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Abstract

Oil prices are notoriously difficult to forecast and exhibit wild swings or “excess

volatility” that are difficult to rationalize by changes in fundamentals alone. This

paper offers an explanation for these phenomena based on time varying disaster prob-

abilities and disaster fears. Using information from crude oil options and futures we

document economically large jump tail premia in the crude oil derivative market. These

premia vary substantially over time and significantly forecast crude oil futures and spot

returns. Our results suggest that oil futures prices overshoot (undershoot) in the pres-

ence of upside (downside) tail fears in order to allow for smaller (larger) risk premia

thereafter. We show that this overshooting (undershooting) is amplified for the spot

price because of time varying benefits from holding inventory that work in the same

direction. The novel oil price uncertainty measures yield additional insights into the

relationship between the oil market and macroeconomic outcomes.
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1 Introduction

Volatile oil spot and futures prices have drawn a lot of attention from academics, policy

makers and investors over the last years. The origins of this volatility are hotly debated

because the changes in oil demand and supply appear too smooth to explain the large

swings in oil prices (see e.g. Tang and Xiong 2010; Alquist and Kilian 2010; Baumeister and

Peersman 2013). One explanation proposed by Kilian (2009) is that precautionary demand

shocks are an important driver of short run fluctuations in oil prices. He suggests that a

key source of precautionary demand movements is uncertainty about shortfalls of expected

supply relative to expected demand. A natural question is therefore how uncertainty shocks

can be accurately measured and whether they help to predict the future evolution of oil prices.

Yet another is if and how they relate to the risk premia embedded in oil derivatives. The

explanations building on competitive storage models such as the one proposed by Alquist and

Kilian (2010) are typically based on the assumption of risk neutrality and ignore potential

effects arising from temporal variations in these premia. This stands in contrast to the

convincing evidence of significant and time-varying risk premia in oil markets from the

commodity finance literature (see e.g. Gorton and Rouwenhorst 2004; Erb and Harvey 2006;

Singleton 2013; Hamilton and Wu 2014; Szymanowska et al. 2014). We bridge this gap

by presenting a novel uncertainty measure that is explicitly related to the risk premium

embedded in oil market derivatives.

The contribution of this paper is threefold. First, we present novel estimates of oil

market uncertainty based on the left jump and right jump varation premia (LJV P and

RJV P , respectively) embedded in crude oil futures and options. Bollerslev and Todorov

(2011b) and Bollerslev, Todorov, and Xu (2014) show that these premia - defined as the

part of the variance risk premium that is due to large sized upward and downward jumps

- can be estimated in an essentially model free manner and contain important information

about market participants’ sentiments and expected stock market returns. We demonstrate

that for the oil market, LJV P and RJV P are economically large and significantly vary

over episodes of documented supply and demand uncertainty. The variation measures have

strong predictive power for both crude oil futures and spot prices that is not contained in

traditional oil price predictors. Our results suggest that oil futures and spot prices overshoot

(undershoot) in the presence of upside (downside) tail fears in order to allow for smaller

(larger) risk premia thereafter.

Second, we use a stylized no-arbitrage model of storage in order to show that relative

to the futures price movement, this overshooting (undershooting) is amplified for the spot

price due to the time varying value of holding physical oil in inventory. A relative increase

in RJV P is also associated with a rise in this value that pushes the spot price in the same
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direction as the futures risk premium. Consistently, RJV P and LJV P exhibit larger in-

sample and out-of-sample predictability for spot price returns than for futures returns. This

finding complements the model of Alquist and Kilian (2010), in which a similar no-arbitrage

condition in the storage market is used to show that an increase in oil production volatility

leads to an overshooting of spot prices. Their model is derived under the assumption of risk

neutrality and the overshooting is due to convex adjustment costs of inventories. Since in

our model the fear shock is associated with an additional movement of the risk premium

this overshooting is magnified. Under risk aversion, the spot price not only increases with

respect to the spot price in some future period, but also with respect to the rise implied

by storage models that assume risk neutrality. Taken together, these results represent new

evidence for the importance of time varying risk premia in explaining the perceived excess

volatility in oil spot and futures prices.

Finally, to put our jump risk measures in perspective, we also investigate the link between

LJV P , RJV P and real economic activity as well as macroeconomic uncertainty. The oil fear

measures appear not to be spanned by aggregate uncertainty. Also, there is little evidence of

a stable linear relationship between stock market returns, LJV P and RJV P . The results are

consistent with the idea that the oil tail risk measures aggregate different types of uncertainty

that are relevant for oil prices, e.g. oil supply and oil demand uncertainty, that individually

have a very distinct relationship with aggregate uncertainty.

There are several reasons for focusing on the tails of the oil price distribution to quantify

uncertainty. First, recent theoretical works show that models with tail risks can account for

the high equity risk premium and excess market return volatility (Barro 2006; Wachter 2013).

There is also increasing evidence that the index option implied compensation for aggregate

market volatility and tail risks are closely connected to economic uncertainty and temporal

variation in risk aversion (Bollerslev, Tauchen, and Zhou 2009; Bollerslev, Todorov, and Xu

2014). In contrast, most of the commodity finance literature has focused on futures, ignoring

potential information from the related option prices. Among the exceptions are Trolle and

Schwartz (2010), who document a significant and time-varying variance risk premium in the

crude oil option market and Pan and Kang (2013) who show that this premium forecasts

short term futures returns. We find that most, if not all of the variance risk premium

and its forecasting power is due to time varying compensation for tail variations. One of the

advantage of considering tail risk premia is that they are naturally separated into upside and

downside uncertainty, thus providing additional information beyond that contained in the

variance risk premium. We show that in particular the time varying asymmetry of the jump

premia across the two tails improves the prediction spot and futures returns. Based on the

variance risk decomposition proposed by Bollerslev and Todorov (2011b), we present evidence

that this asymmetry reflects changes in effective risk aversion of oil market participants. On
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a more general level, these findings suggest that time varying disaster fears embedded in

option prices of individual assets, not only on market indexes, convey important information

on the their return dynamics.

Formally, RJV P and LJV P are defined as the difference of the conditional expected

variation of jump tails under the statistical, objective probability measure and the risk neu-

tral measure. In other words, they represent the difference of the expected actual jump

variations and the option implied market price for the insurance against these jump vari-

ations. Our implemented model for the option implied jump-measures follows Bollerslev,

Todorov, and Xu (2014). It is semi-parametric and flexible, allowing the tail distributions

to differ across the left and the right tail and for independent time variation in the shape

and level of the tails. The empirical estimation is based on panel of out-of-money (OTM)

call and put options. Intuitively, short-maturity OTM options are most sensitive to large

jumps, which allows us to separate the jump risk from the diffusive risk. The statistical

jump variation is based on intraday futures data and non-parametric methods developed by

Bollerslev and Todorov (2011a). Empirically, we find that the statistical jump variations in

oil futures are significantly smaller than their risk neutral counterparts. Moreover, the actual

jumps are approximately symmetric, while the option implied prices for these jumps display

time-varying asymmetries. Thus the observed time variation in the relative size of RJV P

and LJV P are largely void of influences from the actual jumps, and can be interpreted as a

direct measure of investor fears (Bollerslev and Todorov 2011b).

On average, the LJV P tends to be larger than RJV P , implying that oil investors are

on average requesting a higher premium when downside-risks predominate. This is largely

consistent with the theory of normal backwardation (Keynes 1976). Accordingly, when

producers of the physical commodity want to hedge their price risk using derivatives, then

arbitrageurs who take the other side of the contract have to be compensated in form of a

risk premium order to take on the risk. Our empirical estimates imply that on average about

half futures risk premium is due to large jump risks.

Last, we contribute to a strand of literature going back to the idea of Bernanke (1983) that

oil market uncertainty - rather than oil price changes alone - is a key variable to understand

the relationship between the oil market and macroeconomic outcomes. Our measures provide

precise definitions and estimates for oil price uncertainty, and we discuss some interactions

with aggregate variables towards the end of the paper.

The rest of this paper is structured as follows. The next section provides a formal

definition of the tail risk variation measures, and explains the spot price overshooting. In

section 3 we discuss the empirical implementation and data as well as the properties of our

estimates. Section 4 presents the forecasting results and section 5 the interaction of the jump

tail premia with aggregate outcomes. Section 6 concludes.
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2 Theoretical Setup

2.1 Setup and Definitions

In this section, we present the general setup and provide formal definitions for our tail risk

measures. This setup is inspired by Bollerslev and Todorov (2011b) and Bollerslev, Todorov,

and Xu (2014). Instead of considering the (aggregate) stock market, we will focus on the

dynamics of an individual asset, namely oil futures.

