z%‘Pr(j =1;(y,P)) — c(e;) (2)

In solving this expression, inspector ¢ takes the effort from other inspectors as given. We can

therefore rewrite this as ;

max > uigPr(j = ri(yi,y—i, P)) — c(e;) (3)
j=1

The first-order condition governing effort is given by

S U=yt P @
=1 Yi

The first-order condition suggests that there are several factors that influence the effort decision
of a particular inspector . The first factor is the preference matrix P. If all inspectors i have
identical preferences, then moving inspector ¢’s outcome y; up one rank in the y distribution moves
inspector ¢ up one rank in his preference distribution. To simplify notation, label the circles j such
that 1 is the lowest-ranked circle and J is the top-ranked circle.® The FOC in this case can then

be simplified to be

I Pr(Rank(yi,y) =j)
uij = C \€; 5

where Pr(Rank(y;,y) = j) denotes the probability that inspector 7 is ranked j’th in the distribution.
Note that while rank statistics like this are difficult to compute analytically, they can be easily
simulated, as we discuss in more detail below.

An alternative extreme is one in which each inspector has completely different preferences, and
in particular, each inspector has a unique first choice circle. Without loss of generality, we can
then re-label the circles j such that each inspector i’s most preferred circle is j = 4. In this case,
the assignment function assigns inspector i to circle j regardless of performance. Relatedly, if for
any inspector ¢ his most preferred circle is everyone else’s least preferred circle, he will be assigned
to his most preferred circle regardless of incentives. More generally, between these two extremes,
to the extent that an inspector i’s most preferred circle(s) are also highly preferred by others,
that inspector will generally face effectively higher returns from the scheme, though the precise
incentives depend on the complete structure of preferences, as we will explore in more detail below.

A second factor that influences effort is the variances of the yg and the error term ¢; in equation

5Note that this is slightly different notation from what we use in the empirical exercises, where we normalize ranks
to be on a [0, 1] scale, with las the highest rank. We use the {1, ..., J} notation in the theory for ease of exposition,
but use the continuous measure in the empirics since different groups have different total numbers of circles J.



(1). To see this, consider the problem taking the realizations of y_; as fixed, and continuing
to assume that all inspectors have identical preferences P. Order the realizations of y_; from
smallest to largest, and denote these as zj....z5_1, and let 29 = —oo and z; = co. Recall that
Yi = Yio + e; + €;, and assume that ¢; is distributed normally with CDF ® and PDF ¢. Then
Pr(Rank(y) = j) = ®(2z; — vio — i) — ®(2j—1 — yio — €;). Then the first-order condition in (5) can

then be rewritten as

J
> wig [0(zj-1 = yio — €i) — bz — yio — €i)] = ¢ (ei) (6)
j=1

To illustrate the impact of error variance, Figure 2 draws three examples of equation (6) for a
particular cutoff point, with low, medium, and high error variance. With very low error variance,
the marginal return to effort is close to zero, since the inspector will end up ranked in between
inspector with outcome z;; and z; almost for sure. For the medium-variance case, one can see a
substantial return to effort, since a marginal increase in effort results in a substantial increase in the
probability of landing ahead of the inspector with outcome z;_1 (given by ¢(2zj—1 —yio —€)) and a
relatively small increase in the chance of landing ahead of the next inspector (given by ¢(z;—yio—e)).
With very high variance, the marginal return to effort with respect to this particular cutoff point
is also close to zero, because the PDF of the error distribution is almost identical at both cutoff
points.

A third component that affects the returns to effort is information about yg. Heterogeneity in
yo — the predictable component of an inspector’s performance — may affect incentives in complex
ways, depending on how they interact with the utilities. Generally speaking, however, when the yq
are very far apart (relative to the error variance), the same logic as before suggests that incentives
will be weak. However, unlike winner-take-all tournaments, which create steep incentives for those
who are potentially near the top of the distribution and little incentive for those who have no
chance at winning (Prendergast, 1999), this incentive scheme creates incentives throughout the
distribution, in the same way that optimal tournaments generally feature prizes for all rank-order
positions, not just first place (Lazear and Rosen, 1981).

A final component that influences outcomes is the u;;’s, the utility of different positions to the
inspectors. In the simplest case with common preferences and common yg’s analyzed in equation
(6), the classic result from Lazear and Rosen (1981) suggests that there exists a set of u;;’s such that
equation (6) would replicate the efficient piece rate scheme in terms of inducing socially optimal
effort levels. That said, unlike the Lazear and Rosen (1981) case where the tournament creator
chooses the prizes arbitrarily, in this case, the u;; are fixed by inspectors’ preferences. Given this,
in the more general case, with arbitrary u;;’s, as well as heterogeneity in P and yq, the incentives
from such a scheme will not necessarily be efficient. Comparing the degree to which these provide
incentives to an actual piece rate scheme is thus also of interest to see how close, in practice, the

incentives here come to a piece rate.”

"While there are number of lab experiments along these lines (e.g. Bull, Schotter, and Weigelt 1987), we know
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Since the various components — information about alignment or idiosyncrasy of preferences
P, predictable performance yq, different assumptions about the change in utility from moving up
or down a rank (i.e. the w;;’s), and the error variance — all interact in equation (4) to produce
incentives in complex ways, one cannot easily characterize the heterogeneity in incentives faced by
different inspectors analytically. We therefore simulate the model to calculate the incentives faced

by people under the scheme.

3.2 Applying the Model to Context

To better understand how the PRSD mechanism operates in our context, we simulate the marginal
incentives faced under the scheme given actual preference and (predicted) performance data in our
context. We do so under different common knowledge assumptions that inspectors may hold about

others’ preferences and baseline performance. We do this in two steps. First, we approximate
dE[u;]

de;
assuming inspectors know both the baseline preference data submitted by all inspectors (in their

the marginal return to additional effort — i.e. given by the left-hand side of equation (4) —
group) and are able to predict yo (i.e. growth rate that would be observed in the absence of effort)
for all circles in their group.® Second, we relax both of these knowledge assumptions in turn and
simulate (4) under these different assumptions.

The details of the simulation exercise are presented in Appendix A.1. Here we describe the
basic outline of the process we use. In order to obtain yg, we first regress actual revenue change
on two lags of a circle’s (log) revenue and tax base for the control group. We then use both the
coefficients and residual from this regression to predict yog and o2 (the variance of the error in
equation (1)). We then take 10,000 draws from the joint distribution of y given yq, as well as
actual baseline preference data submitted by the inspectors, to calculate the empirical analogue of
(4). We parameterize the utility function over difference circles (u;;) linearlity, with u;; = 1 for
inspector i’s top-ranked circle and wu;; = 0 for inspector 7’s lowest ranked circle.? Finally, to capture
different levels of common knowledge, we consider the case of ignorance in predicted performance,
by setting yo = 0 for all inspectors, and/or the case of ignorance about preferences by assuming
inspectors either believe that everyone else has the same preferences they do or that preferences

are distributed randomly.
de;
full knowledge of both yo and P. The figures shows substantial heterogeneity in marginal returns

Panel A of Figure 3 plots a histogram of the distribution of across inspectors i,assuming

across inspectors, with a mass of inspectors at 0, facing effectively no marginal return to effort, and

of no field experiments in real-world settings that investigate the introduction of tournaments of any type, let alone
comparing them to piece rate schemes.

8Note that we evaluate % for inspector ¢ assuming business-as-usual levels of effort for other inspectors —i,
rather than calculating a Nash equilbrium in the effort vector e. The reason for this choice is that to calculate
equilbrium levels of effort, we would need to take a stand on the ¢() function, which would determine how much
each inspector’s output would change in equilibrium under the scheme. By contrast, we can calculate % using
information that is available ex-ante based only on preferences and the vector yo. '

9In the Appendix, we also consider two alternative utility functions, one that puts full weight on achieving ones
top-choice and nothing otherwise (denoted u2), and one with full weight on achieving any circle strictly preferred to

the status quo provides utility and zero othwewise (denoted u3)
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some facing a relatively steep marginal return.

The remaining panels of Figure 3 plot the same figure under alternative assumptions of what
inspectors know, turning off first knowledge of y (predicted performance), then knowledge of P, and
then knowledge of both y and P. Note that when we turn off knowledge of P, we need to make an
alternate assumption for what inspectors i believe about the preferences P for all other inspectors.
We examine two possible assumptions: 1) that inspectors ¢ believe that all other inspectors —i
have the same preferences they do, and 2) that inspectors i believe that inspectors —i have random
preferences. As discussed above and shown in Figure 1, preferences have both a common and
idiosyncratic component, so reality is somewhere between these two extremes.

Note that less knowledge - either not knowing P or not knowing y — leads to a rightward shift
in the distribution of expected utility. That is, adding knowledge about either P or y seems to
dampen incentives for some people. Intuitively, with knowledge of P, some people know they are
likely to get a good outcome regardless of how hard they work, dampening their incentives (panel
b). With knowledge of y, people may now know that their outcome is less responsive to effort,
since they may be predicted to be far apart from other inspectors (panels ¢ and d).

Finally, if inspectors know neither P nor y, all inspectors in a given group have the same
incentives. When inspectors assume that all inspectors share their preferences, the incentives
are their maximum (panel e). Intuitively, this is because moving up one rank in the outcome
distribution always moves the inspector up to one rank higher preferred circle. When inspectors do
not know y but assume other inspectors have random preferences (panel f), incentives are dampened
somewhat (by approximately half); intuitively, this is because in some random orderings, inspectors
outcomes will not depend on their performance (e.g. if they uniquely prefer a given circle that
everyone else ranks poorly). These graphs suggest that the scheme is likely to work best in cases
where inspectors have similar preferences and where their predicted outcomes in the absence of
effort are as similar as possible. We will return to examine this prediction directly in the empirical

results below.

