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We examine the network of bilateral trading relations between insurers and

dealers in the over-the-counter corporate bond market. Using comprehensive reg-

ulatory data we find that many insurers use only one dealer while the largest

insurers have a network of up to eighty dealers. To understand the heterogeneity

in network size we build a model of decentralized trade in which insurers trade

off the benefits of repeat business against more intense dealer competition. Em-

pirically, large insurers form more relations and receive better prices than small

insurers. The model matches both the distribution of insurers’ network sizes and

how prices depend on insurers’ size and the size of their dealer network.

Keywords: Over-the-counter market, corporate bond, trading cost, liquidity,

decentralization, financial network.

We study investors’ choice of trading networks in an over-the-counter (OTC)

market. As an investor adds dealers to her network the dealers anticipate less

future business, leading to inferior dealer prices. On the other hand, addi-

tional dealer competition affects bargaining and improves execution quality.

In equilibrium investors’ optimal network size trades off the benefits of re-

peat relations with individual dealers against the benefits of competition

among dealers. A theoretical model with these tradeoffs generates predic-

tions for optimal networks and execution prices. We empirically test these

predictions qualitatively and quantitatively using insurance companies’ sec-

ondary market trading of corporate bonds.

Corporate bonds are the corporations’ primary source for raising capital
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Figure 1.— Example of dealer-client trading relations

The figure shows the buy (blue squares) and sell (red circles) trades of two insurance

companies with different dealers. We sort the dealers on the vertical axis by the first

time they trade with the corresponding insurance company.

and trade in a classic OTC market with more than 400 active broker-dealers.

Insurers are one of the largest investors in the $7.8 trillion market with more

than 20 thousand bond issues. Insurers own roughly 30% of all corporate

bonds. Insurers are long-term buy and hold investors. Insurers exhibit quite

different trading needs depending on their balance sheet size and type of

business, enabling the study of how investor heterogeneity impacts market

outcomes. For more than 4,300 insurers regulatory data reveal the identities

of the insurers and dealers on both sides of all transactions between them

from 2001 to 2014.

Our empirical investigation starts by inspecting matching patterns be-

tween insurers and dealers. Insurers form few but long-lasting dealer re-

lationships. Roughly 30% of insurers trade with a single dealer annually.

Figure 1 provides two examples of client-dealer trading relations over time.

Panel A shows buys and sells for an insurer trading with a single dealer and

Panel B for an insurer trading with multiple dealers. Both insurers buy and

sell bonds repeatedly from the same set of dealers.

Such trading behavior is unlikely under the undirected random search
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paradigm (Duffie, Garleanu, and Pedersen, 2005, 2007; Lagos and Rocheteau,

2007, 2009) where clients repeatedly search for best execution without form-

ing long-term relationships with dealers. The empirical facts that insurers

form finite-size dealer networks where many insurers use few dealers mo-

tivates an alternative model of OTC markets. The simple strategic model

of finite network formation, which we call a Rolodex model, allows clients

and dealer to share the benefits of repeated interactions. The model incor-

porates features from a variety of existing models, including search costs,

exclusivity, loyalty,1 and costs of maintaining links in the network.

In our model a single console bond is traded on an inter-dealer market

which clients can only access through dealers. Dealers have search intensity λ

and upon trading with a client then transact at the competitive inter-dealer

bid/ask prices. Clients initially start without a bond but stochastically re-

ceive trading shocks with intensity η which cause them to simultaneously

contact N dealers. The client’s effective search intensity is Λ = Nλ. Main-

taining relations with a single dealer requires a sunk cost of K per search,

which can be interpreted as wages for in-house traders and which precludes

infinite network size. The first dealer to find the bond captures all benefits

from the transaction. Thus, our trading mechanism is identical to repeated

winner-takes-all races (Harris and Vickers (1985)) with participation by

costly invitation with costs born by the client. The bond’s purchase price

is set by Nash bargaining. Once an owner, the client stochastically receives

liquidity shock forcing her to sell the bond. The mechanics of the sell trans-

actions are the same as the buy transaction. Both dealers and clients de-

rive value from repeat transaction which help determine transaction prices,

leading to price improvement for better clients in Nash bargaining. Both

the Rolodex size and transaction prices are endogenously determined in

equilibrium by maximizing buyers’ utility.

1For a comprehensive model of loyalty see Board (2011).
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The model is solved in steady state. While few fully analytical results are

readily attainable, the model delineates the trade-offs leading to the opti-

mal finite Rolodex. Clients adding additional dealers increase their speed of

execution and enhances their bargaining position at the cost of less repeat

business. On the bid side, the client sells the asset faster but may get less

for it. When repeat business is important, the client chooses a single dealer.

When repeat business is unimportant, the client uses all possible dealers.

The model provides an interesting set of comparative statics results.

Clients’ trading intensity η affects the optimal Rolodex size. Higher η in-

creases repeated business with each dealer. Similar to Duffie et al. (2005)

dealers then offer better prices. Higher trading intensity reduces the rate at

which repeat business by each dealer falls when another dealer is added. In

contrast, the benefits of speed are independent of trading intensity. There-

fore, clients with higher trading intensity choose larger Rolodexes and re-

ceive better prices.

Both the size of the Rolodex and transaction prices are endogenous in

our model. Existing OTC models provide predictions about network size or

prices, but not both. Random search models assume investors may contact

every other counterparty. Other models allow investors to choose specific

networks or markets, but exogenously fix the the structure of those net-

works. For instance, in Vayanos and Wang (2007) investors chose to search

for a counterparty between two markets for the same asset: a large market

with faster execution but higher transaction costs, and a small market with

slower execution but lower transaction costs. Neklyudov and Sambalaibat

(2016) use a similar setup as in Vayanos and Wang (2007) but with investors

choosing between dealers with either large or small dealer networks instead

of asset markets.

The key qualitative pricing implications from our model are supported

by the data. First, larger insurers trade more and have larger networks than
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smaller insurers. Second, larger insurers receive better prices due to more

valuable repeat business. Third, these two effects combine to predict that

clients with larger networks receive better prices. All these relations are

present in the data.

We go beyond the qualitative predictions to see if the model can quanti-

tatively match the insurers’ observed Rolodex sizes and transaction prices.

Doing so requires structural estimation of the model parameters not directly

observable in the data, Θ. The clients’ trading intensity, η, is the one param-

eter for which we observe the cross-sectional distribution, p(η), in the data.

Insurer n’s trading shock intensity ηn can be estimated by the average num-

ber of bond purchases per year over the sample period. Utilizing multiple

years of trade data, we perform the estimation separately for each insurer in

the sample, which enables us to construct p(η). The model in-turn provides

the optimal Rolodex size, N∗(Θ, ηn), for client n, thus allowing us estimate

the unobservable model parameters Θ by matching the model-implied N∗

to its empirical counterpart. Using the structurally estimated parameters

along with the distribution of trading intensities quantitatively reproduces

the distribution of Rolodex sizes observed in the data and the dependence

of trading costs on Rolodex size found in the data. The model estimates

reasonable unobserved parameters, e.g, dealers’ search period is between

one and a half and three days and insurers’ average holding period ranges

from a few weeks to a month.

The paper complements the empirical literature on the microstructure of

OTC markets and its implications for trading, price formation, and liquidity.

Edwards, et al. (2005), Bessembinder et al. (2006), Harris and Piwowar

(2007), Green et al. (2007) document the magnitude and determinants of

transaction costs for investors in OTC markets. Our paper deepens our

understanding of OTC trading costs by using the identities of all insurers

along with their trading networks and execution costs. These help explain
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the substantial heterogeneity in execution costs observed in these studies.

O’Hara et al. (2015) and Harris (2015) examine best execution in OTC

markets without formally studying investors’ optimal network choice.

There exists an empirical literature on the value of relationships in fi-

nancial markets. Similar to our findings, Bernhardt et al. (2004) show that

on the London Stock Exchange broker-dealers offer greater price improve-

ments to more regular customers. Bernhardt et al. (2004) do not examine

the client-dealer networks and in the centralized exchange quoted prices are

observable. Afonso et al. (2013) study the overnight interbank lending OTC

market and find that a majority of banks in the interbank market form

long-term, stable and concentrated lending relationships. These have a sig-

nificant impact on how liquidity shocks are transmitted across the market.

Afonso et al. (2013) do not formally model the network and do not observe

transaction prices. DiMaggio et al. (2015) study inter-dealer relationships

on the OTC market for corporate bonds while our paper focuses on the

client-dealer relations.

The role of the inter-dealer market in price formation and liquidity pro-

vision are the focus in Hollifield et al. (2015) and Li and Schürhoff (2015).

These studies explore the heterogeneity across dealers in their network cen-

trality and how they provide liquidity and what prices they charge. By con-

trast, we focus on the heterogeneity across clients and how trading needs

affect their relationships and the execution terms they receive.

The search-and-matching literature is vast. Duffie et al. (2005, 2007) pro-

vide a prominent treatment of search frictions in OTC financial markets,

while Weill (2007), Lagos and Rocheteau (2007, 2009), Feldhütter (2011),

Neklyudov (2014), Hugonnier et al. (2015), Üslü (2015) generalize the eco-

nomic setting. These papers do not focus on repeat relations and do not

provide incentives to investors to have a finite size Rolodex.

Directed search models allow for heterogenous dealers and investors, as
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well as arbitrary trade quantities. These rely on a concept of competi-

tive search equilibrium proposed by Moen (1997) for labor market. Promi-

nent examples include Guerrieri, Shimer, and Wright (2010), Guerrieri and

Shimer (2014), and Lester et al. (2015). These papers explain assortative

matching between clients and dealers and show how heterogeneity affects

prices and liquidity. However the matching technology employed by these

papers is one-to-one, thus limiting the Rolodex size to a single dealer.

Our paper also relates to a growing literature studying trading in a net-

work, e.g., Gale and Kariv (2007), Gofman (2011), Condorelli and Galeotti

(2012), Colliard and Demange (2014), Glode and Opp (2014), Chang and

Zhang (2015), Atkeson et al. (2015), Babus (2016), Babus and Hu (2016),

and Babus and Kondor (2016). These papers allow persistent one-to-one

dealer-client relationships, while the main focus of our model is on client

networks.

