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Abstract

We investigate how households choose where to live and how neighborhoods affect
the ability of children. We use detailed panel data to estimate a dynamic model of
neighborhood choice at the Census tract level for renters in Los Angeles county. We
then use different panel data for Los Angeles to estimate tract-level “neighborhood ef-
fects,” defined as the impact of neighborhoods on child cognitive ability. We conclude
by simulating a Moving-to-Opportunity type experiment with our model, in which
people residing in high poverty neighborhoods are given a rental voucher to move to
a low-poverty Census tract. Child ability does not improve in these simulations, as
households receiving vouchers tend to move to the least expensive eligible neighbor-
hoods with the lowest neighborhood effects. If these households had chosen a Census
tract randomly among the eligible set, child ability would have improved significantly.
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1 Introduction

In this paper we investigate how households optimally choose a neighborhood in which to

live and how neighborhoods affect the cognitive ability of children. These topics have been

studied individually before, but our approach is different and our data are new. We show

that neighborhoods vary in their impact on child ability, and parents differ in willingness

to pay to move to neighborhoods that, on average, significantly improve child ability. We

estimate that optimal neighborhood choices are most sensitive to rental prices for the poorest

households in our sample and this is key to understanding some of the empirical results of

the Moving-to-Opportunity experiment.

Our paper has three main sections, and the first two reflect contributions to heretofore

distinct literatures. In our first section, we specify and estimate a dynamic model of optimal

location choice using detailed micro panel data, in the spirit of Kennan and Walker (2011)

and Bayer, McMillan, Murphy, and Timmins (2015). We estimate the model using panel data

from the Federal Reserve Bank of New York (FRBNY) Consumer Credit Panel / Equifax.

This is a 5% random sample of U.S. adults with an active credit file and any individuals

residing in the same household. To our knowledge we are the first to use these data to

estimate a location choice model. We restrict our sample to renters residing in Los Angeles

County. We study renters to mitigate the influence of availability of credit on location

choice, and we focus on Los Angeles County to match our results with estimates of the

impact of neighborhoods on child ability, discussed next. Our estimation sample from the

FRBNY Consumer Credit Panel / Equifax data consists of more than 1.75 million person-

year observations. This huge sample allows us to estimate a full vector of model parameters

for many discrete “types” of people. Our use of many types in estimation minimizes the role

of unobservable shocks in explaining differences in optimal location choices. We find that for

many types of households, utility varies greatly across Census tracts; and, for many Census

tracts, the utility of living in the tract varies widely across types.

In our second section, we estimate the impact of neighborhoods, in our case specific

Census tracts in Los Angeles county, on the cognitive ability of children. There is a large

literature in the social sciences studying these “neighborhood effects” on child ability, ado-

lescent behavior, health, labor earnings, and other individual level outcomes. Empirical

studies using observational data often find strong associations between neighborhood qual-

ity, broadly defined, and positive individual-level outcomes: See Leventhal and Brooks-Gunn

(2000) and Durlauf (2004) for recent surveys. While these studies typically attempt to ac-

count for selection issues,1 the fact that individuals endogenously sort into neighborhoods

1For example, Cutler and Glaeser (1997) study the impact of segregation on outcomes of African-
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leaves open the possibility of non-causal explanations for these patterns.2

We make two contributions to this literature. First, we use a new longitudinal dataset in

estimation, the Los Angeles Family and Neighborhood Survey (LA FANS). The LA FANS

data allow for substantially richer controls than are typically available in observational studies

of neighborhood effects. Second, we estimate the impact of neighborhoods on child ability

using a “value-added approach”, in which changes in student ability over time, as measured

by changes in math and verbal test scores, are regressed on neighborhood fixed effects and

a set of individual-level controls including, most importantly, lagged child test scores. The

value-added approach has been applied widely in assessing teacher quality, for example Kane

and Staiger (2008) and Chetty, Friedman, and Rockoff (2014), but has not yet been used in

the neighborhood effects literature.

The key advantage of the value-added approach for our application is that the method

recovers estimates of the effect of specific neighborhoods on child ability, as compared to the

average effect of neighborhoods associated with particular observable characteristics such

as average income level and racial composition, the typical approach in the neighborhood-

effects literature. We estimate economically important variation in neighborhood value-

added across Census tracts in Los Angeles County: Our findings imply that 10 years of

exposure to a Census tract providing value added one standard deviation above the mean

tract, on average, boosts the level of a child’s ability in the cross-section by one-half of one

standard deviation. In support of a causal, as opposed to selection-driven, interpretation of

our neighborhood value-added estimates, we show that after we have controlled for children’s

lagged test scores and demographics, controlling additionally for variables such as parental

ability, parental demographics, and household income and assets, which are strongly predic-

tive of child ability in simple cross-sectional regressions, add very little in explanatory power

for changes over time in child test scores.

In the third section, we reconcile the apparently contradictory conclusions of the neigh-

borhood effects literature and the studying the impact of the Moving-to-Opportunity (MTO)

experiment. The Moving to Opportunity experiment was a randomized control trial begin-

ning in the 1990s that randomly assigned a group of households with children eligible to live

in low income housing projects in five U.S. cities to three different groups; (i) a treatment

group that received a Section 8 housing voucher that in the first year could be applied only

in Census tracts with a poverty rate under 10% and could be applied unconditionally there-

Americans using topographical features of cities as instruments for location choice and Aaronson (1998)
measures neighborhood effects by studying outcomes of siblings at least three years apart in age after a
move.

2See Aaronson (1998) for examples of instruments used by other researchers in this field and their potential
limitations.
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after, (ii) a second treatment group that received a comparable Section 8 housing voucher

with no location requirement attached, and (iii) a control group that received no voucher.

Voucher amounts are set such that after applying the voucher, households spend no more

than 30% of their income on rent. Summarizing the medium to long term impacts of MTO,

Sanbonmatsu, Kling, Duncan, and Brooks-Gunn (2006), Kling, Liebman, and Katz (2007)

and Ludwig, Duncan, Gennetian, Katz, Kessler, Kling, and Sanbonmatsu (2013) show that

on average the MTO treatment successfully reduced exposure to crime and poverty and im-

proved the mental health of female children, but failed to improve child ability, educational

attainment, or physical health.3

Many view the results from MTO as evidence against the hypothesis that neighborhoods

can have large effects on a child’s development of skills and educational attainment. Our view

is that the results are open to multiple interpretations. One possibility is that, indeed, the

findings of large neighborhood effects from earlier observational studies are driven entirely by

selection of families into neighborhoods, and that true but unobserved neighborhood effects

are small or non-existant. A second interpretation is that families receiving a voucher in

the MTO experiment chose their neighborhoods after considering how that voucher changed

the relative price of eligible neighborhoods. Thus, depending on how neighborhoods were

chosen by MTO participants after receiving a voucher, the intent-to-treat effect of the MTO

subsidy offer may have differed substantially from the average treatment effect of lower

poverty neighborhoods on outcomes: See Aliprantis and Richter (2016), Clampet-Lundquist

and Massey (2008) and Pinto (2014) for related discussions.