To fix ideas, let (Ω,F ,P) be a filtered probability space with the filtration (Ft)t≥0 and

let Ft denote the price of a crude oil futures contract. The dynamics of the futures price are

described by the following jump diffusion process

dFt
Ft−

= αtdt+ σtdWt +

∫
R
(ex − 1)µ̃(dt, dx), (1)

where the drift αt and the stochastic volatility σt are assumed to be locally bounded càdlàg

processes, and Wt is a standard Brownian Motion. Here µ̃(dt, dx) = µ(dt, dx) − vPt (dx)dt

denotes a compensated jump measure, with µ(dt, dx) the counting measure and vPt (dx)dt the

compensator of jumps, where P denotes the statistical, objective measure .1

Under standard non-arbitrage assumptions, there exists a risk-neutral measure denoted

Q, under which the futures price follows a martingale of the form

dFt
Ft−

= atdt+ σtdW
Q
t +

∫
R
(ex − 1)µ̃Q(dt, dx), (2)

where at denotes the drift, dWQ
t is a Brownian motion with respect to the risk neutral

measure and µ̃Q = µ(dt, dx) − vQt (dx)dt denotes the jump measure under Q following the

previous decomposition. In general, the change of measure alters both the drift and the

jump intensity describing the dynamics of the futures price while the volatility associated

with the Brownian motions remains the same under both measures. This reflects the special

pricing of jumps in comparison with continuous movements.

Our interest will be in both the futures risks premium (FRP ) - a premium reflecting risk

associated with holding a (long) futures contract - and the variance risk premium (V RP ) - a

premium reflecting risks associated with holding a (long) variance swap - that are associated

with the jump part of the futures price. Following Bollerslev and Todorov (2011b), the FRP

at time t and for some T > t is defined as

FRPt,T ≡
1

T − t

(
EP
t

(
FT − Ft
Ft

)
− EQ

t

(
FT − Ft
Ft

))
. (3)

1The compensator vPt (dx)dt ensures that the jump measure µ̃(dt, dx) is a martingale.

4



Since the futures price Ft is a martingale under the Q-measure, FRPt,T is effectively deter-

mined by the difference of the objective expectation of the futures price at some future date

T and the current futures price.

Given our jump diffusion model in equation (1) we can, without loss of generality, define

the FRP due to large jumps above some threshold kt > 0,

FRPt,T (kt) ≡
1

T − t
EP
t

(∫ T

t

∫
|x|>kt

(ex − 1)vPs (dx)ds

)
−

1

T − t
EQ
t

(∫ T

t

∫
|x|>kt

(ex − 1)vQs (dx)ds

)
. (4)

Going one step further, we can decompose FRPt(kt) into the contributions from large positive

and large negative jumps

FRPt,T (kt) = FRP+
t,T (kt) + FRP−t,T (kt), (5)

where FRP+
t,T (kt) captures the futures risk premia due to x > kt and FRP−t,T (kt) captures

the premia due to x < −kt.
The variability of the futures price is measured by the quadratic variation QV of its

log-price process of the interval [t, T ]

QV[t,T ] =

∫ T

t

σ2
sds+

∫ T

t

∫
R
x2µ(ds, dx). (6)

Similar to the futures risk premium, V RPt,T is formally defined as as the difference of the

expected quadratic variation over the T − t period under the respective probability measure.

V RPt =
1

T − t
(EP

t (QV[t,T ])− EQ
t (QV[t,T ])). (7)

Under this definition of the variance risk premium, V RPt equals the expected payoff from

a long variance swap contract (Carr and Wu 2009). The variance risk premium is also

naturally decomposed into a part associated with the continuous-time stochastic volatility

process σs and a part that is due to jumps. We denote RJV P
t,T (kt) and LJV P

t,T (kt) the

predictable component of the quadratic variation arising through large positive and large

negative jumps under the P measure

RJV P
t,T (kt) =

∫ T

t

∫
x>kt

x2vPs (dx)ds, LJV P
t,T (kt) =

∫ T

t

∫
x<−kt

x2vPs (dx)ds (8)
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and their counterparts under the risk neutral measure Q

RJV Q
t,T (kt) =

∫ T

t

∫
x>kt

x2vQs (dx)ds, LJV Q
t,T (kt) =

∫ T

t

∫
x<−kt

x2vQs (dx)ds. (9)

The part of the variance risk premium due to large positive jumps is then

RJV P (kt) ≡
1

T − t
(
EP
t

(
RJV P

t,T (kt)
)
− EQ

t

(
RJV Q

t,T (kt)
))
, (10)

while the part due to large negative jumps is

LJV P (kt) ≡
1

T − t
(
EP
t

(
LJV P

t,T (kt)
)
− EQ

t

(
LJV Q

t,T (kt)
))
. (11)

As suggested by Bollerslev and Todorov (2011b), for equity index option the difference

between LJV P (kt) and RJV P (kt) is naturally associated with investors’ fear. In this paper

we investigate this hypothesis for the oil market and define

FIt(kt) ≡ LJV P (kt)−RJV P (kt). (12)

The index FIt measures the asymmetry between the premium requested for the downside

variance risk and the premium charged for upside variance risk that is due to large jumps.

Under the above definition, a relatively large left jump variation premia or ”downside fear”

is associated with a low value of FIt(k).

The respective premia can then be estimated in an essentially model free manner using

high-frequency returns and options data. The next section discusses this procedure in more

detail. Before, we turn to the relationship between risk premia and spot prices.

2.2 Risk Premia and Spot Prices

In this section, we present a theoretical framework based on no-arbitrage conditions that

relates the risk premia to oil spot prices. We show that in general, an increase in the futures

risk premium associated with a rise in market participants fears - as proxied by the tail risk

premia - will drive a temporary wedge between the current and expected prices for both

futures and spot prices. Since this wedge subsequently reverts to zero, our model predicts

that futures and spot prices overshoot with respect to future prices in the wake of disaster

fears.

For our analysis we draw on non-arbitrage conditions derived from two different ap-

proaches to commodity derivative pricing that allow to relate the current futures price and
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the current spot price to the expected spot price some period ahead.2 The first approach is

based on the basic definition of the futures risk premium as described in equation (3). By

non-arbitrage, the value of the futures price at the time of maturity must be equal to the

spot price of the commodity. Hence FT,T = ST , where ST stands for the spot price of oil

at time T , and where in slight abuse of notation we let T denote the contract’s terminal

date for the remainder of this subsection. Moreover, since Ft,T is a martingale under the

Q-measure, it follows that

1 + (T − t)FRPt,T =
Et(ST )

Ft,T
=
Et(Ft,T )

Ft,T
. (13)

Equation (13) reflects the non-arbitrage condition that the price of a futures has to be equal

to the expected spot price discounted by the premium associated with holding the futures

contract. This decomposition of the futures price into the expected spot price and a risk

premium has been used frequently in the analysis of the futures risk premium. The empirical

and theoretical evidence overwhelmingly suggests that in the oil market, and in commodity

markets in general, the (net) premium is on average positive and fluctuating over time (e.g.

Keynes 1976; Bessembinder 1992; Hamilton and Wu 2014; Baumeister and Kilian 2014).

The second non-arbitrage condition is based on the theory of storage, going back to the

works of Kaldor (1939) and Working (1949). A distinguishing feature of commodities as an

asset class is the significance of the convenience yield, defined as the benefit of immediate

availability of a physical commodity rather than a time T contingent claim on the commodity

(see e.g. Fama and French 1987). This benefit links the futures to the spot price through

the following relationship

Ft,T = St(1− (T − t)CYt,T ), (14)

where CYt,T is the (net of storage costs and interest rate outlays) equilibrium convenience

yield, in annualized terms. This equation has to hold under non-arbitrage, since the price

of a futures contract has to be equal to the cost of buying the commodity now minus the

net benefits of carrying the commodity to maturity. Such benefits can arise due to a variety

reasons such as temporary stock-outs and associated price spikes or convex adjustment costs.

Importantly, the convenience yield can also be interpreted as a call option on a futures

contract (Milonas and Thomadakis 1997). Given that our fear measured is derived from

actual option prices on the futures, we expect a close link between oil market fears and the

convenience yield.

