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Abstract

We study robust revenue maximization by the designer of a single-
object auction who has Bayesian beliefs about bidders� independent
private values but is ignorant about post-auction resale opportuni-
ties (including possible leakage of private information). We show the
optimality of a �Vickrey auction with bidder-speci�c reserve prices�
proposed by Ausubel and Cramton (2004), which allocates the object
e¢ ciently provided that at least one of the bidders has bid above his
reserve price. In this auction, truthful bidding and no resale is an ex
post equilibrium for any individually rational resale procedure. We
show optimality of this auction for a �worst-case�resale procedure in
which the highest-value bidder learns all other bidders�values and has
full bargaining power. The proof involves construction of Lagrange
multipliers on the incentive constraints representing non-local devia-
tions in which a bidder underbids to lose and then purchases from the
auction�s winner.
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1 Introduction

It is well known that revenue-maximizing auctions for settings with a priori
asymmetric bidders implement ine¢ cient allocations that are biased in favor
of �weaker� bidders (Myerson 1981, McAfee and McMillan 1989). On the
other hand, real-life auctions are often followed by resale. One might wonder
whether the advantage of biased auctions is undermined due to a strong
bidder�s ability to buy the object from another bidder in resale at a possibly
lower price than what he would have to pay in the auction. This paper
examines what auctions are optimal when resale is possible but the designer
is ignorant about the resale procedure.1

There exists a substantial literature on the design of optimal auctions
when resale procedures are known, including Zheng (2002), Calzolari and
Pavan (2006), and Dworczak (2015). The usual assumption in this literature
is that no private information is leaked before resale (other than information
about auction bids that the designer may choose to disclose). It is easy to see
that under this assumption, the possibility of resale can only reduce the auc-
tioneer�s optimal revenues: indeed, the equilibrium allocation of any auction
mechanism followed by resale must be incentive compatible and therefore
would be feasible for the designer if resale were impossible. Nevertheless,
in spite of the above observation, it has been found that the optimal auc-
tion in the presence of known resale typically implements a biased allocation
followed by resale.2

On the other hand, Ausubel and Cramton (2004) proposed a class of
auctions, called �Vickrey auctions with reserve prices,�which induce an ex-
post Nash equilibrium with truthful bidding and no resale. These auctions
allocate the object e¢ ciently provided that at least one of the bidders has
beaten his reserve price. While these auctions have nice properties, in light
of the literature mentioned above, it has been unclear why they would be
optimal for the auctioneer.
Ausubel and Cramton (1999, Theorem 4) attempted to derive the op-

1For expositional simplicity we focus on revenue maximization, but the analysis extends
to the auctioneer�s pro�t maximization when she has a non-zero value for keeping the
object, by de�ning bidders�values to be net of the auctioneer�s value.

2In a simple example due to Zheng (2002), if a bidder is known to have a zero value for
the good and the ability to design a revenue-maximizing resale mechanism, the designer
would optimally sell to this bidder at the price equal to the optimal expected revenue
without resale.
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timality of Vickrey auctions with reserves from the assumption of e¢ cient
resale. However, the foundations for this assumption are unclear. By the
theorem of Myerson and Satterthwaite (1983), we would generally expect
resale to be ine¢ cient unless the parties�private values are revealed before
the resale. However, if resale takes place under symmetric information, then
typically, an auctioneer who can anticipate the resale procedure would not
want to allocate the object e¢ ciently; instead she would again want to run an
auction that induces resale in equilibrium. For an extreme example, suppose
that the auctioneer knows that one particular bidder has a zero value, but will
have full information and full bargaining power in resale. Then the optimal
auction would sell to that bidder at the price equal to the expected maximal
bidder value for the object, letting the auctioneer extract full surplus.
This paper provides the missing foundations. We derive the robust op-

timality of single-object Vickrey auctions with reserves when the designer
is ignorant about the resale procedure (including possible private informa-
tion revelation before resale). Namely, we show that such auctions maximize
the designer�s worst-case expected revenue, where the expectation is taken
over buyers�independent private values and the worst case is over the pos-
sible resale procedures. Our conclusion is conceptually similar to the robust
optimality of strategy-proof auctions when the designer is ignorant about
bidders�beliefs about each other�s values (Chung and Ely 2007) or about
each other�s strategies (Yamashita 2015). Namely, while in those cases rev-
enue maximization that is robust to bidder strategizing makes it optimal to
use strategy-proof mechanisms, in our case revenue maximization that is ro-
bust to resale makes it optimal to use resale-proof mechanisms. However,
the proof techniques are quite di¤erent. Also, observe that Vickrey auctions
with reserve prices are robust to bidders�beliefs about each other�s values
and their beliefs about the resale procedure, hence we obtain those additional
robustness bene�ts �for free.�
We begin with the simple case in which the auctioneer is restricted to

always sell the object (Section 3). For this case, we show that the simple
Vickrey auction (second-price sealed-bid auction) with no reserve price is
optimal. To do this, we guess a �worst-case� resale procedure, in which
the highest-value bidder learns other bidders�values and has full bargaining
power in resale. With this resale procedure, in any auction that always
sells the object, the highest-value bidder would be able to extract at least
his marginal contribution to the total surplus by bidding low to let another
bidder win and then buying from the winner. Given that the designer is
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unable to reduce bidders� information rents below their expected marginal
contributions to the total surplus, she could do no better than the simple
Vickrey auction with no reserve. Since this auction sustains truthful bidding
as an ex post equilibrium under any resale procedure, it is robustly optimal
with unknown resale.
We proceed to the more complex setting in which the designer can with-

hold the object, for simplicity starting with the two-bidder case (Section
4). We continue with the worst-case resale procedure guessed in Section
3, and derive bidders�reduced-form utilities from auction allocations under
this resale procedure. Note that these reduced-form utilities exhibit both
externalities and interdependent values, since a bidder who does not win
cares whether the other bidder wins and, if so, what the other bidder�s value
is. Nevertheless, the usual envelope-theorem approach to local (�rst-order)
incentive compatibility constraints yields a simple expression for bidders�
information rents, which allows us to express the expected revenue as the ex-
pectation of an appropriately de�ned virtual surplus. If we were to ignore all
other incentive constraints and solve the resulting relaxed problem by maxi-
mizing the virtual surplus state-by-state, the solution would always allocate
the object between the bidders e¢ ciently. Intuitively, selling to the ine¢ cient
bidder would yield information rents both to him and to the e¢ cient bidder
(who would buy it in resale), which is dominated by selling to the e¢ cient
bidder, eliminating the ine¢ cient bidder�s information rents. The solution
to the relaxed problem sells to the e¢ cient bidder if and only if his value
exceeds the optimal reserve price for him.
Unfortunately, the solution to the relaxed problem violates non-local in-

centive constraints: a reduction in the bid of the �strong� bidder would
sometimes give the object to the �weak�bidder rather than leave it unsold,
giving the strong bidder an incentive to underbid and then buy in resale. We
guess that the solution to the auctioneer�s full problem is the Vickrey auction
with reserves described by Ausubel and Cramton (1999, 2004). To establish
that this is indeed a solution, we construct Lagrange multipliers on the bind-
ing non-local downward incentive constraints such that maximization of the
Lagrangian yields the solution. Since there is an incentive constraint for each
type and each possible misreport, and a double continuum of such incentive
constraints is binding, our Lagrange multipliers are de�ned by a measure
over this double continuum. The Lagrangian, being a linear functional of
an allocation rule, can be written as the expected value of a function that
we label �modi�ed virtual surplus.� In the two-bidder case, we construct a
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product measure of Lagrange multipliers on the binding incentive constraints
that works for us, i.e., maximization of the resulting modi�ed virtual surplus
yields the optimal Vickrey auction with reserves.
In Section 5 we extend the approach to the case of many bidders. Some

additional complications arise because it becomes necessary to consider bind-
ing non-local downward incentive constraints both from a given type (when
this type is the highest-value bidder but may underreport to buy from an-
other bidder in resale) and to the same type (when this type is reported by
some higher type so as to concede the object to another bidder and buy it
from him in resale). This necessitates a somewhat more complex construction
of Lagrange multipliers. Under traditional regularity assumptions on value
distributions we can construct nonnegative Lagrange multipliers that yield a
Vickrey auction with reserves as an optimal auction. In Section 7 we show
that this auction sustains truthful bidding as an ex post equilibrium under
any resale procedure, and so it is robustly optimal with unknown resale.
Our approach also yields an iterative construction of the optimal bidder-

speci�c reserve prices in n-bidder Vickrey auctions with reserves. We illus-
trate this (in Section 6) for the case where bidders�values are distributed
uniformly with di¤erent upper limits. In this case, the optimal reserve price
to the kth bidder is obtained by solving a kth-degree equation, which cannot
be done analytically for k > 4 but is easily done numerically.

2 Setup

There are n bidders. Bidder i�s value for the object is �i, which is distributed
according to a c.d.f. Fi with a continuous strictly positive density fi on
support [0; 1].3 We write �i(�i) = �i� 1�Fi(�i)

fi(�i)
for the traditional virtual value

of type �i. Values are independent across bidders. We write � = (�1; : : : ; �n)
for the pro�le of values. The space of (possibly randomized) allocations is
X = fx 2 [0; 1]n :

P
i xi � 1g, where xi 2 [0; 1] is the probability of allocating

the object to bidder i.
To describe the general space of mechanisms with resale, in general we

need to think about how the mechanism in�uences resale. For example, the

3The assumption that the distributions have a common support is made for expositional
simplicity: in Section 6 below we argue that the results extend to cases in which the
supports� upper limits di¤er. The assumption of continuous density is also made for
expositional simplicity, but it will follow from assumption (A1) made in Section 5 below.

5



information disclosed by the mechanism will in general a¤ect the outcome
of resale. However, for simplicity we now restrict attention to resale proce-
dures in which all private information is revealed before resale (but after the
auction), and the resale outcome depends only on the allocation speci�ed by
the mechanism but not on any other features of the mechanism. For such
resale procedures, the expected post-resale payo¤ of bidder i net of payment
speci�ed in the mechanism can be written as a reduced-form function vi (x;�)
of the allocation x 2 X speci�ed by the mechanism and the bidders�value
pro�le �, with the total reduced-form payo¤s not exceeding the maximal total
surplus available in resale:P

i vi (x;�) � maxi �i �
P

i xi: (1)

We also require the resale procedure to be individually rational:

vi(x; �) � �ixi (2)

for each i.
We will specify a worst-case resale procedure of this form, but the optimal

mechanisms we identify will prove to be robust to a broader class of resale
procedures (described in Section 7 below).
If the designer knows the resale procedure and it is described by reduced-

form resale payo¤s, then we can appeal to the revelation principle and focus
on mechanisms where each bidder directly reports �i. Thus an auction is a
pair of measurable functions (�;  ), where

� � : [0; 1]n ! X speci�es the (possibly probabilistic) allocation rule;

�  : [0; 1]n ! Rn speci�es the payments.

