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Abstract

We present an analysis framework for bounding inefficiency in markets with many
agents. We use this framework to demonstrate that, in many markets, the efficiency in
the large is much smaller than the worst-case bound. Our framework also differentiates
between markets with similar worst-case performance, such as simultaneous uniform-
price auctions and greedy combinatorial auctions, thereby providing new insights about
which markets are likely to perform well in realistic settings.

1 Introduction

Markets are the basic mechanism which allocate scare resources to agents. Carefully designed
markets have seen a wide range of applications, including classic settings like the Dutch flower
auctions and used car auctions, as well as modern settings like advertising auctions and FCC
spectrum auctions. The prevalence of designed markets raises a pertinent question: which
designs guarantee efficient outcomes? Standard results demonstrate that in the worst-case,
many designs are highly inefficient. These examples typically include a small number of
agents while, in reality, most applications have a large number of agents.

Are markets with many agents more or less efficient than those with few? One answer is
that ineffiencies persist in the large: small markets can often be embedded in large markets
through appropriate replication techniques. But for many natural market settings, we might
hope that the answer is “more efficient:” perhaps the influence of each agent on the outcome
is small. For example, in many market settings with a large number of small agents, the
action of a single agent has only negligible effect on prices. This suggest that agents can
be accurately modeled as “price-takers.” While it turns out to be difficult to characterize
exact equilibrum behavior, we can use this intuition to bound the efficiency of equilibria by
arguing about the payoffs of feasible deviation strategies.

The goal of this paper is to develop an analytical framework for bounding the inefficiency
of equilibria — the price of anarchy (POA) — in fundamental classes of markets when there
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is a large number of agents. The worst-case POA is well understood in the models we study.
These bounds, like any worst-case bounds, tend to be overly pessimistic and are determined
by pathological examples. Our goal is to prove qualitatively better POA bounds, assum-
ing only that the markets are “large.” Importantly, our framework differentiates between
markets with similar worst-case performance, thereby providing new insights about which
markets are likely to perform well in realistic settings.

1.1 Summary of Results

We present a general analysis framework and several instantiations for well-studied applica-
tions.

A General Analysis Framework. We define (λ, µ)-smooth in the large market se-
quences, and show that the POA of markets in such a sequence approaches λ/(1−µ). This no-
tion inherits the generality and robustness of previous smoothness definitions [18, 19, 24, 25]:
many different applications are amenable to a smoothness-type analysis, and the resulting
POA bounds apply to a wide range of equilibria, such as correlated and Bayes-Nash equilib-
ria.

We also define an intuitive and easy-to-apply sufficient condition for a market sequence
to be smooth in the large. The condition formalizes the idea that equilibria in large markets
should be more efficient because no individual can significantly affect the market’s outcome.
Precisely, one defines for each agent an approximate utility, which represents the utility the
agent would receive were he “infinitely small.”1 The sufficient condition requires that the
approximate utility is (λ, µ)-smooth with respect to the actual market. We prove that if this
condition is satisfied, then the market sequence is (λ, µ)-smooth in the large.

We apply our framework to obtain POA bounds for “large versions” of a number of well-
studied models. Our flagship application is a comparison of two well-studied combinatorial
auction mechanisms: simultaneous single-item auctions and greedy combinatorial auctions.
We first study simultaneous single-item auctions, where we obtain full efficiency in the large
even with general combinatorial valuations. In contrast, we prove that greedy combinatorial
auctions are nearly as inefficient in the large as in worst-case instances. This distinction is es-
pecially notable because these two auction formats have comparable worst-case performance
when valuations exhibit complements.

Simultaneous Uniform Price Auctions. We prove that in a “large” combinatorial
auction setting, running a separate simultaneous uniform price auction for each type of good
leads to fully efficient equilibria in the limit. Specifically, we consider a setting where a fixed
set of m different goods, each of some supply, are auctioned off to a set of n bidders. Bidders
have combinatorial valuations over sets of allocated units of different items and we assume
that they only want at most some fixed number r of units of each type of good. We grow
the market by letting the number of bidders increase, the number of units of supply of each
good increase with the number of bidders, and letting each bidder fail to arrive in the market
with some probability δ > 0. Under these conditions we show that the worst-case expected
welfare of Bayes-Nash equilibria of these markets converges at a rate of 1 − O( 1√

n
) to the

1This is purely for the sake of analysis; the resulting POA bound applies to the equilibria of the actual
market.
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expected optimal welfare. We make no assumptions about the distributions of preferences,
other than that they are independent. For example, we do not require that the market
grows via the addition of new bidders with valuations distributed identically to the original
bidders.

In the worst case, without a largeness assumption, the POA of simultaneous second-price
auctions (a special case of simultaneous uniform-price auctions) with general combinatorial
valuations is Ω(

√
m). A striking feature of our result is that full efficiency is obtained at

equilibrium even though bidders are forced to report far fewer parameters (linear in m)
than are present in their (combinatorial) valuations. These near-optimal equilibria are not
“truthful outcomes” in any sense. This highlights the power of adopting a smoothness-
based framework — we can prove convergence to full efficiency without characterizing these
near-optimal equilibria.

Greedy Combinatorial Auctions. We next use our framework to analyze greedy
combinatorial auctions. Similar to the previous setting, there is a fixed set of m different
goods and each good is in some supply. Each bidder wants a specific bundle of at most d
items. A bidder might want up to r copies of his bundle, for some fixed constant r. In the
greedy auction, each bidder submits a set of r marginal bids for his interest set. Bids are
allocated in decreasing order as long as they are satisfiable, i.e., no item in the desired set
has run out of supply. The worst-case POA of greedy combinatorial auctions is at most d+1
[15].

We prove that if the number of bidders grows and the supply of each good grows in
expectation, but is sufficiently uncertain, then the POA of Bayes-Nash equilibria of greedy
combinatorial auctions converges to exactly d. This bound matches the algorithmic approx-
imation of the greedy algorithm when there are no incentive constraints.

Discussion of Results. Our results demonstrate that in many of the game-theoretic
models in which the POA has been studied, the POA in large games is much smaller than
the worst-case bound. In some (but not all) cases, the POA approaches 1 as the game grows
large. We suspect that our better POA bounds are more relevant for many computer science
settings, which often feature a large number of “small” players in uncertain environments.

Our results have interesting implications for mechanism design. Theoretically optimal
mechanisms can be relatively complex — for example, when bidders demand multiple units
of a good, the welfare-maximizing (i.e., VCG) mechanism charges different prices for different
units of the good. Some of our results give a new sense in which “simple” mechanisms can
be near-optimal. For example, we prove that the (theoretically suboptimal) uniform-price
mechanism has welfare approaching that of the VCG mechanism as the market grows large.

Finally, our approach provides a novel way to differentiate between competing mecha-
nisms, by comparing equilibrium performance as the market grows large. For example, in
the model we study for greedy combinatorial auctions, both greedy and simultaneous item
auctions have worst-case POA linear in the size d of the desired bundles [15, 9]. Our large-
game analysis suggests that single-item auctions (which are fully efficient in the limit) may
be preferable to greedy auctions (which are not) in large, realistic instances.
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1.2 Our Techniques

There are many ways to “let a market grow large,” and it is clear that some of these will
not result in POA bounds better than the worst-case bounds. For example, in auctions, it
is not enough to merely assume that the number of bidders is sufficiently large — we do
not assume that bidders’ valuations are IID, so one can always add “dummy bidders” to a
worst-case instance without affecting the equilibria (or the POA). A similar comment applies
even in an IID Bayesian setting if we assume only that the number of bidders and available
items tend to infinity. This is illustrated in the following example, taken from [23].

Example. (Inefficiency without randomness) Consider a setting where k units of a good
are auctioned off to n = k bidders. Each bidder wants at most two units. The value of each
bidder for the first unit is the maximum of two random samples drawn uniformly from the
interval [2, 3] and independently for each bidder. The marginal value for the second unit
is the minimum of the two samples. The units are sold via a uniform price auction: each
bidder submits two marginal bids, the k highest marginal bids win and each bidder pays
the highest losing marginal bid for each unit he won. We next show that the following is an
equilibrium of the market, for any k: each bidder submits his higher marginal bid truthfully
and 0 as his second marginal bid. The uniform price is 0 and each bidder derives utility v1i .
For any bidder to get a second unit he needs to bid at least 2, which would increase the
uniform price to at least 2 on both units. The increase in payment is 4, while the increase
in value is at most 3, and hence is not profitable. The expected welfare of this equilibrium is
≈ 2.67 · k. The expected optimal welfare is the expected sum of the highest k of 2k samples
from U [2, 3], which is approximately 2.75 · k as k grows large.

The bad equilibrium in the above example relies on an exact match between the number
of bidders and of units. An important ingredient of our large market model is probabilistic
demand, meaning that a small random sample of the bidders fail to show up [23]. In addition
to circumventing the “knife edge” example above, this assumption arguably increases the
verisimilitude of the model. In many real-world auction settings — especially in advertising
auctions, where the participants might well be chosen by a search engine’s heuristic matching
algorithm — bidders cannot be sure who else will choose (or be chosen) to participate in an
auction.2

At a technical level, the primary challenge in applying our framework is to define the
approximate utility of each bidder so that it both approximates the actual utility and is
smooth with respect to the actual market. Designing these approximate utilities requires
understanding the approximations bidders may reasonably sustain in large markets (again,
this is for the analysis only, not a behavorial assumption).3 For example, in our analysis, we
think of bidders as ignoring the impact of their bids on the prices.

