
1 

 

 

INVENTION MACHINES: HOW CONTROL INSTRUMENTS AND 
INFORMATION TECHNOLOGIES DROVE GLOBAL TECHNOLOGICAL 

PROGRESS OVER A CENTURY OF INVENTION 

 

March 24, 2016 

 
Pantelis Koutroumpis 

Imperial College Business School 
 

Aija Leiponen 
Cornell University; Imperial College Business School 

 
Llewellyn D W Thomas 

Abu Dhabi School of Management 
 
 

Abstract 

Inventions depend on skills, experience, and information exchange. Information is shared 
among individuals and organizations both intentionally and unintentionally. Unintentional 
flows of knowledge, or knowledge spillovers, are viewed as an integral element of 
technological progress. However, little is known about the overall patterns of knowledge flows 
across technology sectors or over long periods of time. This paper explores whether it is 
possible to identify “invention machines” – technologies that help create new inventions in a 
wide range of other sectors – and whether shifts in the patterns of knowledge flows can predict 
future technological change. In the spirit of big data we analyze the entire PatStat database of 
90 million published patents from 160 patent offices over a century of invention and exploit 
variation within and across countries and technology fields over time. The direction and 
intensity of knowledge spillovers measured from prior-art citations highlight the transition from 
mechanical to electrical instruments, especially industrial control systems, and the rise of 
information and communication technologies as “invention machines” after 1970. Most 
recently, the rapidly increasing impact of digital communications on other fields may herald 
the emergence of cloud computing and the industrial internet. 
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Introduction 

The history of invention is a history of knowledge spillovers. There is persistent evidence of 

knowledge flowing from one firm, industry, or sector to another, either by accident or by 

design, enabling other inventions to be developed (Frischmann & Lemley, 2007; Griliches, 

1979; Jaffe, Trajtenberg, & Fogarty, 2000; Jaffe, Trajtenberg, & Henderson, 1993). For 

example, Thomas Edison’s invention of the “electronic indicator” (US patent 307,031: 1884) 

spurred the development by John Fleming and Lee De Forest in early 20th century of early 

vacuum tubes which eventually enabled not just long-distance telecommunication but also early 

computers (e.g., Guarnieri, 2012). Edison, in turn, learned from his contemporaries including 

Frederick Guthrie (1876). It appears that little of this mutual learning and knowledge exchange 

was paid for and can thus be called a “spillover”, i.e. an unintended flow of valuable knowledge, 

an example of a positive externality in the terminology of economists. 

Breakthrough inventions and their spillovers may generate tremendous waves of 

technological change. In particular, general-purpose technologies (Bresnahan & Trajtenberg, 

1995) such as the vacuum tube or its successor the microprocessor can be utilized in many 

different compound inventions, cumulatively leading to technological revolutions in the 

adopting sectors. Moreover, a special class of general-purpose technologies we call invention 

machines are not only applicable in many other sectors but facilitate invention in those other 

sectors. Our goal is to identify technologies that have such a broad and catalytic impact by 

enabling follow-on invention in many application sectors. 

In economic terms, general-purpose technologies have been defined as being widely 

used, capable of sustained technical improvement, and enabling innovation in application 

sectors (Bresnahan, 2010), although others have not emphasized their innovation-spawning 

nature (e.g. Hall & Trajtenberg, 2004; Helpman & Trajtenberg, 1998). Innovation in application 

sectors combined with sustained technical improvement implies that there are dynamic 

complementarities between the general-purpose and application technologies: the returns to 

innovation in application technologies are enhanced by improvements in the general-purpose 
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technologies, and vice versa, provided that knowledge spillovers or markets for technology 

enable such combinatory inventions.  

Further, when the invention of general-purpose technologies is associated with fixed 

costs, there may be vast economies of scale via broad adoption by different application sectors. 

In such cases the impact of the enhanced innovation opportunities may be unusually long-

lasting, in particular, due to the “superadditivity” of invention across sectors and over time: 

each invention in the general-purpose technology enhances the incentives to invent new 

applications, and each new application enhances the incentives to improve the general-purpose 

technology. General-purpose technologies are then capable of generating sustained aggregate 

growth (Bresnahan, 2010). There are also positive externalities because each inventor is likely 

to only consider their own inventive returns and not their impact on the inventiveness of other 

sectors. Such increasing returns to R&D investment are thus unlikely to be fully captured by 

the inventing organizations, for which reason investment in the development of general-

purpose technologies should be of keen interest to policymakers. 