From the decomposition of the futures risk premium into contributions from positive and

2The setup is similar to the one in Gospodinov and Ng (2013). In our model, however, we explicitly
focus on the effect of the tail premia and their interaction with the futures risk premium and the convenience
yield, whereas Gospodinov and Ng (2013) focus exclusively on the latter.
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negative large jumps, equations (4) and (5), it follows that an exogenous, relative shift in

the tail risk premium associated with the right tail above that of the left tail will decrease

FRPt,T . Equation (13) then implies that the futures price will rise above the expected spot

price, and is expected to decline towards to spot price thereafter. Moreover, the size of the

shift in the futures price will be determined by the change in the futures risk premium. In

order to investigate the relationship between current and expected spot prices, we combine

equation (13) and (14), obtaining the following relationship between the current and the

expected spot price

Et(ST )

St
= (1 + (T − t)FRP t,T )(1− (T − t)CYt,T ). (15)

Thus under no-arbitrage, the (relative to the expected spot price) price of current spot oil

is determined by the net value of holding the physical oil in storage and the futures risk

premium. Moreover, a tail fear induced the change in the spot price is unambiguously larger

than the change in the futures price if the net convenience yield varies negatively with the

relative size of the tail risk measures. In this case, the spot prices not only overshoot with

respect to expected spot prices, but also with respect to the current futures price. The

expected spot and futures returns, r(T−t),S and r(T−t),F , respectively, that are associated

with a relative increase in the right tail variation measure should therefore exhibit

Et(r(T−t),S|RJV Pt > LJV Pt) < Et(r(T−t),F |RJV Pt > LJV Pt) < 0, (16)

with an inverse relationship for relative increases in the left tail measure. Considering

a temporary, mean preserving change in the tail risk measures, i.e. a change such that

Et(ST |RJV Pt > LJV Pt) = Et(ST |RJV Pt = LJV Pt), equation (16) implies that both the

spot and the futures price have to adjust immediately by an upward movement.3 Moreover,

the underlying mechanism does not rely on any shifts in inventories. This is important, since

some of the large price fluctuations, e.g. around the 1991 Gulf War, are difficult to reconcile

with the observed changes in inventory (Kilian and Murphy 2014).

Of course, equation (16) rests on the assumption that the net convenience yield varies

negatively with FIt. Subsequently we show that FIt is inversely related to the market

prices of out-of-the-money options. The interpretation of the convenience yield as an op-

3This comparative static thought experiment resembles the setting of Alquist and Kilian (2010), who
describe the effects from a change in the conditional variance of oil supply shocks. In their model, an increase
in the conditional variance of these shocks lead to a similar overshooting of the spot price. However, these
results are derived under the assumption of risk neutrality so that the futures price is an unbiased predictor
of the spot price. In contrast, our framework allows for an interaction of a time-varying risk premia with
the convenience yield and suggest that conditional on RJV Pt, LJV Pt, futures prices are not necessarily an
unbiased predictor.
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tion suggests therefore that we should expect this inverse relationship to hold theoretically.

Empirically this assumption is justified by our data, as we find a strong and statistically

significant correlation of almost −40% between our measure of FIt and the log of the net

convenience yield measure as implied by equation (14).

Taken together, the non-arbitrage conditions linking the contemporaneous futures price

and spot price with future prices, suggest that oil futures and spot prices overshoot relative

to the expected spot price in the wake of upside (downside) fears. This implies that our

tail variation measures should forecast futures and spot market returns. Moreover, this

overshooting, reflected by the expected return, is larger for the spot price then for the futures

futures price. We address this hypothesis by direct forecasts and a structural VAR analysis

after presenting the estimation methodology and results for the tail variation measures.

3 Empirical Implementation

3.1 Estimation of the Variation Measures

As noted by Carr and Wu (2009), the implied total variation QV Q
t,T , also known as the

variance swap rate, can be well approximated by a portfolio of out-of-the-money put and

call options. For our calculation we follow the methodology for the CBOE Volatility Index

(VIX).4

Our specification of the jump tails follows Bollerslev, Todorov, and Xu (2014). In par-

ticular, the jump distribution and intensity under the Q-measure are based on the semi-

parametric model

vQt (dx) =
(
φ+
t × e−α

+
t x1(x>0) + φ−t × e−α

−
t |x|1(x<0)

)
dx. (17)

Relative to other existing models, this specification imposes only minimal restrictions on the

jump tail dynamics since (a) the left and right jump tails are allowed to differ and (b) the

level shift parameters φ± and the shape parameters α± are allowed to vary independently

over time.

The estimation of α+(α−) and φ+(φ−) is based on the observation that for (T − t) ↓ 0

and k ↑ ∞(k ↓ −∞)

erOt,T (K)

(T − t)Ft,T
≈ φ±t e

k(1±α±
t )

α±t (α±t ± 1)
, (18)

where Ot,T (K) denotes the price of a call (put) option with strike K and k = log(K/Ft,T ).

This reflects the intuition that for close to maturity, deep OTM options the risks associated

4See the white paper on the CBOE website for details regarding the VIX methodology.
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with the diffusive part become negligible and their price therefore reflects jump risks.

From equation (18) it follows that the ratio of two OTM options does not depend on φ±t ,

leading to the natural estimator suggested by Bollerslev and Todorov (2013):

α̂±t = argminα±
1

N±t

N±
t∑

i=1

∣∣∣∣log

(
Ot,τ (kt,i)

Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)−1 − (1± (−α±))

∣∣∣∣, (19)

where Ot,τ is the time t price of an OTM option on the futures with log-moneyness k, N±t

denotes the total number of options used in the estimation and 0 < |kt,1| < ... < |kt,N±
t
|. In

practice we will pool options such that t refers to a given month which implicitly assumes

that α± is approximately constant during this period.

For a given α±, we then use equation (18) to estimate

φ̂±t = argminφ±
1

N±t

N±
t∑

i=1

∣∣∣∣log

(
erτOt,τ (kt,i)

(T − t)Ft−,τ

)
+ (±α̂±t − 1)kt,i + log(α̂±t ∓ 1) + log(α̂±t )− log(φ±)

∣∣∣∣.
(20)

From the definition of the tail risk premia in equation (??) and our assumptions for the

large jumps dynamics in (17), it follows that for time to maturity T − t and threshold kt

RJV Q
t,T = (T − t)φ+

t e
−α+

t kt(α+
t kt(α

+
t kt + 2) + 2)/(α+

t )3 and (21)

LJV Q
t,T = (T − t)φ−t e−α

−
t kt(α−t kt(α

−
t kt + 2) + 2)/(α−t )3. (22)

The Q tail measures are then computed by replacing the population quantities in (21) by

their estimates.

The estimation of the corresponding quantities under the objective measure are based

on high-frequency intraday data. We use the notation of Bollerslev and Todorov 2011b and

divide the trading day t into the [t, t+πt] overnight period and the [t+πt, t+1] active trading

period. Hence πt denotes the length of the close to open interval.5 Dividing the effective

trading time in equally spaced intervals, we obtain n returns ∆t,if ≡ ft+π+i−ft+π+i−1, where

f denotes the logarithm of the futures price. We denote RVt the realized variation on day t,

which is consistently estimated by summing the squared intraday returns

RVt ≡
n∑
i=1

(∆t,if)2 p→
∫ t+1

t+πt

σ2
sds+

∫ t+1

t+πt

∫
R
x2µ(ds, dx). (23)

Realized jumps under the statistical measure are estimated using the threshold technique

5Although the trading hours are non-stochastic, it is convenient to treat πt as stochastic. The theoretical
derivations presented below are valid under mild conditions regarding the stochastic process for πt. See
Bollerslev and Todorov 2011b for details.
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first proposed by Mancini (2001). Under the threshold estimation, we first compute an es-

timate for the continuous part of the volatility, σt, and then filter out jumps by identifying

a threshold separating jumps that appear incompatible with the underlying normal distri-

bution. The truncation threshold for large jumps is time-varying and captures the effects

of well-described volatility clustering as well as intraday volatility. Out of the returns that

are identified as jumps, we select the large and medium-sized ones for the tail estimation.

The reader is referred to Appendix A regarding for further details regarding the estimation

procedure.

Due to the lack of observations for sufficiently large jumps under the statistical measure it

is infeasible to the estimate the same flexible jump tail specification as under the Q-measure.

Instead we follow Bollerslev and Todorov (2011b) in assuming that6

vPt =
(
(α−0 1x<0 + α+

0 1x>0) + (α−1 1x<0 + α+
1 1x>0)σ2

t

)
vP(x)dx, (24)

where vP(x)dx is the time-invariant distribution of empirical jumps and the level parameters

α±0 and α±1 relate linearly to the time varying continuous volatility σ2
t .

7

The estimation of the time invariant jump distribution draws on the insight by Bollerslev

and Todorov (2011a) that the tails of an arbitrary distribution are approximately distributed

according to a Generalized Pareto Distribution. Given our empirical jumps, the two param-

eters of the Generalized Pareto Distribution along with α0 and α1 are estimated seperately

for each tail via GMM as outlined in Appendix A.

3.2 Data Description

Our empirical analysis is based on light sweet crude oil (West Texas Intermediate) futures

and options.8 Crude oil derivatives are traded in extremely liquid markets and available

historical data goes back to the 1980s. Trading of oil futures started in April 1983 for

contracts with maturities up to three months, and for options on futures in November 1986.

