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Abstract

We study an ascending auction in which agents bid for an indivisible good and observe multidimensional

Gaussian signals. We provide novel predictions of ascending auctions that arise only when agents observe

multidimensional signals. The first novel prediction is that an ascending auction can have multiple symmetric

equilibria. Each equilibria induces a different allocative efficiency and different profits for the seller. The

second novel prediction is that, with multidimensional signals, public signals can be detrimental for profits

(even in symmetric environments). In fact, a precise enough public signal can induce profits arbitrarily close

to 0. Both of these novel predictions arise in a model with two-dimensional signals that combines a classic

model of private values and a classic model of common values. Hence, the only difference between the model

we study and the classic models of ascending auctions is the multidimensionality of the information structure.

The equilibrium is solved using a two-step procedure. The first step is to project the signals into a one-

dimensional equilibrium statistic. The second step is to solve for the equilibrium as if agents observed only the

equilibrium statistic (and hence, as if agents observe one-dimensional signals). The equilibrium statistic can

also be used to solve other trading mechanisms (e.g. supply function equilibria, generalized VCG mechanisms

and other multi-unit auctions).
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1 Introduction

1.1 Motivation and Model

Consider N agents bidding for a house that is sold via an ascending auction. An agent’s valuation

for the house depends on his taste for the house, and on the future resale value of the house. An

agent knows his taste for the house, but agents have dispersed information about the common

shock that determines the resale value of the house (e.g. changes in the interest rates). In this

environment agents observe two signals; one signal about their taste shock and a second signal

about the common shock. Although this is a natural environment to study, the properties of an

ascending auction in this environment are not known.

There is a fundamental difference between ascending auctions with one-dimensional signals

and multidimensional signals. In environments with multidimensional signals, the drop-out time

of an agent only reflects a summary statistic of all the signals this agent observed. Hence, solving

for an equilibrium requires understanding what agent i learns from the drop-out time of agent

j, which in turn depends on what agent j learns from the drop-out time of agent i. Even the

possibility of constructing a symmetric equilibrium in such environment is an open question.

The objective of this paper is to characterize the equilibria of ascending auctions when agents

observe multidimensional Gaussian signals, and analyze its properties.

Our model consists of N symmetric players bidding for an object in an ascending auction.

The utility of an agent if he gets the object depends on a payoff shock that has a common and an

idiosyncratic component. Each agent observes J signals about the realization of his own payoff

shock. The joint distribution of signals and fundamentals is Gaussian. We study a class of Nash

equilibria in undominated strategies that preserve the normality of beliefs.

We first characterize the equilibria for arbitrary symmetric one-dimensional signals and a

class of symmetric two-dimensional signals. We study the difference between the predictions

with multidimensional signals and one-dimensional signals. We then extend our analysis to

allow for general asymmetric Gaussian signals and to allow for other trading mechanisms.

1.2 Results

We begin by studying the set of Nash equilibria when agents observe one-dimensional signals. The

characterization of the equilibrium strategies follows Milgrom and Weber (1982). The Gaussian

information structure allows to provide a novel description of the equilibrium outcome in terms
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of the information structure. The surplus generated, the seller’s profits and the buyers’ rents are

completely determined by two statistics of the information structure. The first statistic is the

informativeness of the signals observed by all agents about the differences in valuation between

agents. This statistic determines the total surplus generated by the ascending auction. The

second statistic is the level of payoff interdependence. This statistic determines the division of

the surplus between the buyers and the seller, but does not affect the total surplus generated.

A high level of payoff of interdependence implies that an agent faces a larger “winner’s curse”.

An agent corrects for the larger “winner’s curse” in equilibrium by lowering his bid. A higher

level of payoff interdependence implies that the buyers keep a larger share of the total surplus

generated. We show that in fact, any division of surplus is possible as an equilibrium outcome

for some information structure. The characterization of the equilibrium outcome in terms of two

statistics will remain valid for multidimensional signals, and hence it is key for the interpretation

and intuition of our results.

We then study two-dimensional signals. The payoff shock is decomposed as the sum of two

shocks; a common shock and a taste shock. The taste shock may be correlated across agents. The

first signal agent i observes is perfectly informative about agent i’s taste shock. The second signal

agent i observes is a noisy signal about the common shock.1 We show that the set of equilibria

can be characterized using a two-step procedure. In the first step, we project the two signals

of each agent into a one-dimensional equilibrium statistic. In the second step, we characterize

the equilibria “as if” agents observed only the one-dimensional equilibrium statistic, and hence

the characterization for one-dimensional signals is applied. To the best of our knowledge, we are

the first paper that characterizes the equilibrium of an ascending auction, combining the classic

models of common values and private values.

In equilibrium, agents behave “as if” they observed one-dimensional signals. The difference

between one-dimensional information structures and multidimensional information structures is

that with multidimensional information structures the linear combination of signals that deter-

mine an agent’s bidding behavior is endogenously determined. This implies that with multi-

dimensional information structures the surplus generated and the payoff interdependence are

endogenously determined, and not exogenously determined by the information structure. We

study how the predictions in environments with two-dimensional information structures differ

from the predictions in environments with one-dimensional information structures.

1If agents observed only their taste shock, this would be a classic private value environment. If agents observed only the signal on
the common shock, this would be a classic common value environment.
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The first prediction that is different with multidimensional information structures is that

ascending auctions may have multiple symmetric equilibria. If there number of agents is large

enough, the size of the common shock is large enough and the private signal agent i observes

about the common shock is noisy enough, then there are three equilibria. One equilibrium

resembles an equilibrium with private values; the surplus created and the profits earned by the

seller are large. Another equilibrium resembles an equilibrium with common values; the surplus

created and the profits earned by the seller are low. The third equilibrium is in the middle. The

multiplicity of equilibria shows that the degree of payoff interdependence and the total surplus

generated in the auction is endogenously determined, and not determined by the primitives of

the information structure.

The multiplicity of equilibria is driven by a complementarity in the weights agents place on

their private signals to determine their drop-out time in the auction. To illustrate the source of

complementarity, consider the case in which the signal about the common shock is very noisy. If

all agents different than agent i place a large weight on the signal about the common shock, then

agent i will face a larger winner’s curse. Hence, agent i will also place more weight on his private

signal about the common shock. This will result in an equilibrium in which the total surplus

generated is low and in which the level of payoff interdependence is large. There exists another

equilibrium with very different properties. If all agents different than agent i place a small weight

on the signal about the common shock, agent i will find it optimal to also place a small weight

on the signal about the common shock. This results in an equilibrium that resemble a model

with private values. That is, the total surplus generated will be high and payoff interdependence

will be low.

The second prediction that is different between one-dimensional signals and multidimensional

signals is that in multidimensional environments the linkage principle fails.2 In environments

with multidimensional signals, public signals can be detrimental for profits and an ascending

auction can yield lower payoff than a first price auction.3 This is despite the fact that a more

precise public signal increases the total surplus.4 The failure of the linkage principle may hap-

pen for any distribution of payoff shocks, and even when payoff shocks are arbitrarily close to

common knowledge. Importantly, in our analysis each signal an agent observes satisfy the prop-

erties assumed in Milgrom and Weber (1982). Hence, even if all signals satisfy the standard

2The linkage principle states that public signals increase profits and ascending auctions yield higher profits than first price auctions
(see Krishna (2009) for a textbook discussion).

3We do not solve for the equilibria in first price auctions. Nevertheless, Bergemann, Brooks, and Morris (2015) show that the
profits in a first price auction are bounded away from 0.

4In a model with one-dimensional signals the equilibrium is efficient, and hence public signals do not change the total surplus.
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properties assumed in the auction literature, the equilibrium when agents observe these signals

simultaneously is radically different.

The linkage principle is based on the fact that a public signal decreases the payoff interde-

pendence from a common shock (and hence, the winner’s curse). Nevertheless, we show that a

public signal may increase the winner’s curse from a different common shock. The public signal

increases the information an agent has about the rank of his valuation with respect to others. As

the ranking of payoff shocks between agents becomes more precise, the winner’s curse from com-

mon shocks increases. Note that in equilibrium agents bid “as if” they observed one-dimensional

signals. The reason that the results in Milgrom and Weber (1982) do not apply, is that the

equilibrium statistic does not satisfy the affiliation property. That is, in equilibrium an agent’s

bid is determined by a one-dimensional statistic that may be negatively correlated across agents.

We extend our analysis to allow for arbitrary Gaussian information structures and allow for

other trading mechanisms. We show that every game that has an ex-post equilibrium when

the agents observe one-dimensional signals also has an equilibrium when the agents observe

multidimensional signals.5 Moreover, the Nash equilibrium can be computed using a two step

procedure. First, for each agent we find a one-dimensional equilibrium statistic of the signals he

observes. Second, we compute the equilibrium as if agents observed only the one-dimensional

equilibrium statistic. It is worth highlighting that the one-dimensional equilibrium statistic does

not depend on the game, but only on the information structure.

1.3 Literature

To the best of our knowledge, the only paper in the literature studying ascending auctions with

multidimensional signals that are not independently distributed across agents is Jackson (2009).

He shows the non-existence of equilibria for a class of examples. The model studied therein is

similar to our model — with a private and a common signal — except the distribution of signals

and fundamentals is non-Gaussian (moreover, his signals have a finite support). Our paper

provides reassurance that it is possible to construct equilibria under more complex information

structures. In Section 7.1 we discuss the example in Jackson (2009) in more detail, and argue

therein that the finite support of the information structure is important in the argument to

prove non-existence of equilibrium. The extent to which it is possible to construct equilibria

5There is a large class of mechanisms that have an ex-post equilibria when agents observe one-dimensional signals. These mecha-
nisms include classic trading mechanisms (e.g. supply function competition or generalized VCG mechanisms), as well as mechanisms
recently proposed by the literature (a detailed discussion is provided after Proposition 4).
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with multidimensional non-Gaussian information structures is still an open question.

Wilson (1998) studies an ascending auction with log-normal random variables with a two-

dimensional information structure. He assumes some of the random variables are drawn from

a diffuse prior. The diffuse prior implies that the random variables do not have a well defined

cumulative distribution function. Hence, these are not technically random variables, and the

updating is not technically done by Bayes’ rule. Relaxing the assumption of diffuse priors is not

only a technical contribution, but it is also fundamental to derive the novel predictions in the

ascending auction. In Section 7.2 we discuss how to analyze the equilibrium under diffuse priors.

This allow us to provide some insights on how the analysis can be extended to non-Gaussian

information structures.

The closest connection in the literature to the equilibrium statistic we propose can be found in

Dasgupta and Maskin (2000). They show that if agents’ signals are independently distributed,

then there is a way to project the multidimensional signals into a one-dimensional statistic.

Our equilibrium statistic coincides with the one in Dasgupta and Maskin (2000) in the case

of independent signals. In this case, the one-dimensional statistic corresponds to an agent’s

expectation of their own payoff shock conditional only on his private information. Hence, when

signals are independently distributed there is no “equilibrium component” to the equilibrium

statistic (see Section 5.6). Levin, Peck, and Ye (2007) and Goeree and Offerman (2003) study

ascending auctions in which agents observe independent signals, and hence the bidding strategy

can be analyzed using the same one-dimensional statistic as in Dasgupta and Maskin (2000). The

novel predictions we find hinge critically on how the equilibrium statistic of one agent depends

on the information the agent learns from the drop-out time of other agents.

Perry and Reny (1999) show that the linkage principle may fail in multi-unit auctions.6 The

linkage principle has also been shown to fail in environments in which the payoff structure is

asymmetric (see Krishna (2009)) and in environments with independent and private values (see

Thierry and Stefano (2003)). In contrast to the previous literature we show that the linkage

principle may fail in natural symmetric environments, which is due only to the multdimension-

ality of the information structure. The key insight is that the total surplus and the profits are

determined by how the signals are endogenously aggregated to determine an agent’s drop-out

time. Hence, our paper provides a new channel by which the linkage principle may fail.

Klemperer (1998) shows that in an ascending auction with two players, an ex-ante difference

6As in our model, a public signal may change the allocation of the goods across the agents. Nevertheless, in their paper agents
observe one-dimensional signals, and hence the change in allocation is due to the non-flat demand. In fact, with constant marginal
valuation Ausubel (2004) shows that in multi-unit auctions the linkage principle holds.
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in the payoff environment may lead to explosive behaviors.7 Levin and Kagel (2005) shows that

the explosive behavior is attenuated if there are more “regular” bidders. In contrast to the

literature studying ascending auctions with asymmetric agents, our results are driven only by

the information structure and not by assumptions on the payoff structure. In fact, all agents

use the same bidding strategy. Importantly, our results hold in environments in which payoff

shocks are arbitrarily close to independently distributed. Another interesting difference between

our model and the models with asymmetric agents, is that in our model public signals have an

effect on the allocation of the good, and not only on profits.

The connection of our paper to the mechanism design literature and other trading mechanisms

is mentioned throughout the paper, as we provide our results.

The paper is organized as follows. In Section 2 we provide the model. In Section 3 we

study one-dimensional signals. In Section 4 we study two-dimensional signals. In Section 5 we

generalize the methodology to allow for multidimensional asymmetric signals. In Section 6 we

generalize the methodology to other trading mechanisms. In Section 8 we conclude. All proofs

and some additional results that are mentioned in the main text are collected in the appendix.

2 Model

2.1 Payoff Structure

We study N agents bidding for an object in an ascending auction. The utility of agent i if he

wins the object at price p is given by:

ui(θi, p) = exp(θi)− p, (1)

where exp(·) denotes the exponential function and θi is a payoff shock. If an agent does not win

the object he gets a utility equal to 0.

7Bulow and Klemperer (2002) study an ascending auction with asymmetric agents, and study circumstances under which increasing
the supply of asset always decreases the equilibrium price. As in Klemperer (1998), a small difference in the utility function of agents
can lead to large difference in outcomes, as long as one player has the highest valuation almost always. As we explain in Section 6, in
our environment an increase in the number of goods being auctioned always decreases the price. Hence, our model does not exhibit
this unusual behavior that appears in asymmetric auctions.
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2.2 Information Structure

The only source of uncertainty is the realization of the payoff shocks (θ1, ..., θN). Each player

observes J signals:

si , (si1, ..., siJ),

where vectors are denoted in bold font. We occasionally use bold fonts to also denote vectors

of length N , nevertheless there will be no ambiguity in the use of bold fonts. We assume that

the random variables (θ1, ..., θN , s1, ..., sN) ∈ R(J+1)N are jointly normally distributed, and all

random variables have a mean equal to 0. The assumption that the means are equal to 0 allows

reduce the amount of notation, but the analysis follows through in a straightforward way if the

means of the random variables are not 0.

We assume that the information structure is symmetric. That is, for all i, `, k ∈ N the joint

distribution of variable (θi, θk, si, sk) is the same as the joint distribution of variables (θ`, θk, s`, sk).

We later generalize the analysis by studying asymmetric environments.

We make the following definitions:

θ̄ ,
1

N

∑
i∈N

θi ; ∆θi , θi − θ̄ ; s̄ ,
1

N

∑
i∈N

si ; ∆si , si − s̄. (2)

That is, variables with an over-bar correspond to the average of the variable over all agents,

while variables preceded by a ∆ correspond to the difference between a variables and the average

variable. We refer to variables that have an over-bar as the common component of random

variables and a variables preceded by a ∆ as the idiosyncratic component of a random variable.

For example, θ̄ is the common component of θi while ∆θi is the idiosyncratic component of θi.
8

2.3 Ascending Auction

We study an ascending auction.9 In an ascending auction an auctioneer rises the price contin-

uously. At each moment in time, an agent can decide to drop-out of the auction, in which case

the agent does not pay anything and does not get the object. The last agent to drop-out of the

auction wins the object and pays the price at which the second to last agent dropped out of the

auction. We restrict attention to ascending auctions in which agents are symmetric and agents

use symmetric strategies. This allow us to simplify the notation and provide the main insights

8Some statistical properties of the orthogonal decomposition in (2) can be found in the online appendix (see Section 10).
9We follow Krishna (2009) in the formal description of the ascending auction.
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of the paper. We generalize the analysis in Section 5.

The strategy of player i is a set of functions {pi`}`∈{2,...,N}, with pi` : R × RN−` → R+. The

function pi`(si, p`+1, ..., pN) is the drop-out time of agent i, when ` agents are left in the action

and the drop-out times so far are pN < ... < p`+1. Obviously, the function pi`(si, p`+1, ..., pN)

must satisfy

pi`(si, p`+1, ..., pN) ≥ p`+1.

That is, agent i cannot drop-out of the auction at a price lower than the price at which another

agent has already dropped out. Note that we are restricting attention to symmetric environments,

and hence it is not necessary to specify the identity of the agent that drops out of the auction,

but only the price at which this agent dropped out.

The outcome of the ascending auction is described by the order at which each agent drops out

and the price at which each agent drops out. We describe the order at which each agent drops

out of the action by a permutation π.10 π(i) is the number of agents left in the auction when

agent i dropped out of the auction. The identity of the last agent to drop-out of the auction is

given by π−1(1). The price at which agents drop-out of the auction is denoted by p1 > .... > pN .

Hence, for any strategy profile the expected utility of agent i is:

E[1

{
π−1(1) = i

}
(eθi − p2)],

where 1{·} is the indicator function. We study the Nash equilibria of the ascending auction.

3 One-Dimensional Signals

We begin by studying one-dimensional signals. We use the Gaussian structure of the signals to

provide a novel characterization of how the surplus is split between the buyers and the seller.

This allow us to explain how the information structure impacts the outcome in an ascending

auction. This is a fundamental part of the analysis of the model with multidimensional signals.

3.1 Description of Signals and Single Crossing Condition

We first study the case in which agents observe symmetric one-dimensional signals (si). We

provide the expectation of θi conditional on the realization of all signals (s1, ..., sN).

10A permutation is a bijective function π : N → N .
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Lemma 1 (Conditional Expectation).

The expected value of θi conditional on all signals is given by:

E[θi|s1, ..., sN ] = E[∆θi|∆si] + E[θ̄|s̄] =
cov(∆θi,∆si)

var(∆si)
∆si +

cov(θ̄, s̄)

var(s̄)
s̄. (3)

Lemma 1 provides a description of agent i′s expectation of his own payoff shock conditional

on all signals. A key parameter in the analysis will be:

m ,

cov(θ̄,s̄)
var(s̄)

cov(∆θi,∆si)
var(∆si)

. (4)

Note that m is equal to the ratio between both regression coefficients in (3). m provides a measure

on how informative is the signals of agents about θ̄ relative to ∆θi. We make one assumption on

the information structure that is analogous to the classic single crossing condition. We assume

that:

m ≥ −(N − 1). (5)

Assumption (5) is similar to the single crossing condition. If m ≥ 0 then:11

∀i, ` ∈ N, corr(si, θi)
2 ≥ corr(si, θ`)

2, (6)

If (6) is satisfied, then the signal agent i observes is more informative about his own payoff shock

than the payoff shock of agent `. In Section 3.6 we provide an interpretation of m = −(N − 1).

We now provide a description of the set of distributions of signals and fundamentals.

Lemma 2 (Distribution of Equilibrium Statistic and Fundamentals).

