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Abstract

This paper studies agents’ decisions to act as producers or middlemen, and

hence endogenizes market composition, in a search-theoretic model of inter-

mediation. We extend the standard framework to allow nonlinear utility,

general bargaining, costs and returns. Also, we go beyond the usual steady

state analysis by considering dynamics. The analysis remains tractable,

delivering clean and sometimes surprising results. Intermediation can be

essential, and equilibrium is efficient only under strict conditions. While

the model with middlemen holding goods displays uniqueness, the version

with middlemen holding assets has multiple steady states and interesting

dynamics — suggesting there is something special about financial interme-

diation.
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1 Introduction

The various roles of middlemen have been studied by a number of authors (see

fn. 5 below). However, given the importance of middlemen in real-world economic

activity, from wholesale and retail trade in producer or consumer goods, to fi-

nancial intermediation, there seems to be room for additional work. This project

revisits the classic search-based framework of Rubinstein and Wolinsky (1987),

hereafter RW, extends it on several dimensions in terms of theory, and puts it to

work in substantive applications.

The original RW formulation has no cost of production or search, equal num-

bers of producers and consumers, a fixed number of potential middlemen, and

symmetric bargaining. In equilibrium, all producers participate in the market,

while middlemen participate iff they have a better search technology than pro-

ducers, as is efficient. Nosal et al. (2015) incorporate more general bargaining

and costs, show that whether agents participate depends on various factors, and

prove this may or may not be efficient. While this is interesting, the assumptions

in the original and extended versions are still very special: utility is linear; the

market is always in steady state; and the sets of producers and middlemen are

fixed. We relax all of these, perhaps most importantly by letting individuals de-

cide to act as either producers or middlemen. This “occupational choice” makes

the market composition endogenous, which allows us to ask additional questions

about efficiency, uniqueness vs multiplicity, and many other issues.1

Endogenous market composition complicates the analysis. Earlier studies of

RW use a “trick” by takingα = {} as exogenous, where  is the rate at which

type  agents meet type  agents. This is legitimate because under mild conditions

there exists a distribution of types, say n = {}, consistent with α, random
1Since it is easier to describe substantive issues after laying out modeling details, we defer

an extended discussion for now (see, e.g., fn. 18). However, one feature to emphasize up front

is that our model economy can only have more middlemen by having fewer producers — say,

more MBA’s and fewer engineers — which argubly captures an interesting real tradeoff.
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matching, and the identities implied by bilateral meetings,  = . Hence,

those papers can conveniently take α as fixed when characterizing equilibrium —

but that won’t work when agents get to choose their types, since anything that

affects n generally affects α. We therefore determine endogenously  = ,

where  is a baseline arrival rate for type . However, now the relevant identities

imply  =  is the same for all , and in particular  = . This means

we must abandon RW’s original idea that middlemen have a role iff   ,

but, fortunately, other factors in our environment can take over for α, including

bargaining powers, storage costs or rates of return.

Despite these complications the framework remains tractable, delivering clean

and sometimes surprising predictions. Consider a benchmark case where the

objects being traded have positive storage costs, interpreted as a consumer goods

in a retail market, and the storage costs generally differ between producers and

middlemen. As one perhaps surprising result, increasing intermediaries’ costs

can lead to more of them. For this baseline model, we establish existence and

uniqueness of equilibrium, and show how intermediation can be essential — e.g.,

the market may shut down if middlemen are prohibited. Also, we show that

equilibrium can have too few or too many middlemen, and efficiency obtains iff

bargaining powers are just right.2 Additionally, we go beyond the usual linear

(transferable) utility specification by allowing strict concavity, which is relevant

because the nonlinearity can be interpreted in terms of frictions in the payment

process that interact with intermediation. And we go beyond the usual steady

state analysis by studying dynamic equilibrium.

We then consider an application to financial intermediation. Suppose the

objects being traded have negative storage costs, interpreted as assets bearing

positive returns — e.g., houses, art, productive capital, etc. For instance, suppose

2This is related to standard results going back to Mortensen (1982) and Hosios (1990); see

Julien and Mangin (2016) for an updated discussion. However, our results are also slightly dif-

ferent, because RW-style environments involve three-sided markets, with producers, consumers

and middlemen that all meet and bargain.
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producers supply capital goods they can trade to end users who have more pro-

ductive uses for them. Producers can also trade capital to middlemen who can

invest it at a profit while waiting to pass the capital on to end users. This resem-

bles financial intermediation.3 Middlemen can have a higher or lower return than

producers, but as long as it is positive, an interesting possibility arises: they might

prefer to keep the capital for themselves when their return on investment is large

compared to what they can get from end users. Hence, active intermediation may

or may not emerge in equilibrium.

Importantly, there are multiple equilibria. On the one hand, if middlemen

decide to pass capital on to end users, lots of middlemen will be without capital.

Since producers can trade with either end users or middlemen in search of capital,

this raises their profit, and hence leads to more producers. With more producers,

it is easier for middlemen to get capital, thus rationalizing their decision to trade

it away, and making active intermediation an equilibrium. On the other hand, if

middlemen decide to keep capital for their own use, in the long run most of them

already have capital, so producers trade mainly with end users. This lowers their

profit and leads to fewer producers. With fewer producers it is harder for mid-

dlemen to get capital, thus rationalizing their decision to not trade it away, and

making no intermediation an equilibrium. This strategic effect implies there can

be two pure-strategy equilibria, one with and one without active intermediation,

as well as a mixed-strategy steady state equilibrium where middlemen randomize.

There are also multiple dynamic equilibria where intermediation activity varies

and can cycle over time.

An interesting aspect of this is result is that multiplicity is only possible

when holding inventories entails positive returns — in the version with negative

3A minor detail is that, from a narrow perspective, exchange in the model looks like spot

trade, but it is easy to reconsider it as intertemporal where, e.g., an end user that receives

capital, either directly from a supplier or indirectly from an intermediary, remits payment at

some future date when his investment pans out. As long as contracts are enforceable, the

results are identical. Also, it would not matter in our environment if these are debt or equity

contracts. Hence, for simplicity we set up the basic model to look like spot trade.
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returns (storage costs) equilibrium is always unique. This is true even though

we tried to get multiplicity with negative returns by going beyond linear steady-

state analysis, based on the knowledge that in some related search-and-bargaining

models multiplicity can arise iff we consider nonlinear utility or dynamics (Wright

and Wong 2014; Trejos and Wright 2016). This does not mean that one can never

generate multiplicity with negative returns, and we know lots of “tricks” to make

that happen — e.g., going back to Diamond (1982), increasing returns in the

meeting technology — but it shows that one does not need such devices when

intermediation involves assets with positive yields.

To summarize, as a self-fulfilling prophecy, it can be a best response for mid-

dlemen to pass inventories on to end users, or to hoard them, if these inventories

entail positive yields but not storage costs. This suggests intermediation in fi-

nancial markets is special vis a vis retail markets, which we interpret as support

for the long-standing notion, associated with names like Minsky, Kindleberger,

and others, that financial activity is generally more susceptible to multiplicity,

volatility or fragility. See Akerlof and Shiller (2009) for a broad discussion, and

Reinhart and Rogoff (2009) for an empirical/historical account. As regards fi-

nancial intermediation and banking in particular, Rolnick and Weber (1986) say

“Historically, even some of the staunchest proponents of laissez-faire have viewed

banking as inherently unstable and so requiring government intervention.” One

such proponent is Friedman (1960), who opposed regulation of most activities,

yet advocated narrow banking as part of his “program for monetary stability.”

And a literature following Diamond and Dybvig (1983) is dedicated to studying

multiplicity and instability in banking theory. All of this is evidence of a popular

view that financial intermediation is special, consistent with our findings.4

4To be clear, based on their reading of history, Rolnick and Weber (1986) actually challenge

the notion that financial intermediaries are inherently unstable; the point of the quotation is

to establish that this is a conventional wisdom. Also, even if one accepts the premise that

financial activity is subject to instability or volatility, the underlying reason is open to debate

— e.g., Lacker (2014) argues it may be induced by policy and regulation.

4



The word hoard in the previous paragraph is apt because the results are

reminiscent of monetary economics, where it is standard to show that whether

a seller accepts or rejects an asset in payment can depend on what others are

doing (see surveys by Nosal and Rocheteau 2011 and Lagos et al. 2016). Our

result is somewhat different, however, more like showing that whether a buyer

spends an asset can depend on what others are doing. Bad (low return) assets

are always passed on by middlemen, while good (high return) assets are hoarded,

in the spirit of Gresham’s Law. If that is not surprising, it was less obvious

to us that moderately good assets may be hoarded or may circulate depending

on the equilibrium we select. Moreover, if we fix the sets of middlemen and

producers, the strategic effects discussed above are inoperative, and equilibrium

is again unique, showing how endogenous market composition is crucial. Finally,

we emphasize our analysis does not concern instability in credit arrangements

— on that, see Gu et al. (2013) and references therein — and instead features

intermediated asset markets, but that makes it no less relevant.

The rest of the paper involves making our assumptions precise and verifying

the results. Section 2 describes the environment. Sections 3 and 4 study equi-

librium and efficiency in a stationary linear economy. Sections 5 and 6 consider

nonlinear and nonstationary versions. Sections 7 and 8 analyze financial inter-

mediation. Section 9 concludes. Technical results are relegated to an Appendix.5

5For more motivation, it is hard to improve on RW: “Despite the important role played

by intermediation in most markets, it is largely ignored by the standard theoretical literature.

