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Abstract

An uninformed principal elicits non-contractible recommendations from a privately informed

agent regarding the quality of projects. The agent is biased in favor of implementation and no

credible communication is possible in a one-shot setting. In a repeated setting, the fear of

losing future influence can sustain informative communication, but the agent’s willingness to

remain truthful depends on the extent to which he expects the principal to listen to him. In

a stationary equilibrium, the principal always implements mediocre projects at a sub-optimally

high frequency to reward honesty, while she may either favor or discriminate against high-

quality projects. In a non-stationary equilibrium, the principal will further condition the agent’s

future influence on today’s proposals, with the admission of mediocre alternatives rewarded

with increased future influence while rejections of high-quality proposals are further punished

by lowering the agent’s future influence.
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1 Introduction

Issues of decision-making under strategic information transmission have been increasingly recognized

to be of crucial importance for organizational performance. As noted by Cyert and March (1963

[1992]), "[w]here different parts of the organization have responsibility for different pieces of infor-

mation..., [we would expect] attempts to manipulate information as a device for manipulating the

decision." (p.79). Following the theoretical frameworks introduced by Crawford and Sobel (1982)

and Milgrom and Roberts (1988), a large and growing literature has examined how incentive conflicts

lead to attempts at manipulating information, the resulting loss of information and how to manage

such losses, leading to the analysis of issues of delegation, mediation, information management and

beyond.

A particular aspect of such relationships, especially in organizational settings, is that they are

typically ongoing. For example, a company does not just choose a single R&D project, build a single

factory or choose where to locate a new logistics center. Instead, the organization faces an ongoing

sequence of such decisions, and it is the same group of organizational members that are involved in

the decision-making process. This ongoing nature of the decision-making process then allows the

development of relationships, and even if the quality of current recommendations cannot be verified

on the spot, the parties can learn about the quality of past recommendations from the outcomes

that have resulted.

This paper constructs a simple model of such relationships and considers how the parties can use

the history of the relationship as a basis for current behavior and to sustain a relationship that is

better for both parties than a one-shot interaction. In the setting, a principal needs to decide whether

to implement a project. The project can be either mediocre or good, information learned only by

the agent. The agent makes a recommendation to the principal regarding the quality of the project,

after which the cost of implementation is publicly observed. The principal wants to implement the

project only when its value exceeds the cost of implementation, while the agent is biased in favor

of implementation. If the principal chooses to implement the project, the value of the project is

learned before the next choice is made, while if the principal chooses against implementation, the

value of the project is not learned. This asymmetry captures the idea that we learn less about

recommendations that are not followed relative to recommendations that are followed.

The object of interest is the principal’s decision rule, which determines when the project is

implemented, conditional on whether the agent submits either a weak or a strong report and the

realized cost of implementation.1 Since this decision rule effectively determines how likely it is that

the agent’s proposal is implemented, it determines the agent’s influence in the relationship. The

goal of the analysis is to examine how the principal can use this relational influence of the agent to

manage the relationship.

The first observation is that trust creates value because information is valuable to both parties.

When the agent is suffi ciently patient, he is willing to truthfully reveal the quality of the project

1To focus the analysis on decision-making, I assume that direct monetary transfers are not available. The results
are analogous if we allow only for one-sided transfers from the principal to the agent. The agency problem disappears
under deep pockets.
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and the principal can follow the first-best decision rule. This result follows because if the agent

misleads the principal, the principal will learn that after the fact and will stop trusting the agent’s

recommendations going forward, leading to less informed decision-making and worse payoffs to both

parties. But when the agent is not patient enough, the temptation to push for the acceptance of

a mediocre project becomes too high and the first-best outcome is no longer implementable. The

question then becomes what the principal can do to maintain the relationship.

Despite the simplicity of the basic setting, the equilibrium displays a rich level of interactions.

Thus, I begin by considering a stationary equilibrium, where the current decision rule is not a

function of past history but can contain biases both in favor and against a particular proposal.

Noting that the main constraint that we need to satisfy is keeping the agent honest about mediocre

projects, the basic distortions are two-fold. First, the principal will always bias the acceptance rule

in favor of mediocre alternatives and implements some mediocre projects at a loss. The reason for

this result is simple: by implementing the mediocre project more frequently, the agent gains less

from exaggeration and thus makes him less willing to sacrifice his future influence for an immediate

gain. Second, the principal will either favor or discriminate against high-quality projects. This

result is the effect of two counteracting forces. On one hand, favoring high-quality projects increases

the agent’s future influence and thus makes the agent less willing to sacrifice that influence for an

immediate gain. On the other hand, favoring high-quality projects also increases the gains from

exaggeration by making the strong proposal more influential relative to a weak proposal. When

the agent is suffi ciently patient, the first effect (future value) dominates, while when the agent is

less patient, the second effect (higher immediate gain) dominates. Thus, an agent of intermediate

patience is rewarded with higher than the first-best level of influence (with the overall decision rule

biased in favor of implementation), while an agent with lower patience has lower than the first-best

level of influence —while the agent gets mediocre proposals implemented more frequently, the fact

that he is discriminated against when his project is of high quality more than offsets that gain.

Finally, while both types of projects may be implemented with excessive frequency, the relative

likelihood that the low-quality project is implemented is monotone increasing in the impatience of

the agent. In practical terms, the stationary equilibrium thus provides a simple explanation for

corporate socialism, whereby the internal allocation of resources is less responsive to differences

in profitability as suggested by simple NPV criterion. This lack of responsiveness is used by the

principal to satisfy the truth-telling constraint of the agent. Relatedly, the variation in the patience

of the agent leads to either over-investment or under-investment relative to the first-best allocation.

Having considered the stationary equilibrium, I then consider how the principal can do better

by using a non-stationary decision rule and altering the agent’s future influence based on today’s

recommendation and the resulting decision. The basic results are three-fold. First, the principal

will reward the agent for admitting that his project is mediocre by increasing his future influence.

The benefits of this reward are two-fold. First, because the cost of distorting the decision is convex

in the distortion, spreading the reward for honesty over several periods lowers the overall cost of the

reward. Second, because the agent also values the implementation of high-quality projects more, a

promise of future influence is a more effi cient means of rewarding the agent —instead of settling up

now by implementing a mediocre project, the principal promises to give the agent more favorable
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treatment in the future, when the agent may have a high-quality project available. This result thus

provides a simple rationale for basic quid pro quo arrangements, where honesty today is rewarded

by favorable treatment in the future. For example, a department admitting that their favorite job

candidate is mediocre is promised priority in the hiring process next year, or a division admitting

for limited investment opportunities today is promised easier access to funding for any new projects

the following year.

Second, in addition to rewarding the admission of mediocre alternatives, the principal will also

punish the recommendation of high-quality alternatives by lowering the agent’s future influence if

the recommendation is rejected. The reason for this result is that when a proposal is not accepted,

its quality is not learned. Thus, a strong recommendation is not tested if it is rejected, which

limits the punishment available in the case of deviation. By lowering the agent’s payoff when the

proposal is rejected, the incentives to exaggerate are decreased. However, because even honest

recommendations of high-quality projects are sometimes rejected (and, indeed, in equilibrium, only

honest recommendations arise), terminating the relationship is too harsh of a punishment. Instead,

the principal responds by lowering the future influence of the agent without fully stopping trusting

him. In pratice, this feature resembles a situation where an agent falls out of favor with the principal

—once a strong proposal is rejected, the agent’s odds of getting future projects through are lowered.

Third, because of the convexity of the losses faced by the principal in the size of the distortions,

the evolution of influence will be gradual. Admissions of mediocre projects will slowly increase

influence while the rejections of strong proposals will gradually erode it. And because of the ongoing

value of motivating the agent through changes in the continuation value of the relationship, there is

no absorbing state to the game. Instead, the influence will fluctuate back and forth depending on

the history of the play. Because of the complex interplay across the distortions in the decision rule

of the stage game and the continuation values, solving for the optimal equilibrium is challenging. As

a result, to illustate these basic results, I provide a simplified example of a three-stage equilibrium,

where the stages can be ranked in terms of the level of influence by the agent and the transitions

and the stage-game distortions are optimally managed by the principal to maximize the value of the

relationship to her.

The challenge created by the distortions in the stage game, whether in the stationary or non-

stationary equilibrium, is that as the agent becomes increasingly impatient, the distortions needed

to keep the agent truthful grow. Then, the need for the principal to honor the promises made in

equilibrium can put an upper cap on the distortions that can be sustained and the relationship may

become unsustainable —the distortions needed to keep the agent truthful are too large to be credible

for the principal to follow, and the whole relationship collapses.

The rest of the manuscript is organized as follows. Section 2 discusses the related literature

and section 3 outlines the model. Section 4 provides a preliminary examination of the framework,

illustrating the full set of payoffs attainable in the stage game and the conditions under which

the first-best equilibrium can be obtained. Section 5 derives the optimal stationary equilibrium,

and Section 6 considers dynamics. Section 7 concludes and discusses some potential extensions.

Appendix B illustrates a game with a continuous project space for the agent to illustrate how the

stationary decision rule is optimally determined in such settings.
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2 Related Literature

This paper lies in the intersection of the literatures on repeated games and strategic communication.

The five main papers existing in this intersection are Alonso and Matouschek (2008), Kolotilin and

Li (2015), Campbell (2015), Li et al. (2015) and Lipnowski and Ramos (2015). The first two

papers consider the classic repeated-game setting of full ex post observability of outcomes. Alonso

and Matouschek (2008) consider the Crawford and Sobel (1982) setting with a long-lived principal

interacting with a sequence of myopic agents. The value of the ongoing relationship helps the

principal to choose a decision closer to the agent’s preferences, facilitating communication. If the

principal is suffi ciently patient, she achieves the optimal delegation set (and thus the maximum

payoff to the principal in the absence of transfers). Kolotilin and Li (2015) extend the CS setting

to a long-lived agent and the ability to make transers. Transfers make the communication problem

trivial by having the agent signal his information with an associated transfer, and the issue is how

to manage decision-making by the principal who underweighs the agent’s payoff in her favored

decision. I consider a qualitatively different decision problem, which introduces the asymmetric

learning regarding the quality of recommendations based on whether they are followed or not.

The remaining three papers consider settings that are qualitatively closer to the present model,

with the agent making recommendations regarding which (if any) projects to implement, but consider

the opposite extreme of no learning of the outcomes. The strategies can thus be based only on the

observed history of recommendations. In Campbell (2015), the agent uses his relational capital

to recommend a project as long as it is good enough, which uses his relational capital until it

is exhausted. The capital is never replenished. Lipnowksi and Ramos (2015) is closest to the

present paper, where the relational capital is both replenished and used over time, but where the

replenishment occurs when the agent recommends rejection while the capital is used whenever the

agent recommends acceptance.2 Finally, in Li et al. (2015) the agent can recommend either his ideal

project or a project that is better for the principal, but that project may not be available. When

the agent recommends his own project, the continuation value must punish the agent to keep him

honest, drifting the equilibrium towards not listening to him, while recommending the project that

is better for the principal increases the continuation value, with an increased likelihood that the

agent gets to choose his preferred project whenever he wants to. However, in all three papers the

question is simply whether the principal follows the agent’s recommendation, thus not allowing for

the richer manipulation of the acceptance rule to manage the relationship, which is the focus here.

More broadly, the present paper relates to the large literature on repeated games with private

information that has followed Abreu et al. (1990), where the focus on the use of continuation values

and distortions in the behavior (instead of monetary transfers) to sustain the equilibrium is present

in, e.g. Athey and Bagwell (2001) and Athey et al. (2004) on colluding with private information,

Hauser and Hopenhayn (2008) on favor trading, Li and Matouschek (2008) on enforcing the payment

of bonuses by the principal, Padro i Miquel and Yared (2012) on managing the moral hazard problem

of an intermediary in maintaining the rule of law, and Andrews and Barron (2014) on managing

2For a related paper, see Guo and Horner (2015).
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multiple supply relationships, just to mention a few.