4 Experimental Design and Estimation

In this section we first describe the overall research design, which uses a randomized controlled
trial to examine the impacts of the PRSD. We then present the primary estimating equations to
examine both the overall impact of the PRSD schemes as well to examine potential heterogeneity

of impact as implied by the theoretical analysis and simulations in the previous section.

4.1 Experimental Design

The primary empirical strategy used is to implement a randomized controlled trial. In order to do
so, at the start of the first year circles were randomly assigned to be groups of 9-11 circles each,
within metropolitan area. This results in 41 groups. After soliciting baseline preferences of all

inspectors for circles in their assigned group, groups were randomized into treatment and control
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areas, stratified by metropolitan area. Within treatment areas, half the groups were randomly
assigned to have performance judged by year-on-year change in tax recovery, and half were randomly
assigned to have performance judged by year-on-year change in tax assessments.'”

In the second year, groups were re-randomized into treatment and control.'’ The re-randomization
was done prior to inspectors who participated in the first year submitting their final preferences,
which means that the preferences (and allocation) of those inspectors reflects the fact that they will
be continuing for a second year. This allows us, in year 2, to explore both a) the differential effects
of year 1 circles having already experienced the PRSD scheme in the past but no longer receiving
the incentives effects, b) the effects of participating in the scheme for multiple years in a row, and
c) the pure effect of joining the scheme for the first time in year 2 relative to pure controls. The
overall treatment assignment matrix as of year 2 is shown in Table 1. Note that if a year 1 group
was randomized to continue in year 2, the performance metric used (revenue or tax assessment)
was assigned to be the same in year 2 as it was in year 1.

Lotteries were conducted by computer publicly in the central tax authority office in Lahore at
the start of each fiscal year.'? Appendix Table A.2 compares treatment circles to control circles on

key tax recovery variables at baseline and shows that they appear balanced.

4.2 Estimating Specifications

To test whether the incentives embodied in the transfer mechanism outlined above actually led to

improved performance, we estimate treatment effects on log revenue for circle ¢ as follows
log yet = a + v logyeo + BTREAT, + €t (7)

where logy.o is the baseline value of the outcome variable and TRE AT, is a dummy for being in
the first year of receiving a treatment. In estimating equation (7) for year 2, we restrict ourselves
to circles that were randomly selected to be in the control group in year 1, so 5 from equation (7)
can be interpreted as the pure incentive effects of the scheme, before any allocations have taken
place. We estimate the equation separately for year 1, year 2, and pooling both years together
(with time fixed effects oy and separate coefficients ; for each year in the pooled regression). All

tables report randomization-inference based p-values, where we use our actual randomization Stata

1011 year 1, performance was judged using what the department calls “net demand,” which represents the total taxes
assessed after exemptions are taken into account. Given that there is some heterogeneity in the exemption rate across
circles, exemptions are included in the performance metric, and circle staff have little control over the exemption rate,
in year 2 performance was judged using “gross demand” (which is the taxes assessed before exemptions are taken
into account).

"Note that an additional 3 divisions were added to the randomization in year 2, representing an additional 115
circles and 11 groups, for a total of 525 circles and 52 groups.

2In year 1, the lottery for Lahore to assign circles to groups was held on July 26, 2013; baseline preference data
was collected between July 27 and July 31, and the lottery to assign groups to treatment or control status was held on
August 3. Outside of Lahore, the lottery to assign circles to groups was held on August 3, 2013; baseline preference
data was collected between August 4 and August 20,. and the lottery to assign groups to treatment or control status
was held on August 29. In Year 2, groups were not reassigned, and the lottery to assign to assign groups to treatment
was conducted province-wide on August 5, 2014.
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code to generate counterfactual randomizations. We explore time dynamics and allocation effects
below.

The theoretical analysis in Section 3 has predictions for which inspectors would face the highest
marginal returns under incentive scheme, as given by equation (4). We use the baseline preferences
elicited from inspectors, and the simulations described in Section (3.2), to define the marginal

. . dE[u;
return to effort for each inspector 7, dgft L.

We then test whether those inspectors predicted to have higher marginal incentives under PRSD

do in fact respond more when randomly allocated to the treatment by estimating the following

equation:
logyet = ¢+ Og + 7t log yeo + (8)
dEu dEu
+61TREAT, % S+ 5 St en
de. de.
where % is the estimated marginal utility from effort for inspector ¢ calculated from the baseline

preference and predicted y data using equation (4). We include group fixed effects (ay); since
randomization occurred by group, this subsumes the main effect of treatment (IT’REAT,).'3> The
coefficient of interest is (31, which captures whether the performance-ranked serial dictatorship
treatment was more effective for those inspectors predicted by the theory to face stronger incentives
under the scheme.

In addition we present further analysis below that takes advantage of the year 2 re-randomization
to examine both the dynamic implications from running the PRSD scheme (both when it is applied
only once and when it is repeated) as well as trying to separate out the various components that

may be at play when the scheme continues over time.

5 Results

5.1 Effect of the first year of treatment

We first examine whether the scheme had any positive impact on overall tax collections. While in
general one would expect the scheme to at least weakly increase effort (and hence tax collections),
it is worth noting that there are other possible effects. For example, the scheme may shorten an
inspector’s time horizon in a circle, since some inspectors (particularly low-performing inspectors
in popular circles) may now expect to be replaced. With shorter time horizons inspectors may
choose to invest less in a given circle than they may otherwise.

The empirical results from estimating equation (7) are presented in Table 2, separately for
current year tax revenue, arrears revenue (i.e. collections against past-due amounts from previous
years), and total tax revenue. In the first year (columns 1-3), circles in which inspectors that were
told they would be reallocated at the end of the year based on their performance grew by about
4.8 log points higher than the control group. Compared with the control group’s average growth

13Results without group fixed effects are very similar, but slightly noisier; see Appendix Table A.5.
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rate of 14.7%, this represents a 44% higher growth rate than controls. For inspectors who were
first included in the scheme in the second year the impact is even greater — 8.2 log points higher
revenue, or about 80% higher growth rate than controls.

We should emphasize that both the year 1 and year 2 effects are the incentive impacts of
being in the scheme for one year on (different) randomly-selected groups of inspectors. Therefore
the difference between year 1 and year 2 inspectors is not on account of the former having been
exposed to the scheme for longer (we will examine longer term effects in subsequent sections), but
rather reflect perhaps a different (better?) understanding of the scheme for inspectors who were
included in the scheme in the second year. It is also worth emphasizing that these are purely
incentive effects based on expected future postings — these are the effects on revenue in year ¢ from
being told at the start of year ¢ that one’s posting in year t 4+ 1 will be based on performance in
year t.

Table 3 disaggregates the results separately by whether the rank-ordering was done based on
growth of tax revenue, or whether it was done based on the growth in tax base. While in the
first year there is no difference in tax revenue across the two schemes, in year 2 — perhaps as
people understood the details of the schemes more — basing the rank-ordering on revenue led to
substantially greater increases in revenue than basing the rank-ordering based on the tax base.
This is surprising in that even the scheme that rewarded performance on tax revenue collected,
as opposed to the tax base, saw a greater impact on both collections and tax base, even though
the latter outcome was directly rewarded in the other scheme. While this may sound somewhat
counter-intuitive, it likely reflects the fact that there is greater uncertainty about the tax base due
to the non-systematic use of exemptions which are meant to be excluded from the net tax base.

The magnitudes of these effects are substantial. By way of comparison, the financial incentive
schemes we studied in the same property tax context in Khan, Khwaja, and Olken (2016), in which
inspectors, constables, and clerks were together paid an average of 30 cents for each marginal
dollar of revenue they collected, increased total revenue collected by 9.4 log points in the second
year they were in effect, and the most effective of the three incentive schemes — the pure piece rate
scheme — increased revenue by 12.9 log points. The performance-ranked serial dictatorship, studied
here, increased total tax revenue by 8.4 log points — two-thirds as large an effect as the maximally
effective financial reward scheme we studied, which paid purely based on revenue collected. Yet,
the performance-ranked serial dictatorship was completely free to the government, whereas the
financial incentives had the government almost doubling the wages of tax staff. This suggests that
leveraging postings for incentive purposes can be an extremely cost-effective way for the government

to improve performance.'*

Note that in the case of the performance-ranked serial dictatorship reducing tax evasion, the change in revenue
for the government we estimate is actually the true increase in social welfare. See Feldstein (1999), Chetty (2009),
and the related discussion in Khan, Khwaja, and Olken (2016).
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5.2 Heterogeneity by marginal return to effort

While it is reassuring that the scheme on average leads to positive incentives for inspectors to exert
effort and in turn to higher tax collections, note that the theoretical analysis in section 3 implied
that not all inspectors face equally strong incentives, given heterogeneity in baseline preferences
and heterogeneity across circles. We now directly test for this heterogeneity by examining whether
those inspectors predicted to face higher incentives under the scheme according to the model (i.e.
as computed in Section 3.2) do in fact respond more when randomized into the treatment group..

The results, calculated by estimating equation (8), are presented in Table 4. Following the
various assumptions used in the simulations above, Panel A presents the results where % is
calculated assuming inspectors know both the full vector of preferences P and predicted y for
all inspectors in their group; Panel B is calculated assuming they know P but not y; Panel C is
calculated assuming they know y but they assume that everyone has the same P that they do; and
Panel D is calculated assuming they know y but they assume that other inspectors’ preferences P
are random.