This is because a study of intermediation requires a basic model that describes explicitly the

trade frictions that give rise to the function of intermediation. But this is missing from the

standard market models.” The situation has improved since then, and in particular, work on

intermediation with endogenous market composition includes Bigalser (1993), Wright (1995),

Li (1998), Camera (2001), Johri and Leach (2002), Shevchenko (2004), Smith (2004), Duffie

et al. (2005), Masters (2007), Tse (2009), Lagos and Rocheteau (2009), Watanabe (2010), and

Geromichalos and Herrenbrueck (2016). Among other differences, we stay closer to RW by

not giving middlemen better information or letting them hold larger inventories. For more

on the literature see Wright and Wong (2014). In recent work, Farboodi et al. (2015,2016)

also use search theory to study middlemen, but while complementary in style, the models and

applications are quite different. In particular, while we do many things those papers do not,

Farboodi et al. (2016) have a nice way to endogenize differential arrival rates that might be

worth integrating into our framework in future work.
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2 Environment

There is a continuum of infinitely-lived agents. Measure  of them are con-

sumers, or end users, labeled . The rest choose to be producers, middlemen or

nonparticipants, labeled  ,  or  , with measure ,  or . Type  pro-

duce whenever they can and type  trade with them whenever they can (this

is how we define  and  ; those who do not want to act this way are called

type ). Type  also trade whenever they can. All agents meet bilaterally in

continuous time, with the Poisson rate at which any type  meets type  given by

 = Σ. Notice this displays constant returns: doubling  ∀ doubles
the number of meetings and leaves  the same. To reduce notation, without loss

of generality, set +++ = 1 and  = 1, and write n = (   ).

There are two tradeable objects, for now interpreted as consumption goods,

 and . Good  is indivisible. It is valued for consumption only by type , who

get utility  from it. Later we think of  as a productive input or asset that also

yields a direct flow payoff. In any case,  is storable, but only 1 unit at a time, at

cost  for type  and  for type  . For now we assume   0; to reinterpret

 as an asset we later assume   0. While  can be produced by type  at

cost , for most purposes we can set  = 0 without loss of generality.6 While 

cannot produce  he can acquire it from  to potentially retrade it to . The

other good  is divisible but nonstorable. All agents can produce  at constant

marginal cost in terms of utility, normalized to 1, and can consume it for utility

 (), where for now  () = , but later we consider  00 ()  0. As in RW,

 () =  means that transferable utility is used to pay for .

Type  agents always have 1 unit of  and type  agents always have 0, as

the former produce and the latter consume right after trade. Type  can have

0 or 1 unit of  in inventory. If  is the fraction of  holding , it increases at

rate (1−) (the measure of  meeting  without ) and decreases at rate

6As in many models (e.g., Pissarides 2000), what matters is the total expected discounted

cost, including entry, production and search, so we do not need them all.
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 (the measure of  meeting  with ). Thus, in steady state

 =


 + 
 (1)

We focus for now on steady states, and consider dynamics in Section 6. Also, in

Section 7,  might not trade  to , which requires amendment of (1).

Bargaining determines the terms of trade: agents  and  split the total surplus

with  denoting the share, or bargaining power, of  and  = 1 − . With

transferable utility, this follows from various solution concepts, including Nash,

Kalai or strategic bargaining games. The surplus of type  meeting type  is

−  = , because  = , given that for both  and  the continuation

values and outside options cancel.7 Similar expressions hold for the other , and

we write y = (  ).

Let  be  ’s payoff or value function. Let 0 or 1 be  ’s value function

when he has 0 or 1 unit of . Let  and  = 0 be ’s and  ’s value functions,

andV = ( 0 1  ). Eliminating the ’s from the  ’s using the bargaining

solution, we get the dynamic programming equations

 = + (1− )(1 − 0)−  (2)

0 = (1 − 0) (3)

1 = (+ 0 − 1)−  (4)

 = + (+ 0 − 1) (5)

In (2), the flow value  is the rate at which  meets  times his share of the

surplus, plus the rate at which he meets  without  times his share of that

surplus, minus the flow storage cost . The other equations are similar.

Nonconsumers can choose to be type  or  , and if they choose  they

7This is because our agents all stay in the market forever. In the original RW setup,  and

 exit after trading, to be replaced by clones, while  stays forever. Nosal et al. (2015) nest

these formulations by having agents stay after trading with a type-specific probability; having

them stay with probability 1 reduces the algebra without affecting the results too much.
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start without , for payoff 0. Hence, the choice comes down to the following

best-response considerations:

  0⇒  ≥ max {0 0} and   0⇒ 0 ≥ max { 0} (6)

Obviously,    0 requires  = 0. Given all this, we have:

Definition 1 A steady state equilibrium is a nonnegative list hVni such that
 satisfies (1), V satisfies (2)-(5) and n satisfies (6).

From this we can compute the terms of trade y, the spread  =  − , the

stock of inventories held by middlemen , etc.

3 Equilibrium

Given   0, there are three kinds of outcomes. A class 0 equilibrium is one

where  =  = 0 and  = 1 − , which means the market shuts down. A

class 1 equilibrium is one where  = 1−  and  =  = 0, with production

but no intermediation. A class 2 equilibrium is one where   0,   0 and

 = 0, with production and intermediation. In case it is not obvious, the labels

are chosen because class 0 implies no active agents, class 1 has one active type,

 , and class 2 has two active types,  and  . Also, while in principle there can

be equilibria where   0,   0 and   0, it is easy to show this is possible

only for a measure 0 set of parameters.

To begin the analysis, consider a candidate class 0 equilibrium, with  =

 = 0. This is an equilibrium iff  ≤ 0 and 0 ≤ 0. When  = 0,  ≤ 0 iff
 ≥ ̄ ≡ , and 0 = 0 for all parameters. So class 0 equilibrium exists

iff  ≥ ̄, and obviously there are not multiple class 0 equilibria. However,

unless parameters satisfy the condition in Lemma 1, class 0 equilibrium violates

subgame perfection, and hence is ignored (proofs of all results that are not clear

from the discussion in the text are contained in the Appendix).
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Lemma 1 A (subgame perfect) class 0 equilibrium exists iff  ≥ ̄ and  ≥
(), where  is defined in (9) below. When it exists it is unique.

Consider next a candidate class 1 equilibrium, with  = 1−  and  = 0.

For this to be an equilibrium we need  ≥ 0 and  ≥ 0, so that type  agents

do not want to deviate and become type  or  . It is easy to check  ≥ 0 iff
 ≤ ̄, and  ≥ 0 iff

 ≥ () ≡ ̄ −
 +  + (1− ) 

(1− ) 

(̄ − ) (7)

where ̄ ≡ . Since (2)-(5) are linear, there cannot be multiple class 1

equilibria. This proves:

Lemma 2 A class 1 equilibrium exists iff  ≤ ̄ and  ≥ (), where  is

defined in (7). When it exists it is unique.

Consider next class 2, with    0 and  = 0 ≥ 0. It is convenient to
proceed using , and later use steady state to recover n. Then we need  ∈ (0 ̄),
where ̄ = 1− . Now routine algebra reduces  = 0 to () = 0, where

() = 1
2 + 2+ 3 (8)

is obtained by replacing  and  with their values in terms of , and the

coefficients are8

1 = (̄ − )

2 = −[2(1− ) + ](̄ − )− ( +  − )(̄ − )

3 = (1− )(̄ − ) + ( + )(̄ − )

8Much of the Appendix involves manipulating quadratic equations that arise from random

matching and endogenous inventories. It is worth re-emphasizing that this is not due to in-

creasing returns: independent of market size, one meets other agents at fixed rates, but the

outcome when one meets  depends on , and that depends on the type distribution n.
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Type 2

Figure 1: Equilibrium outcomes in ( ) space

We seek  ∈ (0 ̄) such that () = 0 and 0 ≥ 0. Now 0 ≥ 0 iff  ≤ ̄,

which implies 1  0, and hence  () is convex. As shown by the curves , 

and  in the right panel of Fig. 1, there are three ways () can have a solution

in (0 ̄): (a) one root with (0)  0  (̄); (b) one root with (0)  0  (̄);

or (c) two roots. The Appendix rules out cases (a) and (c):

Lemma 3 A class 2 equilibrium exists iff (0)  0  (̄).

To see when the conditions in Lemma 3 hold, note that (̄)  0 iff  

() where  is defined above, while (0)  0 iff   () where

() ≡ ̄ +
 + 

(1− )
(̄ − ) (9)

Also, since there is exactly one  ∈ (0 ̄) with  () = 0, and again (2)-(5) are

linear, there cannot be multiple class 2 equilibria.

Lemma 4 A class 2 equilibrium exists iff   () and   (). When it

exists it is unique.

The outcome is illustrated in the left panel of Fig. 1, drawn with  (0)  0,

although  (0)  0 is also possible, so we can get class 1 or class 2 equilibrium
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at the origin. Clearly equilibrium is unique for generic parameter values. The

equilibrating force is this: When  increases,  is less likely to meet  , and

when he does it is more likely that  already has . For both reasons higher 

lowers the incentive to become type  .