In the spirit of Davis and Foster (2005) and Todd and Wolpin (2006), we run counter-

factual simulations of our decision model to better understand why the MTO experiment

did not improve child outcomes if neighborhood effects are in fact important.4 To start, we

replicate the environment created by the MTO experiment. We refer to this simulation as

“MTO-A.” To implement MTO-A, we require an estimate, by type, of how the utility of

each neighborhood in Los Angeles would change given the change in rental prices induced

by the voucher. We extract an estimate of the rental-price sensitivity of each of our types

of households using the instrumental variables approach of Bayer, Ferreira, and McMillan

3Recent work by Chetty, Hendren, and Katz (2015) argues that MTO positively affected adult wages
for children who were young at the time their family received a voucher, consistent with other research
suggesting that housing vouchers positively affect female adult wages Andersson, Haltiwanger, Kutzbach,
Palloni, Pollakowski, and Weinberg (2016). Given the findings from Sanbonmatsu, Kling, Duncan, and
Brooks-Gunn (2006) that MTO did not cognitively affect the cognitive ability of this group, presumably the
effects on earnings operate through a different channel.

4Galiani, Murphy, and Pantano (2015) estimate a structural model of location choice directly using MTO
data, and run counterfactual experiments with their estimated model, but do not study the impact of MTO
on child well-being.
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(2007).

In MTO-A, we compute the optimal neighborhood choices of households that begin the

sample in neighborhoods with public housing developments but are offered a rental voucher

valid for use in low-poverty-rate neighborhoods in the first year and can live anywhere and

continue to receive a voucher in subsequent years. Importantly, we show that households

that use the voucher move to low-poverty neighborhoods with the lowest neighborhood value-

added, on average. Since the chosen neighborhoods have low value-added, child test scores

do not improve. So, why does the model predict this outcome? We demonstrate that the

types of households likely to receive an MTO voucher are very sensitive to rental prices;

and the highest-value-added neighborhoods in low-poverty tracts are, on average, the most

expensive. To prove that selection on rental prices is key, we perform another simulation

we call “MTO-B” in which we randomly assign MTO-eligible households to neighborhoods

with similar poverty rates as those chosen in the MTO-A. In this simulation, we predict that

child test scores significantly improve. In other words, our counterfactual simulations suggest

that parents use the MTO voucher to move to low-poverty neighborhoods, but they choose

relatively cheap and low value-added neighborhoods and child outcomes do not improve.

2 Location Choice Model and Estimates

2.1 Model

We consider the decision problem of a household head deciding where his or her family

should live. As in Kennan and Walker (2011) and Bayer, McMillan, Murphy, and Timmins

(2015), we model location choices in a dynamic discrete choice setting. For purposes of

exposition, we write down the model describing the optimal decision problem of a single

family which enables us to keep notation relatively clean. When we estimate the parameters

of this model, we will allow for the existence of many different “types” of people in the data.

Each type of person will face the same decision problem, but the vector of parameters that

determines payoffs and choice probabilities will be allowed to vary across types of people.

The family can choose to live in one of J locations. Denote j as the family’s current

location. We write the value to the family of moving to location ` given a current location

of j and current value of a shock ε` (to be explained later) as

V (` | j, ε`) = u (` | j, ε`) + βEV (`) (1)

In the above equation EV (`) is the expected future value of having chosen to live in ` today.
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We assume the household problem does not change over time, explaining the lack of time

subscripts.

u is the flow utility the agent receives today from choosing to live in ` given a current

location of j and a value for ε`. We assume u is the simple function

u (` | j, ε`) = δ` − κ · 1`6=j + ε` (2)

δ` is the flow utility the household receives this period from living in neighborhood `, net of

rents and other costs; κ is the sum of all costs (utility and financial) a household must pay

when it moves to a different neighborhood i.e. when ` 6= j; and ε` is a random shock that is

known at the time of the location choice. ε` is assumed to be iid across locations, time and

people. The parameters δ` and κ may vary across households, but for any given household

δ` and κ are assumed fixed over time. ε` induces otherwise identical households living at the

same location to optimally choose different future locations. Note that δ` is the type-specific

indirect utility of living in neighborhood `, and this utility may depend on attributes such

as amenities, crime, school quality, pollution, access to public transportation, and possibly

child value-added, a point to which we return later.

Denote ε1 as the shock associated with location 1, ε2 as the shock with location 2, and

so on. In each period after the vector of ε are revealed (one for each location), households

choose the location that yields the maximal value

V (j | ε1, ε2, . . . , εJ) = max
`∈1,...,J

V (` | j, ε`) (3)

EV (j) is the expected value of (3), where the expectation is taken with respect to the vector

of ε.

While this model looks simplistic, it is the workhorse model used to study location choice.

Differences in models reflect specific areas of study and availability of data. For example,

in their study of migration across states, Kennan and Walker (2011) replace δ with wages

after adjusting for cost of living and allow κ to vary with distance. Bishop and Murphy

(2011) and Bayer, McMillan, Murphy, and Timmins (2015) specify δ as a linear function of

spatially-varying amenities with the aim of recovering individuals’ willingness to pay for those

amenities. We allow the δ’s to vary flexibly across neighborhoods and across households,

with the aim of realistically forecasting the substitution patterns that are likely to occur in

response to government policies that change the relative prices of neighborhoods.

When the ε are assumed to be drawn i.i.d. from the Type 1 Extreme Value Distribution,
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the expected value function EV (j) has the functional form

EV (j) = log

{
J∑
`=1

exp Ṽ (` | j)

}
+ ζ (4)

where ζ is equal to Euler’s constant and

Ṽ (` | j) = δ` − κ · 1` 6=j + βEV (`) (5)

That is, the tilde symbol signifies that the shock ε` has been omitted. Additionally, it can

be shown that the log of the probability location ` is chosen given a current location of j,

call it p (` | j), has the solution

p (` | j) = Ṽ (` | j) − log

{
J∑

`′=1

exp
[
Ṽ (`′ | j)

]}
(6)

Subtract and add Ṽ (k | j) to the right-hand side of the above to derive

p (` | j) = Ṽ (` | j)− Ṽ (k | j) − log

{
J∑

`′=1

exp
[
Ṽ (`′ | j)− Ṽ (k | j)

]}
(7)

One approach to estimating model parameters such as Rust (1987) is to solve for the value

functions at a given set of parameters, apply equation (7) directly to generate a likelihood

over the observed choice probabilities, and then search for the set of parameters that maxi-

mizes the likelihood. This approach is computationally intensive because it requires solving

for the value functions at each step of the likelihood, which involves backwards recursions

using equation (4). In cases such as ours, involving many parameters to be estimated, this

approach is computationally infeasible.

Instead, we use the approach of Hotz and Miller (1993) and employed by Bishop (2012)

in similar work to proceed. This approach does not require that we solve for the value

functions. Note that equation (5) implies

Ṽ (` | j)− Ṽ (k | j) = δ` − δk − κ [1`6=j − 1k 6=j] + β [EV (`)− EV (k)] (8)

But from equation (4),

EV (`)− EV (k) = log

{
J∑

`′=1

exp Ṽ (`′ | l)

}
− log

{
J∑

`′=1

exp Ṽ (`′ | k)

}
(9)
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Now note that equation (6) implies

p (k | `) = Ṽ (k | `) − log

{
J∑

`′=1

exp
[
Ṽ (`′ | `)

]}
(10)

p (k | k) = Ṽ (k | k) − log

{
K∑
`′=1

exp
[
Ṽ (`′ | k)

]}
(11)

and thus

log

{
J∑

`′=1

exp
[
Ṽ (`′ | `)

]}
− log

{
K∑
`′=1

exp
[
Ṽ (`′ | k)

]}

is equal to

Ṽ (k | `)− Ṽ (k | k) − [p (k | `)− p (k | k)]

= −κ · 1` 6=k − [p (k | `)− p (k | k)]
(12)

The last line is quickly derived from equation (5). Therefore,

EV (`)− EV (k) = − [p (k | `)− p (k | k) + κ · 1`6=k] (13)

and equation (8) has the expression

Ṽ (` | j)− Ṽ (k | j) (14)

= δ` − δk − κ [1 6̀=j − 1k 6=j] − β [p (k | `)− p (k | k) + κ · 1`6=k]

Combined, equations (7) and (14) show that the log probabilities that choices are ob-

served are simple functions of model parameters δ1, . . . , δJ , κ and β and of observed choice

probabilities. In other words, a likelihood over choice probabilities observed in data can be

generated without solving for value functions.