The results show that inspectors do indeed respond to the transfer-based incentive scheme
more precisely when predicted to do so. To interpret magnitudes, the standard deviation of % is
0.37, so the estimates in column 7 of Table 4, Panel A suggest that one standard deviation higher
marginal returns increases the average treatment effect on current-year tax collection by 0.09 log
points. This suggests that the treatment effects are being driven by the relatively few inspectors
with very high marginal incentives.'®

Figure 4 shows the heterogeneous treatment effects non-parametrically. To do so, we estimate
equation (7) for total tax revenue for 100 equally spaced grid-points from 0 to 1.5 based on %:ﬂ.
For each gridpoint, we re-estimate equation (7), weighted observations using a triangle kernel based
on distance from the grid point.!® Figure 4 plots the coefficients 3, along with 95% confidence inter-
vals. This is analogous to a Fan (1992) regression, but gridding on a different variable to generate
heterogeneous treatment effects. The estimates confirm that the treatment effects are driven by
those with the highest marginal effects. The heterogeneity in treatment effects is particularly
concentrated in year 1.

Comparing across the panels in Table 4, in which marginal incentives are calculated using first
only information in P and then only information in y to disentangle what inspectors appear to
react to, it appears that inspectors are responsive to only the aspects of heterogeneity coming
from predicted differences in outcomes y, and do not respond at all to heterogeneity coming from
differences in P. The strongest results come in Panel D, in which inspectors have full knowledge

of predicted differences in outcomes y, but assume that other inspectors’ preferences are randomly

150One might be concerned that other circle-specific factors are correlated with % and that these factors might
explain the heterogeneity we find. To check for this, Appendix Table A.6 re-estimates cequation (8), but also including
TREAT, x X., where X_ is circle-level log gross demand (i.e. the total tax base in the circle) and circle-level recovery
rate (i.e. what share of taxes are recovered).

'Note that we estimate each equation differencing out baseline values (i.e. imposing v; = 1) to ensure that the
only difference as we move across the grid is heterogeneous treatment effects, not differential persistence of baseline.
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determined.

In sum, the results suggest that inspectors seem to have some reasonable understanding of their
marginal incentives induced by the scheme, and to respond accordingly. These results also provide
an empirical validation for the theory outlined above: the theory appears to successfully predict
which inspectors respond to the incentives.Overall, results imply that if one knows the distribution
of P and y the model in Section 3 can be used to predict whether a particular service or unit would

be a good candidate for application of a performance-ranked serial dictatorship.

5.3 Dynamic effects from repeated application of the transfer scheme

The previous effects focused on the first year the incentive scheme was in place, before any postings
took place. If, however, the policy was in place every year, its effects could be different. There
could be allocation effects, for example — people may work better (or worse) once they have been
allocated based on their preferences than if just given incentives in places when assignment was
exogenous. Relatedly, there could be (adverse) disruption effects as people may perform differently
when they have moved to a new place. There could also be differential investment effects — if
inspectors think they are likely to be moved again quickly, they may not invest much in their new
locations. And, knowing that they are only in a new position for a year, they may change their
preference ratings — if, for example, there is a fixed effort cost of adjusting to a new location, those
who know they may move again after a year may prefer to just stay in place rather than move
again and again.

To explore the dynamic effects from having the scheme being repeated multiple times, as de-
scribed in Section 4 we re-randomized the scheme at the beginning of year 2. This created 4 groups,
as shown in Table 1. To analyze the differential effects, we restrict ourselves to year 2 data, and

estimate the following regression:

logyes = a+~vylogyeco + 1 TREAT Y1, (9)
+BTREAT Y2.+ B3TREAT Y1. X TREAT Y2.+ €x

where TREAT Y1, is a dummy for having received the treatment in the first year, TREAT Y2,
is a dummy for receiving the treatment in the second year, and TREAT_ Y 1. x TREAT Y2, is
a dummy for receiving a treatment in both years. The coefficient £ is thus interpretable as the
effect of receiving treatment in year 1 and NOT receiving it in year 2; the coefficient £ is the
effect of receiving the treatment for the first time in year 2 relative to pure controls, and the effect
B1+ B2 + B3 is the effect in year 2 of receiving a treatment in both years relative to pure controls.”

The results are presented in Table 5 for total recovery, current year recovery, and arrears. There
are several interesting results here. First, for both total and current recovery, we cannot reject the

null that 8; = Bs, i.e. that the initial effect of having the program persists in the second year. We

"Note while that the coefficient on B2 should be very similar to the year 2 effect in Table 2, since both estimate
the effect of starting in year 2 relative to pure controls, they need not be mechanically identical since the estimated
coefficient on baseline recovery, v, will be slightly different between the two regressions.
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should note that the difference between /51 and (2 captures not only differences in (i) persistence
(i.e the former is the impact a year after the scheme has ended, and the latter is the impact due to
the incentives created by the scheme) but also (ii) any changes in understanding/credibility about
the scheme (those newly entering the scheme in the second year have more information about how
the schemes works, whether it is credible, and perhaps others preferences) and (iii) any differences
between circle allocation (since those who first entered the scheme are likely to be in different circles
now as compared to those who entered in the second year, since they have been re-assigned based
on performance). Nevertheless, on net, the key result is that the effects persist strongly even after
the incentives have been turned off.

Second, a key result is the negative interaction term on 83, which suggests that experiencing the
treatment multiple times is less effective than experiencing it once. There are several factors that
may be at play here. First, recall that as part of the design inspectors were allowed to change their
preferences before the first round of allocations occurred (but after they had found out whether
they been reselected for continuation in the scheme or not). This implies that to the extent that
those continuing in the scheme changed their preferences, in year 2 the allocation of circles may
have been systematically different from those who were no longer continuing treatment. Table
6 checks whether there is indeed such a possible change by examining the preferences submitted
by year 1 inspectors at the end of year 1. The results show that inspectors who know they will
participate in the scheme again rate their own circle higher; that is, they are 14 percentage points
more likely to prefer the status quo and not move positions. This suggests that one possible reason
for the smaller effect is the allocations may differ.

Another important difference between those inspectors randomly selected to receive the scheme
twice is that those who experienced the treatment in Year 1 may have been more likely to have been
moved compared to those who had not, if the performance-ranked scheme creates more movements
than occur as part of the status quo. We examine this in Table 7, looking both at a dummy for
whether the inspector present the circle at the mid-point of Year 2 (i.e. after postings from the
scheme had been implemented) was the same as the inspector who was in the circle at baseline,
and also at the number of days that same inspector had been posted in the circle. The results show
that the Y1 circles were about 10 percentage points more likely to have experienced a move. Being
newly placed in a circle may make it harder to exert effort in response to the Year 2 treatment; a
new inspector may not know, for example, which properties can be added to the tax rolls.'®

A final explanation for the negative interaction effect is simply discouragement: inspectors may
have felt that they just worked hard in year 1 under the scheme, only to see their hard work be ’for

nought’ in the sense that both the new posting was only for 1 year, and they need to work hard

18The increased disruptions may also have had a direct negative effect on revenues. We explore this in more detail
in appendix A.3, where we use baseline preferences and heterogeneity across circles in how “business as usual” revenue
growth, interacted with treatment, as an instrument for being moved. Overall, the estimates suggest a substantial
negative effect of movements on total revenue — a 39 percent decline overall, or 19 percent if we focus on the cleanest
estimates (where year 2 treatments are excluded). While these estimates are borderline statistically significant, they
are quite noisy and should be interpreted with caution. However, they indeed suggest that movements per se do
adversely impact performance.
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again in the second year. In any case, the results presented here suggest that while this type of

incentive scheme can be effective, applying it too often can be counter-productive.

6 Conclusion

Effective state bureaucracies play a central role in facilitating growth and development but govern-
ments, especially in developing countries, face many constraints on their ability to provide incentives
to the agents hired to perform state functions, the bureaucrats. In an attempt to limit politicians’
ability to use government jobs to reward political cronies, many governments have adopted strict
civil service rules. In these systems, pay and promotion are often rigid and mechanical, usually
based on initial level and seniority rather on performance.

Postings, or horizontal movements, provide a feasible and promising avenue for rewarding good
performers and punishing bad performers, but the ambiguity of assignment rules and issues with
revelation of agents’ preferences over postings limit the degree to which these can provide ex-ante
incentives to improve performance.

We propose a strategy-proof mechanism, the performance-ranked serial dictatorship (PRSD),
for using lateral transfers to provide incentives within groups. We then show, using a randomized
experiment carried out over two years in a real tax bureaucracy in Punjab, Pakistan, that formaliz-
ing the relationship between performance and transfers indeed improves performance. For instance,
by the second year of our study, those tax inspectors randomly allocated to the performance-ranked
serial dictatorship had an 80 percent higher growth rate in tax revenues than control tax inspec-
tors. This is almost the same magnitude of impacts as a performance-pay scheme we previously
evaluated in the same context, but rather than having to double inspectors’ pay, the zero-sum
transfer mechanism was virtually free for the government. Our results suggest that bureaucracies
have tremendous potential to improve performance at zero cost by periodically using postings as

an incentive, particularly when preferences over postings have a substantial common component.
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Table 1: Treatment assignment of circles in year 2

’ ‘ Year 2 Control \ Year 2 Treatment H Total ‘

Year 1 Control 210 56 266
Year 1 Treatment 69 75 144
(Not included in Year 1 lottery) 96 19 115

| Total \ 375 150 | 525 |

Table 2: Treatment Effect on Tax Revenue

Year 1 (Y1 Q4) Year 2 (Y2 Q4) Pooled
(1) (2) (3) (4) (5) (6) (7) (8) 9)

Total Current  Arrears Total Current Arrears Total Current  Arrears
Treatment 0.048 0.044 0.067 0.082 0.074 -0.115 0.058 0.053 0.013

(0.023)  (0.024)  (0.058)  (0.041)  (0.038)  (0.118)  (0.020)  (0.021)  (0.054)

[0.012]  [0.037]  [0.269]  [0.084]  [0.124]  [0.413]  [0.002]  [0.008]  [0.838]
N (Total) 405 405 396 259 259 251 664 664 647
Mean growth rate in control group (Total) 0.120 0.158 -0.041 0.310 0.408 -0.339 0.204 0.269 -0.173

Notes: OLS regessions of log recovery on treatment assignment. The unit of observation is a circle, as defined at the time of randomiza-
tion. Specification controls for baseline values (FY 2013). Robust standard errors in parentheses. Standard errors are clustered by circle.
Randomization inference based p-values in brackets.