1. DATA

Insurance companies are required quarterly to report trades of long-term

bonds and stocks to the National Association of Insurance Commissioners

(NAIC). For each trade the NAIC data include the dollar amount of trans-

actions, par value of the transaction, insurer code, date of the transaction,

the counterparty dealer name, and the direction of the trade for both par-

ties, e.g., whether the trade was an insurance company buying from a dealer

or an insurance company selling to a dealer. The NAIC trades preclude in-

traday analysis as the trades do not include time stamps of the trades. To

focus on secondary trading for we only include trades more than 60 days

after issuance and trades more than 90 days to maturity.

Our final sample covers all corporate bond transactions between insur-

ance companies and dealers reported in NAIC from January 2001 to June

2014. We supplement the NAIC data with a number of additional sources.
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Bond and issuer characteristics come from the Mergent Fixed Income Secu-

rity Database (FISD). Insurer holdings and bond ratings come from Lipper

eMAXX data. Insurer financial characteristics come from A.M. Best and

SNL Financial. The final sample contains 506 thousand insurer buys and

497 thousand insurer sells.

Table I reports descriptive statistics for the corporate bond trades (Panel

A) and insurers (Panel B) in our sample that ranges from January 2001

to June 2014. There are 4,324 insurance companies in our sample. Insur-

ance companies fall into three groups based on their products: (i) Health,

617 companies (14% of the sample); (ii) Life, 1,023 companies (24% of the

sample); (iii) P&C 2,684 companies (62% of the sample). Health insurance

companies account for 16.6% of trades and 4.7% of trading volume. They

trade on average with 17 dealers. Life insurance companies account for the

majority 46% of trades and 69.5% of the total trading volume. They trade

on average with 19 dealers. P&C insurance companies comprise 37.4% of

trades and 25.8% of trading volume. They trade on average with 14 dealers.

The distribution of trading activity is skewed with the top ten insurance

companies accounting for 6.9% of trades and 15.7% of trading volume. They

use on average almost 30 dealers which is much higher than the sample

average of 5.83 dealers per insurer. The top 100 insurers account for almost

half of trades (46.3%) as well as for 32.8% of trading volume. The 3,000

smallest insurers use on average 3.76 dealers.

Insurers trade in a variety of corporate bonds. The average issue size is

quite large at $917 million and it is similar across insurer’s buys and sells.

The average maturity is nine years for insurer buys and eight years for

insurer sells. Bonds are on average 2.88 years old with sold bonds being

a little older at 3.09 years. Finally, 75% of all bonds are investment grade

while only 1% of bonds are unrated with the remainder being high yield.

Privately placed bonds form a small minority of our sample at 8%.
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TABLE I

Descriptive statistics

The table reports descriptive statistics for trades (Panel A) and insurers (Panel B) in

our sample from 2001 to 2014. Panel A reports the average across all trades over the

sample period. Panel B reports the yearly average across insurers.

Panel A: Trades

All trades Insurer buys Insurer sells

No. of trades (k) 1,003 506 497

Trade par size ($mn) 1.80 1.73 1.87

Bond issue size ($mn) 916.66 921.37 911.87

Bond age (years) 2.88 2.67 3.09

Bond remaining life (years) 8.54 8.94 8.13

Private placement (%/100) 0.08 0.08 0.07

Rating (%/100)

IG 0.74 0.76 0.72

HY 0.25 0.23 0.28

Unrated 0.01 0.01 0.01

Panel B: Insurers (N= 4,324)

Volume ($mn) No. of trades No. of dealers

All insurers 17.32 9.52 5.83

Insurer type

Health (617, 14%) 10.66 21.74 6.59

Life (1,023, 24%) 103.00 37.71 8.06

P&C (2,684, 62%) 14.08 11.29 4.81

Insurer activity

Top 10 2,111.88 517.92 29.89

11-100 509.49 233.04 22.07

101-1000 75.66 46.22 11.56

1001+ 3.80 4.24 3.76

Insurer characteristics: Mean (SD)

Insurer size 4.97 (0.90)

Insurer RBC ratio 3.36 (0.35)

Insurer cash-to-assets 3.49 (10.79)

Life insurer 0.24 (0.42)

P&C insurer 0.62 (0.48)

Insurer rated A-B 0.37 (0.38)

Insurer rated C-F 0.01 (0.07)

Insurer unrated 0.53 (0.39)
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The RBC ratio measures an insurer’s capital relative to the riskiness of

its business. The higher the RBC ratio, the better capitalized the firm.

Insurer size is reported assets. The cash-to-asset ratio is cash flow from the

insurance business operations divided by assets.

Overall, there exists a large degree of heterogeneity on the client side in

our sample. Insurance companies buy and sell large quantities of different

corporate bonds and execute these transactions with the number of dealers

ranging on average from one to as many as 80.

2. EMPIRICAL RESULTS ON INSURER TRADING NETWORKS

This section empirically characterizes insurers’ trading needs and the size

of their trading networks.

2.1. Insurer trading activity

We investigate the determinants of both the extensive margin, i.e., the

number of trades, and intensive margin, i.e., the total dollar volume traded,

of the insurer trading in a given month and, where applicable, in a given

year. Both margins reveal that insurers have heterogenous trading needs.

We start with univariate analysis. The majority of insurers do not trade

often at the annual frequency about 30% of insurers trade just once per year

while 1% of the insurers make 25 trades per year. This is consistent with

the evidence from Table I that while the top 100 insurers constitute just

2.31% of the total sample, they account for as much as 33% of all trades in

our sample. The mean number of trades per year is 16, with a median of

14, with several insurers making more than 1,000 trades in some years and

up to the maximum of 2,200 trades in a year.

Figure 2 shows the distribution in the average number trades per year

across insurers. A large fraction of insurers do not trade in a given month and

we therefore report an annual figure. The annual distributions follow a power
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Figure 2.— Insurer trading activity

The figure shows the distribution in the number of insurer buys per year (left) and

insurer sales (right). We use a log-log scale.

law with p(X) ∝ .27×X−1.21 for all insurer trades combined. The power law

is .34×X−1.31 for insurer buys (depicted in Panel A) and .40×X−1.58 insurer

sales (Panel B). Visually the two power law distributions for insurer buys

and sales in Figure 2 look remarkably similar. This suggests insurers buy

and sell at similar rates, even though these rates vary significantly across

insurers.

We next examine what characteristics explain the heterogeneity in trading

needs. Table II documents the determinants of the intensive margins (trad-

ing volume in $bn, column (1)) and extensive margins (number of trades in

a month, column (2)) of the annual trading by insurance companies using

pooled regressions with time fixed effects. The specification consists of the

trade par size, insurer and bond characteristics, as well as the variation in

the trade size and bond characteristics across all trades of the insurer during

a given month. Insurer’s characteristics include its size, cash-to-assets ratio,

type, risk-based capital (RBC) ratio, and rating. Bond characteristics in-

clude most of the usual suspects such as size, age, maturity, rating, a private

placement dummy, and the trade size. All variables are log-transformed and

all regressors are averaged across all trades of the insurer during the period
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and lagged by one time period.

Logarithms of both measures of trade intensity are persistent; the coef-

ficient on the lagged log-volume is 0.67 and the coefficient on the lagged

log-number-of-trades is 0.76. Both coefficients are statistically significant at

1% levels. This evidence is consistent with insurance companies rebalancing

their holdings over several months.

Insurer trading strongly correlates with insurer size, type, and quality,

with bond types and bond varieties and these variables explain 79% of the

variation in annual trading volume and 65% variation in annual number of

trades. A ten-fold increase in insurer’s size increases trading volume by $2.2

billion. Larger insurance companies and insurers with higher cash-to-assets

ratio also trade more often and submit larger orders. Insurers with higher

RBC ratios trade less often insurers with low RBC ratios. Both margins

of trading increase with the insurer’s rating, i.e., insurers with the lowest

rating (C-F) trade less than higher-rated insurers. Life insurers tend to

submit larger orders.

Both margins of bond turnover increase as bond ratings decline; lower

rated bonds are traded more often and in larger quantities. Insurers tend

to trade privately placed bonds less since potentially they just own fewer

of them than publicly placed bonds. Both margins of bond turnover decline

with par size and bond age indicating that the majority of insurers are long-

term investors demanding specifically structured cash flows from their bond

holdings. Both measures of trade intensity do not depend on bond issue size

and remaining life as their coefficients are not statistically significant.

Finally, both trading volume and number of trades decline if overall more

bond varieties are traded, i.e., trading is concentrated around few bonds

with similar characteristics. However, a specific variety can have an oppo-

site effect on the trading intensity. For instance, both measures of trading

intensity increase with variation in bond rating and bond life. Once again
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this finding is consistent with insurers increasing trading intensity when re-

balancing their portfolios, i.e. shifting from high-yield to lower yield bond

or from younger to older bonds.

Overall, these analysis highlight large heterogeneity in trading needs across

different insurers. Trading needs depend on the variety of bonds in the or-

der, bond specific characteristics, and on the insurer type and quality. We

now turn to how these characteristics affect the insurers choice of network.

2.2. Properties of insurer networks

The previous section’s results demonstrate that insurer characteristics ex-

plain the intensity of their trading. There is large degree of heterogeneity in

the insurers’ trading intensity with some insurers trading on average twice

per day while others trade just once per year. This suggests that insurers

may have similarly heterogeneous demands for their dealer network. This

section studies how many dealers they trade with over time and how persis-

tent are these networks. These results describe the basic network formation

mechanism in the OTC markets.

We start with the examples of the insurer-dealer relationship depicted in

Figure 1. These show that insurers do not trade with a dealer randomly

picked from a large pool of corporate bonds dealers. Instead, these insurers

buy from the same dealers that they sell bonds to and they engage in long-

term repeat, but non-exclusive, relations. We analyze how representative

are the examples in Figure 1 and how insurer characteristics determine

their network size.