The variance covariance matrix of payoff shocks and signals (∆θi, θ̄,∆si, s̄) is equal to:
σ2

∆θi
0 corr(∆si,∆θi)σ∆θiσ∆si 0

0 σ2
θ̄

0 corr(s̄, θ̄)σθ̄σs̄

corr(∆si,∆θi)σ∆θiσ∆si 0 σ2
∆si

0

0 corr(s̄, θ̄)σθ̄σs̄ 0 σ2
s̄

 . (7)

As all random variables are Gaussian with mean 0, Lemma 2 completely characterizes the

joint distribution of signals and payoff shocks. It is easy to check that this is determine by 6

11See the appendix for a proof that m ≥ 0 is sufficient for (6).
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parameters. Nevertheless, note that (var(θi), var(θ̄)) are primitives of the payoff structure, while

var(si) is just a normalization as the variance of signals does not affect the equilibrium outcome.

Hence, the three coefficients

(corr(∆si,∆θi), corr(s̄, θ̄),m), (8)

completely determine the information structure. The coefficient corr(∆si,∆θi) is the informa-

tiveness of the idiosyncratic component of the signals about the idiosyncratic component of the

payoff shock. The coefficient corr(s̄, θ̄) is the informativeness of the common component of the

signals about the common component of the payoff shock. The parameter m is a measure of the

amount of payoff interdependence.

3.2 Examples of Information Structures

We provide some examples of one-dimensional signals studied in the literature.

Example 1 ( Example 2 in Dasgupta and Maskin (2000)).

Each agent observes a signal:

si = θi + εi,

where εi is independently distributed across agents. It is possible to check that, corr(∆si,∆θi)

and m are increasing in var(εi).

Example 2 (Reny and Perry (2006)).

We provide a linear-Gaussian version of the signals studied in Reny and Perry (2006).12 Each

agent observes signal si and there is a common shock ω. The signals and the shock have a

correlation corr(si, ω). The payoff shock is given by:

θi = ω + si.

It is possible to check that m is increasing in cov(ω, s̄), while corr(∆si,∆θi) = 1.

Example 3 (Noise-Free Signals).

12The set of signals studied in this example are neither more general or less general than the ones studied by Reny and Perry
(2006). The signals studied by Reny and Perry (2006) are drawn from a compact support and they allow for utility functions
that are non-linear. Beyond some technical differences, it is clear that the signals studied in this example have the same economic
interpretation.
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Consider the following information structure:

si =
1

µ
· θ̄ + ∆θi. (9)

Unless µ = 1, the signal si does not allow agent i to perfectly infer θi. Nevertheless, agent i can

infer θi from the realization of all signals (s1, ..., sN). We study these signals in Section 3.6.

Example 4 (Common Values).

We can accommodate for common value environments by considering the information structure:

si = θ̄ + εi.

In this case, agents do not have any information about ∆θi, so it is effectively a common value

environment. 13

3.3 Characterization of Equilibrium for One-Dimensional Signals

We now characterize the equilibrium of the ascending auction. We relabel agents such that

the realization of signals satisfy s1 > ... > sN . As signals are noisy, we might have that the

order over payoff shocks is not preserved. For example, we may have θi+1 > θi (even though by

construction si+1 ≤ si). The expectation of θi assuming that signals (s1, ..., si−1) are equal to si

(that is, assuming that all signals higher than si are equal to si) is denoted by E[θi|si, ..., si, ..., sN ]

.

Lemma 3 (Equilibrium of Ascending Auction).

The ascending auction has a Nash equilibrium in which agent i’s drop-out time is given by:

pi = E[exp(θi)|si, ..., si, si+1..., sN ]. (10)

In equilibrium, agent i = 1 gets the object and pays a price of p2 = E[exp(θ2)|s2, s2, s3, ..., sN ].

Lemma 3 shows that the player with the ith highest signal drops out of the auction at his

expected valuation, assuming that the i− 1 signals that are higher than i’s signals are equal to

si. This is the classic equilibrium characterization found in Milgrom and Weber (1982). The

13Note that the right way to accommodate for common values is by taking the limit corr(∆si,∆θi)→ 0. All our results will have
a well defined limit corr(∆si,∆θi)→ 0, which corresponds to the case of common values. By taking the limit var(∆θi)→ 0, we do
not necessarily approach a common value environment (see Section 3.6).
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equilibrium characterized in Lemma 3 is an ex-post equilibrium. That is, even if every agent

knew the realization of the signals of all other agents, the strategy profile described by (10)

would still be an equilibrium (see the proof of Lemma 3). It is well known in the literature that

the ascending auction has many equilibria. In this paper we restrict attention to the class of

equilibria in which agents use continuous drop-out times, and which implements a symmetric

ex-post equilibria when agents observe one-dimensional signals.14

3.4 Total Surplus

We now characterize the equilibrium surplus. The expected surplus is equal to the expected

valuation of the buyer that wins the object. That is, the expected surplus is given by:

S(s1, ..., sN) , max

{
E[exp(θ1)|s1, ..., sN ], ...,E[exp(θN)|s1, ..., sN ]

}
. (11)

Since we relabel agents such that signals satisfy s1 > ... > sN , it is easy to check that S(s1, ..., sN) =

E[exp(θ1)|s1, ..., sN ]. We provide the comparative statics of the ex-ante expected surplus.

Proposition 1 (Comparative Statics: Surplus).

The ex-ante expected surplus E[S(s1, ..., sN)] is strictly increasing in corr(∆si,∆θi) and constant

in corr(s̄, θ̄) and m.

Proposition 1 shows that the expected surplus depends only on how informative is the join

of the information structure (s1, ..., sN) about the idiosyncratic component of the payoff shocks

(∆θ1, ...,∆θN). This is natural as the surplus comes from assigning the object efficiently across

agents. Since the degree of payoff interdependence m does not affect the efficiency of the auction,

the surplus depends only on the degree to which the object is assigned efficiently.

3.5 Split of Surplus: Profits and Rents

We now characterize the seller’s profits and the buyers’ rents. The buyers’ rents are given by:

V (s1, ..., sN) , E[exp(θ1)− p2|s1, ..., sN ].

The buyers’ rents plus the seller’s profits is equal to the total surplus. We characterize the seller’s

profits in terms of the total surplus.

14See Krishna (2009) for a textbook discussion.
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Theorem 1 (Profits).

The seller’s profits are equal to:

p2 = exp

(
(
1−m
N

− 1)(E[θ1|s1, ..., sN ]− E[θ2|s1, ..., sN ])

)
× S(s1, ..., sN) (12)

Theorem 1 characterizes how the total surplus is split between the buyer and the seller (the

buyers’ rents are the complement of the surplus).15 Remember that m does not change the total

surplus, and hence m is the key parameter that determines how the surplus is split between the

buyers and the seller. We provide the comparative static on how the profits change with the

information structure.

Corollary 1 (Comparative Statics: Profits and Rents).

The expected profits (E[p2]) are decreasing in m and constant in corr(s̄, θ̄). The buyers’ rents

(E[V (s1, ..., sN)]) are increasing in m and constant in corr(s̄, θ̄).

Corollary 1 shows that the profits are decreasing in the degree of payoff interdependence m.

Note that Corollary 1 does not provide the comparative static of the seller’s profits with respect

to corr(∆si,∆θi). This is because the seller’s profits can be decreasing or increasing with respect

to corr(∆si,∆θi).
16 If m is big enough, then the seller’s profits are decreasing in corr(∆si,∆θi).

The intuition is that more information about the idiosyncratic shock may have an excess effect

on the “winner’s curse”. This is one of the fundamental insights on the paper as this is the

intuition behind the failure of the linkage principle when we study multidimensional information

structures in Section 4.

If m = 1, then the expected value of an agent’s payoff shock conditional on all signals is the

same as the expectation conditional only on his private information (that is, E[θi|s1, ..., sN ] =

E[θi|si] ∝ si). This corresponds to the case in which agents have private values. In this case, the

price paid is equal to the expected second highest valuation:

p2 = E[exp(θ2)|s1, ..., sN ].

If m > 1, the price paid is higher than the expected second highest valuation. If m < 1, the price

paid is lower than the expected second highest valuation. If m → ∞, then the seller’s profits

15Note that: (E[θ1|s1, ..., sN ] − E[θ2|s1, ..., sN ]) ≥ 0, and hence the term multiplying S(s1, ..., sN ) is between 0 and 1 (as long as
m ∈ [−(N − 1),∞)).

16We believe the buyers’ rents are increasing in corr(∆si,∆θi). Nevertheless, we have no been able to prove this.
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converge to 0. If m→ −(N − 1) then the seller’s profits will converge to the total surplus.17

It is easy to check that, if m < −(N − 1) then p2 > S(s1, ..., sN). That is, the buyers must

be getting negative rents. This implies that, if m < −(N − 1), then the strategy profile (10) is

not a Nash equilibrium. Hence, The Gaussian information structures allows to provide necessary

conditions on the information structure such that this strategy profile is a Nash equilibrium.

3.6 Noise-Free Signals

We now provide a corollary that studies noise-free signals (see (9)). We can write the information

structure in terms of (corr(∆si,∆θi), corr(s̄, θ̄),m) as follows:

corr(∆si,∆θi) = corr(s̄, θ̄) = 1 and m = µ. (13)

Hence, the parameter µ only changes m. This allow us to show that the total surplus can be

split in any proportion between buyers and the seller, depending on the information structure.

Corollary 2 (Any Division of Surplus is Possible).

If agents observe signal of the form (9), then:

lim
µ→∞

E[p2] = 0 and lim
µ→−(N−1)

E[p2] = E[S(s1, ..., sN))]. (14)

Corollary 2 has two components. On one hand, as µ→∞ the seller’s profits converge to 0.18

This implies that the price converges in distribution to 0. On the other hand, as µ→ −(N − 1)

the seller’s profits converge to the total surplus. This implies that the buyers’ rents converge to

0.

We begin by providing the intuition of µ → ∞. Consider the case of N = 2 and suppose

that agents observe signals of the form (9). In the limit µ→∞, the signals of agents are almost

perfectly negatively correlated (remember that ∆θ1 + ∆θ2 = 0). If agent i observes a negative

realization of his signal, he expects the other agent to have a positive realization of his signal.

Hence, he expects to loose the auction. The only circumstance under which both agents can have

a negative realization of their signals is that the realization of s̄ is negative and “far” from 0.

Yet, as µ→∞ this implies that θ̄ is “very” negative. Hence, when an agent observes a negative

realization of his signal, he knows that he observed the highest signal only if θ̄ is very negative.
17Note that in the limit to common values (corr(∆θi,∆si)→ 0) two things happen; m→∞ and E[θ1|s1, ..., sN ]−E[θ2|s1, ..., sN ])→

0. It is easy to check that in the limit to common values the profits do not converge to 0.
18As p2 ≥ 0 for all realization of signals, E[p2]→ 0 implies that p2 converges in distribution to 0
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Hence, he will win the object only if his payoff shock (θi = ∆θi + θ̄) is very low. Hence, the bid

of an agent that observes a negative signal will converge to 0. Hence, the agent that wins the

object will pay almost 0.

On the other hand, in the limit m→ −(N − 1) we can re-write (3) as follows:

lim
µ→−(N−1)

E[θi|s1, ..., sN ] = (
cov(θ̄, s̄)

var(s̄)
− cov(∆θi,∆si)

var(∆si)
)

1

N

∑
j 6=i

sj.

In the limit the expected value of θi conditional on (s1, ..., sN) does not depend on si. Hence, a

buyer has no information about his own payoff shock. This implies that buyers’ get not rents.

Role of Affiliation Property. Milgrom and Weber (1982) show that that in symmetric

environments with one-dimensional signals ascending auctions yields weakly greater profits than

first price auctions. Corollary 2 indirectly shows that this is not satisfied in the limit µ→∞. This

is because in the limit µ → ∞ the signals of agents are negatively correlated (corr(si, sj) < 0).

Hence, in the limit the affiliation property assumed is Milgrom and Weber (1982) is not satisfied.

3.7 Public Signals

Finally, we study the impact of a public signal on the seller’s profits and the total surplus

generated. We assume that agents observe a public signal:

sp = θ̄ + ε̄p,

where ε̄p is a common value noise term independent of all other random variables in the model.

Lemma 4 (Impact of Public Signal: One-Dimensional Information Structure).

The total surplus generated is constant in var(ε̄p) and the seller’s profits is increasing in var(ε̄p).

Lemma 4 shows that the surplus generated does not depend on the precision of the public

signal. This is natural, as the ascending auction is efficient when agents observe one-dimensional

signals. The seller’s profits are increasing in the precision of the public signal because the public

signal reduces the winner’s curse. Both comparative statics are standard in the literature, yet

neither will hold in environments with multidimensional signals.



16

4 Two-Dimensional Signals

We now study a class of symmetric two-dimensional signals. The objective is two-fold. The first

objective is to provide novel predictions in ascending auctions that arise only when agents observe

multidimensional signals. The second objective is to illustrate how to solve for the equilibrium

when agents observe multidimensional Gaussian signals. Although the information structure we

study in this section is very stylized, the same methodology can be extended to general Gaussian

information structures and to other trading mechanisms.

4.1 Information Structure

We assume that an agent’s valuation of the object is the sum of a taste shock and a common

shock. For example, an agent’s valuation of a house is determined by his taste for the house

and the resale value of the house. We assume that agent i knows his taste shock and each agent

observes a noisy signal of the common shock that affects the valuation of all agents.

The formal description of the information structure is as follows. The payoff shock of an agent

is equal to the sum of two independent payoff shocks:

θi = ηi + ϕ̄. (15)

where ηi has some correlation corr(ηi, ηj) across agents, while ϕ̄ is common to all agents. It is

useful to note that:19

θ̄ = η̄ + ϕ̄ and ∆θi = ∆ηi.

That is, the realization of the idiosyncratic component of the payoff shock is equal to the realiza-

tion of the idiosyncratic component of the shock ηi. On the other hand, the common component

of the payoff shock is equal to the sum of the common component of two shocks. agent i observes

two signals:

si1 = ηi ; si2 = ϕ̄+ εi, (16)

where εi is a noise term independent across agents and independent of all other random variables

in the model.

Before we study the equilibrium outcome it is convenient to study some limiting cases. If

var(εi) = 0 or var(εi) =∞ the model corresponds to a private value environment. If var(εi) = 0

19Remember that η̄ , 1
N

∑
i∈N ηi and ∆ηi , ηi − η̄.
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then agent i can compute θi perfectly using just his private information. On the other hand,

if var(εi) = ∞ then it is the same as if agent i observed only si1. This also corresponds to

a private value environment. Note that for any value of var(εi) the ascending auction would

implement the efficient outcome if agents “ignored” signal si2. Of course, this does not happen

in equilibrium

4.2 Equilibrium with Two-Dimensional Signals

We first define a one-dimensional equilibrium statistic, and then explain the intuition and how

it is used in the characterization of the equilibria.

Definition 1 (Equilibrium Statistic).

A linear combination of signals ζ i , si1 + βsi2 is an equilibrium statistic if:

E[θi|si, ζ1, ..., ζN ] = E[θi|ζ1, ..., ζN ] (17)

An equilibrium statistic is a linear combination of signals in which the weights on this signals

satisfy statistical condition (17). The expected value of θi conditional on si and the equilibrium

statistic of other agents {ζj}j 6=i is equal to the expected value of θi conditional on all equilibrium

statistics {ζj}i∈N . Although (17) is defined purely in terms of the information structure —

without reference to the game or the solution concept — it is transparent to see that there is

an equilibrium notion involved. If all agents use just their equilibrium statistic instead of their

whole information structure, and agent i knows the equilibrium statistic of other agents, then

agent i also wants to use only his equilibrium statistic.

We show that for every equilibrium statistic there exists a Nash equilibrium in which each

agent i behaves as if he observed only his equilibrium statistic ζ i. Similar to the analysis of

one-dimensional signals, we assume that agents are ordered as follows:

ζN < ... < ζ1. (18)

If there are multiple equilibrium statistics, then there will be one Nash equilibrium for each

equilibrium statistic. Different equilibrium statistics induces a different order (as in (18)), so the

Nash equilibrium is described in terms of the order induced by each equilibrium statistic.
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Theorem 2 (Symmetric Equilibrium with Multidimensional Signals).

For every equilibrium statistic {ζ i}i∈N there exists a Nash equilibrium in which agent i’s drop-out

time is given by:

pi = E[exp(θi)|ζ i, ..., ζ i, ..., ζN ],

In equilibrium, agent 1 gets the object and pays a price equal to p2 = E[exp(θ2)|ζ2, ζ2, ..., ζN ].

Proposition 2 characterizes a natural class of equilibria in the ascending auction. There exists

a class of equilibria in which agents project their signals into a one-dimensional statistic using

the equilibrium statistic ζ i = si1 + βsi2. In equilibrium agents behave as if they observed only

β · si, which is a one-dimensional object.20 Note that this implies that the analysis in Section

3 remains valid, with the modification that we need to replace si with ζ i. We later prove that

Proposition 2 would not change if we allow agents to re-enter in the ascending auction. This is

because the Nash equilibrium characterized in Proposition 2 is a posterior equilibrium.

Finally, we provide a characterization of the set of equilibrium statistics.

Lemma 5 (Equilibrium Statistic).

A linear combination of signals ζ i = si1 +βsi2 is an equilibrium statistic of information structure

(16) if and only if β is a root of the following cubic equation:

−1

var(∆εi)
+
var(∆εi) + var(ε̄) + var(ϕ̄)

var(∆εi)var(ϕ̄)
β+

−1

var(∆ηi)
β2+

(var(∆ηi) + var(η̄))(var(ε̄) + var(ϕ̄))

var(∆ηi)var(η̄)var(ϕ̄)
β3 = 0

(19)

It is transparent to see that generically (19) has 1 or 3 solutions. Moreover, it is easy to

check that all roots are positive. The characterization in (19) will be basic for the analysis of the

equilibria. We later generalized and explain the intuition behind (19).

Finally, we note that the information structure (16) is similar to the information structure

studied by Wilson (1998), but he assumes the random variables come from a diffuse prior. He

assumes that var(ϕ̄),var(η̄)→∞. In the limit, the unique solution to (19) is β = 1, and hence

in equilibrium agents place equal weights in both signals. In this case, the equilibrium statistic of

an agent is equal to his expected payoff shock conditional only on his private information (ζ i =

E[θi|si1, si2]). We study information structures with diffuse priors in Section 7.2. Interestingly,

similar information structures have also been studied in the rational expectations literature. The

20Note that the multiplication of vectors is using the dot product. That is, β · si = si1 + βsi2
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multiplicity of equilibria in the ascending auction is related to the multiplicity of equilibria in

Ganguli and Yang (2009), Amador and Weill (2010) and Manzano and Vives (2011) .

4.3 Multiplicity of Equilibria

An ascending auction with multidimensional signals may have multiple symmetric equilibria.

The multiplicity of equilibria provides a sharp illustration of how agents use their signals to

determine their drop-out time, and how this is modified by what they learn from the drop-out

time of other agents. The multiplicity of equilibria comes directly from the fact that (19) may

have multiple roots. We formalized this in the following lemma.

Lemma 6 (Multiplicity of Equilibria).

The auction has a unique (multiple) equilibrium within the class of equilibria studied in Proposi-

tion 2 if 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 < 0 (> 0), where,21

a =
(var(∆ηi) + var(η̄))(var(ε̄) + var(ϕ̄))

var(∆ηi)var(η̄)var(ϕ̄)
; b =

1

var(∆ηi)
;

c =
var(∆εi) + var(ε̄) + var(ϕ̄)

var(∆εi)var(ϕ̄)
; d =

1

var(∆εi)

In Figure 1d we plot the value of β for different values of var(εi). The value of β gives the

relative weight agents place on their signals. In Figure 1a and Figure 1b we plot the seller’s

profits and the buyers’ rents. It is easy to check from the scale of the plots that the buyers’ rents

are small, and hence the total surplus is qualitatively the same as the seller’s profits.