In terms of strategic communication, the paper considers a variant of the framework analyzed

in Li et al. (2016), Rantakari (2016), Garfagnini et al. (2014) and Chakraborty and Yilmaz (2013),

among others, where a decision-maker needs to choose among discrete alternatives, based on the

recommendation(s) of an agent or multiple agents. The setting retains the discrete nature of the

final choice, but introduces the continuity of private information for the principal.

3 Model

I consider a repeated advisory relationship between an agent and a principal. In the stage game, the

agent has access to a "project," the value of which is given by θ ∈ {θL, θH}, with 0 ≤ θL < θH ≤ 1.

Let the probability of the high-quality alternative be given by p. The agent observes privately the

value of the project, and makes a recommendation mi ∈ {mL,mH} to the principal as to the quality
of the project (since the project quality is binary, we can restrict our attention to binary messages).

The recommendations are soft information (cheap talk), and the principal interprets the message

according to equilibrium play to form beliefs regarding the quality of the project, E (θ|mi) .

Following the recommendation, the principal’s outside option, c, is drawn from a known distri-

bution F, which, for tractability, I assume to be U [0, 1]. Once the outside option is realized and

publicly observed, the principal chooses whether to adopt the project of the agent or choose the

outside option. For concreteness, we can take the value to be the expected revenue generated by

a given project, while the outside option is the cost of investment. Then, if the principal accepts

the agent’s project, the payoff is given by θi − c while the outside option is no investment, with
normalized payoff of 0. The agent, on the other hand, does not bear any of the cost of investment,

and the agent’s payoff is given by θi if the principal invests and 0 if the principal doesn’t invest.

The principal observes her payoff at the end of the period, so she will learn whether the agent told

the truth if she follows the recommendation, but does not if she chooses the outside option. The

discount rates are δA, δP < 1 for the agent and the principal, respectively.

No transfers: If the parties had access to (unbounded) transfers, the solution would be trivial
even in the static setting, as the agent could signal his private information through voluntary trans-

fers. In many settings, however, transfers are either not available or are limited for various reasons,

including risks of collusion and rent-seeking activities. Thus, I make the opposite assumption, where

no transfers are available between the agent and the principal. Instead, the relationship will be

sustained by the principal’s decision rule, Pr (A|mi, c) , which specifies the (A)cceptance probability

following the agent’s message and the commonly observed principal’s state. As noted by Cyert and

March (1963), "Side payments, far from being the incidental distribution of a fixed, transferable

booty, represent the central process of goal specification. That is, a significant number of these

payments are in the form of policy commitments." (p.35)

Other assumptions: To maintain the tractability of the analysis and to be able to explore
the dynamics of the relationship, I make a number of further simplifying assumptions. To mention
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a few, I assume a binary state for the private signal, publicly observable cost of investment, single

agent, and perfect observability of the outcome when a project is implemented. The qualitative logic

of the analysis remains if the agent’s state is continuous, but the decision rule becomes naturally

richer, highlighting differences among low- and medium-quality projects. This setting is discussed in

Appendix B. The publicly observable principal’s state allows us to focus on managing the relationship

with only that one agent. An interesting avenue for future work is the examination of how to manage

the relationship when multiple agents hold relevant information to the decision. Finally, a valuable

extension would be to consider the imperfect observability of the outcomes, either by introducing

noise into the principal’s payoff or by allowing for imperfect information for the agent. However, the

set of assumptions allows us to focus on how the principal can both instantaneously and dynamically

manage the relationship with the agent when the only tool available is the decision rule, Pr (A|mi, c) .

4 Preliminaries - Feasible payoffs and First-Best

Before considering the equilibrium of the model, I will first consider the stage-game payoffs and the

basic tradeoffs involved. This will help to summarize the structure of the model and thus provide

insight into the results that follow later.

4.1 Payoff structure and the Pareto frontier

Begin by considering the expected payoff of the principal and the agent. Assuming truth-telling by

the agent, we can write their payoffs as

uP =
∑

i∈{L,H}

Pr(θi) Pr(A|θi) (θi − E (c|A, θi)) and uA =
∑

i∈{L,H}

Pr(θi) Pr(A|θi)θi,

where Pr(A|.) indicates the probability of acceptance and E (c|A, θi) the expected cost of implemen-
tation, given the decision rule Pr (A|mi, c) and the realized cost. As the first preliminary observation,

note that since the agent cares only about implementation, the optimal acceptance rule will take a

threshold structure, where the principal accepts the project as long as her cost of implementation is

below some threshold, c(θi) . Given the assumption that the costs are uniformly distributed, we can

then write the expected payoffs as

uP =
∑

i∈{L,H}

Pr(θi)c (θi)
(
θi − c(θi)

2

)
and uA =

∑
i∈{L,H}

Pr(θi)c (θi) θi.

Second, note that the first-best threshold for implementation is cFB (θi) = θi. Thus, we can write

any implementation rule simply as c (θi) = θi+xi, where xi is the distortion away from the first-best

decision rule. The principal’s strategy can thus be summarized by the pair {xL, xH} , the examina-
tion of which will be the focus of the analysis. If, on the other hand, the principal makes no use of

the available information, then the expected quality of the project is E (θ) = pθH + (1− p) θL and
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Figure 1: Illustrating the principal’s decision rule

the optimal (common) threshold for implementation is then cFB (E (θ)) = E (θ) . In this case, the

expected payoffs become simply

uP = E(θ)2

2 and uA = E (θ)
2
.

The basic structure is illustrated in Figure 1. In this illustration, the principal is biasing her

decision rule in favor of the agent when the agent is making the weaker recommendation, while

discriminating against the agent when he makes the strong recommendation (xL > 0, xH < 0).

To measure the value of the agent’s information, we can solve for (uP − uP ) and (uA − uA) ,

which are then given by

(uP − uP ) =
1

2

[
(1− p) p (θH − θL)

2 − px2
H − (1− p)x2

L

]
(1)

(uA − uA) = p (1− p) (θH − θL)
2

+ pθHxH + (1− p) θLxL (2)

The value of the agent’s information to the principal (and to himself) is thus proportional to

(1− p) p (θH − θL)
2
. The value is lowered for the principal, however, whenever the decision rule is

distorted away from the first-best, so that xi 6= 0. The cost of distortions is naturally convex in the

size of the distortions, with the loss given by px2
H+(1− p)x2

L. The agent, on the other hand, benefits

from a more favorable decision rule, where the value to the agent is given by pθHxH + (1− p) θLxL.
I will call this component the relational influence of the agent, as any increase in xi makes the

principal more likely to follow the suggestion of the agent and thus increase his payoff.

The second question is what is the overall set of feasible payoffs. To this end, we must solve

for the Pareto frontier, consisting of maximizing (uP − uP ) conditional on delivering a given value
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Figure 2: Pareto frontier and feasible payoffs

(uA − uA) to the agent. This involves solving for the least-cost deviation needed to deliver a given

value to the agent. From equations 1 and 2 we obtain the following Lemma:

Lemma 1 Optimal distortions: distortions (xL, xH) are on the Pareto Frontier if and only if
θL
θH

= xL
xH
. We can thus characterize the Pareto frontier with a single coeffi cient α, where xi = αθi.

Proof. Holding the agent’s expected payoff constant gives the tradeoff between the distortions as
dxH
dxL

= − (1−p)θL
pθH

while maximizing the principal’s payoff requires pxH dxH
dxL

+(1− p)xL = 0. Together,

these give θL
θH

= xL
xH
, which means any effi cient distortion must satisfy xi = αθi.

An important converse of this lemma is that if the decision rule is not proportional, then we

are bounded away from the Pareto frontier. To finish characterizing the frontier, define α =√
(1−p)p(θH−θL)2

pθ2H+(1−p)θ2L
< 1 as the maximum level of influence that can be given to the agent in any

game, defined by (vP (α)− vP ) = 0. Finally, note that (i) uP (α = 0) gives the principal’s preferred

equilibrium, (ii) dvP (α)
dvA(α) = α, so that the frontier is concave, and that (iii) each player is guaranteed

a net payoff at least as high as zero. The resulting frontier together with all feasible payoffs is

illustrated in Figure 2. The frontier is a quadratic equation with a unique maximum at the non-

distorted decision rule, with the shaded area giving all feasible payoffs attainable in the stage game

with suboptimal combinations of xH and xL.
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4.2 Obtaining the first-best (and other parts of the Pareto frontier)

Consider now whether obtaining the principal’s preferred equilibrium (first-best) is feasible. Since

the maximizer for the principal is unique (at α = 0), it can be obtained only if it is self-generating.

Given that this is the principal’s preferred equilibrium, we do not need to worry about her incentive-

compatibility constraint. The only relevant constraint is for the agent to make the correct recom-

mendation, which in turn can be binding only when faced with a mediocre alternative.

By telling the truth, the agent guarantees himself an expected payoff of

VA = θ2
L + δAVA. (3)

In other words, his proposal is accepted with probability θL, and whether or not the proposal is

accepted, the principal continues to trust the agent, keeping the game on the same continuation

path, with value VA. In contrast, if he chooses to deviate, his expected payoff is given by

V ′A = θHθL + δA
[
θHV

dev
A + (1− θH)VA

]
. (4)

He thus increases the immediate acceptance probability to θH by exaggerating the quality of the

proposal, but now the lie is detected with probability θH , in which case the principal stops trusting

the agent. However, if the proposal is still rejected, the principal learns nothing and thus the game

remains on the equilibrium path, with value VA. The strategies thus constitute an equilibrium if and

only if

(θH − θL)

θH
θL ≤ δA

[
V devA − VA

]
, (5)

which, in the case of α = 0, simplifies to

θL
θL + p (1− p) θH (θH − θL)

≤ δA. (6)

Thus, as long as the agent is suffi ciently patient, the principal is able to obtain her preferred outcome,

simply by utilizing her preferred decision rule and stopping to trust the agent whenever he is caught

lying. The higher the value of the relationship, p (1− p) (θH − θL)
2
, the less patient the agent needs

to be to remain truthful.

The more interesting case arises when the condition is not satisfied, and so the first-best outcome

is no longer obtainable by the principal. The broader analysis is undertaken below, and I will only

make two preliminary observations regarding the Pareto frontier. First, if the first-best is not

obtainable at a given (δA, δP ) , then no point with α < 0 is self-generating by itself since it provides

a lower payoff to both the agent and the principal (however, it may be obtainable in some other

equilibrium). Second, while the first-best may not be obtainable at a given (δA, δP ) , points with
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α > 0 may be self-generating. In particular, let φ (θ) = (1− p) p (θH − θL)
2 denote the value

generated by information and η (θ) =
(
pθ2
H + (1− p) θ2

L

)
the rate of value transfer as we alter α,

then a point on the frontier will be self-generating as long as

δP ≥
2 |α| θH

2 |α| θH + [φ (θ)− α2η (θ)]
and δA ≥

(θH − θL) θL
(θH − θL) θL + θH [φ (θ) + αη (θ)]

. (7)

Note that as we increase α, while the equilibrium becomes more sustainable for the agent, it becomes

less likely to be incentive-compatible for the principal. Once both parties are suffi ciently impatient,

no point on the frontier is self-generating.

5 Stationary equilibrium

Having considered the basic structure of the problem, we can now consider the repeated game

itself. In this section, I will consider the optimal stationary equilibrium for the principal, where the

distortions (xL, xH) are independent of the history of the play. In the next section, I will consider

how the principal can do better by considering history-dependent strategies and what are the basic

tradeoffs involved.