Finally, proving that the approximate utilities are smooth with respect to the actual mar-
ket requires some technical finesse: the smoothness arguments work by defining deviations
for bidders that are functions of the types. Often, the deviations in auctions ask bidders to

2We also consider probabilistic supply in Section 5.
3Though as a side benefit, our results also imply that playing an equilibrium with respect to the ap-

proximate utilities yields an approximate equilibrium of the large market that retains all of the efficiency
guarantees that we prove. Conceivably, this could be an accurate model of how bidders behave in large and
complex markets.
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bid high values on their optimal allocation. However, in the presence of noise, the optimal
allocation is a random variable. One technical contribution is to circumvent this difficulty
by re-interpreting the noise as type uncertainty in a Bayesian game.

1.3 Related Work

The worst-case POA (without the largeness assumption) is well understood in all of the mod-
els that we study. For the POA of uniform-price auctions and simultaneous item auctions,
see [5, 3, 11, 10, 16, 7] . For the POA of greedy combinatorial auctions, see [15].

Most previous work in computer science that concentrates specifically on games with
many players is motivated by complexity concerns. For example, the literature on “com-
pact representations” of games proposes succinct descriptions, with size polynomial in the
number of players, that are well structured but still rich enough to capture many interesting
applications. See [14, 4, 21] and the references therein for many examples. These references
also discuss the well-studied problem of computing equilibria efficiently in compactly repre-
sented multi-player games. These results suggest that computing an exact equilibrium in the
markets we study is computationally difficult, suggesting that a succinct characterization of
these equilibria is unattainable. This motivates our approach of bounding the efficiency of
markets without explicitly characterizing the equilibria.

Large markets have also been considered in the economics literature; see [17, 22] for
some early examples and Kalai [13] for work on the robustness of equilibria in large games.
The closest work to ours in this literature is Swinkels [23], who studies a single-good uniform
price auction with decreasing marginal valuations and with demand and supply uncertainties
under the same large market assumptions that we make. Our simultaneous uniform price
auction result generalizes the supply uncertainty result of [23] to allow for heterogeneous
goods and our greedy auction result generalizes the demand uncertainty result of [23] by
allowing bids on bundles of items, rather than single items (the uniform price auction is a
special case of the greedy auction for d = 1). Our framework also allows us to relax some
technical assumptions made in [23] regarding the valuation distributions. In another closely
related work, Jackson and Manelli [12] study conditions under which the outcome of a market
at equilibrium approximates the fully efficient outcome and identify a crucial property to be
insensitivity of prices with respect to individual reports. They show that such insensitivity
limits the gains that any participant can obtain via strategic manipulation, and argue that
natural markets achieve this property as they approach a large-game limit.

The perspective and goals of all of these works in the economics literature differ from ours
in several predictable ways. Their emphasis has been on understanding what equilibria “look
like”, and ideally solving for them explicitly (if not in large finite games, then at least “in
the limit”); a technically difficult subproblem that often arises in this approach is to prove
that the equilibria of large finite games approach the equilibria of a “limit game”. Because
we care about equilibria only through their objective function values, we can bypass the
problem of characterizing equilibria and their limits, and instead argue directly about the
approximation guarantees obtained. In addition, all previous work in economics on efficiency
in large games considered only the special case of full efficiency in the limit, as in our result
on uniform-price auctions. No previous work considered models where inefficiency persists in
the limit, as with our other result on greedy combinatorial auctions. Our smoothness-based
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framework is general enough to cover both situations with a common analysis.
In a different direction, Alvzedo and Budish [1] defined “strategyproof in the large”

mechanisms, where truthtelling constitutes an approximate equilibrium as many players
arrive in the market and submit bids drawn from the same distribution. Our work differs, in
that we don’t need to make such symmetric strategy assumptions, and we can accommodate
mechanisms where efficiency is achieved in the limit even though participants are not truthful
in the limit.

Finally, independently of but subsequent to our work, Cole and Tao [6] analyzed the POA
of the Walrasian mechanism under large market conditions. They apply smoothness bounds
to show that the Walrasian mechanism approaches full efficiency in the limit as the market
grows large. Whereas [6] provides a thorough analysis of a complex and general market
mechanism, our primary focus is to develop a general smoothness framework and apply it
to analyze and compare many different types of large games.

2 Preliminaries: Mechanisms, Equilibria and Price of

Anarchy

In this work, we present a framework to study the efficiency of markets in the large. Consider
a market with n bidders and m items. Each bidder i ∈ [n] has a valuation function vi :
2[m] → R+, that assigns a value for each possible allocation of items. We will denote
the set of possible valuations for bidder i with Vi and the set of valuation profiles with
V = V1 × . . .× Vn.

A mechanism M constists of a triple ({Si}ni=1, {xi}ni=1, {Pi}ni=1). Si is a strategy space
for each bidder (and S = S1 × . . . × Sn). xi : S → 2[m] is an allocation function that maps
a strategy profile to an allocation of items to bidder i, such that x(s) = (x1(s), . . . , xn(s))
is feasible (no two items are allocated to different bidders). Pi : S → R+ is a payment
function. A bidder’s utility for an allocation is his value minus his payment, i.e., ui(s; vi) =
vi(xi(s)) − Pi(s). We will be interested in analyzing the social welfare of an equilibrium
strategy profile s ∈ S, which is the total value of the resulting allocation:

SW (s; v) =
∑n

i=1 vi(xi(s)) (1)

The optimal feasible allocation for valuation profile v will be denoted by Opt(v), i.e.
Opt(v) = maxx is feasible

∑n
i=1 vi(xi). The revenue of a mechanism is the sum of the pay-

ments, i.e., R(s) =
∑n

i=1 Pi(s).
We will consider a Bayesian setting in which each bidder’s valuation vi is drawn indepen-

dently from some distribution Fi. A strategy function for bidder i is a (possibly randomized)
mapping µi from Vi to Si, which we think of as a specification of the strategy to use given
a valuation. A Bayesian Nash equilibrium (BNE) is a profile of strategy functions such
that no single bidder can increase his expected utility (over randomization in types and
strategies) by unilaterally modifying his strategy. Formally, the profile of strategy functions
µ = (µ1, . . . , µn) is a BNE if for all i, all valuations vi ∈ Vi, and all alternative strategies
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s′i ∈ Si, we have

Ev−i∼F−i
[ui(µi(vi), µ−i(v−i); vi)]

≥ Ev−i∼F−i
[ui(s

′
i, µ−i(v−i); vi)].

Note that the non-Bayesian notion of Nash Equilibrium is a special case of the above, in
which every distribution Fi is a point mass.

The Bayes-Nash Price of Anarchy (BNE-PoA) of a mechanismM is the worst-case ratio
between the expected optimal welfare and the expected welfare at equilibrium, over all type
distributions and all BNE. That is,

BNE-PoA = maxF maxµ
Ev∼F [Opt(v)]

Ev∼F [SW (µ(v);v)]
, (2)

where the maximum over strategy functions µ is taken over all BNE for distribution profile
F .

3 Smoothness in the Large

Sequences of mechanisms. We will typically work with a sequence of mechanisms
{Mn}∞n=1, indexed by the number of participating players n. For shorter notation we will
write {xn} to denote the sequence {xn}∞n=1.

In a sequence of mechanisms {Mn}, everything will be changing parametrically with the
number of players, such as the set of items mn, the strategy spaces Sn = (Sn1 , . . . , S

n
n), the

allocation functions xn = (xn1 , . . . , x
n
n), the payment functions P n = (P n

1 , . . . , P
n
n ) and the

valuation profile space Vn = (Vn1 , . . . ,Vnn ). We will also denote with Optn(·) the optimal

welfare, with Rn()̇ the revenue and with uni the utility of player i in mechanism Mn. For
the moment one can imagine arbitrary ways for the mechanism to grow; in subsequent
sections we give specific conditions for how the market should grow for our framework to be
applicable.

Smoothness in the large. For finite games, Roughgarden [18] introduced the notion
of smoothness as a method for bounding inefficiency of equilibria. The smoothness approach
proceeds by exploring specific deviations, instead of characterizing the (potentially complex)
structure of equilibria. This approach was specialized to the mechanism design setting via
the notion of smooth mechanisms by Syrgkanis and Tardos [25]. We extend the notion of
smoothness to large games. In what follows we present the specific extension in the context
of mechanism design (i.e., large mechanisms), but the framework is widely applicable and
the reader is directed to the full version of the paper for the formulation of the framework in
general games. Intuitively, a sequence of mechanisms is said to be (λ, µ)-smooth in the large
if for any ε, and a sufficiently large number of players, each player i has a special strategy
that allows him to acquire a λ · (1− ε) fraction of his valuation for his optimal set of items,
by paying no more than µ times the current price paid for these items.

Definition 1 (Smooth in the large). A sequence of mechanisms {Mn} is (λ, µ)-smooth in
the large if for any ε > 0, there exists n(ε) <∞, such that for any n > n(ε), for any vn ∈ Vn,
for each i ∈ [n], there exists a strategy s∗,ni ∈ Sni , such that for any sn ∈ Sn:∑n

i=1 u
n
i (s∗,ni , sn−i; v

n
i ) ≥ λ(1− ε)Optn(vn)− µ · Rn(sn) (3)
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The following theorem shows that if a sequence of mechanisms is (λ, µ)-smooth in the

large, for some λ, µ ≥ 0, then its price of anarchy as n → ∞ is at most max{1,µ}
λ

. Moreover,
it implies that for any sufficiently large but finite market of size n the price of anarchy of all
Bayes-Nash equilibria is at most a 1 + ε(n) multiplicative factor away from the limit price of
anarchy, where the rate of convergence of ε(n) to 0 will depend on the application and can
be derived from the proof of smoothness in the large.