The different colors in the plot corresponds to the different roots of (19). The multiplicity

of equilibria comes from a complementarity on how agents use their signals to determine their

drop-out times. To illustrate the source of complementarity consider an information structure in

which var(εi) is large, and corr(ηi, ηj) is non-negligible.

We begin by studying the equilibrium in blue. There is an equilibrium in which agents

“almost” ignore their signals si2 (β ≈ 0). agent i by looking at the drop-out time of agent j

learns ηj. Nevertheless, agent i does not learn anything about ϕ̄ from the drop-out time of agent

j. Hence, the information in agent’s j drop-out time is not used by agent i to update his beliefs

on θi. Hence, agent i predicts θi only using his private information. Yet, as var(εi) is large, the

agent places a small weight on si2. Hence, in equilibrium the weight on si1 is much larger than

21The case 18abcd−4b3d+b2c2−4ac3−27a2d2 = 0 must be considered independently. If 18abcd−4b3d+b2c2−4ac3−27a2d2 = 0,
then there is a unique equilibrium if and only if b = 3ac.
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Figure 1: Expected outcome of ascending auction for var(ϕ̄) = 1, var(ηi) = (0.35)2, corr(ηi, ηj) = 1/2 and
N = 500.

si2. This is the equilibrium plotted in blue in Figure 1.

If we restrict attention to the equilibrium in blue, the seller’s profits and the buyers’ rents

increase with var(εi). This is because as var(εi) increases, agents place smaller weight on si2 (β

decreases). This leads to a higher surplus, which also induces a higher seller’s profits and higher

buyers’ rents.

We now study the equilibrium in red in Figure 1. Suppose that all agents place a weight on

si2 that is non-negligible with respect to the weight on si1. In this case, when agent i observes

the drop-out time of agent j he learns the realization of ηj + β(ϕ̄ + εj). If agent i observes the

drop-out time of many agents, then he can infer a signal almost the same η̄ + β · ϕ̄. That is,

agent i knows that the drop-out time of other agents is determined by their taste shock and the

value of the common shock. If agent i observes a high taste shock he expects that the drop-out

time of other agents was driven by a high taste shock (as these are correlated). Yet, this makes
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agent i more pessimistic about ϕ̄. This implies that when agent i observes a high taste shock,

his overall expectations change a small amount. This is because agent i also interprets a high

taste shock as a low common shock, which comes from the signal he obtains from the drop-out

time of other agents. Hence, agent i reduces the weight that he places on si1. In relative terms,

this implies that the weight agent i places on si2 increases (that is, β increases).

If we restrict attention to the equilibrium in red, the seller’s profits are quasi-convex in var(εi).

For a large enough var(εi), the intuition is similar to the equilibrium in blue. That is, as

var(εi) increases, the weight on si2 decreases sufficiently fast such that the total surplus increases.

Nevertheless, for small values of var(εi), the rate at which the weight on si2 decreases is not fast

enough to compensate for the fact that εi has a higher variance. This implies that the total

surplus decreases because the correlation between the drop-out time of agents and the noise

term εi increases.

It is interesting to note that the buyers’ rents have an unusual shape with a hump. This is

because as var(εi) increases two things happen. The first thing that happens is that the total

surplus decreases. The second thing that happens is that the level of payoff interdependence (m)

increases. As the level of payoff interdependence increases, buyers get a higher share of the total

surplus. Hence, there are values of var(εi) for which the total surplus decreases but the buyers’

rents increases. This leads to the unusual shape of the buyers’ rents in Figure 1b.

We show that for large enough var(εi) or small enough var(εi) there is a unique equilibrium.

Corollary 3 (Uniqueness of Equilibrium).

In the limits var(εi)→ 0 or var(εi)→∞ there is a unique equilibrium.

Corollary 3 shows that if the noise term is large enough or small enough, then there always

exist a unique equilibrium. If var(εi) → 0, then agents have complete information, and hence

there is a unique equilibrium. If var(εi)→∞, then agents ignore si2, and it is as if agents have

private values. Hence, there is a unique equilibrium.

Large Markets The model has an interesting discontinuity as we appproach large markets

(N →∞). Consider first a fixed N . If an agent could observe all signals {si2}i∈N , then he would

be able to compute the signal s̄2 = ϕ̄+ ε̄. As var(εi)→∞:

var(ε̄) =
1

N
var(εi)→∞.

Hence, even if an agent could observe all the signals {si2}i∈N the information about ϕ̄ becomes
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negligible in the limit var(εi)→∞.

Consider now the case in which we first take the limit N → ∞, and then we take the limit

var(εi)→∞. Since we first take the limit N →∞, this is the same as imposing that var(ε̄) = 0.

This is because the average of many independent random variables converges to 0. Hence, by

taking the limit N →∞ first and then var(εi)→∞ it is the same as first imposing var(ε̄) = 0

and then taking the limit var(∆εi)→∞. In this case, the average signal observed by all players

s̄2 = ϕ̄ + ε̄ = ϕ̄. Hence, even in the limit the average signal of all players perfectly reveals ϕ̄,

even in the limit var(∆ε)→∞.

In this case, the result on uniqueness of equilibrium changes.

Corollary 4 (Multiplicity of Equilibria).

If var(ε̄) = 0 and we take the limit var(∆εi)→∞, then there are multiple equilibria if and only

if:

var(ϕ̄) ≥ 4var(∆ηi)(1 +
var(∆ηi)

var(η̄)
). (20)

Corollary 4 characterizes the distribution of payoff shocks under which there are multiple

equilibria when N → ∞ and var(∆εi) → ∞. It is possible to check that, as the number of

players increases, the possibility of multiple equilibria in the limit var(εi) → ∞ also increases.

This is because in the limit an agent that could observe all the signals {si2}i∈N could perfectly

predict ϕ̄ (for any value of var(εi)). Hence, in the limit N → ∞ and var(εi) → ∞, the model

does not approach a model of private values.

Inequality (20) provides a bound on the size of var(ϕ̄) such that there exists a public signal

that would make agents place 0 weight on ηi. More precisely, if (20) is satisfed, then there exists

κ such that E[θi|s̄, ηi] = E[θi|s̄, ηi], with s̄ = κ · ϕ̄ + η̄. In the limit, in equilibrium agents place

0 weight on si2 because εi → ∞ (hence this signal is not informative). On the other hand, an

agent learns s̄ from the drop-out time of other agents. Hence, agents also place 0 weight on ηi.

In the limit agents place 0 weight on both of their private signals.

4.4 Impact of Public Information

We now study the impact of public information on the equilibrium outcome. We assume agents

have access to two public signals (in addition to the signals in (16)):

s̄3 = η̄ + ē3 and s̄4 = ϕ̄+ ē4,
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where ε̄3 and ε̄4 are independent of all random variables defined so far. Hence, agent i observes

the signals (si1, si2, s̄3, s̄4). The signal s̄4 is additional information about the common shock (ϕ̄),

and hence this can be seen as disclosing additional information about the good. On the other

hand, s̄3 is a signal on the average taste shock of agents. This can be interpreted as allowing

each agent to observe the other agents that are in the auction to get an estimate of their taste

shock.22 We study how the outcome of the equilibrium changes with the precision of var(ε̄3) and

var(ε̄4).

We begin by comparing how the expected surplus changes with the precision of the public

signals.

Proposition 2 (Comparative Statics of Public Signals: Surplus).

If the ascending auction has a unique equilibrium, then the total surplus is decreasing in var(ē3)

and var(ē4). In the limit:

lim
var(ε3)→0

S(ζ1, ..., ζN) = lim
var(ε4)→0

S(ζ1, ..., ζN) = max{E[exp(θ1)|s1, ..., sN ], ...,E[exp(θN)|s1, ..., sN ]}.

Proposition 2 shows that the surplus increases with the precision of the public signals. In

Proposition 2 we require that the ascending auction has a unique equilibrium. If the ascending

auction has three equilibria then the result holds for two of the equilibria, while the comparative

static is reversed for the third equilibrium. In the limit in which one of the public signals is

arbitrarily precise, the equilibrium approaches the first best.

The intuition on why the surplus is decreasing in var(ē4) is simple. As the public information

about ϕ̄ is more precise, an agent needs to place less weight on their private signal si2 to predict

ϕ̄. This implies that the correlation between the drop-out time of an agent and the realization

of the noise term εi decreases. Hence, the surplus increases.

The mechanism by which var(ē3) impacts efficiency is more subtle. It is transparent to see that

a change in var(ē3) does not change an agent’s expectation of his own payoff shock conditional

only on his private information. That is:

E[θi|si1, si2, s̄3] = E[θi|si1, si2].

Nevertheless, s̄3 allows an agent to extract more information from the drop-out time of another

agent. That is, agent i can use s̄3 to get a better prediction about ϕ̄ from the drop-out time of
22All the results follow through in the same way if instead of having a public signal s̄3 = η̄+ ē3 each agent i observes N − 1 private

signals on the payoff shocks of agents j 6= i. That is, if agent i observes signals si3 = η` + εi`3 for all ` 6= i.
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agent j. Hence, this is an indirect mechanism by which agent i gets a more precise information

about ϕ̄. This ultimately decreases the weight agent places on si2, and hence it increases the

surplus.

We now study the impact of the public signals on the seller’s profits.

Proposition 3 (Comparative Statics of Public Signals: Profits).

In the limit in which one of the public signals becomes arbitrarily precise:

lim
var(ε3)→0

p2 = 0 and lim
var(ε4)→0

p2 = max (2){E[exp(θ1)|s1, ..., sN ], ...,E[exp(θN)|s1, ..., sN ]},

where max (2){·} denotes the second order statistic (that is, the second maximum).

Proposition 3 shows that, as the public signal about ϕ̄ becomes arbitrarily precise (var(ε4)→
0), the outcome approaches the equilibrium under complete information. The intuition is that

in the limit, agent ignore their private signal si2, and hence the only private signal they observe

is si1 = ηi. Hence, in the limit the equilibrium is as if agents observe one-dimensional signals.

The impact of the public signal about η̄ on profits is different. As η̄ becomes common knowl-

edge (var(ε̄3) → 0), the equilibrium profits becomes arbitrarily close to 0.23 To illustrate the

intuition, consider the case N = 2 (the intuition is similar to Corollary 2). As var(ε̄3) → 0 it

is almost common knowledge who is the agent with the highest valuation. If agent i is almost

sure he does not have the highest payoff shock (∆ηi < ∆ηj), then agent i knows he will win the

object only if agent j observed a very bad signal about ϕ̄. Hence, agent i knows that he will win

the object only if ϕ̄ is very low. Anticipating this, agent i drops out of the auction arbitrarily

fast.

4.5 Discussion: Failure of Linkage Principle

The key insight from Section 4.4 is that the public signals has two effects. First, it decreases the

winner’s curse from one of the signals agents observe. This increases the profits. The second effect

of public signals is that it increases the interim asymmetries between players. That is, players

have better information about the difference in valuations between each other. This increases

the winner’s curse from another common shock, which decreases the profits. To illustrate this,

we consider a slightly different information structure.

23Note that Proposition 3 makes no assumption on the variance of the shock εi or ∆θi. Hence, if εi ≈ 0 and var(ε̄4) → 0 then
shocks are arbitrary close to common knowledge. Clearly, the result also holds for any distribution of payoff shocks.
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Consider a model in which we modify si1 as follows:

s′i1 = ηi + ε′i1,

where ε′i1 is a noise term independent of all other random variables in the model and independent

across agents. To make the argument simpler, assume that the variance of ε′i1 is small. In this

case, if agents observe only s′i1, this would constitute a classic model with interdependent values

(it is equivalent to Example 1). Hence, if agents observe only s′i1, then the profits would be

strictly increasing in var(ε̄3) (this is direct from Lemma 4). That is, a public signal would

increase profits because it decreases the payoff interdependence from the common factor η̄.

On the other hand, if agents observe s′i1 and si2, then the profits would continue to be in-

creasing in var(ε̄3).24 This is because a more precise information about η̄ increases the interim

differences between agents. This in turn, increases the payoff interdependence from the com-

mon factor ϕ̄. Hence, a public signal decreases the payoff interdependence from one signal, and

increases the payoff interdependence from the other signal.

5 General Multidimensional Signals

We now study an ascending auction, but allow for arbitrary multidimensional Gaussian signals.

We keep the auction the same as the one described in Section 2. We extend the methodology

in Section 4 to allow for asymmetric information structures. The idea remains the same as in

Section 4. That is, we first compute an equilibrium statistic, and then compute the equilibrium as

if agents observe only the equilibrium statistic. We later show that the analysis can be extended

to a larger class of mechanisms.

5.1 Information Structure

We first study a model in which agents observe one-dimensional signals. In contrast to Section

3, we allow signals and payoff shocks to be asymmetrically distributed. We keep the information

structure the same as in Section 2.2, but allow for arbitrary information structures. That is, we

allow for any distribution of signals and fundamentals (θ1, ..., θN , s1, ..., sN) ∈ R(J+1)N as long as

the distribution is jointly Gaussian.

24This can be seen by Proposition 3 and a continuity argument.
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5.2 One-Dimensional Signals

We begin by studying one-dimensional signals. If agents observe one-dimensional signals, and

the average crossing condition is satisfied, then the ascending auction has an ex-post equilibrium

that is efficient (see Krishna (2003)). The average crossing condition is defined as follows.

Definition 2 (Average Crossing Condition).

The one-dimensional information structure (s1, ..., sN , θ1, ..., θN) satisfies the average crossing

condition if for all A ⊂ {1, ..., N}, and for all i, j ∈ A with i 6= j:

∂E[θi|s1, ..., sN ]

∂sj
≤ 1

|A|
∑
k∈N

∂E[θk|s1, ..., sN ]

∂sj

The average crossing condition guarantees that the impact of agent i’s signal on agent j’s

valuation is not to high. The comparison is done with respect to the average impact that

agent i’s signal has on any group of agents that contains i. The average crossing condition is

the extension of (6) to asymmetric environments. In fact, in symmetric environments (5) is

equivalent to the average crossing condition.

To characterize the equilibrium we assume that agents are ordered as follows:

E[θi|s1, ..., sN ] > ... > E[θN |s1, ..., sN ]. (21)

That is, we assume that agents are ordered according to their expected valuation conditional on

the signals of all agents. To characterize the equilibrium we define s̃1 ∈ R as follows:

s̃1 , arg mins′∈R E[θ1|s′, s2, ..., sN ] (22)

subject to ∀i ∈ N, E[θ1|s′, s2, ..., sN ] ≥ E[θi|s′, s2, ..., sN ] (23)

s̃1 is the signal that yields the lowest expected payoff shock to agent 1, but keeping the expected

payoff shock of agent 1 above the expected payoff shocks of other agents.

Lemma 7 (Equilibrium for One-Dimensional Signals ).

The ascending auction has a Nash equilibrium in which agent 1 wins the object and pays a price:

p2 = E[θ1|s̃1, s2, ..., sN ]. (24)

The ascending auction has an equilibrium in which the agent with the highest expected
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valuation wins the object. The price paid for the object is the expected valuation of the winner

of the object, but evaluated at the minimum signal this agent could have observed and still win

the object.

5.3 Equilibrium Statistic

We define an equilibrium statistic of the signals an agent observes.

Definition 3 (Equilibrium Statistic).

We say random variables (β1 · s1, ...,βN · sN) ∈ RN are an equilibrium statistic of (s1, ..., sN) ∈

RJ ·N if:

∀i ∈ N, E[θi|β1 · s1, ...,βN · sN ] = E[θi|si,β1 · s1, ...,βN · sN ]. (25)

The definition of an equilibrium statistic is the natural extension of Definition 1, but allowing

for general J-dimensional signals. As before, in order to make the notation more compact, we

often denote an equilibrium statistic by:

(ζ1, ...., ζN) , (β1 · s1, ...,βN · sN). (26)

5.4 Equilibrium Characterization

For the characterization of the equilibrium, we assume that the equilibrium statistic satisfies

the average crossing condition. In the online appendix we provide sufficient conditions on the

individual signals that an agent observes that guarantees that the equilibrium statistic satisfies

the average crossing condition (See Section 11.3). For the equilibrium characterization we assume

that agents are ordered as follows:

E[θi|ζ1, ..., ζN ] > ... > E[θN |ζ1, ..., ζN ]. (27)

That is, we assume that agents are ordered according to their expected valuation conditional

on the equilibrium statistic of all agents. This is the natural extension of (18) when agents are

asymmetric.

To characterize the equilibrium we define ζ̃1 ∈ R as follows:

ζ̃1 , arg minζ′∈R E[θ1|ζ ′, ζ2, ..., ζN ] (28)

subject to ∀i ∈ N, E[θ1|ζ ′, ζ2, ..., ζN ] ≥ E[θi|ζ ′, ζ2, ..., ζN ] (29)
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ζ̃1 is the analogous of s̃i, but using the equilibrium statistic.

Theorem 3 (Equilibrium for Multidimensional Signals).

The ascending auction has a Nash equilibrium in which agent 1 wins the object and pays a price:

p2 = E[θ1|ζ̃1, ζ2, ..., ζN ].

Proposition 3 shows that it is possible to characterize the equilibria in multidimensional

environments by computing the equilibrium as if agents observed only the equilibrium statistic.

5.5 Example: Asymmetrically Informed Agents

We use Theorem 3 to compute the outcome of an ascending auction when agents are differentially

informed. We do not compute the equilibrium analytically, but just illustrate the outcome

numerically. The objective is to provide a specific application in which Theorem 3 is used, and

to illustrate novel insights that arise when we allow for asymmetries.

We assume there are 3 agents i ∈ {1, 2, 3} and the distribution of payoff shocks is symmetric.

The information structure is as in (16), but modify the variance of the error term in signals si2.

We assume that:

var(ε1) 6= var(ε2) and var(ε2) = var(ε3)

That is, agent 1 has different precision on his information about the common shock ϕ̄ than agent

2 and agent 3. Since agent 2 and agent 3 are symmetric, we compare agent 1 and agent 2.
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(a) Expected probability with which an agent wins the good.
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(b) Expected rents of agents.

Figure 2: Outcome of ascending auctions under different precisions of information on common shocks (σε2 = 2,
ση = 1, ρηη = 0, σϕ̄ = 3.)

In Figure 2a we plot the probability that agent 1 and agent 2 win the auction. In Figure 2b we
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plot the expected rents of agent 1 and agent 2. Note that the payoff environment is symmetric

and hence all the differences are due to the asymmetry in the information structure. We can see

that more precise information from agent 1 increases his rents, but reduces the rents of agent 2

and agent 3. Interestingly, a higher rent is associated with a lower probability of winning. That

is, when agent 1 has more precise private information he gets a higher rents despite the fact that

it reduces his probability of winning.

5.6 Existence of Equilibrium Statistic

The equilibrium statistic is the fundamental object that allow us to characterize the equilibrium

in multidimensional environments. We now provide further results on the equilibrium statistic.

We first prove that an equilibrium statistic exists.

Proposition 4 (Existence).

If the variance covariance matrix var(s1, ..., sN) has full rank, then an equilibrium statistic

(ζ1, ..., ζN) ∈ RN exists.25 Additionally, if the information structure is symmetric, then there

exists a symmetric equilibrium statistic.

Proposition 4 guarantees the existence of equilibrium statistic for generic information struc-

tures. The uniqueness of the equilibrium statistic is clearly not guaranteed (see Section 4.3). In

the appendix we further develop the characterization and properties of the equilibrium statistic.