For the estimation of the Q jump tails we use an option data set obtained from the Chicago

Mercantile Exchange (CME group, formerly NYMEX) that contains all historical end-of-

the-day settlement prices.9 Conveniently these crude oil options are quoted for a variety of

6Empirical evidence that the jump distribution is in the oil market is approximately proportional to the
continuous volatility is presented in Doran and Ronn (2008).

7The specification for the jump tails under the P-measure is significantly more restrictive than the cor-
responding Q-measure specification. Empirically the P jump tails are dwarfed by the risk neutral analogues
and we will therefore only work with the more general Q-measures in the later part of this paper. The em-
pirical evidence for a significant difference in the expected jump tail variations under the different measures
are presented in the following section.

8The CME tickers for the futures and options is CL and LO, respectively.
9NYMEX crude oil options are American style. For short maturity, deep OTM options the difference

between European and American options is negligible, so we use the original options for the jump tail
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strike prices and expiration dates - one for each calendar month of the year - thus ensuring a

sufficient number of short maturity deep OTM options for the empirical implementation of

our estimator. The derivation of the tail parameters formally relies on a decreasing time to

maturity (T − t) ↓ 0. We therefore only take the contract with the shortest time to maturity,

whenever the maturity is larger than 9 days. The last trading days of a given option contract

can be characterized by prizing abnormalities due to the lack of trading volume, which makes

it necessary to discard this data and resort to the first back contract for those days.10

In order to mitigate potential influences from the diffusive risk, we retain only OTM call

(put) options with at log-moneyness more than plus (minus) twice the maturity-normalized

Black-Scholes at-the-money implied volatility. We clean the data by discarding all options

with a settlement price of less than 3 cents and those violating the monotonicity condition

in the strike dimension. The dataset comprises daily data from December 1987 to December

2013. For the estimation of the jump tails we pool all clean deep OTM options for a given

calendar month. This leaves us with 313 monthly sets of pooled option data with maturities

9-40 days.11

Our futures data comprises 5-minute intraday price quotes from Tickdatamarket. We

retain the future contracts corresponding to the option contracts used for the jump tail esti-

mation under the risk neutral measures in order to ensure an exact matching. After standard

data cleaning procedures our sample comprises 6,327 trading days.12 For the computation

of the realized measures we use the part of the day were trading was actively carried out

throughout the sample. Thus the first price observation is taken to be 10:00 (CST), and the

last price observation 14:30. This leaves us with 54 price observations for each trading day.

3.3 Empirical Tail Risk Measures

The estimates for the tail variation measures under Q implied by equation (21) require a

choice of the threshold kt that separates large from small jumps. Similar to Bollerslev,

Todorov, and Xu (2014) we allow kt to vary as a linear function of the implied volatility.

This form of time variation mimics the estimation procedure for the statistical jumps and

accounts for the idea that what is classified as an “extreme” event can differs with economic

conditions and corresponding market volatility. The following results are presented for the

estimation. For the computation of the expected quadratic variation under the Q-measure we convert the
option prices into corresponding European style values following Barone-Adesi and Whaley (1987).

10This “cleaning procedure” is standard, see e.g. Trolle and Schwartz (2010) or Bollerslev and Todorov
(2011b).

11The monthly pooling ensures a sufficient number of options for estimation throughout the sample. It
also has the advantage that potential monthly seasonalities are averaged out.

12The original sample constitutes 6519 trading days. Some days around Christmas, Thanksgiving and
July 4th feature irregular trading hours and were discarded.
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threshold kt equal to three times the at-the-money Black-Scholes (BS) implied volatility.13

This specification of kt corresponds to a median threshold of 25 %.

The estimates for FIt are presented in figure (5). Most of the noticeable movements in

the series correspond to well known periods of oil price or aggregate uncertainty, such as the

1st Gulf War in 1990 and 1991, the financial crisis in 2008 and NBER recessions. Similar

intuitive results are presented in figure (5) for the individual tail measures, alongside the

risk neutral and statistical expected quadratic variations.

Figure 1: This figure displays the difference between the tail measures, RJV Q
t,T -LJV Q

t,T , in
annualized form. The the tail measures are computed for the threshold kt = 3× BS implied
volatility. Shaded areas represent NBER recessions.

Similar to results from the equity index market presented by Bollerslev and Todorov

(2011b), we find that in the crude oil futures markets the P-tail distribution implied by the

futures data is dwarfed by the corresponding Q measures. The estimates presented in table

(1) indicate that on average, the statistical variation measure for the left tail is about 200

times smaller than the Q measure counterpart. The corresponding ratio for the right tail is

around 50 and also sufficiently small in order to conclude that changes in the tail premia are

almost entirely driven by movements in the tail variations under Q measure. Thus the tail

variation premia appear well approximated by the risk neutral variation measures only:14

RJV P (kt) ≈ −RJV Q
t,T and (25)

LJV P (kt) ≈ −LJV Q
t,T . (26)

13We also experimented with other thresholds, obtaining qualitatively similar results. Table (6) in Ap-
pendix C displays the result for kt four times the at-the-money Black-Scholes implied volatility.

14A similar approximation empirically holds for the equity market. As Bollerslev, Todorov, and Xu (2014)
point out, this conveniently avoids peso-type estimation problems.

13



Mean SD AR(1)

LJV Q
t,T 0.0233 0.0253 0.8444

RJV Q
t,T 0.0081 0.0101 0.7730

LJV P
t,T 0.0001 0.0001 0.6698

RJV P
t,T 0.0002 0.0002 0.7103

OILVIX2 0.1353 0.1293 0.8374
VRP -0.0244 0.0741 0.1897

Table 1: Summary statistics for the monthly estimates of the tail variation measures and
the traditional variation measures. SD stands for the standard deviation, AR(1) for first
order autocorrelation. The sample period is 1987 to 2013, comprising 324 observations. All
measures are presented in annualized form. The tail variation measures are evaluated at
kt = 3 × Black-Scholes implied volatility.

Interestingly, this indicates that changes in the objective jump distributions play a minor

role in explaining the time variation in the size of the tail premia.15

A second important finding, reported in Appendix A, is that the statistical left and right

tail variation measures are approximately symmetric. The symmetry implies that in each

point of time, the conditional probabilities of a large upward jump is roughly equal to the

conditional probability of a large downward jump. Together with strong time variation of the

difference of RJV Q
t,T and LJV Q

t,T documented in figure (5), this provides additional evidence

that the tail risk premia are only loosely connected to the statistical tail variation measures.

On average, the variation risk premia for the left tail is much larger than the premia for

the right tail (table 1). This is consistent with commodity futures markets being in normal

“backwardation”, an idea first put forth by Keynes (1976). He postulated that producers

of the physical commodity that want to hedge their output will have to pay a risk premium

for speculators that take on the matching long positions in futures markets. Accordingly,

speculators will demand a larger premium for their exposure to downside tail risk.

The implied total variation QV Q
t,T is computed using all OTM options on a given day.

For comparability with the tail measures, the monthly series we present in figure (5) is

calculated by taking the average over the respective calendar month. In the computation of

the realized total variation we also account for the overnight returns. The contribution of the

squared overnight returns to the entire daily observation, πt, is about 50% on average.16 We

compute the daily series by an appropriate scaling of the intraday realized variance RVt and

15There is a similar finding for the equity index market. See e.g. Bollerslev and Todorov (2011a),
Bollerslev and Todorov (2011b) and Bollerslev, Todorov, and Xu (2014).

16This number is larger than then the average contribution of the squared overnight to the daily volatility,
see e.g. Ahoniemi and Lanne (2013). Part of this is due to the relatively small active trading window we are
considering for the realized measures in the previous section. For additional details the reader is referred to
Appendix A.
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FIt FIt−1 FIt−2 FIt−3

rS,t 0.1426** -0.0319 -0.119** -0.148***
(0.0552) (0.0558) (0.0555) (0.0594)

rF,t 0.2117*** 0.0491 -0.0462 -0.1002*
(0.0545) (0.0557) (0.0558) (0.0562)

Table 2: Contemporaneous and 1-3 months spot return (rS,t) and futures return (rF,t) cor-
relation with FIt ≈ RJV Q−LJV Q. The estimates are based on monthly observations from
1988 to 2013.

obtain the monthly series by averaging over days.17 Our estimates of V RPt are then based

on the difference between the expected quadratic variation under the Q-measure and the

realized variation for the respective month.18 Over our sample period, V RPt is about -2%.

This figure right between the numbers of Trolle and Schwartz (2010), who report an average

premium of almost -3% over the 1996 - 2006 sample period and Pan and Kang (2013), who

report a premium of −1.65% for a sample period slightly shorter than ours.