The distortions need to satisfy two incentive-compatibility constraints. First, as above, truth-

telling needs to be in the agent’s self-interest. To this end, let uA (xL, xH) denote the stage-game

payoff for the agent and uA the agent’s payoff when caught misleading the principal. Then, we can

write the agent’s truth-telling constraint as

Pr(A|mL)θL + δA
1−δAuA (xL, xH) ≥

Pr(A|mH)θL + δA
1−δA [Pr(A|mH)uA + (1− Pr(A|mH))uA (xL, xH)]

⇔

δA
1− δA

[uA (xL, xH)− uA] ≥ (Pr(A|mH)− Pr(A|mL))

Pr(A|mH)
θL, (8)

where Pr(A|mi) = θi+xi, with xi as the distortion in the decision rule. This expression contains the

main insights regarding the agent’s truth-telling constraint. First, the constraint can be binding only

for the lower-quality alternative, as the gain comes from increasing the probability of acceptance.

Second, even if the agent has a temptation to misrepresent only the low-quality alternative, the

principal may optimally alter her decision rule for both alternatives.

Because the temptation to lie arises from the incremental increase in the acceptance probability,
Pr(A|mH)−Pr(A|mL)

Pr(A|mH) , the first means through which the principal will manage the constraint is to

increase the acceptance probability when the agent sends a weak recommendation. This increase
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in Pr(A|mL) will both increase the agent’s continuation value uA (xL, xH) and relax the reneging

temptation. The second means is through altering the acceptance probability following a strong

recommendation, Pr(A|mH). Here, however, the effects go in opposite directions: increasing the

acceptance probability following a strong recommendation both increases the continuation value

(relaxing the constraint) and increases the immediate gain to deviation (tightening the constraint).

As a result, as we will see below, the equilibrium distortion may be in either direction. This

observation is also relevant for the case of non-stationary equilibrium considered below. If the

principal rewards the agent by increasing his future influence, such a change may increase his reneging

temptation in the future and make the relationship harder to sustain.

For the principal, the incentive-compatibility constraint arises from the fact that by deviating

from the decision rule, she is able to save the distortion xi. Thus, for her, the reneging temptation

arises for both recommendations as long as xi 6= 0. This constraint can be written as

max |xi| ≤
δP

1− δP
(vP (xH , xL)− vP ) . (9)

We can thus write the principal’s maximization problem as

min
xH ,xL

(
px2

H + (1− p)x2
L

)
s.t. δA

1−δA [uA (xL, xH)− uA] ≥ ((θH−θL)+(xH−xL))
(θH+xH) θL

max |xi| ≤ δP
1−δP (vP (xH , xL)− vP ) .

Now, once the first-best can no longer be achieved, the agent’s IC constraint will always be binding.

If it is not binding, we could always decrease xL, increasing the principal’s payoff. So I will first

consider the solution when the principal’s IC is not binding (e.g. if δP → 1), and then consider how

the solution changes once the principal’s IC becomes a concern.

The logic behind the solution is easiest to illustrate graphically, as done in Figure 3. First, the

principal’s indifference curves are ellipses, and the solution will always have xL ≥ 0 to moderate the

incentives to exaggerate. The relevant segments of the principal’s indifference curves are denoted

by the light grey dashed lines growing away from the origin, with the principal’s preferred point at

the origin. Second, examination of the agent’s IC constraint shows that it will generally have two

solutions for each xL (indeed, the solution is given by the quadratic formula). The reason for this

result is that altering the acceptance probability has the tradeoff mentioned above: increasing xH
increases the value of the relationship but also the gain from an immediate deviation. Thus, we can

satisfy the IC constraint either by promising a high continuation value, achieved by positive xH (we

are biasing the high recommendation in the agent’s favor), or by limiting the incentives to exaggerate

by restricting the agent’s influence when making a strong recommendation (negative xH).

The agent’s patience level then infuences the effi ciency of these two avenues. Not surprisingly,

when the agent is patient, promising a high future value is more effi cient, while when the agent

is impatient, providing an immediate reduction in the value of deviating is more effi cient. This

tradeoff is illustrated by the dark dashed lines in the Figure, where increasing the agent’s impa-

tience causes the IC constraints to "fan out." An important focal point is provided by the solution
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Figure 3: Deriving the equilibrium distortions

(xL = p (θH − θL) , xH = − (1− p) (θH − θL)) , which satisfies the agent’s IC constraint for all pa-

tience levels. Indeed, at this point θH + xH = θL + xL = E (θ) and the principal ignores all

information provided to her, so the agent’s patience level is irrelevant.

The solution for any patience level, δA is then standard. Find the tangency point between the

agent’s IC constraint and principal’s indifference curve, indicating the indifference curve that is

closest to the origin. As we change the patience level, we trace out the (xL (δA) , xH (δA)) function

as illustrated. In particular, for high patience levels, the optimal solution involves favoring the agent

for both moderate projects and high-quality projects. The agent is suffi ciently patient that it is

optimal to reward him with continued high influence. However, as the agent becomes increasingly

impatient, we need to increase the influence of the agent for moderate project to sustain IC, but we

start to decrease his influence for the high-quality proposals to limit the incentives to exaggerate.

After a point, the cost of maintaining the IC constraint for the moderate projects becomes so high

that the principal actually starts to discriminate against the high-quality projects and once such

discrimination begins, she will eventually start also decreasing the favoritism for the medium-quality

projects. As the agent becomes fully myopic, the only solution sustainable is the one that ignores

the information presented.3

Next, note that this solution only satisfies the agent’s IC constraint. As the agent becomes

increasingly impatient, the distortions needed to maintain incentive-compatibility grow in size and

3As illustrated, the solution is a smooth curve. However, an element of the solution is that both the agent’s IC
constraint and the principal’s indifference curves are concave to the origin, and we cannot rule out the possibility that
the principal’s indifference curve is not always smoothly contained inside the agent’s truth-telling constraint in the
vicinity of xH = 0. In this case, there would be a discrete jump from a strictly positive xH to a strictly negative xH ,
with an associated jump in xL. I have not, however, managed to find such an exception.
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Figure 4: Optimal distortions and expected payoffs under stationary equilibrium - θL = 0.2, θH = 0.8
and p = 0.35.

the principal may become tempted to deviate herself. The principal’s IC constraint then puts a

cap on the distortion that can be introduced to the decision rule. The consequences of this cap are

illustrated in Figure 4, which plots the unconstrained solution together with the constrained solution

under different patience levels by the principal.

Three potential scenarios can arise, depending on the levels of (xH , xL) at the time the princi-

pal’s constraint becomes binding. First, suppose that xH > xL > 0. Then, to satisfy the principal’s

constraint we must lower xH and to continue to satisfy the agent’s constraint we must increase

xL. However, as this is a less effi cient means of satisfying the agent’s constraint, the value of the

relationship decreases, decreasing the maximal distortion sustainable. As the agent becomes increas-

ingly impatient, the thresholds converge and the relationship becomes unsustainable —supporting

further truth-telling by the agent would require increasing at least one of the thresholds, which is

not possible without violating the principal’s constraint.

The same logic applies in the other two cases, but the direction of adjustments changes. First,

suppose that xL > xH , with |xH | < |xL| . In this case, the principal needs to decrease xL to

satisfy her own constraint, which increases the agent’s incentives to exaggerate and requires an

increase in the continuation value through xH to compensate. Second, suppose that xL > 0 > xH

with |xH | > |xL| . In this case, the principal must increase xH , which increases the incentives to
exaggerate and must be compensated for by increasing xL as well. Note that this scenario can arise

only when (1− p) (θH − θL) is suffi ciently large so that the distortion can actually be suffi ciently
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negative.

The basic results regarding the stationary equilibrium are summarized in the following proposi-

tion:

Proposition 2 Optimal stationary strategies:
(i) The optimal acceptance rule of the principal is characterized by xL (δA, δP ) ≥ 0 and xH (δA, δP ) R
0 with xH (δA, δP ) ≤ 0 iff δA ≤ δA.
(ii) The agent’s relational influence (stage-game payoff ) is non-monotone in δA. It is increasing in

δA for δA ≤ δ̃A and decreasing for δA > δ̃A.

(iii) The bias in favor of medicore projects is monotone increasing in the impatience of the agent:
d(Pr(A|mH)/Pr(A|mL))

dδA
> 0.

Proof. Part (i) follows directly from the analysis above. Part (ii) follows from the behavior of

xL and xH . As the agent becomes impatient so that the first-best is no longer sustainable, he is

initially rewarded with a higher continuation value by biasing the decision rules in his favor, but as

he becomes increasingly impatient, the principal begins to discriminate against the better proposals,

eroding the influence and eventually converging to the no-information benchmark. Part (iii) follows

from the observation that the effi cient distortion is proportional to the states (which would leave

relative probability unchanged), and the optimal decision rule is increasingly distorted away from

this to satisfy the truth-telling constraint of the agent.

The summarize, the basic insights from the analysis of the stationary equilibrium are as follows.

First, to limit the incentives to exaggerate, the optimal decision rule always exhibits corporate

socialism, in the sense that mediocre projects have a relatively higher likelihood of acceptance

relative to the first-best outcome. This arises whether the high-quality projects are also favored or

not. Indeed, the acceptance probability for the low quality may be higher than the first-best threshold

for an average project. Second, the overall relative influence of the agent is non-monotone in his

patience. This non-monotonicity followed from the result that increasing the likelihood of accepting

high-quality projects both increased the continuation value to the agent (relaxing the truth-telling

constraint) and increased the immediate gain from misleading the principipal (tightening the truth-

telling constraint). When the agent is suffi ciently patient, the first effect dominates and it is optimal

to reward the agent with above-first-best relational influence to maintain truth-telling, whereas when

the agent becomes more impatient, the temptation for the agent to abuse that high level of influence

becomes too high and it becomes optimal to limit the agent’s influence below the first-best level. In

terms of project financing, this implies that the overall level of investment may be both above and

below the first-best level.
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6 Non-stationary strategies

While the distortions in the current influence of the agent can be used to sustain the relationship, a

stationary policy fails to take into account the possibility of using changes in the future influence of

the agent to achieve the same. The basic logic is relatively simple. First, to increase the attractiveness

of truth-telling, the principal will reward the agent with additional future influence whenever he

admits that his alternative is mediocre. For example, the dean of faculty may not hire a given

job candidate or the CEO may choose not to finance a given project given lukewarm support by

the department or division, but promises priority treatment the following year. This use of future

influence brings two additional benefits. First, it allows the principal to smooth out the reward for

truth-telling over multiple periods: instead of settling up immediately, the reward is spread over

time by giving the agent higher expected level of influence in the future. Second, it brings about an

important effi ciency gain: since the agent values the implementation of high-quality projects more

than low-quality projects, partially delaying the reward is valuable. Instead of having a low-quality

project implemented today, he receives a promise of favorable treatment tomorrow, when he may

have a high-quality project available.

In addition to rewarding the agent for the admission of mediocre projects, the principal will

also optimally punish the agent in some settings. In particular, when the agent makes a strong

recommendation and the proposal is still rejected, the truthfulness of that proposal is never learned

and this limits the cost of deviation to the agent. To counter this, it will be optimal to follow such a

rejected recommendation with a decrease in future influence. This result is akin to the punishment

phases in games of imperfectly observed actions, such as the triggering of price wars in Green and

Porter (1984) and lower effort levels by the agent in Li and Matouschek (2013).

To see these features in more detail, index the current influence of the agent by i. Then, following

the equilibrium strategy (truth-telling) gives the agent an expected payoff of

Pr (A|L, i) θL + δA [Pr (A|L, i)VA (A|L, i) + (1− Pr (A|L, i))VA (R|L, i)] , (10)

where L indicates the lower recommendation and A indicates an acceptance (and R rejection).