Figure 3 plots the degree distribution across insurers by year, i.e., the

fraction of insurers trading on average across all years with the given num-

ber of dealers, using a log-log scale. The figure shows insurers trade with

up to 40 dealers every year; a few observation are higher than 40, going up

to 80, but they represent less than 1/10,000 of the sample. Exclusive rela-
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TABLE II

Insurers’ trading activity
The determinants of insurance company trading activity are reported. We measure

trading activity by the total dollar volume traded in a given year and, alternatively, by

the number of trades over the same time horizon. All dependent variables are

log-transformed by 100*log(1+x). All regressors are averaged across all trades of the

insurer during the period and lagged by one time period. Estimates are from pooled

regressions with time fixed effects. Standard errors are adjusted for heteroskedasticity

and clustering at the insurer and time level. Significance levels are indicated by *

(10%), ** (5%), *** (1%).

(1) (2)

Determinant Volume ($mn) No. of trades

Insurer size 21.95*** 14.51***

Insurer RBC ratio -1.53 -4.68***

Insurer cash-to-assets 0.27*** 0.26***

Life insurer 4.96*** 0.27

P&C insurer -1.06 -3.89**

Insurer rated A-B 5.13** 5.80***

Insurer rated C-F 1.97 -0.43

Insurer unrated 6.39*** 5.79**

Trade par size -3.62*** -3.22***

Bond issue size -0.00 0.00

Bond age -0.79*** -1.25***

Bond remaining life -0.04 -0.05

Bond high-yield rated 4.62*** 4.65***

Bond unrated -6.67 -12.81*

Bond privately placed -5.37 -3.56

Variation in trade size 4.50*** 1.52***

Variation in issue size 0.00 0.00

Variation in bond age 0.37 0.39

Variation in bond life 0.52*** 0.65***

Variation in bond rating -0.35 0.04

Variation in rated-unrated 39.60* 6.16

Variation in private-public 1.62 -1.60

No varieties traded 9.23*** 13.64***

Lagged volume 0.67***

Lagged no. of trades 0.76***

Year fixed effects Yes Yes

r2 0.789 0.646

N 30,029 30,029
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Figure 3.— Size of insurer-dealer trading networks

The figure shows the degree distribution for insurer-dealer relations by year for insurer

buys (left) and insurer sales (right). We use a log-log scale.

tions are dominant with almost 30% of insurers trading with a single dealer

in a given year. The degree distributions in Figure 3 follows a power law

with exponential tail starting at about 10 dealers. This is consistent with

insurers building Rolodexes that they searching randomly within. Fitting

the degree distribution to a Gamma distribution by regressing the log of

the probabilities of each N on a constant, the logarithm of N , and N yields

the following coefficients:

For all insurer trades combined: p(N) ∝ N .15e−.20N ,

For insurer buys: p(N) ∝ N−.12e−.22N ,(1)

For insurer sales: p(N) ∝ N .01e−.24N .

Table III reports the determinants of insurer dealer networks sizes using

pooled regressions with time fixed effects. We measure the size of the trading

network by the number of dealers that an insurance company trades with in

a given month. We log-transform all dependent variables by 100∗ log(1 +x)

and average all regressors across all trades by the same insurer during the

sample period and lag them by one time period. We perform the estimation

on the whole sample (Column (1)) and, in order to control for the insurer’s
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TABLE III

Size of insurers’ trading network
The table reports the determinants of the size of insurers’ trading network. We measure

the size of the trading network by the number of different dealers that an insurance

company trades with in a given month. See caption of Table II for additional details.

Standard errors are adjusted for heteroskedasticity and clustering at the insurer and

time level.

(1) (2) (3)

Determinant All insurers Small insurers Large insurers

Insurer size 9.95*** 7.93*** 5.04***

Insurer RBC ratio -3.58*** -3.64*** 0.11

Insurer cash-to-assets 0.15*** 0.15*** 0.11**

Life insurer -0.13 0.75 -2.77**

P&C insurer -2.60*** -1.20 -3.59***

Insurer rated A-B 4.12*** 6.00*** 0.13

Insurer rated C-F -1.54 -0.18 -5.42***

Insurer unrated 3.05* 3.98* -2.86**

Trade par size -1.92*** -1.23*** -1.24***

Bond issue size -0.00 -0.00 0.00

Bond age -0.91*** -0.77*** -1.10***

Bond remaining life -0.08 -0.11* 0.10

Bond high-yield rated 1.23 -2.93* 2.56

Bond unrated -13.74*** -12.50*** -7.73

Bond privately placed -3.85 1.10 -10.22

Variation in trade size 0.51 -0.10 0.81*

Variation in issue size 0.00 0.00 0.00

Variation in bond age 0.50** 0.56** 0.16

Variation in bond life 0.50*** 0.41*** 0.11

Variation in bond rating 0.05 0.19 0.36*

Variation in rated-unrated 3.60 -11.38 -24.50

Variation in private-public 1.20 -4.33 3.17

No varieties traded 5.88*** 2.71*** 12.50**

Lagged no. of dealers 0.75*** 0.62*** 0.75***

Year fixed effects Yes Yes Yes

r2 0.614 0.350 0.593

N 30,029 18,033 11,996
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TABLE IV

Persistence in insurers’ trading network

Switching probabilities p(No. of dealers in t+ 1|No. of dealers in t) for using a network

size conditional on the insurer’s past behavior for each year.

No. of dealers next year

No. of dealers this year 1 2-5 6-10 >10

1 0.61 0.30 0.06 0.03

2-5 0.20 0.54 0.20 0.06

6-10 0.06 0.31 0.40 0.24

>10 0.01 0.07 0.17 0.75

size, on sub-samples of small and large insurers based on asset size. We

classify an insurer as small if it falls in the bottom three size quartiles and,

respectively, as large if it falls in the top quartile of the size distribution.

Column (1) indicates that insurer size and type, bond characteristics, and

bond varieties matter for the size of the dealer network. Large insurers with

more trading needs have more dealers. Insurers with demand for larger bond

variety have larger networks even controlling for their size (column (2) and

(3)). Higher quality insurers, i.e., insurers with higher cash-to-assets ratio

or higher ratings, have larger networks but it matters exclusively for smaller

insurers as column (2) indicates. It is potentially due to the fact that it is

easier for higher quality insurers to find a dealer through referrals and it is

cheaper for a dealer to set up a credit account for higher quality insurers.

These factors matter more for small insurers since they face larger adverse

selection problems in forming permanent links with dealers. Insurer with

greater variety in the bond they trade have larger netwokrs. Overall these

findings suggest insurers’ network choice is endogenous and dependent on

multiple factors. Competition and specialization jointly determine investors’

trade choices.

Table III show persistence in the size of the network with the coefficient

on the lagged network size is 0.75 (column (1)). This result is mostly due
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to large insurers, since this coefficient is equal only to 0.62 for small insur-

ers. Table IV examines this in more detail by reporting statistics for the

frequency with which insurers adjust their network size. We compute the

likelihood that an insurer uses a certain number of dealers in a given and

year and compare it the corresponding number in the next year. The transi-

tion probabilities are reported in Table IV. Trading relations are persistent

from year to year. This is especially true for exclusive relations as the prob-

ability of staying with a single dealer each month and year is equal to 0.61.

Insurers with more than one dealer are very unlikely to switch to a single

dealer as monthly switching probabilities are equal to 0.20 for insurers with

2 to 5 dealers and 0.06 for insurers with 6 to 10 dealers. Insurers with the

largest networks (> 10 dealers) tend to maintain large networks over time,

with the probability of staying with a large network being 0.75. The distri-

bution of insurers shown in Figure 3 together with the stable network sizes

are difficult to reconcile with a “pure” random search model à la Duffie et

al. (2005, 2007).

The next section uses this evidence to motivate a Rolodex model of the

OTC markets. The model is stylized as our goal is a parsimonious model

capable of producing the empirical facts thus far as well as delivering further

predictions.

3. MODEL

Existing OTC models generate results about network size or prices, but

not both. In random search models investors do not limit the number of

counterparties they contact. Directed search models in labor and other ar-

eas contain richer pricing rules and endogenous quantities, but have one-

to-one matching. An intermediate approach is to allow investors to choose

specific networks or markets, but exogenously fix the the structure of those

networks. Our model retains many of the features of financial OTC mar-
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ket models while incorporating a simple mechanism for endogenous one-

to-many matching. The simplicity of matching is facilitated by assuming

dealers are symmetric and a reduced-form source of prices and supply and

demand in an interdealer network.

We consider a setting where clients transact with dealers in an OTC

market. Dealers transact with each other in an inter-dealer market with

exogenous bid and ask prices. Due to search and bargaining clients receive

inferior prices relative to dealers’ acquisition/liquidation cost. Clients opti-

mally form a finite-size dealer network, or Rolodex, by trading off increased

search intensity against bargaining costs and variable costs of maintaining

a larger active dealer network. Dealers participating in such networks an-

ticipate repeated business from the same clients. As in Duffie et al. (2005)

we abstract from in-depth modeling of traded asset’s fundamentals to focus

on the value generated by the client-dealer relations.

3.1. Setup and Solution

The economy has a single risk-free perpetual bond paying a coupon flow

C. The risk-free discount rate is constant and equal to r, so that the present

value of the bond is C
r

. To model client-dealer interactions, we keep several

attractive features of Duffie et al. (2005) type models such as liquidity sup-

ply/demand shocks on the client side and random search with constant

intensity. Following Lester et al. (2015), the bond trades on a competitive

market accessible only to dealers. Unlike the frictionless inter-dealer market

in Lester et. al. (2015), in our model dealers face search frictions as in Duffie

et al. (2005). Dealers buy bonds at an exogenously given price Mask from

other dealers and sell it to other dealers at an exogenously given price M bid.

A bid-ask spread Mask −M bid ≥ 0 reflects trading costs or cost of carry.

Each client chooses a network of dealers, N , without knowledge of other

clients’ decisions. When a client wants to buy/sell a bond, she simulta-
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neously contacts all N dealers in her network. Upon being contacted each

dealer starts searching the competitive dealer market for a seller/buyer with

a search intensity λ.2 All dealers in the client’s network search independently

of each other. Therefore, the effective rate at which a client with N dealers

in her Rolodex finds a counterparty equals Λ = λN . When the client re-

ceives a subsequent trading shock all dealers in the Rolodex are contacted

to reverse the initial transaction.

Each client pays a cost K per dealer per transaction, treated as a sunk

cost.3 Because client-dealer contacts are simultaneous across all dealers in

the Rolodex, the cost K are any cost of a clients contacting more dealers.