Theorem 2. If a sequence of games is (λ, µ)-smooth in the large then

lim supn→∞BNE-PoAn ≤ max{1,µ}
λ

.

I.e., for any ε there exists a market size n(ε) such that for any n ≥ n(ε), every Bayes-Nash
equilibrium of the mechanism Mn with value distributions F1 × . . .×Fn has expected social
welfare at least (1− ε) λ

max{1,µ} of the expected optimal welfare.

Proof. By (λ, µ)-smoothness in the large, for any ε there exists a market size n(ε) such that
for any n ≥ n(ε) the mechanismMn is a (λ(1− ε), µ)-smooth mechanism, as defined in [25].

Therefore, by the results in [25], the BNE-PoAn is at most max{1,µ}
λ(1−ε) . The theorem then

follows.

3.1 Main Technique: Smooth Approximate Utility Functions

We present the notion of a (λ, µ)-smooth approximate utility function sequence with respect
to a sequence of mechanisms {Mn}.

Definition 3 (Smooth approximate utility). Let Un
i : Sn×Vi → R+ be a utility function for

player i ∈ [n], and let Un = (Un
1 , . . . , U

n
n ) be a vector of utility functions. A sequence {Un}

is a sequence of (λ, µ)-smooth approximate utility functions for the sequence of mechanisms
{Mn} if the following two properties are satisfied:

1. (Approximation) The approximate utility Un
i converges to the true utility uni uni-

formly over sn ∈ Sn and vi ∈ Vi. I.e., for any ε, there exists n(ε) < ∞, such that for
any n > n(ε), for any i ∈ [n] and vi ∈ Vi, and for any sn ∈ Sn:

‖uni (sn; vi)− Un
i (sn; vi)‖ < ε. (4)

2. (Smoothness) For each mechanism Mn in the sequence, the approximate utility sat-
isfies the following (λ, µ)-smoothness property with respect to Mn: For any n, for any
v ∈ Vn, for any i ∈ [n], there exists a strategy s∗,ni ∈ Sni , such that for any strategy
profile sn ∈ Sn: ∑n

i=1 U
n
i (s∗,ni , sn−i; vi) ≥ λOptn(v)− µ · Rn(sn) (5)

We show that if a sequence of mechanisms admits a (λ, µ)-smooth approximate utility
sequence, and if its optimal social welfare increases at least at the same asymptotic rate as
the number of players, then this sequence of mechanisms is (λ, µ)-smooth in the large.
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Theorem 4. If a sequence of mechanisms {Mn} admits (λ, µ)-smooth approximate utility
functions, and Optn(t) = Ω(n), then {Mn} is (λ, µ)-smooth in the large.

Proof. Since {Mn} admits (λ, µ)-smooth approximate utility functions {Un}, we have that
for any n and v ∈ Vn there exists strategies s∗,ni for each i ∈ [n] such that, for any s ∈ Sn,

n∑
i=1

Un
i (s∗,ni , s−i; vi) ≥ λOptn(v)− µ · Rn(s).

By the approximation property of Un
i we have that for any ε, there exists n(ε) < ∞ such

that for any n > n(ε): uni (s; vi) ≥ Un
i (s; vi)− ε for any vi ∈ Vni and sn ∈ Sn. Thus:

n∑
i=1

uni (s∗,ni , s−i; vi) ≥ λOptn(v)− µ · Rn(s)− n · ε.

Since Optn(v) = Ω(n), for any v ∈ Vn, we can write Optn(v) ≥ ρ · n for some ρ > 0 and
for sufficiently large n. Thus we get:

n∑
i=1

uni (s∗,ni , s−i; vi) ≥
(
λ− ε

ρ

)
Optn(tn)− µ · Rn(s).

Therefore, for any δ > 0, we can pick ε appropriately small, such that λ − ε
ρ
≥ λ(1 − δ),

which would then yield the theorem.

4 Simultaneous Uniform Price Auctions

We consider a setting with a growing number of n bidders and a fixed number of m different
(types of) goods. There are knj units of each good j ∈ [m] which grows as Ω(n) with the
number of bidders. Each bidder i ∈ [n] has a valuation function vi : Nm → [0, H], that assigns
a value for each possible bundle, depending on the number of units of each good. These
functions are bounded in their demand for the number of units of each good. Specifically,
let xji denote the number of units of good j allocated to bidder i, and let xi = (x1i , . . . , x

m
i )

be an allocation vector for bidder i. Then there is a publically known constant r such
that: vi(xi) = vi(min{x1i , r}, . . . ,min{xmi , r}). We will also assume that these valuations are
bounded away from zero for any non-empty allocation, i.e. vi(xi) ≥ ρ > 0 for every non-zero
xi.

The units of each good j ∈ [m] are simultaneously and independently sold via the means
of a uniform price auction. The auctioneer solicits r bids bj,1i ≥ . . . ≥ bj,ri from each bidder i
for each good j, referred as marginal bids. All bids of good j (from all bidders) are ordered
in a decreasing order, and each of the first knj bids wins a unit. In the case of ties, bidders
are processed in a random order, and all tying bids of a bidder are allocated sequentially
in order until the supply of the good runs out. Every bidder is charged the highest losing
marginal bid for good j for every unit of good j allocated to him. We will assume that
no bid exceeds some fixed number B; i.e., bj,xi < B for every i, j, x. Since we assumed
that vi(xi) ≤ H, it is a weakly dominated strategy for a bidder to bid more than H on an
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individual marginal bid, though our formulation allows even for B > H, as long as B doesn’t
grow with the market. We will denote byMn an instance of the simultaneous uniform price
auction among n bidders.

Notably, the above auction is not truthful for many reasons. First, the auction format is
not even rich enough to allow bidders to express their true valuations, as they are forced to
place additively separable bids on the different goods. Second, even for a single type of good,
a uniform-price auction is not truthful for bidders with multi-unit demands. Nonetheless,
we will show that in large markets, under a particular type of demand uncertainty — where
each bidder “fails to arrive” with constant probability — all equilibria achieve full efficiency.

Theorem 5 (Full Efficiency in the Limit). In the setting described above, if each bidder fails
to arrive in the market with probability δ, then the implied sequence of mechanisms is (1, 1)-
smooth in the large; hence full efficiency is achieved in the limit. Moreover, the fraction of

the optimal welfare achieved at equilibrium converges to 1 at a rate of 1−O
(

1√
n

)
.

Crucially, the fact that we recover full efficiency in the large is not trivial in our setting.
For instance, if one removes the noisy arrival assumption, then existing examples in [23]
show that even when there is only one type of good, inefficiency can persist in the limit.

Sketch of proof of Theorem 5. At a high level, Theorem 5 is established by showing
that the simultaneous uniform price auction where each bidder fails to arrive with prob-
ability δ admits (1, 1)-smooth approximate utility functions. The full proof is deferred to
Appendix A.

The approximate utility functions we define will have the following intuitive interpreta-
tion: each bidder i looks at the (k+1)-th highest bid at each auction excluding his own bids.
Denote this with P−ij . This is the price that the other bidders would have paid for each unit
of good j had bidder i not been in the market. In bidder i’s approximate utility, he has
the delusion that this is also the price he faces; i.e., any marginal bid that he submits that
surpasses the price P−ij will win a unit at price P−ij .4 In the actual market this is obviously
not true: to win x ∈ {1, . . . , r} units, bidder i actually needs to exceed the x-th lowest
winning bid in his absence, and his price will be equal to this bid which may be greater than
his imagined price of P−ij . However, as we shall soon show, with the proposed noise in the

system, the price P−ij is ”sufficiently random” that it is distributed almost identically to this
x-th lowest winning bid for any constant x.

In what follows we present some of the technical challenges and techniques in our proof.
Following the framework of smooth approximate utilities, we first sketch the proof of the
approximation and then the smoothness of the approximate utility functions described above.

Approximation. We first show (in Lemma 11) that the bidder’s utility from any bid
vector b converges to his approximate utility, as the market grows large. Technically, the
two utilities differ either when the allocation is different or when the price paid is different.
The allocation differs only when some of the bidder’s marginal bids are among the k+ 1− r
and k + 1 highest bids,5 since this is the only case where the bidder may believe that his
marginal bid is a winning bid (under his delusional utility) while it is actually a losing bid
(under his true utility). However, due to the random arrival, for any bid b, the probability

4A bid that is equal to P−ij will pass through the tie-breaking rule.
5In the actual proof we also take care of tie-breaking.
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that the number of bids above b is equal to some number x goes to 0 as x → ∞. Thus,
the probability of any of these events goes to 0. Now, since there is only a constant number
of these events (by the assumption that r is constant), the probability of any bad event
occurring goes to 0 (by the union bound). Finally, we show that the difference in price paid
also goes to zero. Technically, the distributions of the (k + 1)-th and the (k + 1 + x)-th
highest bids are identical for any x ∈ [−r, r]. Thus, their expectation converges to zero as
well (as they are bounded random variables).