Similarly, if the agent lies, then his continuation payoff is given by

Pr (A|H, i) θL + δA
[
Pr (A|H, i)V devA + (1− Pr (A|H, i))VA (R|H, i)

]
. (11)

Now, as the first preliminary observation, recall that the principal’s loss in the stage-game is given

by px2
H,i + (1− p)x2

L,i and is thus convex in the biases. Thus, to provide a given continuation value

[Pr (A|L, i)VA (A|L, i) + (1− Pr (A|L, i))VA (R|L, i)] at minimum cost to the principal, it is best to

set VA (A|L, i) = VA (R|L, i) as a way to minimize the cost of distortions. Then, the IC constraint
simplifies to(

VA (L, i)− V devA

)
− Pr (R|H, i)

(
VA (R|H, i)− V devA

)
(1− Pr (R|H, i)) ≥ 1

δA

(
1− Pr (A|L, i)

Pr (A|H, i)

)
θL. (12)
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In the case of the stationary equilibrium considered above, we had VA (L, i) = VA (R|H, i), given
by 1

1−δAuA (xH,i, xL,i) . Now, by setting VA (L, i) > 1
1−δAuA (xH,i, xL,i) > VA (R|H, i) , we are able

to relax the IC constraint for the agent and improve the current payoff by lowering the immediate

thresholds. This improvement is achieved by switching to a more favorable equilibrium in the future

following an admittance of a mediocre alternative, while punishing the agent if the principal chooses

not to implement the alternative even when argued to be great. These are the two basic distortions

discussed above.4

Now, going forward it will be more convenient to deal with the net payoffs, so define Uj(.) =

Vj (.)− V devj as the normalized payoff, which allows us to write the truth-telling constraint as

UA (L, i)− Pr (R|H, i)UA (R|H, i) ≥ 1

δA
(Pr (A|H, i)− Pr (A|L, i)) θL. (13)

The second constraint that the solution needs to satisfy is the promise-keeping constraint, which

states that the expected payoff promised to the agent at the beginning of the period, UA (i) , must

equal the expected payoff from the stage game and the resulting continuation payoffs. In other

words, we have

UA (i) = (uA (i)− uA)+δA [(1− p)UA (L, i) + p (Pr (R|H, i)UA (R|H, i) + Pr (A|H, i)UA (A|H, i))] .
(14)

Now, since the continuation value following an accepted high recommendation plays no role in the

truth-telling constraint, we minimize the variance in the continuation values by setting UA (A|H, i) =

UA (i) , so that the agent’s influence is unchanged following this outcome. Then, we can combine

Equations 12 and 14 to yield the two key constraints that the changes in future influence must

satisfy:

∆UA (R|H, i) =
UA (i) (1− δA (1− (1− p) Pr (A|H, i))) + (1− δA)V devA − E (θ) Pr (A|H, i)

δA Pr (R|H, i) (15)

and

∆UA (L, i) =
UA(i)[1−δA(1+pPr(A|H,i))]+(1−δA)V devA −Pr(A|H,i)E(θ)+(Pr(A|H,i)−Pr(A|L,i))θL

δA
, (16)

where ∆UA (R|H, i) = UA (R|H, i) − UA (i) < 0 and ∆UA (L, i) = UA (L, i) − UA (i) > 0 are the

4Note that if the constraint is binding in one state, it needs to be binding in all states. To see this, recall from
Lemma 1 that the effi cient means of delivering a given stage-game payoff vA

(
xH,i, xL,i

)
to the agent involved a

proportional distortion, xj,i = αiθj . But under a proportional distortion, RHS of Equation 12 is constant. Thus,
if the IC constraint is not satisfied under the first-best solution of αi = 0 and V (L, i) = V (R|H, i) = V (i) , the
principal must bear the cost of disorting either the LHS by introducing V (L, i) > V (i) > V (R|H, i) or by distorting
RHS by using an ineffi cient stage-game policy for delivering the same stage-game payoff. If the IC constraint is not
binding, the principal could always do better by either reducing the distortion in the future by lowering the spread
V (L, i)− V (R|H, i) or by lowering the stage-game distortion, until the IC constraint is satisfied with equality.

17



changes in the continuation value. The principal’s problem is then to maximize

UP (i) (1− δP ) = (uP (i)− uP ) + δP [(1− p) ∆UP (L, i) + pPr (R|H, i) ∆UP (R|H, i)] (17)

subject to equations 15 and 16 at each stage of the game, together with the choice of the initial

promise.

Now, the key element needed to solve the model completely would be to characterize the self-

generating payoff set. Unfortunately, the richness of the principal’s action space makes characterizing

the set challenging.5 We can, however, use the principle of optimality to characterize the basic

tradeoff between settling up now through changes in the immediate acceptance probabilities and

settling up later through changes in the continuation values without fully needing to characterize

the frontier. Having considered the basic tradeoffs further, I then provide a numeric solution to a

simplified three-state variant of the model.

6.1 Characterizing the dynamics

To consider the dynamics of the optimal relationship, we can make two preliminary observations.

First, because there is only one-sided asymmetric information, the optimal contract can utilize

payoffs on the Pareto frontier. Second, because the stage-game losses are convex in the magnitude

of the distortions, the Pareto frontier will be concave.

Using these two observations together with equations 15, 16 and 17, we can derive some further

insights to the transition dynamics. This process of transitions is illustrated in Figure 5. Begin with

the initial state i0. Given the promised value and the distortions xH,i0 and xL,i0 , equations 15 and

16 pin down the future promises ∆UA (R|H, i0) and ∆UA (L, i0) needed to satisfy the initial promise

in an incentive-compatible fashion. This pins down transitions to UA(i1) or UA(i2). The transitions

needed, however, depend on the stage-game distortions. In particular, increasing xL,i, by increasing

the stage-game payoff right now, lowers the need for rewarding the agent in the future, lowering

∆UA (L, i) . Similarly, increasing xH,i lowers the need to reward the agent in the future. However,

because an increase in xH,i also increases the reneging temptation, ∆UA (L, i) cannot decrease as

rapidly as with xL,i. As a result, an increase in xH,i also requires an increase in the punishment

following rejection, so that ∆UA (R|H, i) must decrease as well.
For interior states, the solution is then characterized by the following first-order conditions. For

xL,i we have

∂uP (i)

∂xL,i
+ δP

[
(1− p) ∂∆UP (L, i)

∂∆UA (L, i)

∂∆UA (L, i)

∂xL,i

]
= 0⇔ xL,i = −δP

δA
θL
∂∆UP (L, i)

∂∆UA (L, i)
. (18)

5The concavity of the frontier implies that the optimal solution does not have the bang-bang property that would
allow us to characterize the Pareto frontier simply through its extreme points.
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Figure 5: Illustrating the equilibrium dynamics

The basic tradeoff is then straightforward. Rewarding the agent immediately with an increase in

acceptance probability costs the principal xL,i while rewarding the agent at the rate θL. Conversely,

increasing the continuation value by ∆UA (L, i) gives the agent δA∆UA (L, i) while costing the

principal δP∆UP (L, i). Thus, we are simply equating the marginal cost/benefit ratios of the two

channels.

The optimal distortion for the high-quality projects is slightly more complex, as xH,i influences

both continuation values ∆UA (L, i) and ∆UA (R|H, i) and the likelihood of rejection, Pr(R|H, i).
However, the first-order condition is still straightforward and given by

∂uP (i)
∂xH,i

+ δP

[
(1− p) ∂∆UP (L,i)

∂∆UA(L,i)
∂∆UA(L,i)
∂xH,i

]
−δP p∆UP (R|H, i) + δP

[
pPr (R|H, i) ∂∆UP (R|H,i)

∂∆UA(R|H,i)
∂∆UA(R|H,i)

∂xH,i

]
= 0.

(19)

The basic forces are thus as follows. First, increasing xH,i bears the basic cost (or benefit, if negative)

of −pxH,i. Second, by rewarding the agent now, it allows the principal to lower the reward going
forward, through ∂∆UA(L,i)

∂xH,i
< 0. Third, it lowers the likelihood that a good project is rejected,

and the associated change in the continuation value, ∆UP (R|H, i) . Finally, to satisfy the promise-
keeping constraint, it increases the punishment that needs to be imposed on the agent upon rejection.

Using the first-order condition for xL,i and equations 15 and 16, we can write the above expression

as

xH,i = (1− p) xL,i(δAUA(i)+(θH−θL))
θL

−δP∆UP (R|H, i)− δP
δA

[
E(θ)−(1−pδA)∆UA(i)−(1−δA)V devA

Pr(R|H,i)

]
∂∆UP (R|H,i)
∂∆UA(R|H,i) .

(20)

In other words, because of the link between xL,i and
∂∆UP (L,i)
∂∆UA(L,i) , we can observe that the benefit of

increasing xH,i translates to the ability to decrease xL,i.

An important feature for both conditions is that both the slopes ∂∆UP (.)
∂∆UA(.) and the change in the
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principal’s expected payoff following a rejection, ∆UP (R|H, i) , depend on the initial state, i. For
states close to i0,

∂∆UP (L,i)
∂∆UA(L,i) and

∂∆UP (R|H,i)
∂∆UA(R|H,i) are both negative - increasing the reward or punishment

to the agent requires a lower payoff to the principal. Thus, equation 18 gives us xL,i > 0 - some

settling up occurs immediately to avoid needing to reward the agent too much in the future. Similarly,

since the principal transitions to a worse state following a rejection of a high-quality alternative,

∆UP (R|H, i) < 0 and so all three components of equation 20 are positive, giving us xH,i > 0.

But as we move further away from the status quo, things will be different. First, suppose the

agent has built up a lot of relational influence. Then, the promise-keeping constraint requires that

even a rejection keeps us above the status quo. In this case, increasing xH,i has a dual benefit - not

only does it allow us to lower the need for additional (and increasingly expensive) future promises

but it also allows us to increase the penalty from rejection, which in this case benefits the principal

by bringing her closer to the status quo. Conversely, for very low states, increasing xH,i has a dual

cost —not only does it increase the need for further penalty, which is increasingly costly as we move

away from the status quo, but it also lowers the ability to return towards the status quo. Thus,

the dynamics have an inherent force towards the status quo. The higher the current state, the

higher the cost of additional future promises, leading to higher settling up now through xL,i and

xH,i, combined with high loss of influence following rejection, ∆UA (R|H, i) , and increasingly small
addition of further influence, ∆UA (L, i) . Conversely, the lower the current state, the lower xL,i and

xH,i to complete the punishment immediately and thus lower the need for further future punishment

and create a faster return towards status quo.

Caveats: It should be noted that the above discussion is mainly descriptive. As mentioned
above, to fully characterize the equilibrium would require us to solve for the Pareto frontier, which

is computationally infeasible. Also, the characterization applies only when the principal is able to

transition optimally both upward and downward. But both the rewards and penalties are bounded

and the corner solutions don’t allow for the same level of flexibility of determining the parame-

ters optimally. Finally, not knowing the frontier prevents us from deriving further, more detailed

comparative statics.

6.2 A three-state example

Given the diffi culties in characterizing the optimal relational contract further, I will now illustrate

some of the basic ideas using a three-state model. A solution with a highly patient principal is

illustrated in Figure 6, where panels (i) and (ii) illustrate the distortions and transition probabilities.

We can see that the basic logic of the stationary equilibrium continues to hold. The principal

favors mediocre projects while favoring high-quality projects for intermediate discount rates while

discriminating against them for low discount rates. Further, not surprisingly, the distortions are

ranked, with the higher state having a higher acceptance probability for both types of projects.

More importantly, we can see that the distortions in the non-stationary setting tend to be lower

than in the stationary setting, even for the extremal states. The reason is the ability to use the
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Figure 6: An example of the three-state solution, θL = 0.2, θH = 0.6 and p = 0.5, δP = 0.95.

changes in the future influence instead of immediate settling up to manage the relationship. The

benefit of this is most clearly illustrated in panel (iii), which plots the principal’s expected payoff,

together with the agent’s continuation payoffs in the different states. For intermediate states, the

changes in the continuation value allow us to limit the influence that we need to grant the agent

— the agent’s expected payoff even in the high state is below the agent’s payoff in the stationary

equilibrium. Correspondingly, for low levels of patience, the changes in the future influence substitute

for need to limit the agent’s influence, leading to a higher payoff for both parties.