We show the following. The equilibrium statistic can be found by solving a bilinear system of

equations. We provide sufficient conditions on signals, such that the equilibrium statistic satis-

fies (5) and, and hence such that the existence of Nash equilibrium in the ascending auction is

satisfied. We prove that in symmetric environments there are at most 2J − 1 symmetric equilib-

rium statistic. Since this analysis is outside the main purpose of the paper, we relegate it to the

appendix.

6 Other Mechanisms

We now extend the methodology to accommodate for other mechanisms. We show that it is

possible to characterize a class of equilibria in which agents behave “as if” agents observe only

their equilibrium statistic. Hence, the equilibrium is the same as characterizing the equilibrium

25We have not been able to find an example of an information structure in which an equilibrium statistic does not exist. In the
natural cases in which var(s1, ..., sN ) does not have full rank (like a public signal), the equilibrium statistic still exists.
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when agents observe one-dimensional signals. Importantly, the definition of equilibrium statis-

tic does not change, as this depends only on the information structure and not on the payoff

environment.

6.1 General Games

We consider a game with N players. Player i ∈ N takes action ai ∈ Ai, where Ai is assumed to

be a metric space. The payoff of player i ∈ {1, ..., N} depends on the realization of his payoff

shock θi ∈ R and the action taken by all players:

a , (a1, ..., aN).

The payoff of player i is denote by ui(θi, a). We denote by (a′i, a−i) the action profile:

(a′i, a−i) = (a1, ..., ai−1, a
′
i, ai+1, ..., aN).

We keep the information structure the same as in Section 5. The definition of equilibrium statistic

is the same as in Definition 3.

We distinguish between the payoff environment and the information structure. This is because

we want to compute the set of equilibria for a fixed payoff environment, but under a different

information structures. The actions available to each agent and the utility functions are called

the payoff environment and are denoted by P . The joint distribution of signals and fundamentals

is the information structure and is denoted by I. The game is defined by the payoff environment

and the information structure (P, I). Given an equilibrium statistic (ζ1, ..., ζN) ∈ RN we define

the reduced form information structure Î by the information structure in which agent i observes

only ζ i.

In game (P, I) , a strategy profile for agent i is defined by a function αi : RJ → Ai. In game

(P, Î) a strategy for player i is a functions α̂i : R→ Ai. We denote by (α(s)) the strategy profile

given by:

(α(s)) , (α1(s1), ..., αN(sN)).

We denote by (a′i,α−i(s−i)) the strategy profile in which all agents play according to (α(s))

except for player i, and player i takes action a′i for all realizations of the signals he observes.

That is,

(a′i,α−i(s−i)) , (α1(s1), ..., αi−1(si−1), a′i, αi+1(si+1), ..., αN(sN)).
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6.2 Solution Concepts

We now provide three different equilibrium concepts. All these equilibrium concepts are standard

in the literature, nevertheless we explicitly provide the definitions to make the comparisons more

transparent. We first define a Nash equilibrium in the game.

Definition 4 (Nash equilibrium).

A strategy profile (α1, ..., αN) forms a Nash equilibrium if for all players i ∈ N , for all signals

realizations (s1, ..., sN) ∈ RJ , and for all actions a′i ∈ Ai:

E[ui(θi,α(s))|si] ≥ E[ui(θi, (a
′
i,α−i(s−i)))|si]. (30)

A Nash equilibrium is a strategy profile such that the action of each player is optimal taking

as given the strategy by other players. We define an ex-post equilibrium.

Definition 5 (Ex-post Equilibrium).

A strategy profile (α1, ..., αN) forms an ex-post equilibrium if for all players i ∈ N , for all signals

realizations (s1, ..., sN) ∈ RJ , and for all actions a′i ∈ Ai:

E[ui(θi,α(s))|s1, ..., sN ] ≥ E[ui(θi, (a
′
i,α−i(s−i)))|s1, ..., sN ]. (31)

In an ex-post equilibrium, agent i’s action is optimal even if he knew the realization of the

signals of all other agents. In contrast to a Nash equilibrium, the information set with respect

to which the action needs to be optimal is augmented. It is transparent to see that, if a strategy

profile is an ex-post equilibrium, then it is also a Nash equilibrium.

Finally, we define a posterior equilibrium.

Definition 6 (Posterior Equilibrium).

A strategy profile (α1, ..., αN) forms a posterior equilibrium if for all players i ∈ N , for all signals

realizations (s1, ..., sN) ∈ RJ , and for all actions a′i ∈ Ai:

E[ui(θi,α(s))|si,α(s)] ≥ E[ui(θi, (a
′
i,α−i(s−i)))|si,α(s)]. (32)

In a posterior equilibrium, the strategy of agent i remains optimal even if he knew the actions

taken by all other agents.26 The difference between posterior equilibria and ex-post equilibria is

26The definition of posterior equilibria is due to Green and Laffont (1987).
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the amount of information with respect to which a strategies is optimal. That is, the difference

lies on the conditioning variables in (31) and (32). The action taken by player i is less informative

than the signal agent i observes. Hence, if an equilibrium is an ex-post equilibrium, then it is

also a posterior equilibrium. If a strategy profile is a posterior equilibrium, then the strategy

profile is also a Nash equilibrium.

6.3 General Characterization of Equilibria

We now show how to compute posterior equilibria in game (P, I). We do this by providing an

equivalence between ex-post equilibria in game (P, Î) and posterior equilibria in game (P, I).

Theorem 4 (Equivalence).

If (β1 · s1, ...,βN · sN) ∈ RN is an equilibrium statistic and strategies profile {α̂i}i∈N is an ex-post

equilibrium in game (P, Î), then the following strategy profile {αi}i∈N is a posterior equilibrium

in game (P, I) :

αi(si) = α̂i(βi · si). (33)

Proposition 4 shows that equilibria can be computed using a two step procedure. The first

step is to find the one-dimensional equilibrium statistic using (25). The second step is to compute

a posterior equilibrium as if agents observed only the equilibrium statistic. If a mechanism has an

ex post equilibrium when agents observe one-dimensional signals, then in general this equilibrium

is easy to characterize.

6.4 Mechanisms that have an Ex-Post Equilibrium

There is a large class of trading mechanisms that have an ex-post equilibrium when agents

observe one-dimensional signals. These mechanisms include classic trading mechanisms, as well as

mechanisms proposed by recent papers. In most of the recent literature the property of having an

ex-post equilibria when agents observe one-dimensional signals is viewed as a desirable property.

We briefly provide an overview of some of the mechanisms that have an ex-post equilibria when

agents observe one-dimensional signals.

There are classic trading mechanisms that have an ex-post equilibrium when agents observe

one-dimensional signals. For example, multi-unit ascending auctions (see for example, Ausubel

(2004) or Perry and Reny (2005)) and generalized VCG mechanism (see for example, Dasgupta

and Maskin (2000)). Additionally, supply function competition has an ex-post equilibria when
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agents are symmetric (see for example Klemperer and Meyer (1989) or Vives (2011)).27 Many

recent papers study novel mechanisms that have an ex-post equilibria when agents observe one-

dimensional signals. Ausubel, Crampton, and Milgrom (2006) propose the Combinatorial Clock

Auction that is meant to auction many related items. Sannikov and Skrzypacz (2014) study

a variation of supply function equilibria in which each agents can condition on the quantity

bought by other agents. Kojima and Yamashita (2014) study a variation of a double auction that

improves upon the standard double auction along several dimensions. Finally, Hashimoto (2016)

proposes a generalized random priority mechanism with budgets. All the mechanisms previously

mentioned have an ex-post equilibria when agents observe one-dimensional signals. Hence, our

analysis can be applied to understand what happens when agents observe multidimensional

signals.

It is worth mentioning some mechanisms that do not have an ex post equilibria when agents

observe one-dimensional signals. Two classic examples are Cournot competition and first price

auction. In Cournot competition an agent tries to anticipate the quantity submitted by other

agents, as these quantities will ultimately determine the equilibrium price. In a first price auction

agents try to anticipate the bid of other agents. It is interesting to compare this with supply

function equilibria and English auction. In supply function equilibria an agent can condition the

quantity they buy on the equilibrium price, and hence he does not need to anticipate the demands

submitted by other agents. Nevertheless, agents learn from the equilibrium price. Analogously,

in an English auction an agent can condition on the drop-out time of other agents, and hence an

agent does not need to anticipate the bids of other agents.

Lambert, Ostrovsky, and Panov (2014) study a static version of a Kyle (1985) trading model.

In their paper they allow agents to observer arbitrary multidimensional signals. Although we

share the common motivation of understanding trading mechanisms in informationally rich envi-

ronments, both papers are methodologically different. A static version of a Kyle (1985) trading

model does not have an ex-post equilibrium when agents observe one-dimensional signals, and

hence the methodology developed in this paper is not useful to study a trading model as in Kyle

(1985). For the same reason, the methodology developed in Lambert, Ostrovsky, and Panov

(2014) is not useful to study the models we study in this paper.

Finally, we highlight that the posterior equilibria characterized in Theorem 4 are not an

ex-post equilibrium.It is not difficult to check that in the model studied in Section 4 there are

27In symmetric environments the price aggregates all relevant information, and hence equilibria is privately revealing (see Vives
(2011)). See Rostek and Weretka (2012) for a model with asymmetric agents in which there is no ex-post equilibria even when agents
observe one-dimensional signals.
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realization of signals in which agent i wins the object, but agent i pays a price that is higher than

the expected valuation of agent i conditional on all signals. Yet, we note that the impossibility

theorem in Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006) does not apply to our model

because we study an environment in which signals enter linearly in the expectation of a payoff

shock. That is, this is a separable type-space.28 The impossibility result in Jehiel and Moldovanu

(2001) does apply to our model, and hence it is impossible to implement efficient outcomes. The

sources of inefficiencies in an ascending auction have been explained in Section 4.

6.5 Spectrum Auctions and Multiplicity of Equilibria

One of the implications of Theorem 4 is that the multiplicity of equilibria explained in Section

4.3 also applies to a class of ascending auctions widely used in the auction of spectrum licenses.

A common feature of these auctions is that the outcome of the auction varies widely from market

to market, even when these markets are very similar. We discuss how our results provide a new

mechanism that may help explain these difference in the outcome of these auctions. We begin

by briefly discussing the evidence.

In the early 1990’s the US auctioned radio spectrum frequencies for services such as mobile

phones. The auction mechanisms was a simultaneous English auction. It is well established that

the market outcomes varied greatly across different markets. For example, this was reported by

The Economist :

“ In 14 different auctions since 1994, the FCC has attracted winning bids worth $23

billion. But suddenly it has all gone wrong. An auction last month of frequencies suit-

able for wireless data transmission, which was expected to raise $1.8 billion, produced

only $13.6m.” The Economist, May 17, 1997, p. 86.

An explanation for these large differences is that bidders’ successfully colluded in some of these

auctions (see for example Cramton and Schwartz (2002) or The Economist article previously

cited).

In the early 2000’s several European countries auctioned 3G mobile telecommunication li-

censes. As in the american auction of radio frequencies, the outcome greatly varied. Consider

the following stark differences:

28See Jehiel, Meyer-ter Vehn, and Moldovanu (2008) for more results on implementation of ex post equilibrium in seprable envi-
ronments.
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“There were enormous differences in the revenues from the European “third genera-

tion” (3G, or “UMTS”) mobile-phone license auctions, from 20 Euros per capita in

Switzerland to 650 Euros per capita in the UK, though the values of the licenses sold

were similar. ” Klemperer (2002)

An explanation for the large differences has been attributed to differences in the number of

competitors (see Klemperer (2002)). Although there was a lack of competition in some of the

auctions, some of the most successful auctions (from the seller’s perspective) translated into large

losses for the winners of these auctions (see The Economist, September 2, 2004). We can see

that there was a large uncertainty about the value of these licenses among the bidders.

In recent years there has been a surge in using Combinatorial Clock Auction (see Ausubel,

Crampton, and Milgrom (2006)). Levin and Skrzypacz (2014) shows that this auction format

has an efficient ex-post equilibrium, albeit it also has other ex-post equilibria. As in the previous

examples, the auctions that used this format also varied widely in the outcome:

“ Either bidding data or summary reports are publicly available for several CCA sales

of radio spectrum licenses. This evidence suggests a striking degree of heterogeneity

across bidders and across auctions.” Levin and Skrzypacz (2014)

An explanation for these differences proposed Levin and Skrzypacz (2014) comes from the mul-

tiple ex-post equilibria when agents observe one-dimensional signals.

Of course, the auctions previously discussed had several differences among each others, and

each of the previous explanations was probably an important factor. Nevertheless, our analysis

shows that these class of mechanisms may naturally lead to multiple equilibria, regardless of the

details of the mechanism. This provides an additional mechanisms by which ascending auctions

in similar markets may yield very different outcomes. This may reinforce mechanisms previously

discussed. It is precisely the fact that agents learn from each other’s bidding that induces multiple

equilibria. The multiplicity of equilibria shows that small differences in the information structure

can have large impact on the outcome.

7 On the use of Gaussian Signals

The previous sections provide an analysis of an English auction, and other mechanisms, when

agents observe multidimensional Gaussian signals. We have not being able to extend the analysis
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to general non-Gaussian signals. In our view, the novel predictions that arise with multidimen-

sional signals are “unlikely to disappear” if one considers non-Gaussian multidimensional signals.

Nevertheless, the existence of equilibria in environments with non-Gaussian multidimensional sig-

nals is of independent interest. This is specially the case considering that Jackson (2009) provide

an example of a non-Gaussian multidimensional environment in which there is no equilibria.

In this section we discuss to what extent the intuitions in our analysis should extend to non-

Gaussian signals. We argue that, with signals that have finite support, there is a natural difficulty

in constructing equilibria in an ascending auction. This difficulty does not arise with signals that

have continuous support. Hence, the non-existence result in Jackson (2009) is a result of the

finite-support information structure. Additionally, we show that the analysis of Wilson (1998)

with diffuse priors can be extended to non-Gaussian information structures. Hence, a priori there

is reasonable hope that our analysis can be extended to non-Gaussian signals.

Finally, we highlight that the use of Gaussian signals in our model is no different than the use

of Gaussian signals in the rational expectations equilibrium (see Grossman and Stiglitz (1980)

or Hellwig (1980) for seminal contributions). The difficulty encountered in this literature in

extending their models to allow for non-Gaussian signals suggests that extending our analysis to

non-Gaussian signals is a non-trivial task. A noteworthy exception is Breon-Drish (2015) that

extends models of trading with noise traders to distributions in the exponential family. This also

suggests that it may be possible to extend our analysis to non-Gaussian signals.29 Throughout

the discussion we highlight additional connections that arise between our model and the literature

on rational expectations equilibrium.

7.1 Finite Support Information Structures

We begin by discussing signals that have finite support. In particular, we study the example

in Jackson (2009). By understanding the example in more detail it is possible to gain further

intuitions on where the construction of equilibria fails, and why this may be determined by the

finite support of the information structure.

We provide the example in Jackson (2009). We keep all the assumptions as in Section 4, but

random variables are not Gaussian.30 The payoff shock continues to be decomposed as a taste

shock and a common shock (as in (15)). The taste show ηi and common shock ϕ are uniformly

29We hope to use the insights from this paper to extend our analysis to non-Gaussian signals. Nevertheless, the multidimensional
signals impose an additional difficulty that makes the application of the techniques therein non-straightforward.

30Jackson (2009) assumes that the utility function is linear in θi. Taking the exponential of θi (as in (1)) is obviously inconsequential.
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distributed with finite support:

ηi ∈ {0, κ, 2κ, ..., 1} ; ϕ ∈ {0, 1

2
}. (34)

We assume that 1/κ is not divisible by 4. Equivalently, for all x ∈ N, x · κ 6= 1
4
. Agents observe

two signals as follows:

si = ηi ; s2 = |ϕ− εi|, (35)

where εi takes the value 1/4 with probability m and with probability (1 − m) takes the value

0. This implies that agent i can infer ϕ by observing si2 with probability (1 − m), and with

probability m signal si2 is non-informative. The shocks εi are independently distributed across

agents.

Lemma 8 (Jackson (2009)).

There exists κ and m small enough such that, if agents’ information structure is described by

(34) and (35), the ascending auction does not have an equilibrium

Lemma 8 is a result from Jackson (2009). The result shows that the ascending auction does

not have an equilibrium in an environment that combines a classic model of common and private

values.

We show that the information structure described by (34) and (35) does have an equilibrium

statistic. Consider the following one-dimensional statistic:

ζ i = s1 + s2 (36)

We show that (36) is an equilibrium statistic.

Proposition 5 (Existence of Equilibrium Statistic).

If agents information structure described by (34) and (35) then (36) is an equilibrium statistic.

Moreover, the equilibrium statistic satisfies:

E[θi|ζ1, ..., ζN ] = E[θi|s1, ..., sN ].

Proposition 36 shows that an equilibrium statistic exists. Moreover, the equilibrium statistics

aggregate the information in all the signals of of all agents. This is because agent i by observing

ζj can infer perfectly the realization of the signal si2. Hence, the information is not “muddled”
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as in the equilibrium statistic with Gaussian structures. Nevertheless, this is purely an artifact

of the finite support. The fact that the equilibrium statistic aggregates all the information also

suggests that the equilibrium statistic might not satisfy the single crossing property. Other-

wise, the implemented allocation by the English auction would be efficient, and this would be a

contradiction with Jehiel and Moldovanu (2001).

Finally, note that the difference between finite support signals and continuous signals has also

appeared in the rational expectations equilibrium. Radner (1979) shows that in an economy

with a finite number of states, a rational expectations equilibrium is fully revealing. That is, the

price reveals all the information agents have. Nevertheless, as in an English auction, this is an

artifact of the signals with finite support. This suggests that the English auction will not have

an equilibrium for any generic multidimensional information structure that has finite support.

7.2 Non-Gaussian Signals with Diffuse Priors

We keep all the assumptions as in Section 4, but random variables are not Gaussian. The

payoff shock continues to be decomposed as a taste shock and a common shock (as in (15)).

Agents observe their taste shock and they observe a noisy signal about the shock ϕ̄ (as in (16)).

We assume that the utility of agent i if he wins the object is equal to θi (without taking the

exponential as in (1)).

We assume the following distributions over random variables. We assume that ϕ̄ and η̄ are

independent of each other, and each is drawn according to a diffuse prior. We specify later how

we compute the expectations under the diffuse prior, but for now it is enough for the reader to

think of these random variables as being drawn from a Gaussian distribution N (0, σ2) under the

limit σ → ∞. The random variables εi are independent of all other random variables in the

model and independent across agents, but drawn according to any arbitrary distribution that

has finite variance. The random variables ∆ηi are drawn according to any arbitrary distribution

that has finite variance, but they satisfy that
∑

i∈N ∆ηi = 0.31

The intuition of the model is as follows. Conditional on observing si1, agents know ηi. Never-

theless, they do not know the realization of η̄ and ∆ηi separately. Hence, agent i’s beliefs is that

the distribution of ηj is centered around si1, with a distribution equal to the distribution of ∆ηj.

Similarly, after observing si2, agent i’s beliefs is that ϕ̄ is centered around si2 with a distribution

equal to the distribution of ∆εi.