Smoothness. The other part of the proof (Lemmas 9, 10) shows that these delusional
utilities satisfy the (1, 1)-smoothness property. Observe that under this delusion a bidder
believes that he can always grab his optimal set of items at the current price in which they
are sold. This is essentially the (1, 1)-smoothness property. However, there are two crucial
subtleties that need to be handled carefully. First, the prices of the goods are random, thus
unknown to the bidder. Second, the optimal set of items for a bidder is also random, as it
depends on who arrives in the market (which is not observed by the bidder when he decides
his bid vector). The first problem is bypassed by observing that since these are threshold
price mechanisms, the bidder can simply bid sufficiently high (even overbid). Specifically, if
a bidder’s optimal allocation is xi = (x1i , . . . , x

m
i ), where xji denotes the number of units of

good j, then by bidding sufficiently high on the xji highest marginal bids on each good j, he
will almost surely win the items, or otherwise some price must be so high that we can charge
the welfare loss to some other allocated bidder. We will show that bidding vi(xi) as the
first xji marginal bids on each good j is sufficiently high to establish our (1, 1)-smoothness
argument. To bypass the second problem, we observe that the utility of any bidder under
this game is lower bounded by the utility if he can bid even when he doesn’t arrive, but has
value of 0. The latter game is a simultaneous uniform price auction with no noisy demand,
but with a Bayesian uncertainty on the values. Thus we will use a technique similar to the
one used to show that smoothness for complete information games implies smoothness for
games with Bayesian uncertainty in the values [19, 24, 25]. In particular, the smoothness
deviation samples an arrival vector from the distribution and uses this random sample as a
proxy for the true arrival vector, targeting the optimal bundle under this random sample.

4.1 Constant Inefficiency in the Limit under Supply Uncertainty

The noisy arrival of bidders can be seen as a type of demand uncertainty. In prior work of
Swinkels [23], and in Section 5 which generalizes the prior work of Swinkels to combinatorial
auctions with fixed demand sets, the uncertainty instead regards the supply: namely the
probability that the number of units of the good equals any fixed number goes to 0 as the
market grows large. For these settings, supply uncertanty is sufficient to recover full efficiency
in the limit. In contrast, for simultaneous uniform price auctions, supply uncertainty can
lead to a constant factor inefficiency even in the limit. In particular, it sustains a “search
friction” in the limit: bidders do not know which items will have higher supply and thereby
cannot decide which items to target. At equilibrium, their supply prediction ends up leading
to constant factor inefficiencies that do not vanish. The following is a concrete counter
example showing that supply uncertainty may lead to constant inefficiency in simultaneous
uniform price auctions.

Consider a simultaneous uniform price auction game with two types of goods A and B.
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For each market size n, there are t = n/3 unit-demand bidders that have only a value of
1/2 for each unit of good A and no value for a unit of good B, i.e. vi(xi) = 1

2
1{x1i ≥ 1}.

We refer to these bidders as type a bidders. There are also t unit-demand bidders that have
value 1/2 only for units of good B and not of good A and we refer to them as type b bidders.
Finally, there are t unit-demand bidders each having a value of 1 for each unit of each good
and desiring only one unit from some of the two goods, i.e. vi(xi) = 1{x1i + x2i ≥ 1}. We
refer to them as type c bidders. The supply of each good is distributed uniformly in [0, t].
Obviously, as t → ∞ this supply distribution satisfies the property that the supply being
equal to any fixed number goes to 0.

Equilibrium. We argue that the following is an equilibrium: Each type c bidder picks
uniformly at random one good A or B and submits a bid of 1 at the uniform price auction
for that good. Each type a bidder submits a bid of 1/2 at the uniform price auction for good
A and each type b bidder submits a bid of 1/2 for good B.

Equilibrium verification. This is obviously an equilibrium for the type a and b bidders,
since they are essentially unit-demand bidders in a single uniform price auction, hence the
mechanism is dominant strategy truthful from their perspective. Thus it remains to argue
that type c bidders don’t want to bid on both items. At each item, for them to win a unit
they have to bid at least 1/2, or otherwise they will lose to the type a or type b bidders.
Moreover, the uniform price that they will have to pay on each good is always at least 1/2,
since there are always t bidders bidding 1/2.

Moreover, observe that in the limit of many bidders we can essentially assume that exactly
half of the type c bidders go for item A and exactly half go for item B (in fact we could have
also analyzed the less natural equilibrium where this happens deterministically for every n,
assuming n/3 is even). A type c bidder’s utility at the current equilibrium strategy is 1/2
when the supply of the good that he chose is less than or equal to t/2, since he pays 1/2,
and it is 0 when the supply is more than t/2, since he pays 1. Thus his expected utility is
1/4.

When he bids on both items, then observe that whenever he wins a unit at both auctions
he has to pay a price of 2 · 1/2, thus getting 0 utility. Thus he gets any utility only when he
wins a unit at exactly one of the two auctions and only when he wins it at a price of 1/2.
There are only two possible reasonable bids for the bidder 1 or 1/2. When he bids 1/2 he is
tying with the type a or b bidders and ties are broken at random. Let p(b) be the probability
that a bidder wins at auction A or B with a bid of b. Observe that p(1/2) < p(1) = 1/2.
Thus if bA, bB ∈ {1/2, 1} are the bids of the bidder in each auction, then his utility is:
p(bA)(1− p(bB))1

2
+ p(bB)(1− p(bA))1

2
= 1

2
(p(bA) + p(bB)− p(bA)p(bB)). For 0 ≤ p(b) ≤ 1/2,

the latter is maximized at p(bA) = p(bB) = 1/2, leading to a utility of 1/4. In essence, the
only reasonable bid of a type c bidder is to submit 1 on one of the two goods.

Sub-optimality. Now we argue about the suboptimality of this equilibrium as n→∞.
The optimal allocation is to give as many units of either good A or B as possible to type c
bidders and all remaining units to type a or b bidders. There are always enough remaining
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type a or b bidders for all units to be allocated. Thus the expected optimal welfare is:

E[Opt(kA, kB)] = E
[
min{kA + kB, t}+

1

2
(kA + kB − t)+

]
= E

[
kA + kB −

1

2
(kA + kB − t)+

]
= t− 1

2
E
[
(kA + kB − t)+

]
= t

(
1− 1

2
E

[(
kA
t

+
kB
t
− 1

)+
])

As t → ∞, then kA
t

and kB
t

are distributed uniformly in [0, 1]. Thus by simple integrations
for two U [0, 1] random variables x, y: E[(x+ y − 1)+] = 1/6. Hence, E[Opt(kA, kB)] ≈ 11·t

12
.

On the other hand the expected welfare at equilibrium is simply:

E[SW (b)] = 2 · E
[
min{kA, t/2}+

1

2
(kA − t/2)+

]
= 2 · E

[
kA −

1

2
(kA − t/2)+

]
= t− E

[
(kA − t/2)+

]
For large enough t, E

[
(kA − t/2)+

]
≈ t

8
. Therefore E[SW (b)] ≈ 7·t

8
. Therefore, the ratio

of the expected optimal welfare over the expected equilibrium welfare converge to 22
21
> 1.

Hence the limit price of anarchy is strictly greater than 1.
It is worth noting that this example can be taken to the extreme, when there are m

goods, t type c bidders are interested in all of the goods and each good has a set of t price
setters interested only in that good, with value 1/2. The supply of each good is distributed
uniformly in

[
0, 2t

m

]
. One equilibrium is for the type c bidders to pick one item uniformly at

random and bid 1, while the price setting people bid truthfully on their good. As m grows
large, then the total supply

∑
j kj is with high probability concentrated around it’s expected

value, which is t. Thus the expected optimal welfare converges to t. On the other hand at
equilibrium each good has approximately t/m type c bidders and the supply of that good is
distributed U

[
0, 2t

m

]
. Thereby the expected welfare from each good from calculation similar

to the two good case, is 7t
8m

. Hence, the price of anarchy converges to 8/7. The essence is
that bidders cannot take advantage of the concentration of total supply, which the optimal
welfare can.

5 Greedy Auctions

As in Section 4, we consider a setting with n bidders and a fixed number of m different
(types of) goods. For this section, we focus on a restricted class of multi-unit single-minded
valuation functions, which take the following form: each agent i has a desired set of items
Si ⊆ [m] and a non-convex function vi : N → [0, H], where vi(`) denotes agent i’s value for
receiving ` copies of set Si, up to a maximum of r. Write d for the maximum size of any set
Si.
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The goods will be sold via a greedy auction. Bidders submit bids, in the form of a desired
set Ti and a list of marginal values b1i ≥ . . . ≥ bri . These marginal bids are then considered
in decreasing order by value.6 When a bid b`i is considered, one unit of each item in Ti will
be allocated to bidder i if there are remaining units of all items in Ti, otherwise the bid is
rejected.

For payments, we will charge each bidder i an amount, per unit of set Ti received, equal
to the largest bid that a shadow bidder could have placed on set Ti and been rejected. We
formalize this as follows: choose an item j, fix the quantity k−j of all other items, and imagine
that there are infinitely many copies of item j. Denote with θtj(b) the t-th highest bid for a set

containing item j that would be allocated on input b. Write θk(Ti, b) = maxj∈Ti{θ
kj+1
j (b)}.

Then bidder i’s payment will be xki (b) ·θk(Ti, b). The utility of a bidder in the greedy auction,
given supply profile k, is then un,ki (b; vi) = vi

(
xki (b)

)
− xki (b) · θk(Ti, b).

We show that even though the price of anarchy guarantee of the auction can improve
from d+ 1 to d, as the market grows large, the inefficiency does not drop below d. This is in
contrast to the simultaneous uniform price auction where full efficiency is recovered in the
limit.7. This negative result holds even if we assume additional noise in the form of supply
uncertainty: namely, for any fixed number, the probability for getting this number of items
goes to zero as the market grows large.

Definition 6. We say that the sequence of markets satisfies supply uncertainty if the quan-
tity knj of item j is a random variable, and moreover for any ε > 0 there exists some n(ε)
such that, for all n > n(ε), Pr[kj(n) = t] < ε for all j and all values t.