An auction must satisfy the usual incentive compatibility and individual
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rationality constraints:4

E~��i [vi(�(�i; ~��i); �i; ~��i)�  i(�i; ~��i)] � E~��i [vi(�(�̂i; ~��i); �i; ~��i)�  i(�̂i; ~��i)] for all �i; �̂i;
(3)

E~��i [vi(�(�i; ~��i); �i; ~��i)�  i(�i; ~��i)] � 0 for all �i:
(4)

The seller�s expected revenue maximization problem is then

max
�:[0; 1]n ! X
 :[0; 1]n ! Rn

E~�

"X
i

 i(
~�)

#
subject to (3)-(4). (5)

3 The Must-Sell Case

In this section, we restrict attention to auctions that must sell the object
with probability 1. (For example, this could be motivated by the seller�s
prohibitively high cost of keeping the object.) Recall from Myerson (1981)
and McAfee and McMillan (1989) that if there is no resale, and if each
bidder�s virtual value function is increasing, the optimal auction allocates the
object to the bidder with the highest virtual value �i (�i). Thus, if bidders
have di¤erent distributions and therefore di¤erent virtual value functions,
the optimal auction misallocates the object. In particular, the auction is
biased towards �weaker�bidders, which are those with higher virtual value
functions. Intuitively, optimal misallocation trades o¤ reduction of bidders�
information rents against the reduction of the expected total surplus.
Now we turn to the analysis of auctions with resale, and make a guess

about a worst-case resale procedure: that the highest-value bidder learns the
values of everybody else and has full bargaining power. Let i�(�) denote the

4Individual rationality constraints (4) assume that the seller commits to not sell the ob-
ject when any bidder refuses to participate. Absent such a commitment, a non-participant
may be able to obtain a positive payo¤ by acquiring the object from the auction�s winner,
which would strengthen participation constraints. However, the optimal auction we con-
struct below will not require such a commitment �instead, it can treat non-participation
equivalently to reporting a zero value, and allocate the object to another bidder. The
reason is that participation constraints will only bind for zero-value bidders, who cannot
bene�t from resale when they do not participate.
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bidder with the highest value at pro�le �, breaking ties in favor of earlier-
numbered bidders (the choice of tiebreak is inconsequential). Then, each
bidder i�s reduced-form payo¤ is

vi(x; �) =

�
�ixi +

P
j 6=i (�i � �j)xj if i = i�(�);

�ixi otherwise.
(6)

Intuitively, this is a worst-case resale procedure because it gives bidders max-
imal information rents: by letting another bidder win and then buying from
the winner whenever this is e¢ cient, bidder i would get an expected infor-
mation rent equal to at least his expected marginal contribution to the total
surplus, E~�

h
max

n
~�i �maxj 6=i ~�j; 0

oi
.5 Given this, the expected revenue is

maximized by the Vickrey auction with no reserve, which achieves the lower
bound on bidders�information rents and at the same time maximizes total
surplus without any resale.
To complete the argument we only need to establish that a bidder can

always submit a bid that lets another bidder win with probability 1. Note
that bidding 0 may not accomplish this because the seller only needs to sell
with probability 1, and so can withhold the object if any bidder bids 0. Yet
the argument can be modi�ed to obtain the desired result:

Proposition 1. If the highest bidder learns all other values and the resale
payo¤s are given by (6) then the Vickrey auction with no reserve price is
optimal among all auctions that sell with probability 1.

Proof. Take any auction mechanism (�;  ) satisfying (3)-(4), and let

Ui (�i) = E~��i [vi(�(�i; ~��i); �i; ~��i)�  i(�i;
~��i)] (7)

be the interim expected payo¤ enjoyed by i when his type is �i. SinceP
j �j(

~�) = 1 with probability 1, there exists arbitrarily small �̂i > 0 such

that
P

j �j(�̂i;
~��i) = 1 with probability 1. By incentive compatibility (3),

for all �i,

Ui (�i) � E~��i [vi(�(�̂i; ~��i); �)�  i(�̂i;
~��i)]

� E~��i

�
max

�
�i �max

j 6=i
~�j; 0

��
� �̂i;

5 Note that the same argument would work if the highest-value bidder i = i� (�), when
he fails to win the object, would buy it back from the auction�s winner at the price equal
to the second-highest value maxj 6=i �j . This would be the appropriate model if the resale
procedure involved Bertrand competition among the auction�s losers to buy the object
from the winner.
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since vi(x; �) � max f�i �maxj 6=i �j; 0g whenever
P

j xj(�) = 1 and E~��i [ i(�̂i; ~��i)] �
�̂i by individual rationality (4). Therefore, we can write

E~�

"X
i

 i(~�)

#
= E~�

"X
i

vi(�(~�); ~�)

#
�
X
i

E~�i
h
Ui

�
~�i

�i
� E~�

h
~�i�(~�)

i
� E~�

X
i

�
max

�
~�i �max

j 6=i
~�j; 0

��
+
X
i

�̂i:

Since the �rst two terms describe the expected revenue in the Vickrey auction,
and �̂i > 0 can be chosen to be arbitrarily small, the result obtains.

Next, note that the Vickrey auction sustains truthful bidding and no
resale as an ex post equilibrium for any resale procedure. Indeed, note when
bidder i deviates downward and loses, he cannot buy the object in resale for
below the winner�s value, maxj 6=i �j, which is what he would pay for winning
the object in an auction, and conversely when bidder i deviates upward and
wins, he cannot resell the object for more than the highest loser�s value,
maxj 6=i �j, which is the price he would have to pay to win the auction. In
both cases he does no better than bidding his true value. (A more general
version of this result, inspired by Ausubel and Cramton (2004), is stated in
Section 7 below.)
This shows that the Vickrey auction attains the same expected revenue in

equilibrium (namely, the expectation of the second-highest value) regardless
of the resale procedure; and no other auction can guarantee higher expected
revenue, by Proposition 1. Thus, the Vickrey auction solves the seller�s
maxmin problem: it is a robustly optimal auction with unknown resale.6

4 Can-keep case: Two bidders

We now turn to our main focus: the optimal auction when the seller can
withhold the object. In this section we mainly study the problem with two
bidders, although some of the intermediate ideas we develop are useful for

6The argument above can be extended to multi-unit auctions. It can also be extended
to auctions with correlated values, provided that we also require robustness to information
disclosure before the auction. Thus, the proposition above can be stated for all such cases.
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any number of bidders, and will be stated in this generality. In the next
section, we fully extend the result to any number of bidders.
As in the previous section, we conjecture that the worst-case resale proce-

dure has the following form: after the auction, nature reveals all the bidders�
values to each other; and the highest-value bidder gets all the bargaining
power in resale, which yields reduced-form resale payo¤s given by (6). So
we can set up the mechanism design problem assuming this speci�c resale
procedure, and solve for the optimal mechanism. It will then turn out that,
for this mechanism, truthtelling (followed by no resale) is an ex-post equilib-
rium regardless of the resale procedure. Therefore, the mechanism we derive
actually solves the robust optimization problem.

4.1 Analysis: the relaxed problem

We begin by studying the relaxed problem for program (5) subject to (3)�
(4), which replaces (3) with the local �rst-order incentive compatibility con-
straints. For this purpose, note that by the envelope theorem of Milgrom
and Segal (2002, Corollary 1), incentive compatibility (3) implies that Ui is
absolutely continuous and its derivative is given almost everywhere by

U 0i(�i) = E~��i [v
0
i(�(�i;

~��i); �i; ~��i)]:

Here v0i denotes the derivative of vi with respect to �i, which is de�ned except
when there are ties in values (a probability-zero case), and takes the form
v0i(x; �) = xi + 1i=i�(�) �

P
j 6=i xj.

Since Ui(0) = 0 at the optimal mechanism (type 0�s participation con-
straints are binding), the interim expected payment of bidder i given type �i
is

E~��i [ i(�i; ~��i)] = E~��i [vi(�(�i; ~��i); �i; ~��i)]�
Z �i

0

E~��i
h
v0i(�(�̂i;

~��i); �̂i; ~��i)
i
d�̂i:

(8)
The usual integration by parts allows us to rewrite the objective (5) as

E~�

"X
i

 i(~�)

#
= E~�

"X
i

vi(�(~�); ~�)�
X
i

1� Fi(�i)

fi(�i)
v0i(�(

~�); ~�)

#
: (9)

The standard next step is to solve a relaxed problem: maximize (9) over
all allocation rules �, without worrying about (3). This can be done by
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maximizing the virtual surplus (the expression inside brackets) pointwise.
The solution must be a deterministic mechanism (with probability 1). At
any pro�le �, if we allocate to the high-value bidder i� = i�(�), the virtual
surplus is

�i� �
1� Fi�(�i�)

fi�(�i�)
= �i�(�i�):

If we allocate to some other bidder j 6= i�, then the v0i terms are nonzero
both for i = i� and for i = j, so we get

�i� �
1� Fi�(�i�)

fi�(�i�)
� 1� Fj(�j)

fj(�j)
:

This is less than the virtual surplus from allocating to i�. Hence, it is never
optimal to allocate ine¢ ciently: we either allocate to the highest-value bidder
i� or not at all. Intuitively, allocating to some non-high-value bidder j at
a type pro�le � concedes informational rents to higher types of j (who can
acquire the good by pretending to be �j, and then possibly resell it) as well as
for higher types of i� (who can buy the good back from j); whereas allocating
to the high-value bidder i� leaves rents to him only, and so is preferable for
the seller. Furthermore, we should allocate to the highest-value bidder i�

if and only if his virtual value is positive, i.e. his value is above ri�, where
ri = ��1i (0) is the optimal price for a monopolist selling to bidder i only.
The allocation rule is shown in Figure 1 for the case of two bidders.

Assume that r1 > r2. Transfers consistent with (8) can be achieved, for
example, using threshold prices: if i� is allocated the good, he is charged
maxfri� ;maxj 6=i�(�j)g; losers pay nothing.
With these payments, the auction would be incentive-compatible if there

were no resale. However, with resale, it violates incentive compatibility con-
straints (3). To see this, consider bidder 1�s type �1 2 (r2; r1). By telling
the truth, bidder 1 gets a payo¤ of 0, since he never gets the object (and
cannot get it from 2 in resale). However, he could report a lower type �̂1, in
which case 2 wins the object and then 1 can pro�tably buy it back in resale
if �2 2 (�̂1; �1). (This deviation is illustrated with a horizontal arrow in Fig-
ure 1.) Note also that while the relaxed solution could be slightly perturbed
to satisfy all local incentive constraints, by withholding the good whenever
j�2 � �1j < " for arbitrarily small " > 0, the resulting mechanism would still
be vulnerable to non-local deviations of the form described above. Thus,
in order to �nd the correct solution, we must consider non-local incentive
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Figure 1: Allocation rule from relaxed problem. 1 means allocate to bidder
1; 2 means allocate to bidder 2. In the remaining regions, the good is not
sold.
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constraints.7

4.2 Vickrey auction with reserves

Intuitively, to avoid this incentive to deviate and buy back, we might use
an allocation rule in which a lower bid never causes the auctioneer to sell
the object. (Ausubel and Cramton (1999) call this property monotonicity in
aggregate.) For example, we might try to �x the allocation rule by ��lling
in�the triangular region r2 < �2 < �1 < r1 in Figure 1, allocating to bidder
1 in this region (based on the above intuition that we prefer to allocate to
the high-value bidder or to nobody). Note, however that this solution can be
improved: since bidder 1 has a negative virtual value in the �lled-in triangle,
the seller would rather not sell to him. By raising the reserve price for bidder
2 above r2, she can shrink the size of this triangle, although doing so also
means missing out on pro�table sales to bidder 2. The optimal reserve price
trades o¤ these two e¤ects. This leads to an allocation rule of the form shown
in Figure 2.
This auction belongs to a class of auctions that we formally de�ne now.