31It is irrelevant whether the shocks {∆ηi}i∈N add up to 0, as it is always possible to redefine η̄. We make this assumption just
to be consistent with the notation.
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Expectations. Since ϕ̄ and η̄ are drawn according to a diffuse prior, we specify how we com-

pute the expectations. We begin by assuming that the expectation under diffuse priors has the

following properties. Consider random variables (z1, .., zJ) that can be written as follows:

zj = ϕ̄+
∑
i∈N

cεij∆εi +
∑
i∈N

cηij∆ηi,

where {cεi, cηi} are constant. We assume the following:

E[ϕ̄|z1, .., zJ , ηi] = E[ϕ̄|z1, .., zJ ]; (37)

E[ϕ̄|z1, .., zJ ] +K = E[ϕ̄|z1 +K, .., zJ +K]. (38)

The interpretation of these conditions is as follows. (37) states that, conditional on (z1, .., zJ),

the signal ηi has no information about ϕ̄. This is because (z1, .., zJ) are independent of η̄. Since

η̄ is drawn according to a diffuse prior, ηi contains on information about ϕ̄ or (z1, .., zJ). Hence,

ηi is not used in the expectation. (38) states that the expectation is translation invariant. Since

ϕ̄ is drawn according to a diffuse prior, the expectation of ϕ̄ conditional on (z1, .., zJ), does not

depend on the levels.

From (38), it is direct that the expectation can be computed as follows. Let C be the set of all

functions m : RN → R that are translation invariant (as in (38))) and such that m(0, ..., 0) = 0.

Then, E[ϕ̄|z1, .., zJ ] can be found solving the following minimization problem:

E[ϕ̄|z1, .., zJ ] ∈ arg min
m∈C

var(m(z1 − ϕ̄, ...., zN − ϕ̄)).

That is, E[ϕ̄|z1, .., zJ ] is found by minimizing the variance of the errors in the prediction.

Equilibrium Statistic. We now prove that the information structure has an equilibrium statis-

tic.

Proposition 6 (Equilibrium Statistic).

The information structure has an equilibrium statistic ζ i = si1 + si2. Moreover, the equilibrium

statistic satisfies:

E[θi|ζ1, ..., ζN ] = E[ϕ̄i|ζ1, ..., ζN ]. (39)

Proposition 6 shows that an equilibrium statistic exists. Moreover, agent i’s expectation of

his payoff shock θi conditional on all the equilibrium statistics is as if agents had common values.
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This is because the expectation of θi conditional on the equilibrium statistic of all agents is the

same as the expectation of ϕ̄ conditional on the equilibrium statistic of all agents.

The intuition is the same as in Section 4.3. A positive shock ηi has two effects. First, agent i is

more optimistic about his payoff shock θi because his taste shock is high. Second, agent i becomes

more pessimistic about ϕ̄. This is because agent i learns si2 + ηj from the drop-out of agent j.

Hence, if ηi is high, this means ηj is high, which means that si2 must be low. Interestingly, with

diffuse priors these two effects offset each other. Hence, in equilibrium agents bid as if they had

common values.

Finally, we show that an equilibrium exists.

Corollary 5 (Existence of Equilibrium).

The ascending auction has a Nash equilibrium. In equilibrium agents bid as if they observed only

their equilibrium statistic ζ i.

Corollary 5 is a straightforward conclusion of Proposition 6. First, and equilibrium statistic

exists. Second, agents bid as if they had common values. Hence, the single crossing property

is also satisfied. Hence, we can directly apply Milgrom and Weber (1982). The result shows

that it is possible to aspire to characterize the set of equilibria with multidimensional signals

when signals are not Gaussian. Nevertheless, the analysis here relies on the diffuse priors, and

generalizing this is material for future work.

7.3 Higher Order Beliefs

There is an additional difficulty when one works with utility functions that are not linear θi,

which is worth explaining. In the definition of an equilibrium statistic (Definition 3) we only

make reference to an agent’s expectation of his own payoff shock. Nevertheless, if the utility of

agent i is not linear in θi, then it is necessary to keep track of the higher order beliefs of agent i

about θi. In a Gaussian environment an agent’s expectation of his own payoff shock completely

determines the complete conditional distribution of the payoff shock. Nevertheless, this is not

true for non-Gaussian environments.

Consider the following example. There is a single agent that solves the decision problem:

x∗ ∈ arg max
x∈R

E[−exp(−x · θ +
κ

2
x2)|s1, s2],

where κ is a constant. We assume θ is normally distributed with 0 mean and a variance of 1.
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The signals are as follows:

s1 = θ + ε and s2 = var(ε),

where ε is a noise term. That is, the second signal informs the agent about the variance of

the noise term in the first signal. Using standard formulas for updating with Gaussian random

variables, it is possible to check that:

x∗ =
2

(1 + s2)κ+ s2

s1.

Hence, x∗ is a function of s1 and s2.

The important thing to note is that x∗ depends on s1 and s2, but the way these two signals

are used depends on κ. That is, by construction the decision problem requires s1 and s2 to be

projected into a one-dimensional object. Nevertheless, this projection depends on the parameter

of the game κ, and not only on the information structure. Hence, we can see that the construction

in Definition 3 will not work in non-Gaussian environments as agents also need to keep track of

their higher order beliefs about θi— in this example, the beliefs about the variance. In general, the

way the signals are projected into a one-dimensional object does depend on the payoff structure

of the game. Of course, an exception to this is the case in which the utility function of agents

ui is linear in θi. If ui(θi, a) = θi · v(a) for some v(·), then the decision of an agent only depends

on his expectation of θi.

7.4 Non-Gaussian Equilibria with Gaussian Signals

Finally, it is worth discussing the possibility of non-Gaussian equilibria in environments with

Gaussian information structures. Since there may be multiple equilibria that preserve the Gaus-

sian beliefs, it is also possible to construct equilibria in which agents randomize between these

equilibria. For example, by providing a public signal that is only noise, agents can use this as a

coordination device to randomize between equilibria. These equilibria driven by a public signal

would not preserve the Gaussian beliefs, and hence cannot be characterized by our methodology.

This is the simplest example of a non-Gaussian equilibrium. Yet, these class of equilibria do not

provide any additional economic insight. We do not know if there are additional equilibria that

can provide meaningful new economic insights in environments.
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8 Conclusions

In this paper we provide new predictions of ascending auctions. Nevertheless, there are several

other potential applications for the same methodology. We discuss some of the directions open

for future work.

The results in the paper can be naturally extended to other information structures. Hence,

there are plenty of open questions in terms of how the information impacts the outcome of an

ascending auction. For example, in Section 5.5 we studied the impact of differential information

on the equilibrium outcome. Although this was a illustrative example, it is possible to analyze

the problem analytically and provide general guidelines to understand how information impacts

the outcome. Of course, there are other natural source of asymmetries to studies, for example

the case in which payoff shocks are asymmetrically distributed.

In the companion paper Heumann (2016), we use this methodology to study the limits of

information aggregation in large markets. In particular, we study a continuum of traders trading

a divisible asset via supply function competition. We study to what extent there is a limit to

the amount of information that can be aggregate by prices. As agents observe multidimensional

signals, but the supply function an agent submits is measurable with respect to a one-dimensional

equilibrium statistic, there is a natural limit to the amount of information that can be aggregated

by the price. The key aspect of the analysis is to understand the efficiency of the information

revealed by the equilibrium statistic. We study whether the use of information by agents is

optimal, and how can taxes increase or decrease the amount of information revealed by prices in

equilibrium.

We believe it is also natural to apply our methodology to study other mechanisms. As

we have explained in Section 6.3, the same methodology can be applied to many other trad-

ing mechanisms. Although the equilibrium statistic does not change, the characterization for

one-dimensional signals does change. Since impact of the distribution of a one-dimensional in-

formation structure is different for different mechanisms, the impact of multidimensional signals

on these mechanisms will be different than in an ascending auction.



43

9 Appendix: Proofs of Results in Main Text

Proof Theorem 1 First, note that for any pair of jointly normal random variables (x, y):

E[exp(x)|y] = exp(E[x|y] +
1

2
var(x|y)). (40)

It is easy to check that:

var(θi|s1, s2, ..., sN) = (1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄).

Hence,

E[exp(θ2)|s2, s2, ..., sN ] = exp

(
E[θ2|s2, s2, ..., sN ] (41)

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
.(42)

It is important to note that, for any i ∈ {1, ..., N} the errors of the prediction E[θi|s1, ..., sN ]

are Gaussian. That is, θi − E[θi|s1, ..., sN ] is a Gaussian random variables. Hence, we can use

(40) to compute (41). Nevertheless, E[θ2|s1, ..., sN ] is not a Gaussian random variable as this is

the second maximum over N random variables. Hence, to compute E[E[exp(θ2)|s1, s2, ..., sN ]] we

cannot use (40).

Rewriting (3) explicitly for i = 1:

E[θ2|s1, s2, ..., sN ] =
cov(∆θi,∆si)

var(∆si)
∆s2 +

cov(θ̄, s̄)

var(s̄)
s̄.
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Now, replacing s1 by s2 in the previous expression, we get:

E[θ2|s2, s2, ..., sN ] =
cov(∆θi,∆si)

var(∆si)
∆s1 +

cov(θ̄, s̄)

var(s̄)
s̄

+(
cov(∆θi,∆si)

var(∆si)
− 1

N

cov(∆θi,∆si)

var(∆si)
+

1

N

cov(θ̄, s̄)

var(s̄)
)(s2 − s1)

=
cov(∆θi,∆si)

var(∆si)
∆s1 +

cov(θ̄, s̄)

var(s̄)
s̄

+(1− 1

N
+

1

N
m)

(
(
cov(∆θi,∆si)

var(∆si)
∆s2 +

cov(θ̄, s̄)

var(s̄)
s̄)

−(
cov(∆θi,∆si)

var(∆si)
∆s1 +

cov(θ̄, s̄)

var(s̄)
s̄)

)
= E[θ1|s1, ..., sN ] + (1− 1

N
+

1

N
m)(E[θ2|s1, s2, ..., sN ]− E[θ1|s1, s2, ..., sN ])

= E[θ1|s1, ..., sN ] + (
1−m
N

− 1)(E[θ1|s1, s2, ..., sN ]− E[θ2|s1, s2, ..., sN ]).

Replacing into (41), we get:

E[exp(θ2)|s2, s2, ..., sN ] = exp

(
E[θ1|s1, ..., sN ]

+(
1−m
N

− 1)(E[θ1|s1, s2, ..., sN ]− E[θ2|s1, s2, ..., sN ])

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
.

Note that:

S(s1, ..., sN) = E[exp(θ1)|s1, ..., sN ] = exp

(
E[θ1|s1, ..., sN ]

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
Hence,

E[exp(θ2)|s2, s2, ..., sN ] = S(s1, ..., sN)× exp
(

(
1−m
N

− 1)(E[θ1|s1, s2, ..., sN ]− E[θ2|s1, s2, ..., sN ])

)
.
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Similarly, we can compete the buyers’ rents:

V (s1, ..., sN) = S(s1, ..., sN)− E[exp(θ2)|s2, s2, ..., sN ]

= S(s1, ..., sN)×

(
1− exp

(
(
1−m
N

− 1)(E[θ1|s1, s2, ..., sN ]− E[θ2|s1, s2, ..., sN ])

))
.

Hence, we prove the result. �

Proof Theorem 2 This is a direct corollary of Theorem 4 and Lemma 3 (in the proof of Lemma

3 we show that the equilibrium of the ascending auction is an ex-post equilibrium). �

Proof Theorem 3 This is a direct corollary of Theorem 4 and Lemma 3 (in the proof of Lemma

7 we show that the equilibrium of the ascending auction is an ex-post equilibrium). �

Proof Theorem 4. By the construction of the equilibrium statistic it is clear that for any

equilibrium statistic, the joint distribution of the random variables (θ1, ..., θN , s1, ..., sN , ζ1, ..., ζN)

are jointly normally distributed. We first provide the main steps of the proof and then explain

each step in detail. If α̂i : R→ Ai is an ex-post equilibrium of game (P, Î), then:

⇒ ∀i ∈ N,∀ζ ∈ RN , ∀a′i ∈ Ai, E[ui(α̂(ζ i), α̂(ζ−i), θi)|ζ] ≥ E[ui(a
′
i, α̂(ζ−i), θi)|ζ] (43)

⇒ ∀i ∈ N, ∀ζ ∈ RN , ∀si ∈ RJ , ∀a′i ∈ Ai, E[ui(α̂(ζ i), α̂(ζ−i), θi)|ζ, si] ≥ E[ui(a
′
i, α̂(ζ−i), θi)|ζ, si]

(44)

⇒ ∀i ∈ N,∀ζ ∈ RN , ∀si ∈ RJ , ∀a′i ∈ Ai, E[ui(α̂(ζ i), α̂(ζ−i), θi)|si, α̂1(ζ1), ..., α̂N(ζN)] (45)

≥ E[ui(a
′
i, α̂(ζ−i), θi)|si, α̂1(ζ1), ..., α̂N(ζN)]

⇒ ∀i ∈ N,∀(s1, ..., sN) ∈ RJ ·N , ∀a′i ∈ Ai, E[ui(α̂(ζ i), α̂(ζ−i), θi)|si, α̂1(β1 · s1), ..., α̂N(βN · sN)]

≥ E[ui(a
′
i, α̂(ζ−i), θi)|si, α̂1(β1 · s1), ..., α̂N(βN · sN)]

(46)

⇒ α∗ : RJ →M defined by α∗(si) = α̂(ζ i) = α̂(βi · si) is a posterior equilibrium of game G

(47)

Step (43) This is by definition of ex-post equilibria in game (P, Î).

Step (44) First, note that the expectations are over random variable θi. Hence, we need to

prove that:

∀ζ ∈ RN , ∀si ∈ RJ , θi|ζ=θi|ζ,si .

That is, the distribution of θi conditional on ζ is the same same as the conditional distribution
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of θi conditional on ζ and si. As the random variables are normally distributed, it suffices to

prove that:

∀ζ ∈ RN , ∀si ∈ RJ , E[θi|ζ] = E[θi|ζ, si]; (48)

∀ζ ∈ RN , ∀si ∈ RJ , var(θi|ζ)=var(θi|ζ, si) (49)

(48) is true by the definition of an equilibrium statistic. (49) is true because the variables are

jointly Gaussian and hence:

var(θi|ζ) = var(θi)− var(E[θi|ζ])=var(θi)− var(E[θi|ζ, si]) = var(θi|ζ, si)

Step (45) Note that α̂i(ζ i) is measurable with respect to ζ i. Hence,

E[ui(a
′
i, α̂(ζ−i), θi)|ζ, si] = E[ui(a

′
i, α̂(ζ−i), θi)|si, ζ, α̂1(ζ1), ..., α̂N(ζN)]; (50)

E[ui(α̂(ζ i), α̂(ζ−i), θi)|ζ, si] = E[ui(α̂(ζ i), α̂(ζ−i), θi)|si, ζ, α̂1(ζ1), ..., α̂N(ζN)]. (51)

That is, we can add α̂i(ζ i) as conditioning variable. Hence, we can write (44) as follows:

E[ui(α̂(ζ i), α̂(ζ−i), θi)|si, ζ, α̂1(ζ1), ..., α̂N(ζN)] ≥ E[ui(a
′
i, α̂(ζ−i), θi)|si, ζ, α̂1(ζ1), ..., α̂N(ζN)].

Taking expectation of the previous equation conditional on (si, α̂1(ζ1), ..., α̂N(ζN)) and using the

law of iterated expectations:

E[ui(α̂(ζ i), α̂(ζ−i), θi)|si, α̂1(ζ1), ..., α̂N(ζN)] ≥ E[ui(a
′
i, α̂(ζ−i), θi)|si, α̂1(ζ1), ..., α̂N(ζN)].

Hence, we prove the step.

Step (46) This is using that βi · si = ζ i, hence the inequality obviously holds.

Step (47) Is just by the definition of posterior equilibria.

Hence, we prove the result.�

Proof Proposition 1 We can write the expected surplus as follows:

E[S(s1, ..., sN)] = E[E[exp(θ1)|s1, ..., sN ]] = E[E[exp(∆θ1 + θ̄)|s̄,∆s1, ...,∆sN ]].

Since the common component of the variables are independent of the idiosyncratic component
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of the random variables, we have:

E[S(s1, ..., sN)] = E[E[exp(θ̄)|s̄]]E[E[exp(∆θ1)|∆s1, ...,∆sN ]].

Using the law of iterated expectations:

E[E[exp(θ̄)|s̄]] = exp(
1

2
var(θ̄)).

Hence,

E[S(s1, ..., sN)] = exp(
1

2
var(θ̄))× E[E[exp(∆θ1)|∆s1, ...,∆sN ]].

Clearly the E[S(s1, ..., sN)] does not depend on m or corr(s̄, θ̄). We need to prove that (53) is

increasing in corr(∆si,∆θi).

We now use a coupling argument to prove that, for all s′i, si such that corr(∆s′i,∆θi) >

corr(∆si,∆θi), then:

E[E[exp(∆θ1)|∆s′1, ...,∆s′N ]] > E[E[exp(∆θ1)|∆s1, ...,∆sN ]].

Since corr(∆s′i,∆θi) > corr(∆si,∆θi), we assume that s′i is strictly more informative than si in

a Blackwell sense. That is, we assume that si can be written as follows:

si = s′i + εi2, (52)

where εi2 is a noise term independent of ∆θi and s′i. Of course, for two arbitrary signals s′i, si (52)

might not be satisfied. Nevertheless, this does not matter for the argument because to compute:

E[E[exp(∆θ1)|∆s′1, ...,∆s′N ]]

what matters is the joint distribution of (∆s′i,∆θi). Hence, if we prove it for signal s′i that

satisfies (52) we will have proven it for all signals.

For each i ∈ N , we define random variables:

∆ϕi , E[∆θi|∆s1, ...,∆sN ] and ∆ei , ∆θi −∆ϕ.
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Clearly, ∆ϕi is independent of ∆ei. On the other hand, we can write:

E[∆θi|∆s′i] = E[∆θi|∆s′i,∆si]

= E[∆θi|∆si] + E[∆θi − E[∆θi|∆si]|∆s′i,∆si]

= ∆ϕi + E[∆ei|∆s′i,∆si].

Define,

∆ϕ′i , E[∆θi|∆s′i] and ∆q′i , E[∆ei|∆s′i,∆si] and ∆e′i , ∆θi − E[∆θi|∆s′i].

Note that:

∆e′i = θi − E[∆θi|∆s′i] = θi − (∆ϕi + ∆q′i)

= = (θi −∆ϕi)−∆q′i = ∆ei −∆q′i

Clearly, ∆e′i is independent of ∆ϕ′i. Additionally, note that:

E[q′i∆ϕi] = E[E[∆ei|∆si,∆s′i]∆ϕi]] = E[E[∆ϕi∆ei|∆s′i,∆si]] = E[∆ϕi∆ei] = 0.

The first equality is by definition of ∆q′i. The second equality is using that ∆ϕi is measurable with

respect to ∆si. The third equality is using the law of iterated expectations. The fourth equality

is just using that the errors from the expectations are uncorrelated with the expectation.Hence,

q′i is independent of ∆ϕi.

We denote by ∆ê a random variable that has the same variance as ∆ei, but is independent

of all random variables. Similarly, for each random variable previously defined, we denote by a

hat over the variable a typical variable that has the same distribution but is independent of all

other random variables. For example, ∆q̂′ is a random variable that has the same variance as

∆q′i, but is independent of all random variables.

It is clear to see that:

E[E[exp(∆θ1)|∆s1, ...,∆sN ]] = E[exp(max{∆ϕ1, ...,∆ϕN}+∆ek)]] = E[exp(max{∆ϕ1, ...,∆ϕN}+∆ê)]],

(53)

with k satisfying that ∆ϕk = max{∆ϕ1, ...,∆ϕN}. The first equation is obtained by explicitly

writing down the expectation. The second equality comes from the fact that we can replace ∆ek
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with ∆ê because ∆ek is independent of ∆ϕk (hence, the distribution of the random variables

does not change).