Table 3: Treatment Effect on Tax Revenue, by Sub-Treatment

Year 1 Year 2 Pooled
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Total Current  Arrears Total Current  Arrears Total Current  Arrears
Panel A: Effect on Recovery
Revenue 0.058 0.041 0.041 0.131 0.116 -0.144 0.081 0.064 -0.018
(0.036)  (0.035)  (0.083)  (0.048)  (0.052)  (0.129)  (0.029)  (0.030)  (0.070)
[0.022]  [0.148]  [0.550]  [0.043]  [0.099]  [0.441]  [0.001]  [0.012]  [0.797]
Demand 0.037 0.046 0.097 0.005 0.008 -0.071 0.031 0.039 0.050
(0.022) (0.031) (0.066) (0.061) (0.044) (0.205) (0.023) (0.026) (0.071)
[0.150]  [0.076]  [0.224]  [0.933]  [0.895]  [0.670]  [0.208]  [0.117]  [0.539)
N (Total) 405 405 396 259 259 251 664 664 647
Mean growth rate in control group (Total) 0.120 0.158 -0.041 0.310 0.408 -0.339 0.204 0.269 -0.173
Revenue = Demand (p-value) 0.518 0.897 0.523 0.134 0.224 0.765 0.097 0.433 0.461
Panel B: Effect on Net Demand
Revenue 0.110 0.064 0.188 0.109 0.069 -0.226 0.109 0.065 0.079
(0.054)  (0.047)  (0.134)  (0.067)  (0.060)  (0.225)  (0.044)  (0.038)  (0.117)
[0.018]  [0.049]  [0.081] [0.263]  [0.320]  [0.465]  [0.003]  [0.018]  [0.458)
Demand 0.022 0.012 0.114 -0.008 -0.012 0.146 0.016 0.007 0.108
(0.039) (0.029) (0.116) (0.091) (0.051) (0.320) (0.035) (0.026) (0.111)
[0.672]  [0.724]  [0.321]  [0.939]  [0.892]  [0.602]  [0.714]  [0.816]  [0.343]
N (Total) 406 405 388 204 204 196 610 609 584
Mean growth rate in control group (Total) 0.449 0.624 -0.500 0.486 0.586 -0.204 0.463 0.609 -0.386
Revenue = Demand (p-value) 0.186 0.238 0.622 0.435 0.464 0.291 0.086 0.130 0.833

Notes: OLS regessions of log net demand on treatment assignment. Note that Net Demand outcomes are measured using values from the first
quarter of the following fiscal year. The unit of observation is a circle, as defined at the time of randomization. Specification controls for baseline
value. Robust standard errors in parentheses. Standard errors are clustered by circle. Randomization inference based p-values in brackets.
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Table 4: Heterogeneity in treatment effects by simulated marginal returns to effort

Y1 Q4 Y2 Q4 Pooled
1) (2) (3) (4) (5) (6) (7) (8) 9)
Total Current  Arrears Total Current  Arrears Total Current  Arrears
Panel A: Full knowledge of P, y
Treatment * dEuldy 0.351 0.291 0.284 0.166 0.148 0.164 0.250 0.211 0.359
(0.160)  (0.154)  (0.229)  (0.068)  (0.078)  (0.433)  (0.093)  (0.074)  (0.230)
[0.001] [0.001] [0.044] [0.221] [0.256] [0.578] [0.001] [0.002] [0.012]
dEuldy 0.025 0.133 -0.145 -0.077 0.005 -0.274 -0.016 0.084 -0.227
(0.066) (0.075) (0.105) (0.061) (0.071) (0.127) (0.047) (0.050) (0.076)
[0.335]  [0.013]  [0.484]  [0.381]  [0.994]  [0.041]  [0.546]  [0.425]  [0.063]
N 403 403 394 257 257 249 660 660 643
Mean growth rate in control group (Total) 0.120 0.159 -0.043 0.311 0.408 -0.337 0.205 0.269 -0.173
Panel B: Full knowledge of P, no knowledge of y
Treatment * dEuldy 0.062 0.001 0.005 0.008 -0.046 0.610 0.050 -0.006 0.289
(0.069)  (0.066)  (0.235)  (0.110)  (0.074)  (0.525)  (0.055)  (0.045)  (0.177)
[0.258] [0.976] [0.977] [0.943] [0.714] [0.069] [0.373] [0.921] [0.045]
dEuldy -0.025 0.055 -0.051 -0.052 0.063 -0.438 -0.040 0.055 -0.236
(0.042) (0.051) (0.114) (0.042) (0.046) (0.128) (0.029) (0.031) (0.077)
[0.252]  [0.281]  [0.707]  [0.300]  [0.780]  [0.039]  [0.069]  [0.290]  [0.003]
N 403 403 394 257 257 249 660 660 643
Mean growth rate in control group (Total) 0.120 0.159 -0.043 0.311 0.408 -0.337 0.205 0.269 -0.173
Panel C: Assume identical P, full knowledge of y
Treatment * dEuldy 0.192 0.099 0.378 0.113 0.211 -0.209 0.177 0.162 0.375
(0.081)  (0.098)  (0.178)  (0.142)  (0.166)  (0.435)  (0.066)  (0.080)  (0.185)
[0.002] [0.232] [0.014] [0.358] [0.161] [0.544] [0.003] [0.030] [0.015]
dEuldy 0.097 0.268 -0.205 0.076 0.042 0.109 0.082 0.179 -0.161
(0.089) (0.111) (0.126) (0.128) (0.158) (0.201) (0.073) (0.095) (0.117)
[0.008]  [0.001]  [0.021] [0.633]  [0.873]  [0.657]  [0.038]  [0.003]  [0.105]
N 403 403 394 257 257 249 660 660 643
Mean growth rate in control group (Total) 0.120 0.159 -0.043 0.311 0.408 -0.337 0.205 0.269 -0.173

Panel D: Assume random P, full knowledge of y

Treatment * dEuldy 0.764 0.694 0.820 0.469 0.504 -0.186 0.582 0.562 0.799
(0.244) (0.267) (0.561) (0.157) (0.184) (0.825) (0.150) (0.145) (0.425)
[0.001] [0.001] [0.003] [0.055] [0.047] [0.760] [0.001] [0.001] [0.004]

dEuldy 0.141 0.395 -0.321 -0.065 -0.037 -0.115 0.084 0.266 -0.306
(0.161) (0.192) (0.247) (0.185) (0.209) (0.250) (0.136) (0.160) (0.181)
[0.002] [0.001] [0.205] [0.739] [0.903] [0.702] [0.061] [0.003] [0.244]

N 403 403 394 257 257 249 660 660 643

Mean growth rate in control group (Total) 0.120 0.159 -0.043 0.311 0.408 -0.337 0.205 0.269 -0.173

Notes: OLS regessions of log recovery on treatment assignment, with group fixed effects. The unit of observation is a circle, as defined at the time of
randomization. Specification controls for baseline value. Robust standard errors in parentheses. Standard errors are clustered by circle. Randomization
inference based p-values in brackets.

Table 5: Dynamic effects estimated in year 2

(1) (2) (3)
Total Current Arrears
Y2 Treatment 0.069 0.058 -0.117

(0.041)  (0.040)  (0.119)

[0.138]  [0.228]  [0.400]

Y1 Treatment 0.108 0.088 0.143
(0.040)  (0.042)  (0.102)

[0.003]  [0.022]  [0.147]

Y1 AND Y2 Treatment -0.133  -0.093 0.001
(0.068)  (0.069)  (0.179)

[0.045]  [0.175]  [0.992]

N (Total) 403 403 392
Y1 Treatment = Y2 Treatment (p-value) 0.418 0.566 0.069
Mean growth rate in control group (Total) 0.310 0.408 -0.339

Notes: OLS regessions of log recovery on Y1/Y2 treatment interactions The
unit of observation is a circle, as defined at the time of randomization. Spec-
ification controls for baseline values. Robust standard errors in parentheses.
Standard errors are clustered by circle. Randomization inference based p-values
in brackets.
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Table 6: Do preferences depend on continuing status?

(1) (2) (3) (4)
Own circle  Own circle  Own circle  Own circle
is favorite is favorite Uy uy
Continuing 0.140 0.146 0.038 0.031
(0.085) (0.079) (0.051) (0.047)
[0.117] [0.084] [0.485] [0.540]
Own circle is favorite, baseline 0.344
(0.083)
Own circle ul, baseline 0.389
(0.115)
N (Total) 108 107 108 107
Mean of non-continuing group (Total) 0.660 0.660 0.854 0.854

Notes: OLS regessions on continuing treatment assignment. Sample is restricted to Y1 treatment
inspectors only. The unit of observation is an inspector. Robust standard errors in parentheses.