For a threshold of kt = 3 × BS-implied volatility used here, the sum of the two tail

premia is on average about 3% and slightly larger than the absolute value of the average

V RPt. Of the total V RPt, about E(RJV Q)/E(V RPt) = 33% come from the right tail and

about E(LJV Q)/E(V RPt) = 94% from the left tail. This suggests that the entire variance

risk premium is due to compensation for tail variations, while variations due to continuous

price movements and small jumps earn no or even a small positive premium.

In order to investigate how the tail premia interact with the spot prices, we also document

the correlations of the relative movements in the premia - captured by the fear index FIt -

with current and future spot returns. Table (2) shows that the contemporaneous spot and

future returns and FIt are positively correlated, while this correlation turns negative for

future spot and futures returns. Thus, these prices seem to exhibit an “overshooting” in the

wake of large upside risks, allowing the price to decrease over the subsequent periods. We

will address this issue more carefully in the next section where we discuss the forecasting

properties of our indicators.

It is also interesting to see how the estimated jump intensities relate to the futures risk

premium due to large jumps. Using our separate estimates for the left and the right tails

under the respective measure, we obtain this premium through equation (5). Similar to

17Since there is no consensus in the literature, we experimented also with different forms of the scaling
the contributions of the overnight returns. The level of the average variation presented in this section is of
course not affected by the scaling, while the results for the monthly series used for forecasting in the next
sections are qualitatively similar.

18This obviously differs from the definition of V RPt which is based on the expectation of the realized
variation under the P-measure rather than the ex-post realized variation. For the unconditional estimates
tabulated here this distinction does not matter if we assume that the expectation error is zero.
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our results from the tail variation premia, the futures premia for the left tail tends to be

larger than that for the right tail. The average of the (continuously compounded) futures

premium due to large jumps period is 3.7% over our sample period. In comparison, the

average (continuously compounded) total futures risk premium computed from the 1st back

contract is 7.5%, suggesting that about half of the short maturity futures risk premium is

due to tail risk.

4 Predictability of Futures and Spot Returns

4.1 Predictive Regression Framework and Control Variables

This section presents new predictability evidence of the tail premia for crude oil spot and

futures returns. The baseline forecasts are performed in-sample, while cross-validation tech-

niques are employed for the out-of-sample robustness check. If the premia capture oil market

agents’ attitudes toward tail risks, we would expect a large upside (downside) tail variation

risk premium to be associated with relatively small (large) returns. We test this hypothesis

in a regression framework for predictability of futures and spot returns of the form

rj,t+i = β0,i + β1,i · LJV Q
t,T + β2,i ·RJV Q

t,T + Controls′t · β3,i + εt,i, j = {S, F}, (27)

where rS,t+i is the ith-month ahead spot return and rF,t+i is the ith-month ahead futures

return, while LJV Q
t,T and RJV Q

t,T represent the left and the right tail premia, respectively,

approximated by Q-measure variations. The vector Controlst include both macroeconomic-

financial variables and crude oil market specific variables that are potential predictors of

commodity spot and futures returns (see e.g. Bessembinder and Chan 1992; Hong and Yogo

2012). For i > 1, we employ overlapping regressions in order to enhance the efficiency of our

estimates, using robust Newey-West standard errors so as to account for the autocorrelation

in the residuals induced by the overlap. The lag length for the computation of the standard

errors is chosen twice the length of the overlap.

We first describe the set of oil market specific control variables. As suggested by the recent

literature, we include the estimated V RPt. We compute V RPt as the difference between the

lagged expected variation under the risk neutral and the actual variation in period t as

suggested in Bollerslev, Tauchen, and Zhou (2009) and as described in the previous section.

For additional robustness analysis, we also include the contemporaneous expectation QV Q
t

and the contemporaneous realized variation separately. The oil market specific variables

further include changes in oil inventories, obtained as the monthly storage level from the

web site of the U.S. Energy Information Administration (EIA) and open interest growth.
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The computation of the open interest variable is based on the open interest of futures and

options combined obtained from the CFTC website and computed as the 12-month growth

rates taking geometric averages as suggested by Hong and Yogo (2012). Finally, we include

the slope of the term structure as measured by the net ratio of the current spot price over

the 1st back futures contract.19

We control for macroeconomic conditions by including the short term interest rate, com-

puted as the yield of a 3-month T-Bill, and the Aruoba-Diebold-Scotti Business Conditions

Index (ADS) published by the Federal Bank of Philadelphia. The index is based on may

economic indicators in the U.S. and a higher value is associated with better economic condi-

tions. Since crude oil prices might be also driven by global rather than US-specific factors,

we include the Real Activity Index developed in Kilian (2009). The other variables include

the yield spread, computed as the difference between Moody’s Aaa and Baa corporate bond

yields and the CBOE VIX, a measure of the implied volatility of S&P 500 index options.

4.2 Forecasting Results

We first discuss the forecasting results for crude oil futures returns, presented in columns (5)

- (8) of table (3). For all regressions, the coefficients have the expected sign. A relatively high

right tail premium is associated with negative futures returns, and the left tail premium with

positive returns. For the model without controls, all coefficients are statistically significant

at the 5% significance level and most at the 1% significance level. This confirms our intuition

that the tail risk premia are associated with a substantial change in the oil futures premia.

The results are robust to the inclusion of standard predictors of crude oil prices. The

only exception is the noticeable rise in the standard error for the left tail premium in the

three month horizon regression, which renders the coefficient statistically insignificant at

conventional significance levels. This indicates certain degree of correlation with some of the

predictor variables, which is also noted through the increasing coefficient for the coefficient

associated with the right tail premium when controlling for the other predictors. Jointly,

the tail premia are always significant at the 1% significance level as measured through F-

test. The adjusted R2 is 3.7% for the three month horizon and and 6.8% for the six month

horizon regression, which amounts to almost one fourth of the predictability associated with

all regressors.

We now describe the forecasting results for crude oil spot returns, presented in columns

(1) - (4) of table (3). For all regressions, the coefficients associated with the tail premia have

similar sizes to those of the futures regressions. Again, the significance of the coefficient

19We also experimented with other definitions of the slope of the term structure, e.g. the net ratio of the
spot price with the 3rd back futures contract and the net ratio of the first two futures contracts, yielding
almost identical results.
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(1) (2) (3) (4) (5) (6) (7) (8)
Variables rS,t+3 rS,t+3 rS,t+6 rS,t+6 rF,t+3 rF,t+3 rF,t+6 rF,t+6

L3.RJV Q
t,T -7.70*** -10.13*** -5.27*** -9.54***

(2.044) (2.254) (1.872) (2.364)

L3.LJV Q
t,T 2.56*** 1.85* 1.59*** 1.49

(0.510) (1.059) (0.546) (1.025)

L6.RJV Q
t,T -11.03*** -16.83*** -9.76** -18.32***

(2.845) (2.901) (3.875) (3.539)

L6.LJV Q
t,T 5.27*** 3.80*** 3.47*** 3.99***

(0.698) (1.413) (0.860) (1.460)
Controls No Yes No Yes No Yes No Yes

Adj. R2 0.0877 0.2371 0.1419 0.3131 0.0374 0.1634 0.0685 0.2827
Obs. 321 283 318 282 321 283 318 282
Wald test (p-value) <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001

Newey-West standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3: Forecasting results for i = 3 and i = 6 months. The dependent variable rS,t+i
stands for spot returns, rF,t+i for futures returns. Wald test stands for an F-test of the joint
significance of RJV Q

t,T and LJV Q
t,T . The estimation period is 1987 - 2013. The differences in

the number of observations is due to data availability for the control variables.

for the left tail premium in the three month regression when the other predictor variables

are is slightly decreased due to the rise in the standard error relative to the model with-

out predictors. For all other regressions, the individual coefficients are significant at the 1%

significance level. Again, a joint F-test for the premia allows us to reject the null of no signif-

icance at all conventional significance levels for all regressions. The adjusted R2s associated

with the spot return regressions are much larger than those for futures returns. At the three

month horizon, the tail measures account for about 9% of the variability in the spot return,

while this number increases to 14% at the six month horizon, constituting almost half of the

in-sample variability explained by all regressors.20 Thus the tail risk measures have strong

predictability for futures and spot price returns in the expected direction, and, judging from

the fit of the regression, this predictability is larger for the spot than for the futures price.

This is consistent with the idea that fears about large oil price fluctuations affect both the

futures and the spot price, and that the convenience yield moves in the same direction as

the futures risk premium.