2.2 Data and Likelihood

We estimate the model using panel data from the FRBNY Consumer Credit Panel /

Equifax. The panel is comprised of a 5% random sample of U.S. adults with an active credit

file and any individuals residing in the same household as an individual from that initial 5%

sample.5 For years 1999 to the present, the database provides a quarterly record of variables

5The data include all individuals with 5 out of the 100 possible terminal 2-digit social security number
(SSN) combinations. While the leading SSN digits are based on the birth year/location, the terminal SSN
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related to debt: Mortgage and consumer loan balances, payments and delinquencies, and

some other variables we discuss later. The data does not contain information on race,

education, or number of children and it does not contain information on income or assets

although it does include the Equifax Risk ScoreTM which provides some information on the

financial wherewithal of the household as demonstrated in Board of Governors of the Federal

Reserve System (2007). Most important for our application, the panel data includes in each

period the current Census block of residence. To match the annual frequency of our location

choice model, we use location data from the first quarter of each calendar year. Other authors

have used the FRBNY Consumer Credit Panel / Equifax data to study the relationship of

interest rates, house prices and credit (see Bhutta and Keys (2015) and (Brown, Stein,

and Zafar, 2013)) and the impact of natural disasters on household finances (Gallagher and

Hartley, 2014), but we are the first to use this data to estimate an optimal location-choice

model.

We restrict our sample to individuals who, from 1999 through 2013, are never observed

outside of Los Angeles county and who never hold a home mortgage, yielding 1,787,558

person-year observations. We study renters to mitigate any problems of changing credit

conditions and availability of mortgages during the sample window; and we study Los Angeles

in particular to link our estimates of utility to measures of neighborhood effects on child

outcomes we estimate for each Census tract in Los Angeles (to be discussed later). We

exclude from our estimation Census tracts with fewer than 150 rental units and tracts that

are sparsely populated in the northern part of the county.6 The panel is not balanced, as

some individuals’ credit records first become active after 1999.

An advantage of the size of our data is that we can estimate a full set of model pa-

rameters for many “types” of people, where we define a type of person based on observable

demographic and economic characteristics. Previous studies of neighborhood choice such as

Bayer, McMillan, Murphy, and Timmins (2015) have had access to much smaller data sets

and as a result have had to restrict variation in model parameters across the population.

Table 1 compares sample statistics from the FRBNY Consumer Credit Panel / Equifax

data to Census data for the tracts in Los Angeles County. This table includes data for

both owners and renters. Column (2) shows the implied total population of adults ages

18-64 in the FRBNY Consumer Credit Panel / Equifax data, computed as twenty times

the total number of primary individuals, and (3) shows the average population counts of

adults from the 2000 and 2010 Census. The table shows that coverage in the low poverty

digits are essentially randomly assigned. A SSN is required to be included in the data and we do not capture
the experiences of illegal immigrants; however, a SSN is required to receive a housing voucher.

6On average, each Census tract in Los Angeles has about 4,000 people.
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Table 1: Comparison of Equifax and Census Data

Poverty Avg. Population 2000-2010 Equifax Pct. w/ Mortgage 2008-2012
Rate (%) Equifaxa Censusb Share Equifaxc ACSd

(1) (2) (3) (4) (5) (6)
0-5 610,336 654,004 93.3% 61.6% 62.6%
5-10 1,395,831 1,478,114 94.4% 50.0% 50.2%
10-15 1,033,076 1,135,194 91.0% 40.5% 39.2%
15-20 751,098 870,869 86.2% 37.3% 34.9%
20-25 630,830 761,841 82.8% 30.7% 26.9%
>25 1,085,466 1,497,545 72.5% 23.9% 19.0%

Public Housinge 34,988 42,431 82.5% 27.0% 23.9%

Notes:
a Data are computed as 20 times the average (1999-2014) number of Equifax primary indi-
viduals ages 18-64.
b Data shown are the average (2000 and 2010) of the Census tract population ages 18-64.
c Data are the average share of households in Equifax with a mortgage, 2008-2012.
d Data are the average share of households in the American Community Survey tract-level
tabulations with a mortgage, 2008-2012.
e Data shown are for 13 tracts with 250+ public housing units and above 10% poverty rate
in 2000.

tracts is very high, above 90%. Coverage remains high but falls for the higher-poverty tracts,

either because many individuals lack credit history or do not have a social security number.

Columns (5) and (6) compare the percentage of households with a mortgage in the two data

sets. Not surprisingly, the percentages fall quite dramatically with the poverty rate, and

generally speaking the percentages reported in the two data sets are quite close.

We stratify households into types using an 8-step stratifying procedure. We begin with

the full sample, and subdivide the sample into smaller “cells” based on (in this order): The

racial plurality of the 2000 Census block of residence (4 bins),7 5 age categories (cutoffs at

30, 45, 55, and 65), number of adults in the household (1, 2, 3, 4+), and then the presence

of an auto loan, credit card, student loan and consumer finance loan. We do not subdivide

cells in cases where doing so would result in at least one new smaller cell with fewer than

20,000 observations. In a final step applied to all bins, we split each bin into three equally-

populated types based on within-bin credit-score terciles. After all the dust settles, this

procedure yields 144 types of households.

7We assign race based on the racial plurality of all persons in the Census block, owners and renters. We
expect that the geography of the Census block is small enough that the racial plurality of renters will be
identical to that of the entire block. For individuals who enter the sample after 1999, we classify them based
on the racial plurality of the block where they are first observed, which in most cases is 1999.
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Figure 1: Location Choices of 2-adult black households w/ <580 Equifax Riskscore

<10% Poverty
Most Chosen <10% Poverty
>10% Poverty
Most Chosen >10% Poverty

The benefit of working with a data set like the FRBNY Consumer Credit Panel / Equifax

data is that its sheer size allows estimates of the substitutability of neighborhoods, i.e. the

vector of δj, to vary based on a rich set of observables, explaining why we use so many

types. Much smaller panel data sets simply do not allow for this and the number of types

in estimation is typically small: For example, Kennan and Walker (2011) use 2 types in

estimation. A few graphs from our data are instructive. Figure 1 shows the typical location

choices made by type “133” in our sample: A 2-adult household with an Equifax Riskscore

below 580 and first observed living in a Census block that is predominantly black. The light

blue areas show all Census tracts with poverty rates less than 10% and the tan areas show all

Census tracts with higher poverty rates. The areas in dark blue show the most chosen low-

poverty Census tracts for this type and the areas in black show the most chosen high-poverty

tracts. Figure 1 shows this type predominantly clusters its location choices in one crescent-

shaped area in the south-central part of the county. Figure 2 shows the same set of location

choices for type “20” in our sample, a 2-adult household with a 590-656 Equifax Riskscore

first observed in a predominantly Hispanic Census block. Comparing figures 1 to 2, few

of the most popular neighborhood choices overlap of these two types. If, counterfactually,

we assumed that the vector of δj were the same, the model would attribute the systematic

variation in optimal neighborhood choices of the two types entirely to differences in the i.i.d.

utility shocks experienced.
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Figure 2: Location Choices of 2-adult Hispanic households w/ 590-656 Equifax Riskscore

<10% Poverty
Most Chosen <10% Poverty
>10% Poverty
Most Chosen >10% Poverty

Our sample is comprised of 1,748 Census tracts. Allowing a separate value of δ for

each tract and for each type would require estimating more than 250,000 parameters. For

parsimony, for each type we specify that the utility of location j, δj, is a function of latitude

(latj) and longitude (lonj) of that location according to the formula

δj =
K∑
k=1

akBk (latj, lonj) (15)

The Bk are parameter-less basis functions. For each type, we use K = 178 basis functions.