Intermediation can be essential in the sense used by monetary theorists: an

institution like money is said to be essential if the set of outcomes that can be

supported as equilibria expands when money is introduced. Nosal and Rocheteau

(2011) and Lagos et al. (2016) discuss work on the essentiality of money, banking

and related institutions. For both money and intermediation the concept is non-

trivial, since they are clearly not essential in the standard environment of general

equilibrium theory. Here, in the region where class 2 equilibrium exists with

  ̄, economic activity depends on middlemen: if we were to exogenously

eliminate type  , say, by taxing them out of existence, the market would shut

down. Thus, intermediation may be necessary for production and consumption

to be viable. Even if they are viable without intermediation, welfare can be en-

hanced by middlemen, but can also be diminished, as discussed in Section 4. In

any case, we summarize the above results as follows:

Proposition 1 With   0 equilibrium exists and is generically unique, as

shown in Fig. 1. For some parameters intermediation is essential.

Additional insights come from changing parameters in class 2 equilibrium,

where  solves () = 0. First, notice anything that shifts () up (down) causes

 to increase (decrease). The Appendix proves the following:

Lemma 5 An increase in  shifts  () down; an increase in  shifts  ()

down if   ̄ and up if   ̄.

Based on these observations, it is immediate that




 0,




 0 and




 0
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This accords well with intuition: when  is higher, we get fewer producers and

more middlemen, and therefore the latter hold  with a lower probability. Less

intuitively, we have

  ̄ ⇒



 0,




 0 and




 0

  ̄ ⇒



 0,




 0 and




 0

The case   ̄ should be surprising: how can we get more middlemen when

 is higher? This is answered in Section 4.

In terms of bargaining power, one can check that an increase in  or  shifts

 () up, raising  and  while lowering , as again accords with intuition.

However, just like , an increase in  can shift  () up or down depending

on the sign of  − ̄, and therefore

  ̄ ⇒




 0,




 0 and




 0

  ̄ ⇒




 0,




 0 and




 0

The reason an increase in  works like a decrease in  is that both make

intermediation more profitable, with  operating during the search process and

 operating during the bargaining process.
9

We now bring back the terms of trade, y. In direct trade between  and  ,

 =  is independent of the sunk cost , and increases with  or . In

wholesale trade where  gets  from  ,

 =  (1 − 0) =
 (− )

 +  + 



Notice  on the RHS, because in addition to the direct effects of parameters,

9Here are some other effects. As regards , we have this:   ̄ implies   0,

  0 and   0;   ̄ implies the opposite. As regards a demand increase

on the intensive margin, captured by higher , we have this: if   ̄ then   0 and

  0; but if   ̄ then the effects can go either way. Similarly ambiguous is an

increase in demand on the extensive margin, captured by higher .

12



there are indirect effects through n. Similarly, in retail trade where  gets  from

 ,

 =  (+ 0 − 1) = −  (− )

 +  + 



One can check, e.g.,   0,   0 and   0, where

 = − is the spread. One can also derive the effects on y and  of , ,

etc. In general, the theory delivers predictions that are either unambiguous, or

ambiguous due to indirect effects resulting from changes in market composition.

Furthermore, all these results differ from settings where n is fixed exogenously,

because then the indirect effects vanish. This is one reason to endogenize market

composition. Another is to examine welfare.

4 Efficiency

We now discuss optimality by solving a planner’s problem, focusing on the case

where  → 0: choose
¡
  




¢
to maximize

 = (− ) + (− )

where the first (second) term is the surplus from direct (indirect) trade.10 On

the one hand, consider   . Then intermediation is a bad idea — i.e., it

necessarily contributes negatively to  . In this case,    implies 

 = 0

and the market shuts down, while    implies 

 = 1−  and the market

opens with direct trade only.

On the other hand, consider   , which means intermediation may or

may not be a good idea. Substituting out  and  we reduce the problem to

max
∈[0̄]

½
− 



1− 
 − 

1−  − 

1− 


¾


10One can solve the problem with   0, then let → 0, but as usual it is much easier to take

the limit first and the result is the same (we do this in a related model in Nosal et al. 2015).

Note that  →∞ as  → 0, but  is well defined.
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After simplification, the derivative of the objective function is proportional to

 () = (1− )2(− ) + ( − ) (10)

which is a quadratic that is decreasing in  over the relevant range.

Hence, with    there are three possibilities. First, the solution might

be  = 0, which corresponds to a class 0 outcome with  = 0. It is easy to

check this occurs iff

  () ≡
(− )

1− 
 (11)

Second, it might be  = ̄, which corresponds to a class 1 outcome with  =

1−  and  = 0. This occurs iff

  () ≡
−2+ 

1− 
 (12)

Finally, if    () 
() there is a unique 

 ∈ (0 ̄) solving () = 0, a

class 2 outcome. This is summarized as follows:

Lemma 6 The efficient outcome has  =  = 0 iff  ≥  and  ≥ ();

it has  = 1− and  = 0 iff    and  ≤ (); and it has 

 


  0

iff  ≤ () and  ≤  ().

Fig. 2 shows  and , as well as the analogs from the equilibrium analysis,

 and . Notice the region where   0 lies strictly below the 45 line, so

for intermediation to be optimal we need   . By comparison,    is

neither necessary nor sufficient for   0 to be an equilibrium. Also note that

the results are different from models with fixed n. In such models, if  is close

to  it is always efficient for  to trade  to  , so  can produce another unit

and put more  on the market. The economics is different here because  can

turn into  and produce output on his own. We say more about the comparison

between the efficient and equilibrium outcomes below, after discussing the effects

of parameters on the former when  ∈ (0 ̄).
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)

)

)

) )

)

))

Figure 2: Comparing equilibrium and efficient outcomes

First, similar to the equilibrium results, we have




 0,




 0 and




 0

Also similar to the equilibrium results, we have

  ⇒ 


 0,




 0 and




 0

  ⇒ 


 0,




 0 and




 0

which should again be surprising. How can higher  lead to more middlemen?

To explain this, the following is useful:

Lemma 7 For all parameters, (
)  0.

This says that an increase in  always reduces the stock of inventories held

by middlemen, 
, but there are different ways to do so. One is to reduce ,

which in steady state means higher ; the other is to reduce , which means

higher . When    it is optimal to use the extensive margin and reduce

; when    it is optimal to use the intensive margin and reduce 
, which

means higher . This explains the planner’s choices. The idea is similar for
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equilibrium, but less transparent, as complications can make that different from

the efficient outcome, as we now discuss.

Fig. 2 shows equilibrium can have too many or too few type . In the shaded

region in the left panel of , between () and 
(), we have 


  0 =  and

equilibrium has too many. There is also a region where equilibrium has too few.

The situation in the right panel is similar, except parameters are different. Also,

even if the equilibrium and efficient outcomes are both class 2,  =  only if

bargaining powers are just right. Details are given in Proposition 2, but here is

the idea. Heuristically,  = 1 and  = 1 avoid holdup problems associated

with the costs  and , which are sunk when  and  deal with an end user

. For , there is also a holdup problem when  deals with , but here other

forces come into play. When someone chooses to be type  , he weighs his own

benefit and cost, but neglects the fact that at the margin he makes it harder for

other  ’s to meet  ’s and easier for  ’s to meet  ’s. In addition, having more

 ’s increases , and that makes it harder for a type  agent to trade when he

does meet  ’s. Balancing these considerations delivers . Summarizing all

these results, we have this:

Proposition 2 The efficient outcome exists and is generically unique. Let 
0, 


1

and 
2 be the sets of ’s where the efficient outcome is class 0, class 1 and class 2,

resp. Equilibrium is efficient iff  =  = 1 and: (i) ( ) ∈ 
0 ⇒  = 1;

(ii) ( ) ∈ 
1 ⇒  = 0; and (iii) ( ) ∈ 

2 ⇒

 =
(1− )(1−  − )

(1− )(1−  − ) + [1− (− )(− )]
∈ (0 1)

5 Concavity

Now suppose  00 ()  0.11 This is interesting for various reasons, but here is

one big one. If  ()   then the cost to the payer exceeds the value to the

11This extension is relevant for reasons dicussed below, and is a building block for the exten-

sion in Section 6, but without loss of continuity readers could skip to Section 7.
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payee, which discourages intermediation because it requires two payments, 

to  and  to  , rather than one,  to  . Nonlinearity can thus represent a

transaction cost. Now, one can also capture this with, e.g.,  () = (1 − ),

where  is a proportional cost, like an ad valorem tax, but there are other reasons

to go beyond linear utility. In any case, we allow  0 (0)  1, so it may be that

 ()   ∀  0, but for the record note that a version with  0 (0)  1 makes

our environment similar to a standard model in monetary economics going back

to Shi (1995) and Trejos and Wright (1995). Also, for tractability here we use

the Kalai (1977) bargaining solution.12

In general the general dynamic programming equations are

 =  [()−  + ] + (1− ) [()−  + 1 − 0]− 

0 =  [()−  + 1 − 0]

1 =  [()−  + + 0 − 1]− 

 =  [()−  + ] +  [()−  + + 0 − 1] 

However, for simplicity (and efficiency) consider  =  = 1, so  = 0 and

 =  = . Then letting  = (), these equations reduce to

 =  + (1−  − ) ()−  (13)

0 =
 (1− )

(1− )
 () (14)

1 = ( + 0 − 1)−  (15)

The definition of equilibrium is basically the same as the linear model. The

solution method is also similar, although the algebra is more cumbersome — which

is why  () =  is our benchmark specification.