Proposition 7. For any ε > 0, there exists a greedy combinatorial auction with demand
uncertainty, supply uncertainty, and kj(n) = Ω(n) for each item j, for which there exist
equilibria achieving no more than a 1

d
+ ε fraction of the optimal welfare.

Proof. Choose R sufficiently large and λ > 0 sufficiently small, as functions of ε. There are
d2 items, labeled {aij : i, j ∈ [d]}. There are n = R(d + 1) buyers. For each j ∈ [d], there
are R buyers who each want the set {aij : i ∈ [d]} for value 1; we will refer to these as type-j
bidders. There are also R buyers who each want the set {a1j : j ∈ [d]} for value 1 + λ; we
will refer to these as type-0 bidders.

For each item aij, the number of copies is uniformly distributed in the range r
2
±
√
r.

Also, each buyer fails to arrive with probability δ, where δ < 0.5 is a fixed constant. Chernoff
and union bounds imply that, with probability at least (1− (d+ 1)e−c·R) for some constant
c = c(δ), at least R

2
buyers of each type arrive. Under this event, the optimal welfare is at

least d ·(R
2
−
√
R), for any realization of supply (by not allocating to any type-0 bidders). On

the other hand, the greedy auction will allocate to type-0 bidders first, after which at most
2
√
R bidders of any other type can be allocated (again, under any realization of the supply).

So the welfare obtained by the greedy algorithm is at most (R/2 +
√
R)(1 + λ) + 2d

√
R.

6In the same way as in Simultaneous Uniform Price Auctions, we can handle ties in such a way that it is
without loss to assume all bids are distinct.

7Roughly speaking, this difference is due to the greedy algorithm being inherently d-approximate even in
a fractional market. Whether or not there are small-market frictions, a single bid of value 1 + ε can “block”
up to d bids of value 1. The construction in Proposition 7 makes this intuition explicit.
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Accounting for the exponentially unlikely event that there are fewer than R/2 bidders
of any type, the optimal welfare is at least dR

2
(1 − o(1)) and the greedy welfare is at most

(R(1+λ)
2

)(1+o(1)), where the asymptotic notation is with respect to R growing large. Taking
λ < ε and R sufficiently large completes the proof.

As a positive result we show that the proposed framework can be used to show that
supply uncertainty alone is a sufficient condition for the greedy combinatorial auction to be
d-approximately efficient in the limit. Supply uncertainty was also assumed in prior work of
Swinkels [23]. We remark that for simultaneous uniform price auctions (studied in Section
4), supply uncertainty alone does not lead to full efficiency; an example appears in the full
version of the paper.

Theorem 8 (Approximate efficiency in the Limit). The greedy combinatorial auction un-
der supply uncertainty admits a (1, d)-smooth approximation in the large. In particular, if
kj(n) = Ω(n) for each item j, then the implied sequence of mechanisms is (1, d)-smooth in
the large, and hence achieves a 1/d fraction of the optimal welfare.

One might hope to prove an analogous result to Theorem 8 under demand uncertainty
as well as under supply uncertainty. However, it turns out that under demand uncertainty,
a bidder’s proposed approximate utility and actual utility may fail to converge; an example
appears in the full version of the paper. Thus, to apply our framework to prove smoothness
in the large under demand uncertainty, one would need to find an alternate approximate
utility sequence.

Sketch of proof of Theorem 8. We first define a notion of approximate utility, then
establish that this approximation satisfies the properties of a (1, d)-smooth approximation
in the large. The full proof of Theorem 8 appears in Appendix B.

To define the approximate utility, consider θk(Ti, b−i), which is the critical value for set
Ti if agent i were not present. Write Xk

i (b) = max{` : bi,` > θk(Ti, b−i)}. That is, Xk
i (b)

is the number of bids made by agent i that are strictly greater than θk(Ti, b−i). Then the
approximate utility is:

Un,k
i (b; vi) = vi

(
Xk
i (b)

)
−Xk

i (b) · θk(Ti, b−i). (6)

This is the utility of the original game, not taking into account the effect of bidder i’s bid
upon the critical value of Ti. We denote by uni and Un

i the expected utility and approximate
utility, respectively, in expectation over the distribution of k.

We must show that Un
i satisfies the conditions of being a (1, d)-smooth approximation to

the critical greedy auction, in the large. The fact that Un
i approximates uni follows from the

supply uncertainty: the variation in critical price calculation is smoothed over by uncertainty
in the number of units of each item. The smoothness condition follows in a manner similar
to the Simultaneous Uniform Price auctions: under Un

i , each agent effectively views herself
as a price-taker; the factor of d is effectively due to the approximation factor of the greedy
allocation algorithm.
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A Simultaneous Uniform Price Auctions

This section is dedicated to the proof of Theorem 5. We will view the simultaneous uni-
form price auction with random arrivals as an ex-ante mechanism Mn,δ, where the noise is
endogenized in the rules of the mechanism and then we will show that mechanism Mn,δ is
(1, 1)-smooth in the limit. We will refer to this mechanism as simultaneous uniform price
auction with endogenous δ-noisy demand.

Basic Notation. We first introduce some useful notation. We will denote with uni (b; vi)
the expected utility from a simultaneous uniform price auction where b = (b1, . . . , bn) and bi
is a vector of marginal bids bj,xi , with j ∈ [m] and x ∈ [r], satisfying the decreasing marginal
bid property, i.e. bj,xi is decreasing in x. We will denote with xi(b) the allocation of player
i under bid profile b in the simultaneous uniform price auction, which is a random variable
(due to tie-breaking). For any vector x, we will denote with θt(x), the t-th highest element
in x. Thus θt(b

j) is the t-th highest marginal bid at the uniform price auction for good j.
Thus we can write:

uni (b; vi) = E

vi(xi(b))−∑
j∈[m]

xji (b) · θknj +1(b
j)

 (7)

where expectation is taken over xi(b).
We will denote with un,δi (b; vi) the expected utility of player i in the simultaneous uniform

price auction with noisy arrivals. Concretely, let zi be a {0, 1} random variable that equals
1 with probability 1 − δ, indicating whether player i arrived in the market and let z =
(z1, . . . , zn). Then

un,δi (b; vi) = E[zi · uni (b · z; vi)]. (8)
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Approximate Utility. We denote with Un
i (b; vi) an approximate utility associated with

the non-noisy sequence of mechanisms, defined by the following allocation and payment rules
(due to heavy notation we avoid giving an algebraic description of Un

i and only describe it
in words). We remind the reader the approximate utility is not the utility associated with
any mechanism, and in fact would not be feasible for all bidders simultaneously. It is simply
a construct for the proof of smoothness, and can be interpreted as an intuition for what’s
guiding bidder behavior. To construct the approximate utility , for each uniform price
auction j ∈ [m], let θknj +1(b

j
−i) be the knj + 1-highest marginal bid excluding player i’s bids.

Every marginal bid bj,xi > θknj +1(b
j
−i) wins a unit at auction j and bids with bj,xi = θknj +1(b

j
−i)

win with some probability that follows from the random tie-breaking rule described in the
beginning of the section. We will denote with Xi(b) the allocation function that is implied
by the above description, which is also a random variable due to the tie-breaking rule. For
every unit that a player i wins at auction j, she pays θknj +1(b

j
−i). Thus we can write the

approximate utility as:

Un
i (b; vi) = E

vi(Xi(b))−
∑
j∈[m]

Xj
i (b) · θknj +1(b

j
−i)

 (9)

Then denote with Un,δ
i (b; vi) an approximate utility for the noisy arrival mechanism,

which is simply defined as:

Un,δ
i (b; vi) = E [zi · Un

i (b · z; vi)] (10)

(1, 1)-Smoothness of Approximate Utility. We will first show that the approximate
utility Un,δ

i satisfies the (1, 1)-smoothness property with respect to the sequence of mecha-
nisms Mn,δ. To achieve this we will break it into two parts. First we will show that the
approximate utility Un

i , satisfies the (1, 1)-smoothness property with respect to the non-noisy
sequence of mechanismMn. Then we show generically, that if a sequence of utility functions
Un
i (s; vi), satisfy the (λ, µ)-smoothness property with respect to a sequence of mechanisms
Mn, then the sequence of utility functions Un,δ

i (s; vi) = E [zi · Un
i (s · z; vi)] satisfies the (λ, µ)-

smoothness property with respect to the sequence of mechanismsMn,δ, which is the version
of Mn where each player arrives with probability δ. This completes the first part of the
proof.

Lemma 9. Un
i satisfies the (1, 1)-smoothness property with respect to the sequence of simul-

taneous uniform price auctions Mn.

Proof. Consider a mechanismMn in the sequence, valuation profile v ∈ Vn and let Optn(v)
be the optimal allocation. For each player i let x∗i denote his allocation in the welfare
maximizing allocation. Consider the following deviation b∗i for each player i: at each auction
j ∈ [m], bid vi(x

∗
i ) as the first xj,∗i marginal bids and 0 on the remaining marginal bids.