We can write an equation analogous to (53) for s′i as follows:

E[E[exp(∆θ1)|∆s′1, ...,∆s′N ]] = E[exp(max{∆ϕ1 + q′1, ...,∆ϕN + q′N}+ ∆ê′)]]. (54)

Clearly, we have that:

E[E[exp(∆θ1)|∆s′1, ...,∆s′N ]] = E[exp(max{∆ϕ1 + ∆q′1, ...,∆ϕN + ∆q′N}+ ∆ê′)]]

< E[exp(max{∆ϕ1, ...,∆ϕN}+ ∆q̂′ + ∆ê′)]]

= E[E[exp(∆θ1)|∆s′1, ...,∆s′N ]].

The inequality comes from the fact that the right hand side corresponds to the left hand side, but

ignoring the realization of the random variables ∆q′i, and replacing this with a typical realization

q̂′. Hence, we prove the result.�.

Proof Proposition 2 The analysis of the equilibrium with public signals is equivalent to re-

defining the variance of the common shocks. To formalize the argument define:

η̄′ , η̄ − E[η̄|s3] and ϕ̄′ , ϕ̄− E[ϕ|s4].

Note that the equilibrium analysis is equivalent to a model in which the payoff shock of agents

is:

θ′i = ∆ηi + η̄′ + ϕ̄′,

and agents observe signals:

s′i1 = ∆ηi + η̄′ and s′i2 = ϕ̄′ + εi.

Hence, the model is equivalent to redefining var(η̄) and var(ϕ̄).

Define the polynomial:

p(β) ,
−1

var(∆εi)
+β

var(∆εi) + var(ε̄) + var(ϕ̄)

var(∆εi)var(ϕ̄)
+β2 −1

var(∆ηi)
+β3 (var(∆ηi) + var(η̄))(var(ε̄) + var(ϕ̄))

var(∆ηi)var(η̄)var(ϕ̄)
.

(55)

It is easy to check that, p(β) is decreasing var(η̄) and var(ϕ̄). If p(β) has a unique root p(β∗) = 0,

then p(β∗) is increasing at β∗. Hence, if p(β) has a unique root, then this root is increasing in
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var(η̄) and var(ϕ̄). This implies that the equilibrium statistic:

ζ i = si1 + βsi2,

satisfies that corr(∆ζ i,∆θi) is decreasing in var(η̄) and var(ϕ̄). Looking at Proposition 1, this

implies that the total surplus E[S(ζ1, ..., ζN)] is decreasing in var(η̄) and var(ϕ̄).

For the limit, note that in the limit var(η̄) → 0 or var(ϕ̄) → 0 the polynomial p(β) has a

unique root p(β∗) = 0, and β∗ → 0. Hence, in the limit the equilibrium statistic satisfies ζ i → η′i.

Hence, in the limit corr(∆ζ i,∆θi)→ 1. Hence, in the limit the equilibrium approaches the first

best. Hence, we prove the result. �

Proof Proposition 3 The proof is similar to the proof of Proposition 2. We use all the definitions

and arguments therein, and extend them to show the results on profits.

(Part 1: var(ε4)→ 0). We first prove that:

lim
var(ε4)→0

p2 = E[exp(θ2)|s1, ..., sN ].

As we showed in Proposition 2, in the limit var(ε4) → 0 we have that β → 0. Hence, agents

behave as if they observe only s′i1 = η′i. Hence, in the limit var(ε4) → 0 we have that m → 1.

The limit on m is easy to check as in the limit var(η̄′) > 0 and var(∆ηi) are well defined, and

hence the limit of m is well defined. Hence, in the limit agents behave as if they had private

values. Hence:

lim
var(ε4)→0

p2 = max (2){E[exp(θ1)|s1, ..., sN ], ...,E[exp(θN)|s1, ..., sN ]}.

(Part 2: var(ε3)→ 0). We now prove that:

lim
var(ε3)→0

p2 = 0.

The proof is more subtle than Part 1 because in the limit var(ε3) → 0 two things happen

simultaneously. First, β → 0 and second var(η̄′) → 0. Hence, when we look at the limit of m

we have that cov(ζ̄ , θ̄
′
) → 0 and var(ζ̄

′
) → 0. Hence, the limit of m cannot be immediately

calculated.

To calculate the limits we calculate the speed at which different terms converge to 0. We say
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x(var(η̄′)) is of order var(η̄′)k if:

lim
var(η̄′)→0

x(var(η̄′))

var(η̄′)`
=

∞ ` > k;

0 ` < k.

We denote this by x = O(var(η̄′)k).

Now, note that, in the limit var(η̄′)→ 0, we must have that any root of p(β) (defined in (55))

is of order var(η̄′)1/3. If β is of an order bigger than this, then the polynomial p(β) is greater

than 0. If β is of an order smaller than var(η̄′)1/3, then p(β) is negative.

Hence, the equilibrium statistic in the limit var(ε3) → 0 satisfies that β = O(var(η̄′)1/3).

Hence, in the limit var(ε3)→ 0,

var(ζ̄) = var(η̄′ + β(ϕ̄′ + ε̄)) = var(η̄′ +O(var(η̄′)1/3)(ϕ̄′ + ε̄)) = O(var(η̄′)2/3).

On the other hand,

cov(ζ̄ , θ̄
′
) = cov(η̄′ +O(var(η̄′)1/3)ϕ̄′, η̄′ + ϕ̄′) = O(var(η̄′)1/3).

Hence, in the limit var(ε3)→ 0:

cov(ζ̄ , θ̄
′
)

var(ζ̄)
= O(var(η̄′)−1/3)→∞.

This implies that in the limit in the limit var(ε3) → 0, m → ∞. Looking at Theorem 1, this

implies that in the limit var(ε3)→ 0:

p2 → 0.

Hence, we prove the result. �

Proof Proposition 4 The proof has several steps and hence we first provide an overview of

the proof. In the first part we define a sequence of functions, such that for each set of vectors

(β1 · s1, ...,βi−1si−1,βi−1si−1, ...,βNsN) that agent i might learn, the function assigns the vector

βi that corresponds to the expectation, but with a small “punishment” for making the first

component small. In the second step we prove that this function has a fixed point. In the third

step we prove that the sequence of fixed points of the functions converges to an equilibrium

statistic.
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(Step 1) We define function vki : RN(J−1) → RJ as follows:

vki (β−i) , arg min
βi∈RJ

(
min

mi`∈RN
E[

(
θi −

∑
`∈N

mi`β`s`

)2

|si,β1 · s1, ...,βN · sN ] (56)

−1

k
min{log(βi1)), 0}

)
, subject to: mii ∈ {−1, 1} (57)

where β−i , (β1, ...,βi−1,βi+1, ..., ,βN). To interpret vki , note that in the limit k → ∞ this is

just the regular expectation. That is, for all β−i there exists mi` ∈ RN such that:

E[θi|si,β1 · s1, ...,βN · sN ] = mii · v∞i (β−i) · si +
∑
` 6=i

mi`β`s`.

In this case,

E[

(
θi − (mii · v∞i (β−i) · si +

∑
`6=i

mi`β`s`)

)2

|si,β1 · s1, ...,βN · sN ] = 0

On the other hand, for k 6= ∞, there is a small punishment for making the first component of

βi small. Finally, note that in (56) the term βi · si is multiplied by mii so there is no loss of

generality in considering vectors βi in which the first component is greater or equal than 0.

For a fixed k, we can find a ε > 0 small enough such that:

∀i ∈ N,∀β−i ∈ R(N−1)J , |vki1(β−i)| > ε.

That is, agent i places a weight at least ε on his signal si1, for any information he might learn

from the signals of other players. That is, there is a fixed lower bound on the first component

|vki1(β−i)| > ε.

We can make ε small enough such that, for all β−i ∈ R(N−1)J , ||vki (β−i)|| < 1/ε. That is, the

weights that are placed on each signal ||vki (β−i)|| are bounded from above. This just comes from

the fact that if |βi|| → ∞, then the objective function of (56) goes to +∞. Hence, this obviously

cannot be a solution.

We define:

R , {v ∈ RJ : v1 > ε and ||v|| < 1/ε.}

That is, R is the set of vectors such that the first component has size of at least ε and the
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modulus is at most 1/ε. Note that for any β,β′ ∈ R and any λ ∈ [0, 1]:

λβ1 + (1− λ)β′1 ≥ ε;

||λβ + (1− λ)β′|| ≤ λ||β||+ (1− λ)||β′|| ≤ 1/ε.

Clearly, R is also a closed and bounded set. Hence, R is a compact and convex set. Note that

the range of vki is R.

Henceforth we assume that the domain is of vki is RN−1.

(Step 2) We define function vk : RN → RN , where

vk(β) , (vk1(β−1), ..., vkN(β−N)).

We prove that there exists (βk1, ...,β
k
N) ∈ RN , such that such that (βk1, ...,β

k
N) ∈ RN ·J is a fixed

point of the function vk. First note that vk : RN → RN , with RN being convex and compact.

Also, note that vki is continuous. This comes from the fact that the variance covariance matrix

(s1, ..., sN) has full rank and R does not include 0. Hence, by Brower’s fix point theorem, vk has

a fixed point. We denote that fixed point by (βk1, ...,β
k
N).

(Step 3) We now define the sequence:

(νk1, ...,ν
k
N) , (

βk1
||βk1||

, ...,
βkN
||βkN ||

).

Clearly, (νk1, ...,ν
k
N) has a convergent subsequence. We define the limit by (ν∞1 , ...,ν

∞
N ). It is

clear that:

lim
k→∞

E[

(
θi − E[θi|νk1 · s1, ...,ν

k
N · sN ]

)2

|si,νk1 · s1, ...,ν
k
N · sN ] = 0.

All variance covariance matrices have full rank, and hence:

E[

(
θi − E[θi|νk1 · s1, ...,ν

k
N · sN ]

)2

|si,νk1 · s1, ...,ν
k
N · sN ]

is a continuous function. Hence,

E[

(
θi − E[θi|ν∞1 · s1, ...,ν

∞
N · sN ]

)2

|si,ν∞1 · s1, ...,ν
∞
N · sN ] = 0.

Hence, (ν∞1 , ...,ν
∞
N ) is an equilibrium statistic of the information structure. Hence, we prove
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that there exists an equilibrium statistic.

(Symmetric Information Structures.) Clearly, if the information structure is symmetric,

then we can repeat the argument using symmetric equilibrium statistic. That is, instead of

considering β−i , (β1, ...,βi−1,βi+1, ..., ,βN), one needs to consider β−i in which βj = β`, for

all j, ` 6= i.

In this case, the equilibrium statistic found will be symmetric. Hence, we prove the result.�

Proof Proposition 5.First, note that:

E[θi|s1, ..., sN ] =


ηi if ∃j ∈ N such that sj2 = 0

ηi + 1
2

if ∃j ∈ N such that sj2 = 1
2

ηi + 1
4

otherwise

We now check that E[θi|s1, ..., sN ] = E[θi|ζ1, ..., ζN ]. We first provide the expectation, and then

explain the different cases separately.

E[θi|ζ1, ..., ζN ] =



ζ i if ζ i ∈ {0, κ, ..., 1} or ζ i − 1
2
∈ {0, κ, ..., 1}

ζ i − 1
4

if (ζ i − 1
4
) ∈ {0, κ, ..., 1} and ∃j ∈ N such that ζj ∈ {0, κ, ..., 1}

ζ i + 1
4

if (ζ i − 1
4
) ∈ {0, κ, ..., 1} and ∃j ∈ N such that ζj − 1

2
∈ {0, κ, ..., 1}

ζ i otherwise

The expectation of agent i conditional on all equilibrium statistics has 4 cases. The first case is

that ζ i ∈ {0, κ, ..., 1} or ζ i − 1
2
∈ {0, κ, ..., 1}. This can only happen if agent i observed si2 = 0

or si2 = 1/2. In this case agent i knows the realization of ϕ̄, and hence the expectation is equal

to ζ i. The rest of the cases imply ζ i 6∈ {0, κ, ..., 1} and ζ i − 1
2
6∈ {0, κ, ..., 1}, which implies that

si2 = 1/4. Note that 1/κ is not divisible by 4, and hence this implies that ζ i − 1
4
∈ {0, κ, ..., 1}.

If some agent j ∈ N observed sj2 = 0, then this implies that ζj ∈ {0, κ, ..., 1}. This implies that

ϕ̄ = 0. Hence, θ = ηi = ζ i − 1/4. Note that we are in the case in which si2 = 1/4. The case in

which some j ∈ N satisfies ζj − 1/2 ∈ {0, κ, ..., 1} is completely analogous. Finally, if all agents

observe si2 = 1/4, then no agent knows the realization of ϕ̄. This is the last case.

Hence, we prove the result.�

Proof Proposition 6 We need to prove that:

E[θi|si1, si2, ζ1, ..., ζN ] = E[θi|ζ1, ..., ζN ].
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We note that:

E[θi|ηi, si2, ζ1, ..., ζN ] = ηi + E[ϕ̄|ηi, si2, ζ1, ..., ζN ] (58)

= ηi + E[ϕ̄|ηi, si2, ζ1 − ηi, ..., ζN − ηi] (59)

= ηi + E[ϕ̄|si2, ζ1 − si1, ..., ζN − si1] (60)

= E[ϕ̄|si2 + ηi, ζ1, ..., ζN ] (61)

= E[ϕ̄|ζ1, ..., ζN ] (62)

The explanations are as follows. (58) is just using the decomposition of the payoff shock as in

(15). (59) is from the fact that the conditioning variables in both equations are the same, expect

in (59) we subtracted ηi from all signals. (60) is from (37). (61) is from (38). (62) is from the

definition of equilibrium statistic in (39). Hence, we prove the result.�

Proof Lemma 1 First, note that:

E[θi|s1, ..., sN ] = E[θi|si, s̄] = E[θi|∆si, s̄].

The first equation is by symmetry, as conditioning on (s1, ..., sN) must be the same as conditioning

just on (si, s̄) (see Lemma 10 in the appendix). The second equation is using that (∆si, s̄) is a

linear combination of signals (si, s̄).

Note that (∆si,∆θi) are independent of (s̄, θ̄) (see Lemma 9 in the appendix). Hence,

E[θi|∆si, s̄] = E[θ̄|s̄] + E[∆θi|∆si] =
cov(∆θi,∆si)

var(∆si)
∆si +

cov(θ̄, s̄)

var(s̄)
s̄.

Hence, we prove the result. �

Proof Lemma 2 This is by the definition of variance covariance matrix and using Lemma 9 (in

the appendix) to show some of the covariances are 0.

Additionally, the following covariances are equal to 0 by symmetry (see Lemma 9):

cov(θ̄,∆θi) = cov(s̄,∆θi) = cov(θ̄,∆si) = cov(s̄,∆si) = 0.

Hence, (∆θi, θ̄,∆si, s̄) is determined by 6 coefficients. Hence, the coefficients in (7) completely

determine the variance covariance matrix of (∆θi, θ̄,∆si, s̄). Hence, we prove the result.�

Proof Lemma 3 It is clear that the drop-out prices defined by (10) is a feasible outcome in

an ascending auction. We just need to show this is an equilibrium. In fact, we show this is an
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ex-post equilibrium (see Definition 5).

We first prove that the strategy of agent 1 (that is, agent that observes s1) the strategy the

leads to (10) is optimal. We first provide the main steps of the proof and then explain each step:

E[exp(θ2)|s2, s2, ..., sN ] = exp

(
E[θ1|s1, ..., sN ] (63)

+(
1−m
N

− 1)(E[θ1|s1, s2, ..., sN ]− E[θ2|s1, s2, ..., sN ])

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
.

≤ exp

(
E[θ1|s1, ..., sN ] (64)

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
= E[exp(θ1)|s1, s2, ..., sN ] (65)

Equality (63) is calculated explicitly in the proof of Theorem 1. Inequality (64) is using that

m ∈ [−(N−1),∞) and E[θ1|s1, s2, ..., sN ]−E[θ2|s1, s2, ..., sN ] > 0 by construction. Equality (65)

is also calculated explicitly in Theorem 1. Clearly for agent 1 it is optimal to win the auction.

As he cannot modify the price he pays, his action is optimal.

We first prove that the strategy of agent 2 (that is, agent that observes s2) the strategy the

leads ton (10) is optimal. That is, it is optimal for agent 2 to not win the object. The argument

for agent j, with j > 2 is obviously the same as for agent 2.

On the other hand, for any agent j such that sj < s1, if he wins the object he will pay:

E[exp(θ1)|s1, s1, s2, ..., sN ].

That is, agent 2 pays the expected valuation of agent 1, assuming that the signal of agent 2 is

equal to the signal of agent 1. This is the same as under the equilibrium, but replacing s2 by s1.
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Using the previous argument:

E[exp(θ1)|s1, s1, ..., sN ] = exp

(
E[θ2|s2, ..., sN ]

−(
1−m
N

− 1)(E[θ1|s1, s2, ..., sN ]− E[θ2|s1, s2, ..., sN ])

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
.

≥ exp

(
E[θ1|s1, ..., sN ]

+
1

2
((1− corr(∆θi,∆si)2)var(∆θi) + (1− corr(θ̄, s̄)2)var(θ̄))

)
= E[exp(θ1)|s1, s2, ..., sN ]

The steps are the same as before, except in this case the inequality 66 goes the other way because

there is a minus sign before the term. Clearly, generically the inequality will be strict. Hence,

agent j = 2 cannot win the object and pay a price less than his valuation. Hence, we prove the

result.�

Proof Lemma 4 Note that the model with public signal:

sp = θ̄ + ε̄p,

can be analyzed the same way as a model in which the common shock is given by:

θ̄
′
, θ̄ − E[θ̄|sp],

and agents observe signals:

s′i = si − E[si|sp].

As sp is conditionally independent of si we have that:

E[si|sp] = E[E[si|sp, θ̄]|sp] = E[E[si|θ̄]|sp] = E[
cov(si, θ̄)

var(θ̄)
θ̄|sp].

Note that by Proposition 1 and Corollary 1 the surplus and the seller’s profits do no depend

on corr(s̄, θ̄). Clearly, the public signal does not change corr(∆si,∆θi). Hence, the surplus
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generated with sp does not change. On the other hand, m′ is given by:

m′ =
var(∆s′i)cov(θ̄

′
, s̄′)

var(s̄′)cov(∆θ′i,∆s
′
i)
.

Clearly the idiosyncratic component of the random variables do not change with sp, hence:

m′ =
var(∆si)cov(θ̄

′
, s̄′)

var(s̄′)cov(∆θi,∆si)
.

Note that:

cov(θ̄
′
, s̄′)

var(s̄′)
=

cov(θ̄ − E[θ̄|sp], s̄− cov(s̄,θ̄)

var(θ̄)
E[θ̄|sp])

var(s̄)− var(E[s̄|sp])
(66)

=
cov(θ̄ − E[θ̄|sp], cov(s̄,θ̄)

var(θ̄)
θ̄ − cov(s̄,θ̄)

var(θ̄)
E[θ̄|sp])

var(s̄)− var(E[s̄|sp])
(67)

=

cov(s̄,θ̄)

var(θ̄)
(var(θ̄)− var(E[θ̄|sp]))

var(s̄)− var(E[s̄|sp])
(68)

=
cov(θ̄, s̄)

var(s̄)

1− var(E[θ̄|sp]))

var(θ̄)

1− var(E[s̄|sp])
var(s̄)

(69)

<
cov(s̄, θ̄)

var(s̄)
(70)

The explanation is as follows. (66) is by construction of the random variable θ̄
′

and s′i. (67) is

using that sp is independent of si conditional on θ̄. Hence, the covariances can be written as

follows

cov(θ̄, s̄) =
cov(s̄, θ̄)

var(θ̄)
cov(θ̄, θ̄) and cov(sp, s̄) = cov(sp,E[s̄|θ̄]) =

cov(s̄, θ̄)

var(θ̄)
cov(sp, θ̄).