Additionally, we allow the values of ak to vary for tracts above and below 10% poverty

threshold. Inclusive of the moving cost parameter, we estimate 2×178+1 = 357 parameters

per type. With 144 types, we estimate a total of 51, 408 parameters.

To define the log likelihood that we maximize we need to introduce some more notation.

Let i denote a given household, t a given year in the sample, jit as person i′s starting location

in year t and `it as person i′s observed choice of location in year t. Denote τ as type and the

vector of parameters to be estimated for each type as θτ . The log likelihood of the sample is∑
τ

∑
i∈τ

∑
t

p (`it | jit; θτ ) (16)

p (.) is the model predicted log-probability of choosing `it given jit. For each τ we use the
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Figure 3: Indirect Utility, Type 133
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quasi-Newton BFGS procedure to find the vector θτ that maximizes the sample log likelihood.

2.3 Estimates and Model Fit

Our estimation procedure ultimately yields estimates of δj and κ for each type to match

model-predicted moving probabilities to those in the data. Figures 3 and 4 show the surface

of indirect utilities across Los Angeles County that we estimate for types 133 and 20, re-

spectively, such that the model can replicate as best as possible the location choices shown

in figures 1 and 2. These figures illustrate the flexibility of our specification. These surfaces

are quite different, reflecting the very different optimal location choices of these types.

Due to our large number of types and tracts, it is impossible to report all parameter

estimates. Instead, we summarize the estimates by examining the model’s in-sample fit.

Figure 5 compares actual and model-predicted migration rates in our sample. About 8-1/2

percent of our sample moves to a different tract in each year, and that percentage falls from

just above 11 percent for those under 30 to just above 3 percent for those aged 65 and above.

Figure 6 shows a more detailed comparison of model-predicted and annual migration
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Figure 4: Indirect Utility, Type 20
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rates for households that choose to move. The tracts from which people are moving are split

into six groupings based on the poverty rate of the originating tract: 0-5, 5-10, 10-15, 15-20,

20-25 and >25. For each of these groupings, the probability of choosing a destination tract

of a given poverty rate is plotted for the data (dark blue solid line) and as predicted by the

model (light blue dotted line). Figure 6 shows model fit for very low-probability moves,8 and

in our view, this figure shows that by and large the model fits the data impressively. Focusing

on the negatives, the model tends to over-predict moves involving large changes in poverty

rates. The panels in the top row show the model over-predicts moves from low poverty tracts

to high poverty tracts and the bottom-right panel shows the model over-predicts moves from

the highest to lower poverty tracts.

2.4 Type-Specific Sensitivity to Rent

To understand the impact of a rent subsidy program such as MTO on neighborhood

choice, we need to understand how utility of each neighborhood varies with rents paid to live

in that neighborhood. Denote as δ̃jτ our estimate of indirect utility of neighborhood j for

given type τ . To make progress, we specify that δ̃jτ is a linear function of rent, observable

characteristics of tract j, Oj, and unobserved characteristics of tract j, ζj

δ̃jτ = −ατ · rentj + λτ · Oj + ζj (17)

The parameter α, the rate at which indirect utility varies with rents, cannot be estimated

using OLS because equilibrium rents will almost certainly be correlated with unobserved but

valued characteristics of neighborhoods, ζj. An instrument is required. We use a three-step

IV approach to estimate α that is common in the IO and Urban literature, for example

Bayer, Ferreira, and McMillan (2007).

In the first step of our procedure, we include characteristics of the housing stock 0-5

miles from tract j in Oj and use characteristics of the housing stock 5-20 miles from the

tract as instruments. These instruments are assumed to affect equilibrium rent in j but do

not directly affect δj, the utility in tract j.9 The F-statistic arising from this first step is 7.

In the second step, we use estimates of α and λ from the first step, call them α̂τ and λ̂τ ,

8Recall the unconditional probability of any move is less than ten percent.
9The intuition for the validity of these instruments arises directly from the Rosen-Roback model. Consider

two pairs of tracts, (A,B) and (A′, B′), with A and A′ providing identical direct utility and the housing
stock in B′ of higher quality than the housing stock in B. Assume one set of households chooses between
A and B and a different set of households chooses between A′ and B′. In equilibrium, A will have a higher
rental price than A′ because B is of lower quality than B′, despite the fact that A and A′ yield identical
utility.

15



Figure 6: Poverty Category Transitions t−1 to t, Conditional on Moving
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to construct a new surface of indirect utilities for each type abstracting from unobservables

as

δ̂jτ = −α̂τ · rentj + λ̂τ · Oj (18)

We simulate the model using this specification for indirect utility and adjust rentj for all j

until the simulated steady-state number of households in any tract is equal to the average

number of households in our estimation sample in that tract. This procedure determines

market-clearing rents in all tracts in the absence of unobserved amenities. We use these

rents as instruments to estimate alpha in the third and final step with an F-statistic of

34. Intuitively, the F-statistic rises from 7 to 34 because the first step only uses information

about the quality of substitutes for each tract individually whereas the third step uses similar

information for all tracts.

We find remarkable variation in our estimates of α by type. We summarize this variation

in Figure 7 which graphs the average value of α by initial Census tract of residence for the

people in our estimation sample.10 The figure shows that people living in high poverty tracts

are, on average, more than twice as sensitive to changes in rent as people living in the lowest

poverty areas.

3 Neighborhood Effects

In this section, we use confidential panel data from the Los Angeles Family and Neigh-

borhoods Survey (LA FANS) study how neighborhoods impact child cognitive abilities. The

LA FANS study was designed specifically to investigate neighborhood influences on a vari-

ety of outcomes for families, adults, and children; see Pebley and Sastry (2011). The survey

stratified 65 Census tracts using 1990 boundaries in Los Angeles County. Roughly 50 house-

holds in each Census tract were selected at random for inclusion in the survey. A randomly

selected adult in the household was interviewed, as well as a randomly selected child. If the

household had more than one child, a randomly selected sibling was also interviewed. Fur-

ther, if the selected child’s mother was in the household, she was interviewed as the primary

caregiver. If she was absent, the actual primary caregiver was interviewed.