The second element of interest is the transition probabilities themselves. Panel (iv) illustrates the

net effect of the transition probabilities the cleanest by considering the expected time spent in the

different states. Much like with the stage-game distortions, when the agent is moderately impatient,

he values the relationship a lot and, as a result, the game spends a high expected amount of time in

the high state. As the agent becomes increasingly impatient, the reneging temptation grows, and it

becomes more effi cient to penalize the agent, as the reneging temptation in the low state is lower.

Thus, the the parties spend less time in the high state and an increasing amount of time in the low

state.

In addition to these two basic themes, the solution exhibits two kinks. The first arises because

of the three-state nature of the model. As a part of the increasing need to motivate the agent

through penalties, increasing impatience of the agent lowers the transition probability up from the
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Figure 7: An example of the three-state solution, θL = 0.2, θH = 0.6 and p = 0.5, δP = 0.77.

low state. To the right of the discontinuity, ql→h > 0 and the principal benefits from the lower

transition probability by increasing the likelihood that the parties return to the status quo state

instead of transitioning directly to the high state. At ql→h = 0 this benefit disappears and the

value function exhibits a kink, with further reductions associated with loss to the principal. Thus,

the probability settles on ql→m = 1 and the rest of the parameters adjust to take into account this

change. Finally, when the agent is suffi ciently impatient, it becomes optimal to push the agent all

the way to his outside option in the low state - and since no further punishment of the agent is

possible, the parameters again exhibit a kink at this point.

This solution illustrated the outcome under a highly patient principal. If the principal is impa-

tient, then again the constraint on the incentive-compatibility of the disortion can become a binding

constraint, and the mechanics are very similar to the stationary scenario, with the principal first

adjusting the distortions to sustain incentive-compatibility, until the relationship becomes unsus-

tainable. The only differences are that (i) because of the ability to sustain a higher value to the

relationship with smaller distortions (panels (i) and (iii)), the relationship is sustainable longer, and

(ii) transition probabilities provide an additional lever to satisfy both constraints simultaneously.

One such solution is illustrated in Figure 7, which plots the solution under the non-stationary equi-

librium, together with the stationary equilibrium, for a less patient principal. To highlight the role

of the transition probabilities, note that as both high and low state constraints become binding,

the optimal solution correspondingly increases the transition probability to that state to limit the

distortion away from the promised continuation value.

7 Conclusion

I have illustrated how a decision-maker can use the repeated nature of a relationship and the manip-

ulation of her acceptance rule to sustain the relationship with an agent. In a stationary equilibrium,

to sustain truth-telling, the decision-maker implements a form of corporate socialism, where the
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decisions are biased in favor of mediocre alternatives to reward honesty. In a non-stationary equilib-

rium, the principal can further reward the agent through the allocation of future influence, where the

admission of mediocre alternatives is rewarded with increased future influence while the rejections

of high-quality alternatives are associated with the erosion of influence.

These results are, however, only a first pass towards a richer understanding of the evolution

of influence in organizations. In terms of dynamics, work remains to be done on what is the truly

optimal equilibrium. The analysis also assumed that the outcomes are perfectly observed. In reality,

such observation is likely to be noisy, which leads to at least three complications. First, when the

observations are noisy, the optimal equilibrium is likely to involve comparing the blocks of the

empirical distribution of the recommendations to the predicted distribution under honesty. Second,

if the arrival of information is probabilistic, then the realm of deviations becomes larger as an agent

who deviates once will take into account the gains he can get from a continued deviation until he

is caught. Third, the detection of the deviation may be dependent on the magnitude of the lie,

which creates the question of optimal deviation and the possibility of needing to tolerate minor

misrepresentations along the equilibrium path.

The analysis also ignored the possibility of transfers. In that regard, deep pockets would convert

the problem into a stationary one as transfers could be used as signals of private information. If

the transfers can flow only from the principal to the agent, then the basic qualitative features of the

solution would be maintained, but large enough distortions would be supplemented by monetary

transfers to limit the cost to the principal. Relatedly, use of performance pay creates the possibility

of partial alignment of interests. In the extreme, making the agent the residual claimant would

eliminate all conflicts and lead to the first-best outcome.

In terms of the timing and observability of information, I assumed that the cost of implementation

is public and arrives only after the agent’s recommendation. In general, hiding the information from

the agent until his recommendation is optimal, but a fully private signal would convert the problem

into one of two-sided private information and again necessitate history-dependent punishments by

the agent if his advice is not followed often enough. Finally, an interesting question that remains

open is how to manage a relationship with multiple agents who provide competing proposals or

otherwise multiple relevant pieces of information in terms of the allocation of current and future

influence among them.
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A Proofs and derivations

A.1 Solving for the stationary equilibrium

To examine the properties of the solution (xH , xL), we can first write the IC constraint of the agent,

which we know to be always binding, as

[φ (θ) + pθHxH + (1− p) θLxL]− yA ((θH−θL)+(xH−xL))
(θH+xH) θL = 0,

where φ (θ) is the value created by the information and yA = 1−δA
δA

. The principal’s goal is to

minimize the loss caused by the distortion, px2
H + (1− p)x2

L subject to the IC constraint. Taking

the Lagrangian of the problem, we can write the two first-order conditions for the solution as

xH : pxH − λ
(
pθH − yA (θL+xL)

(θH+xH)2
θL

)
= 0

xL : (1− p)xL − λ
(

(1− p) θL + yA
1

(θH+xH)θL

)
= 0,

which gives us that the optimal (xH , xL) must satisfy

pxH(
pθH−yA

(θL+xL)

(θH+xH)2
θL

) = (1−p)xL(
(1−p)θL+yA

1

(θH+xH)
θL

) .
This expression allows us to learn some of the basic features of the solution. First, RHS is al-

ways positive and thus we have that xL ≥ 0. Second, the left-hand side may be positive or negative,

depending on the magnitude of yA. When the agent is suffi ciently patient, yA is small and thus

xH > 0. Conversely, if the agent is suffi ciently impatient, xH < 0. Further, we can use the agent’s

IC constraint to solve explicitly for the solution for xH . The IC constraint yields a quadratic equation

in xH , the solution to which is given by

xH (xL, φ (θ)) =

−[φ(θ)+(1−p)θLxL+pθ2H−yAθL]±
√

[φ(θ)+(1−p)θLxL+pθ2H−yAθL]
2−4pθH [[φ(θ)+(1−p)θLxL]θH−yA(θH−θL−xL)θL]

2pθH
.

While deriving the rest of the solution analytically is infeasible, we can obtain three points of

the solution. First, first-best is obtained when the solution satisfies xH = xL = 0, which gives

the threshold level of patience from the analysis as yA = φ(θ)θH
(θH−θL)θL

. Second as the limit when the

agent becomes infinitely impatient, the IC constraint converges to xL = ((θH − θL) + xH) and the

solution is (xH = − (1− p) (θH − θL) , xL = p (θH − θL)) , so that θH + xH = E(θ) = θL + xL. Fi-

nally, at the point of xH = 0, we know the LHS of the expression above must be ill-defined, giving
pθ3H
yAθL

− θL = xL.

To formally consider the monotonicity of the solution, we can make two observations. First, for

a given xL, the principal’s indifference curves become flatter at given xH (xL) as we reach lower

indifference curves (further from the origin). To see this, note that the indifference curves are given

by
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px2
H + (1− p)x2

L = LP .

Thus, the slope at any given point is given by

dxH
dxL

= − (1−p)xL
pxH

.

But for xH to lie on the indifference curve, we have that xH = ±
√

LP−(1−p)x2L
p , so that the slope is

dxH
dxL

= − (1−p)xL
pxH

= ± (1−p)xL

p

√
LP−(1−p)x2L

p

,

which is flattening in the loss, LP . Further, d2xH
dx2L

= − (1−p)
pxH

, so that the function is concave to

the origin. In other words,
∣∣∣dxHdxL

∣∣∣ is increasing in xL. Second, for the agent’s incentive-compatibility
constraint, we can establish that for each indifference curve,

∣∣∣dxHdxL

∣∣∣ is also increasing in xL.
Next, considering the effect of impatience, we can establish from the agent’s IC constraint that

dxH
dδA

> 0 for dxHdxL
< 0 and dxH

dδA
< 0 for dxHdxL

> 0 over the relevant range. This is the "fanning out" of

the IC constraint discussed in the text. Further, we have that d
2xH(xL)
dxLdδA

≤ 0, so that the IC constraint

becomes pointwise steeper in the region of dxHdxL
> 0 while becoming less positive for dxHdxL

< 0. Then,

the solution is immediate. Consider first solution in the region of dxHdxL
> 0. Then, an increase in the

impatience causes an outward-shift of the IC constraint, pushing the principal to a worse indifference

curve. This curve is pointwise flatter than the original curve. Correspondingly, the IC constraint is

pointwise steeper. Thus, the new tangency must lie to the right, with xL higher than the original

solution. Similarly, consider the region of dxHdxL
> 0. Now, both the principal and the agent have

pointwise flatter indifference curves, and the direction of the change in xL is indeterminate, but

xH must decrease. To see this, begin with a fully impatient agent, with a tangency point at the

uninformative solution. A decrease in impatience increases the slope dxH
dxL

for the IC constraint

of the agent, rotating it around the point of indifference, allowing the principal to obtain a lower

indifference curve, which means that the new tangency point must lie to the northeast of the original

tangency point. As the agent becomes more patient, the tangency point must continue to travel

north, but will revert to moving west once the agent is suffi ciently patient.

To establish the first part of the properties of the agent’s IC constraint, note that we can use the

implicit function theorem to derive

dxH
dyA

= θL(θH+xH)(((θH−θL)+(xH−xL)))

(pθH(θH+xH)2−yA(θL+xL)θL)
and dxH

dxL
= − θLθH+xH(yA+(1−p)(θH+xH))

(pθH(θH+xH)2−yA(θL+xL)θL)
,

which establishes the opposite signs of dxH
dyA

and dxH
dxL

and thus the "fanning" out of the feasible

solutions. Deriving d2xH(xL)
dxLdδA

≤ 0 is more cumbersome, since it requires us taking into account the

change in the location of the IC constraint. As a first step, it follows immediately from the IC

constraint that d2xH
dxLdδA

< 0. However, this does not take into account the fact that a change in δA
also changes xH . To this end, we can use the exact solution for xH (xL) from above. The derivative

is analytically tedious, but the relevant part simplifies to

d2xH(xL)
dxLdδA

≤ 0⇔
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[
pθH

(
θH −

(
(θH+xH)

((θH+xH)−(θL+xL))

)
xH

)
−
(

1 + (θH+xH)
((θH−θL)+(xH−xL))

)
φ (θ)

]
≤ (1− p) θLxL

[
1 +

(
(θH+xH)

((θH−θL)+(xH−xL))

)]
,

where φ (θ) is the value of information. The expression is immediately satisfied whenever p is

small enough, as the condition can be violated only when pθ2
H is suffi ciently high. Unfortunately we

cannot verify the whole parameter space analytically (the condition can be violated for some generic

(xL, xH) so we need to take into account the constraint that xH (xL, δA) must hold, which we can

verify numerically).