De�nition 1 (Ausubel and Cramton 1999, 2004). A Vickrey auc-
tion with reserves is the auction mechanism parameterized by reserve prices
p1; : : : ; pn 2 [0; 1], de�ned as follows:

� Allocation rule:

�i (�) =

�
1 if i = i� (�) and �j > pj for some j;
0 otherwise.

� Payments:

 i (�) =

8<:
max fpi;maxj 6=i �jg if �i (�) = 1 and �j � pj for all j 6= i;
maxj 6=i �j if �i (�) = 1 and �j > pj for some j 6= i;
0 otherwise.

7This is in contrast to the standard screening setting, in which local incentive con-
straints imply global incentive compatibility (Archer and Kleinberg, 2014; Carroll, 2012).
Thus, our analysis of incentive compatibility with resale is technically closer to the analysis
of screening models without single crossing, in which global incentive constraints do bind
(Araujo and Moreira, 2010; Schottmuller, 2011).
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Figure 2: Allocation rule for Vickrey auction with reserves. 1 means allocate
to bidder 1; 2 means allocate to bidder 2. In the remaining regions, the good
is not sold.
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In words, if at least one bidder i beats his reserve price pi, then the
good is allocated to the high-value bidder, otherwise, the good is left unsold.
Importantly, since the reserve prices are asymmetric, a bidder i can win the
good without meeting his reserve price pi � if another bidder j with a lower
reserve has met his reserve pj.
The winner�s payments in the auction is constructed to be his �thresh-

old price��the minimal bid that would have allowed him to win. By the
standard argument, this ensures that the auction is strategy-proof without
resale. More importantly for us, as noted by Ausubel and Cramton (2004),
in Vickrey auctions with reserves it is an ex post equilibrium for bidders to
bid truthfully even if bidders believe resale will occur, for any beliefs about
the (individually rational) resale procedure and for any pro�le of values. To
see that the possibility of resale does not create any advantageous deviations,
note that when a deviation causes another bidder to win, the deviator would
need to pay at least the winner�s value to buy the object back, but he could
have instead acquired the object at this price by submitting a high bid in
the auction. On the other hand, if a bidder�s deviation causes him to win,
he would pay at least the others�highest value for the object, and would not
be able to resell it for a higher price.
It turns out that a Vickrey auction with reserves is the correct solution

to our optimization problem. In the remainder of this section we will sketch
the argument for the case of two bidders, leaving the general formal result
and proof for the next section.8

4.3 Optimal Reserve Prices

We now discuss how to identify the optimal reserve prices. Since the object
is always allocated to the higher-value bidder, the formula (9), expressing

8 The working paper by Ausubel and Cramton (1999) considered a standard auction
with the constraint that the good should only be sold to the highest-value bidder or not
at all (but without explicitly modeling resale), and derived the solution shown in Figure
1. They also observed that this auction invites deviations if there is resale. Their paper
then considered the problem of the optimal auction subject to monotonicity in aggregate,
as well as selling only to the highest bidder, and claimed (without proof) the Vickrey
auction with reserves as the solution in a special case with two bidders. Here, in contrast,
we derive the properties of monotonicity in aggregate and highest-bidder-only from the
maxmin problem of a seller who is concerned with revenue, rather than assuming those
properties. We also prove that this auction format is optimal, both with two bidders and
more generally.

15



revenue as the integral of virtual surplus, can be simpli�ed to

E~�
h
1
n
~�i � pi for some i

o
� �i�(~�)(~�i�(~�))

i
: (10)

Assume the optimal reserves satisfy p1 > p2 (this will turn out to be true,
given our assumption that r1 > r2). The e¤ect of bidder 1�s reserve price
p1 on the expected revenue occurs only when �2 < p2. Conditional on �2 in
this range, the expected revenue is given by R1 (p1) � p1 (1� F1 (p1)) (the
expected revenue on bidder 1 as a function of the price charged to him). By
assumption, this is maximized by setting p1 = r1.
As for the optimal reserve price for bidder 2, consider the e¤ects of raising

bidder 2�s reserve price p2 slightly to p2 + ". This change would have two
�rst-order e¤ects, both in the sliver �2 2 (p2; p2+"), the probability of which
is f2 (p2) ". The �rst e¤ect is to increase the expected revenue on bidder 1
from R1 (p2) to its maximal value R1 (r1). The second e¤ect is to reduce the
expected revenue on bidder 2 when �1 < p2 (thus with probability F1(p2)),
by not selling to him when �2 2 (p2; p2+"), by an amount equal to his virtual
value �2 (p2). The �rst-order condition for p2 equalizes these two e¤ects:

F1(p2)�2(p2) = R1(r1)�R1(p2): (11)

Note that (11) has a solution p2 2 [r2; r1] provided that �2 is nondecreas-
ing. Indeed, at p2 = r2, the left-hand side is zero and the right-hand side
is nonnegative, while at p2 = r1, the left-hand side is nonnegative and the
right-hand side is zero. Hence, existence obtains by the Intermediate Value
Theorem. We can also see that the solution is unique when �2 is strictly
increasing (which makes the left-hand side strictly increasing) and R1 is con-
cave (which makes the right-hand side nonincreasing on [r2; r1]).

4.4 Optimality of Vickrey with Reserves

To show that Vickrey with reserves is optimal, we need to make active use
of the non-local incentive constraints, since using only the local incentive
constraints gave us the incorrect solution in Figure 1 . For the two-bidder case
we will only need to use the non-local incentive constraints (3) for bidder 1.
Using the formula (8) for transfers, the constraints can be rewritten entirely
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in terms of the allocation rule:

S(�1; �̂1;�) (12)

�
Z �1

�̂1

E~�2 [v
0
1(�(� 1;

~�2); � 1; ~�2)] d� 1 � E~�2 [v1(�(�̂1; ~�2); �1; ~�2)� v1(�(�̂1; ~�2); �̂1; ~�2)] � 0:

We account for these constraints using a Lagrangian approach, by adding
extra terms to the objective function (9) to penalize violations of the con-
straints. Since there is a continuum of such constraints, the Lagrange multi-
pliers (weights) on the constraints must be described with some appropriately
constructed nonnegative measureM on [0; 1]� [0; 1]. Our Lagrangian then
takes the form

E~�

"X
i

vi(�(~�); ~�)�
X
i

1� Fi
fi(�i)

v0i(�(
~�); ~�)

#
+

ZZ
S(�1; �̂1;�) dM(�1; �̂1):

(13)
Because this Lagrangian is a bounded linear functional of the allocation

rule �, by the Riesz Representation Theorem (e.g., Royden 1988) it can be
written in the form

E~�

"X
i

�i(~�)�i(~�)

#
: (14)

We will refer to �i(�) as the �modi�ed virtual value�of bidder i. It combines
the ordinary virtual value and the terms coming from (12). Of course, �i(�)
depends on the choice of measureM. (For the types of measures proposed
below, an explicit formula for modi�ed virtual values appears in display (32)
in the appendix.)
Now, we show optimality of allocation rule � in the candidate solution

by constructing a measure M such that (�;M) is a saddle point of the
Lagrangian (13) (see Luenberger (1969), Theorem 2 on p. 221), i.e., the
following conditions hold:

(a) The allocation rule � maximizes the Lagrangian given measureM;

(b) The candidate solution with allocation rule � satis�es all incentive com-
patibility constraints;

(c) Complementary slackness: M puts zero measure on all constraints (12)
that are slack (hold with strict inequality) at �, i.e., the second term
in the Lagrangian (13) is zero. (Together with (b), this ensures that
given �, (13) is minimized by measureM.)
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To see the su¢ ciency of conditions (a)-(c) for optimality of the candidate
solution, note that the revenue from any alternative incentive-compatible
auction with allocation rule �0 will be at most the value of the Lagrangian
(13) at (�0;M), which by (a) is at most the value of the Lagrangian at
(�;M), which by (c) equals the revenue at �.
Regarding condition (b), the feasibility of Vickrey auctions with reserves

was already argued informally, and will be stated formally in Section 7 below.
Regarding condition (c), note that the constraints (12) that hold with

equality at the candidate solution are those with �̂1 � �1 and either �1; �̂1 �
p1 or �1; �̂1 � p1. (The constraints involving upward deviations are slack
because they carry the risk of getting the good at a price above value, and
the constraints from above p1 to below p1 are slack because those deviations
may cause the good to be unsold.) To ensure complementary slackness, the
support of M must be restricted to those constraints. But we can restrict
the support ofM further by observing that our Vickrey auction di¤ers from
the relaxed allocation rule in two ways: it sells to bidder 1 more often when
�1 2 (p2; p1), and it sells to bidder 2 less often when �1 < p2. This suggests
that we should focus on the binding constraints with �1 2 (p2; p1) and �̂1 < p2.
Thus we will look for a measure M with support [p2; p1] � [0; p2] (and any
such measure will automatically satisfy complementary slackness).
We construct a measure M(�1; �̂1) that takes the form of a product of

a marginal measure over �1 and another one over �̂1. We denote the two
measures�distribution functions by �(�1) and �̂(�̂1), respectively. The two
measures will be nailed down by two indi¤erence conditions in maximizing
the Lagrangian (13):

1. Indi¤erence between selling to bidder 2 and withholding the good when
�1 < �2 = p2, which dictates that bidder 2�s modi�ed virtual value at
these pro�les should be 0;

2. Indi¤erence between selling to bidder 1 and withholding the good when
�2 = p2 < �1, which dictates that bidder 1�s modi�ed virtual value at
these pro�les should be 0.