The LA FANS data has the advantage of sampling by Census tract, so that we observe

many households within a small geographic region.11 The LA FANS oversamples poor neigh-

10The average value of α varies by Census tract because the mix of types varies by tract.
11This is in contrast with other geo-coded panel datasets such as the Panel Survey of Income Dynamics

or the National Longitudinal Study of Youth.
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Figure 7: Average Estimates of α by Tract Poverty Rate
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borhoods, but the 65 Census tracts are distributed across much of Los Angeles. Figure 8

shows the distance of each tract in our Los Angeles sample from the previous section to a

tract in the LA FANS sample. Most tracts in Los Angeles are located within a few miles

on LA FANS tract, but on average high-poverty Census tracts are closer to an LA FANS

tract, reflective of LA FANS sampling design. 3,085 households were interviewed between

2000 and 2002 (wave 1), of which 1,242 were re-interviewed between 2006 and 2008 (wave

2). New households were admitted into the LA FANS sample in the second wave. Detailed

information on the housing status (rentership versus ownership), family characteristics, and

child outcomes were collected from respondents and Census tract information was collected

in both waves.

For cognitive skill measures we study the child’s score on Woodcock Johnson tests as

described in Schrank, McGrew, and Woodcock (2001) for applied problems (“math”) and

passage comprehension (“reading”), tests used in many MTO studies. We restrict our sample

to children who had valid measurements for both waves and we eliminate from our sample

children with missing observations in some of our control variables.12 This reduces our

12Children that change locations between waves are assigned to the Census tract of their location in the
first wave. We include all children, including those that change locations, in our estimation sample.
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Figure 8: Distance to Closest LA FANS Tract by Poverty Rate of Tract

0
.2

5
.5

.7
5

1
C

D
F

0 2 4 6 8 10 12 14 16 18 20
Distance to Closest LA FANS Tract (miles)

Poverty >30%
Poverty 20%-30%
Poverty 10%-20%
Poverty 0%-10%

sample to 1, 253 for our math skill measure and 1, 267 for our reading skill measure, about

20 children per tract to estimate value-added. This is roughly the same sample size as studies

of teacher value-added, i.e. one classroom of children.13

We compute neighborhood value added using standard techniques in the education liter-

ature for computing teacher value added. Following, Kane and Staiger (2008) and Chetty,

Friedman, and Rockoff (2014) for example, we work with the statistical model for the pro-

duction of the change in child ability, ∆t−TAi,j,t, between periods t− T and t ,

∆t−TAi,j,t = Z ′i,j,t−Tψ + vi,j,t ; vi,j,t = T [µj + εi,j,t] , (19)

where i indexes children, j indexes neighborhoods, t indexes time, Zi,j,t−T is a vector of

observable child and family characteristics measured at time t−T , µj is a causal (annualized)

neighborhood “value-added” effect, εi,j,t is an idiosyncratic child/family effect and T is the

number of years between LA FANS waves.14

13A major reason for a lack of skill measurement in both waves is the child’s age. Only children under
18 were administered the Woodcock Johnson tests and thus only children who were under 18 in wave 2, i.e.
aged 4 to 14 in wave 1 depending on the interview timing, are included. Additionally, new entrants to the
survey would be disqualified since we only see their test scores once.

14We include the T term when defining vi,j,t so that µj and εi,j,t are annualized.
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Table 2: Descriptive Statistics, LA FANS

Mean S.D. Obs.
Dependent Variables
Change in math score -0.009 1.034 1253
Change in reading score 0.001 1.051 1267

Control Variables (LA FANS Wave 1)
Wave 1 Test Scores
Math score 0.000 1.000 1271
Reading score 0.000 1.000 1271

Child Demographics
Age of child (years) 7.783 4.827 1271
Hispanic (1=yes) 0.663 0.473 1271
Black (1=yes) 0.094 0.291 1271
Male (1=yes) 0.515 0.500 1271

Parental Demographics and Education
Number of kids 2.427 1.176 1271
Parental IQ 86.845 15.624 1271
High school dropout 0.354 0.478 1270
High school graduate 0.169 0.375 1270
Some college 0.268 0.443 1270
Bachelor degree 0.100 0.300 1270
Graduate degree 0.063 0.243 1270

Parental Income and Assets ($000s)
Log income 2.511 3.117 1263
Log assets 2.052 2.015 1263

Notice that in the absence of any control variables, µj would govern the average change in

child ability over time for children living in neighborhood j. Consistent with the value-added

approach, splines of lagged values of a behavioral problems index as described in (Peterson

and Zill, 1986) are included as controls. Our other controls include variables covering family

structure (number of children), age, race, gender of child, parental IQ, parental education,

income and assets, all measured as of Wave 1. We present descriptive statistics of our key

dependent and independent variables in Table 2.

The key insight to the value-added approach is that parents’ optimal neighborhood choice

does not have to be uncorrelated with the observable control variables, including lagged child

test scores, to produce unbiased estimates of neighborhood effects on child ability. Due to

20



Table 3: R2 of Models of Neighborhood Effects

R2 Values from LA FANS data
65 tracts, 1,253 observations for math and 1,217 for reading

Model Math Reading
1: Neighborhood Fixed Effects Only 0.09 0.10
2: + Splines in Lagged Child Scores 0.41 0.40
3: + Splines interacted w/ Child Controls 0.51 0.49
4: + Parent Ability and Demographics 0.52 0.51
5: + Lagged Income and Assets 0.52 0.52

the presence of neighborhood fixed effects in equation (19), ψ is identified purely by within-

neighborhood variation of Zi,j,t−T and ∆t−TAi,j,t. Parents can select neighborhoods based

on Zi,j,t−T and that will not bias estimates of ψ.15 For an unbiased estimate of µj, the error

term εi,j,t must be uncorrelated with Zi,j,t−T . Parents can select neighborhoods based on

the level of their child’s ability and/or other variables in Zi,j,t−T , but not on the portion of

expected growth of child ability that is not forecasted by Zi,j,t−T .

Table 3 summarizes our regression results of equation (19), showing model fit across a

number of specifications. The outcome variable is the change in the relevant standardized

test score between LA FANS waves. When tract-level fixed effects are the only regressors,

model 1, the R2 of the regression is just 10%. Once information on lagged child test scores

is included as a regressor (model 2) the R2 jumps to 40%. Adding child controls (model

3) and parent demographics (model 4) increases the R2 to 50%. Adding information on

parental income and assets (model 5) fails to further boost R2 values. Given the R2 value

stays constant between models 4 and 5, we infer that for our results to be misleading,

selection into neighborhoods based on εi,j,t must account for a significantly larger share of

observed differences in change in average ability across neighborhoods than selection into

neighborhoods based on parental education, income and assets (Altonji, Elder, and Taber,

2005).

There are two issues we address before continuing. First, LA FANS only covers 65 tracts

in Los Angeles but we require an estimate for all the 1,748 Census tracts in our sample.

Second, following the teacher value added literature (Chetty, Friedman, and Rockoff, 2014),

we shrink the variance of the estimates of value-added arising from equation (19) to account

15Ioannides and Zanella (2008) estimate a model of location choice at the Census-tract level using panel
data from the PSID and show that parents with young children are more likely to select neighborhoods with
otherwise desirable observable characteristics than other households.
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for the fact that these estimates are derived from small samples and are noisy.

We perform the interpolation and shrinkage using a two-step process. To understand

this process, let k (or k′, as needed) denote an LA FANS Census tract. In the first step,

we estimate equation (19) using the LA FANS data. Define µ̂k as the estimate of tract-k’s

annual fixed effect, σ̂2
µ as the estimated variance of the tract-level fixed effects and σ̂2

ε as the

estimate of the variance of annual changes in child ability after controlling for all Z variables

and neighborhood effects arising from this first step. Now let j represent any tract in Los

Angeles and define ωj,k as a “weight” based on the physical distance between tracts j to k,

a “distance” between tracts j and k in attribute space, and the number of observations in

tract k, Nk. Specifically, define

ωj,k = Nk × φ

(
‖j − k‖distance

h1

)
× φ

(
‖j − k‖attributes

h2

)
(20)

where h1 and h2 are bandwidths and φ (.) is the standard Normal density function. The

term ‖j − k‖distance is the physical distance (in miles) between the centroids of j and k.