12The Kalai solution maximizes ’s surplus in trade with  subject to  getting a share 
of the total surplus. This is not the definition of Kalai bargaining, it is a result implied by his

axioms, like maximizing the product of the surpluses is a result implied by Nash’s axioms. If

 () =  here Nash and Kalai are the same; with  00  0 they are not, and Kalai has several
advantages (see Aruoba et al. 2007 for a discussion in the context of related models).
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Still, there are analogs to all the above results. The analog to Lemma 1 is:

Lemma 8 A (subgame perfect) class 0 equilibrium exists iff  ≥  and  ≥
(), where

() ≡  + (0)(1− ) (16)

and 0 is given by the bargaining solution for  with  = 0.

Notice  ≥ () replaces  ≥ 
¡

¢
from the linear specification, since now

we can solve for  but not . Also, to be clear, () depends on  because

 in (16) solves the bargaining problem given . Similarly, the analog to

Lemma 2 is:

Lemma 9 A class 1 equilibrium exists iff  ≤  and  ≤  (), where

 () ≡  − (̄)(1− )
(1− )


 (17)

and ̄ is the bargaining solution for  when  = ̄.

Here  ≤  () replaces  ≥ 
¡

¢
, and  depends on , similar to the

discussion of ().

For class 2 equilibrium, it must be that   ,  satisfies  = 0, and

 is the bargaining solution. Now  = 0 reduces to ̃ ( ) = 0, where

̃ ( ) = ̃1
2 + ̃2+ ̃3 = 0 and

̃1 =  ()

̃2 = − [2 (1− ) + ] ()− 
¡
 − 

¢
̃3 = 

¡
 − 

¢
+  (1− ) () 

Here is the analog to Lemma 3:

Lemma 10 A class 2 equilibrium exists iff ̃ (0 0)  0  ̃ (̄ ̄).
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Figure 3: Equilibrium in ( ) space

With a general  () we cannot eliminate  from the above conditions, so

we work with two curves in ( ) space representing bargaining and the choice

to be type  or  . Setting 0 =  implies a quadratic that solves for

 =
[2 (1− ) + ] () + 

¡
 − 

¢−p̃

2 ()
(18)

where ̃ is the discriminant. This defines a function  = (), where  is

for “occupational choice.” One can check  ' −( − ), where  ' 

means  and  have the same sign. As shown in Fig. 3, this traces a curve in

( ) space that slopes up or down, depending on the sign of  − , but in

any case lim→∞() = ̂ ∈ (0 ̄).
Next, using (14)-(15) to solve for 1 − 0 and eliminating it from the Kalai

solution, we get  = (), where  is for “bargaining.” In fact, it can be solved

for  = −1 () explicitly:

 =
 ( − )−Υ

 ( − )−Υ+  (1− ) ()
(19)

whereΥ ≡ ( + ) [ + (1− ) ()]. This traces a downward-sloping

curve, as shown in Fig. 3. The Appendix proves the following results:
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Figure 4: The nonlinear (solid) and linear (dashed) models

Lemma 11 The curves  =  () and  =  () shown in Fig. 3 intersect

at ( ) ∈ (0∞) × (0 ̄), and hence a class 2 equilibrium exists iff  () 

  (), where  and  are defined in (16) and (17). Moreover, in ( )

space,  is increasing and concave,  is decreasing and concave, and  () =

() = .

Lemma 12 The curves  =  () and  =  () in Fig. 3 cannot intersect

more than once in (0∞)× (0 ̄).

Proposition 3 With   0 equilibrium exists and is generically unique in the

nonlinear model, as shown in Fig. 4.

In the left panel of Fig. 4, the solid curves are  and  for () =  with

 = 03,  = 12,  = 12,  = 22 and  = 001. For comparison the dashed

lines are for  = 1.13 In the right panel of Fig. 4, the solid curves are ,  and

13Notice the set in ( ) space where   0 does not necessarily expand or contract with

increased curvature in  (·), as the dashed and solid curves cross. This is because  () = 

implies  0(0)  1, and there is a ̂  0 such that in the relevant range  ()   iff   ̂. Hence,

nonlinearity tends to discourage intermediation when   ̂ and encourage it when   ̂.

With  0(0)  1, instead, nonlineality would unambiguously discourage intermediation.
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Figure 5: Effects of  in the nonlinear model

0 as functions of  for the nonlinear model, while the dashed curves are for

the linear model. Fig. 5 shows where higher  can lower or raise , as in the

linear specification, which can be proved using the following easily-verified result:

Lemma 13 An increase in  shifts the  curve down and does not affect the

 curve in Fig. 3, while an increase in  shifts the  curve down and does not

affect the  curve.

6 Dynamics

The next extension concerns dynamic transitions in class 2 equilibrium.14 As in

Section 5, we allow concave  , but set  =  = 1 so that  =  = ,

 = 0 and  = (). At any point in time, a type  agent can dispose of 

and become type  , but he cannot start as type  with his own output — say

because he must use  to acquire the middleman technology. Also, we now work

with the ’s, rather than , and let 1 be a state variable with law of motion

̇1 = 0(1−  − 1 − 0)− 1 (20)

14Class 0 and 1 have no interesting dynamics, although we can potentially start with  = 0,

then transit to   0, or vice versa.
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In contrast to 1, 0 can jump to satisfy 0 =  at any point in time (like

vacancies in Pissarides 2000). The other state variable is ∆ = 1 − 0, which

represents “beliefs” about the value of holding, rather than searching for, 

The bargaining solution for  is

() = [()−  +∆] (21)

The analogs to (13)-(15), without imposing steady state, are

 =  + 0()−  + ̇ (22)

0 = (1−  − 1 − 0)
1− 


() + ̇0 (23)

1 = ( −∆)−  + ̇1 (24)

We now show how to reduce this to something manageable.

First,  = 0 ∀ implies ̇ = ̇0 ∀, so from (22)-(23)  ∈ (0 1− ) means

 + 0()−  − (1−  − 0 − 1)
1− 


() = 0 (25)

Next, subtracting (23)-(24), we get

∆ = ( −∆)−  + ∆̇− (1−  − 0 − 1)
1− 


() = 0

Then, substituting (25) and simplifying, we arrive at

∆̇ = ( + )∆+  −  + 0() (26)

Now (20) and (26) define a dynamical system in (1∆), with 0 and  implicit

functions of the state.15

Definition 2 Given an initial condition ̄1, an equilibrium is a nonnegative and

bounded path for (1∆) solving (20) and (26).

15Section 8 presents dynamics with  () = , which is easier since we can solve for 0 and

 explicitly; the goal here is to understand dynamic equilibria in the nonlinear model.
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Figure 6: The phase plane with   0

By Proposition 3 there exists a unique steady state, i.e., a unique intersection

of the ̇1 = 0 and ∆̇ = 0 curves. These curves have slopes

∆

1
|̇1=0 =

[(0 + ) + (1−  − 1 − 20)(1− )] [(1− )
0 + ]

(1−  − 1 − 20) 0 [(1− )(1−  − 1)− 0]

∆

1
|∆̇1=0

=
(1− ) [(1− )

0 + ]

( + ) [(1− ) 0 + ] +  0(1− )(1−  − 1)


The slope of the ∆̇ = 0 curve is strictly positive. The slope of the ̇1 = 0 curve

can be positive or negative, but if it is positive one can check it is steeper than

the ∆̇ = 0 curve. Also, ̇11  0 and ∆̇1  0. Hence the system looks

like Fig. 6, which show the phase plane with ̇1 = 0 in red and ∆̇ = 0 in blue.

Whether ̇1 = 0 slopes up or down, the steady state is a saddle point, with the

green and black curves showing the stable and unstable manifolds.

Proposition 4 The unique class 2 steady state exhibits saddle path stability:

given any initial condition ̄1, there is a unique ∆̄ such that (1∆) transits to

the steady state, while any ∆ 6= ∆̄ implies an explosive path.

We conclude that equilibrium, and not only steady state, is unique. This

was not a foregone conclusion. In linear versions of a related model by Duffie
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et al. (2005), there is a unique equilibrium, but there can be multiplicity in the

nonlinear dynamic version (Trejos and Wright 2016). Hence, saddle-path stabil-

ity is not trivial in these kinds of models. An important aspect from the current

perspective is this: the next part of the presentation establishes that when we con-

sider asset market intermediation there is multiplicity. This contrasts with goods

market intermediation, where we get uniqueness, even when we allow nonlinear

utility and consider nonstationary equilibrium.

7 Intermediated Asset Markets

Above we assume a cost   0 to storing , as in retail establishments. Now

consider   0, so storing  is profitable. Perhaps, e.g.,  is a painter,  is a

collector, and is a market-maker in fine art. Then the flow benefit of holding 

is  = −  0 if paintings generate positive utility, and    corresponds to

art dealers getting a higher payoff from holding a piece than the original artist,

perhaps by charging admission to their galleries. What is relevant is   0; it

is not qualitatively important whether   0 or   0. In either case,  sells

his work to anyone, since he can always produce more. The interesting issue is

this: if  enjoys  enough,  may sell it to him; but then again  may prefer

to keep it for himself. This option is never relevant when   0, since retailers

obviously do not pay to store inventories unless they are planning to sell them.