These consist of both the time required to make each phone call and any

fixed costs required to hire more in-house traders. Clients’ search mechanism

can be viewed as a winner-takes-all race with a cost per invitation K paid

by the client with the dealer first to find the bond winning the race. The

prize is the spread P b −Mask when the clients buys and M bid − P s when

the clients sells, where P b (P s) is the price at which the client buys (sells)

the bond from (to) the dealer.

Clients transition through ownership and non-ownership based on liquid-

ity shocks. At these transitions clients act as buyers and sellers. The dis-

counted transition probabilities and transaction prices link their valuations

across the owner, non-owner, buyer, and seller states.

A client starting as a non-owner with valuation V no is hit by stochastic

trading shocks to buy with intensity η. The client contacts her network of

2Bessembinder et al. (2016) show that corporate bond dealers increasingly hold less

inventory and facilitate trade via effectively acting as brokers by simultaneously buying

and selling the same quantity of the same bond.
3The costs of additional dealers can be modeled as per dealer or per dealer per transac-

tion. Per dealer costs consist of costs of forming a credit relationship and any other costs

of maintaining the relationship independent of the number of trades. Such per dealer

costs will immediately lead to clients with larger trading needs using more dealers.
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N dealers leading to her transitioning to a buyer state with valuation V b.

In steady state valuations in these two states are related by

(2) V no = V b η

r + η
.

The buyer purchases the bond from her network at the expected price E[P b]

and transitions into being an owner with valuation V o. In steady state

valuations in these two states are related by

(3) V b = (V o − E[P b]−K)
Λ

r + Λ
.

While clients are owners they they receive a coupon flow C and have valu-

ation V o. Non-owners do not receive the coupon flow. With intensity κ an

owner receives liquidity shock forcing her to become a seller with valuation

V s. In steady state valuations in these two states are related by

(4) V o =
C

r + κ
+ V s κ

r + κ︸ ︷︷ ︸
Value From Future Sale

,

where the second term captures the value from future sales. The liquidity

shock received by the owner reduces the value of the coupon to C(1 − L)

until she sells the bond. After receiving the liquidity shock she contacts

her dealer network expecting to sell the bond for E[P s]. Upon selling she

becomes a non-owner, completing the valuation cycle. Valuations V s and

V no are related by

(5) V s =
C(1− L)

r + Λ
+ (E[P s] + V no −K)

Λ

r + Λ
,

This sequence of events continues in perpetuity and, therefore, we focus on

the steady state of the model.

The above valuations equations depend upon the expected transaction

prices. The realized transaction prices are determined by bilateral Nash

bargaining. The clients reservation values are determined by the differences
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in values between being an owner and non-owner and a buyer and seller.

Similarly, the dealers reservation values arise from their transaction cycle.

Each dealer acts competitively, i.e., without taking into account the effect

of her actions on the actions of other dealers. When a client contacts her

dealer network each dealer simultaneously starts looking for the bond at

rate λ and expects to pay the inter-dealer ask price Mask for the bond. The

value to the dealer searching for the bond is

U b =
1

1 + rdt
[λdt(P b −Mask) + ΛdtU o + (1− Λdt)U b](6)

= (P b −Mask)
λ

r + Λ︸ ︷︷ ︸
Transaction Profit/Loss

+ U o Λ

r + Λ︸ ︷︷ ︸
Value of Future Business

.

The last term in the expression for U b captures the expected value of the

future business with the same client which happens with frequency Λ. This

client, who is now the owner of the bond, becomes a seller with intensity κ

and contacts dealers in her Rolodex to sell the bond. This generates a value

U o = U s κ
r+κ

per dealer, where U s represents the valuation of the dealer

searching to sell the bond. The dealer expects to resell the bond at rate λ

for the inter-dealer bid price M bid and earn the realized spread, M bid − P s.

She also anticipates that with frequency Λ the same client will approach her

in the future to buy back the bond. Future business from the same client

generates Uno = U b η
r+η

in value to the dealer, thus leading to the following

expression for U s:

(7) U s = (M bid − P s)
λ

r + Λ︸ ︷︷ ︸
Transaction Profit/Loss

+ Uno Λ

r + Λ︸ ︷︷ ︸
Value of Future Business

.

Valuations Uno and U o lead to price improvement for repeat business.

As in most OTC models, prices are set by Nash bargaining resulting in:

P b = (V o − V b)w + (Mask − U o)(1− w),(8)

P s = (V s − V no)w + (M bid + Uno)(1− w).(9)

Prices are the bargaining-power (w) weighted average of the reservation
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values of the client and dealer. The above equations assume that the dealer

loses all future business from the client if the bilateral negotiations fail.

Upon dropping a dealer the client maintains her optimal network size by

forming a new link with another randomly picked identical dealer. Thus, by

agreeing rather than not, the dealer receives U o. As a consequence, dealers

face intertemporal competition for future clients. This is a novel assumption

missing from the existing models of OTC markets.

Bargaining power could differ for buys and sells. For ease of exposition,

we equate them here. In the subsequent structural estimation we allow for

different bargaining powers when the insurer is looking to buy a bond,

wb, and when the insurer is selling a bond, ws. The valuations and prices

provide ten equations and ten unknowns. Proposition 1 provides the closed

form solutions for prices.

PROPOSITION 1: Bid and ask prices are

P b =

[
C(1− L)

Λ
Ψ1 +

C

r + κ
Ψ2 +KΠ1(κ, η)

]
w(10)

+

[
MaskΠ2 +M bidΠ3

κ

r + κ

]
(1− w),

P s =

[
C(1− L)

Λ
Ψ3 −

C

r + κ
Ψ4 −KΠ1(η, κ)

]
w(11)

+

[
M bidΠ2 +MaskΠ3

η

r + η

]
(1− w).

where the coefficients Ψ1, Ψ2, Ψ3, Ψ4, Π1(x, y), Π2, and Π3 are given in

the Appendix.

Proof: See Appendix.

Expressions (10) and (11) are nonlinear functions of the model prim-

itives and N , which makes the analytical analysis impossible. However,

we can verify that prices are well-behaved functions of the Rolodex size,

N , in the large network limit, N → ∞. N → ∞ implies Λ
r+Λ
→ 1 and

clients’ search friction in terms of time is zero. Dealers’ valuations, in this

case are denoted with subscript N → ∞, satisfy the system of equations
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U b
N→∞ = U s

N→∞
κ
r+κ

and U s
N→∞ = U b

N→∞
η
r+η

. These only have a trivial so-

lution U s
N→∞ = U b

N→∞ = 0, implying that dealers compete away all rents

from future relations with clients. Clients have valuations V o
N→∞−V b

N→∞ =

P b
N→∞+K and V s

N→∞−V no
N→∞ = P s

N→∞−K yielding the following expres-

sions for transaction prices:

P b
N→∞ = Mask +

w

1− w
K,(12)

P s
N→∞ = M bid − w

1− w
K.(13)

Dealers receive no relationship-based rents, but they charge clients a spread

w
1−w2K per roundtrip transaction over the inter-dealer spread. The coeffi-

cient w
1−w indicates that the non-zero bargaining power enables dealers to

extract some value from a client. This is because every dealer charges the

same price thus making clients’ threat of ending the relationship and form-

ing a new link not credible (Diamond’s (1971) paradox). Equations (12) and

(13) illustrate the importance of making K > 0 in the model. If K is equal

to zero a client can choose an infinitely large network. This increases dealer

competition such that the client trades at the inter-dealer prices, effectively

becoming a dealer herself. Therefore, the finite network is never optimal if

K is equal to zero.

Overall, dealers’ surplus comes from both the immediate value of trade

(the spread) and the value of future transactions. As the probability of

transacting with the same client in the future declines with the size of the

client’s network, dealers charge higher spreads. Therefore, we postulate that

there exists a set of model parameters for which the transaction prices are

monotonic functions of N and dP b

dN
> 0 and dP s

dN
< 0. This result is similar

to findings by Vayanos and Wang (2007) where an asset with more buyers

and sellers has lower search times and trades at a worse prices relative

to its identical-payoff counterpart with fewer buyers and sellers. However,

Vayanos and Wang (2007) do not model client-dealer repeated interactions.

We verify that the model can yield a finite Rolodex by considering a
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limiting case of a very large search intensity, λ → ∞. In this case a single

dealer can instantaneously find the bond and the optimal size of the Rolodex

is one. Taking this limit in equations (3)–(7) yields (V o−V b)λ→∞ = P b
λ→∞+

K, (V s − V no)λ→∞ = P s
λ→∞ −K and, hence,

Uno
λ→∞ =

1

N

η
r+η

1− κ
r+κ

η
r+η

[
P b
λ→∞ −Mask +

η

r + η
(M bid − P s

λ→∞)

]
,(14)

U o
λ→∞ =

1

N

κ
r+κ

1− κ
r+κ

η
r+η

[
M bid − P s

λ→∞ +
κ

r + κ
(P b

λ→∞ −Mask)

]
.

Solving for transaction prices from (8-9) we immediately obtain

P b
λ→∞ = Mask +

w

1− w
K − U o

λ→∞,(15)

P s
λ→∞ = M bid − w

1− w
K + Uno

λ→∞.

Expressions (15) further confirm that U o
λ→∞ and Uno

λ→∞ represent the re-

peat relation buy discount and sell premium, respectively. Equation (14)

shows that both U o
λ→∞ and Uno

λ→∞ are strictly decreasing with the size of

the Rolodex, N . Therefore, the client optimally chooses a single dealer.

In order to find the optimal Rolodex size N∗ in general case, we maximize

the valuation of the “first-time” owner, i.e., the client buying the asset, V b.

This is because the client has to take possession of the asset in the first

place. Proposition 2 shows that, for a given client type described by the

model primitives {L,K,w, κ, λ, η}, there may exist an optimal network size

N∗ = N(L,K,w, κ, λ, η).

PROPOSITION 2: The optimal size of the insurer’s dealer network N∗ is

given by the following condition

(16)
(λN∗)2

1 + κ
r+κ

η
r+η

( λN∗

r+λN∗ )2

[(
C(1− L)

r
− P s +K

)
κ

r + κ

r

(r + λN∗)2

+
dP b

dΛ
− dP s

dΛ

κ

r + κ

λN∗

r + λN∗

]
= rV b.