Randomization inference based p-values in brackets.

Table 7: How does the serial dictatorship change allocations?

() (2) (3) 4)
Any move Any move Days in circle Days in circle

Y2 Treatment -0.044 12.290

(0.082) (40.755)

[0.577] [0.783]
Y1 Treatment 0.101 0.092 -65.624 -56.809

(0.071) (0.054) (36.251) (27.127)

[0.123] [0.073] [0.051] [0.021]
Y1 AND Y2 Treatment 0.010 9.343

(0.118) (59.590)

[0.938] [0.870]
N (Total) 365 365 365 365
Y1 Treatment = Y2 Treatment (p-value) 0.128 0.109
Mean of control group (Total) 0.555 0.546 388.476 390.903

Notes: OLS regessions of number of days in circle or dummy for any move on various treatment regressors.
LHS variables are calculated over the time period from the beginning of FY2014 to the date of the execution
of transfers. The unit of observation is a circle, as defined at the time of randomization. Sample excludes
any circles that have been merged or split after ballot. Specification controls for baseline values. Robust
standard errors in parentheses. Standard errors are clustered by circle. Randomization inference based

p-values in brackets.
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Figure 1: Descriptive statistics of baseline preferences over positions

(a) Distribution of inspector’s rank of their status quo circle

Distribution of Baseline Rank of Baseline Circle

Fraction
.3
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Rank (0-1 scale)

(b) Distribution of average circle ranks

Fraction
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ul (actual) [ ] ul (random preferences) l

Notes: Figure la shows the histogram of inspectors ranks of their status quo circle, at baseline, where the top-ranked circle
is normalized to 1 and the bottom ranked circle is normalized to 0. Figure 1b shows the histogram of average ranks of a
circle j, averaged over all inspectors in the group. Ranks are normalized (prior to averaging) such that the top-ranked circle is
normalized to 1 and the bottom ranked circle is normalized to 0. The histogram in outline shows what the distribution would
look like if inspectors’ preferences were random.
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Figure 2: Example of marginal incentives with different error variances
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Figure 3: Simulated Distribution of %;1] under alternative assumptions about knowledge

(a) Full Knowledge of P and y (b) Full knowledge of P, no knowledge of y
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(¢) Assuming identical preferences P, full knowledge of y (d) Assuming random preferences P, full knowledge of y
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(e) Assuming identical preferences P, no knowledge of y  (f) Assuming random preferences P, no knowledge of y
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Notes: Simulations are as described in Section (3.2).
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Figure 4: Non-parametric Heterogeneous Treatment Effects by

(a) Year 1

15

5 1 15
Marginal returns to effort

o

(b) Year 2
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Notes: Figure shows estimated effects 8 from a series of estimations of equation (7). We estimate equation (7) for 100 equally

dE
spaced grid-points from 0 to 1.5 of —d[;—ll; for each estimation, observations are weighted using a triangle kernel based on
1

distance from the grid point. 95% confidence intervals are plotted. We estimate each equation differencing out baseline values
(i.e. imposing 7+ = 1) to ensure that the only difference as we move across the grid is heterogeneous treatment effects, not
differential persistence of baseline. Plotted results are for log total tax revenue.



Appendix

A.1 Simulation Procedure

To simulate the marginal incentives, we use data we collected at baseline on the preference vector
P. We also use administrative data from the control group to predict yo, i.e. revenue levels in the
absence of the treatment. Specifically, recall that our performance measure y; is the change in log

outcomes, i.e. Alogy;.' We regress

Alog yigt = ag + Prlogyi—1 + Palogyi—o + Bzlogdi—1 + Balog di—o + €iq (10)

where oy is a group fixed effect, d;—; and d;_o are lags of the size of the tax base in the circle (i.e.
net demand), and y;—1 and y;_9 are lags of log revenue. Results are in Appendix Table A.9. We

take the predicted values from this equation to form a prediction of yg;, i.e. the predictable part of
2 20

consumption in the business-as-usual case, and use the residuals to estimate o7.

We then simulate the model as follows. We draw 10,000 draws, indexed by k, from the joint
distribution of y given yg. Denote one such draw as yX. We then rewrite equation (4) summing
over ranks of the outcome variable y (rather than over ranks in the preference distribution, as it
is currently written). As in the text, for each draw k, order realizations of ylji from smallest to
largest, and denote these as zi....zy_1, and let 29 = —oco and z; = co. Denote u;(j) = u;j, i.e the
utility for inspector ¢ of receiving his j’th ranked preference. We can then rewrite the left-hand

side of equation (4) as

dEu
dei

J
= Zuz (T’i(zf_l — Yio + 0, ylih P)) [qﬁ(zf—l — Yio) — ¢(Z;'€ - yz‘o)} (11)
j=1

where ¢ is arbitrarily small. Although this expression is heavy on notation, it is actually quite easy to
interpret: the expression u; (ri(szl — yio + 6, ¥%;, P)) denotes the utility inspector ¢ receives from

having an outcome y between zf ; and zJ’~C (taking the full assignment mechanism and preference

vector into account), and the expression {qﬁ(z;ﬂl — Yi0) — qﬁ(z;-“ — yio)] captures the marginal change
in the probability of having an outcome y between yiﬂ. and yiﬂ from a slight increase in effort e,
evaluated at e = 0. Note that this expression is just a generalization of equation (6) allowing for
arbitrary preference vectors P and arbitrary yy.

To simulate the marginal incentives faced by inspector ¢, we take the average marginal return
i from equation (11) over all draws of yX. To simulate the average incentive for an entire group of
inspectors, we take the average of (11) over all inspectors in the group.

The expression in equation (11) assumes inspector i has full knowledge of the complete pref-

1911 the simulations, we use change in log revenue as the performance vector for all inspectors, regardless of whether
they were randomized into the groups where incentives were based on revenue or tax base.

2ONote that in the model in equation (4), the inspector actually considers yo; for himself, but his expectations of
z_; for everyone else, which includes the optimal effort choice of all other inspectors. We abstract from the predicted
effort of other inspectors this when doing the simulations.
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erence matrix P and of the complete predicted performance levels yg. We also simulate versions
of (11) where we relax this assumption. To capture possible ignorance over heterogeneity in pre-
dicted performance, we simply set yo = 0 for all inspectors. To capture possible ignorance over
heterogeneity in preferences, we assume that inspectors assume that everyone else has the same
preferences they do (as in equation 5). We also simulate the case where inspectors know neither

yo nor P as in equation (6).

A.2 Additional Utility Functions

Note that in doing the simulations, one needs to take a stand on the utility function used to evaluate
different positions. In general, we focus on linear utility in ranks, i.e.
7 —1

ul (j) = T (12)

where u () is the utility from receiving the jth highest preference out of J possible choices (where
1 is lowest choice and J is highest choice). This implies that ul is linear utility, with 1 for being
posted in one’s top-ranked circle and 0 for being posted in one’s least ranked circle.

In addition, we also explore alternative utility functions that put full weight on achieving ones

top-choice (u2), or achieving any circle strictly preferred to the status quo (u3), as follows:

' 1 ifj=J
u2(j) = (13)
0 otherwise
] 1 ifj>p
u3(j) =
0 otherwise

Appendix Table A.7 shows that the results using these alternate utility functions are qualita-

tively similar; indeed, if anything, Appendix Table A.7b shows that the predicted heterogeneity is

even stronger heterogeneity effects using dg;‘cgc, the utility function which focuses on improvements

from the status quo.

A.3 Does re-allocation reduce performance?

To estimate the effect of changing allocation per se — as distinct from the incentive effects of the
transfer scheme, we use baseline the preference matrix P and predicted performance matrix y to
construct an instrument for being transferred under the scheme.

We follow a related procedure to the simulations in Section 3.2. Specifically, as above, we

draw 10,000 draws, indexed by k, from the joint distribution of y given yg. We then calculate the
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predicted probability an inspector moves circles as:

J-1
Pr_AnyMove;, = Zl(n(zf_l — yio + 6, ¥%;, P)) {@(Z]k — Yio) — @(zﬁl — yio)} (14)
j=0

We take the average of Pr_ AnyMove;, over all draws k to compute Pr_ AnyMove;.
Pr__AnyMove; simulates the probability that an inspector ¢ is moved, under the assumption
that e = 0. Note the close relationship between equation (14) and equation (11). There are
two key differences. The first, and most important, difference is that equation (14) weights each
possible rank position j by the probability it occurs [@(zf — Yio) — ‘P(zf_l - yi(])} , Whereas equation
(11) weights each possible rank position j by the derivative of the probability it occurs, given by
[(b(zf_l — Yio) — <b(Z§-C - yio)} (note that ® is a CDF whereas ¢ is a PDF). Thus equation (14)
captures the probability an outcome occurs, whereas equation (11) calculates the marginal return
to shifting the probabilities by exerting a bit more effort. The second difference is that instead of
using a utility function u, equation (14) weights each outcome by a dummy variable for whether
the inspector is moved or not. While Pr__ AnyMove; from equation (14) may be correlated with

dgg;“] from equation (11), they are not perfectly correlated, and, indeed, the correlation is .58 for

Uu.