More generally,  can be any asset that generates positive returns, and this

leads us to an interpretation in terms of financial intermediation. Suppose 

produces or otherwise has access to capital available for investment. An end user

 may have the best ultimate use for the capital, but can also generate a flow

yield by putting it into temporary investments. Then    means  has

better investment opportunities than  , and  might even be high enough for

 to keep  rather than passing it on to . If does pass  to  he is acting as

a financial intermediary, by acquiring capital from the source agent and retrading
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it to those who need it. As another application,  can be a house providing utility

as shelter, in which case  might either keep it as a residence or “flip” it to .

These examples motivate consideration of   0. To begin the analysis, write

the dynamic programming equations as

 = + (1− )(1 − 0)−  (27)

0 = (1 − 0) (28)

1 = (+ 0 − 1)−  (29)

which are the same as (2)-(4), except for the appearance of  , which is the

probability that  trades  to . This also affects the steady state, which

is  =  (+ )  There are now two best-response conditions: one for the

decision to be type  or , which is basically the same as above; plus one for the

decision by  to keep or trade  when he meets . He keeps it,  = 0, if −
exceeds the deviation payoff  

1 , which is captured by a one-shot deviation — i.e.,

 
1 is the payoff to trading  to  when an opportunity arises, then reverting to

a hoarding strategy the next time  acquires . Similarly, he trades it,  = 1,

if the payoff exceeds the deviation payoff,  
1 = −. And he can randomize,

 ∈ (0 1), if indifferent. Other than consideration of this new condition for  ,
the definition of equilibrium is the same as in the baseline model.

To make the main point in a relatively simple way, let us set  () = , and

focus on steady state until Section 8. Also, when it facilitates the interpretation,

let  = −. One can imagine 9 candidate equilibria, shown in Table 1. If
 = 0, in the first row of Table 1,  = 1 corresponds to a class 1 outcome

with no type  agents on the equilibrium path, but off the equilibrium path

they would trade  to . We call this a class 1 equilibrium ( indicates 

trades ). Similarly, we call  = 0 and  = 0 a class 1 equilibrium, as off the

equilibrium path with  would not trade it to  ( indicates keeps ). We

would similarly call  = 0 and  ∈ (0 1) a class 1 equilibrium ( indicates 
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randomizes), but ignore it because it does not exist for generic parameters. We

also ignore all candidates with  = 1− .
16

\ 0 [0 1] 1

0 1 × 1

(0 1− ) 2 2 2

1−  × × ×
Table 1: Candidate equilibria with  = −  0.

Therefore, the remaining candidates are class 1 and 1 , plus  ∈ (0 1− )

and either  = 1,  = 0 or  ∈ (0 1), which we call class 2, 2 or 2 (there
are two types,  and  , and  either keeps , trades it or randomizes). The

following is proved in the Appendix:

Lemma 14 Define

b ≡ −[ + (1− )] (30)b() ≡ −( − )
 + (1− )

(1− )

(31)

() ≡ −−  +  (32)

Also define b() to be the lower root of the quadratic given in the proof in
the Appendix. Then as shown in Fig. 7, class 1 equilibrium exists iff  ≥
max{b ()}; class 1 exists iff b() ≤  ≤ b; class 2 exists iff  ≤
min{() b()}; class 2 exists iff b()    (); and class 2

 exists iffb() ≤  ≤ ().

Fig. 7 illustrates Lemma 14 in the negative quadrant of ( ) space, and

equivalently in the positive quadrant of ( ) space, which may be better for

16If  = 1− there are no producers, so   0 (trading away ) leaves with continuation

value 0, which admits a profitable deviation where he becomes type  . We cannot rule out

 = 1 −  and  = 0 in this way, but ignore it because it is degenerate (production shuts

down). Also notice there is nothing corresponding to a class 0 outcome in Table 1, since

production obviously dominates nonparticipation when   0.
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‐

Figure 7: Outcomes in ( ) and in ( ) space

interpreting the results. Notice all of the equilibria in Table 1 exist for some

parameters. Naturally, if  is high relative to , no one wants to be a middle-

man, but if, off the equilibrium path, there were a middleman with  he would

trade it to  at low values of  (light blue region), and keep it at high values of

 (dark blue region). For   ̃, someone always wants to be a middleman,

 ∈ (0 1− ). In this situation there are three possibilities: if  is small type

 agents always trade  to ; if  is big they never trade  to ; and if 

is neither too big nor too small they randomize. Importantly, for intermediate

values of  there are multiple equilibria (orange region).

The economics is clear: If type agents decide to trade  to end users, there

will be more middlemen without . Since type  can trade with either end users

or middlemen in search of capital, this raises , which raises . That makes

is easier for type  to acquire capital, rationalizing their decision to trade it

away, and thus making active intermediation an equilibrium. If, however, type

 agents instead decide to keep  for themselves, in steady state  trades only

with end users, which lowers  and . That makes it harder for type  agents

to acquire capital, rationalizing their decision to keep it, and thus making no
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Figure 8: Equilibrium correspondence for  and 

intermediation an equilibrium. This strategic effect implies 2 and 2 equilibria

coexist in a region of parameter space with positive measure, and when they

coexist, so does 2. Fig. 8 shows how  and  vary within an equilibria as 

or  changes, and across equilibria for a fixed  or .

Hence, whether assets circulate or get hoarded can be a self-fulfilling prophecy.

We emphasize that this is only possible when holding assets generates positive

returns — equilibrium is unique when   0 — suggesting there is something

special about intermediated asset markets, consistent with the discussion in the

Introduction. Naturally, type  agents always trade away assets that give them

low returns, always hoard those that give them high returns, and may or may not

trade assets that give them moderately good returns, depending on the equilib-

rium selected. This is summarized as part (i) of the next Proposition. Part (ii)

says that if n is fixed exogenously then equilibrium is once again unique, even

with   0. Intuitively, unless n can adjust, the strategic channel is severed and

 depends only on fundamentals.

Proposition 5 (i) With   0 equilibrium exists. As shown in Fig. 7, ∀ 

̃ where ̃  0, and  neither too high nor too low (equivalently, ∀ 

̃ where ̃  0, and  neither too high nor too low) class 2, 2 and 2

equilibria coexist. Otherwise equilibrium is unique. (ii) If  and  are fixed
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exogenously uniqueness re-emerges:  = −  ( + ) ⇒  = 0 and

  ( + ) ⇒  = 1.

8 Intermediated Asset Market Dynamics

The last extension concerns dynamic equilibria with  = −  0. As in Sec-

tion 6, the focus is on class 2 equilibria, but now we need to be mindful of  ’s

decision to keep or trade . Also, we use  () = , because this suffices to make

the point. Similar dynamic systems have been studied in search models by, e.g.,

Diamond and Fudenberg (1989), Boldrin et al. (1993), Coles and Wright (1998)

and Mortensen (1999). However, those models generally display interesting dy-

namics only under increasing returns in the matching or production technology,

something we do not need. Still, a common set of mathematical methods is used

in these papers, and readers are referred there for more detail; the presentation

here focuses on some examples and general qualitative issues.

The law of motion for 1 is similar to (20), except it includes  ,

̇1 = 0(1−  − 1 − 0)− 1  (33)

Bargaining with  () =  can be solved explicitly, and implies

 = + 0∆−  + ̇ (34)

0 = (1−  − 1 − 0)∆+ ̇0 (35)

1 = (−∆)−  + ̇1 (36)

Also, with  () =  the condition  = 0 can be solved for

0 =
 − 

∆
+ (1−  − 1)

This gives 0 as an explicit function of the state, 0 (1∆). The other decision

rule  =  (∆) is even easier:  = 0, [0 1] or 1 as ∆− is positive, 0 or negative.
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Figure 9: The phase plane with   0

As usual, subtracting (35)-(36), we get

∆̇ = ∆−  (−∆) +  + (1−  − 1 − 0)∆ (37)

Inserting  (∆) and 0 (1∆) into (33) and (37), we arrive at the system

̇1 = 0 (1∆) [1−  − 1 − 0 (1∆)]− 1 (∆) (38)

∆̇ = ∆−  (∆)  (−∆) +  + [1−  − 1 − 0 (1∆)] ∆(39)

Given an initial ̄1, any path (1∆) satisfying these conditions while remaining

bounded and nonnegative constitutes an equilibrium. Again one can interpret

∆ as “beliefs” about the value of holding an asset. As is standard in this kind

of analysis, the initial value ∆̄ is not given by nature, and equilibrium “beliefs”

can be anything as long as the path emanating from
¡
̄1 ∆̄

¢
is bounded and

nonnegative.

We know from Section 7 that for some parameters there are three steady

states. Fig. 9 shows this situation, where the red curve is ̇1 = 0 and the blue

curve is ∆̇ = 0. Compared to Fig. 6, notice that the ̇1 = 0 curve has a flat spot,

while the ∆̇ = 0 curve has a kink, at ∆ = , which is where  switches from
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Figure 10: Dynamics in an example with   0

0 to 1. The lower steady state, call it
¡
1 ∆


¢
, has ∆   and  = 1, so the

asset circulates; the higher one
¡
1 ∆


¢
has ∆   and  = 0, so the asset is

hoarded; and the one in between
¡
1 ∆

¢
has∆ =  and  ∈ (0 1). The results

in Section 6 apply to
¡
1 ∆


¢
and

¡
1 ∆


¢
, which are again saddle points, and

the green and black curves are their stable and unstable manifolds.