(68) is using the collinearity of the covariance. (69) is re-arranging terms. (70) is by using the

fact that s̄ is independent of sp conditional on θ̄, which implies:

var(E[s̄|sp])
var(s̄)

= (1− corr(s̄, sp)2) < (1− corr(θ̄, sp)2)
var(E[θ̄|sp]))

var(θ̄)
.

This implies that:

1− var(E[θ̄|sp]))

var(θ̄)

1− var(E[s̄|sp])
var(s̄)

< 1.
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Hence, m′ < m. Hence, the seller’s profits decrease with sp. Hence, we prove the result.�

Proof Lemma 5 Using (82) for the statistic ζ i = si1 + βsi2 we get:

cov(θi − E[∆θi|∆ζ i]− E[θ̄|ζ̄], si1) = 0. (71)

Writing the expectations explicitly:

E[∆θi|∆ζ i] = E[∆ηi|∆ηi + β∆εi] =
var(∆ηi)

var(∆ηi) + β2var(∆εi)
(∆ηi + β∆εi);

E[θ̄|ζ̄] = E[η̄ + ϕ̄|η̄ + β(ϕ̄+ ε̄)] =
var(η̄) + βvar(ϕ̄)

var(η̄) + β2(var(ϕ̄) + var(ε̄))
(η̄ + β(ϕ̄+ ε̄)).

Rewriting (71) we get:

var(∆ηi)(1−
var(∆ηi)

var(∆ηi) + β2var(∆εi)
) + var(η̄)(1− var(η̄) + βvar(ϕ̄)

var(η̄) + β2(var(ϕ̄) + var(ε̄))
) = 0.

Rearranging terms:

0 = (var(η̄) + β2(var(ϕ̄) + var(ε̄)))var(∆ηi)βvar(∆εi)

+(var(∆ηi) + β2var(∆εi))var(η̄)(β(var(ϕ̄) + var(ε̄))− var(ϕ̄)).

Grouping up terms, we get:

0 = −var(ϕ̄)var(η̄)var(∆ηi) + β

(
var(∆ηi)var(η̄)(var(ϕ̄) + var(ε̄)) + var(∆εi)var(η̄)var(∆ηi)

)
−β2 · var(∆εi)var(η̄)var(ϕ̄)

+β3

(
(var(ϕ̄) + var(ε̄))var(∆ηi)var(∆εi) + var(∆εi)var(η̄)(var(ϕ̄) + var(ε̄))

)
.

Simplifying terms we get:

−1

var(∆εi)
+
var(∆εi) + var(ε̄) + var(ϕ̄)

var(∆εi)var(ϕ̄)
β+

−1

var(∆ηi)
β2+

(var(∆ηi) + var(η̄))(var(ε̄) + var(ϕ̄))

var(∆ηi)var(η̄)var(ϕ̄)
β3 = 0

Hence, we prove the result. �

Proof Lemma 6 It is a standard property of cubic polynomials that they have a unique root if

and only if their discriminant is greater than 0. For (19) this reduces to the condition in Lemma

6. Hence, we prove the result.�
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Proof Lemma 8. The example is the same as Jackson (2009). �

Proof Lemma 7 We prove in two steps. First we prove that the equilibrium has an efficient

ex-post equilibrium. Second we prove that the price paid is (24).

Step 1: The proof that the ascending auction has en efficient ex-post equilibrium is almost

direct from Krishna (2003) (see Theorem 2 therein). The definition of average crossing condition

in Krishna (2003) is slightly different than Definition 2, and hence we only need to prove that

Definition 2 implies the definition of average crossing condition in Krishna (2003).

Using the normality of the information structure, it is easy to check that:

E[exp(θi)|s1, ..., sN ] = exp(E[θi|s1, ..., sN ] +
var(θi|s1, ..., sN)

2
)

Hence,
∂E[exp(θi)|s1, ..., sN ]

∂sj
= exp(θi)

∂E[θi|s1, ..., sN ]

∂sj
.

For any signal realization (s1, ..., sN), we denote:

E(s1, ..., sN) , {i ∈ N : i ∈ arg max
`∈N

E[exp(θ`)|s1, ..., sN ].

Hence, for all i, ` ∈ E(s1, ..., sN), E[exp(θ`)|s1, ..., sN ] = E[exp(θi)|s1, ..., sN ]. Hence, for all

A ⊂ E(s1, ..., sN) , and for all i, j ∈ A with i 6= j:

∂E[exp(θi)|s1, ..., sN ]

∂sj
≤ 1

|A|
∑
k∈N

∂E[exp(θk)|s1, ..., sN ]

∂sj
⇐⇒ ∂E[θi|s1, ..., sN ]

∂sj
≤ 1

|A|
∑
k∈N

∂E[θk|s1, ..., sN ]

∂sj
.

Hence, if the information structure satisfies condition in Definition 2, then it also satisfies the

average crossing condition in Krishna (2003). From Theorem 2 in Krishna (2003), the ascending

auction has an ex-post equilibrium.

Step 2: It is easy to check that there is a direct mechanism that implements the outcome

in Lemma 7. That is, there is a direct mechanism that has an ex-post equilibrium in which

the agent with the highest valuation gets the object and pays (24). The proof can be found in

Ausubel (1999), but the argument is essentially the same as Lemma 3. Hence, there exists a

mechanism that has an ex-post equilibrium that implements an efficient allocation with payment

(24).

Perry and Reny (1999) provides a revenue equivalence theorem for ex-post equilibria. That is,

if two mechanisms implement the same allocation as an ex-post equilibrium, then the payments



61

must be the same. Hence, (24) must also be the payment in the outcome of the ascending

auction.

Hence, we prove the result.�

Proof Corollary 1 The seller’s profits are given by:

E[π2] = E

[
exp

(
(
1−m
N

− 1)(E[θ1|s1, ..., sN ]− E[θ2|s1, ..., sN ])

)
E[exp(θ1)|s1, ..., sN ]

]

= E

[
exp

(
(
1−m
N

− 1)(E[∆θ1|∆s1, ...,∆sN ]− E[θ2|∆s1, ...,∆sN ])

)

×E[exp(θ̄ + ∆θ1)|s̄,∆s1, ...,∆sN ]

]

Since the expectation does not depend on m, it is clear that E[π2] is decreasing in m (note that

by construction E[∆θ1|∆s1, ...,∆sN ] > E[θ2|∆s1, ...,∆sN ]). Additionally, the realization of the

common component of random variables is independent of the realization of the idiosyncratic

component of random variables. Hence, we can use the law of iterated expectations to take

expectations over the common component of the signals. We get:

E[π2] = E

[
exp

(
(
1−m
N

− 1)(E[∆θ1|∆s1, ...,∆sN ]− E[θ2|∆s1, ...,∆sN ])

)

×E[exp(∆θ1)|s̄,∆s1, ...,∆sN ]

]
× exp

(
1

2
corr(s̄, θ̄)2var(θ̄)

)
.

Since all the terms depend only on the realization of the idiosyncratic component of signals, we

have that the expectation does not depend on corr(s̄, θ̄). The proof for the rents of the buyers

is completely analogous, except for the fact that the rents are increasing in m. Hence, we prove

the result.�

Proof Corollary ?? If m < −(N − 1), then p2 > S(s1, ..., sN). Hence, the price paid is always

bigger than the surplus generated. Hence, the buyers’ are getting negative rents. Hence, this

cannot be an equilibrum. Hence, we prove the result.�

Proof Corollary 2 Note that for the noise-free information structure:

corr(∆si,∆θi) = corr(s̄, θ̄) = 1 and m = µ. (72)
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This is straightforward to check the result from (12) and (72). Hence, we prove the result. �

Proof Corollary 3 We prove the result using the characterization in Lemma 6.

In the limit var(εi) → 0, we have that var(∆εi) → 0. In this case, d → ∞ and c → ∞.

Clearly the term that dominates is −4ac.

In the limit var(εi) → 0, we have that var(ε̄) → ∞. In this case, a → ∞. Clearly the term

that dominates is −27a2d2.

Proof Corollary 4 We prove the result using the characterization in Lemma 6.

By assuming var(ε̄) = 0 and considering the limit:

lim
var(∆εi)→∞

18abcd−4b3d+b2c2−4ac3−27a2d2 =
−4var(∆ηi)

2 − 4var(∆ηi)var(η̄) + var(η̄)var(ϕ̄)

var(∆ηi)
2var(η̄)var(ϕ̄)3 .

By re-arranging terms we get the result. Proof Corollary 5 The proof is a straightforward

rewrite of Theorem 4 and using that when agents observe only the equilibrium it is as if they had

common values. Note that, if the utility of agents is linear in θi then in the proof of Theorem 4

it clearly does not matter that the equilibrium statistics is non-Gaussian. Hence, Milgrom and

Weber (1982) can be applied. Hence, we prove the result. �

Proof Equation (6). If m ≥ 0, we clearly have that:

cov(∆θi,∆si) > 0 and cov(θ̄, s̄) > 0.

On the other hand, for any θj 6= θi

|cov(∆θi,∆si)| > |cov(∆θj,∆si)|.

Hence, for any θi, θj, we have that:

cov(si, θi) = |cov(∆θi,∆si)|+ |cov(θ̄, s̄)| > |cov(∆θj,∆si)|+ |cov(θ̄, s̄)| ≥ cov(si, θj).

Hence,

corr(θi, si)
2 > corr(θj, si)

2.
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10 Online Appendix A: Additional Properties of Symmetric Infor-

mation Structures

We now discuss the properties of the orthogonal decomposition in (2). To make the reading

easier we repeat the definitions here:

θ̄ ,
1

N

∑
i∈N

θi ; ∆θi = θi − θ̄ ; s̄ ,
1

N

∑
i∈N

si ; ∆si = si − s̄. (73)

The fundamental property of the orthogonalization in (73) is that common variables (variables

that have a bar over them) are orthogonal to idiosyncratic variables (variables preceded by a ∆).

We formalize this in the following lemma.

Lemma 9 (Orthogonal Decomposition).

If the information structure is symmetric then the random variables (∆θi,∆si) are independent

of (θ̄, s̄).

Lemma 9 shows that in symmetric environments the random variables that are common to

all agents (variables that have an over-bar) are orthogonal to idiosyncratic random variables

(variables preceeded by a ∆). Lemma 9 also shows that in symmetric environments the informa-

tion structure is completely determined by the variance covariance matrices of random variables

(∆θi,∆si) and (θ̄, s̄).

We now show that in symmetric environments the information about the average equilibrium

is sufficient for the information in all equilibrium statistics.

Lemma 10 (Symmetric Equilibrium Statistic).

The random variables (β · s1, ...,β · sN) are an equilibrium statistic if and only if:

E[θi|β · si,β · s̄] = E[θi|si,β · s̄]. (74)

Proposition 10 shows that in symmetric environments, the average sufficient statistic β · s̄
is sufficient for the information in all equilibrium statistics (β · s1, ...,β · sN). Hence, when we

analyze symmetric environments all the information agent i observes is summarized by β · s̄.

This allow us to provide a more succinct characterization of the equilibrium statistic.
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11 Online Appendix B: Properties and Computation of Equilibrium

Statistic

11.1 Characterization of Equilibrium Statistic

There is an equivalent description of (25) which makes transparent how equilibrium statistics

can be computed in applications.

Proposition 7 (Characterization of Equilibrium Statistic).

The random variables (β1 · s1, ...,βN · sN) ∈ RNJ are an equilibrium statistic if and only if, there

exists (mi`)i,`∈N2 ∈ RN2
, such that:

∀i ∈ N, ∀j ∈ J cov(θi, sij)−
N∑
`=1

mi` · cov(β` · s`, sij) = 0, (75)

∀i ∈ N,∀j ∈ N\{i}, cov(θi,βj · sj)−
N∑
`=1

mi` · cov(β` · s`,βj · sj) = 0, (76)

Proposition 7 provides a set of equations that are necessary and sufficient to find equilibrium

statistics. There are N2 + J ·N variables corresponding to (mi`)i,`∈N2 ∈ RN2
and (β1, ...,βN) ∈

RNJ . It is easy to check that (75) defines J ·N equations, while (76) corresponds to N × (N − 1)

equations. There are less equation than variables because the equilibrium statistics are not

uniquely defined. If βi ·si is an equilibrium statistic and we multiply this equilibrium statistic by

any number, then this would still be an equilibrium statistic. That is, by looking at Definition

3 we can see that we can multiply the equilibrium statistic by any scalar.32

The set of equations are bi-linear in the variables. That is, for a fixed values of (mi`)i,`∈N2 ∈
RN2

, (75) defines J · N linear equations on (β1, ...,βN) ∈ RNJ . Hence, solving for equilibrium

statistic is computationally simple. The characterization of symmetric equilibrium statistics in

symmetric environments can be further simplified. We explain how the characterization can

be simplified in the appendix (see Section 11.2). The characterization in Proposition 7 for the

special case of the symmetric information structure (16), yields the cubic equation (19).

Finally, we interpret the coefficients (mi`)i,`∈N2 ∈ RN2
. These coefficients are the weights that

agents place on their own equilibrium statistic and the equilibrium statistic of other agents when

taking the expectation E[θi|β1·s1, ...,βN ·sN ]. Consider an equilibrium statistic (β1·s1, ...,βN ·sN)

32In order to get a system of equations that has the same number of equations than unknowns any normalization on the βi works.
For example, to derive (19) we imposed that the first component of β is equal to one (that is, βi1 = 1).
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and parameters (mi`)i,`∈N2 ∈ RN2
that solve for (75) and (76), then:

E[θi|β1 · s1, ...,βN · sN ] =
∑
`∈N

mi`β` · s` (77)

The proof of (77) can be found in the proof of Proposition 7. This implies that the parameters

(mi`)i,`∈N2 ∈ RN2
are directly related to the average crossing condition.

Lemma 11 (Average Crossing Condition for Equilibrium Statistic).

The equilibrium statistic (β1 ·s1, ...,βN ·sN) satisfies the average crossing condition, if and only if,

the parameters (mi`)i,`∈N2 ∈ RN2
that solve for (75) and (76) satisfy that for all A ⊂ {1, ..., N},

and for all i, j ∈ A with i 6= j:

mij ≤
1

|A|
∑
k∈N

mkj

Lemma 11 provides a simple way to compute the average crossing condition from the charac-

terization in Proposition 7.

Independent Signals. A common assumption in the mechanism literature is that agents’

signals are independently distributed. In particular, Dasgupta and Maskin (2000) show that in a

generalized VCG mechanism, when agents receive independent signals it is possible to calculate

the equilibrium of the game using a one-dimensional sufficient statistic. If the signals of agents

are independently distributed, then the equilibrium statistic is equal to ζ i = E[θi|si]. That is, the

equilibrium statistic of agent i is agent i’s expectation of his own payoff shock conditional only

on his private information. To check this, note that for any equilibrium statistic (ζ1, ..., ζN):

E[θi|si, ζ1, ..., ζN ] = E[θi|si] +
∑
j 6=i

E[θi|ζj].

Hence, the analysis can be reduced to a one-dimensional problem by taking the expected payoff

shock of each agent conditional only on his private information. The fundamental aspect of our

analysis is to understand how the information agents learn from the drop-out time of other agents

modifies the equilibrium statistic, and how this leads to novel predictions.

11.2 Equilibrium Statistic in Symmetric Environments

We now discuss how the characterization of the equilibrium statistic can be simplified in sym-

metric environments. In order to provide additional intuitions on the equilibrium statistic we
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compare this with the expectation of an agent of his own payoff shock conditional only on his

private information. Note that a equilibrium statistic corresponds to a particular linear combina-

tion of the signals. Hence, we can compare the equilibrium statistic directly with the expectation

of an agent of his own payoff shock conditional only on his private information. This allows us to

illustrate how the use of private signals by agent i is modified by the information in the actions

of players different than i. For example, this allow us to understand how in an ascending auction

the information agent i learns from the drop-out time of other agents modifies how agent i uses

his signals to determine his drop-out time.

An agent’s expectation of his own payoff shock conditional only on his private information

can be computed in closed form:33

E[θi|si] = b · si, with b , (Σs̄s̄ + Σ∆s∆s)
−1 · cov(θi, si). (78)

We call b · si agent i’s interim expectation.34 In an ascending auction, if agent i ignored the

information from the drop-out price of other agents, then agent i would determine his own drop-

out price using the one-dimensional statistic b · si. The errors of the interim expectation of agent

i are orthogonal to the information agent i observes:

∀j ∈ J, cov(θi − E[θi|b · si], sij) = 0. (79)

That is, each signal sij must be uncorrelated with the errors in the predictions of θi.

The one-dimensional statistic can be found using a similar logic, but it is necessary to disen-

tangle common and idiosyncratic components. We can compute the one-dimensional statistic in

“almost” closed form. For this, we first define a function Φ : RJ → R:

Φ(β) ,

(
β · ((N − 1)cov(θ̄, s̄)− cov(∆θi,∆si))− (N − 1)β · var(̄s) · β + β · var(∆si) · β

)
((N − 1)2β · var(̄s) · β + β · var(∆si) · β)

.(80)

The equilibrium statistic can be computed as follows.

33Properties of Bayesian updating with Gaussian random variables are standard in the literature. For example, see Hogg,
McKean, and Craig (2005).

34Throughout this section, we denote by b ∈ RJ the linear combination of signals in agent i’s interim expectation, while
β ∈ RJ denotes the linear combination of signals of the one-dimensional equilibrium statistic.
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Corollary 6 (Equilibrium Use of Information).

The random variables (β · s1, ...,β · sN) ∈ RN forms an equilibrium statistic if and only if, there

exists (m, m̃) ∈ R2 such that m = Φ(β · m̃−1) and:

β = m̃ ·
(

(1 + (N − 1)m)var(̄s) + (1−m)var(∆si)

)−1

· cov(θi, si) (81)

As in Proposition 7 the equilibrium statistics are not uniquely defined, in this case the param-

eter m̃ is just a rescaling parameter that can be normalized to 1. Hence, Corollary 6 allows us

to compute the set of linear Nash equilibrium in closed form up to a one-dimensional parameter

(m). That is, given the equilibrium value of m, the equilibrium value of β is determined in closed

form by (81).

It is remarkable that the only difference between a equilibrium statistic (β) and the interim

expectation (b) comes from the re-weighting of the variance of the common component of signals

(var(̄s, s̄)) and idiosyncratic component of signals (var(∆s,∆s)). The re-weighting of common

and idiosyncratic component is the only modification needed to incorporate that an agent’s

expectation of his own payoff shock is conditioned on the equilibrium actions of other players.

As before, we can interpret the equilibrium statistic in terms of the covariance between the error

in the expectations of agents and the signals an agent observes.

Proposition 8 (Characterization of One-Dimensional Statistic).