Proof: See Appendix.

Next we provide intuition for why the model yields finite size networks
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greater than one. Because equation (16) is nonlinear in N∗ the existence of

the solution is not guaranteed for an arbitrary parameter set {L,K,w, κ, λ, η}.
Since V b is nonnegative for all N , the term V b

N2 in the derivative dV b

dN
=

Λ
r+Λ

( V
b

N2 + dV o

dN
− dP b

dN
) is strictly decreasing with N , and using our earlier

argument that there exists a set of parameter values under which P b is a

monotonically increasing function of N , all we need for the optimum to ex-

ists, i.e., dV b

dN
= 0 for some N = N∗ > 0, is to have V o as a non-increasing

function of N . dV s

dN
|N=N∗ at the optimum,4 i.e., where dV b

dN
|N=N∗ = 0, is

(17)
dV s

dN
|N=N∗ = − C(1− L)

N∗(r + λN∗)
+

λN∗

r + λN∗
dP s

dN
|N=N∗ +

rV s

N∗(r + λN∗)
.

Therefore, as long as the following inequality holds at the optimum

(18) V s ≤ C(1− L)

r
− λ (N∗)2

r

dP s

dN
|N=N∗ ,

the derivative dV o

dN
|N=N∗ is nonpositive and the solution to (16) exists. In-

equality (18) implies that at the optimal Rolodex size the value of sales is

no greater than the value of holding the discounted asset and the present

value of all marginal sale price improvements from not increasing the size

of the network.

A finite optimal size of the Rolodex follows from several important trade-

offs. When a client adds another dealer to her Rolodex the speed of exe-

cution, measured by Λ
r+Λ

, improves. The additional dealer worsens prices

as the value of the relationship is shared by more dealers. In addition, the

transaction prices include indirect effects additional dealers have on both

client and dealer reservation values. When deciding to add another dealer

the client trades off the effects on speed and prices. More dealers lead to

faster transactions. For there to be a finite network size the transaction price

in aggregate must worsen. However, it is not necessarily the case that both

buy and sell prices worsen. The optimal size of the Rolodex is set when the

benefits from transacting with the larger number of dealers equal the costs.

4We have that dV o

dN |N=N∗ = κ
r+κ

dV s

dN |N=N∗ .
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Figure 4.— Model predictions

The figure illustrates the comparative statics with respect to the trading intensity η.

The left plot shows that the optimal “Rolodex” size N∗ increases with client’s trading

needs proxied by η. The right plot shows that clients with larger trading needs proxied

by η receive better execution as measured by the realized spread P b − P s, calculated at

the optimal N∗. The model is solved numerically using the parameters provided in the

Online Appendix.

3.2. Model predictions for execution costs

The model provides a number of comparative statics results that we can

examine in the data. While there is not client heterogeneity in the model,

clients who trade more frequently with having higher trade intensity η.

Thus, we can examine how larger trading needs impact clients’ choice of

network size and the transaction prices they receive.

We first discuss the effect of η on transaction prices while keeping the

size of the Rolodex fixed. When η = 0 the client who is currently an owner

will never be an owner again after she sells the bond. Therefore, all of

the dealers’ surplus comes from the price at which the sale occurs and not

from the repeated business. They charge high realized spread to compensate

for it. When η is large, dealers derive significant value from the repeated

business, leading to smaller realized spreads.
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HYPOTHESIS 1: Larger clients and clients with more trading needs (high η)

should get better execution than smaller clients and clients with less trading

needs (low η).

The optimal size of the Rolodex depends on the trade propensity η

through two channels. First, increasing η improves transaction prices thus

allowing the client to increase N , which, at the optimal network size, has

an opposite effect on transaction prices. The second channel is through

dV s

dN
|N=N∗ . It follows from expression (17) that dV s

dN
|N=N∗ increases with η

for a given N , as both dP s

dN
|N=N∗ and V s are increasing with η.5 Intuitively,

dealers’ repeated business improves with the increasing trading intensity

and dealers offer better execution. Clients who need to trade more due to

increasing trading intensity benefit from a larger Rolodex which improves

the speed of execution. There exist a set of parameters for which these ben-

efits dominate losses from the degrading execution quality as N increases.

Figure 4 shows that N∗ is increasing with η. The model, therefore, predicts

that larger insurers with more frequent trading needs should have larger

dealer networks, which is consistent with our empirical findings from the

previous section.

Together with Hypothesis 1 this result implies that clients with a larger

Rolodex should get better execution thus leading to our second hypothesis.

This prediction is not present in other OTC models because they lack an

endogenous network size.

HYPOTHESIS 2: Execution quality should be increasing with the size of the

client-dealer network.

Both plots in Figure 4 have a “stair-like” appearance. When we numeri-

5V s is increasing in the sales price P s which improves with larger η. V s is also pro-

portional to V no = V b η
r+η , which increases with η.
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cally solve for the optimal Rolodex size, N∗, we use a grid of integer values

for N , while the grid for η is very refined. As a result, a small change in η

leads to the same optimal value of N∗. When N∗ stays the same, the real-

ized spread monotonically decreases with η in accordance with our intuition.

However, when N∗ increases the realized spread jumps up as the negative

effect from the increase in N overwhelms the positive effect coming from the

increase in η.6 These “stairs” are smoothed out if we allow for non-integer

values for N .

To summarize, the model predicts that clients should establish permanent

links with a finite number of dealers and clients who have more trading

needs, e.g., larger clients, select larger dealer networks. Therefore, larger

clients get better prices despite choosing larger networks which result in

the loss of repeat business. In the next section we test our hypotheses for

execution costs in the NAIC data.

4. INSURER EXECUTION COSTS AND NETWORKS

Tables II and III suggest that bond characteristics impact insurers’ trad-

ing needs. If different types of insurers hold different bonds, or trade them at

different times, it is difficult to test the model’s prediction regarding trading

costs. To control for bond, time, and bond-time variation, we compare trans-

action prices to daily bond-specific Bank of America-Merrill Lynch (BAML)

bid (sell) quotes. BAML is the largest corporate bond dealer, transacting

with more than half of all insurers for almost 10% of both the trades and vol-

ume. BAML (bid) quotes can be viewed as representative quotes for insurer

sales and enable us to measure prices relative to a transparent benchmark

price. The BAML quotes essentially provide bond-time fixed effects, which

6Increasing η by a small amount dη should result by a small increase in N , dN .

However, since we use a grid of integers for N , the increase in N , when it happens, is

disproportionately large.
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would be too numerous to estimate in our sample. Our relative execution

cost measure in basis points is defined as

(19) Execution cost (bp) =
BAML Quote− Trade Price

BAML Quote
∗(1−2∗1Buy)∗104,

where 1Buy is an indicator for whether the insurer is buying or selling.

Because some quotes may be stale and lead to extreme costs estimates, we

windsorize the distribution at 1% and 99%.

Execution costs depend on the bond being traded, time, whether the

insurers buys or sells, the insurer’s characteristics, dealer identity and char-

acteristics, and the insurer network size. To examine the relationship specific

effects on execution costs we control for bond and time fixed effects. In prin-

ciple if the BAML perfectly controls for bond-time effects, the additional

bond and time fixed effects would be unnecessary.

The relationship component of transaction costs depends on the proper-

ties of the insurers’ networks. Figure 3 and equation (1) indicate that the

degree distribution for insurer-dealer relations follows a Gamma distribu-

tion. Therefore, we include both the size of the network, N , and its natural

logarithm, log(N), as explanatory variables. We control for seasonality using

time fixed effects, αt, and for unobserved heterogeneity using either bond

characteristics or bond fixed effects, αi. The other explanatory variables

consist of either insurers’ or dealers’ characteristics, or both. We estimate

the following panel regression for execution costs in bond i at time t:

(20) Execution costit = αi + αt + βN + γlnN + θXit + εit.

The set of explanatory variables X includes characteristics of the bond, as

well as features of the insurer and dealer.

Table V provides trading costs estimates from panel regressions. We ad-

just standard errors for heteroskedasticity and cluster them at the insurer,

dealer, bond, and day level. The coefficient on insurer buy captures the
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TABLE V

Execution costs and investor-dealer relations
The table reports the determinants of execution costs. Execution costs are expressed in

basis points relative to the Merrill Lynch quote at the time of the trade. Standard

errors are adjusted for heteroskedasticity and clustered at the insurer, dealer, bond, and

day level. See caption of Table II for additional details.

Determinant (1) (2) (3) (4) (5) (6)

Insurer size -4.89*** -3.72*** -3.59*** -3.52*** -3.95***

Insurer no. of dealers -0.37*** -0.22*** 0.32*** 0.32*** 0.32***

ln(Insurer no. of dealers) -6.29*** -6.51*** -6.55***

Insurer RBC ratio -3.57*** -0.67 -3.51*** -4.19*** -4.68*** -5.40***

Insurer cash-to-assets -0.04** -0.02 -0.04** -0.04** -0.04** -0.03*

Life insurer 4.66*** 3.32*** 4.43*** 4.47*** 5.73*** 7.21***

P&C insurer 2.26*** 2.10*** 1.72** 1.73** 1.99** 2.82***

Insurer rated A-B -0.51 1.71*** -0.47 0.01 -0.18 -0.50

Insurer rated C-F 11.67* 14.97** 11.29* 11.13* 10.90* 12.18*

Insurer unrated 0.93 3.88*** 0.74 0.62 0.55 0.14

Insurer buy 39.77*** 39.67*** 39.56*** 39.27*** 39.71*** 40.17***

Trade size × Buy -0.19** -0.64*** -0.26*** -0.25*** -0.20** -0.18*

Trade size × Sell 0.59*** 0.19* 0.53*** 0.50*** 0.48*** 0.52***

Bond issue size -0.00*** -0.00***

Bond age 0.58*** 0.63***

Bond remaining life 0.81*** 0.82***

Bond HY rated 4.54*** 4.16***

Bond unrated -5.96*** -6.53***

Bond privately placed 3.38*** 3.26***

Dealer size -5.37***

NYC dealer -6.66***

Primary dealer 2.43

Dealer leverage -5.68**

Dealer diversity 0.41***

Dealer dispersion 0.07

Local dealer 0.23

Dealer distance -0.20

Dealer leverage missing -6.41**

Dealer dispersion missing 6.09

Bond fixed effects (16,823) Yes Yes Yes Yes No No

Dealer fixed effects (401) Yes Yes Yes Yes Yes No

Day fixed effects (3,375) Yes Yes Yes Yes Yes Yes

r2 0.154 0.154 0.154 0.155 0.103 0.098

N 918,279 918,279 918,279 918,279 918,987 891,875
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average bid-ask of roughly 40 basis points. Consistent with hypothesis 1,

column (1) of Table V shows that large insurers pay on average lower ex-

ecution costs. An unsurer with 10 times as many assets has trading cost

4.89 basis points lower. Better capitalized insurers (higher RBC ratio) get

better prices. Column (2) of Tables V replaces insurer size with the number

of dealers in the insurer’s network. Consistent with hypothesis 2 execution

costs decline with insurer network size. An insurer with an additional dealer

has trading cost 0.37 basis point lower. Column (3) includes both insurer

size and network size and shows that conditional on network size the insurer

size still matters.