The “distance” in attribute space ‖j − k‖attributes is the difference between the value-added

measures of j and k predicted by a regression of value-added on a host of observable tract

characteristics.1617 We compute annual value added for tract j as
∑
k

ωj,k µ̂k∑
k′
ωj,k′


︸ ︷︷ ︸

(
σ̂2
µ

σ̂2
µ + σ̂2

ε/Ñj

)
︸ ︷︷ ︸

Interpolation Shrinkage

(21)

where Ñj is defined as (∑
k

ωj,k

)2

∑
k′

(
ω2
j,k′/Nk′

) (22)

The interpolation term in equation (21) is straightforward, as it is a simple weighted

average. To understand the shrinkage term and why it is standard in the teacher value-

16The list of explanatory variables includes tract poverty rate, median income, share receiving public
assistance, crime rate, an index of transportation access, share Hispanic, and share black.

17We use h1 = 1.5 miles, and we set h2 to the standard deviation of the predicted value-added measures
across tracts. A wide range of bandwidths (i.e. a range of relative weights placed on physical and attribute
distance in the interpolation) yield nearly identical results, consistent with the high degree of spatial corre-
lation in observable characteristics across tracts.
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Table 4: Correlation of Value-Added Estimates by Tract

Math Value Added
Model 1 2 3 4 5

1 1.00
2 0.75 1.00
3 0.68 0.90 1.00
4 0.52 0.80 0.94 1.00
5 0.50 0.79 0.91 0.99 1.00

Ann. Std. Dev. 0.045 0.039 0.040 0.037 0.037

Reading Value Added
Model 1 2 3 4 5

1 1.00
2 0.78 1.00
3 0.76 0.96 1.00
4 0.75 0.92 0.96 1.00
5 0.75 0.90 0.95 0.99 1.00

Ann. Std. Dev. 0.061 0.059 0.056 0.053 0.055

All Census tracts (1,748) after interpolation and shrinkage has occurred

added literature, consider a simplified model where ∆a is the change in the next child’s test

score, µ is the true neighborhood effect and ε is a child-specific shock. Suppose that a noisy

estimate of µ, call it µo, is observed

Truth: ∆a = 1 · µ+ ε

Observed: µo = µ+ ν
(23)

with ν being measurement error. A regression of ∆a on µo will yield a biased coefficient

of σ2
µ/
(
σ2
µ + σ2

ν

)
. Dividing estimates of µo by this expression will produce an unbiased

regression coefficient of 1. In mapping the intuition of equation (23) to what we actually

do, note that the variance of ν – the variance of the measurement error – will be a function

of the sample size in the LA FANS data. The reason is that we estimate value added as a

fixed effect, which is a sample average. The greater the number of observations in each tract,

the more precisely we estimate neighborhood value added and the smaller the variance of ν.

This explains the presence of the Ñj term in equation (21). The fact that we use a weighted

average of all LA FANS tracts in estimating value added for any given Census tract leads to

the functional form for sample size of equation (22).
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Table 4 shows tract-level correlations of value-added estimates for the five different models

discussed in table 3 after interpolation and shrinkage have occurred for all 1,748 Census tracts

in our study.18 The results for math are shown in the top half and reading in the bottom

half. This table reinforces the result that once lagged child controls are included as regressors

(model 2), estimates of tract value-added from models that include more controls are very

similar (models 3-5), as the correlations are 0.79 and above for math and 0.90 and above for

reading. The bottom rows report the estimated standard deviation of tract-level child value

added. In model 4, the specification we use in our counterfactual simulations later in the

paper, the standard deviation of tract-level child value added is 0.037 for math and 0.053

for reading. Note that the unconditional standard deviation of the level of the Woodcock-

Johnson score is 1.0. Assuming linearly additive effects of neighborhood value added over

time, 10 years of exposure to a Census tract with a level of child value added that is one

standard deviation above the mean will cause a child’s Woodcock-Johnson test scores to

increase between 37% and 50% of one standard deviation.

Table 5 shows regressions of our value-added estimates on measures of local public school

quality, tract poverty rates and tract-level racial percentages. We use a bootstrapping pro-

cedure to compute the standard errors shown in the table.19 The estimates of local school

quality are estimates of math and reading value-added of the nearest elementary school as

produced by the Los Angeles Times.20 The regressions show that our estimates of value-

added are not simple transformations of race, poverty or public-school quality. There is

considerable variation in value added even after controlling for public school quality, tract

level poverty rates and racial percentages, as the R2 of the regressions are less than 17%.

Upon further review, a case can be made that our estimates of tract value-added are

capturing something very different from available estimates of public-school quality. Figure

9 plots, for mathematics, our estimates of the average level of tract-level value added by

poverty rate in the top panel and the average level of public school quality as measured by

the Los Angeles Times, also by poverty rate.21 There is considerable variation around the

tract-level averages shown in figure 9 (not shown), but on average our estimates of value-

added decline with tract poverty rates and the Los Angeles Times estimates of school quality

18The results are very similar when we restrict the analysis to only the tracts with LA FANS data but
still apply interpolation and shrinkage.

19To compute bootstrap standard errors, we draw 1,000 LA FANS samples and for each LA FANS sample
we draw 1,000 samples of 1,748 Census tracts. This gives us 1 million draws in total. In each LA FANS
sample, we draw from all the 65 LA FANS tracts. The number of children drawn in each tract is fixed
and equal to the LA FANS sample size. The LA FANS and Census tracts samples are both drawn with
replacement.

20See http://projects.latimes.com/value-added/ for details on how school value-added measures are com-
puted. We assign the elementary school that is closest in distance to the centroid of the Census Tract.

21The same graphs for reading look very similar (not shown).
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Table 5: Neighborhood Traits and Value Added

Regr. of Value Added Estimates on Neighborhood Covariates, 1,748 Tracts
(Bootstrap Standard Errors in Parentheses)

Variable Math Reading
Math School VA+ 0.025 -0.067

(0.045) (0.056)
English School VA+ 0.064 0.218**

(0.071) (0.096)
Poverty Rate -0.003 0.073

(0.051) (0.053)
Pct. Hispanic -0.063*** -0.097**

(0.024) (0.026)
Pct. Black -0.017 0.017

(0.025) (0.025)
Pct. Hispanic x Poverty Rate 0.046 0.195**

(0.066) (0.074)
Pct. Black x Poverty Rate 0.069 -0.246**

(0.106) (0.120)
Constant 0.032 0.022

(0.010) (0.010)
R2 0.141 0.168

+ LA Times Measure of Local Public Elementary School Value Add
** Significant at a 5% confidence level
*** Significant at a 1% confidence level
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increase.