The random variables (β · s1, ...,β · sN) ∈ RN forms an equilibrium statistic if and only if:

∀j ∈ J, cov(θi − E[∆θi|β ·∆si]− E[θ̄|β · s̄], sij) = 0. (82)

Proposition 8 shows that the equilibrium statistic is computed in a similar way than the

interim expectations under normal random variables. In contrast to (79), common and idiosyn-

cratic component of the random variables in (82) are separated in the expectation.

Proposition 8 suggests how agents use their private information and the information from the

actions of other players in an equilibrium. The information in the actions of other players allows

an agent to place different weight on the common and idiosyncratic component of the equilibrium

statistic. This allows agents to use the common component of signals to predict the common

component of their payoff shock, and use the idiosyncratic component of signals to predict the

idiosyncratic component of the payoff shock.

Finally, we bound the number of equilibrium statistics in symmetric environments.
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Proposition 9 (Bound on Number of Equilibria).

For any symmetric information structure, there are at most (2J − 1) symmetric equilibrium

statistic in which ||β|| = 1.

Lemma 9 provides a bound on the number of symmetric equilibrium statistic. The additional

constraint that ||β|| = 1 is to eliminate the multiplicity of equilibrium statistic that arise because

we can multiply them by a scalar. In other words, this is equivalent to looking for equilibrium

statistic that satisfy (81) with ˜m = 1. Although for J = 2 we know that this bound is tight, we

have not found a general class of examples that proves that the bound is tight for all J.

11.3 Single Crossing Property

In a symmetric environment, the equilibrium statistic must satisfy (5) in order for an equilibrium

to exists. In asymmetric environment the equilibrium statistic must satisfy the average crossing

condition. For specific examples (as in Section 4) it is easy to check whether the equilibrium

statistic satisfy the average crossing condition. We now study conditions on the signals such that

the equilibrium statistic satisfies (5) in symmetric environments.

We provide sufficient conditions on symmetric information structures such that (5) is satisfied.

We first define the monotonicity condition.

Definition 7 (Multidimensional Monotonicity Condition).

A symmetric information structure satisfies the multidimensional monotonicity condition if:

i, `,∈ N, ∀j, k ∈ J, cov(s̄k, s̄j|θ̄) = cov(∆sik,∆sij|∆θ) = 0 and corr(sij, θi)
2 ≥ corr(sij, θ`)

2.

(83)

The multidimensional monotonicity condition corresponds to two condition on the informa-

tion structure. It is required that all signals satisfy (6). Second, we require that signals are

conditionally independent. We now show that the multidimensional monotonicity condition is

sufficient to guarantee that the equilibrium statistic satisfies the one-dimensional single crossing

property.
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Proposition 10 (Single Crossing Condition).

If the monotonicity condition is satisfied, then every symmetric equilibrium statistic satisfies (5).

Proposition 10 provides sufficient conditions such that every equilibrium statistic satisfies (6).

The more restrictive condition in (83) is the conditional independence of signals, as this is a

condition that is satisfied only in non-generic information structures. Nevertheless, for every

information structure that satisfies (83), there is an open set of information structures that yield

equilibrium statistic that satisfy (6). We can apply Proposition 10 to guarantee the existence of

symmetric equilibrium.

Corollary 7 (Existence of Equilibrium).

If an information is symmetric and satisfies the monotonicity condition, then the ascending

auction has a symmetric equilibrium.

Corollary 7 uses the monotonicity condition and the existence of equilibrium statistic to

guarantee the existence of equilibrium in the ascending auction. One would like to generalize

Proposition 10 to asymmetric environments. Nevertheless, we have not been able to find general

conditions that guarantee that every equilibrium statistic satisfies the average crossing condition.

If an asymmetric information structure is “close” to a symmetric information structure that

satisfies the monotonicity condition, then the information structure will have an equilibrium

statistic that satisfies the average crossing condition. This comes from the fact (75) and (76) are

a bi-linear system of equations and hence in general the set of solutions will change continuously

as one changes the parameters of the information structure.

12 Online Appendix C: Proofs of Results in Appendix

Proof Proposition 7 (Only If) Suppose that the random variables (β · s1, ...,β · sN) ∈ RN

forms an equilibrium statistic, then by definition:

∀i ∈ N, E[θi|β1 · s1, ...,βN · sN ] = E[θi|si,β1 · s1, ...,βN · sN ]. (84)

We know that there exists (mi`)i,`∈N2 ∈ RN2
such that:

E[θi|β1 · s1, ...,βN · sN ] =
∑
`∈N

mi`β`s`.
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Hence, there exists (mi`)i,`∈N2 ∈ RN2
such that:

∀i ∈ N, E[θi|si,β1 · s1, ...,βN · sN ] =
∑
`∈N

mi` · β`s`. (85)

Multiplying by sij, we have (note that sij can be brought into the expectation as the expectation

conditions on sij):

∀i ∈ N, E[sijθi|β1 · s1, ...,βN · sN ] = sij
∑
`∈N

mi`β`s`.

Taking expectation and using the law of iterated expectations:

∀i ∈ N, E[sijθi] =
∑
`∈N

mi`E[sij · β`s`].

Using that all random variables have zero mean:

∀i ∈ N, cov(sij, θi) =
∑
`∈N

mi`cov(sij,β`s`).

Repeating the argument for all j ∈ J , we get all equations in (75). Repeating the argument

using β` · s` we get all equations in (76). Hence, we prove sufficiency.

(If) Suppose that there exists (mi`)i,`∈N2 ∈ RN2
such that (75) and (76) are satisfied. Now,

define random variable:

z ,
∑
`∈N

mi` · β`s`.

First, note that z is measurable with respect to (β1 ·s1, ...,βN ·sN) and hence it is also measurable

with respect to (si,β1 · s1, ...,βN · sN). Second note that for all i ∈ N :

∀j ∈ J, cov(E[θi|si,β1 · s1, ...,βN · sN ]− z, sij) = 0; (86)

∀` ∈ N, cov(E[θi|si,β1 · s1, ...,βN · sN ]− z,β` · s`) = 0. (87)
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To check (86) note the following.

cov(E[θi|si,β1 · s1, ...,βN · sN ]− z, sij) = E[sijE[θi|si,β1 · s1, ...,βN · sN ]]− E[sijz] (88)

= E[sijθi]− E[sij
∑
`∈N

mi` · β`s`] (89)

= cov(sij, θi)−
∑
`∈N

mi` · cov(sij,β`s`) (90)

= 0 (91)

(88) is from the fact that all variables have a mean of 0 and hence the covariance is the same as

the expectation of the product of the random variables. (89) is bringing sij inside the expectation

and using the law of iterated expectations. (90) is the using that all variables have a mean of 0.

Finally, (87) can be proved in an analogous way.

Using (86) we must have that:

z = E[θi|si,β1 · s1, ...,βN · sN ]. (92)

Using that z is also measurable with respect to (β1 · s1, ...,βN · sN):

z = E[z|β1 · s1, ...,βN · sN ]

= E[E[θi|si,β1 · s1, ...,βN · sN ]|β1 · s1, ...,βN · sN ]]

= E[θi|β1 · s1, ...,βN · sN ].

The first equation comes from the fact that z is measurable with respect to (β1 · s1, ...,βN · sN),

and hence z conditional on (β1 · s1, ...,βN · sN) is equal to z. The second equation is using (92).

The third equation is using the law of iterated expectations. Hence, using again (92):

E[θi|β1 · s1, ...,βN · sN ] = E[θi|si,β1 · s1, ...,βN · sN ]

Hence, we prove necessity. Hence, we prove the result �

Proof Proposition 8 (Only If) Let (β · s1, ...,β · sN) ∈ RN be an equilibrium statistic. Using

Lemma 10 we have that:

E[θi|si,β · s̄] = E[θi|β ·∆si,β · s̄].



72

By construction of the expectation, we have that:

cov(θi − E[θi|si,β · s̄], si) = 0.

Using the property of the equilibrium statistic:

E[θi|si,β · s̄] = E[θi|β · si,β · s̄] = E[θi|β ·∆si,β · s̄].

Hence,

cov(θi − E[θi|β ·∆si,β · s̄], si) = 0.

Using Lemma 9, we know that variables with a bar are orthogonal to variables preceded by a ∆

and hence:

E[θi|β ·∆si,β · s̄] = E[∆θi|β ·∆si] + E[∆θi|β · s̄].

Hence,

cov(θi − E[θ̄|β · s̄]− E[∆θi|β ·∆si], si) = 0.

Hence we prove sufficiency.

(If) Let β be such that:

cov(θi − E[θ̄|β · s̄]− E[∆θi|β ·∆si], si) = 0.

Hence, we have that:

cov(θi − E[θi|β ·∆si,β · s̄], si) = 0.

This implies that:

E[θi|β ·∆si,β · s̄] = E[θi|si,β ·∆si,β · s̄]

Hence, we prove necessity. Hence, we prove the result.�

Proof Proposition 9 We look for equilibrium statistic that satisfy that m̃ = 1. We define the

matrix:

M =

(
(1− (N − 1)m)var(̄s) + (1 +m)var(∆si)

)
.

We note that:

M−1 =
1

det(M)
MA,
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where MA is the adjoint matrix of M . M is a square matrix of dimension J . It is easy to see

that, the determinant of M is a polynomial of degree J in variable m. Each element of MA is

the determinant of a minor of M . Hence, each element of MA has degree J − 1 on variable m.

Finally, we define:

v , cov(si, θi) ·MA,

and note that β = v/det(M). Note that each element of v has degree J − 1 on variable m.

We can solve for equilibria by replacing β in (80), we get:

m(((N − 1)2v · var(̄s) · (v)T + v · var(∆si) · v)) =(
det(M) · v · ((N − 1)cov(θ̄, s̄)− cov(∆θi,∆si))

−(N − 1)(v) · var(̄s) · (v)T + (v) · var(∆si) · (v)T

)
.

The terms ((N − 1)2v · var(̄s) · (v)T have order 2J − 2 in m while det(M) ·v has order 2J − 1 in

m. Hence, the whole polynomial is of order 2J − 1 in m. Hence, it has 2J − 1 solutions. Hence,

there are at most 2J − 1 different m.

For a fixed m solving β is a linear system of equations. Hence, there are at most 2J − 1

solutions. Hence, we prove the result.�

Proof Proposition 10 We proceed in two steps. We first prove that all symmetric equilibrium

statistic β ∈ RJ have the same sign in all of its components. That is, for all j ∈ J , βj ≥ 0

or for all j ∈ J , βj ≤ 0. To prove this, we use Lemma 8. The second step is to prove that, if

components of β ∈ RJ have the same sign, then the equilibrium statistic satisfies (5).

Step 1: We proceed by contradiction. That is, we assume that there exists j, k ∈ R such that

βk · βj < 0. We proceed in sub-cases. Denote by β a vector that is the same as β, but with all

components having a positive sign.

Since the noise terms are independently distributed, it is clear to see that:

var(β · s̄|θ̄) = var(β · s̄|θ̄) and var(β ·∆si|∆θi) = var(β ·∆si|∆θi).

Additionally, by the monotonicity condition, for all sij, cov(∆θi,∆sij), cov(θ̄, s̄j) ≥ 0. Hence,

|cov(β · s̄, θ̄)| > |cov(β · s̄, θ̄)| and |cov(β ·∆si,∆θi)| > |cov(β ·∆si,∆θi)|.
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Hence,

|corr(β · s̄, θ̄)| > |corr(β · s̄, θ̄)| and |corr(β ·∆si,∆θi)| > |corr(β ·∆si,∆θi)|.

We now show that:

cov(θi − E[∆θi|β ·∆si]− E[θ̄|β · s̄],β · si) > 0. (93)

If we prove this, then this would be a contradiction with Proposition 8, as (82) cannot hold for

the linear combination of signals given by β. Hence, β · si is not an equilibrium statistic.

To prove (93), note that:

cov(θi − E[∆θi|β ·∆si]− E[θ̄|β · s̄],β · si) = cov(∆θi−E[∆θi|β·∆si],β·∆si)+cov(θ̄−E[θ̄|β·̄s],β·̄s).

(94)

Yet, calculating the terms, we get:

cov(∆θi − E[∆θi|β ·∆si],β ·∆si) =
√
var(β ·∆si)var(∆θi)

(
|corr(β ·∆si,∆θi)| − (95)

|corr(β ·∆si,∆θi)||corr(β ·∆si,β ·∆si)|
)

(96)

>
√
var(β ·∆si)var(∆θi)

(
|corr(β ·∆si,∆θi)| − (97)

|corr(β ·∆si,∆θi)|
)

(98)

> 0 (99)

The same holds for the common variables, hence (93) must be satisfied.

Step 2: For any equilibrium statistic β all components are positive, and by the monotonicity

condition:

cov(∆θi,β ·∆si) > 0 and cov(θ̄,β · s̄) > 0.

Hence, clearly m ≥ 0. �

Proof Lemma 9 Consider normal random variables {yi}i∈N , {zi}i∈N symmetrically distributed.

That is:

∀i, k ∈ {1, ..., N},

(
yi

yk

)
∼

((
0

0

)
,

(
σ2
θ ρyyσ

2
y

ρyyσ
2
θ σ2

y

))
and

(
zi

zk

)
∼

((
0

0

)
,

(
σ2
z ρzzσ

2
z

ρzzσ
2
z σ2

z

))
,
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with an arbitrary correlation corr(yi, zi). Define:

ȳ ,
1

N

∑
i∈N

yi ; ∆yi , yi − ȳ ; z̄ ,
1

N

∑
i∈N

zi ; ∆zi , zi − z̄. (100)

We prove that:

cov(ȳ,∆zi) = 0. (101)

We first provide the steps, and then explain each step.

cov(ȳ,∆zi) = cov(
1

N

∑
k∈N

yk, zi −
1

N

∑
j∈N

zj) (102)

=
1

N

∑
k∈N

cov(yk, zi)−
1

N2

∑
k∈N

∑
j∈N

cov(yk, zj) (103)

=
1

N
(cov(yi, zi) +

∑
k 6=i

cov(yk, zi))−
1

N2

∑
k∈N

(cov(yk, zk) +
∑
j 6=k

cov(yk, zj)) (104)

=
1

N
(cov(yi, zi) + (N − 1)cov(yk, zi))−

1

N
(cov(yk, zk) + (N − 1)cov(yk, zj))(105)

= 0 (106)

The explanation of each step is as follows. (102) is by construction of ȳ and ∆zi. (103) is by

the collinearity of the covariance. (104) is expanding terms. (105) is using symmetry. More

specifically,

∀i, k, `, j ∈ N, with j 6= i and k 6= `, cov(zi, yj) = cov(zk, y`);

∀i ∈ N, cov(zi, yi) = cov(zk, yk).

(106) is trivially by checking both terms are the same.

Note that, it is clear from the proof that cov(ȳ,∆yi) = 0 must also be satisfied. Since all

random variables are Gaussian, if they have 0 covariance, they must be independent. Hence, we

prove the result. �

Proof Lemma 10 For any β ∈ RJ , there exists constants mi`, cij and m̃i` such that the

expectation can be written as follows:

E[θi|β · s1, ...,β · sN ] =
∑
j∈N

mijβ · sj;
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E[θi|si,β · s1, ...,β · sN ] =
∑
j∈J

cijsij +
∑
j 6=i

m̃ijβ · sj.

By symmetry, we can find m,m′, m̃, cj such that:

E[θi|β · s1, ...,β · sN ] = m
∑
j 6=i

β · sj +m′ · β · si;

E[θi|si,β · s1, ...,β · sN ] =
∑
j∈J

cjsij +
∑
j 6=i

m̃ · β · sj.

We can re-write both equations as follows:

E[θi|β · s1, ...,β · sN ] = Nms̄−m · si +m′ · β · si;

E[θi|si,β · s1, ...,β · sN ] =
∑
j∈J

cjsij +Nm̃ · β · s̄− m̃si.

Hence, we have that in symmetric environments E[θi|β · s1, ...,β · sN ] is measurable with respect

to (β · si,β · s̄) and E[θi|si,β · s1, ...,β · sN ] is measurable with respect to (β · si,β · s̄). That is:

E[θi|β · s1, ...,β · sN ] = E[θi|β · si,β · s̄];

E[θi|si,β · s1, ...,β · sN ] = E[θi|si,β · s̄].

Hence, (β · s1...,β · sN) is an equilibrium statistic if and only if

E[θi|β · si,β · s̄] = E[θi|si,β · s̄].

Hence, we prove the result. �

Proof Lemma 11 The proof is direct from (77) and the definition of average crossing condition,

it just corresponds to replacing the derivatives with the parameters {mi`}i,`∈N2 . �

Proof Corollary 6 Let (β · s1, ...,β · sN) be an equilibrium statistic. We can then write

Proposition 7 using the assumption of symmetry. We denote for all i 6= j, m = mij and m̃ = mii.

We can write (75) for a typical i ∈ N and (76) for some ` 6= i. We can write these equations as

follows:

cov(θi, si)− m̃ · cov(β · si, si)− (N − 1)m · cov(β · s`, si) = 0, (107)

cov(θi,β · s`)− ((N − 2)m+ m̃) · cov(β · sj,β · s`)−m · cov(β · s`,β · s`) = 0, (108)
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We now rewrite the covariances as follows:

cov(si, si) = var(si) = var(̄s) + var(∆si);

cov(si, s`) = cov(̄s + ∆si, s̄ + ∆s`) = var(̄s) + cov(∆si,∆s`).

Note that by construction
∑

i∈N ∆si = 0, and hence:

0 = cov(∆s`,
∑
i∈N

∆si) = var(∆s`) + (N − 1)cov(∆s`,∆si),

with i 6= `. Hence,

cov(si, s`) = var(̄s)− 1

N − 1
var(∆si).

We can write (107) in vector form as follows:

cov(θi, si)− m̃ · β · (var(̄s) + var(∆si))− (N − 1)m · β · (var(̄s)− 1

N − 1
var(∆si)) = 0

Hence, (107) can be written as follows:

β =

(
(m̃+ (N − 1)m)var(̄s) + (m̃−m)var(∆si)

)−1

· cov(θi, si) (109)

On the other hand, we can write (108) as follows:

m =

(
β · ((N − 1)cov(θ̄, s̄)− cov(∆θi,∆si))− m̃ · (N − 1)β · var(̄s) · β + m̃ · β · var(∆si) · β

)
((N − 1)2β · var(̄s) · β + β · var(∆si) · β)

.(110)

We make the following change of variables m̃′ = 1/m̃ and m′ = m/m̃. (109) and (110) can be

written as follows:

β = m̃′
(

(1 + (N − 1)m′)var(̄s) + (1−m′)var(∆si)

)−1

· cov(θi, si) (111)

m′

m̃′
=

(
β · ((N − 1)cov(θ̄, s̄)− cov(∆θi,∆si))− 1

m̃′
· (N − 1)β · var(̄s) · β + 1

m̃′
· β · var(∆si) · β

)
((N − 1)2β · var(̄s) · β + β · var(∆si) · β)

.(112)
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We can rewrite (112) as follows:

m′ =

(
β
m̃′
· ((N − 1)cov(θ̄, s̄)− cov(∆θi,∆si))− (N − 1) β

m̃′
· var(̄s) · β

m̃′
+ · β

m̃′
· var(∆si) · β

m̃′

)
((N − 1)2 β

m̃′
· var(̄s) · β

m̃′
+ β

m̃′
· var(∆si) · β

m̃′
)

.(113)

Hence, we prove the result.�

Proof Corollary 7 By Proposition 5.6 and equilibrium statistic exists. By Proposition 5.6 all

equilibrium statistic satisfy (5). It is easy to check that this implies that the average crossing

condition is satisfied. By Theorem 3, this implies that an equilibrium exists.
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