For forecasting purposes, a high R2 is not always indicative of a good model since it is al-

ways possible to increase the in-sample fit by adding additional regressors without improving

out-of-sample forecasting power. In order to safeguard against a potential in-sample-overfit,

20We also assessed whether the tail risk measures posses incremental forecasting power with respect to
the control variables. This is indeed the case: The incremental adjusted R2 for the regressions including all
variables in comparison with regressions using the control variables only is about 10% and 11% for futures
and spot returns, respectively, for the six months horizon and about 5% and 6% for the three months horizon.
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we perform an out-of-sample cross-validation. Our cross-validation procedure uses the entire

series as both in-sample and out-of-sample data. Specifically, we run repeating regressions

using a single return observation from the original sample as the validation data, and the

remaining observations as the training data.21 This is repeated until each observation in

the sample is used once as the validation data, so that finally every return observation was

treated “out-of-sample” once. The cross-validation statistics is based on the mean squared

prediction error, hence lower values indicate a better fit. In order to evaluate the predictive

out-of-sample performance of our predictors we estimate the forecasting model presented in

equation (27) in the previous section first including the tail premia and then excluding it.

The results are displayed in table (7) in Appendix C. Including the tail premia as predictive

regressors reduces the cross validation statistics substantially for all models considered, indi-

cating that their forecasting power is not only due to in-sample properties. Importantly, the

out-of-sample MSPE for the model including LJV Q
t,T and RJV Q

t,T without additional control

variables as regressors is always lower than the forecast assuming a constant return and the

no-change forecast. In contrast, the model including only the control variables displays a

higher out-of-sample MSPE against the no-change forecast for the spot price regressions,

suggesting that the R2 related to these variables is driven at least in part by in-sample

overfitting.

4.3 Risk or Fear: Where does the predictability come from?

After having provided evidence for the forecasting power of our novel predictors, we now

turn to the question whether the premia a compensation for potential risks or rather de-

scribe the oil market’s attitudes towards risks. From the definition of FIt it follows that for

approximately symmetric jump tails under the P measure,

FIt =
1

T − t
[(
EP
t (LJV P

t,T )− EQ
t (LJV Q

t,T )
)
−
(
EQ
t (LJV P

t,T )− EQ
t (LJV Q

t,T )
)]

≈ 1

T − t
[
EQ
t (LJV Q

t,T )− EQ
t (RJV Q

t,T )
]
. (28)

In this case, as shown by Bollerslev, Todorov, and Xu (2014), FIt will be largely void

of risk compensation associated with the temporal changes in the jump intensities and is

therefore naturally interpreted as a proxy of oil market fears. The notion of a “fear index” is

also warranted because the premia are not directly related to asymmetries in future actual

jump probabilities. In table (8) presented in Appendix C we show that the Q tail variation

21We assure that these returns are completely non-overlapping with the remaining returns by leaving an
out of sample window of ±4 months around the respective return for i = 3 months and ±7 months for i = 6
months.
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measures do not display any forecasting power for the realized jump variation beyond that

predicted by symmetric measures such as the realized variance. In contrast, the forecasting

results shown in table (4) indicate that the return predictability through our novel predictors

is mainly driven by its asymmetry. Here we use the 6 month ahead forecasting regression and

decompose the tail measure in their difference, FIt and a level component RJV Q
t,T +LJV Q

t,T .

Using these variables as single regressors, displayed in columns (2) and (3), shows that

the regression with the fear index as a predictor variable yields a statistically significant

coefficient that indicates that upside fears are associated with decreasing spot price returns.

The R2 for this regression is almost 10%, while the R2 for the regression with the tail risk level

measure is less than 2% and yields an statistically insignificant coefficient.22 These results

are consistent with the idea that time variation in the effective risk aversion of oil market

participants is an important driver of the short run fluctuation of the price of oil. Taken

together, the results presented in this section are confirm evidence for the predictability of

both futures and spot returns by our novel risk indicators.

(1) (2) (3) (4)
Variables rS,t+6 rS,t+6 rS,t+6 rS,t+6

L6.RJV Q
t,T -11.03***

(2.626)

L6.LJV Q
t,T 5.27***

(0.615)
L6.FIt -3.84*** -8.15***

(0.569) (1.559)

L6.(RJV Q
t,T + LJV Q

t,T ) 1.01 -2.88***
(0.881) (1.099)

Adj. R2 0.1419 0.0950 0.0180 0.1419
Obs 318 318 318 318

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Forecasting results for 6 month oil spot returns, denoted by rS,t+6. The estimation
period is 1987 - 2013.

4.4 VAR Estimates on the Impact of the Oil Fear

In this section, we compare our forecasting results with estimates from VAR models, where

we include FIt as a directional measure of oil market uncertainty. The VAR framework

has shown useful for structural analysis of oil price shocks and forecasting the real price

of oil (Kilian 2009; Baumeister and Kilian 2012). Building on the reduced form version of

22Including both the fear index and the level component jointly yields, as in column (4), obviously yields
the same R2 as the baseline.
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the model proposed by Kilian and Murphy (2014), the variables in the estimation order are

oil production (in percentage changes), the global real activity proposed by Kilian (2009),

changes in crude oil inventories, FIt, the six month futures spread (CYt,6) and the nominal

price of oil (in percentage changes).23 In a second exercise, we replace the price of oil by the

percentage change of the first back futures contract.24 The identification of shocks to FIt is

based on a Cholesky-decomposition of the reduced form errors. Including production, real

activity and inventory as the first variables in the VAR ensures the impact of these variables

is already controlled when looking at the impact of shocks to FIt on the oil and futures

price.25 Given the tradeoff between overparameterization and allowing for sufficient lags to

account for business cycle effects, we estimate the VAR with 12 lags.

Figure 2: Responses of the spot price of oil and the six months futures spread to a one
standard deviation shock. The estimates are based on monthly data, 1987:1 - 2012:6. Dashed
lines represent 90% confidence intervals.

Figure (2) plots the impulse response function of oil spot prices and the six months futures

spread to a shock in the oil fears index. Oil spot prices react with an instantaneous increase

of about 2%, and a gradual reversion to previous levels over the following months. The 90

% confidence intervals are plotted around this, highlighting that this impact is statistically

significant over the first months. The six months futures spread reacts with an immediate,

yet much smaller decline and a faster reversion to previous levels. Instead, the response

of inventories to fear shocks, presented in Appendix C, do not provide any evidence for a

23Expressing the price of in log percentage changes ensures that the cumulative impulse responses reflect
the percentage change of oil over the entire period.

24The calculation of the percentage change of the first back futures contract is always based on the same
contract for a given period. However across periods, contracts will differ.

25As pointed out by Kilian and Murphy (2014), inventory will in general also adjust quickly in response
to uncertainty shocks. The results presented here are robust to a change in the ordering of the variables
such that FIt is included before inventories.
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systematic reaction of inventories to FIt.
26 These effects are consistent with the idea that

shocks to upside (downside) fears are associated with an immediate increase (decrease) of

the price of oil that is due to the combination of an increase (decrease) in the net convenience

yield and an decrease (increase) in the risk premium. As such, changes in relative uncertainty

do not require an immediate response of inventory in order to display discernible effects on

prices.

Figure 3: Responses of the spot price of oil to shocks in real activity and the option implied
variance, OILVIX2. The estimates for the responses to the implied variance are based on a
VAR model that contains the same ordering as described in the text and OILVIX2 instead
of FIt. The estimates are based on monthly data, 1987:1 - 2012:6. Dashed lines represent
90% confidence intervals.

For comparison, the responses of spot prices to a shock to real activity and and implied

oil price volatility are presented in figure (3). The reaction of the price of oil to real activity

appears more persistent, yet smaller on impact, whereas the estimated effect of the implied

oil price volatility shocks is largely insignificant. The results are consistent with the idea

that changes in the relative uncertainty about upside and downside fears are an important

driver of short run fluctuations in oil prices and futures returns.

5 Interaction with the Macroeconomy

5.1 Oil and Aggregate Uncertainty

Thus far, we have treated the oil risk factors in isolation from the aggregate asset uncer-

tainty. In this section we address their interaction. A recent strand of literature, building on

26This might also be an indication of the redundancy of inventories when the futures spread is included.
I thank Christiane Baumeister for the comment.
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Bollerslev, Tauchen, and Zhou (2009), has shown that the variance risk premium embedded

in stock market index options and futures is a suitable measure of aggregate uncertainty.

This work has been extended by Bollerslev and Todorov (2011b) and Bollerslev, Todorov,

and Xu (2014), suggesting that a substantial fraction of the variance risk premium and its

forecasting power for stock market and portfolio returns is due to the aggregate “fears” as

measured through the stock market fear index. This raises the question whether the aggre-

gate risk measures proposed by these authors predicts oil spot and future prices beyond the

oil risk measures proposed in this paper. Table (9) in Appendix D shows that the oil and

stock market tail variation measures are indeed highly correlated.27 The left tail oil variation

measure LJV Q
t,T and the stock market fear index FIt,SPX exhibit the highest correlation of

65%.