A.2 Equations for the non-stationary equilibrium and the three-state
model

The truth-telling constraint of the agent is given by

VA(L,i)−Pr(R|H,i)VA(R|H,i)
(1−Pr(R|H,i)) ≥ 1

δA

(
1− Pr(A|L,i)

Pr(A|H,i)

)
θL + V devA ,

while the promise-keeping constraint is given by

VA (i) = uA (i) + δA [(1− p)VA (L, i) + p (Pr (R|H, i)VA (R|H, i) + Pr (A|H, i)VA (i))] ,

which we can rewrite as

VA (i) (1− δi (1 + pPr (A|H, i))) = uA (i)− δAp [VA (L, i)− Pr (R|H, i)VA (R|H, i)] .

From the IC constraint we get that

[VA (L, i)− Pr (R|H, i)VA (R|H, i)] = 1
δA

(Pr (A|H, i)− Pr (A|L, i)) θL + Pr (A|H, i)V devA ,

which we can substitute in the promise-keeping constraint to yield

VA (i) =
uA(i)+δAVA(L,i)−p(Pr(A|H,i)−Pr(A|L,i))θL−δApPr(A|H,i)V devA

[1−δApPr(A|H,i)] .

Next, we can decompose the stage-game payoff as

uA (i) = φ (θ) + pθHxH (i) + (1− p) θLxL (i) + (1− δA)V devA ,

where (1− δA)V dev is the payoff from an uninformed choice while φ (θ) = p (1− p) (θH − θL)
2

is the expected value of the agent’s information. We can substitute this into the expression, which

then simplifies the expression to(
VA (i)− V devA

)
=

φ(θ)+p(xH,i−θL)(θH−θL)+θLxL,i+δA(VA(L,i)−V devA )
[1−δApPr(A|H,i)] .
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As an additional simplification to the expression, we can add and substract pθH (θH − θL) and

θ2
L from the expression, which gives us

(
VA (i)− V devA

)
=

φ(θ)+pPr(A|H,i)(θH−θL)−pθ2H−(1−p)θ2L+Pr(A|L,i)θL+δA(VA(L,i)−V devA )
[1−δApPr(A|H,i)] ,

and finally noting that pθ2
H + (1− p) θ2

L is the value realized by the agent in the first-best scenario

and can be decomposed as φ (θ) + (1− δA)V devA , we finally get

(
VA (i)− V devA

)
=

(E(θ)−θL) Pr(A|H,i)+Pr(A|L,i)θL+δAVA(L,i)−V devA

[1−δApPr(A|H,i)] .

Then, we can rearrange the expression, using UA(i) = VA (i)− V devA , to

∆UA (L, i) =
UA(i)[1−δA(1+pPr(A|H,i))]+(1−δA)V devA −E(θ) Pr(A|H,i)+(Pr(A|H,i)−Pr(A|L,i))θL

δA

Alternatively, we can take the promise-keeping constraint and add and substract (1− p)VA (R|H, i) ,
which allows us to obtain a different factorization of the same expression as

(
VA (i)− V devA

)
=

φ(θ)+xH,i(pθH+(1−p)θL)+(1−p)(θH−θL)θL+δA Pr(R|H,i)[VA(R|H,i)−V devA ]
(1−δApPr(A|H,i)) ,

and using a manipulation similar to the above, we can write this as

(
VA (i)− V devA

)
=

E(θ) Pr(A|H,i)−δA Pr(A|H,i)(VA(R|H,i)−V devA )+δAVA(R|H,i)−V devA

(1−δApPr(A|H,i)) ,

which we can rearrage to

∆UA (R|H, i) =
UA(i)(1−δA(1−(1−p) Pr(A|H,i)))+(1−δA)V devA −E(θ) Pr(A|H,i)

δA Pr(R|H,i) .

Given these two expressions, we can then consider the principal maximizing her payoff,

UP (i) (1− δP ) = (uP (i)− uP ) + δP (pPr(R|H, i)∆UP (R|H, i) + (1− p) ∆UP (L, i)) ,

subject to the above two constraints. The first-order conditions are then immediate. First, for

the choice of xL,i gives

dUP (i)
dxL,i

= ∂uP (i)
∂xL,i

+ δP (1− p) ∂∆UP (L,i)
∂∆UA(L,i)

d∆UA(L,i)
dxL,i

= 0,

and from above we get d∆UA(L,i)
dxL,i

= − θLδA , which simplifies the expression to

xL,i = − δPδA
∂∆UP (L,i)
∂∆UA(L,i)θL.

Similarly, for the distortions for the high project, we get

dUP (i)
dxH,i

= ∂uP (i)
∂xH,i

+ δP (1− p) ∂∆UP (L,i)
∂∆UA(L,i)

d∆UA(L,i)
dxH,i
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−δP (p∆UP (R|H, i)) + δP pPr(R|H, i)∂∆UP (R|H,i)
∂∆UA(R|H,i)

d∆UA(R|H,i)
dxH,i

= 0.

From above, we get

xL,i = − δPδA
∂∆UP (L,i)
∂∆UA(L,i)θL ⇔ −

xL,iδA
δP θL

= ∂∆UP (L,i)
∂∆UA(L,i) ,

d∆UA(L,i)
dxH,i

= − δApUA(i)+(E(θ)−θL)
δA

< 0

d∆UA(R|H,i)
dxL,i

= UA(i)(1−pδA)+(1−δA)V dev−E(θ)

δA Pr(R|H,i)2 < 0,

where the last result follows from the following logic. For the transition to be valid, it must be

that

∆UA (R|H, i) = UA(i)(1−δA(1−(1−p) Pr(A|H,i)))+(1−δA)V dev−E(θ) Pr(A|H,i)
δA Pr(R|H,i) < 0,

which holds only as long as

[UA (i) δA(1− p)− E (θ)] < −VA(i)(1−δA)
Pr(A|H,i) ,

so that

max
(
d∆UA(R|H,i)

dxH,i

)
=

(1−δA)VA(i)−VA(i)(1−δA)
Pr(A|H,i)

δA Pr(R|H,i)2 = − (1−δA)VA(i)
δA Pr(R|H,i) Pr(A|H,i) < 0.

Substituting in the components, we get

xH,i = (1− p) xL,i(δAUA(i)+(θH−θL))
θL

− δP∆UP (R|H, i)
−δP ∂∆UP (R|H,i)

∂∆UA(R|H,i)
E(θ)−UA(i)(1−pδA)−(1−δA)V dev

δA Pr(R|H,i)2 .

A.2.1 Three-state model

Principal’s expected payoffs: To solve for the principal’s expected payoff that we are trying to
maximize, we can use the value functions and rewrite them to yield

UP (h) = uh+δP pq̃h→mUP (m)+δP pq̃h→lUP (l)
[(1−δP )+δP p(q̃h→m+q̃h→l)]

UP (l) = ul+(1−p)δP [ql→mUP (m)+ql→hUP (h)]
[(1−δP )+(1−p)δP (ql→m+ql→h)]

UP (m) = um+δP qm→h(1−p)UP (h)+δP pq̃m→lUP (l)
[(1−δP )+δP qm→h(1−p)+δP pq̃m→l] ,

where q̃j→i = Pr(R|H, i)qj→i is the expected transition probability. Next, define constants

αh = [(1− δP ) + δP p (q̃h→m + q̃h→l)]

αl = [(1− δP ) + (1− p) δP (ql→m + ql→h)]

αm = [(1− δP ) + δP qm→h (1− p) + δP pq̃m→l]
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as the denominators of the three expressions, we can then solve the three equations simultaneously

to yield the value functions as a function of the transition probabilities and the stage-game payoffs as

UP (l) = ul(αmαh−βhm)+(1−p)δP (ql→mαh+δP pql→hq̃h→m)um+(1−p)δP (ql→hαm+(1−p)δP ql→mqm→h)uh
αlαmαh−(1−p)δ2P p(δP pq̃h→mq̃m→lql→h+δP (1−p)q̃h→lql→mqm→h+αhql→mq̃m→l+αlq̃h→mqm→h+αmq̃h→lql→h)

UP (m) = um[αlαh−βhl]+(1−p)δP (qm→hαl+δP pq̃m→lql→h)uh+δP p(q̃m→lαh+(1−p)δP qm→hq̃h→l)ul
αlαmαh−(1−p)δ2P p(δP pq̃h→mq̃m→lql→h+δP (1−p)q̃h→lql→mqm→h+αhql→mq̃m→l+αlq̃h→mqm→h+αmq̃h→lql→h)

UP (h) = uh[αlαm−βml]+δP p(q̃h→lαm+δP pq̃h→mq̃m→l)ul+δP p(q̃h→mαl+(1−p)δP q̃h→lql→m)um
αlαmαh−(1−p)δ2P p(δP pq̃h→mq̃m→lql→h+δP (1−p)q̃h→lql→mqm→h+αhql→mq̃m→l+αlq̃h→mqm→h+αmq̃h→lql→h)

,

where

βhl = δ2
P p (1− p) q̃h→lql→h

βhm = δ2
P p (1− p) q̃h→mqm→h

βml = δ2
P p (1− p) q̃m→lql→m.

State-specific constraints: In similar fashion, we can use the constraints on the continuation
payoffs to explicitly consider the three states.

High state: In the high state, no further transition upwards is possible, so VA (L, h) = VA (h) .

For the punishment, the continuation value is given by

VA (R|H, i) = VA(h) + qh→m (VA(m)− VA(h)) + qh→l (VA(l)− VA(h)) . (21)

This allows us to write the constraints as

Pr (A|L, h) =

(
VA (h)− V devA

)
[1− δA (1 + pPr (A|H,h))] + (1− δA)V devA − (E (θ)− θL) Pr (A|H,h)

θL
,

(22)

and

∆VA (R|H,h) =

(
VA (h)− V devA

)
(1− δA (1− (1− p) Pr (A|H,h))) + (1− δA)V devA − E (θ) Pr (A|H,h)

δA Pr (R|H,h)
,

(23)

Note that because further transition upwards is not possible, the RHS of both equations is a function

of only xH,h. Thus, for the largest state, the optimization problem reduces into a single-variable

problem. Finally, we can write the principal’s payoff as

VP (h) (1− δP ) = uP (h) + δP pPr(R|H,h)∆VP (R|H,h). (24)

Finally, noting that because of the convexity of the losses to the principal when moving away from
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the best solution, the transition probabilities satisfy either qh→m < 1, qh→l = 0 or qh→l > 0, qh→m =

1− qh→l, we get

∆VP (R|H,h) =

{
qh→m (VP (m)− VP (h)) for qh→l = 0

(VP (m)− VP (h)) + qh→l (VP (l)− VP (m)) for qh→l > 0
. (25)

Then using equation 23 we get the solution for the transition probabilities as

qh→m =
(VA(h)−V devA )(1−δA(1−(1−p) Pr(A|H,h)))+(1−δA)V devA −E(θ) Pr(A|H,h)

δA Pr(R|H,h)(VA(m)−VA(h)) for qh→l = 0

qh→l =
(VA(h)−V devA )(1−δA(1−(1−p) Pr(A|H,h)))+(1−δA)V devA −E(θ) Pr(A|H,h)−(VA(m)−VA(h))

δA Pr(R|H,h)(VA(l)−VA(m)) for qh→l > 0
.

(26)

Given the initial promises VA(m), VA(h), VA(l), these equations define a range
[
xH,h, xH,h

]
and

the associated xL,h, qh→m and qh→l for which a solution exists and we can maximize over.