We say more about the general case below, but consider first an example. Let

 = 1,  = 005,  = 03,  = 05,  =  = 1,  = 036 and  = 0. The

upper left panel of Fig. 10 shows three steady states, approximately 1 = 005,

1 = 007 and 1 = 025. As is the case general, ∆  , ∆ =  and

∆  , so  trades  to  in the low steady state, hoards  in the low steady,

and randomizes in the middle. The upper right panel zooms in to show local
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dynamics, with approximate convergence after a hundred iterations to either to¡
1 ∆

¢
, or possibly to a limit cycle around it. While we cannot literally know

this from the numerical output, in principle we could check the local stability of¡
1 ∆

¢
directly, but that is slightly complicated because the ̇1 = 0 curve is

nondifferentiable at ∆ = . However, it is clear from other examples (e.g., reduce

 from 10 to 01) that
¡
1 ∆

¢
can be a source: no matter how close we start

to it, orbits rapidly move away.17

To emphasize the qualitative features of the system, notice that starting with

any ̄1 in the neighborhood of 

1 there is a continuum of equilibria indexed by

an arbitrary choice of ∆̄ in some interval, because all paths starting at
¡
̄1 ∆̄

¢
remain bounded and nonnegative. In particular, after a shock to the system — e.g.,

an unexpected reduction in  due to, say, bad weather — there are many equilibria

that cycle around
¡
1 ∆

¢
, as in Fig. 10. Hence, small changes in fundamentals

can lead to very volatile reactions. Notice that while the fluctuations in ∆ or 

are not that big relative to their long-run average values, as shown in the lower

left panel, the fluctuations in 1 and 0 are around 10% and 20% relative to their

long-run average values (check the units on the vertical axis). While obviously

this is not a calibration exercise, we mention that this outcome resembles the

data in that percentage fluctuations in inventories are much bigger than output.

More about global dynamics in general can be discerned from Fig. 9. In the

left panel, the stable manifolds of the two saddle points are trapped inside the

unstable manifolds. This means the stable manifolds must wrap around the

middle steady state, either emanating from it or from a limit cycle around it.

In either case, again, starting with any ̄1 in the neighborhood of 

1 , there is

17A “trick” that might make local analysis easier is to purify the mixed-strategy equilibrium

by giving every type a slightly different  to smooth out the ̇1 = 0 curve; the model in the

text is the limiting version where these differences get small. Also, the papers mentioned above

on dynamics in search models, especially Coles and Wright (1998) and Mortensen (1999), show

their analog of
¡
1 ∆

¢
is a source for some parameters, and use this to prove there are stable

limit cycles around it by application of a saddle-loop bifircation and the Poincare-Bendixson

theorem. Going into these extended calculations and purifying the mixed-strategy equilibrium

is beyond the scope of this project.
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a continuum of equilibria indexed by ∆̄, and after a shock, there are a great

many different equilibrium paths that fluctuate around
¡
1 ∆

¢
, as well as

equilibrium paths starting on one of the stable manifolds and asymtoptically

approaching either
¡
1 ∆


¢
or
¡
1 ∆


¢
. The economics is similar in the right

panel, except now for any ̄1 in a very large range, depending on initial beliefs,

the system can transit to
¡
1 ∆


¢
or
¡
1 ∆


¢
, as well as oscillate on its way to¡

1 ∆
¢
or to a cycle around it.

The general conclusion is that our intermediated asset market is not only

subject to multiplicity, but dynamic indeterminacy, and excess volatility defined

as fluctuations in endogenous variables while fundamentals are constant. Our

market is also subject to fragility, where a small change in fundamentals can

lead to a structural change in the equilibrium set. In the upper left panel of

Fig. 10, e.g., a small increase in  shifts the ̇1 = 0 curve down, leaving one

instead of three steady states, and hence potentially having a discrete impact on

outcomes if we start in a steady states that disappears. Similar results have been

discussed related models, as mentioned above, but they require increasing returns;

we rely instead only on the self-referential nature of trading strategies in frictional

markets. At the risk of repetition, a key assumption is that the object being

traded bears a positive yield, not a storage cost, suggesting that intermediation in

asset (as compared to consumer goods) markets may indeed be special. Another

key assumption is that the composition of the market is endogenous. Absent

both these features, equilibrium is unique and exhibits saddle-path stability.

9 Conclusion

This project began by asking “who wants to be a middleman?” — something we

view as continuing the development of search-based theories of intermediation.

We built on the standard framework introduced by Rubinstein and Wolinsky

(1987), extended to incorporate more general bargaining, technology, and utility.
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We went beyond steady states by analyzing dynamics. Perhaps most importantly,

we let agents choose to act as either producers or middlemen, which we think is

relevant for many issues.18 We established existence, and discussed essentiality as

well as efficiency. The theory delivered clean and sometimes surprising predictions

— e.g.,   0 for some parameters, although we were able to reconcile that

with intuition. Perhaps the most surprising finding was that equilibrium is unique

when holding goods involved storage costs, while multiplicity, indeterminacy,

volatility and fragility emerged when holding assets involved positive returns, as

at least some people seem to think characterizes real-world asset markets, .

There are many potential extensions and applications. Of course it is desirable

to go beyond unit inventories,  ∈ {0 1}, just like it is in search-based models
of money by Kiyotaki and Wright (1993), banking by Cavalcanti and Wallace

(1999), or over-the-counter markets by Duffie et al. (2005). It is also desirable to

generalize the labor model in Pissarides’ (2000), where a firm can only employ

 ∈ {0 1} workers, and the marriage models in Burdett and Coles (1997) or
Shimer and Smith (2000), where a person can only have  ∈ {0 1} partners.
But sometimes the simplicity of unit inventories is worth the loss in generality

and realism, as demonstrated in search theory going back at least to Diamond

(1982). Moreover, we think  ∈ {0 1} is not critical to the economic insights.
Suppose middlemen can hold, say,  ∈ {0 1 ̄}. Without working through
the details, which might get messy, higher  and lower  should still entail

18We reiterate that in our model economy the only way to get more intermediaries is to have

fewer producers, arguably capturing a realistic trade-off. We also mention that our setup is less

dependent than earlier models on certain simplifying assumptions, including the restriction of

inventories to {0 1}. We say more on this below, but in particular, in those earlier models,
when takes  from  , the latter can produce again, leading to more output; here, in contrast,

if  does not take  from  he can become a producer and make his own, so intermediation

does more than try to get around the unit-inventory restriction. Other features of the model

let us consider additional issues, including  00  0, which captures payment frictions that

affect the incentive to intermediate. Dynamics are also interesting, even when the equilibrium

is unique, with ,  and  varying during transitions or after shocks. Weill (2007) and

Duffie et al. (2007) study these issues in a related but different model, and discuss why such

transitions are interesting. Of course, when there are multiple equilibria the situation is even

more interesting.
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higher , so we could still endogenize n. Also, if  hoards (trades) capital,

 and hence  should fall (rise), making it harder (easier) for  to acquire

capital and rationalizing their hoarding (trading) decisions. Hence, multiplicity

in intermediated asset markets seems robust.

Still, future research should pursue such generalizations explicitly. With

or without relaxing inventory restrictions, another idea is to add heterogene-

ity across middlemen, to generate interdealer trade, where goods or assets get

passed from one intermediary to another before reaching end users. Or, one can

add differences across goods, say in , to further develop the interpretation of

Gresham’s Law. There is also more one could do on dynamics. A natural idea is

to try to construct sunspot equilibria, where intermediation activity varies sto-

chastically over time as a self-fulfilling prophecy, even though fundamentals are

deterministic, as another manifestation of excess volatility. Standard methods

could be used for this construction, in principle, although it may be complicated

by the endogenous inventory distribution. In any case, based on the results de-

veloped so far, we think the framework should become a benchmark model in the

study of intermediation, and in search theory generally.
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Appendix

Here we provide proofs for results that are not obvious.

Lemma 1: Class 0 and class 2 equilibria coexist in the region where  ≥
̄ and   (), but we claim the former is not subgame perfect. Notice

  ̄ in this region, and consider a class 0 candidate equilibrium. Suppose a

nonparticipant deviates and produces. When he meets another nonparticipant,

which happens with positive probability, that agent has a strict incentive to

accept his good and act like type  because   ̄ (i.e., it is not credible to

think he would reject it). This constitutes a profitable deviation. ¥

Lemma 3: There are three ways for a convex () = 0 to have solutions in

(0 ̄): (a) one root with (0)  0  (̄); (b) one root with (0)  0  (̄);

(c) two-roots, which requires (c1) (̄)  0, (c2) (0)  0, (c3) 0(̄)  0, (c4)

0(0)  0, and (c5) (∗)  0, where 0(∗) = 0. Notice that

(0) = (1− )(̄ − ) + ( + )(̄ − )

(̄) = [ +  + (1− )](̄ − )− (1− )(̄ − )

In case (a), it is easy to see(0)  0 iff   ̄+(1−)(̄−)(+),

and (̄)  0 iff   ̄ − (1− )(̄ − )[ +  + (1− )]. As

these conditions are contradictory, case (a) cannot occur.