In table (10) in Appendix D we present the forecasting results for six months futures

and spot price returns, respectively. The aggregate fear index and variance risk premium

appear to contain some explanatory power for the 6 month spot price return regression,

with an R2 of about 5%.28 However, this effect is completely dominated by the oil specific

tail risk variation measures, implying that the oil specific measures already entail relevant

information from the aggregate measures. On a more general level these results also suggest

that time-varying disaster fears embedded in option prices on individual assets, not only on

market indexes, convey important information on individual premia beyond that implied by

the market.

In addition to these results, we also address the question whether LJV Q
t,T and RJV Q

t,T

predict stock market returns. We find little evidence of a stable relationship, since these

forecasting results depend crucially on the sample period, in particular on the inclusion of

data during and after the financial crises. Table (11) in Appendix D shows that prior to the

outbreak of the financial crisis, a relatively high left tail variation measure was associated

with lower stock market returns, and a relatively high right tail variation with higher stock

market returns. However, extending the sample beyond the outset of the financial crisis this

relationship breaks down. These results - in terms of both the significance and signs of the

coefficients - are consistent with the idea that LJV Q
t,T and RJV Q

t,T aggregate different types

of uncertainty that are relevant for oil prices, e.g. oil supply and oil demand uncertainty,

that individually have a very distinct relationship with the aggregate stock market. Prior

to the financial crisis, the most notable event in terms of oil fears was the 1991 Gulf War

27The stock market variance risk premium V RPt,SPX and fear index FIt,SPX are based on S&P 500
index options and futures following the methodology of Bollerslev, Todorov, and Xu (2014) for the years
1996 to 2013. I would like to thank Lai Xu for providing the data on the S&P 500 fear index and Marek
Raczko for providing the data on the S&P 500 variance risk premium.

28The important predictor seems to be V RPt,SPX , a result that is consistent with the work of of Bollerslev,
Todorov, and Xu (2014) who show that V RPt,SPX−FIt,SPX is mainly associated with economic uncertainty,
while FIt,SPX captures attitudes toward risk.
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episode, which is clearly identified with supply risk (Alquist and Kilian 2010). On the other

hand, the financial crisis and its aftermath were associated mainly with uncertainty about

future demand for oil.29.

5.2 Oil Uncertainty and Real Activity

Bernanke (1983) and more recently Elder and Serletis (2010) and Jo (2014) pointed out

that uncertainty about oil prices, rather than the fluctuations per se, can have important

effects on real economic activity. In this section we investigate this hypothesis by using our

novel uncertainty measures to predict industrial production, which is available at a monthly

frequency.

Our regressions, presented in table (12) in Appendix D, indicate that the right tail varia-

tion measure RJV Q
t,T has a statistically significant impact on growth in industrial production,

while the left tail variation measure does not contain any additional information. The incre-

mental R2 from the inclusion of the right tail measure is about 5%, is robust to the inclusion

of oil market and aggregate control variables, and extends also to the 6 month horizon.30

Intuitively, a large RJV Q
t,T is always bad news for the oil importing economy because it can be

due to (i) fears related to supply cuts (2) uncertainty about (global) economic growth, both

of which should have a negative effect on economic activity. In contrast, a large premium

for the left tail might be good news for the economy is the corresponding fears are related

to oil market specific events.

29A different explanation for this result might be that oil derivative markets have only recently become
more integrated in the broader financial system, and that this integration went alongside fundamental changes
between the stock market and oil price relationship (Christoffersen and Pan 2014). We leave this hypothesis
for further research

30These results are confirmed by VAR estimates in a framework proposed by Bloom (2009). The results
are available upon request
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6 Conclusion

Oil prices are difficult to forecast and exhibit wild swings or “excess volatility” that are

difficult to rationalize by changes in fundamentals alone. We find that the jump risk premia

embedded on crude oil future options contain important information on oil market fears and

contribute to the explanation of oil price volatility. These premia are economically large,

vary substantially over time and significantly forecast crude oil futures and spot returns.

This result is robust after controlling for macro-finance and oil market specific variables, and

importantly, for time-varying aggregate disaster fear as measured by S&P500 option implied

tail risk. Instead, our oil uncertainty measures appears to conveniently aggregate oil price

uncertainty derived from different sources, e.g. oil supply and oil demand uncertainty, that

individually have a very distinct relationship with aggregate uncertainty.

We show that oil futures prices overshoot (undershoot) in the presence of upside (down-

side) tail fears in order to allow for smaller (larger) risk premia thereafter. Consistent with

the theory of storage, this overshooting (undershooting) is amplified for the spot price be-

cause of time varying benefits from holding inventory that work in the same direction. These

results are complementary to storage models using risk neutrality, and stress the importance

of time varying risk premia in explanations of large swings in oil prices. On a more general

level it is shown that time-varying disaster fears embedded in option prices on individual

assets, not only on market indexes, convey important information on the risk premia and

price dynamics of these assets.
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7 Appendix: Computation of the Jump Measures

Estimating realized and expected jumps under the statistical mea-

sure

This sections provides further details on the estimation of the jump properties under the

statistical (objective) measure, which are computed from data on 5-minute intraday returns.

We use the notation of Bollerslev and Todorov (2011b) and divide the trading day t into the

[t, t+πt] overnight period and the [t+πt, t+ 1] active trading period, comprising n+ 1 = 54

price observations. Denoting ∆t,if ≡ ft+π+i − ft+π+i−1, where f denotes the logarithm of

the futures price, we have for a suitable threshold αt,i

n∑
i=1

(∆t,if)2 p→
∫ t+1

t+πt

σ2
sds+

∫ t+1

t+πt

∫
R
x2µ(ds, dx) and (29)

n∑
i=1

(∆t,if)2 1|∆t,if≤αt,i|
p→
∫ t+1

t+πt

σ2
sds ≡ CVt. (30)

We allow the truncation levels αt,i to vary with both the daily and the intraday volatility

following Bollerslev and Todorov (2011a). The time-of-day factor, TODj is then computed

via

TODj =

∑N
m=0(∆m(π+n),if)21|∆m(π+n),if |<ᾱ∑N

m=0 |∆m(π+n),if | < ᾱ
/

∑N
m=0

∑n
j=1(∆m(π+n),if)2∑N

m=0

∑n
j=1 1|∆m(π+n),if | < ᾱ

, (31)

where ᾱ = 3
√

Π · 0.5
√

1
N

∑N
m=0

∑n−1
j=1 |∆m(π+n),jf ||∆m(π+n),j+1f |. Given the time-of-day fac-

tor, the time-varying threshold αj,t is then computed as

αj,t = 3(
1

n
)0.49

√
CVt−n,tTODj. (32)

The dynamics of our empirical jumps in equation (24), require an estimate of vP. This

estimate is based on medium and large sized jump tails using the EVT proposed by Bollerslev

and Todorov (2011a). In particular, defining ψ+(x) = ex − 1 and ψ−(x) = e−x, v+
ψ (y) =

v(ln(y+1))
y+1

and v−ψ (y) = v(−ln y)
y

, y > 0, the jump tail measures are

v̄±ψ (x) =

∫ ∞
x

v±ψ (u), (33)

with x > 0 for v̄+
ψ (x), and x > 1 for v̄−ψ (x). Under the assumption that v̄±ψ belong the the

domain of attraction of an extreme value distribution (see Bollerslev and Todorov 2011b),

29



it follows that

1−
v̄±ψ (u+ x)

v̄±ψ
∼ G(u;σ±, ξ±), u > 0, x > 0, (34)

where G(u;σ±, ξ±) is the CDF of a generalized Pareto distribution with

G(u;σ±, ξ±) =

{
1− (1 + ξ±u/σ±)−1/ξ± , ξ± 6= 0, σ± > 0

1− e−u/σ±
, ξ± = 0, σ± > 0.

(35)

Now, for a large threshold tr±, the integrals corresponding to the jump tail measures

under P are a function of the parameter vector

Θ ≡ [σ±, ξ±, α±0 v̄
±
ψ (tr±), α±1 v̄

±
ψ (tr±)], (36)

which are estimated using the exact GMM framework suggested by Bollerslev and Todorov

(2011a). The moment conditions used for estimation are

1

N

N∑
t=1

n∑
i=1

φ±j (ψ±(∆t,if)− tr±)1ψ±(∆t,if)>tr± = 0, j = 1, 2 (37)

1

N

N∑
t=1

n∑
i=1

1ψ±(∆t,if)>tr± − α±0 v̄±ψ − α
±
1 ψ̄
±(tr±)CVt = 0 (38)

1

N

N∑
t=2

(
n∑
i=1

1ψ±(∆t,if)>tr± − α±0 v̄±ψ (tr±)− α±1 v̄±ψ (tr±)CVt

)
CVt−1 = 0, (39)

where

φ±1 (u) = − 1

σ±
+

ξ±

(σ±)2

(
1 +

1

ξ±

)(
1 +

1 + ξ±u

σ±

)−1

and (40)

φ±2 (u) =
1

(ξ±)2
ln

(
1 +

ξ±u

σ±

)
− u

σ±

(
1 +

1

ξ

)(
1 +

ξ±u

σ±

)−1

(41)

are the scores associated with the log-likelihood function of the generalized Pareto distribu-

tion. Facing the trade off between a sufficient number of observations of medium and large

jumps on the one hand, and the approximation of the jump tails by the generalized Pareto

distribution on the other, our choice of tr± corresponds to a jump in the log price of ±1.2%.