Columns (5) and (6) replace bond and dealer fixed effects with bond

and dealer characteristics. NYC-located dealers offer better prices to all

insurers and more diversified dealers charge, on average, higher prices. Bond

characteristics matter for execution costs as insurers receive worse prices for

special bonds and better prices for bonds with larger issue size. Insurers get

better prices on unrated bonds.

In summary, Table V is consistent with our model’s qualitative predic-

tion that insurers get better execution if they have larger network. We next

examine whether the model can quantitative match the distribution of in-

surer’s network sizes and execution costs.

4.1. Model estimation

Settings such as labor markets and marriages markets involve one-to-one

matching. Papers in these literatures structurally estimate their models to

examine how quantitatively well they can fit the data (for example, Poste-

Vinay and Robin (2002) for labor search and Hitsch et al. (2010) and Choo

(2015) for marriage search. We follow this approach for our one-to-many net-

work formation model. The model is solved assuming the client maximizes

her value as a buyer. It is possible to solve the model assuming the client
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maximizes her value as a sell, but to simplify exposition we structurally

estimate the model using the buying network sizes. We can then use these

estimated parameters to examine how well the model fits the distribution

of selling network sizes.

Figures 2 and 3 shows insurers heterogeneous trading needs and network

sizes. To estimate the model’s distribution of network sizes we must infer the

distribution of trading needs, ηn, n = 1, ...,N , across insurance companies

n. Section 2.1 provides the compound distribution of trading activity. If

trading shocks occur at Poisson times, the intensity ηn of the shock can be

estimated by the expected number of buy trades per year. This yields the

maximum likelihood estimator η̂n = 1
T

∑T
t=1 Xnt, where Xnt is the number of

bond purchases by insurer n in year t. To utilize the multiple years of trade

data, we perform the estimation separately for each insurer in the sample.

This yields a cross-sectional distribution of trading intensities, which we

index by p(η). Section 2.1 and Figure 2 show the distribution in the insurer

trades per year follows approximately a power law. For insurer buys, this

distribution is best described by p(η) = .34 × η−1.31. Thus, wide variation

in trading needs exists across insurers.

The remaining model parameters Θ = (L,K, κ, λ, ws, wb) are not directly

observable in the data, so they need to be estimated structurally. Section 2.2

and Figure 3 show the degree distribution of client-dealer relations follows

a mixed power-exponential law in the data. The model-generated distance

between the empirical distribution and the network sizes N∗ depends on

the parameters Θ. We estimate this by minimizing the probability-weighted

distance between the data and model:

(21)

max(N)∑
N=1

p(N)[N −N∗(Θ, η(p(N)))]2,

where p(N) is the network-size distribution in the NAIC data and N∗(Θ, η)

is the model-implied Rolodex size for the set of parameters Θ given η.
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Inverting the power law distribution for trading intensities from Panel A of

Figure 2 yields η(p) = ( p
.34

)−
1

1.31 . It then follows from equation (1) that for

insurer buys p(N) = .28e−.22NN−0.12. Therefore, by substituting p(N) into

the expression for η(p) we obtain the mapping of trading intensities into the

network sizes, η(p(N)) = ( .28
.34

)−
1

1.31 e
.22
1.31

NN
0.12
1.31 . This is the relation we use

in the expression (21).

The model also predicts how percentage trading costs, (P b−P s)/.5(P b+

P s), depend on the parameters Θ and η. The model’s optimal solution incor-

porates prices at which clients both buy and sell. Empirically, the estimated

relation between trading costs and network size is in column (4) of Table V

as c(N) = 51 + 0.32N − 6.28 lnN . The probability-weighted distance be-

tween the empirical and the model-generated trading costs c∗ depends on

the parameters Θ and is:

(22)

max(N)∑
N=1

p(N)[c(N)− c∗(Θ, η(p(N)))]2.

A minimum-distance estimator sets the model parameters to minimizes

the two distances (21) and (22); we choose equal weights. Because the opti-

mal N∗ in the model is a step function in Figure 4, the objective functions

(21) and (22) are non-smooth. To accommodate these complications we

optimize using simulated annealing with fast temperature decay and fast

reannealing.

To ensure that the estimated parameters remain in their natural domains,

i.e., positive or between zero and one, in the estimation we transform model

parameters as follows:

L = Φ(θL) ∈ (0, 1), K = eθK ≥ 0, κ = eθκ ≥ 0, λ = eθλ ≥ 0,(23)

ws = Φ(θ0
ws + θ1

wsln η) ∈ (0, 1), wb = Φ(θ0
wb + θ1

wbln η) ∈ (0, 1),

where Φ ∈ (0, 1) is the normal cdf. The propensity of insurers receiving

trading shocks overall is heterogeneous so we allow overall trading intensity

η to vary across insurers. In the model κ measures clients’ propensity to sell
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after having already bought. Because empirically the number of buys and

sells are equal and buys and sells follow a similar power law there is not

evidence of heterogeneity in κ. Therefore, we assume κ is constant across

insurers.

The evidence in Table V shows trading costs depend on insurer size even

after controlling for network size. The most straightforward way to accom-

modate this is to allow dealer bargaining power to vary across insurers. We

report the model fit under both constant and variable bargaining power by

holding wb and ws constant and allowing wb and ws to be functions of η.

Because we fit the model to the two observable outcomes of network size and

trading costs we limit the number of model parameters that vary across in-

surer by assuming L and K are constant. Because insurers can potentially

access all dealers λ is constant across insurers. Our results are robust to

alternative transformations in place of Φ and e .

We set the competitive interdealer spread to match the average execution

costs of insurers by choosing C = 1, r = .1, Mask = (1 + 0.002)(C(1−L)
r

+

C
r

)/2, and M bid = (1− 0.002)((C(1−L)
r

+ C
r

)/2.

Table VI reports the estimates for the model parameters Θ = (L,K, κ, λ,

ws, wb).7 All parameters are significantly different from zero and appear well

identified as the standard deviations of the residuals are small. Specification

2 allows bargaining power to vary across insurers and generates a substan-

tially lower minimum distance between model and empirical distribution

than specification 1.

The liquidity shock parameter L is estimated to be 89% (84%) of the flow

income from the bond in specification 1 (2), suggesting a high willingness to

pay for immediacy. The flow cost K for obtaining quotes from an additional

dealer is small, 0.4 and 2.6 basis points per bond and unit of time, respec-

7Estimates for transformed parameters θ = (θL, θK , θκ, θλ, θw) are available in Online

Appendix.
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tively. The intensity κ of the selling shock is estimated between 15 and 20,

a holding period of few weeks. Longer holding periods, smaller κ, reduces

the value of repeat relations and increases network size. Without hetero-

geneity in κ the model cannot reproduce the large fraction of insurers using

a single dealer with holding periods longer than a few weeks. The dealers’

search efficiency λ is estimated between 80 and 140. This suggests dealers

take between one and a half and three days (250/λ) to locate a bond. This

number seems realistic if not a bit large given the search frictions present

in the market.

The bargaining power of the dealers is estimated to be different between

the buy and the sell side, suggesting in both specifications that the buyer has

little bargaining power while the seller captures most of the trade surplus. In

specification 2, when we allow bargaining power to depend on the insurer’s

type, we find that larger insurers with higher trading frequency η have

higher bargaining power than small insurer with more infrequent trading.

In both specifications dealers earn significant profits on insurer buys. This

could arise from short selling constraints whereby a dealer can more easily

locate a buyer than a seller. The heterogeneity in bargaining across insurers

and across buy and sell transactions suggests richer modelling of the price

setting process may enable deeper understanding of OTC trading.

Panel B of Table VI and Figure 5 examine the models’ fit to the data

in detail. Given the network sizes follow a mixed power-exponential law,

we first visually examine how well the models’ network distribution fits its

empirical counterpart. Figure 5 shows the degree distribution for insurer-

dealer relations in the data (circles) and the interpolated power law with

exponential tail (dashed line) compared to the model-implied distribution

under the estimated parameters (solid line). The distance between the two

lines captures the model fit. The two lines are virtually on top of each other

for all values of N less than 20. The Rolodex model thus fits the distribution
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of client-dealer relation well for all insurers with small to medium-sized

networks. The model has some difficulty in matching the exponential tail

of large dealer networks perfectly as it slightly overpredicts the propensity

to see very large networks in the data. The right plot for the distribution

of selling network sizes is produced using model estimates based only on

the buying networks. The fit for the selling network is similar to the buying

networks except for the largest selling networks.

To verify more formally that the network sizes from the model cor-

relate strongly with the data, Panel B of Table VI runs the regression

N (data) = α + βN∗ (model) + ε to see if α is 0 and β equals 1. Speci-

fication 1 generates a 91% correlation with the empirical distribution, while

specification 2 matches the data very closely, as depicted in Figure 5.

Another approach to examining the models’ fit with the data is to test

how closely the model-implied probability distribution of networks sizes fits

the Gamma distribution in (1). Replicating the fitting regression, ln p(N∗) =

α+ βN∗+ γlnN∗+ ε, on the model-generated distribution of network sizes

is given in Panel B of Table VI. Specification 1 provides a 95% fit while

specification 2 has a R2 of 99%.