4 Reconciling Large Neighborhood Effects with MTO

Our finding of large neighborhood effects is squarely in line with an earlier literature that

estimates these effects: See Leventhal and Brooks-Gunn (2000) and Durlauf (2004) for recent

surveys. While these studies typically attempt to account for selection issues, the fact that

individuals endogenously sort into neighborhoods leaves open the possibility of non-causal

explanations for these patterns.22

Recognizing the limitations of observational studies, the literature on neighborhood ef-

fects has devoted considerable attention recently to the “Moving to Opportunity” randomized

experimental intervention. Moving to Opportunity was a randomized control trial begining

in the 1990s that randomly assigned a group of households with children eligible to live

in low income housing projects in five U.S. cities to three different groups; (i) a treatment

group that received a Section 8 housing voucher that in the first year could be applied only

in Census tracts with a poverty rate under 10% and could be applied unconditionally there-

after, (ii) a second treatment group that received a comparable Section 8 housing voucher

with no location requirement attached, and (iii) a control group that received no voucher.

Voucher amounts are set such that after applying the voucher, households spend no more

than 30% of their income on rent.23 Summarizing the medium- to long-term impacts of

MTO, Sanbonmatsu, Kling, Duncan, and Brooks-Gunn (2006), Kling, Liebman, and Katz

(2007) and others show that on average the MTO treatment successfully reduced exposure to

crime and poverty and improved the mental health of female children, but failed to improve

child ability, educational attainment, or physical health.24

But do the MTO results prove that all neighborhood effects are small? Perhaps not.

Suppose there is variation in neighborhood value-added in tracts with a poverty rate under

10%; and, suppose that rents are higher for tracts with greater value-added. Once households

receive a voucher to live in a tract with pverty rate under 10%, they must decide whether to

move to a high-rent, high-value-added tract or a low-rent, low-value-added tract. Figure 10

22For example, Cutler and Glaeser (1997) study the impact of segregation on outcomes of African-
Americans using topographical features of cities as instruments for location choice and Aaronson (1998)
measures neighborhood effects by studying outcomes of siblings at least three years apart in age after a
move. See Aaronson (1998) for examples of instruments used by other researchers in this field and their
potential limitations.

23Households that wanted to rent a more expensive unit could only contribute up to an additional 10% of
their income.

24Recent work by Chetty, Hendren, and Katz (2015) demosntrates that MTO positively affected adult
wages.
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Figure 9: Tract Poverty, Value Added and School Quality (Math)
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gives a stylized graphical illustration of the range of possible outcomes after an MTO-style

intervention. In both panels, the x-axis represents neighborhood value-added; the y-axis

represents housing rent; the solid black line shows the set of available combinations for the

high-poverty neighborhoods; the dashed line shows the set of available combinations for the

low-poverty neighborhoods; and the red lines show indifference curves.25 The top panel

shows one possible outcome from MTO: As households move from high-poverty to low-

poverty tracts via the MTO rent subsidy, their rent falls and their child value-add rises. The

bottom panel shows a case where child value-added falls after the MTO rent subsidy. The

ultimate change in child outcomes after the rent subsidy is received depends on ideas from

classic microeconomics: Changes to the slope of the budget line, and income and substitution

effects.

Our data suggests relative prices and income and substitution effects may be of first

order importance. Figure 11 shows the relationship between composition-adjusted monthly

rent in 2000 and neighborhood value added for the 1,748 Census tracts in our study for

three groups of Census tracts: Low poverty (0-10%), middle (10-25%), and high poverty

(25% and above).26 The top panel shows the relationship for math value added and the

bottom panel shows reading. These figures show how the relative price of neighborhood

quality changes with tract poverty rates. The change in rent associated with an increase in

neighborhood quality is greatest in low poverty areas; that is, the slope of the green line (low

poverty) is greater than the slope of the blue line (middle) and red line (high poverty). Even

though neighborhoods with high value-added are relatively expensive in low poverty tracts,

households may be willing to pay to live in those neighborhoods conditional on receiving a

large enough rent subsidy.

Figures 7 and 11 foreshadow our results. Figure 7 suggests the types of people currently

living in high poverty tract areas are quite sensitive to the level of rent; and, Figure 11

suggests the price of acquiring additional child value added is much higher in low-poverty-

rate tracts than in high-poverty tracts. It seems quite possible that child outcomes may not

change or perhaps worsen if we subsidize families to move from high poverty neighborhoods

to low poverty neighborhoods without further restricting which low poverty neighborhood

they move to. If this were indeed the case, it would reconcile the apparent contradiction of

large neighborhood effects in the observational literature and small experimental results of

MTO.

For a quantitative analysis, we simulate optimal decisions of our estimated location-choice

25Households dislike housing rent and like value added, so households are best off in the south-east corner
of the graph.

26We plot the expected rent in each Census tract for a 3-room unit built in 1960, computed as the outcome
of a hedonic regression.
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Figure 10: MTO’s Predicted Effect on Child Value-Added when the Hedonic Rent/Value-
added gradient is steeper in low-poverty areas than high poverty areas
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Figure 11: Scatterplots of Rental Prices and Child Value Added by Poverty Rate
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model under several policy scenarios, restricting analysis to the households in our sample

likely to have been eligible for MTO had they lived in an MTO area at the time of the

experiment. Our three scenarios are as follows:27

• (Baseline) No subsidies or vouchers.

• (MTO-A) MTO style vouchers. Households who move to a Census tract with a poverty

rate under 10% at t = 1 receive a Section 8 housing voucher. This voucher is received

in perpetuity, even if the household moves out of a qualifying neighborhood in period

t > 1. If a type-τ household is offered and accepts a voucher and subsequently lives in

neighborhood j, we set the utility of that neighborhood equal to our original estimate,

δ̃jτ , plus ατ times the voucher amount. The annual voucher we use is $6,000, which we

set such that the average MTO-eligible household can rent a 2-bedroom unit costing

$766 per month after spending 30% of monthly income.28

• (MTO-B) Randomly assigned poverty reduction. We assign households to neighbor-

hoods randomly according to the distribution of neighborhood poverty-rates that arises

under scenario MTO-A. Comparisons of MTO-B and MTO-A highlight the role of

neighborhood selection conditional on accepting a voucher.29

Figure 12 shows the simulated distribution of the poverty rate of locations chosen in all

periods of the simulation in our baseline case and in the MTO-A simulations. Simulations last

for 18 years following implementation of the MTO policy. The distributions that are shown

in figure 12 are for all households eligible to receive a voucher in the MTO-A experiment,

not just those that accept the voucher. In our MTO-A simulation, 70% of the population

eligible to receive a voucher accept it; the actual MTO take-up rate in Los Angeles was 67%.

The fact that we can nearly match the MTO voucher take-up rate suggests our type-specific

27Our simulations target households residing at t = 0 in a Census tract with at least 100 public housing
units. Alternative targeting rules (results not shown) targeting eligibility to residents of tracts with very
high poverty rates and/or rates of public assistance yield similar results. Note that we cannot restrict our
simulations to households with children, as we do not know which households in the FRBNY Consumer
Credit Panel / Equifax data have children.

28Our calculation is $6, 000 ≈ 12 [$766− 0.30 ($10, 000/12)], where $10,000 is mean household income of
the MTO-eligible population as computed by Galiani, Murphy, and Pantano (2015) and $766 is the “payment
standard” (max voucher amount) for a 2-bedroom apartments in Los Angeles in 2000.

29Specifically, the procedure is; (1) pool the set of MTO-A simulated Census tract choices and the uncondi-
tional list of sample Census tracts. (2) Estimate a probit model predicting the probability that a record comes
from the simulated data using only tract-poverty-rate categories as explanatory variables, and obtain the pre-
dicted probability pj (propensity score) that a record from tract j comes from the simulated data. (3) Draw

MTO-B simulated locations from the full set of Census tract with probability Pr(j) =
1

J

( pj
1− pj

)(1− p
p

)
.
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Figure 12: MTO vs. Baseline (Poverty), Intent-to-Treat
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estimates of ατ are reasonable.30 Comparing the black solid line (baseline) with the blue

dashed line (MTO-A), our simulations find that most of the people offered a voucher chose

to move to a low poverty neighborhood and remain in that neighborhood for an extended

period of time.