Consider any bid profile b. There are two cases: either player i wins at least his optimal
allocation in his dellusion in which case he gets approximate utility:

Un
i (b∗i , b−i) ≥ vi(x

∗
i )−

∑
j∈[m]

xj,∗i · θknj +1(b
j
−i)
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or otherwise, there is at least one q ∈ [m] with xq,∗i > 0, for which θknq +1(b
q
−i) ≥ vi(x

∗
i ) and at

which player i wins strictly less than xq,∗i units. In that case, player i’s approximate utility
is at least:

Un
i (b∗i , b−i; vi) ≥ −

∑
j∈[m]

xj,∗i · θknj +1(b
j
−i) + θknq +1(b

q
−i)

≥ vi(x
∗
i )−

∑
j∈[m]

xj,∗i · θknj +1(b
j
−i)

Hence, the latter inequality holds always. Summing up the inequality for each player and
observing that θknj +1(b

j
−i) ≤ θknj +1(b

j) and
∑n

i=1 x
j,∗
i ≤ knj , we get:

n∑
i=1

Un
i (b∗i , b−i; vi) ≥ Optn(v)−

∑
j∈[m]

knj · θknj +1(b
j)

Now it is easy to see that Rn(b) =
∑

j∈[m] k
n
j · θknj +1(b

j), since at each uniform price auction,

either knj units were sold at a price of θknj +1(b
j) or θknj +1(b

j) = 0. This completes the proof.

Lemma 10. If Un
i satsifies the (λ, µ)-smoothness property with respect to a sequence of

mechanisms Mn, then Un,δ
i = Ez [zi · Un

i (s · z; vi)] satisfies the (λ, µ)-smoothness property
with respect to the sequence of mechanisms Mn,δ.

Proof. By smoothness of Un
i with respect to Mn we know that for any valuation vector v,

there exists for each player i a deviation s∗i (v) such that for any strategy profile s:

n∑
i=1

Un
i (s∗i (v), s−i; vi) ≥ λOptn(v)− µRn(s)

Observe that for any strategy profile s:

Un
i (s∗i (v · z), s−i; vi) · zi ≥ Un

i (s∗i (v · z), s−i; vi · zi)

Observe that:

Ez,z̃ [Un
i (s∗i (v · (zi, z̃−i)), s−i · z−i; vi) · zi]

= Ez,z̃ [Un
i (s∗i (v · z̃), s−i · z−i; vi) · z̃i]

≥ Ez,z̃ [Un
i (s∗i (v · z̃), s−i · z−i; vi · z̃i)]

Thus, for any strategy profile s, valuation profile v and arrival vector z:∑
i∈[n]

Ez,z̃ [Un
i (s∗i (v · (zi, z̃−i)), s−i · z−i; vi) · zi]

≥ Ez,z̃

[∑
i

Un
i (s∗i (v · z̃), s−i · z−i; vi · z̃i)

]
≥ Ez,z̃ [λOptn(v · z̃)− µRn(s · z)]
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Observe that: Ez̃ [Un
i (s∗i (v · (zi, z̃−i)), s−i · z−i; vi) · zi] corresponds to the utility of a player

under the following deviation: random sample an arrival vector z̃−i, deviate assuming the
arrival vector (zi, z̃−i). This is a valid deviation for the noisy arrival mechanism Mn,δ and
hence the above inequality shows that Un,δ

i satisfies the (λ, µ)-smoothness property with
respect to Mn,δ.

Approximation. Now we move on to showing that Un,δ
i approximates un,δi as n→∞.

Lemma 11. For any valuation vi and for any bid profile sequence bn:

lim
n→∞

∥∥∥un,δi (bn; vi)− Un,δ
i (bn; vi)

∥∥∥ = 0 (11)

Proof. We need to show that for any ε, there exists n(ε) < ∞ such that for any n > n(ε)
and for any bid profile b and for any valuation vi:

∆ =
∥∥∥un,δi (b; vi)− Un,δ

i (b; vi)
∥∥∥ < ε

By triangle inequality we can lower bound the left hand side by:

∆ ≤‖E [vi(xi(b · z))− vi(Xi(b · z))]‖+∥∥∥∥∥∥E
∑
j∈[m]

Xj
i (b

j · z)θknj +1(b
j
−i · z−i) −

xji (b
j · z) · θknj +1(b

j · z)
]∥∥∥

The first part of the upper bound can be upper bounded by:

‖E [vi(xi(b · z))− vi(Xi(b · z))]‖
≤ H · Pr [xi(b · z) 6= Xi(b · z)]

≤ H ·
∑
j∈[m]

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]

The second part can also be upper bounded by the summation of the following two quantities:∥∥∥∥∥∥E
∑
j∈[m]

(
Xj
i (b

j · z)− xji (bj · z)
)
θknj +1(b

j
−i · z−i)

∥∥∥∥∥∥∥∥∥∥∥∥E
∑
j∈[m]

xji (b
j · z) ·

(
θknj +1(b

j
−i · z−i)− θknj +1(b

j · z)
)∥∥∥∥∥∥

The first quantity is upper bounded by:

B · r ·
∑
j∈[m]

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]
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since by assumption all marginal bids fall in a range [0, B] and the difference in the two
allocations of a player is at most r, by the r-demand assumption.

The second quantity is upper bounded by:

r ·
∑
j∈[m]

∥∥∥E [θknj +1(b
j
−i · z−i)− θknj +1(b

j · z)
]∥∥∥

since a player is allocated at most r units of each good j.
Thus, by the above reasoning, it suffices to show that there exists a finite n(ε) such that

for any n > n(ε) the following two properties hold for each uniform price auction j ∈ [m]
and for any bid profile bj

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]
≤ ε

2m(B · r +H)∥∥∥E [θknj +1(b
j
−i · z−i)− θknj +1(b

j · z)
]∥∥∥ ≤ ε

2rm

Hence we break the proof in two lemmas:

Lemma 12. For any uniform price auction j ∈ [m] and for any ε > 0, there exists n(ε) <∞
such that for any n > n(ε) and for any bid profile bj:

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]
< ε (12)

Proof. We will show that the probability converges to 0 conditional on any draw of the
random tie-breaking priority order. Moroever, conditional on the tie-breaking rule it is
without loss of generality to assume that all marginal bids in bj are distinct and that there
are no ties. The reason is that conditional on the tie-breaking priority rule, we can add small
quantities (much smaller than the smallest difference between any two different marginal
bids), to the input bids of the players, so as to simulate the exact same allocation rule as
would have been achieved by the original bid profile and with the priority rule drawn (e.g.
if player i was ordered first by the tie-breaker then add to all his marginal bids n · δ, if he
was ordered second then add (n − 1) · δ etc., similarly if any of his own bids are identical
then add even smaller δ′’s to differentiate them).

So suffices to prove that the probability goes to zero assuming that there are no two
identical bids in bj. Observe that the two allocations are different only when any of the
marginal bids of player i is among the k+ 1− r and the k+ 1 highest arriving marginal bids.
If a marginal bid is not among the k + 1 − r and the k + 1 highest arriving marginal bids,
then it is either not allocated by both allocation rules because it is below the k + 1 highest
arriving bid or is allocated by both rules because it is among the k− r highest arriving bids
and so adding player i’s bids will not push it out of the allocation.

Let B(bj · z;x) denote the number of arriving marginal bids that are strictly above x.
Thus we can upper bound the desired probability by the union bound as:

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]

≤
r∑
t=1

k+1∑
q=k+1−r

Pr[B(bj · z; bj,ti ) = q]

Now we can use the re-interpretation of a Lemma by Swinkels re-written in our terminology:
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Lemma 13 (Swinkels [23]). For any x ∈ [0, B] and for any ε, there exists a q(ε) ≤ ∞ such
that for any q > q(ε) and for any bj:

Pr[B(bj · z;x) = q] ≤ ε (13)

Thus for sufficiently large n, knj is sufficiently large that each probability in the double
summation can be made smaller than any ε. Since the summation is over a constant number
of quantities, the double summation can also be made smaller than any ε for sufficiently
large n. This completes the proof of the Lemma.

Lemma 14. For any uniform price auction j ∈ [m] and for any ε > 0, there exists n(ε) <∞
such that for any n > n(ε) and for any bid profile bj:∥∥∥E [θknj +1(b

j
−i · z−i)− θknj +1(b

j · z)
]∥∥∥ ≤ ε (14)

Proof. Observe that θknj +1(b
j
−i · z−i) ≤ θknj +1(b

j · z). Moreover, since player i submits at most
r bids, the knj +1 highest bid among all bids except player i’s is at least the knj +1+r highest
bid among all bids including player i’s. Thus:∥∥∥E [θknj +1(b

j
−i · z−i)− θknj +1(b · z)

]∥∥∥
≤
∥∥∥E [θknj +1+r(b

j · z)− θknj +1(b
j · z)

]∥∥∥
We will now use the following reinterpretation of a Lemma of Swinkels, which we state

in our terminology:

Lemma 15 (Swinkels [23]). For any x, x′ ∈ [knj , k
n
j +r+1] the difference of the cummulative

density functions of the x-th and the x′-th highest arriving bid in a single uniform price
auction converges to 0 uniformly over x, x′ and bj, as knj →∞.

Since the CDFs of the random variables θknj +1+r(b
j · z−i) and θknj +1(b

j · z) converge and

since the two quantities are bounded in [0, B], their expectations also converge and therefore
there exists n(ε) such that for any n > n(ε) and for any bj:∥∥∥E [θknj +1+r(b

j) · z−i)− θknj +1(b
j · z)

]∥∥∥ ≤ ε

which completes the proof of the lemma.

Combining Lemmas 12 and 14 establishes the assertion of Lemma 11.

A.1 Rates of Convergence for r = 1

We now establish the rate of convergence claimed in Theorem 5. We begin by studying
the convergence rate in the special case r = 1, before moving on to the general case in
Appendix A.2.
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Theorem 16. If r = 1 and knj ≥
36·ρ2·m2(B+H)2

ε2δ(1−δ) , then:∑n
i=1 u

n,δ
i (s∗,ni , sn−i; v

n
i ) ≥ (1− ε)Optn(vn)−Rn(sn) (15)

and therefore the robust price of anarchy is at most 1
1−ε .