To see the necessity of these indi¤erences, note that the indi¤erence
should be broken in either direction with an arbitrarily small change in �2.
For condition #1, note that selling to bidder 2 when �1 < �2 = p2 a¤ects

the Lagrangian in two ways: adding the virtual value of agent 2, weighted by
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the density of � = (�1; p2), to the �rst part of (13), and inducing information
rents � 1�p2 for all types � 1 > p2 of bidder 1, integrated over � 1 with measure
� and weighted by �̂0(�1) (the density of �̂), to be subtracted from the second
part of (13). Thus, indi¤erence condition #1 takes the form

f1 (�1) �2 (p2) = �̂
0(�1)

Z p1

p2

(� 1 � p2) d� (� 1) for all �1 2 [0; p2] : (15)

Note, in particular, that the condition requires the density of �̂(�1) to be
proportional to the density f1(�1). Intuitively, this proportionality is neces-
sary to ensure that the sale�s e¤ect on tightening bidder 1�s non-local incen-
tive constraints binding to �1 (whose weight is proportional to the density
of �̂(�1)) exactly o¤set the e¤ect of adding bidder 2�s virtual value (whose
weight is proportional to the density f1 (�1) of bidder 1�s type distribution).
By rescaling � and �̂ by constants, without loss of generality we can let the
proportionality factor be 1, so �̂(�̂1) = F1(�̂1).
Now we turn to indi¤erence condition #2. One way of understanding

this condition is to condition on �2 = p2, so that the allocation is a function
of �1 only. A seller trying to maximize this conditional Lagrangian should
then be indi¤erent across many such allocation rules. In particular, setting
any reserve price p 2 [p2; p1] creates an alternative allocation rule, which
allocates to 1 when �1 > p, and does not allocate at all when �1 � p. The
conditional Lagrangian maximizer should be indi¤erent between any such
allocation rule and the actual allocation rule used in the Vickrey auction.
Note that this observation depends on indi¤erence condition #1, to ensure
the seller is willing to withhold the good when �1 < p2.
Now, imagine the conditional-Lagrangian-maximizing seller starting from

a reserve of p1 and changing to any other reserve p 2 [p2; p1]. The indi¤er-
ence means that the loss in the expected pro�t on bidder 1 (represented by
the �rst term of the conditional Lagrangian), R1 (p1)�R1 (p), should be ex-
actly o¤set by the newly created weighted slack of the non-local incentive
constraints (the second term of the conditional Lagrangian). The slack in-
centive constraints are now those from �1 2 [p; p1] to �̂1 < p: indeed, any such
incentive constraint is now slack by �1 � p, since the deviation would cause
the good to be unsold. Integrating over those constraints with measures �
and �̂ yields the equation

�̂ (p)

Z p1

p

(�1 � p) d� (�1) = R1 (p1)�R1 (p) : (16)
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Recall from the above that �̂ is supported on [0; p2], and �̂ (p) = �̂ (p2) =
F1 (p2) for p > p2. Di¤erentiating both sides of (16) yields

�F1 (p2)
Z p1

p

d� (�1) = �R01 (p) .

Taking into account that the integral in the above display equals � (p1) �
� (p), we obtain

�(p1)� �(�1) = R01(�1)=F1(p2) for �1 2 [p2; p1] :

This equation describes the measure �. Note that � is nondecreasing, and
so the constructed weight measure really is nonnegative, when function R1
is concave.
Also, plugging in this � into (15) and integrating by parts yields the

�rst-order condition (11) for p2.
To complete the proof of optimality of the Vickrey auction with reserves,

it remains to check condition (a) �that the Lagrangian is maximized by the
candidate solution. For this, we can use the Lagrangian expressed by means
of modi�ed virtual values, (14). We need to check that the proposed Vickrey
auction with reserves maximizes the modi�ed virtual value for every pro�le
(�1; �2), and not just when �2 = p2 and �1 � p1, which we have already
checked. This is some work but is reasonably straightforward.

5 Can-Keep Case with Many Bidders

We now proceed to the general setting with n bidders. In this section we
make the following assumptions on bidders�value distributions (in addition
to those made in Section 2):

A1. Both Fi and 1� Fi are log-concave for each i.

A2. �1 (�) � : : : � �n (�) for all �.

Note that the latter part of (A1) is the usual monotone hazard rate as-
sumption. Both parts of (A1) are satis�ed, in particular, when the density
fi is log-concave, which is satis�ed by many standard distributions (Bagnoli
and Bergstrom 2005). Note also that (A1) is not nested with the assumption
used in the previous section that the revenue function Ri (�) = � (1� Fi (�))
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is concave. This leads us to believe that (A1) is not the weakest possible
assumption, but it yields the result in a simple way.
Assumption (A2) is equivalent to requiring that the distributions Fi be

ordered from �stronger�to �weaker�under the hazard rate ordering; for ex-
ample, it ensures that in the absence of resale, the optimal auction would al-
ways discriminate against the stronger bidders (McAfee and McMillan 1989),
and the optimal bidder-speci�c reserve prices would satisfy r1 � : : : � rn.
We begin with a characterization of the candidate optimal auction, which

is a Vickrey auction with reserve prices. We characterize the optimal reserve
prices p1; : : : ; pn. Then we establish the optimality of this auction, not just
among Vickrey auctions with reserves, but among all possible auctions.

5.1 Characterization of Candidate Optimal Auction

As a �rst step toward de�ning the optimal reserve prices, de�ne Rk(p), for
any k = 1; : : : ; n and any price p, to be the expected revenue from a Vickrey
auction in which only the �rst k bidders participate and all participants face
the same reserve price p. Also de�ne R0(p) = 0.
Now, recursively de�ne a weakly decreasing sequence of reserve prices pk,

and a sequence of revenue levels R�k for k = 1; : : : ; n, by initializing p0 = 1
and R�0 = 0 and letting for all k � 1,

R�k = Rk (pk) + Fk (pk)
�
R�k�1 �Rk�1 (pk)

�
(17)

= max
p2[0;pk�1]

�
Rk (p) + Fk (p)

�
R�k�1 �Rk�1 (p)

�	
: (18)

Inductively, R�k for k � 1 is the revenue from a Vickrey auction on bidders
1; : : : ; k with reserves p1; : : : ; pk. To see that it satis�es formula (17), compare
this asymmetric Vickrey auction to the symmetric Vickrey with reserve pk.
Notice that the two auctions di¤er only when bidder k�s value is below pk,
which happens with probability Fk(pk). In this case, the former auction
reduces to an auction on the �rst k � 1 bidders with reserves p1; : : : ; pk�1,
yielding expected revenue R�k�1; and the latter is an auction with symmetric
reserve pk on the �rst k� 1 bidders, yielding revenue Rk�1(pk). (18) requires
that pk 2 [0; pk�1] be chosen to maximize expected revenues.
We proceed to characterize the reserve prices solving (17)-(18) by means

of �rst-order conditions. If the maximization problem (18) has an interior
solution pk, it has to satisfy the �rst-order condition

�k (pk)
Y

j<k
Fj (pk) = R�k�1 �Rk�1 (pk) .
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Intuitively, increasing pk by " only matters when �k 2 (pk; pk + ") and �j < pj
for all j > k, and in that case it has two �rst-order e¤ects: (i) on the expected
revenue from bidder k, when all other bidders�values are below pk, and (ii)
on the expected revenue from the k � 1 strongest bidders, changing it from
Rk�1 (pk) (obtained when bidder k beats his reserve price) to R�k�1 (obtained
when bidder k does not beat his reserve price). The �rst-order condition
equalizes those two e¤ects.
The �rst-order condition can be rewritten in the form

�k (pk) = H (pk) , (19)

where the function H is de�ned on p 2 [pn; 1) by

H (p) =
R�k�1 �Rk�1 (p)

�j<kFj (p)
for p 2 [pk; pk�1), k = 1; : : : ; n. (20)

Furthermore, the following lemma (proven in the appendix) shows that
the reserve prices de�ned by (17)-(18) must be positive and must satisfy the
�rst-order conditions (19) even if (18) has a corner solution, and uses these
�rst-order conditions to o¤er a useful characterization of optimal reserve
prices.

Lemma 1. Under assumptions (A1)-(A2), there exists a unique nonincreas-
ing sequence p1; : : : ; pn satisfying (17)-(18). This sequence, and the function
H : [pn; 1) ! R de�ned by (20), are jointly characterized by the following
three properties:

(i) H is continuous,

(ii) pk > 0 and (19) holds for each k � 1,

(iii) for p 2 [pk; pk�1], for each k � 2,

H (p) =
1

�j<kFj (p)

"
(�j<kFj (pk�1)) �k�1 (pk�1)�

Z pk�1

p

(�j<kFj (�))
X
j<k

fj (�) �j (�)

Fj (�)
d�

#
;

(21)
and for p 2 [p1; 1), H(p) = 0.

Furthermore,
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(iv) the function H is nonincreasing, and

(v) the reserve prices satisfy pk � rk for each k (with equality for k = 1).

Proof. The lemma follows from the following claims:

Claim 1. There exist reserve prices satisfying (17)-(18).

Claim 2. When reserve prices satisfy (17)-(18) and the function H is de-
�ned by (20), properties (i)-(iii) hold.

Claim 3. When properties (i)-(iii) hold, property (iv) also holds.

Claim 4. There is a unique price sequence p1; : : : ; pn and a corresponding
function H such that properties (i)-(iv) hold. These prices satisfy (v).

The claims are proven in the Appendix.

Properties (i)-(iii) can be used for an iterative construction of optimal
reserve prices, as follows: First, we must have p1 = r1, since this value solves
(18) for k = 1. Then we iterate on k � 2 as follows: Given pk�1, formula
(21) describes H (p) on the interval p 2 [pk; pk�1], and then pk is the unique
solution to equation (19). This construction is illustrated in Section 6 below
for the case in which bidders�value distributions are uniform with di¤erent
supports.

5.2 Optimality of the Auction

The maximization in (18) suggests that pk is the optimal reserve for bidder
k, taking as given the reserves p1; : : : ; pk�1 of the stronger bidders and given
the constraint pk � pk�1. Now we show that the constraint does not bind and
this is indeed the optimal auction � and not just among Vickrey auctions
with reserves, but among all possible auctions:

Theorem 1. Under assumptions (A1)-(A2) and the resale procedure de-
scribed in (6), the Vickrey auction with reserves p1; : : : ; pn characterized
above is an optimal auction for the seller (and the optimal revenue is R�n).