To summarize the expected impact on child ability of this reduction to poverty exposure,

we compute an expected measure of accumulated neighborhood value-added exposure condi-

tional on accepting a voucher in the MTO-A experiment. Let i′ denote a family that accepts

a voucher in the MTO-A experiment, and assume there are i′ = 1, . . . , I such families. For

any given simulation draw s, we hold this set of families fixed for each of the three scenarios

(policies) we consider: Baseline, MTO-A and MTO-B.31 We then compute the expected

impact of policy p on child value added measured over T̄ periods (5, 10 or 18 years) as

µ̂TOTp =
1

S

S∑
s=1

[
1

I

I∑
i′=1

T̄∑
t=1

µ̂`(i′,t,s,p)

]
(24)

30Galiani, Murphy, and Pantano (2015) also verify their estimates of housing rent sensitivity by comparing
predicted and actual take-up rates.

31We allow the set of families included in i′ to change across simulation draws.
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where `(i′, t, s, p) is the location chosen by family i′ in year t under policy p and for given

simulation draw s and µ̂`(i′,t,s,p) is the value-added associated with `(i′, t, s, p). For each

type, we run S = 10, 000 simulations, yielding a total of 1.44 million simulations for each

policy experiment. If, as suggested by Chetty and Hendren (2015), neighborhood effects are

additive over time in the child ability production function (i.e. there are no complementarities

across time periods) and neighborhood quality affects children equally at all ages, then

these measures will characterize actual total neighborhood contributions to child ability. If

child investments exhibit dynamic complementarities and early childhood investments are

especially productive as in Cunha, Heckman, and Schennach (2010), these measures will

understate neighborhoods’ long-term contributions to child ability. In either case, we view

these measures as useful summaries for characterizing the impact of policy.

We compute standard errors around µ̂TOTp to evaluate if the model-predicted outcomes

from the baseline, MTO-A and MTO-B are statistically significantly different. Denote the

number of types in estimation (144) as T and the number of Census tracts (1,748) as J .

Referring to notation in equation (16), we estimate the following sets of parameters

{θτ}Tτ=1, {α}Tτ=1, M (25)

where θτ is a vector of 357 parameters determining location choice for type τ and M =

{µj}Jj=1 is the vector of parameters determining child value-added in all Census tracts.

θτ , ατ and M are assumed to be drawn independently for all τ = 1, . . . , T . Denote Σθ
τ

as the variance-covariance matrix of θτ , σ
α
τ as the variance of the estimate of ατ and ΣM as

the variance-covariance matrix of M. The parameters in equation (25) are assumed to be

distributed with a variance-covariance matrix of

Σθ
1 0 0 0

0 Σθ
2 0 0

0 0 . . . 0

0 0 0 Σθ
T

0 0

0

σα1 0 0 0

0 σα2 0 0

0 0 . . . 0

0 0 0 σαT

0

0 0 ΣM



(26)
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Table 6: MTO Demonstration vs. Simulation Experiments

(1) (2) (3) (4) (5)

MTO

Demonstration

Exposure time TOT

"MTO-A"

(TOT )

"MTO-B"

(ATE of <10% Pov)

p-value

H0: (2) = (1)

p-value

H0: (3) ≤ (2)

5 years -0.019 0.019 0.098 0.747 0.001

10 years -0.052 0.025 0.180 0.743 < 0.001

18 years -- 0.023 0.31 -- < 0.001

MTO

Demonstration

Exposure time TOT

"MTO-A"

(TOT )

"MTO-B"

(ATE of <10% Pov)

p-value

H0: (2) = (1)

p-value

H0: (3) ≤ (2)

5 years 0.064 0.034 0.0731 0.539 0.066

10 years 0.006 0.046 0.134 0.634 0.053

18 years -- 0.065 0.231 -- 0.059

A. Impacts on Woodcock-Johnson Math  Scores (sd=1)

Simulation Experiments

B. Impacts on Woodcock-Johnson Reading  Scores (sd=1)

Simulation Experiments

For Σθ
τ and σατ we use asymptotic standard errors and for ΣM we use a bootstrap procedure

where we sample from the raw LA FANS data and run the sampled data through the process

described in the previous section. To compute standard errors on our policy experiments,

we draw parameters from this distribution 3, 000 times and compute µ̂TOTp for each draw

according to equation (24).

Table 6 shows our estimates of µ̂TOTp for math scores (top panel) and reading scores (bot-

tom panel). The first column shows results from the actual MTO demonstration, as reported

by Sanbonmatsu, Kling, Duncan, and Brooks-Gunn (2006) and Sanbonmatsu, Ludwig, Katz,

Gennetian, Duncan, Kessler, Adam, McDad, and Lindau (2011), and column 2 shows the

simulated impact of MTO-A relative to the baseline. Column 1 highlights that MTO re-

searchers found no impact of the voucher program on child ability after 5 and 10 years and

column 2 shows that our model can replicate this finding, despite not using any MTO data

in our analysis. Column 4 verifies that we can not reject the hypothesis that our MTO-A

results are identical to the results from the actual MTO data. Column 3 reports the results

of the MTO-B simulations. These demonstrate that when accumulated over a full 18-year

childhood, the poverty reduction generated by MTO would improve math and reading scores

by 0.2 - 0.3 standard deviations if low-poverty neighborhoods were assigned at random to

households accepting a voucher. These are substantial impacts, equivalent to closing about

20% - 30% of the black/white achievement gap according to Yeung and Pfeiffer (2009). Col-

umn 5 shows that we can reject the hypothesis that the results from MTO-B are the same
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as those in the MTO-A experiment.

The MTO-A and MTO-B results suggest that MTO-subsidized households selected into

especially low value-added tracts among the set of eligible low-poverty tracts. The economics

of this result are straightforward. Rents are relatively high in high-value-added neighbor-

hoods with low poverty rates (figure 11) and the types of households currently living in high

poverty tract areas are especially sensitive to the level of rent (figure 7). Households in the

MTO-A experiment that accepted the housing voucher moved to relatively low-cost, low

value-added neighborhoods in tracts with low poverty rates.

5 Conclusion

In this paper, we use two new rich data sets to understand how households choose neigh-

borhoods and the impact of neighborhoods on child ability. We find considerable heterogene-

ity in the population in the utility of different neighborhoods; and we also show meaningful

variation in the impact of neighborhoods on child ability as measured by test scores. We

also show that the utility of households residing in high-poverty neighborhoods, on-average,

is much more sensitive to rental prices than the utility of households residing in low-poverty

neighborhoods. This last result reconciles two results in the literature on child outcomes

that seem contradictory: The existence of large effects of neighborhoods on changes to child

ability, and the overall lack of improvement of children in the MTO experiment. Counterfac-

tual simulations of our model of neighborhood choice strongly suggest that parents receiving

vouchers in the MTO experiment moved to the lowest-cost, lowest-value-added neighbor-

hoods among the eligible set. If parents had randomly chosen low-poverty neighborhoods

after receiving a voucher, our analysis suggests their children would have shown a remarkable

improvement in ability.
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