Turning to case (c), (c1) ⇒   ̄ while (c2) ⇒ 3  0 ⇒   (),

which is redundant given (c1) and that equilibrium requires that  ≤ ̄. Also,

(c3) and (c4) ⇒

  () ≡ ̄ +
 +  − 


(̄ − )

  () ≡ ̄ +
 +  − 

2(1− ) + 
(̄ − )

Finally, (c5) is equivalent to   0, where  is the discriminant of ().

We now show  +  −   0 is necessary for (c3) and (c4). Suppose

that  +  −   0. This implies 0()  0 and 0()  0, and both

of the lines  = () and  = () go through (̄ ̄). Since equilibrium

requires  ≤ ̄ and  ≤ ̄, condition (c3) is violated, i.e., as illustrated in
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))

Figure 11: The functions () and ()

the left panel of Fig. 11, the intersection of conditions (c3) and (c4) is the empty

set when  ≤ ̄. Suppose now that  +  −   0. It is easy to show

(c3) and (c4) are satisfied. The parameter set consistent with the conditions c(1),

c(3) and c(4) is given by S1 ≡ {( )|0   ≤ ̄ ()    
¡

¢},

shown in the right panel of Fig. 11

Similarly, let S2 be the set consistent with (c5). To characterize S2, the
discriminant of (), , can itself be written as a quadratic in  given ,

̂(|) = ̂1
2
 + ̂2 +̂3, where

̂1 = 
2 + 4(1− )

̂2 = −2̄[2 + 4(1− )]

−2(̄ − )[( +  − )(1− 2)− 2]

̂3 = ̄2[
2 + 4(1− )] + (̄ − )

2( +  − )

+2̄(̄ − )[( +  − )(1− 2)− 2]

Since ̂1  0, ̂ is strictly convex. Also, it is straightforward to show that

̂(̄|)  0 ∀ ∈ [0 ̄). Thus, since ̂ is strictly convex and ̂(̄|)  0,
S2 6= ∅⇒ ̂(0|)  0⇒ ̂3  0, as shown in the left panel of Fig. 12.

It can be shown that ̂(|̄)  0 ∀ ∈ [0 ̄) and ̂(̄|̄) = 0. Since
̂ is continuous in ( ), ̂(|)  0 for some   ̄ if ̄ −  is small.

The admissible set of  for which ̂(|)  0 is pinned down by the lower

root of ̂(|) = 0 being positive, i.e., −() = (−̂2 −
√
Λ)2̂1  0, where
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Figure 12: The functions ̂(|) and ()

Λ = ̂22 − 4̂1̂3  0. One can show −()  0⇒ ̂2  0⇒   

with



≡ ̄ + ̄[ + 4(1− )][( +  − )(1− 2)− 2]

Hence, for a given , the set of  such that ̂(|)  0 is [0 −()).

Therefore, S2 = {( )|    ̄ 0    −()}. Suppose for a given
 there exists 

−
()  0 such that ̂(

−
()) = 0. We express the lower root

as −() = (), where

() ≡ ̄ + (̄ − )
[( +  − )(1− 2)− 2]−

√
Λ

2 + 4(1− )



One can show 0()  0. The right panel of Fig. 12 depicts  = (),  =

() and  = (). Since ̂ ≡   0 ⇒    (), a necessary condition

for case (c) is 0()  0(), as in the right panel of Fig. 12.

Hence, (c) requires S1 ∩ S2 6= ∅ and 0()  0(). This inequality implies

( − )[ + 4(1− )]  [( − )(1− 2)− 2]

− {[( − )(1− 2)− 2]
2

− ( − )[ + 4(1− )]}12

ignoring terms with  that strengthen the inequality. This implies

−1 + ( − )  4 + 4(1− )( + )
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But the LHS is negative and the RHS positive — a contradiction. ¥

Lemma 5: It is straightforward to derive  ()   0, so consider the effect

of . In the particular case of  = ̄, the relevant root is

 =
2(1− ) +  − [4(1− )(1− ) + 2 ]

12

2
≡ ̃

Hence,  = 0 when  = ̄. More generally,

 ()


= + [2(1− )− (1− )− 2]

which vanishes when  = ̃ or  = ̄. Moreover,





()



¯̄̄̄
=̃

=  + 2(1− )− 2  0

Hence,   0 if   ̄ and   0 if   ̄. ¥

Lemma 7: As () = ()× we need to sign ().
Notice  = − (1− ), which implies

()


' (1− )2 −  '  − 

using (10) to eliminate (1 − )2, and  '  means  and  have the same sign.

When   ,   0 and ()  0, so ()  0; when

  ,   0 and ()  0, so again ()  0. ¥

Proposition 2: The efficient and equilibrium outcomes only correspond in gen-

eral if  =  = 1, as that needed for ̄ = ̄ = . Given  =  = 1,

() =
−2+ [1−  (1− )]

(1− ) (1− )

() =
[ +  (1− )]− 

(1− ) 


If  = 1 then () = 0(); so for ( ) ∈ 
0 ,  =  = 0. If 


 = 0

then () = 0(); so for ( ) ∈ 
1 , again  =  . If 


 ∈ (0 1) then

 ≤ () implies  ≤ () and  ≤ () implies  ≤ (). If we set

42



 =  = 1 and equate the roots of (8) and (10), so that  = , we get .

To check  ∈ (0 1), note the numerator is positive since   1− , and the

denominator is even bigger since   0 requires   . ¥

Lemma 10: There are again three cases for ̃( ) = 0: (a) one root with

̃(0 0)  0  ̃(̄ ̄); (b) one root with ̃(0 0)  0  ̃(̄ ̄); and (c)

two roots, requiring (c1) ̃(0 0)  0, (c2) ̃(̄ ̄)  0, (c3) ̃( | =

̄)  0, (c4) ̃( | = 0)  0, and (c5) ̃(∗ )  0, where

̃(∗ ) = 0. As in Lemma 3, case (a) is impossible. Now notice

̃(0 0) = [ −  + (0)(1− )]

̃(̄ ̄) = [( − )− (̄)(1− )(1− )]

In case (c), (c1) implies   () and (c2) implies    (). From (c3)

and (c4), we have

̃( )


= 2()− ( − ) − ()[ + 2(1− )]

We need this positive at  = ̄, which means    ≡  − (̄), and

at  = 0, which means    + (0)[ + 2(1 − )]. Given (c2),

(c1) and (c4) are not binding. Also, (c2) and (c3) imply  is between  and  ,

which holds iff   (1− 2)  (1− ). Assume this is true and consider (c5).

To get ∗, solve  = 0 to get

̃(∗ ) ' −( − )[( − ) + 2()(1− 2)]
−()

2[1 + 4(1− )(1− )]

We need ̃(∗ )  0. With a small abuse of notation, let ̃(∗ ) ≡
̃()  0 where

̃() = −2 + 2[()(1− 2) + ] − 2
2

−2()(1− 2)− ()
2[1 + 4(1− )(1− )]

For (c5) we seek the set of  such that ̃()  0. There are three possibili-

ties: (c5.1) one root with ̃()  0  ̃( ); (c5.2) one root with ̃()  0 
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̃( ); (c5.3) two roots, which requires ̃()  0  ̃( ), ̃0()  0  ̃0( ),

and ̃(∗)  0, where ̃
0(∗) = 0. Given  =  and  −  = (̄),

̃() = −(̄)2 
2



[1 + 2(1− 2)]− (̄)2[1 + 4(1− )(1− )]  0

Given  =  () and  −  = (̄)(1− )(1− ),

̃( ) ' −(̄)2{(1− )(1−)[1 +− (1+ 3) + 4
2
] +}  0

for (1 − 2)(1 − )    0. This rules out (c5.1) and (c5.2). To check

(c5.3), consider

̃0() = −2 + 2[()(1− 2) + ]

Now ̃0()  0 at  = , and ̃0()  0 at  =  (). As ̃
0( )  0

violates (c5.3), there is no ∗ between  and  such that ̃(∗)  0. ¥

Lemma 11: We need  and  in Fig. 3 cross at ( ) ∈ (0∞)× (0 ̄), plus
  . For  ∈ (0 ̄), we check ̃(0 0)  0  ̃(̄ ̄), where 0 = (0)

and ̄ =  (̄). Now ̃(0 0)  0 iff   (). At  = , bargaining

implies 0 = 0, and   () becomes   . As we lower , 0 rises, and

we need    (). In
¡
 

¢
space  () traces a curve that downward

sloping and concave (see below), and ̃(0 0)  0 to the left of  =  ().