Equivalently if knj = Ω(n), and for constant ρ,m,B,H, δ, the welfare at every equilibrium

(BNE, CCE etc) is at least
(

1− o
(

1√
n

))
of the expected optimal welfare.

The proof follows the structure of the argument from Appendix A. We will modify some
of the lemmas presented in Appendix A, to make more explicit the dependency between ε
and the parameters of the model. The modified lemmas are presented below; Theorem 16
then follows directly.

Lemma 17. If r = 1, then for any x ∈ [0, B] and for any ε, if q > 4
ε2·δ·(1−δ) , then for any bj:

Pr[B(bj · z;x) = q] ≤ ε (16)

Proof. Consider any bid profile bj, consisting of one bid per player. If less than q players are
bidding above x in bj, then Pr[B(bj · z;x) = q] = 0 and the theorem follows. Thus in the bid
profile that maximizes the probability that we want to upper bound, there are t ≥ q players
bidding above x. Then the probability of the event of interest is equal to the probability
that exactly q of these players remain after the random deletion. Observe that the number
of players among these bidders that remain after the random deletion follows a Binomial
distribution of t trials, each with success probability (1− δ), denoted as B(t, 1− δ).

By the Berry-Esseen theorem [2, 8, 20] we know that the CDF of B(t, p) is approximated
by the CDF of the normal distribution with mean t · p and variance t · p · (1 − p), with an

additive error that is upper bounded by err ≤ p2+(1−p)2

2
√
np(1−p)

. Denote with Φ(·) the CDF of the

standard normal distribution. If X is a random variable distributed according to B(t, p),
then

Pr[X = k] = Pr[X ≤ k]− Pr[X ≤ k − 1]

≤ Φ

(
k − t · p√
t · p · (1− p)

)
− Φ

(
k − 1− t · p√
t · p · (1− p)

)
+ 2 · err

=
1√
2π

∫ k−t·p√
t·p·(1−p)

k−1−t·p√
t·p·(1−p)

e−
z2

2 dz + 2 · err

≤ 1√
2π

1√
t · p · (1− p)

+ 2 · err

≤
(

1√
2π

+ p2 + (1− p)2
)

1√
t · p · (1− p)

≤ 2√
t · p · (1− p)
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By the above we get that:

Pr[B(bj · z;x) = q] ≤ 2√
t · δ · (1− δ)

≤ 2√
q · δ · (1− δ)

For q ≥ 4
ε2·δ·(1−δ) the latter probability is at most ε as desired.

Lemma 18. For r = 1, for any uniform price auction j ∈ [m] and for any ε > 0, if
knj ≥ 16B2

ε2δ(1−δ) , then for any bid profile bj:∣∣∣E [θknj +1(b
j
−i · z−i)− θknj +1(b

j · z)
]∣∣∣ ≤ ε (17)

Proof. Observe that θknj +1(b
j
−i · z−i) ≤ θknj +1(b

j · z). Moreover, since player i submits one
bid, the knj + 1 highest bid among all bids except player i’s is at least the knj + 2 highest bid
among all bids including player i’s. Thus:∣∣∣E [θknj +1(b

j
−i · z−i)− θknj +1(b · z)

]∣∣∣
≤
∣∣∣E [θknj +2(b

j · z)− θknj +1(b
j · z)

]∣∣∣
Let Ft(·) denote the CDF of the t-th highest bid. Observe that if the number of arriving

bids strictly above x are less than t, i.e., B(bj · z;x) < t, then both θt and θt+1 are at most x
and therefore the conditional CDFs of θt and θt+1 evaluated at x are both 1. If B(bj · z;x) >
t+1) then both θt and θt+1 are strictly above x and therefore the conditional CDFs evaluated
at x are both 0. Thus the conditional CDFs differ only when B(bj · z;x) ∈ [t, t+ 1] and they
differ by at most 1. Hence:

|Ft(x)− Ft+1(x)| ≤ Pr[B(bj · z;x) ∈ [t, t+ 1]] (18)

By Lemma 17, if t ≥ 16B2

ε2·δ·(1−δ) , then Pr[B(bj ·z;x) = t] ≤ ε
2B

and Pr[B(bj ·z;x) = t+1] ≤ ε
2B

,

so by the union bound |Ft(x)− Ft+1(x)| ≤ ε
B

.
Last observe that:

E
[
θt(b

j · z)− θt+1(b
j · z)

]
=

∫ B

0

1− Ft(x)dx−
∫ B

0

1− Ft+1(x)dx

=

∫ B

0

Ft+1(x)− Ft(x)dx ≤ ε

Lemma 19. If knj ≥
36·m2(B+H)2

ε2δ(1−δ) then for any valuation vi and for any bid profile sequence
bn: ∥∥∥un,δi (bn; vi)− Un,δ

i (bn; vi)
∥∥∥ ≤ ε (19)
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Proof. By same reasoning as in Lemma 11, the difference in utilities is upper bounded by
the following quantity:∑

j∈[m]

(B +H) Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]

+
∣∣∣E [θknj +1(b

j
−i · z−i)− θknj +1(b

j · z)
]∣∣∣

and:

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]

≤ Pr[B(bj · z; bj,ti ) = knj ] + Pr[B(bj · z; bj,ti ) = knj + 1].

By the previous lemmas, if knj ≥
36·m2(B+H)2

ε2δ(1−δ) then:∣∣∣E [θknj +1(b
j
−i · z−i)− θknj +1(b

j · z)
]∣∣∣ ≤ ε

3 ·m
Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]
≤ 2ε

3m(B +H)

which subsequently gives that the utility difference is at most ε.

A.2 Convergence Rate for General r

We now present a version of Theorem 16 that generalizes to arbitrary r. The proof will
follow a similar structure to that of Theorem 16.

Theorem 20. If knj ≥
16·m2(B+H)2r8ρ2

ε2δ(1−δ) + r, then:∑n
i=1 u

n,δ
i (s∗,ni , sn−i; v

n
i ) ≥ (1− ε)Optn(vn)−Rn(sn) (20)

and therefore the robust price of anarchy is at most 1
1−ε .

Equivalently if knj = Ω(n), and for constant ρ, r,m,B,H, δ, the welfare at every equilib-

rium (BNE or CCE) is at least
(

1− o
(

1√
n

))
of the expected optimal welfare.

Lemma 21. For any x ∈ [0, B] and for any ε, if q > 4r2

ε2·δ·(1−δ) , then for any bj:

Pr[B(bj · z;x) = q] ≤ ε (21)

Proof. Consider any bid profile bj, consisting of at most r bids per player. For h ∈ [1, r]
let Nh denote the subset of players that under bj, they submit h bids above x and denote
with nh = |Nh|. Observe that there must exist at least one h∗ ∈ [1, r] such that nh∗ ≥ q

r2
.

Otherwise, we get:
∑r

h=1 nh · r < q and therefore, there are in total less than q bids above
x. Hence, the probability we want to upper bound is 0.
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Let Z−Nh∗ denote the number of arriving bids from players outside of Nh and ZNh∗

the number of arriving bids from players in Nh. By the independent arrival assumption,
conditional on the bid profile bj, these two random variables are independent. Thus:

Pr[B(bj · z;x) = q] =

q∑
q′=1

Pr[Z−Nh∗ = q′] · Pr[ZNh∗ = q − q′]

≤ max
z∈[1,q]

Pr[ZNh∗ = z]

Let X denote the number of players from Nh∗ that end up arriving. Observe that: Pr[ZNh∗ =
z] = Pr[X = z

h∗
], if z is a multiple of h∗ and 0 otherwise. Thus:

Pr[B(bj · z;x) = q] ≤ max
x∈[1,bq/h∗c]

Pr[X = x]

If we denote with B(t, p) the binomial distribution of n trials each with success probability
p, then observe that X ∼ B(nh∗ , 1− δ).

By the Berry-Esseen theorem [2, 8, 20] we know that the CDF of B(t, p) is approximated
by the CDF of the normal distribution with mean t · p and variance t · p · (1 − p), with an

additive error that is upper bounded by err ≤ p2+(1−p)2

2
√
np(1−p)

. Denote with Φ(·) the CDF of the

standard normal distribution. If X is a random variable distributed according to B(t, p),
then

Pr[X = k] = Pr[X ≤ k]− Pr[X ≤ k − 1]

≤ Φ

(
k − t · p√
t · p · (1− p)

)
− Φ

(
k − 1− t · p√
t · p · (1− p)

)
+ 2 · err

=
1√
2π

∫ k−t·p√
t·p·(1−p)

k−1−t·p√
t·p·(1−p)

e−
z2

2 dz + 2 · err

≤ 1√
2π

1√
t · p · (1− p)

+ 2 · err

≤
(

1√
2π

+ p2 + (1− p)2
)

1√
t · p · (1− p)

≤ 2√
t · p · (1− p)

By the above we get that:

Pr[B(bj · z;x) = q] ≤ 2√
nh∗ · δ · (1− δ)

≤ 2r√
q · δ · (1− δ)

For q ≥ 4r2

ε2·δ·(1−δ) the latter probability is at most ε as desired.