Low state: For the low state, we can follow a similar logic. Now, no further transitions down-
wards are possible and, as a result, VA(R|H, l) = VA(l) while the continuation value following a weak

recommendation is given by

VA (L|l) = VA(l) + ql→m (VA(m)− VA(l)) + ql→h (VA(h)− VA(l)) , (27)

and the promise-keeping and truth-telling constraints simplify to

Pr (A|H, l) =
VA (l) (1− δi)

E (θ)−
(
VA (l)− V devA

)
δA (1− p)

(28)

and

∆VA (L, l) =
(Pr (A|H, l)− Pr (A|L, l)) θL −

(
VA (l)− V devA

)
δA Pr (A|H, l)

δA
. (29)

Since no further movement downwards is possible, there is a unique distortion xH,l that satisfies

both constraints. Second, given the deterministic Pr (A|H, l) , there is now a one-to-one relationship
between VA (L, l) and Pr (A|L, l) . As with the high state, the transition probabilities then become

ql→m =
(Pr(A|H,i)−Pr(A|L,i))θL−δA Pr(A|H,i)(VA(l)−V devA )

δA(VA(m)−VA(l)) for ql→h = 0

qh→l =
(Pr(A|H,i)−Pr(A|L,i))θL−δA Pr(A|H,i)(VA(l)−V devA )−δA(V (m)−V (l))

δA(VA(h)−VA(m)) for ql→h > 0
. (30)

Finally, the principal’s value function needs to satisfy.

VP (l) (1− δP ) = uP (l) + (1− p) δP∆VP (L|l) (31)

And the constraints define now a feasible range
[
xL,l, xL,l

]
and the associated xH,l, ql→m and

ql→h for which a solution exists for the initial promises, and that we can maximize over.
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The only qualitative difference to the continuous-state case under both the high and low states is

that the value functions exhibit a kink at qi→m = 1, where for lower total transition probabilities, the

principal benefits from an increased transition probability (as it approaches the status quo), whereas

for higher transition probabilities, the principal is hurt by transitioning away from the status quo.

Thus, the solution will exhibit potential discontinuities when the solution is around this point.

Status quo state: Finally, we can consider the principal’s maximization problem for the status
quo state. Take VA (m) to be the utility promised by the principal in the first stage of the game.

Now, transitioning both up and down is possible, and we can write the principal’s expected payoff

as

VP (m) (1− δP ) = uP (m) + δP (pPr(R|H,m)∆VP (R|H,m) + (1− p) ∆VP (L|m)) , (32)

where ∆VP (R|H,m) = qm→l (VP (l)− VP (m)) and ∆VP (L|m) = qm→h (VP (h)− VP (m)) . The

relevant constraints are then given by

qm→l =

(
VA (m)− V devA

)
(1− δA (1− (1− p) Pr (A|H,m))) + (1− δA)V devA − E (θ) Pr (A|H,m)

δA Pr (R|H,m) (VA (l)− VA (m))
.

(33)

Given the relationship between ∆VA (R|H,m) and Pr (A|H,m) , now there is a similar relationship

between ∆VA (L|m) and Pr (A|L,m) . In particular, we have

qm→h =
(1− δA)VA (m)− δApPr (A|H, i)

(
VA (m)− V devA

)
− (E (θ)− θL) Pr (A|H,m)− Pr (A|L,m) θL

δA (VA (h)− VA (m))
.

(34)

The principal’s problem in this stage then boils down to maximizing 32 subject to constraints 33 and

34, which can be viewed as a two-variable maximization problem with respect to xH,m and xL,m.

Numerical optimization: The problem itself is solved numerically with Matlab. Using the

principle of optimality, the solver consists of two stages. First, I optimize the optimal distortions

in the three states following the initial promises of continuation values through a best-response

iteration. Second, knowing how to optimally deliver the promised continuation values, I optimize

over the initial promises V (l), V (m) and V (h).

B Continuous-state model

Consider the same setup as in the analysis, but assume now that the agent’s return is drawn from

a uniform distribution on [0,1]. Now, the acceptance rule becomes a function Pr(A|c,mi). My focus
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is on the stage-game distortions, but to allow for us to consider the role of future influence as well,

I allow the principal to promise a transition to a state with higher influence for the agent following

the admittance of a low-quality alternative. I will, however, leave the state itself exogenous. Finally,

I will focus only on the truth-telling constraint of the agent.

B.1 Attaining the first-best

Let Pr (A|mi) =

∫
c

Pr (A|mi, c) dFP (c) dc denote the expected probability of acceptance following

a given message. Then, assuming that we can attain the first-best, the continuation equilibrium is

stationary, and telling the truth gives an expected payoff of

Pr (A|θi) θi + δAV
cont
A . (35)

Similarly, if the agent chooses to lie, his payoff is given by

Pr
(
A|θ̃i

)
θi + δA

[(
1− Pr

(
A|θ̃i

))
V contA + Pr

(
A|θ̃i

)
V devA

]
. (36)

The optimal decision rule involves the principal accepting the project whenever θi ≥ c, so that

Pr
(
A|θ̃i

)
= FP

(
θ̃i

)
= θ̃i. Then, the truth-telling constraint reduces to, for all θi and θ̃i, to

(
V contA − V devA

)
≥ 1

δA

1− FP (θi)

FP

(
θ̃i

)
 θi. (37)

Two observations follow. First, the optimal deviation for the agent is to always send the maximal

message, which, given the assumed shared support and the first-best decision rule, leads to accep-

tance with probability 1. Intuitively, if it is optimal for the agent to risk burning his reputation, he

should go all in. Second, the deviation temptation is maximized for interior θi. Since FP
(
θ̃i

)
= 1,

the deviation temptation is maximized to θi for which

θi =
1− FP (θi)

fP (θi)
. (38)

In the case of the uniform distribution, this yields θi = 1
2 . Intuitively, when the state is low enough,

the return to pushing for its acceptance is not worth the destruction of the reputation when caught

lying. Similarly, when the state is high enough, then the project is relatively likely to be accepted

even without exaggeration, and the small improvement in the probability of acceptance is not worth

risking the reputation. It is this non-monotonicity of the deviation temptation that is the main

difference to the two-state variant.
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Figure 8: Sustainable truth-telling under the first-best decision rule.

This first-best solution is illustrated in Figure 8 for the uniform distribution. Panel (ii) plots the

first-best decision rule. Simply, the agent tells the truth and the principal implements the agent’s

proposal if the cost is below the value of the project. Conditional on the decision rule, panel (i)

illustrates the state-contingent payoffs of the agent, highlighting how the deviation temptation is

maximized at θi = 1
2 . Thus, if the truth-telling constraint is satisfied for θi = 1

2 , it is slack for all

other states. A quick valuation of the constraint reveals that truth-telling and first-best decision

rule are incentive-compatible as long as δA ≥ 3
4 .

B.2 Managing the truth-telling constraint

If δA < 3
4 , then the first-best decision rule is unable to sustain truth-telling by the agent. To analyze

how we can optimally modify the constraint, note that we may condition the continuation payoff

of the agent on both what his report is and whether the report is accepted or rejected. Thus, the

expected payoff from truth-telling is given by

Pr (A|θi) θi + δA
[
Pr (A|θi)V contA (θi, A) +

(
1− Pr (A|θi)V contA (θi, R)

)]
, (39)

where V contA (θi, j) is the (potentially message-dependent) continuation value of the agent if he tells

the truth. Conversely, if the agent chooses to lie, his payoff is given by

Pr
(
A|θ̃i

)
θi + δA

[(
1− Pr

(
A|θ̃i

))
V contA

(
θ̃i, R

)
+ Pr

(
A|θ̃i

)
V devA

]
, (40)

where θ̃i is the announcement of the agent, leading to a continuation payoff V contA

(
θ̃i, R

)
if the
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principal chooses against the agent’s proposal and thus the lie goes undetected, while resulting in

payoff V devA if the proposal is accepted and the agent is thus caught in a lie.

To capture the two-state structure of the payoffs, I index the states by α and α, with the

transition probability determined by qj (θi),where j ∈ {A(ccept), R(eject)}. Thus, we can write the
continuation value in each case as

V contA (θi, j) = qj (θi) ∆VA + VA (α) , (41)

where ∆VA = VA (α) − VA (α) , the gain in the continuation value for the agent if the principal

transitions to the more favorable decision rule. Then, taking equations 39 and 40, the decision rule

and the continuation payoffs are incentive-compatible, if

Pr (A|θi) [V contA (θi, A)− V contA (θi, R)] +
[
V contA (θi, R)− V contA

(
θ̃i, R

)]
+ Pr

(
A|θ̃i

)(
V contA

(
θ̃i, R

)
− V devA

)
≥ 1

δA

(
Pr
(
A|θ̃i

)
− Pr (A|θi)

)
θi.

First, it is immediate from the expression that for states high enough, the constraint is satisfied

for any continuous acceptance rule.6 Thus, following a deviation, the continuation value will have

qR

(
θ̃i

)
= 0. Thus, the above simplifies to

Pr (A|θi) (qA (θi)− qR (θi)) ∆VA + qR (θi) ∆VA + p
(
VA (α)− V devA

)
≥ 1

δA
(p− Pr (A|θi)) θi. (42)

Now, we face the question of how to optimally differentiate between qA (θi) and qR (θi) . Note that

because the agent cares only about the expected probability, as long as the optimal deviation is to

make the strongest recommendation in favor of adoption, we can set qA (θi) = qR (θi) for this stage

of the analysis.

The caveat to this is that since the agent’s continuation value is no longer independent of his

report and, indeed, will be maximized for intermediate reports (to encourage truth-telling when it is

most tempting to lie), if the change in continuation value is suffi ciently high, while the intermediate

types need to be discouraged from pretending to be high types, low types may now have an incentive

to report being an intermediate type, in hopes of having their choice rejected and instead rewarded

with future influence.

To counter this deviation, the principal could load more of the reward to actually accepting

the proposal, so that qA (θi) > qR (θi). This will, however, increase the maximal reward that the

principal must give the agent in a given state (since the probabilities are capped from above by

one, we need to increase ∆VA, which is costly to the principal). Further, the bigger the distortion,

the less attractive it becomes for the principal to honor the promise. Since the goal is not to

provide a complete analysis of the framework, I assume that this constraint is not binding and let

qA (θi) = qR (θi) .

6Continuous decision rules will turn out to be optimal when dealing with the agent’s IC constraint. This changes
once we introduce the principal’s IC constraint as well.
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Within these parameters, equation 42 helps us to identify four different means of managing the

constraint, which I will consider in a sequence below.

1. General favoritism: The first immediate means of managing the agent’s incentives to
deviate is to increase the agent’s influence in the stage game. In other words, we can increase

E [Pr (A|θi)] to increase the agent’s expected payoff and thus the value of the relationship. The
question is then what is the most effi cient means of increasing the agent’s stage-game payoff, ignoring

any other constraints, and the solution is given by the following lemma:

Lemma 3 The least-cost means of increasing the agent’s continuation value is to use a linear dis-
tortion in the acceptance rule, with the principal implementing the project whenever c ≤ c (θi) , where

c (θi) = (1 + α) θi, α ≥ 0. (43)

Proof. See Appendix B.4.1

In other words, because the agent’s payoff is proportional to the value of the idea, the least

distortionary means of delivering a given utility to the agent is a proportional distortion, where the

principal is willing to implement projects at a loss, and where the proportional loss is capped by α.

As α increases, the agent is better off (and the principal is worse off).

2. Discrimination against the best proposals: The second observation that follows from
equation 42 is that the agent’s optimal deviation is going to be to the proposal that maximizes the

probability of acceptance.7 Further, we can see that the deviation temptation is increasing in the

maximum probability of acceptance. Thus, the second means of satisfying the agent’s truth-telling

constraint is to lower the maximum probability of acceptance, which means that the agent’s best

proposals will be discriminated against. Indeed, the least-cost way of doing this is to introduce a

cap θi, where all proposals in
[
θi, 1

]
are accepted with a common probability Pr

(
A|θi

)
= p < 1.

Further, given part (1), the threshold and the probability of acceptance are implicitly related through

θi (1 + α) = p (α) .

To understand why the maximal acceptance probability plays a role even if the deviation tempta-

tion is maximized for intermediate types is as follows. When the agent chooses whether to lie or not,

he doesn’t yet know whether the lie is actually needed to induce acceptance. The lie is needed only

when the cost of implementation is high enough, while truth would be enough when the cost is low

enough. When choosing whether to mislead the principal, the agent is balancing these two forces.