We use the interaction of Pr_ AnyMove; with the experimental treatment as an instrument
for an inspector being moved. Given the correlation with the incentives from the scheme, we also
control for dgig”] and its interaction with the experimental treatment. Specifically, to estimate the

impact of a move, we use the year 2 data and estimate

logyee = ap+ylogyeo + B1ITREAT, (15)
VB TREAT, x 2% | 5. df Ue
C eC

+84.MOV E. 4+ B5Pr_AnyMove, + €.

where MOV E, is a dummy for the inspector in circle ¢ being different in year 2 than it was in year
1, and where we instrument for MOV E. with TRE AT, x Pr__ AnyM ove.. Note that even though
we use year 2 outcome data in estimating equation (15), the TRE AT, variable is defined using the
year 1 treatment status, since year 1 treatments are what influence being moved in year 2. We
estimate this on all circles that participated in the year 1 lottery, and, to make sure we are not
capturing dynamic incentive effects, on the subset of year 1 circles that were randomly allocated
not to participate in the treatment in year 2.

The first stage — which estimates the degree to which we can predict MOV E,. with TRE AT, x
Pr__AnyMove, — is presented in Appendix Table A.10, and the results from estimating equation
(15) are presented in Appendix Table A.11. The results in Table A.10 show that the instrument has
substantial predictive power — moving from Pr_ AnyMove; from 0 to 1 increases the probability
of a move by 76 percent in treatment groups, but only 13 percent in control groups.

Panel A of Table A.11 shows the reduced form results. The coefficient on TREAT.x Pr__AnyM ove,
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is negative on total and current revenue, both for all circles and for the case where we exclude year
2 circles. To interpret magnitudes, we focus on Panel B, which gives the instrumental variable
results, where we instrument for MOV E. with TRE AT, x Pr__ AnyMove.. Overall, the estimates
suggest a substantial negative effect of movements on total revenue — a 39 percent decline overall,
or 19 percent if we focus on the cleanest estimates in column (4) where year 2 treatments are
excluded. While these estimates are borderline statistically significant, they are quite noisy. OLS
estimates in Panel (C) also show negative effects, but while they are statistically significant they
are substantially smaller in magnitude (a 5 percent decline overall; 7 percent if we focus on the
year 2 excluded group).

Though the magnitudes in this section are a bit uncertain, they all point in the direction that
reallocations do cause disruptions, which reduce revenue as people are moved. That said: the
results in the previous section suggest that — at least in this context — the scheme did not cause
substantially more disruptions than were experienced in the status quo. This suggests that at least
in this framework, where movements are quite frequent in the status quo, the movements induced

by the scheme induced very little net losses in total.
A.4 Tables and Figures

Table A.1: Summary statistics

Mean of
Mean SD within-group SD N
Log Revenue (Total) 16.12  0.79 0.67 518
Log Revenue (Current) 16.00  0.80 0.69 518
Log Revenue (Arrears) 13.54  1.20 0.90 514
Log Tax Base (Total) 16.45  0.82 0.65 518
Log Tax Base (Current) 16.29  0.79 0.65 518
Log Tax Base (Arrears) 14.05 1.43 1.08 514
Log Recovery Rate (Total) -0.08 0.11 0.10 518
Log Recovery Rate (Current) -0.08 0.10 0.09 518
Log Recovery Rate (Arrears) -0.13  0.22 0.16 514
Log Non-Exemption Rate (Total) -0.25  0.22 0.17 518
Log Non-Exemption Rate (Current)  -0.22  0.17 0.13 518
Log Non-Exemption Rate (Arrears) -0.38 0.58 0.45 514

Notes: Statistics from administrative data are shown at the end of Year 2 of the
study (FY 2015). Each observation is one of the 525 circles as defined at the time
of randomization.
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Table A.2: Balance

Year 1 Randomization

Year 2 Randomization

Control Treatment Revenue Demand Control Treatment Revenue Demand

Log Recovery 15.746 -0.001 -0.048 0.052 15.694 -0.128 -0.224%** -0.022
(0.085) (0.111) (0.104) (0.082) (0.111) (0.102)

Log Recovery Rate -0.185 0.003 0.001 0.005 -0.178 -0.009 -0.012 -0.006
(0.028) (0.042) (0.031) (0.027) (0.043) (0.030)

Log Non-Exemption Rate -0.258 0.043** 0.032 0.054%* -0.237 0.028 0.030 0.025
(0.021) (0.025) (0.028) (0.021) (0.031) (0.025)

FY 12-13 Log Growth Rate 0.089 -0.021 0.009 -0.053%** 0.102 -0.015 0.005 -0.037*
(0.019) (0.028) (0.019) (0.022) (0.034) (0.021)

P-val, joint significance 0.203 0.939 0.347 0.334 0.631 0.911

Notes: This table presents balance tests for the randomization into the different treatments. Columns labelled Control reflect
control group means. Values in the treatment columns are the coefficients of a regression of the baseline value of the variable
indicated in the row on a treatment dummy (or the set of subtreatment dummies), controlling for the relevant randomization

strata. Robust standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table A.3: Treatment Effect on Tax Revenue, with previous year as baseline

Year 1 (Y1 Q4) Year 2 (Y2 Q4) Pooled
(1) (2) (3) (4) (5) (6) (7) (8) 9)
Total Current Arrears Total Current  Arrears Total Current Arrears
Treatment 0.048** 0.044%* 0.067 0.045 0.021 0.011 0.047%* 0.037* 0.050
(0.023) (0.024) (0.058) (0.036) (0.036) (0.109) (0.020) (0.021) (0.052)
N (Total) 405 405 396 259 259 257 664 664 653
Mean of control group (Total) 15.907 15.692 14.072 16.255 16.134 13.794 16.061 15.888 13.948

Notes: OLS regessions of log recovery on treatment assignment. The unit of observation is a circle, as defined at the time of
randomization. Specification controls for baseline values (FY 2013). Robust standard errors in parentheses. Standard errors are

clustered by circle. * p<0.10, ** p<0.05, *** p<0.01
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Table A.4: Treatment Effect on Tax Revenue by Sub-Treatment, with previous year as baseline

Year 1 Year 2 Pooled
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total Current Arrears Total Current Arrears Total Current Arrears
Panel A: Effect on Recovery
Revenue 0.058 0.041 0.041 0.064 0.058 -0.080 0.060** 0.046 0.003

(0.036) (0.035) (0.083) (0.045) (0.054) (0.114) (0.029) (0.030) (0.067)
Demand 0.037* 0.046 0.097 0.016 -0.039 0.161 0.032 0.026 0.109

(0.022) (0.031) (0.066) (0.054) (0.029) (0.198) (0.021) (0.025) (0.070)
N (Total) 405 405 396 259 259 257 664 664 653
Mean of control group (Total) 15.907 15.692 14.072 16.255 16.134 13.794 16.061 15.888 13.948
Revenue = Demand (p-value) 0.586 0.914 0.563 0.473 0.102 0.270 0.402 0.602 0.239
Panel B: Effect on Net Demand
Revenue 0.110%* 0.064 0.188 0.004 -0.030 -0.039 0.082%* 0.039 0.129

(0.054) (0.047) (0.134) (0.052) (0.051) (0.203) (0.043) (0.038) (0.112)
Demand 0.022 0.012 0.114 0.143%* 0.050 0.636** 0.042 0.016 0.211%*

(0.039) (0.029) (0.116) (0.068) (0.044) (0.304) (0.034) (0.026) (0.111)
N (Total) 406 405 388 204 204 202 610 609 590
Mean of control group (Total) 16.411 16.317 13.854 16.605 16.471 14.108 16.485 16.376 13.953
Revenue = Demand (p-value) 0.136 0.314 0.646 0.082 0.203 0.055 0.412 0.599 0.577

Notes: OLS regessions of log net demand on treatment assignment. Note that Net Demand outcomes are measured using values from
the first quarter of the following fiscal year. The unit of observation is a circle, as defined at the time of randomization. Specification
controls for baseline value. Robust standard errors in parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, ***

p<0.01
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Table A.5: Heterogeneity in treatment effects by simulated marginal returns to effort, no fixed
effects