The next set of regression coefficients in Panel B of Table VI examines

the models fit for trading costs in a similar way to network sizes. First, we

examine if the model can generate the distribution of trading costs in the

data If the model exactly fits the data, the coefficients in the regression

Trading cost (data) = α + β Trading cost (model) + ε should be α = 0 and

β = 1. In specification 2 has a R2 = 0.91 and β is larger than one, 1.13. The

suggests that, given the approximate power law for η in the data, a single

set of parameters (L,K, κ, λ) are unlikely to be the same across all insurers.

Second, we examine if the model can reproduce the dependence of trading

costs on network size in Table V. In both specifications, the coefficients α,

β, and γ in the regression Trading cost = α + βN∗ + γlnN∗ + ε have the
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TABLE VI

Estimated model parameters

Panel A reports the estimated model parameters θ = (L,K,wi, κ, λ) with

wi = Φ(θ0wi + θ1wi ln η) for i = s, b, where Φ ∈ (0, 1) is the normal cdf. Estimates are

from the minimum-distance estimator (21) and (22). Standard errors are reported in

parenthesis and scaled by 100. Panel B reports model-implied distribution of network

sizes and execution costs at the estimated parameters. Corresponding empirical values

are reported in parenthesis.

Specification 1 Specification 2

Panel A: Implied model parameters

L 0.89 0.84

K*100 0.04 0.26

κ 15.04 19.96

λ 141.46 79.05

ws (S.D.) 0.05 (0.00) 0.16 (0.31)

wb (S.D.) 0.94 (0.00) 0.45 (0.21)

Minimum distance 588.31 38.19

S.D. residuals 2.73 0.70

S.D. residuals network 2.55 0.09

S.D. residuals prices 0.96 0.69

Panel B: Model fit

Data-model correlation in network sizes: N (data) = α+ βN∗ (model) + ε

α (0), β (1) -12.08, 2.94 0.58, 0.97

R2 0.91 0.99

Network distribution: ln p(N∗) = α+ βN∗ + γlnN∗ + ε

α (-1.27), β (-0.22), γ (-0.12) -4.34, -1.28, 5.34 -1.06, -0.20, -0.36

R2 0.95 0.99

Data-model correlation in prices: Trading cost (data) = α+ βTrading cost (model) + ε

α (0), β (1) -40.08, 1.92 -6.11, 1.13

R2 0.98 0.91

Price distribution: Trading cost = α+ βN∗ + γlnN∗ + ε

α (51), β (0.32), γ (-6.29) 47.59, 0.21, -3.56 49.65, 0.19, -4.50

R2 0.99 0.95
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Figure 5.— Model fit

The figure shows on a log-log scale the degree distribution for insurer-dealer relations in

the data compared to the model-implied distribution under the estimated parameters.

The left (right) plot is for insurers’ buys (sells). Both plots are generated under the

same set of parameters. The deviation from the 45-degree line measures model fit.

same sign as in the data in Table V. Their magnitudes are not exact. Prices

decline less steeply with N in the model than in the data.

The parameter estimates can help quantify the value of repeat client-

dealer relations. One approach to capture the impact of repeat business

on prices is to compute counterfactual bid-ask prices under the assumption

that the dealers do not give price improvement for repeat business from

the same insurer. This implies that the search and bargaining proceeds in

the same way, but that the dealers in the network are essentially re-chosen

with every trade. In this counterfactual scenario, bid and ask prices can be

calculated in the model by setting U o = Uno = 0. After determining price-

improvement-free bid and ask prices for insurers with different values of η,

we can compare them to their model-implied values with price improvement

due to repeat business. Figure 6 plots the bid-ask prices in the model under

the estimated parameters from specification 2 in Table VI for different values

of N (solid lines). Figure 6 also graphs the counterfactual bid-ask prices

(dashed lines) that would arise under the same parameters without dealer
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Figure 6.— Counterfactual analysis

The figure shows the bid-ask prices in the model under the estimated parameters (solid

line) compared to the counterfactual bid-ask spread that would arise under the

estimated parameters, if the dealers did not give price concessions for repeat business

from the insurer. In the counterfactual scenario, we determine bid and ask prices by

setting Uo = Uno = 0. The distance between the solid and the dashed lines can be

interpreted as a measure of the value of repeat relations. We use a log-linear scale.

price-improvement for repeat business. The distance between the solid and

dashed lines captures the value of repeat relations.

Figure 6 shows the impact of price improvement is significant and asym-

metric. When dealers are buying, insurers with a single dealer capture price

improvement of up to 30 basis points by committing to a singleton net-

work. The price improvement they receive is significant compared to their

average bid-ask spread of 50 basis points. Small insurers thus reduce their

trading costs from 80 to 50 basis points through order flow concentration.

By contrast, dealers give little price improvement for repeat relations when

they are selling bonds to insurers. The maximum is 5 basis points for in-

surers with medium-sized dealer network (the rebate peaks at N = 8) but

low portfolio turnover (η < 10). The key advantage of small client-dealer

networks in the data thus seems to be the provision of liquidity at low cost

for insurers selling. By contrast, prices for buying bonds are not so much
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driven by repeat business considerations.

5. CONCLUSION

Over-the-counter markets are pervasive across asset classes and often

considered poorly functioning due to lack of transparency and fragmented

trading imposing search frictions. Regulators have attempted to address

these concerns through increases in transparency and the implementation

of Dodd-Frank legislation. Competitors have entered with more centralized

markets. Changes in regulations and market structure will impact heteroge-

nous investors differently. However, there is limited theory closely linked to

empirical work to guide these decisions.

We use comprehensive regulatory corporate bond trading data for all

U.S. insurance companies to study how investors choose their size of trad-

ing networks and how this impacts prices they receive. To understand these

empirical outcomes we develop a parsimonious model for OTC trading be-

tween clients and dealers. Clients trade off the value of repeat relations

with dealers against the benefits of competition among dealers. The value

of repeat relations diminishes more slowly with the addition of dealers for

clients with larger trading needs. Therefore, these larger clients use more

dealers. Dealers provide better prices to these larger clients because their

repeat business is more valuable. Insurance company data shows that 30%

of insurers only trade with a single dealer each year. Using the structurally

estimated model parameters we find that small insurers benefit most from

repeat relations. This suggest that care is needed in regulations affecting

heterogenous investors.

The paper provides a first step in understanding how investor hetero-

geneity impacts observed patterns of trading and prices in OTC markets.

A number of other important dimensions require further study. First, what

is the impact of dealer heterogeneity on network formation and prices? Sec-
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ond, how do long-lasting client-dealer relations form and severe? Third, is

Nash bargaining a realistic price setting mechanism in OTC markets?

APPENDIX

Data Filters

TABLE VII

Data filters

Full Corp.

Filter sample bonds

1. All trades from original filings (includes all markets, all trades since 2001) 19.1 4.5

2. Remove all trades that do not involve a dealer (e.g., paydown, redemption, mature,

correction)

6.6 3.1

3. Remove duplicates, aggregate all trades of the same insurance company in the same

CUSIP on the same day with the same dealer

6.5 3.1

4. Map dealer names to SEC CRD number, drop trades without a name match, drop

trades with a dealer that trades less than 10 times in total over the sample period

6.1 2.9

5. Drop if not fixed coupon (based on eMaxx data), drop if outstanding amount infor-

mation is in neither eMaxx nor FISD

5.3 2.5

6. Drop if trade is on a holiday or weekend 5.2 2.5

7. Drop if counterparty is “various” 4.1 2.1

8. Drop trades less than 90 days to maturity or less than 60 days since issuance (i.e.,

primary market trade)

2.8 1.5

9. Merge with FISD data, keep only securities that are not exchangeable, preferred,

convertible, issued by domestic issuer, taxable muni, missing the offering date, offering

amount, or maturity, and offering amount is not less than 100K

1.0 1.0

Parts 3 and 4 of Schedule D filed with the NAIC contains purchases and

sales made during the quarter, except for the last quarter. In the last quarter

of each year, insurers file an annual report, in which all transactions during

the year are reported. Part 3 of Schedule D reports all long-term bonds and

stocks acquired during the year, but not disposed of, while Part 4 of Schedule

D reports all long-term bonds and stocks disposed of. In addition, all long-

term bonds and stocks acquired during the year and fully disposed of during

the current year are reported in the special Part 5 of Schedule D. NAIC’s

counterparty field reports names in text, which can sometimes be mistakenly



43

typed. The bank with the most variation in spelling is DEUTSCHE BANK.

We manually clean the field to account for different spellings of broker-dealer

names.

We compile the information in Parts 3, 4, and 5 of Schedule D to ob-

tain a comprehensive set of corporate bond transactions by all insurance

companies regulated by NAIC.

We apply various FISD-based data filters based on Ellul et al. (2011) to

eliminate outliers and establish a corporate bond universe with complete

data. The data filters are in Table VII which summarizes the number of ob-

servations that is affected by each step. We exclude a bond if it is exchange-

able, preferred, convertible, MTN, foreign currency denominated, puttable

or has a sinking fund. We also exclude CDEB (US Corporate Debentures)

bonds, CZ (Corporate Zero) bonds, and all government bond (including

municipal bonds) based on the reported industry group. Finally, we also

drop a bond if any of the following fields is missing: offering date, offering

amount, and maturity. We restrict our sample to bonds with the offering

amount greater than $10 million, as issues smaller than this amount are very

illiquid and hence are rarely traded. Ellul et al. (2011) have used $50,000

which we find restrictive for our purpose. We windsorize the cash-to-asset

ratio at 80 percent to remove extreme values.