Now, if we lower the maximal probability of acceptance, so that the principal never implements the

agent’s proposal when her cost is high enough, the relative effi ciency of the lie is lowered: it is more

likely that telling the truth would have been suffi cient to induce acceptance. Thus, exaggeration

becomes less attractive.
7This result is immediate when the continuation payoff is not state-dependent. When the continuation payoff is

state-dependent, we need to verify this to be the case.
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In relation to the two-state framework of the main analysis, the level of distortion for the better

project in the two-state framework blends these two effects (increasing the continuation value and

decreasing the reneging temptation), where the direction of forces works in the opposite directions.

In the continuous-state model, they become more decoupled as the principal can discrimate against

the best projects while still providing favoritism towards above-average quality projects.

3. Leniency towards average proposals: As noted above, general favoritism is expensive,

in the sense that it increases the agent’s payoff for all types, even for those that would be willing

to be truthful under a less favorable decision rule. An alternative means is then to increase the

acceptance probability only for those types for whom it is directly needed. Following the logic from

above, the deviation temptation is always maximized for intermediate states. Then, the concavity

of the deviation tempation implies that if the truth-telling constraint of equation 42 is violated at

some θ̂i, then there exist bounds θ< θ̂i < θ such that the truth-telling constraint is just satisfied,

with the constraint being slack outside the range and binding on the interior. As shown in Appendix

B.4.2, we can then write, for the interior states, the probability of acceptance needed in equilibrium

to induce truth-telling as a function of θ as

Pr (A|θi) = p (α)− (p (α)− (1 + α) θ)
θ

θi
≥ (1 + α) θi, (44)

where the thresholds solve

{
θ, θ
}

=
p (α)

2 (1 + α)
(1±X) , X =

√
1− 4 (1 + α) δA∆V cont

p (α)
2 , (45)

where ∆V cont is the expected change in continuation value for the agent if he decides to not be

truthful.

4. Promise of future influence: Finally, instead of simply settling up today with the agent, the
principal can promise the agent additional influence in the future. We capture this by the transition

probability q (θi) ≥ 0 of switching to the more favorable state, α. For now, ignoring the whole design

problem of Pr (A|θi, α) and assuming that we have designed the state optimally, leading to the

value VA (α) , we can consider the tradeoff between settling now through Pr (A|θi, α) > (1 + α) θi or

settling in the future through q (θi) > 0. This tradeoff is resolved in the following Lemma:

Lemma 4 Let δP∆VP
δA∆VA

to denote the cost-benefit ratio of switching from α to α equilibrium and

Pr (A|θi) the distortion needed to settle up using the current state alone. Then, the optimal way of
settling up is

(i) If Pr (A|θi) <
(

1 + δP∆VP
δA∆VA

)
θi, use the current decision only

(ii) If Pr (A|θi) >
(

1 + δP∆VP
δA∆VA

)
θi, distort the current decision up to Pr (A|θi) =

(
1 + δP∆VP

δA∆VA

)
θi,

and use q (θi) > 0 to settle the rest.
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Figure 9: Example of a second-best decision rule: α = 0.1 and θi = 0.8.

Proof. See Appendix B.4.3

Intuitively, given the assumed two-state structure, the marginal cost and benefit of using the

promise of future influence is constant, given by δP∆VP and δA∆VA, respectively. In contrast,

while the return in terms of relaxing the truth-telling constraint is also linear in Pr (A|θi) , the cost
to the principal is convex in Pr (A|θi). Thus, it is optimal to first use the cheaper source which
is the distortion in the current state, and once that becomes too expensive, it becomes optimal

to supplement the immediate settling with a promise of additional future influence to restore the

truth-telling constraint.

Of course, in the full setting, the principal can also use a transition downwards, just like before.

Further, the transition itself will involve a change in the influence instead of a change in probability

of transition, meaning that the two avenues will generally be blended together through the whole

region.

To summarize, the principal has four different avenues for managing the agent’s truth-telling

constraint. First, she can bias the general decision rule in favor of the agent by α, which increases

the value of the relationship to the agent. Second, she can discriminate against his best proposals by

refusing to implement any project whenever her cost exceeds a given threshold, p(α). Third, she can

further bias the decision rule in favor of the agent when the truth-telling constraint is most binding

(intermediate quality projects). Fourth, she can use the promise of additional (and reduction of)

future influence to supplement the current influence if the decision would be excessively costly to

the principal. This adjusted decision rule is illustrated in Figure 9.
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B.3 Stationary equilibrium

Solving even the simplified dynamic problem is computationally cumbersome. Thus, just to illus-

trate the logic of the distortions I will solve for the stationary equilibrium under a principal with

commitment power. In this case, the payoffs of both the agent and the principal can be written in

closed form as a function of only α and p, the level of general favoritism and the maximal acceptance

probability.8 The resulting continuation value then pins down the extent of focused leniency that is

needed to maintain truth-telling by the agent.

The solution is illustrated in Figure 10. The key is panel (ii), which illustrates how the distortions

grow as the agent becomes increasingly impatient, where both the range
[
θ, θ
]
over which the

principal chooses to exercise focused leniency and the range
[
θ, 1
]
that the principal discriminates

against are growing in the agent’s impatience, worsening the equilibrium performance. In short, the

increasing impatience of the agent leads the principal to shift the agent’s influence from high-quality

to average-quality projects. Relatedly, panel (iii) illustrates the extent of general favoritism, where

the principal first increases the degree of favoritism to increase the continuation value for the agent,

but once the agent becomes suffi ciently impatient, the level of general favoritism is decreased because

the low value that the agent places on the future makes the higher continuation value an ineffi cient

means of providing value.
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Figure 10: Principal’s expected payoff and equilibrium distortions under commitment

The distortions are even more clearly highlighted if we consider how the actual equilibrium

decision rule changes as we change the agent’s patience. These decision rules are illustrated in

Figure 11, which plots the optimal decision rule of the principal for various discount rates of the

agent. Intuitively, as the agent initially becomes more impatient, the principal uses all three tools

at his disposal. She decreases the maximum acceptance probability to decrease the incentives to

exaggerate, thus increasing the discrimination against the best alternatives of the agent. At the same

time, to limit the rate at which such discrimination needs to grow, the principal increases the leniency

towards the average proposals, increasing the "bulge" in the middle, in relation to the maximum

acceptance probability. Finally, the principal initially increases the degree of general favoritism to

further increase the agent’s continuation value, but eventually decreases it when continuation value

8The derivation of these payoffs is not praticularly instructive and available from the author on request.
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becomes a secondary concern to the agent. As the agent becomes infinitely impatient, the decision

rule converges to the static optimum: the principal accepts any proposal by the agent whenever her

own alternative is worse than average, while choosing her own proposal otherwise.

B.4 Proofs and derivations for the continuous state

B.4.1 Proof of Lemma 3

To find the least-cost means of increasing the continuation value, recall that the agent’s expected

utility is given by
1∫

0

θi Pr (A|θi) fA (θi) dθi,

while the cost of the distortions to the principal (here focusing on favoritism) is given by
1∫

0

 1∫
0

(θi − c) Pr (A|θi, θP ) fP (c) dc

 fA (θi) dθi

Two observations follow. First, the minimum cost of delivering any particular Pr (A|θi) is for the
principal to implement the project as long as c ≤ Pr (A|θi) while rejecting the project otherwise.
Thus, we can define the expected probability of acceptance by the threshold rule c (θi) .

Second, on the margin of c (θi) , consider increasing c (θi) while decreasing c
(
θ′i
)
in a way that

keeps the expected cost to the principal constant. This implies that

(θi − c (θi)) fP (c (θi)) f (θi)+
(
θ′i − c

(
θ′i
))
f
(
θ′i
)
fP
(
c
(
θ′i
)) dc(θ′i)

dc(θi)
= 0⇔ dc(θ′i)

dc(θi)
= − (θi−c(θi))f(θi)fP (c(θi))

(θ′i−c(θ′i))f(θ′i)fP (c(θ′i))
.

The corresponding effect on the agent’s expected payoff is given by

1∫
0

 c(θi)∫
0

θifP (c) dc

 fA (θi) dθi
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θifP (c (θi)) f (θi) + θ′ifP
(
c
(
θ′i
))
f
(
θ′i
) dc(θ′i)
dc(θi)

.

Now, holding the principal’s payoff constant,
dc(θ′i)
dc(θi)

= − (θi−c(θi))f(θi)fP (c(θi))

(θ′i−c(θ′i))f(θ′i)fP (c(θ′i))
, and thus optimality

of the policy requires that

θifP (c (θi)) f (θi)− θ′ifP
(
c
(
θ′i
))
f
(
θ′i
) (θi−c(θi))f(θi)fP (c(θi))

(θ′i−c(θ′i))f(θ′i)fP (c(θ′i))
= 0.

This then rearranges then to

θi

θ′i
=
c (θi)

c
(
θ′i
) ⇒ c (θi) = (1 + α) θi, α ≥ 0. (46)

B.4.2 Leniency towards average proposals

Given the level of general favoritism, discrimination against the best proposals, and continuation

value, we can write the agent’s truth-telling constraint as

δA∆V cont ≥
(

1− (1 + α) θi
p (α)

)
θi, (47)

where ∆V cont is the expected loss from lying. Next, using the concavity of the deviation temptation,

maximized at θ̂i = p(α)
2(1+α) , we can observe that if the constraint is violated at θ̂i, then there exist

θ< θ̂i < θ such that

δ∆V cont =
(

1− (1+α)θ
p(α)

)
θ=
(

1− (1+α)θ
p(α)

)
θ.

In other words, while for θi ≤θ, the project is suffi ciently worthless that exaggeration is not worth
the cost of destroyed reputation, for θi ≥ θ, the project is suffi ciently good so that the incremen-

tal increase in the acceptance probability is not worth destroying the reputation.9 To satisfy the

truth-telling constraint for higher types, it then needs to be that(
1− Pr(A|θi)

p(α)

)
θi =

(
1− (1+α)θi

p(α)

)
θ,

which allows us to write Pr (A|θi) as

Pr (A|θi) = p (α)− (p (α)− (1 + α) θ)
θ

θi
. (48)

Further, the thresholds themselves are given by

9Without further analysis, it appears possible that θi < θi, so that the upper threshold doesn’t exist. Below, I

show that the structure of the problem implies that θi < θi.

42



{
θ, θ
}

= p(α)
2(1+α) (1±X) , X =

√
1− 4(1+α)δA∆V cont

p(α)2
.

B.4.3 Proof of Lemma 4

From the agent’s truth-telling constraint, we get that the tradeoffbetween the acceptance probability

and the transition probability needs to satisfy

dPr(A|mi,α)
dq(θi)

= − δA∆VA
θi

For the principal, the first-order condition for the optimal choice is given by

∆δP ṼP + dPr(A|mi,α)
dq(θi)

θi − Pr (A|mi, α) dPr(A|mi,α)
dq(θi)

= 0,

or ∆δṼP
(Pr(A|mi,α)−θi) = dPr(A|mi,α)

dq(θi)
. Noting that ∆ṼP < 0, define ∆VP = −∆ṼP as the cost of transi-

tioning to the better state for the principal. Then we have that, since both derivatives need to be

satisfied (otherwise we could readjust to improve performance), we get that the optimal point at

which we use the future value to compensate for the current value is

− δA∆VA
θi

= − δP∆VP
(Pr(A|mi,α)−θi) ⇔ Pr (A|mi, α) =

[
1 + δP∆VP

δA∆VA

]
θi.

Intuitively, δP∆VP
δA∆VA

is the cost-benefit ration of considering a particular continuation equilibrium.

As long as the distortion is less costly, use the current continuation value, as the distortion needed

grows, better to utilize the promise of future continuation value.
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