Y1 Q4 Y2 Q4 Pooled
(1) (2 (3) (4) (5) (6) (7 (8) (9)
Total Current Arrears Total Current Arrears Total Current Arrears
Panel A: Full knowledge of P, y
Treatment -0.028 0.001 -0.056 0.002 0.027 -0.464** -0.023 0.008 -0.159%*
(0.038) (0.044) 0.093)  (0.059)  (0.057) (0.212) (0.031) (0.033) (0.086)
Treatment * dEuldy 0.320%* 0.285 0.267 0.162* 0.100 0.681%* 0.236** 0.182% 0.356%*
(0.184) (0.185) (0.282)  (0.090)  (0.088) (0.301) (0.099) (0.101) (0.179)
dEuldy -0.008 0.083 -0.208%** -0.089%* 0.006 -0.349%** -0.043 0.050 -0.274%**
(0.048) (0.053) (0.080)  (0.050)  (0.049)  (0.123) (0.041) (0.043) (0.081)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel B: Full knowledge of P, no knowledge of y
Treatment 0.043 0.061 0.046 0.047 0.116* -0.680** 0.041 0.076* -0.164
(0.047) (0.055) (0.129)  (0.078)  (0.070) (0.279) (0.041) (0.044) (0.124)
Treatment * dEuldy 0.008 -0.022 0.024 0.046 -0.060 0.772%** 0.023 -0.031 0.241%*
(0.062) (0.069) (0.148)  (0.086)  (0.081) (0.291) (0.052) (0.055) (0.137)
dEuldy 0.002 0.061%* -0.112 -0.028 0.064* -0.359%** -0.010 0.063** -0.218%**
(0.031) (0.033) (0.079)  (0.040)  (0.038)  (0.122) (0.030) (0.030) (0.082)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel C: Assume tdentical P, full knowledge of y
Treatment -0.269%** -0.168%* -0.524** -0.101 -0.081 -1.126** -0.219%** -0.141%* -0.569%**
(0.068) (0.074) (0.212)  (0.130)  (0.126) (0.545) (0.061) (0.063) (0.196)
Treatment * dEuldy 0.318%** 0.244%** 0.514%* 0.147 0.128 0.809%* 0.257*** 0.199%** 0.491%**
(0.079) (0.084) (0.211)  (0.107)  (0.101)  (0.412) (0.060) (0.062) (0.176)
dEuldy -0.088%* 0.020 -0.345%** -0.094 -0.020 -0.271 -0.085* 0.009 -0.325%*
(0.053) (0.063) (0.120)  (0.075)  (0.082)  (0.210) (0.049) (0.056) (0.127)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel D: Assume random P, full knowledge of y
Treatment -0.154%** -0.099* -0.248* -0.034 -0.009 -0.709%* -0.105%** -0.056 -0.291%%*
(0.048) (0.054) (0.131)  (0.080)  (0.079) (0.327) (0.041) (0.043) (0.117)
Treatment * dEuldy 0.879%** 0.782%** 1.003* 0.282 0.207 1.435%** 0.544%** 0.437%** 0.835%*
(0.281) (0.289) (0.567)  (0.193)  (0.180)  (0.716) (0.150) (0.149) (0.367)
dEuldy -0.116 0.069 -0.506** -0.207 -0.062 -0.459 -0.139 0.028 -0.511%*
(0.099) (0.119) (0.198)  (0.133)  (0.140)  (0.297) (0.095) (0.106) (0.201)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952

Notes: OLS regessions of log recovery on treatment assignment. The unit of observation is a circle, as defined at the time of randomization. Specification controls
for baseline value. Robust standard errors in parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01
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Table A.6: Heterogeneity in treatment effects, controlling for baseline recovery rate and tax base

Y1 Q4 Y2 Q4 Pooled
1) (2 3) 4) (5) (6) (7 (®) 9)
Total Current Arrears Total Current Arrears Total Current Arrears
Panel A: Full knowledge of P, y
Treatment * dEuldy 0.691***  0.609***  0.616***  0.239** 0.198 0.206 0.525*** 0.475%*** 0.523***
(0.195) (0.203) (0.214) (0.109) (0.141) (0.358) (0.122) (0.122) (0.183)
dEuldy -0.092* 0.009 -0.154 -0.114* 0.001 -0.245* -0.101*** 0.007 -0.211%**
(0.046) (0.047) (0.099) (0.061) (0.073) (0.133) (0.035) (0.037) (0.070)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.799 16.066 15.894 13.950
Panel B: Full knowledge of P, no knowledge of y
Treatment * dEuldy 0.168 0.116 0.079 -0.005 -0.069 0.342 0.112 0.067 0.245*
(0.121) (0.101) (0.237) (0.087) (0.109) (0.342) (0.087) (0.078) (0.133)
dEuldy -0.073** -0.002 -0.069 -0.059 0.076 -0.426*** -0.066** 0.028 -0.232%**
(0.034) (0.039) (0.104) (0.043) (0.047) (0.125) (0.027) (0.026) (0.074)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.799 16.066 15.894 13.950
Panel C: Assume identical P, full knowledge of y
Treatment * dEuldy 0.471%** 0.343** 0.500%* 0.218 0.327 0.264 0.423*** 0.380*** 0.468**
(0.124) (0.132) (0.223) (0.288) (0.240) (0.675) (0.097) (0.114) (0.196)
dEuldy -0.063 0.093 -0.116 0.011 0.031 0.238 -0.038 0.061 -0.056
(0.078) (0.079) (0.151) (0.137) (0.181) (0.258) (0.068) (0.080) (0.130)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.799 16.066 15.894 13.950
Panel D: Assume random P, full knowledge of y
Treatment * dEuldy 1.329%**  1.166*** 1.315%* 0.908** 0.904** 0.070 1.147%%* 1.056%** 1.154%%*
(0.357) (0.386) (0.632) (0.373) (0.373) (1.178) (0.256) (0.271) (0.421)
dEuldy -0.175 0.070 -0.289 -0.243 -0.110 0.032 -0.183 0.024 -0.216
(0.141) (0.151) (0.257) (0.206) (0.238) (0.285) (0.117) (0.129) (0.176)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.799 16.066 15.894 13.950

Notes: OLS regessions of log recovery on treatment assignment, with group fixed effects. The unit of observation is a circle, as defined at the time of randomization.
Specification controls for baseline value. Robust standard errors in parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01
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Table A.7: Heterogeneity in treatment effects by simulated marginal returns to effort

; dE[us]
(a) Heterogeneity by .
Y1 Q4 Y2 Q4 Pooled
(1) (2) (3) (4) (5) (6) (M) (8) (9)
Total Current Arrears Total Current Arrears Total Current Arrears
Panel A: Full knowledge of P, y
Treatment -0.011 0.024 -0.059 0.043 0.052 -0.424 -0.001 0.027 -0.141
(0.035) (0.045) (0.102) (0.067) (0.064) (0.275) (0.032) (0.037) (0.105)
Treatment * dEu2dy 0.072* 0.041 0.113 0.035 0.023 0.284 0.065* 0.040 0.140
(0.043) (0.047) (0.099) (0.060) (0.060) (0.202) (0.035) (0.038) (0.090)
dEu2dy -0.010 0.037 -0.113** -0.022 0.022 -0.128 -0.014 0.031 -0.119%*
(0.021) (0.023) (0.050) (0.026) (0.027) (0.084) (0.019) (0.020) (0.055)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel B: Full knowledge of P, no knowledge of y
Treatment 0.051 0.087 -0.010 0.192%* 0.239%** -0.486 0.084* 0.124%* -0.134
(0.054) (0.078) (0.150) 0.097)  (0.079) (0.424) (0.047) (0.062) (0.157)
Treatment * dEu2dy -0.002 -0.032 0.060 -0.088 -0.130** 0.288 -0.021 -0.055 0.114
(0.042) (0.056) (0.106) 0.070)  (0.063) (0.296) (0.036) (0.046) (0.109)
dEu2dy 0.011 0.052%* -0.062 0.020 0.071%%* -0.116 0.015 0.060%** -0.086
(0.021) (0.022) (0.063) (0.029) (0.026) (0.102) (0.022) (0.020) (0.071)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel C: Assume identical P, full knowledge of y
Treatment 0.653%** 0.704%%* 0.665* 0.099 0.035 0.430 0.360%** 0.338%%* 0.417*
(0.196) (0.230) (0.367) (0.128) (0.123) (0.374) (0.114) (0.120) (0.248)
Treatment * dEu2dy -0.380%**  -0.403*** -0.394* -0.013 0.029 -0.421 -0.203%**  _0.186%** -0.284*
(0.111) (0.129) (0.215) (0.091) (0.094) (0.284) (0.069) (0.071) (0.155)
dEu2dy 0.059 0.010 0.150* 0.071 0.043 0.111 0.050 0.006 0.137*
(0.037) (0.042) (0.078) 0.055)  (0.057) (0.111) (0.040) (0.045) (0.078)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel D: Assume random P, full knowledge of y
Treatment -0.250%** -0.135* -0.530** -0.088 -0.041 -1.164** -0.206*** -0.109* -0.583***
(0.066) (0.076) (0.205) 0.127)  (0.122) (0.547) (0.059) (0.064) (0.193)
Treatment * dEu2dy 0.346%%* 0.247%%% 0.581%* 0.153 0.106 0.948%* 0.278%** 0.193%** 0.563%**
(0.091) (0.094) (0.237) (0.118) (0.109) (0.468) (0.067) (0.068) (0.197)
dEu2dy -0.092 0.034 -0.425%** -0.126 -0.023 -0.360 -0.099* 0.016 -0.412%**
(0.060) (0.072) (0.134) (0.080) (0.087) (0.231) (0.055) (0.062) (0.142)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952

Notes: OLS regessions of log recovery on treatment assignment. The unit of observation is a circle, as defined at the time of randomization. Specification controls for
baseline value. Robust standard errors in parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01

36



Table A.7: Heterogeneity in treatment effects by simulated marginal returns to effort (continued)