In total, we detect 3266 (3756) positive (negative) jumps, out of which 134 (198) are above

the threshold. The large jumps, displayed in figure (4), seem to cluster and the occurrences

of positive and negative jumps appear relatively symmetric.

The parameter estimates for our specification of the statistical large jumps’ dynamics,
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Figure 4: Detected large jumps in the log price. The threshold is ±1.2%, the estimates are
based on 5-minute intraday futures data from 1988 to 2013.

presented in table (5) provide further evidence for this symmetry.

Left Tail Right Tail

Parameter Estimate St. Error Parameter Estimate St.Error

ξ− 0.3107 0.0707 ξ+ 0.3603 0.1054
100 · σ− 0.4317 0.0429 100 · σ+ 0.3446 0.0457
α−0 -0.1194 0.0059 α+

0 -0.0906 0.0046
α−1 11.7926 0.4172 α+

1 8.7404 0.3248

Table 5: Estimates for P tail parameters. The estimates are based on 5-minute intraday
futures data from 1988 to 2013.

8 Appendix: Data and Empirical Measures
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Tail Risk and Traditional Volatility Measures

Figure 5: The figure on top displays the left tail (green) and right tail (blue) variation
measures under Q. The figure on the bottom displays the traditional measures EQ

t (QVt,T )
(dashed line) and V RPt ≡ EQ

t (QVt,T ) − RVt,T (red line). All measures are presented in
annualized form. The tail measures are computed for the threshold kt = 3× BS implied
volatility. Shaded areas represent NBER recessions.

Robustness to the choice of kt

Table (6) displays the estimated tail risk premia for a larger thresholds, kt = 4 × the at-

the-money Black-Scholes implied volatility and kt = 6.8 × the at-the-money Black-Scholes

implied volatility.
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Obs. Mean S.d.

kt = 4 × ATM Black-Scholes implied volatility

LJV Q
t,T 324 0.0113 0.0130

RJV Q
t,T 324 0.0032 0.0041

kt = 6.8 × ATM Black-Scholes implied volatility

LJV Q
t,T 324 1.060 ·10−3 1.467 ·10−3

RJV Q
t,T 324 0.188 ·10−3 0.334 ·10−3

Table 6: Summary Statistics for LJV Q
t,T and RJV Q

t,T based on pooled monthly data; evaluated
at kt = 4 × and kt = 6.8 × Black-Scholes implied volatility.

9 Appendix: Predictability of Futures and Spot Re-

turns

Cross validation

Futures Spot

rF,t+3 rF,t+3 rF,t+6 rF,t+6 rS,t+3 rS,t+3 rS,t+6 rS,t+6

Controls No Yes No Yes No Yes No Yes

No change forecast 30.5 - 55.0 - 34.3 - 59.7 -

With RJV Q
t,T ,LJV Q

t,T 29.1 26.7 48.9 41.0 33.0 33.6 50.8 57.1

Without RJV Q
t,T , lJV Q

t,T 29.8 28.1 51.8 46.7 33.9 35.8 52.2 65.2

Table 7: Cross validation statistics for forecasting models with and without RJV Q
t,T and

LJV Q
t,T . The dependent variablerF,t+3 stands for 3 month futures returns, rF,t+6 for six

month futures returns, rS,t+3 for three month spot returns and rS,t+6 for six month spot
returns. Each return is evaluated out of sample once, with a 7 (13 in the case of the 6
months prediction) out-of-sample window around the corresponding return. The control
variables are those described in section 4. Each model is evaluated twice: Once including
the the predictors RJV Q

t,T and RJV Q
t,T , and once excluding them. A lower statistics indicates

a lower out-of-sample MSPE. Values are multiplied by 100. Sample period is 1989 - 2013.
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Forecasting empirical jump variations

(1) (2) (3) (4)

Variables Emp. LJV Emp. LJV Emp. RJV Emp. RJV

L.RV 2 0.00*** 0.00*** 0.00*** 0.00**

(0.001) (0.001) (0.001) (0.001)

L.RJV Q
t,T -0.01 0.02*

(0.016) (0.011)

L.LJV Q
t,T 0.01 -0.00

(0.004) (0.004)

Obs. 312 312 312 312

Adj. R2 0.44 0.46 0.27 0.28

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Forecasting results for empirical jumps. Emp. LJV stands for the sum of squared
log returns from large negative jumps in the futures price, Emp. RJV stands for the sum
of squared log returns from positive negative jumps. RV 2 is the average monthly realized
variance.

10 Appendix: Interaction with the Macroeconomy

Robustness to Aggregate Uncertainty and Fears

RJV Q
t,T LJV Q

t,T FIt,SPX V RPt,SPX

RJV Q
t,T 1.00

LJV Q
t,T 0.85 1.00

FIt,SPX 0.60 0.65 1.00

V RPt,SPX 0.48 0.62 0.37 1.00

Table 9: Correlation between monthly oil risk measures and monthly stock market uncer-
tainty measures. FIt,SPX is the fear index derived from S&P500 index options, V RPt,SPX
the variance risk premium derived from S&P500 index options and futures as described in
Bollerslev, Todorov, and Xu (2014). The sample period is 1996:1 to 2013:8.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables rS,t+6 rS,t+6 rS,t+6 rS,t+6 rS,t+6 rF,t+6 rF,t+6 rF,t+6 rF,t+6 rF,t+6

V RPt,SPX 0.03* 0.03 0.01 0.02 0.02 0.00

(0.019) (0.020) (0.020) (0.012) (0.012) (0.017)

FIt,SPX , 0.09** 0.05 0.02 0.01 -0.01 -0.02

(0.036) (0.037) (0.049) (0.031) (0.030) (0.060)

RJV Q
t,T -14.98* -14.33* -14.88** -13.91*

(7.902) (7.729) (7.125) (7.253)

LJV Q
t,T 5.72*** 4.97*** 4.44*** 4.35**

(1.792) (1.815) (1.491) (1.731)

Adj. R2 0.05 0.03 0.05 0.14 0.13 0.01 0.00 0.01 0.06 0.06

Obs. 210 210 210 210 210 210 210 210 210 210

Newey-West Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 10: Forecasting results for six months oil futures and spot market returns. The
dependent variable rS,t+6 denotes the six months oil spot return, rF,t+6 six months futures
excess returns. RJV Q

t,T and LJV Q
t,T are the right tail oil variation measure and left tail oil

variation measure. FIt,SPX is the fear index computed from S&P 500 as proxied through
the left tail variation measure, suggested in Bollerslev, Todorov, and Xu 2014. V RPt,SPX is
the variance risk premium computed from S&P 500 futures and options. The sample period
is 1996 - 2013.

Forecasting stock market returns

(1) (2)

1989 - 2013 1989 - 07/2008

Variables rMkt,t+6 rMkt,t+6

L6.RJV Q
t,T -1.50 5.78***

(3.349) (1.409)

L6.LJV Q
t,T 1.36 -3.84***

(1.075) (1.344)

Observations 294 229

Newey-West standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 11: Forecasting results for stock market returns. rMkt,t+6 is the six months market
excess return using CRSP data.
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Forecasting real activity

(1) (2) (3) (4)

Variables rIP,2 rIP,2 rIP,2 rIP,2

L2.RJV Q
t,T -0.26*** -0.27*** -0.28**

(0.084) (0.070) (0.133)

l2.rIP,2 0.35*** 0.25*** 0.25*** 0.24***

(0.057) (0.071) (0.066) (0.073)

L4.rIP,2 0.30*** 0.22** 0.22** 0.23**

(0.115) (0.094) (0.094) (0.093)

L6.rIP,2 -0.04 -0.04 -0.04

(0.085) (0.078) (0.075)

L2.rSPX,1 0.03***

(0.010)

L2.rWTI,1 0.00

(0.006)

L2.OILVIX2 0.00

(0.012)

L2.LJV Q
t,T -0.01

(0.038)

Observations 316 316 316 316

Adj. R2 0.29 0.34 0.35 0.37

Newey-West standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 12: Forecasting results for industrial production growth. rIP,2 is the two month growth
rate of US industrial production, rSPX,1 is the one month stock market return, rWTI,1 is the
one month increase in the crude oil spot price, OILVIX2 is the option implied oil market
volatility.
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