Proofs

Proof of Proposition 1: Define λ̃ = λ
r+Λ

, Λ̃ = Λ
r+Λ

, η̃ = η
r+η

, and κ̃ = κ
r+κ

. We can rewrite both

the client’s and the dealer’s valuations as

V b =
C

r + κ
Λ̃− (P b + k)Λ̃ + V sκ̃Λ̃ =

Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)
r + Λ

κ̃+
C

r + κ
− (P b +K) + (P s − k)κ̃Λ̃

]
,

V s =
C(1− l)
r + Λ

+ (P s − k)Λ̃ + V bη̃Λ̃ =
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
+

C

r + κ
η̃Λ̃ + (P s −K)− (P b +K)η̃Λ̃

]
,

and

Us = (Mbid − P s)λ̃+ Ubη̃Λ̃ =
λ̃

1− κ̃η̃(Λ̃)2

[
(Mbid − P s) + (P b −Mask)η̃Λ̃

]
,

Ub = (P b −Mask)λ̃+ Usκ̃Λ̃ =
λ̃

1− κ̃η̃(Λ̃)2

[
(P b −Mask) + (Mbid − P s)κ̃Λ̃

]
.
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After some algebra one obtains

V o − V b =
C

r + κ
+ V sκ̃− V b

=
C

r + κ
+

Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
κ̃−

C(1− l)
r + Λ

κ̃−
C

r + κ
(1− κ̃η̃Λ̃)+

+(P b +K)(1− κ̃η̃Λ̃) + (P s −K)κ̃(1− Λ̃)
]
,

V s − V no = V s − V bη̃

=
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
(1− κ̃η̃Λ̃)−

C

r + κ
η̃(1− Λ̃)+

+(P b +K)η̃(1− Λ̃) + (P s −K)(1− κ̃η̃Λ̃)
]
.

Substituting these expressions into (8) and (9) yields

P b =
C

r + κ
w

+
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
κ̃−

C(1− l)
r + Λ

κ̃−
C

r + κ
(1− κ̃η̃Λ̃) + (P b +K)(1− κ̃η̃Λ̃) + (P s −K)κ̃(1− Λ̃)

]
w

+Mask(1− w)−
λ̃

1− κ̃η̃(Λ̃)2

[
(Mbid − P s) + (P b −Mask)η̃Λ̃

]
κ̃(1− w),

P s =
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
(1− κ̃η̃Λ̃)−

C

r + κ
η̃(1− Λ̃) + (P b +K)η̃(1− Λ̃) + (P s −K)(1− κ̃η̃Λ̃)

]
w

+Mbid(1− w) +
λ̃

1− κ̃η̃(Λ̃)2

[
(P b −Mask) + (Mbid − P s)κ̃Λ̃

]
η̃(1− w).

These expressions can be rewritten as

P bA1(w) =

[
C(1− l)

Λ
κ̃Λ̃ +

C

r + κ

]
(1− Λ̃)w +KA2(κ̃, w)(24)

+MaskA3(w)−Mbidκ̃λ̃(1− w) + P sκ̃A4(w)

P sA1(w) =

[
C(1− l)

Λ
(1− κ̃η̃Λ̃)−

C

r + κ
η̃(1− Λ̃)

]
Λ̃w −KA2(η̃, w)

−Maskη̃λ̃(1− w) +MbidA3(w) + P bη̃A4(w),

where we have defined

A1(w) ≡ 1− Λ̃w − κ̃η̃(Λ̃)2(1− w) + κ̃η̃Λ̃λ̃(1− w),(25)

A2(x,w) ≡ [1− κ̃η̃Λ̃− x(1− Λ̃)]Λ̃w,

A3(w) ≡ [1− κ̃η̃(Λ̃)2 + κ̃η̃Λ̃λ̃](1− w),

A4(w) ≡ (1− Λ̃)Λ̃w + λ̃(1− w),

A5(w) ≡ A1(w)− κ̃η̃
A4(w)2

A1(w)
.
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The system of equations (24) can be solved to yield expressions (10) and (11), where we have defined

Ψ1 ≡
κ̃Λ̃

A5(w)

[
1− Λ̃ + (1− κ̃η̃Λ̃)

A4(w)

A1(w)

]
,(26)

Ψ2 ≡
(1− Λ̃)

A5(w)

[
1− κ̃η̃

A4(w)

A1(w)
Λ̃

]
,

Ψ3 ≡
Λ̃

A5(w)

[
1− κ̃η̃Λ̃ + κ̃η̃(1− Λ̃)

A4(w)

A1(w)

]
,

Ψ4 ≡
η̃(1− Λ̃)

A5(w)

[
Λ̃−

A4(w)

A1(w)

]
,

Π1(x, y) ≡
1

A5(w)

[
A2(x)− xA2(y)

A4(w)

A1(w)

]
,

Π2 ≡
1

A5(w)

[
A3 − κ̃η̃

A4(w)

A1(w)
λ̃

]
,

Π3 ≡
1

A5(w)

[
A3

A4(w)

A1(w)
− λ̃
]
.

Proof of Proposition 2: We need to calculate the derivative of V b with respect to N . We start by

rewriting expression (3) as

(27) V b =

(
C

r + κ
+
C(1− l)
r + Λ

κ

r + κ
+

(
E[P s] + V b

η

r + η
−K

)
κ

r + κ

Λ

r + Λ
− P b −K

)
Λ

r + Λ
,

and solve it for V b to obtain

(28) V b =

Λ
r+Λ

1− κ
r+κ

η
r+η

( Λ
r+Λ

)2

[
C

r + κ
+
C(1− l)
r + Λ

κ

r + κ
+ (P s −K)

κ

r + κ

Λ

r + Λ
− (P b +K)

]
.

Taking into account that d Λ
r+Λ

/dΛ = r
(r+Λ)2

, we obtain the following expression for the derivative in

question:
dV b

dΛ
=

(
r + Λ

Λ
−

η

r + η

κ

r + κ

Λ

r + Λ

)−1 [V b
Λ

r

Λ
−
C(1− l)
(r + Λ)2

κ

r + κ
+(29)

+

(
P s + V b

η

r + η
− k
)

κ

r + κ

r

(r + Λ)2
+
dP s

dΛ

κ

r + κ

Λ

r + Λ
−
dP b

dΛ

]
,(30)

which after setting dV b

dΛ
= 0 and some algebra yields expression (16).

ACKNOWLEDGEMENTS

We thank seminar audiences at California Polytechnic University, Carnegie

Mellon University, Higher School of Economics-Moscow, IDC Herzliya, Im-

perial College, Michigan State University, Rice University, University of

Houston, University of Illinois-Chicago, University of Oklahoma, Univer-

sity of Wisconsin at Madison, WU Vienna, and the 2015 Toulouse Trading

and post-trading conference, 2016 AFA, 2016 SFI Research Day for valuable

comments and feedback.



46

References

Afonso, Gara, Anna Kovner, and Antoinette Schoar, 2013, “Trading part-

ners in the interbank lending market,” Federal Reserve Bank of New

York Staff Report.

Atkeson, Andrew, Andrea Eisfeld, and Pierre-Olivier Weill, 2015, “Entry

and exit in OTC Derivatives Markets,” Econometrica 83, 2231-2292.

Babus, Ana and Tai-Wei Hu, 2016, “Endogenous Intermediation in Over-

the-Counter Markets,” Journal of Financial Economics, Forthcoming.

Babus, Ana, 2016, “The Formation of Financial Networks,” RAND Journal

of Economics 47, 239-272.

Babus, Ana and Peter Kondor, 2013, “Trading and Information Diffusion

in Over-The-Counter Markets,” Working Paper, Federal Reserve Bank

of Chicago.

Bernhardt, Dan, Vladimir Dvoracek, Eric Hughson, and Ingrid Werner,

2005, “Why do large orders receive discounts on the London Stock

Exchange?” Review of Financial Studies 18, 1343-1368.

Bessembinder, Hendrik, Stacey Jacobsen, William Maxwell, and Kumar

Venkataraman, 2016, “Capital Commitment and Illiquidity in Corpo-

rate Bonds,” working paper.

Bessembinder, Hendrik, William Maxwell, and Kumar Venkataraman, 2006,

“Market transparency, liquidity externalities, and institutional trad-

ing costs in corporate bonds,” Journal of Financial Economics 82,

251-288.

Board, Simon, 2011, “Relational Contracts and the Value of Loyalty,”

American Economic Review 101, 3349-3367.

Chang, Briana and Shengxing Zhang, 2015, “Endogenous market making

and network formation,” Mimeo.



47

Choo, Eugene, 2015, “Dynamic marriage matching: An empirical frame-

work,”, Econometrica 83, 1373-1423.

Colliard, Jean-Edouard and Gabrielle Demange, 2014, “Cash Providers:

Asset Dissemination Over Intermediation Chains,” Paris School of

Economics Working Paper No. 2014-8.

Condorelli, Daniele and Andrea Galeotti, 2012, “Endogenous Trading Net-

works,” Working Paper, University of Essex.

Diamond, Peter, 1971, “A model of price adjustment,” Journal of Eco-

nomic Theory 3, 156-168.

DiMaggio, Marco, Amir Kermani, and Zhaogang Song, 2015, “The Value

of Trading Relationships in Turbulent Times ,” Mimeo.

Duffie, Darrell, Garleanu, Nicolae, and Lasse Pedersen, 2005, “Over the

counter markets,” Econometrica 73, 1815-1847.

Duffie, Darrell, Garleanu, Nicolae, and Lasse Pedersen, 2007, “Valuation in

over the counter markets,” Review of Financial Studies 20, 1865-1900.

Edwards, Amy, Lawrence Harris, and Michael Piwowar, 2005, “Corporate

bond markets transparency and transaction costs,” Journal of Finance

62, 1421-1451.

Andrew EllulRegulatory pressure and fire sales in the corporate bond mar-

ket,” Journal of Financial Economics 101, 695-620.

Feldhutter, Peter, 2012, “The same bond at different prices: Identifying

search frictions and selling pressures,” Review of Financial Studies

25, 1155-1206.

Gale, Douglas M., and Shachar Kariv, 2007, “Financial Networks,” Amer-

ican Economic Review 97, 99-103.

Glode, Vincent and Christian C. Opp, 2014, “Adverse Selection and Inter-

mediation Chains,” Working Paper, University of Pennsylvania.

Gofman, Michael, 2011, “A Network-Based Analysis of Over-the-Counter

Markets,” Working Paper.



48

Green, Richard C., Burton Hollifield, and Norman Schürhoff, 2007, “Finan-

cial Intermediation and the Costs of Trading in an Opaque Market,”

Review of Financial Studies 20(2), 275-314.

Green, Richard C., Dan Li, and Norman Schürhoff, 2010, “Price Discovery
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