9

9This auction is also optimal under the alternative resale assumption in footnote 5.
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A full proof of the theorem is given in the appendix, but here we describe
the key steps of the proof and develop some intuition. Just as in the two-
bidder case, the theorem is proven by constructing Lagrange multipliers on
non-local incentive constraints in such a way that the saddle-point conditions
(a)-(c) listed in Section 4 are satis�ed. With n bidders, we use Lagrange
multipliersMi(�i; �̂i) for the incentive constraints of bidders i = 1; : : : ; n�1.
Similarly to (12), the incentive constraints can be written as

Si(�i; �̂i;�)

�
Z �i

�̂i

E~��i [v
0
i(�(� i;

~��i); � i; ~��i)] d� i � E~��i [vi(�(�̂i; ~��i); �i; ~��i)� vi(�(�̂i; ~��i); �̂i; ~��i)] � 0;

and the Lagrangian takes the form

E~�

"X
i

vi(�(~�); ~�)�
X
i

1� Fi (�i)

fi(�i)
v0i(�(

~�); ~�)

#
+
n�1X
i=1

ZZ
Si(�i; �̂i;�) dMi(�i; �̂i):

(22)
An important di¤erence from the two-bidder case is that it is no longer

possible to restrict attention to multipliers that take a product form �i(�i)�
�̂i(�̂i). The reason is that for each bidder i < n there will be a range of types
�i where the non-local incentive constraints both for higher types to imitate �i,
and for �i to imitate lower types, are binding. This means that in a product
form, the supports of the marginal distributions of �i and �̂i would have to
overlap, meaning that some upward incentive constraints are binding, which
is inconsistent with complementary slackness because all upward non-local
incentive constraints are slack in our candidate optimal auction.
It turns out that the correct weights have just a slightly more general

form: a product measure �i� �̂i on [0; 1]� [0; 1], restricted to the half-plane
�̂i � �i. The support of �i will be [pn; pi] and the support of �̂i will be
[0; pi]. As before, we will use �i and �̂i to denote the distribution functions
of the respective measures. (The weights constructed here would also work
for bidder i = 1 in two-bidder case, establishing the result under assumptions
(A1)-(A2) instead of concavity of R1.)
Now we describe informally the construction of the distributions �i and

�̂i, using modi�ed versions of the arguments developed for the two-bidder
case. First, we argue that the distribution �̂i should be proportional to the
bidder�s value distribution Fi restricted to [0; pi], and so without loss we nor-
malize �̂i = Fi. Just as in the two-bidder case, proportionality is necessary in
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order to exactly balance the e¤ect of bidder i�s non-local incentive constraints
into all �i < pi on allocating the object to other bidders against those bid-
ders�virtual values, so that the other bidders�allocation in the region where
bidder i does not win and does not beat his reserve price is not contingent
on �i.
Next, we can derive the distributions �i by a calculation that is similar

to that used in the two-bidder case, but a bit trickier. Namely, to derive
�i(�i), where �i 2 (pk; pk�1) for some k > i, we use the observation that
the maximizer of the Lagrangian (22) should be indi¤erent between allocat-
ing to the highest-value bidder and not allocating at all at any type pro�le
(�1; : : : ; �n) at which �j = pj for bidders j � k and �j 2 (pn; pj) for bidders
j < k. (This indi¤erence must hold, because if any bidder j < k has his bid
perturbed slightly upward, the candidate optimum must allocate to the high
bidder; if slightly downward, the good must be left unsold.) In particular,
this implies that once we condition on �j = pj for j � k, the conditional
Lagrangian maximizer is indi¤erent to changing the reserve prices for the
�rst k � 1 bidders, as long as the new reserve price for each bidder j lies in
the interval [pn; pj].
Speci�cally, we consider setting a reserve q 2 (pk; pk�1) for a bidder i < k

and a reserve p 2 [q; pk�1) for all other bidders j < k, j 6= i. Let �Rik�1 (p; q)
denote the expected revenue from the resulting Vickrey auction for the k� 1
strongest bidders. The Lagrangian indi¤erence means that the loss in the
expected revenue �the �rst term of the Lagrangian (22), R�k�1� �Rik�1 (p; q),
should be exactly o¤set by the second term in (22), which is the weighted
slack created in agents�non-local incentive constraints.
The created slack in the non-local incentive constraints of a bidder j < k

involves constraints from every �j above his new reserve price to every �̂j
below his new reserve price when bidding �j would give the object to this
bidder while bidding �̂j would cause it to be unsold. For bidder i, the slack is
the bidder�s expected payo¤ loss from a deviation from �i > q to any �̂i < q.
This payo¤ loss arises only when the highest bid of the other k� 1 strongest
bidders, ~�

� � maxj<k;j 6=i ~�j, is below both �i and p, so bidder i�s bid of �i
makes him win while his bid of �̂i < q causes the good to be unsold. This
payo¤ loss can be written by accounting both for states in which bidding �i
makes him win and pay q and for states in which bidding �i makes him win
and pay ~�

�
:

si (�i; q; p) = F � (q) � (�i � q) + E~��
h
1q<~��<minfp;�ig �

�
�i � ~�

��i
;
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where F � denotes the c.d.f. of ~�
�
.

For bidders j 6= i, j < k, we will not derive the slack exactly, but note
that it occurs only when �i < q, and in this event it is independent of q, hence
the weighted expected slack takes the form Fi (q)Qj (p) for some function Qj.
Adding up yields the equation

�̂i (q)

Z pi

0

si (�i; q; p) d�i (�i)+
X

j<k;j 6=i

Fi (q)Qj (p) = R�k�1� �Rik�1 (p; q) . (23)

Now we divide both sides of (23) by �̂i (q) = Fi (q) and di¤erentiate with
respect to q at q = p. On the left-hand side of (23) we obtainZ pi

0

@si (�i; q; p)

@q
d�i (�i)

����
q=p

= �F � (p)
Z pi

p

d�i (�i) = �F � (p) [�i (pi)� �i (p)] :

On the right-hand side of (23) we obtain

@

@q

�
R�k�1 � �Rik�1 (p; q)

Fi (q)

�����
q=p

= �
fi (p)

�
R�k�1 � �Rik�1 (p; p)

�
F 2i (p)

�
�
@ �Rik�1 (p; q) =@q

���
q=p

Fi (p)
:

Now note that �Rik�1 (p; p) = Rk�1 (p) and that @ �Rik�1 (p; q) =@q
��
q=p

= �F � (p) fi (p) �i (p)
(this is the �rst-order e¤ect on the expected virtual surplus of agent i, while
the e¤ect on the expected virtual surplus of the other agents is second-order
since it only occurs when q < ~�i < ~�

�
< p, the probability of which is

O
�
(p� q)2

�
). Thus we obtain the equation

F � (p) [�i (pi)� �i (p)] =
fi (p)

Fi (p)

�
R�k�1 �Rk�1 (p)

Fi (p)
� F � (p) �i (p)

�
:

Dividing both sides by F � (p) =
Q
j<k;j 6=i Fj (p) and using (20) yields

�i(pi)� �i(p) =
fi(p)

Fi(p)
[H (p)� �i(p)] : (24)

Intuitively, the reason functionH appears in the construction of �i is that,
as suggested by the �rst-order condition (19) for optimal reserve pricing,
H (p) describes the total shadow weight of all bidders�non-local incentive
constraints involving deviations to just below p and then buying from the
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winner, which would be tightened if we sell to a bidder i when his value is p.
One way to interpret (24) is by writing it as

�i(p)�H (p) +
Fi(p)

fi (p)
[�i(pi)� �i(p)] = 0:

In the proof, we show that the left-hand-side expression is the modi�ed virtual
value of selling to agent i (recall equation (14)) when his value is p and he
is the highest bidder. The �rst term is the usual virtual value of agent i.
The second term, H (p), is the total shadow weight of all agents�non-local
incentive constraints that would be tightened by selling to bidder i when
his value is p. The third term is the shadow weight of agent i�s non-local
incentive constraint from values above p into values below p, which are all
relaxed by selling to agent i when his value is p (since this raises the utility
of all types above p without changing the utility of any types below p). This
shadow weight is therefore the measure of the event �̂i < p < �i, which is
�̂i (p) [�i(pi)� �i(p)] (recall that �̂i (p) = Fi (p)), divided by fi (p) so that
upon taking take expectation over bidder i�s values we obtain the integral
with the Lagrange multiplier measure. The equation says that the modi�ed
virtual value should be zero, so that the sale to agent i can be conditioned
on whether another bidder has met his reserve price.
We can show that (24) indeed describes a nonnegative measure:

Lemma 2. Under assumptions (A1)-(A2), the function �i de�ned by

�i(�i) =

8><>:
0 if �i < pn;
fi(pn)
Fi(pn)

[H(pn)� �i(pn)]� fi(�i)
Fi(�i)

[H(�i)� �i(�i)] if �i 2 [pn; pi];
fi(pn)
Fi(pn)

[H(pn)� �i(pn)] if �i > pi

is nondecreasing.

Proof. Consider �i 2 [pn; pi]. Observe that �i is nondecreasing by log-
concavity of 1� Fi and H is nonincreasing by Lemma 1(iv), hence H (�i)�
�i(�i) is nonincreasing and in particular H (�i)� �i(�i) � H(pi)� �i(pi) = 0.
Also, log-concavity of Fi means that

fi(�i)
Fi(�i)

is nonincreasing, and putting to-
gether, we see that �i(�i) is nondecreasing on �i 2 [pn; pi]. Finally, by con-
struction �i (�i) = �i (pn) for �i < pn and �i (�i) = �i (pi) for �i > pi.
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The last step of the proof of Theorem 1, just as in the two-bidder case, is
to show that with the constructed Lagrange multipliers, our Vickrey auction
with reserves maximizes the modi�ed virtual value (recall (14)) at every type
pro�le �: that is, that the modi�ed virtual value of a non-highest-value bidder
is always lower than that of the highest-value bidder, and that when every
bidder�s value is below his reserve, all bidders�modi�ed virtual values are
negative.

6 Example: Uniform Distributions

In this section we apply the results to the setting in which the value distrib-
ution of each bidder i is uniform on [0; ai], with di¤erent upper limits ai. At
�rst glance the analysis is inapplicable to this setting because it has assumed
that all distributions have the same support. However, the analysis can be
extended to supports with di¤erent upper limits, by formally de�ning bidder
i�s virtual value for �i > ai to be �i (�i) = �i to avoid the 0/0 division in
that region while ensuring continuity. Note that with di¤erent upper limits,
assumption (A2) requires that a1 � : : : � an:
With di¤erent upper limits it is possible that the reserve price pk of bidder

k satis�es pk � ak. Note that in this case by Lemma 1(ii) we have

H (pk) = �k (pk) = pk = �j (pk) for all j � k;

and therefore pj = pk � aj for all j � k. Therefore, in this case bidder k as
well as all the weaker bidders are excluded from the auction.
For the case of uniform distributions, formula (21) can calculated as

Hk (p) =

�
pk�1
p

�k�1 "
2

k
pk�1 +

1

k � 1
X
j<k

aj � ak�1

#
+
2 (k � 1)

k
p� 1

k � 1
X
j<k

aj

for p 2 [pk; pk�1] :

Then pk is given by equation (19). If bidder k is not excluded from the
auction, then �k (pk) = 2pk � ak and (19) can be expressed as�

pk
pk�1

�k�1 "
2

k
pk +

1

k � 1
X
j<k

aj � ak

#
=
2

k
pk�1 +

1

k � 1
X
j<k

aj � ak�1: (25)
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This is a kth-degree equation for pk, so for k � 5 it needs to be solved
numerically. To check whether bidder k is excluded, it su¢ ces to evaluate
the left-hand side of (25) at pk = ak: since it is an increasing function of pk, if
at pk = ak it exceeds the right-hand side of (25) then the equation�s solution
is below ak and bidder k is not excluded, otherwise bidder k is excluded (and
so are all the weaker bidders).
For example, for two bidders, we have p1 = a1=2 and equation (25) for

k = 2 takes the form

p2 [p2 + a1 � a2] = p21 = a21=4:

Bidder 2 is excluded if a2a1 � a21=4, or a2 � a1=4. Otherwise, the optimal p2
is given by the positive root of the above quadratic equation:

p2 =
1

2

�q
a21 + (a1 � a2)

2 � (a1 � a2)

�
:

7 Resale-Proofness of Vickrey with Reserves

We now wrap up by giving the complementary result to Theorem 1, showing
that any Vickrey auction with reserves is robust to resale: truthful bidding is
an ex-post equilibrium under any resale procedure. Together with Theorem
1, this means that a Vickrey auction with reserves yields the best possible
revenue guarantee that is robust to the resale procedure.
The analysis of this section largely follows Ausubel and Cramton (2004),

who also considered a more general setting of multi-unit auctions with inter-
dependent values. We o¤er this material in part for the sake of completeness,
and in part to be clear about the general class of resale payo¤s that we model.
Speci�cally, we allow that bidders�values may not be publicly revealed

before resale takes place (relaxing the implicit assumption of full-information
resale made in Section 2). In that case, the continuation equilibrium of the
resale game may depend on bidders�beliefs about each other�s values, which
in turn are a¤ected by their reports �̂1; : : : ; �̂n in the auction. Therefore,
we describe the payo¤ that bidder i receives in post-auction bargaining by a
function

vi(x; �̂1; : : : ; �̂n; �1; : : : ; �n);

where �1; : : : ; �n are the bidders�true values, �̂1; : : : ; �̂n are the values that
were reported in the auction, and x was the allocation chosen by the auc-
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tion.10 This formalism lets us distinguish the dependence of i�s payo¤ on �̂j
(which can in�uence the bidders�beliefs about j�s type at the time bargaining
begins11) from the dependence on �j (which can in�uence how j actually be-
haves in bargaining). We will show that Vickrey auctions with reserve prices
are robust even if post-auction bargaining can take place under asymmetric
information. Relatedly, we also allow a player j with value �j to behave
di¤erently in the bargaining continuation after he has deviated than after he
has truthfully reported his value.
So a resale procedure is described by a pro�le of functions v1; : : : ; vn :

X � [0; 1]2n ! R, satisfying the conditions that total resale payo¤s do not
exceed the total surplus available among the bidders:

X
i

vi(x; �̂; �) � (max
i
�i) �

 X
i

xi

!
(26)

for all x; �̂; �, and are individually rational :

vi(x; �̂; �) � �ixi (27)

for all x; �̂; �.

10Note that instead of explicitly modeling the post-auction bargaining game, we continue
using reduced-form payo¤s to represent what would happen in resale. The ideal modeling
approach would be to have post-auction bargaining explicitly modeled as a noncooperative
game. The ideal theorem would then say that for any such game, the composite game,
consisting of the auction followed by bargaining, has an equilibrium where the bidders are
always truthful. However, this theorem will only be true if we impose some individual
rationality restrictions on bargaining o¤ the equilibrium path (i.e. after some bidder has
misreported his value). One way to impose such a restriction would be to specify that
in the bargaining game, each bidder should have access to a �non-participation�strategy.
However, then our robustness requirement is too weak: any auction that is incentive-
compatible without resale � in particular the Myerson (1981) optimal auction � is �robust
to resale�in this sense, because there is an equilibrium in which every agent always bids
truthfully in the auction and then never participates in resale.
A way to strengthen the requirement would be to impose some kind of perfection or

sequential rationality requirement on the resale procedure. However, we then need to limit
the resale procedures to ensure that such an equilibrium always exists, and we run into
thorny problems of guaranteeing perfect equilibrium existence in games with in�nite type
and action spaces (see Myerson and Reny, 2015).
11To be explicit about these beliefs we would want to also specify the disclosure rule

used in the auction. We avoid modeling this, simply allowing the e¤ects of disclosure to
be implicitly captured by the vi�s.
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Note that (27) is an ex post individual rationality constraint: the inter-
pretation is that at the end of the bargaining, a deal (possibly probabilistic)
is revealed, and then each player still has the option of walking away and
keeping the allocation he received in the auction.
We will say that �no resale occurs� if vi(x; �̂; �) = �ixi for all i (note

that this allows resale that does not a¤ect payo¤s, i.e., between bidders who
value the object equally). Note in particular that (26) and (27) imply that
if either (a) x is e¢ cient with respect to the true values, or (b) the good is
not allocated (xi = 0 for all i) then no resale occurs. Thus, if bidders have
been truthful in a Vickrey auction with reserves then no resale will occur.
However, this in itself does not guarantee that bidders who anticipate resale
do not have advantageous deviations from truthtelling (recall the solution to
the relaxed problem in Subsection 4.1). Yet, this turns out to be true for
Vickrey auctions with reserves (the proof is in the Appendix):

Theorem 2. Consider a Vickrey auction with reserves p1; : : : ; pn. Then, for
any individually rational resale payo¤s satisfying (26) and (27) it is an ex
post equilibrium for all bidders to reveal their values truthfully (followed by
no resale in equilibrium).
Formally, for any values �1; : : : ; �n, and any possible deviation �̂i for any

bidder i,

�i�i(�)�  i(�) � vi(�(�̂i; ��i); �̂i; ��i; �)�  i(�̂i; ��i): (28)

Note that we obtain only ex post equilibrium here, not dominant strate-
gies as we would in Vickrey auctions without resale. To see this concretely,
imagine that there are two bidders, no reserve prices, and bidder 1 expects
2 to bid higher than his true value. Then, under our resale procedure (6), 1
has an incentive to underbid and make 2 win, since if 1 wins the object in
the auction he has to pay 2�s (exaggerated) bid, whereas to buy it in resale
he only has to pay 2�s true value. Thus, truthful bidding is not a dominant
strategy. This is to be expected since our setting is one of interdependent
values (compare Perry and Reny (2002) or Chung and Ely (2006)).

8 Conclusion

We have given here a model of an asymmetric, single-object auction in which
the possibility of resale eliminates any bene�t to the seller from conducting
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a biased auction. Under our robust revenue criterion, the optimal auction is
a Vickrey auction with asymmetric reserves, which either allocates the good
e¢ ciently, or does not allocate it at all (when all bidders are below their
reserve prices). We have also shown how to recursively compute the optimal
reserves.
Aside from the direct implementation, a Vickrey auction with reserves

can also be implemented as a �deferred acceptance� clock auction of the
kind described by Milgrom and Segal (2015). In this implementation, the
auction o¤ers the same ascending price to all bidders, letting them either
accept the price or exit at any point, and stopping when both (i) there is
a single bidder who is still accepting the current price, and (ii) at least one
bidder (not necessarily the one who is still bidding) has ever accepted a price
above his reserve price. (Note, however, that one advantage of the clock
auction format � its obvious strategy-proofness (Li, 2016) �does not hold
when resale is possible.)
We now conclude by brie�y outlining some possible criticisms and future

directions.
One might take issue with our worst-case model, in which the bidders

are uninformed about each other�s values before the auction yet exogenously
become informed after the auction. One possible defense of our approach
is that additional information may be revealed after the auction (for exam-
ple, through the bargaining procedure itself; buyers�bargaining power might
be correlated with their values). Our worst-case model is simply an ex-
treme case, in which enough information is revealed to allow the high-value
buyer to perfectly infer the auction winner�s value. Another defense is that
we could have instead written down a model in which the seller has even
broader robustness concerns, allowing for bidders to learn about each other
both before and after the auction, as well as allowing for resale. Since in
a Vickrey auction with reserves, truthful bidding is an ex post equilibrium,
these auctions satisfy this additional form of robustness. Thus, the robust-
ness to pre-auction information comes �for free,�without needing to require
it explicitly in the seller�s problem.
Still, it may also be interesting to ask what the best robust auction is if

the seller knows that bidders never learn each other�s values, so any resale
procedure must be Bayesian incentive-compatible. We know from Calzolari
and Pavan (2006) that Myerson�s optimal biased allocation is generically not
implementable even for a given Bayesian incentive compatible resale proce-
dure. In particular, since resale can take advantage of information inferred
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by bidders from the auction (at a minimum, each bidder learns whether he
wins the object), this information must be considered in auction design. In
particular, we do not know whether the seller could robustly improve upon
Vickrey auctions with reserves if no information is revealed to bidders beyond
the auction�s outcome.
Also, while we have assumed the worst case with respect to resale proce-

dures, we have nonetheless assumed that the seller gets to choose the equi-
librium played by the bidders (as is usual in mechanism design). It is known
that Vickrey auctions can have many equilibria when resale is possible, in-
cluding ones that are ine¢ cient and have lower revenue than the truthful
equilibrium but are preferred by all bidders (Garratt and Tröger, 2006; Gar-
ratt, Tröger, and Zheng, 2009). We expect the same in our auction. It is
an open question whether the Vickrey auction with reserves can be modi�ed
in a way that makes its expected revenue guarantee robust to equilibrium
selection.12

Finally, we have presented here a model in which resale can occur only
because the outcome of the auction was ine¢ cient. In practice, however,
resale can occur for many reasons, and it would be natural to consider robust
auction design for situations where resale is socially desirable: for example,
buyers are uncertain about their values and will learn more about them after
the auction; or, buyers anticipate �ow bene�ts from owning the object, and
the buyer with the highest value immediately after the auction may not be
the one with highest value farther in the future. Presumably the optimal
auctions in such models would involve resale occurring in equilibrium.

9 Appendix: Proofs

9.1 Proof of Lemma 1

We prove the four claims listed in the text.

12Without resale, robustness to equilibrium selection as well as stronger forms of bidder
collusion can be achieved: La¤ont and Martimort (1997) and Che and Kim (2006) show
how any Bayesian incentive-compatible auction, including Myerson�s (1981) optimal auc-
tion, can be implemented in a way that is robust to any Bayesian incentive-compatible
collusion among the bidders. Evidently, resale allows many new possibilities for collusion.
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9.1.1 Proof of Claim 1

The claim follows from the continuity of the objective function in (18), which
can be shown by standard arguments.

9.1.2 Proof of Claim 2

We show properties (i)-(iii) in turn:

(i) At p 2 (pk; pk�1), H (p) is continuous due to continuity of Rk�1 (p). At
p = pk, H is continuous by (17).

(ii) First we argue that the derivative of the expected revenue Rk(p) in
the Vickrey auction with symmetric reserve p is given by the following
formula:

R0k(p) = �
kX
i=1

0BB@ kY
j=1
j 6=i

Fj(p)

1CCA fi(p)�i(p): (29)

Indeed, as in (9), the revenue of any auction is the integral of virtual
surplus over the region where the object is sold; in this case that is
simply the region f�j�i � p for some ig. As p increases marginally, this
region shrinks by losing the surface where one bidder�s value is p and
all other bidders�values are below p. Therefore, the derivative of Rk
is the negative of the integral of virtual surplus over this surface. For
each bidder i, there is one portion of the surface where i�s value is p
(and other bidders are below p), and the virtual surplus is �i(p).

Now, we show that property (ii) holds, and in addition that R�k >
Rk (0), by induction on k � 1. This holds for k = 1, as the optimal
price must satisfy p1 2 (0; 1) to achieve revenue R�1 > R1 (0) = 0,
and must satisfy the �rst-order condition �1 (p1) = H (p1) = 0. Now,
suppose that the inductive hypothesis holds for k � 1. Using (29),
express

R0k (p) = Fk (p)R
0
k�1 (p)�

 
k�1Y
i=1

Fi (p)

!
�k (p) fk (p) ;
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and calculate the derivative of the objective function in (18) for p 2
[0; pk�1] as

Dk (p) � R0k (p) + fk (p)
�
R�k�1 �Rk�1 (p)

�
� Fk (p)R

0
k�1 (p)

= fk (p)
�
R�k�1 �Rk�1 (p)� �k (p)

Qk�1
i=1 Fi (p)

�
.