The ̃(̄ ̄)  0 iff    (). At  = , bargaining implies ̄ = 0,

and    () becomes   . As we lower , ̄ rises, and we need

   (). In
¡
 

¢
space,  () traces a curve that is upward sloping and

concave. Hence ∃ ∈ (0 ̄) solving ̃ ( ) = 0 iff  ()     (). To

check   0, note from Fig. 4 that it lies to the right of ̄, and ̄ ≥ 0 as long as
 ≥ . To check  = 0 ≥ 0, note by construction 0 ≥ 0 if  ≥ 0.
To establish the properties of  and , derive

0 () =
−(1− )

0 (0)
( + ) [ + (1− ) 0 (0)]

 0

00() ' −2(1− )
00 (0) 00 ()

( + ) [ + (1− ) 0 (0)]
2
 0
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Thus  (·) is decreasing and concave in ¡ ¢ space or ¡ ¢ space . Simi-
larly,  0()  0 and 

00()  0 Thus  (·) is increasing and convex in
¡
 

¢
space, or increasing and concave in

¡
 

¢
space. ¥

Lemma 12: In class 2 equilibrium we have

 =
− ( + ) (1− ) ()

−  (1− ) ()
≡ ∗

with  =  ( − ) − ( + )   0, from the bargaining solu-

tion. Note   0 ⇒   ( + ) (1− ) (), and   ̄ ⇒  

(1 + ) (1− ) (). Then

()



= −
0

¡
 − 

¢

p
̃

(1− )

−1()



= −  (1− )

[−  (1− ) ]2
[ 0 +  ( + ) ]

If    the equilibrium is obviously unique. If   , we claim

  −1 when they cross. To verify this, insert  = ∗ to get

()



= −
0

¡
 − 

¢p
̃

 (1− )

−  (1− )


where ̃ is the discriminant of ̃( ). Using (18) to replace
p
̃ and inserting

 = ∗, we get

()



= −
0

¡
 − 

¢
 (1− )

[−  (1− ) ]Ω


where

Ω ≡ [2 (1− ) + ] + 
¡
 − 

¢− 2 [− ( + ) (1− ) ]

−  (1− )


In equilibrium,  =  ( − )− ( + ) 
∗ and  = (∗) solves

 [− ( + ) (1− ) ]2 + [−  (1− ) ]2[ −  + (1− ) ]

= [− ( + ) (1− ) ][−  (1− ) ]{[2 (1− ) + ] + 
¡
 − 

¢}
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Routine algebra implies () − −1() is proportional to


¡
 − 

¢
[−  (1− ) ][ 0 (1− ) + ( + ) ]

+[ 0 +  ( + ) ]{[−  (1− ) ] + 2[(1 + ) (1− ) −]}

Since (1 + ) (1− )     (1− ) , in equilibrium, this is positive, thus

establishing the desired result. ¥

Lemma 14: For preliminaries, first solve equations (27)-(29) for

 =
( +  + )( − ) + (1− )( − )

 +  + 

(40)

0 =
( − )

 +  + 

(41)

1 =
( + )( − )

 +  + 

 (42)

and notice the steady state condition (??) implies

 =


1− 
and  =

(1− )(1− )− 

1− 
 (43)

We now consider each five candidate equilibria in Table 1.

Equilibrium 1: In a candidate equilibrium with  = 0 and  = 0, (40)-

(42) reduce to

 =  −  (44)

0 = (1− )(1 − 0) (45)

1 = − (46)

The best response condition for  = 0 is  
1 ≤ 1, where 


1 is the value to

setting  = 1, then reverting to the candidate equilibrium strategy, with payoff

0 given by (45):

( + )

1 =  −  −

(1− )

[ + (1− )]





Simplifying,  = 0 is a best response iff  ≤ b where b is defined in (30).
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Similarly, the best response condition for  = 0,  ≥ 0, simplifies to  ≥b() where b ¡¢ is defined in (31). Hence, a class 1 equilibrium exists iffb() ≤  ≤ b.
Equilibrium 1 : Consider next the candidate  = 1 and  = 0. It is

routine to check the best response for  = 1 is  ≥ b. The best response for
 = 0 is  ≥ 0, which simplifies to  ≥ (), where 

¡

¢
is defined in

(7) in the text. Hence, a class 1 equilibrium with  = 1 and  = 0 exists iff

 ≥ max{b ()}.
Equilibrium 2: Consider next the candidate  = 0 and  ∈ (0 1 − ),

where the dynamic programming equations are the same as (44)-(46). The best

response condition for  = 0 is  
1 ≤ 1, where 


1 is the the value to setting

 = 1, but reverting to the candidate strategy for continuation payoff 0 = .

Algebra implies

 
1 =

( − ) + ( − )

( + )


It is now easy to check  
1 ≤ 1 iff  ≤ () where () is defined in (32).

The best response condition for  ∈ (0 1− ),  = 0, now implies

 =
( − )

( +  − )


We need to check  ∈ (0 1 − ). It turns out   1 −  is the binding

condition, and holds iff  ≤ b(). So class 2 equilibrium exists iff  ≤
min{() b()}.
Equilibrium 2: Consider next  ∈ (0 1) and  ∈ (0 1 − ). The best

response condition for  ∈ (0 1) is 1 = −, which holds iff  = 1 − 0 iff

 = −[ + (1−  − )]. Solving for , we get

 =
 + [ + (1− )]





Clearly,  ∈ (0 1− ) iff −− (1− )    −.
The best response condition for  ∈ (0 1− ) now implies

 =
( + )( + +  − )

[ + + ( − ) + (1− )]
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We next obtain the set of parameters such that  ∈ (0 1) and  ∈ (0 1−). To
see when   0, denote the denominator of  by . There are two possibilities,

  0 and   0. The former can be shown to be inconsistent with   0, so

we are left with   0, which holds iff

  Ψ
¡

¢ ≡ −− ( − )− (1− )

Given this,   0 iff   (). So   0 iff Ψ
¡

¢
   ().

Also, using   0, algebra implies   1 iff 1()  0 where 1() =

1
2
 + 1 + 1  0, with 1 = 1,

1 =  −  + 2− 

1 = ( −  + )− [+ ( − ) + (1− )]

We cannot sign  or , but we can show 1(
∗
)  0, where 

∗
 solves 

0
1(

∗
) =

0. Hence, there are three possibilities for 1()  0, all of which reduce to

  b(), where b() represents the lower root of 1() = 0:

1. if ∗  0 then 1(0)  0 and so 1()  0 iff   b();
2. if ∗  0 and 1(0)  0 then 1()  0 also implies   b();
3. if ∗  0 and 1(0)  0 then 1()  0 implies 

+
    b(), where

+ is the upper root of 1() = 0, but   0 implies   (), and we can

show ()  +, so 
+
   is not binding.

In sum, all these possibilities imply, given the other conditions, that   1

iff 1()  0 iff   b(). Now we claim that when this holds, the earlier

condition  ≥ Ψ
¡

¢
is not binding. To see this, check that b() intersectsΨ at

(e−−(1−)) and (+(1−) −), and that b() is increasing
and concave; hence b()  Ψ

¡

¢
, so the binding constraint is  ≥ b().

Putting this together, class 2 equilibrium exists iff b() ≤  ≤ ().

Equilibrium 2 : Consider  = 1 and  ∈ (0 1−). We first solve  = 0

for  and check when  ∈ (0 ), as that is equivalent to  ∈ (0 1− ), where

 = 1−  when  = 1. By (40)-(41),  = 0 iff

( +  + )( − ) + [(1− )− ]( − ) = 0
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Using (43) to eliminate  and , then simplifying, we get 2() = 2
2+2+

2 = 0 where

2 = ( − )

2 = −( +  − )( − )− [ + 2(1− )]( − )

2 = ( + )( − ) + (1− )( − )

We need to check when the solution 2() = 0 is in (0 ). In principle 2() can

have one or two roots. Since 2(0)  0 and   0, the one root result corresponds

to the lower-root of 2(), call it 
−. Because − exists in either results, we start

analyzing −. First, −  0 requires   +(+)(−)[(1−)],
which is non-binding. Second, −  1 −  requires   (), which this is

equivalent to 2()  0. This last result is indicative that the two-root result is

impossible because we have2(0)  0 and2()  0, only one root for2() = 0

can occur.

Finally, we check the best response condition for  = 1, which reduces to

 ≥ −( + ), or

 ≤  + 

 + − 


Substituting out  using − and solving for  surprisingly yields 1() =

1
2
 + 1 + 1 ≤ 0, as in the class 2 equilibrium. So the set of  consistent

with 1() ≤ 0 is  ≥ b(). Hence, a class 2 equilibrium exists iff b() ≤
 ≤ (). ¥

Proposition 5: Part (i) of the result follows directly from Lemma 14. For part

(ii), consider the model with   0, and fix the numbers  and . Everthing

else is the same, and in particular

 = +  (1− ) (1 − 0)− 

1 = (+ 0 − 1)− 

0 =  (1 − 0) 

Consider a candidate equilibrium with  = 0. Then  = 1 and the above equa-
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tions imply

0 =
−
 ( + )

and 1 =




A deviation by  to  = 1 implies  
1 = 

¡
+ 0 −  

1

¢ − . After

inserting 0 we get

 
1 =

 ( + ) (− )− 2
 ( + ) ( + )



The deviation is not profitable, and hence  = 0 is an equilibrium, iff  
1 ≤ 1.

This reduces to − ≥ ( + ).

Now consider a candidate equilibrium with  = 1. Then we solve in the usual

way for

1 =
( + ) (− )

 ( +  + )


A deviation to  = 0 implies  
1 = −. This is not profitable, and hence

 = 1 is an equilibrium, iff  
1 ≤ 1. This reduces to − ≤ ( + ).

Equilibrium is generically unique. ¥
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