Lemma 22. For any uniform price auction j ∈ [m] and for any ε > 0, if knj ≥ 4B2r4

ε2δ(1−δ) , then

for any bid profile bj: ∣∣∣E [θknj +1(b
j
−i · z−i)− θknj +1(b

j · z)
]∣∣∣ ≤ ε (22)
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Proof. Moreover, since player i submits at most r bids, the knj + 1 highest bid among all
bids except player i’s is at least the knj + 1 + r highest bid among all bids including player
i’s. Thus: ∣∣∣E [θknj +1(b

j
−i · z−i)− θknj +1(b · z)

]∣∣∣
≤
∣∣∣E [θknj +1+r(b

j · z)− θknj +1(b
j · z)

]∣∣∣
Let Ft(·) denote the CDF of the t-th highest bid. Observe that if the number of arriving

bids strictly above x are less than t, i.e., B(bj · z;x) < t, then the conditional CDFs of t and
t+ r highest bid evaluated at x are both 1. If B(bj · z;x) > t+ r then the conditional CDFs
evaluated at x are both 0. Thus the conditional CDFs differ only when B(bj ·z;x) ∈ [t, t+ r]
and they differ by at most 1. Hence:

|Ft(x)− Ft+r(x)| ≤ Pr[B(bj · z;x) ∈ [t, t+ r]] (23)

By Lemma 17, if t ≥ 4B2r4

ε2·δ·(1−δ) , then for all x ∈ [t, t+ r], Pr[B(bj · z;x) = x] ≤ ε
Br

, and by the

union bound: |Ft(x)− Ft+r(x)| ≤ ε
B

.
Last observe that:

E
[
θt(b

j · z)− θt+r(bj · z)
]

=

∫ B

0

1− Ft(x)dx−
∫ B

0

1− Ft+r(x)dx

=

∫ B

0

Ft+r(x)− Ft(x)dx ≤ ε

Lemma 23. If knj ≥
16·m2(B+H)2r8

ε2δ(1−δ) + r then for any valuation vi and for any bid profile
sequence bn: ∥∥∥un,δi (bn; vi)− Un,δ

i (bn; vi)
∥∥∥ = ε (24)

Proof. By same reasoning as in Lemma 11, the difference in utilities is upper bounded by
the following quantity:

r ·

∑
j∈[m]

(B +H) Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]

+
∣∣∣E [θknj +1(b

j
−i · z−i)− θknj +1(b

j · z)
]∣∣∣)

and:

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]

≤
r∑
t=1

knj +1∑
q=knj +1−r

Pr[B(bj · z; bj,ti ) = q]

≤ r2 max
x∈[0,B],q∈[knj +1−r,knj +1]

Pr[B(bj · z;x) = q]
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By the previous lemmas, if knj ≥
16·m2(B+H)2r8

ε2δ(1−δ) + r then:

Pr
[
xji (b

j · z) 6= Xj
i (b

j · z)
]
≤ r2

ε

2mr3(B +H)∣∣∣E [θknj +1(b
j
−i · z−i)− θknj +1(b

j · z)
]∣∣∣ ≤ ε

2 · r ·m

which subsequently gives that the utility difference is at most ε.

B Greedy Combinatorial Auctions

This section is dedicated to the proof of Theorem 8. We begin by reviewing the proof sketch
from Section 5.

Our approach will be to define a notion of approximate utility, then establish that this
approximation satisfies the properties of a (1, d)-smooth approximation in the large. To
define the approximate utility, consider θk(Ti, b−i), which is the critical value for set Ti if
agent i were not present. Write Xk

i (b) = max{` : bi,` > θk(Ti, b−i)}. That is, Xk
i (b) is

the number of bids made by agent i that are strictly greater than θk(Ti, b−i). Then the
approximate utility is:

Un,k
i (b; vi) = vi

(
Xk
i (b)

)
−Xk

i (b) · θk(Ti, b−i).

This is the utility of the original game, not taking into account the effect of player i’s bid
upon the critical value of Ti. We denote by uni and Un

i the expected utility and approximate
utility, respectively, in expectation over the distribution of k.

(1, d)-Smoothness of Approximate Utility. We will first show that the approximate
utility Un

i satisfies the conditions of being a (1, d)-smooth approximation to the critical greedy
auction, in the large. We do this in two steps. We first show that Un

i satisfies the smoothness
condition with respect to the critical greedy auction, then show that it approximates the
utility of the original game.

Lemma 24. For each n, Un
i satisfies the (1, d)-smoothness property with respect to the greedy

critical price auction.

Proof. Fix valuation profile v, and let x∗,k denote the welfare-optimal allocation for supply
k. We will consider the utility of agent i when declaring his true valuation vi. We have

Un
i (vi, b−i; vi) = Ek

[
vi
(
Xk
i (vi, b−i)

)
− Xk

i (vi, b−i) · θk(Ti, b−i)
]

= Ek

[
r∑
`=1

(
vi(`)− vi(`− 1)− θk(Ti, b−i)

)+]

≥ Ek

[
r∑
`=1

(
vi(`)− vi(`− 1)− θk(Ti, b)

)+]
≥ Ek

[
vi

(
x∗,ki

)
− x∗,ki · θk(Ti, b)

]
.
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Taking a sum over all i and applying linearity of expectation, we have

∑
i

Un
i (vi, b−i; vi) ≥ Optn(v)− Ek

[∑
i

x∗,ki · θk(Ti, b)

]
.

Since θk(n)(Ti, b) = maxj∈Ti θ
k
j (b) ≤

∑
j∈Ti θ

k
j (b), we have

∑
i

Un
i (vi, b−i; vi) ≥ Optn(v)− Ek

[∑
j

θkj (b)
∑
i:Ti3j

x∗,ki

]

≥ Optn(v)− Ek

[∑
j

θkj (b) · kj

]

≥ Optn(v)− d · Ek

[∑
i

xki (b) · θk(Ti, b)

]
= Optn(v)− d · Rn(b)

as required, where in the last inequality we made use of the fact that θk(Ti, b) ≥ 1
d

∑
j∈Ti θ

k
j (b),

plus the fact that θ
k(n)
j (b) = 0 if not all copies of item j are allocated in xk(b).

Approximation. Now we show that Un
i approximates uni as n grows large.

Lemma 25. For any valuation vi and for any bid profile sequence bn:

lim
n→∞

‖uni (bn; vi)− Un
i (bn; vi)‖ = 0 (25)

Proof. This proof closely follows the proof of Lemma 11. Our goal is to find an upper bound
on ‖uni (bn; vi)− Un

i (bn; vi)‖. Applying the triangle inequality to the definition of uni and Un
i ,

we have

‖uni (bn; vi)− Un
i (bn; vi)‖

≤ ‖Ek[vi(xki (b))− vi(Xk
i (b))]‖

+ ‖Ek[xki (b) · θk(Ti, b)−Xk
i (b) · θk(Ti, b−i)]‖

We’ll bound separately each of the two terms on the right hand side. The first can be
bounded by

‖Ek[vi(xki (b))− vi(Xk
i (b))]‖ ≤ H · Pr[xki (b) 6= Xk

i (b)]

For the second term, we have

‖Ek[xki (b) · θk(Ti, b)−Xk
i (b) · θk(Ti, b−i)]‖

≤‖Ek[xki (b)(θk(Ti, b)− θk(Ti, b−i))]‖
+ ‖Ek[(Xk

i (b)− xki (b))θk(Ti, b)]‖
≤r · ‖Ek[θk(Ti, b)− θk(Ti, b−i)]‖+H · r · Pr[xki (b) 6= Xk

i (b)]
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Given these bounds, it suffices to show that, for all ε > 0, there exists an n(ε) such that, for
all n > n(ε), we have

Pr[xki (b) 6= Xk
i (b)] < ε

and
‖Ek[θk(Ti, b)− θk(Ti, b−i)]‖ < ε.

We will complete the proof by establishing these bounds in separate lemmas.

Lemma 26. For all ε > 0 there exists n(ε) such that for all n > n(ε), and all i and b,
Pr[xki (b) 6= Xk

i (b)] < ε.

Proof. By the union bound, we have

Pr[xki (b) 6= Xk
i (b)] ≤

∑
j

r∑
`=1

Pr[θkj (b) > bi,` ≥ θkj (b−i)].

It therefore suffices to bound Pr[θkj (b) > bi,` ≥ θkj (b−i)]. Fix the quantities of all items but j,
and suppose there are infinitely many units of item j. Among the marginal bids in b, consider
the winning bids for sets containing j; let (z1 ≥ z2 ≥ . . . ) be those bids in decreasing order.
Note then that θkj (b) = zkj+1, and θkj (b−i) ≥ zkj+r+1 (as agent i is allocated at most r copies
of item j).

Let ` be the unique index such that z` > bi,` ≥ z`+1. We then have

Pr[θkj (b) > bi,` ≥ θkj (b−i)] ≤ Pr[`+ 1 ≤ kj ≤ `+ r].

The union bound combined with the definition of supply uncertainty implies that, for suffi-
ciently large n, this probability is at most ε · r. Taking an appropriate choice of ε completes
the proof.

Lemma 27. For all ε > 0 there exists n(ε) such that, for all n > n(ε), and for all i, j, and
b, ∣∣Ek [θkj (b)]− Ek

[
θkj (b−i)

]∣∣ < ε. (26)

Proof. Define values (z1 ≥ z2 ≥ . . . ) as in Lemma 26. Recalling that θkj (b) = zkj+1 and
θkj (b−i) ≥ zkj+r+1, we have∣∣Ek [θkj (b)]− Ek

[
θkj (b−i)

]∣∣ ≤∑
`≥1

(z` − z`+r) · Pr[kj = `].

Supply uncertainty implies that, for sufficiently large n, Pr[kj = `] < ε for all ` and hence∣∣Ek [θkj (b)]− Ek
[
θkj (b−i)

]∣∣ <∑
`≥1

(z` − z`+r) · ε

≤
r∑
`=1

z` · ε < rHε.

Taking an appropriate choice of ε therefore completes the proof.

Applying Lemma 26 and Lemma 27 then completes the proof of Lemma 25.
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