In particular, Dk (0) = fk (0)
�
R�k�1 �Rk�1 (0)

�
> 0 by the inductive

hypothesis for k � 1, and therefore we have R�k > Rk (0) and pk > 0.

Now we can express

Dk (pk) = fk (pk) (H (pk)� �k (pk))
Qk�1
i=1 Fi (pk) ;

where H is given by (20). Consider two remaining cases:

� If pk 2 (0; pk�1) then the necessary �rst-order condition for maxi-
mization (18) is Dk (pk) = 0, and therefore H (pk) = �k (pk).

� If pk = pk�1 then the necessary �rst-order condition for maximiza-
tion (18) is Dk (pk) � 0, and therefore H (pk) � �k (pk). On the
other hand, we have

H (pk) = H (pk�1) = �k�1 (pk�1) � �k (pk�1) = �k (pk) ;

where the second equality uses the inductive hypothesis and the
inequality uses assumption (A2). Combined with the above, we
again have H (pk) = �k (pk) :

(iii) For p 2 [pk; pk�1],

R�k�1 �Rk�1 (p) = R�k�1 �Rk�1 (pk�1) +

Z pk�1

p

R0k�1 (�) d� =

= �k�1 (pk�1)�j<kFj (pk�1)�
Z pk�1

p

(�j<kFj (�))
X
j<k

fj (�) �j (�)

Fj (�)
d�

where we have used properties (i) and (ii) and the formula (29) for
R0k�1 (p). Plugging this into formula (20) yields (21).
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9.1.3 Proof of Claim 3

First, we establish the equation

H 0(p) =
X
j<k

fj(p)

Fj(p)
[�j(p)�H(p)] for p 2 (pk; pk�1): (30)

To derive this equation, multiply both sides of (21) on this interval byQ
j<k Fj(p) and di¤erentiate with respect to p to obtain

H 0(p) �
Y
j<k

Fj(p) +H(p) �
X
j<k

fj (p)

Fj (p)
�
Y
j<k

Fj(p) =
Y
j<k

Fj(p) �
X
j<k

fj (p) �j (p)

Fj (p)
:

Dividing both sides by
Q
j<k Fj(p) and expressing H

0(p) yields (30).
Using (30) and assumption (A2), we see that for any p 2 [pk; pk�1] such

that H (p) � �k�1 (p) we have H 0 (p) � 0, and the inequality is strict if
H (p) > �k�1 (p). (Here we take H 0(p) to be the left-derivative at p = pk�1
and right-derivative at p = pk. Notice that property (i) implies that the
formula used to de�neH on the interval [pk; pk�1) is also valid at the endpoint
pk�1, and the reasoning used to obtain (30) also applies at these endpoints.)
Now, by property (ii), H (pk�1) = �k�1 (pk�1), and therefore H 0 (pk�1) �

0, hence for p in a left-neighborhood of pk�1,

H (p)� �k�1 (p) � �k�1 (pk�1) + o (pk�1 � p)� �k�1 (p)

� pk � p+ o (pk�1 � p) > 0;

where the second inequality uses (A1) (namely, log-concavity of 1 � Fk�1).
Thus, we can choose p̂ < pk�1 close enough to pk�1 such that H(p) > �k�1 (p)
for all p 2 [p̂; pk�1), and therefore H 0 (p) < 0 strictly on this interval.
In particular this implies H(p̂) > H(pk�1). But then H (p) cannot cross
�k�1 (pk�1) anywhere in the interval [pk; pk�1]: indeed, otherwise, letting
p� = max fp 2 [pk; pk�1] : H (p) � �k�1 (pk�1)g we would have

0 = H(pk�1)� �k�1 (pk�1) < H(p̂)� �k�1 (pk�1) =

Z p̂

p�
H 0 (p) dp;

while on the other hand we would have H(p) � �k�1 (pk�1) � �k�1 (p) for all
p 2 (p�; p̂) and therefore H 0 (p) � 0 for all p 2 (p�; p̂), making the right-hand
side nonpositive �a contradiction.
Therefore, H(p) � �k�1(pk�1) � �k�1(p) for all p 2 [pk; pk�1], and there-

fore H 0 (p) � 0 on this interval. Since this holds for each k > 1, H is
nonincreasing on [pn; p1].
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9.1.4 Proof of Claim 4

We prove by induction on k � 1 that price pk is uniquely determined and
satis�es pk � rk. First, the claim holds for k = 1, for which (19) takes the
form �1 (p1) = 0, and this uniquely determines p1 = r1. Now, suppose that
the claim holds for all j � k � 1, and in particular that prices p1; : : : ; pk�1
are uniquely determined. Then by property (iii), the function H is uniquely
determined on the interval [pk; 1). Furthermore, by (ii), pk must solve (19).
Observe that:

� (19) must have a solution pk 2 [rk; pk�1]. Indeed, note that on the one
hand �k (rk) = 0 = H (r1) � H (rk) (using property (iv)), and on the
other hand �k (pk�1) � �k�1 (pk�1) = H (pk�1) (using (A2) and (19) for
k� 1), and apply the Intermediate Value Theorem (using continuity of
H and �k).

� (19) has at most one solution on pk 2 [0; pk�1]. This holds because �k
is strictly increasing by (A1) and H is nonincreasing by property (iv).

The two observations together imply that (19) has a unique solution pk 2
[0; pk�1], which satis�es pk � rk. Thus, the inductive statement also holds
for k.

9.2 Proof of Theorem 1

First we record a helpful reformulation of equation (30):

Corollary 1. For any k = 2; : : : ; n and any p 2 [pk; pk�1],

H(p) =
X
j<k

Z pj

�

fj(p)

Fj(p)
[H(p)� �j(p)] dp:

Proof. We check that the equality holds on the interval [pk; pk�1] by induction
on k. We may assume it holds at pk�1, by the induction hypothesis and the
fact that (by Lemma 1 (ii)) the j = k�1 term of the sum is zero there. (The
only exception is the base case k = 2 and p = p1; in this case both sides of
the desired equation are zero.) Then, given that H is continuous (Lemma
1 (i)), (30) ensures that the desired equation holds throughout the interval
[pk; pk�1].
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Now, to prove the theorem we write out our Lagrangian (22) explicitly:
For each i = 1; : : : ; n� 1, de�ne one-dimensional measures �i; �̂i, with sup-
ports [pn; pi] and [0; pi] respectively, whose distribution functions are �̂i(�i)
as in Lemma 2 and �̂i(�̂i) = Fi(�̂i). Lemma 2 ensures that �i is a nonde-
creasing function, so this makes sense. De�neMi(�i; �̂i) to be the restriction
of the product measure �i � �̂i to the half-plane �̂i � �i. For notational
convenience, also de�ne �n; �̂n;Mn to be zero everywhere.
Then the Lagrangian is

E~�

"X
i

vi(�(~�); ~�)�
X
i

1� Fi(~�i)

fi(~�i)
v0i(�(

~�); ~�)

#
+ (31)

X
i

ZZ �Z �i

�̂i

E~��i
h
v0i(�(� i;

~��i); � i; ~��i)
i
d� i�

E~��i
h
vi(�(�̂i; ~��i); �i; ~��i)� vi

�
�(�̂i; ~��i); �̂i; ~��i

�i�
dMi(�i; �̂i):

We need to show the Lagrangian saddle-point conditions (a)-(c) stated in
Section 4 are satis�ed. Part (b) was already argued informally in the text,
and will also follow from Theorem 2 below, so we will not give a separate
proof here.
For (c), consider any �i; �̂i with �̂i � �i < pi. We check that, in the

Vickrey auction with reserves, type �i of bidder i gets the same expected
payo¤ from telling the truth as by reporting type �̂i. In fact we can check
that this is true ex post, i.e. for any �xed realizations of the other bidders�
types, bidder i gets the same payo¤ from truth-telling as from misreporting.
Indeed: If �k < pk for all k 6= i, then either when i tells the truth or

when he lies, the object is not sold and his payo¤ is zero. Suppose �k � pk
for some k, so that the object is sold in both cases. If i wins the auction in
both cases, then either way he has to pay a price maxk 6=i �k, and his payo¤ is
the same. If he loses in both cases, then the winner of the auction (in both
cases) has a value at least �i, so i does not buy the object in resale even
after misreporting, and his payo¤ is zero in both cases. The only interesting
possibility is that i wins the auction by truthfully reporting �i but loses by
reporting �̂i. In this case, if i tells the truth, he wins at a price maxk 6=i �k.
If i lies, the object is sold to the highest of the other bidders, and then i
again pays maxk 6=i �k to buy it back in resale. So either way, i�s payo¤ is
�i �maxk 6=i �k. This proves (c).
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The rest of the proof will focus on (a). We rewrite the Lagrangian as

E~�
h
�(�(~�); ~�)

i
;

where �(x; �) is the �modi�ed virtual surplus� from allocation x when the
type pro�le is �:

�(x; �) =
X
i

"
vi(x; �)�

1� Fi(�i)

fi(�i)
v0i(x; �) (32)

+
1

fi(�i)
�̂i(�i)(�i(pi)� �i(�i))v0i(x; �)

� 1

fi(�i)
�̂0i(�i)

Z pi

�i

[vi(x; � i; ��i)� vi(x; �)] d�i(� i)

#
:

To see this, write the double-integral in the second and third lines of (31)
as ZZ

1�̂i��i

�Z �i

�̂i

E~��i [v
0
i(�(� i;

~��i); � i; ~��i)] d� i

�
d�i(�i)d�̂i(�̂i) (33)

�
ZZ

1�̂i��iE~��i
h
vi(�(�̂i; ~��i); �i; ~��i)� vi(�(�̂i; ~��i); �̂i; ~��i)

i
d�i(�i)d�̂i(�̂i):

The �rst line rewrites asZZZ
1�̂i�� i��iE~��i [v

0
i(�(� i;

~��i); � i; ~��i)] d� i d�i(�i)d�̂i(�̂i)

=

Z
E~��i [v

0
i(�(� i;

~��i); � i; ~��i)]

�Z
1� i��i d�i(�i)

��Z
1�̂i�� i d�̂i(�̂i)

�
d� i

=

Z
(�i(pi)� �i(� i))�̂i(� i)E~��i [v

0
i(�(� i;

~��i); � i; ~��i)] d� i

= E~�

�
1

fi(~�i)
(�i(pi)� �i(~�i))�̂i(~�i)v0i(�(~�); ~�)

�
where we have made the change of variables � i ! ~�i in the last line.
Similarly, the second line of (33) rewrites as

�
Z �Z pi

~�i

E~��i
h
vi(�(~�i; ~��i); � i; ~��i)� vi(�(~�i; ~��i); ~�i; ~��i)

i
d�i(� i)

�
d�̂i(~�i)

= �E~�

"
�̂0i(
~�i)

fi(~�i)

Z pi

~�i

h
vi(�(~�); � i; ~��i)� vi(�(~�); ~�)

i
d�i(� i)

#
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(as long as �̂i is absolutely continuous, which it is in our case.)
Putting these terms together, we see that the Lagrangian (31) is indeed

the expectation of the modi�ed virtual surplus spelled out in (32).
Note that for each type pro�le �, the modi�ed virtual surplus �(x; �) is a

linear function of the allocation x. We can write �i(�) for the xi-coe¢ cient,
that is, the virtual value of allocating to bidder i; thus the Lagrangian
rewrites as

E~�

"X
i

�i(~�)�i(~�)

#
as in (14).
To show that our Vickrey auction with reserves is optimal, we show that

it maximizes the modi�ed virtual surplus pointwise: at every pro�le �, the
virtual surplus is maximized by selling the good to the highest-value bidder
if at all, and allocating to the high-value bidder is desirable if �i � pi for
some i and undesirable if �i < pi for all i.
In symbols, we need to show:

(a-1) �i�(�)(�) � 0 if �i � pi for some i, and � 0 otherwise;

(a-2) �i�(�)(�) � �j(�) for all other bidders j.