; dE[ug]
(b) Heterogeneity by S e
Y1 Q4 Y2 Q4 Pooled
1) (2) (3) (4) (5) (6) (7) (8) 9)
Total Current Arrears Total Current Arrears Total Current Arrears
Panel A: Full knowledge of P, y
Treatment -0.039 0.001 -0.072 -0.018 0.000 -0.491%* -0.038 -0.002 -0.182%*
(0.037) (0.047) 0.095)  (0.064)  (0.060) (0.248) (0.033) (0.038) (0.095)
Treatment * dEu3dy 0.170** 0.119 0.202 0.142 0.116 0.502* 0.167*** 0.121* 0.267**
(0.079) (0.088) (0.153)  (0.092)  (0.088) (0.283) (0.062) (0.067) (0.133)
dEu3dy -0.024 0.043 -0.144%* -0.053 0.022 -0.273%%* -0.036 0.034 -0.201%%*
(0.030) (0.034) (0.064)  (0.036)  (0.036) (0.103) (0.027) (0.029) (0.067)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel B: Full knowledge of P, no knowledge of y
Treatment 0.041 0.080 0.010 0.066 0.140* -0.742% 0.048 0.099* -0.204
(0.055) (0.074) (0.141)  (0.094)  (0.080) (0.383) (0.047) (0.059) (0.144)
Treatment * dEu3dy 0.006 -0.035 0.054 0.013 -0.066 0.602* 0.010 -0.044 0.208*
(0.049) (0.065) 0.116)  (0.081)  (0.076) (0.309) (0.043) (0.053) (0.116)
dEu3dy 0.005 0.064** -0.107 -0.003 0.079** -0.306%** 0.002 0.071%** -0.196%**
(0.026) (0.028) 0.067)  (0.034)  (0.032) (0.108) (0.026) (0.025) (0.072)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel C: Assume identical P, full knowledge of y
Treatment -0.017 0.017 -0.057 0.098 -0.054 0.101 0.034 0.019 -0.027
(0.096) (0.105) (0.198)  (0.163)  (0.171) (0.407) (0.099) (0.102) (0.192)
Treatment * dEu3dy 0.050 0.020 0.097 -0.011 0.099 -0.170 0.018 0.025 0.031
(0.072) (0.079) 0.153)  (0.126)  (0.132) (0.320) (0.074) (0.076) (0.147)
dEu3dy -0.013 -0.024 -0.041 0.090 0.045 0.021 0.027 0.003 -0.015
(0.060) (0.067) (0.106)  (0.082)  (0.086) (0.169) (0.065) (0.069) (0.114)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952
Panel D: Assume random P, full knowledge of y
Treatment -0.159%** -0.113%* -0.184 -0.115 -0.136 -0.616* -0.143%%% -0.113%* -0.269*
(0.047) (0.049) (0.150)  (0.105)  (0.098) (0.368) (0.048) (0.047) (0.149)
Treatment * dEu3dy 0.370%** 0.301%** 0.415 0.300* 0.333%* 0.726 0.344%** 0.301%** 0.435%
(0.098) (0.098) 0.278)  (0.172)  (0.158) (0.506) (0.087) (0.087) (0.247)
dEu3dy -0.108%* -0.035 -0.206 -0.071 -0.004 -0.305 -0.092%* -0.023 -0.246
(0.052) (0.058) (0.148)  (0.079)  (0.083) (0.232) (0.054) (0.057) (0.162)
N 403 403 394 257 257 249 660 660 643
Mean of control group 15.910 15.698 14.069 16.261 16.141 13.804 16.066 15.893 13.952

Notes: OLS regessions of log recovery on treatment assignment. The unit of observation is a circle, as defined at the time of randomization. Specification controls
for baseline value. Robust standard errors in parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01

Table A.8: Margins, reduced form

Y1 Q4 Y2 Q4 Pooled
1) (2) (3) (4) (5) (6) (7) (C)] 9) (10) (11) (12)
Non- Recover; Non- Recover; Non- Recover;
Revenue Tax Base Exemption Y Revenue Tax Base Exemption - Y Revenue Tax Base Exemption - y
Rate Rate Rate
Rate Rate Rate
Panel A: Any treatment
Treatment 0.044%* 0.068** -0.008 -0.017 0.072% 0.028 0.034 0.010 0.052%** 0.056%* 0.005 -0.009
(0.021) (0.033) (0.015) (0.016) (0.041) (0.039) (0.022) (0.015) (0.019) (0.026) (0.013) (0.013)
N (Total) 405 406 405 405 259 259 259 259 664 665 664 664
Mean of control group (Total) 15.907 16.324 -0.302 -0.119 16.255 16.603 -0.260 -0.088 16.061 16.447 -0.284 -0.106
Panel B: Sub-treatment
Revenue 0.056* 0.090* 0.008 -0.043* 0.113%* 0.078* 0.023 0.012 0.074*** 0.084** 0.014 -0.026
(0.034) (0.053) (0.021) (0.024) (0.046) (0.046) (0.030) (0.012) (0.027) (0.039) (0.017) (0.018)
Demand 0.030 0.045 -0.027 0.011 0.008 -0.049 0.050%* 0.007 0.026 0.021 -0.007 0.012
(0.021) (0.032) (0.018) (0.017) (0.063) (0.057) (0.025) (0.029) (0.023) (0.028) (0.016) (0.015)
N (Total) 405 406 405 405 259 259 259 259 664 665 664 664
Mean of control group (Total) 15.907 16.324 -0.302 -0.119 16.255 16.603 -0.260 -0.088 16.061 16.447 -0.284 -0.106

Notes: OLS regessions of various margins on treatment assignment. The unit of observation is a circle, as defined at the time of randomization. Specification controls for baseline value.
Robust standard errors in parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01
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Table A.9: Base Growth Predictions, with Group FE

1)
Y1 Total Revenue
Log Recovery 2013 -0.276**
(0.118)
Log Recovery 2012 0.127
(0.115)
Log Net Demand 2013 0.077
(0.085)
Log Net Demand 2012 0.034
(0.078)
N 250
Joint significance (p-value) 0.001

Notes: OLS regessions of performance on time-
lagged performance, using group fixed effects. The
unit of observation is a circle, as defined at the time
of randomization. Robust standard errors in paren-
theses. Standard errors are clustered by group. *
p<0.10, ** p<0.05, *** p<0.01

Table A.10: Predicting movements

All circles Y2 Treatment excluded

€] (2)
Any move Any move
Y1 Treatment * Pr(Any move) 0.633** 1.517%**
(0.314) (0.440)
Y1 Treatment * dEuldy 0.239 0.466
(0.223) (0.288)
Pr(Any move) 0.131 0.150
(0.195) (0.226)
dEuldy -0.306*** -0.303***
(0.092) (0.103)
Y1 Treatment -0.423** -0.893***
(0.170) (0.220)
N 404 275
Mean of Y1 Control group 0.519 0.519
Y1 Treatment * Pr(Any move) = 0 (F statistic) 4.066 11.884

Notes: First stage regessions of any move dummy on various regressors. The unit of ob-
servation is a circle, as defined at the time of randomization. Robust standard errors in
parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01
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Table A.11: Estimating the disruption effects from movements

All circles

Y2 Treatment excluded

) @) 3) (@) B ©)
Total Current Arrears Total Current Arrears
Panel A: Reduced form
Y1 Treatment * Pr(Any move) -0.279* -0.134 0.064 -0.335 -0.233 2.234%*
(0.149) (0.153) (0.512) (0.308) (0.314) (0.933)
Y1 Treatment * dEuldy 0.526** 0.426** 0.303 0.459 0.467 0.040
(0.245) (0.217) (0.505) (0.289) (0.302) (0.465)
Pr(Any move) -0.059 -0.072 -0.054 0.051 0.100 -0.226
(0.101) (0.096) (0.326) (0.105) (0.097) (0.375)
dEuldy 0.064 0.161** -0.141 -0.044 0.038 -0.215
(0.075) (0.073) (0.143) (0.078) (0.075) (0.154)
Y1 Treatment 0.092 0.066 -0.055 0.147 0.107 -1.072%*
(0.076) (0.078) (0.283) (0.164) (0.164) (0.477)
Panel B: 1V
Any move dummy -0.391 -0.181 0.102 -0.192 -0.130 1.770%*
(0.247) (0.212) (0.819) (0.175) (0.173) (1.032)
Y1 Treatment * dEuldy 0.615%* 0.468* 0.282 0.545%* 0.522* -0.803
(0.290) (0.245) (0.582) (0.271) (0.293) (1.055)
Pr(Any move) -0.023 -0.058 -0.060 0.076 0.115 -0.466
(0.133) (0.113) (0.368) (0.112) (0.108) (0.703)
dEuldy -0.034 0.122 -0.103 -0.087 0.013 0.439
(0.108) (0.092) (0.383) (0.100) (0.091) (0.550)
Y1 Treatment -0.084 -0.016 -0.011 -0.042 -0.023 0.316
(0.066) (0.060) (0.172) (0.061) (0.065) (0.336)
Panel B: OLS
Any move dummy -0.051%* -0.043 0.116 -0.071%* -0.041 0.019
(0.026) (0.027) (0.073) (0.028) (0.029) (0.078)
Y1 Treatment * dEuldy 0.449** 0.398** 0.276 0.425 0.434 0.680
(0.228) (0.199) (0.461) (0.323) (0.334) (0.471)
Pr(Any move) -0.146** -0.108 -0.064 0.026 0.078 0.091
(0.074) (0.075) (0.240) (0.095) (0.094) (0.341)
dEuldy 0.080 0.163** -0.097 -0.046 0.040 -0.349**
(0.073) (0.070) (0.135) (0.069) (0.068) (0.141)
Y1 Treatment -0.037 0.002 -0.008 -0.011 -0.001 -0.127
(0.047) (0.049) (0.136) (0.063) (0.065) (0.170)
N 401 401 390 274 274 269
Mean of Y1 Control group 16.222 16.103 13.752 16.261 16.141 13.804

Notes: Reduced form, IV, and OLS regessions of Y2 log total recovery on various regressors. The

unit of observation is a circle, as defined at the time of randomization.

parentheses. Standard errors are clustered by circle. * p<0.10, ** p<0.05, *** p<0.01
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Figure A.1: Simulated Distribution of %2”} using baseline data

(a) Distribution of %y“ll (linear utility)

0 5 1 15 2
dEuldy

(b) Distribution of %;2] (dummy for achieving
first-choice)

‘ ‘ i 15
dEu2dy

¢) Distribution of 2Z[usl dummy for improving
dy
on status quo)

1.5
dEu3dy

Notes: Simulations are as described in Section (3.2), assuming full knowledge of preferences P and predicted yo. For each
inspector we use 20,000 draws of y to calculate d]g[?i].
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