We �rst show (a-1). In this case, writing i� = i�(�), the allocation x that
allocates to bidder i� satis�es vi�(x; �) = �i�, v0i�(x; �) = 1 (aside from the
measure-zero case of ties), and vi(x; �) = v0i(x; �) = 0 for every other bidder
i. So we have

�i�(�) = �i� �
1� Fi�(�i�)

fi�(�i�)
+
�̂i�(�i�)

fi�(�i�)
(�i�(pi�)� �i�(�i�)) (34)

�
X
i

�̂0i(�i)

fi(�i)

Z pi

�i

[vi(x; � i; ��i)� vi(x; �)] d�i(� i):

To evaluate this modi�ed virtual surplus, we consider cases depending on
where �i� lies.

� If �i� 2 [pn; pi� ], then we can plug in the formulas for �̂i� and �i�, and
we see that the �rst line on the right side of (34) becomes

�i�(�i�) +
Fi�(�i�)

fi�(�i�)

�
fi�(�i�)

Fi�(�i�)
[H(�i�)� �i�(�i�)]

�
= H(�i�):
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Meanwhile, for the second line, we consider the expression in the inte-
gral, vi(x; � i; ��i)� vi(x; �). For i = i�, this is simply � i� � �i�. On the
other hand, for any other bidder i, when � i < �i�, both vi terms are
zero; and when � i � �i�, the �rst term becomes � i� �i� since now i can
buy back from i� in resale. So for each bidder i, the integrand is equal
to maxf0; � i � �i�g. Thus (34) becomes

H(�i�)�
X
i

Z pi

�i

maxf0; � i � �i�g d�i(� i)

= H(�i�)�
X
i

Z pi

�i�

(� i � �i�) d�i(� i)

= H(�i�)�
X
i

Z pi

�i�

(�i(pi)� �i(� i)) d� i

where the last equation is integration by parts. Note that the sum is
only over i such that �i� � pi, since for other i�s the integral is zero.
Plugging in

�i(pi)� �i(� i) =
fi(� i)

Fi(� i)
[H(� i)� �i(� i)] ;

we see that the sum of integrals is exactly H(�i�), by Corollary 1. So
the modi�ed virtual surplus is zero, whenever �i� 2 [pn; pi� ].

� If �i� > pi�, the analysis is the same as in the previous case, except
that in the �rst line of (34), the third term is now zero. So this line
equals �i�(�i�) instead of H(�i�). That is, the modi�ed virtual surplus
evaluates to �i�(�i�)�H(�i�).

Since �i� is weakly increasing, H is decreasing, and they are equal at
pi�, the modi�ed virtual surplus is nonnegative � as it should be in
order to be consistent with (a-1).

� If �i� < pn, then �i < pn � pi for all i, so (a-1) requires that the
modi�ed virtual value should be (weakly) negative.

Hold �xed the identity of i�, and let the value of �i� on the interval
[0; pn]. The �rst line of (34) is

�i�(�i�) +
Fi�(�i�)

fi�(�i�)

�
fi�(pn)

Fi�(pn)
[H(pn)� �i�(pn)]

�
:
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This is increasing in �i�, since �i� is increasing, Fi�=fi� is increasing (by
the log-concavity assumption), and H(pn) = �n(pn) � �i�(pi�) using
Lemma 1. Meanwhile the sum in the second line of (34) is still equal
to
P

i

R pi
�i�
(�i(pi)� �i(� i)) d� i. This is clearly decreasing in �i�.

Thus, the modi�ed virtual value �i�(�) is increasing in �i� on the in-
terval [0; pn]. Since we already saw that it equals zero at the upper
endpoint pn, it is negative on this interval, as needed.

Thus in every case, the modi�ed virtual value �i�(�) has a sign consistent
with (a-1).
Now we prove (a-2). The above calculations show that

�i�(�) = �i� �
1� Fi�(�i�)

fi�(�i�)
+
�̂i�(�i�)

fi�(�i�)
(�i�(pi�)� �i�(�i�))

�
X
i

Z pi

�i

maxf0; � i � �i�g d�i(� i):

Now consider allocating to any j 6= i�; we need to compute the modi�ed
virtual value from allocating to j, �j(�). In the �rst line of formula (32), the
vi terms sum to �i�, and the v0i terms are 1 for i = i�; j and 0 otherwise. In the
second line, again the v0i terms are 1 for i = i�; j and 0 otherwise. In the third
line, there are three cases for the bracketed expression vi(x; � i; ��i)�vi(x; �):
� for i = i�, it equals (� i� � �j)� (�i� � �j) = � i� � �i�;

� for i = j, it equals � j � �j;

� for any i 6= i�; j, then when � i < �i� it equals 0 � 0 = 0, and when
� i > �i� it equals (� i � �j)� 0 = � i � �j.

Notice that also in the third line of (32), the fraction �̂0i(�i)=fi(�i) can be
simpli�ed to 1 (this is true unless �i > pi but in that case the integral is zero
anyway).
So, the modi�ed virtual value is

�j(�) = �i� �
1� Fi�(�i�)

fi�(�i�)
� 1� Fj(�j)

fj(�j)

+
�̂i�(�i�)

fi�(�i�)
(�i�(pi�)� �i�(�i�)) +

�̂j(�j)

fj(�j)
(�j(pj)� �j(�j))

�
X
i6=i�;j

Z pi

�i�

[� i � �j] d�i(� i)�
Z pi�

�i�

[� i� � �i� ] d�i�(� i�)�
Z pj

�j

[� j � �j] d�j(� j):
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Subtracting, we have

�i�(�)� �j(�) =
1� Fj(�j)

fj(�j)
� �̂j(�j)
fj(�j)

(�j(pj)� �j(�j)) (35)

+
X
i6=i�;j

Z pi

�i�

[�i� � �j] d�i(� i)

�
Z pj

�i�

[� j � �i� ] d�j(� j) +

Z pj

�j

[� j � �j] d�j(� j):

We show that each of the three lines of (35) is nonnegative.
For the �rst line, if �j > pj then the second term is zero, so we have just

(1� Fj(�j))=fj(�j). If �j 2 [pn; pj], the �rst line is

1� Fj(�j)

fj(�j)
� Fj(�j)

fj(�j)
� fj(�j)
Fj(�j)

[H(�j)� �j(�j)] = (�j � �j(�j))� [H(�j)� �j(�j)]

= �j �H(�j):

But
�j �H(�j) � pn �H(pn) � �n(pn)�H(pn) = 0

where we have used Lemma 1(iv) and (ii). Finally, for �j � pn, the �rst line
of (35) is

1� Fj(�j)

fj(�j)
� Fj(�j)

fj(�j)
[�j(pj)� �j(pn)]:

The di¤erence in brackets is a positive constant as �j varies; the log-concavity
assumptions ensure (1 � Fj(�j))=fj(�j) is decreasing and Fj(�j)=fj(�j) is
increasing, so the whole expression is decreasing in �j. Since we already saw
that it is nonnegative at �j = pn, it must be nonnegative for �j < pn.
The second line of (35) is clearly nonnegative. And the third line isZ pj

�j

[minf� j; �i�g � �j] d�j(� j)

which is also clearly nonnegative.
Thus �i�(�)� �j(�) � 0, proving (a-2).
At this point we have shown (a-1) and (a-2). Together, these imply that

at every possible �, our Vickrey auction with reserves p1; : : : ; pn picks out
an allocation that maximizes the modi�ed virtual surplus, which shows that
this auction maximizes the Lagrangian (31). This completes the proof.
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9.3 Proof of Theorem 2

We consider all possible cases.

� Suppose that bidder i wins under truth-telling: �i(�) = 1. Then the
left-hand side of (28) is �i �  i(�) � 0.

� If i deviates to �̂i such that he still wins, then he pays the same
price (and by the note preceding the theorem, no resale occurs).

� If i deviates to �̂i such that some bidder j 6= i wins (and i then
pays zero), this is only possible if �j = maxk 6=j �k =  i(�) (i�s
threshold price under truthtelling). Then (27) implies that the
resale payo¤ of bidder j is at least �j and the resale payo¤s of
all bidders k =2 fi; jg are nonnegative, and therefore by (26) the
resale payo¤ of bidder i is at most �i � �j. So the right side of
(28) is at most �i � �j which equals the left side.

� If i deviates to �̂i such that the object goes unallocated, then no
resale is possible, so the right side of (28) is zero.

� Suppose that some bidder j 6= i wins under truth-telling: �j(�) = 1.
Then the left-hand side of (28) is zero.

� If i deviates to a �̂i that does not win the object, then either j
still wins, or the object is unsold. Either way, no resale occurs,
and the right side of (28) is zero.

� If i deviates to win the object, he pays the threshold price  i(�̂i; ��i) =
�j = maxk �k. By (27), the resale payo¤s of all other bidders are
nonnegative, and therefore by (26) the resale payo¤ of bidder i
is at most maxk �k = �j. So the right side of (28) is at most
�j � �j = 0.

� Suppose that the object is left unsold under truth-telling: �(�) = 0.
Then the left-hand side of (28) is zero.

� If i deviates such that the object remains unsold, then no resale
is possible and the right side of (28) is zero.
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� If i deviates such that some bidder j 6= i wins the object, then
allocating to j is e¢ cient for the reported value pro�le (�̂i; ��i),
and �̂i is above the reserve while the true value �i is not:

�j � �̂i � pi � �i; and �j � �k for all k 6= i:

So allocating to j is e¢ cient for the true value pro�le �, and no
resale is possible, so the right side of (28) is zero.

� If i deviates to win the object, he pays the threshold price  i(�̂i; ��i) =
maxfpi;maxj 6=i �jg. By (27), the resale payo¤s of all other bid-
ders are nonnegative, and therefore by (26) the resale payo¤ of
bidder i is at most maxj �j. Since �i < pi (because the object
is unsold under truth-telling), this expression does not exceed
maxfpi;maxj 6=i �jg =  i(�̂i; ��i), so the right side of (28) is at
most zero.
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