Previous empirical studies have analyzed specific technologies such as steam engines 

(Crafts, 2004), electricity (David, 1990; Moser & Nicholas, 2004), and computers (Bresnahan 

& Greenstein, 1999) as general-purpose technologies through historical industry analysis. The 

study closest to ours is Hall and Trajtenberg (2004) who conduct analyses of patent citations to 

identify individual patents that can be characterized as general purpose because of their 

generality and association with rapidly evolving technology classes. Our approach is different 

in that, although we also conduct patent-level analyses, we are interested in sectoral differences 

in patterns of citation and cross-citation. We attempt to identify entire technology classes or 

fields that have generated sustained invention that was adopted and cumulatively invented upon 

by other technology areas. We suggest that this approach is more aligned with the notion of 

general-purpose technologies that are rarely single inventions but particularly generative and 

broadly applicable clusters and streams of inventions (e.g. electricity). Then, it makes sense to 

try to identify long-term patterns of invention and spillover generated by technological 

subfields that indicate exceptional impact on invention in a broad range of technology sectors. 
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Equipped with significantly enhanced computing power than Hall and Trajtenberg in 

2004, we conduct a descriptive, comprehensive, and very long-term analysis of cross-sectoral 

patent citations over several decades and in many countries. We take a big-data approach – 

“N=all” – and consider the entire technological progress of the world for most of the past 

century. This allows us to describe relationships among fields of technology that are difficult 

to discover with a short random or industry sample. We find that the inventive impact of 

instruments1 and information technologies2 is exceptional and sustained over long periods of 

time. We highlight them as types of “Turing machines of invention”: instruments enable the 

manipulation of physical matter (chemical substances, artifacts, physical processes, biological 

organisms), whereas information technologies enable the manipulation of information. Both 

are “invention machines” in that they are not only general-purpose technologies that can be 

adopted in a wide variety of other sectors, but they also provide essential ingredients for 

invention in the other sectors. Instruments, through the manipulation of matter, facilitate 

discovery of new physical properties; computers, through the manipulation of information, 

facilitate discovery of new information. Together, instruments and computers have been used 

to automate a wide range of industrial processes since early 1970s.  

Method 

An important aspect of technological change is the creation of public knowledge goods, 

associated with positive economic externalities. A new technology is potentially not only useful 

to its inventor but also to other economic agents, although these other agents do not always pay 

a price for the use of the invention. This insight has inspired a complete rewriting of the theory 

of economic growth that focuses attention on the role of knowledge accumulation in aggregate 

economic growth (Grossman & Helpman, 1991; Romer, 1990). Empirically, Griliches (1979) 

and Scherer (1982) suggested that the productivity of firms or industries is related to their own 

R&D spending, and also to the R&D spending of other firms and other industries. 

                                                      

1 Standard Industrial Classification 38 
2 Standard Industrial Classifications 357, 367 
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Knowledge spillovers may take place through various mechanisms, such as through 

the mobility of R&D workers, the exchange of information at technical conferences or in 

scientific and technical literature (including patent documents), reverse engineering, and 

industrial espionage. Given the difficulty in measuring knowledge spillovers, patent citations 

have long been considered proxies for the flow of knowledge from the inventors whose patents 

are cited to the inventors making the citations. Empirical studies using patent citations have 

demonstrated the process of technological accumulation (Caballero & Jaffe, 1993), as well as 

a large body of research assessing the extent to which knowledge spillovers are geographically 

localized (Jaffe, Fogarty, & Banks, 1998; Jaffe et al., 1993; Maurseth & Verspagen, 2002). 

These authors find that knowledge spillovers between firms, or from (semi-) public knowledge 

institutes to firms, depend on geographical distance – that is, citing occurs more often the closer 

geographically situated the inventors. 

Much economic research has attempted to measure and assess the implications of 

spillovers by analyzing citations made in patent documents to predecessor inventions. To verify 

this measurement strategy, Jaffe et al. (2000) surveyed the meaning of patent citations and 

concluded that a substantial part (but by no means all) of such citations involve actual flows of 

knowledge. Thus, patent citations are a noisy but meaningful indicator of knowledge spillovers 

in an economy. However, care must be taken with using patent citations, as citations can be 

added not only by the inventors, but also by the patent attorneys and the patent examiners 

involved with the patent application, with the final decision ultimately lying with the patent 

examiner. Thus specific controls for inventor versus examiner additions have shown not only  

that geographical distance but also cognitive distance and time influence the probability of 

knowledge flows (Criscuolo & Verspagen, 2008). This said, patent data remains a valuable, 

even if imperfect, tool with which to measure knowledge flows. 

Our data source is PatStat, a comprehensive resource from the European Patent Office 

covering more than 170 publication authorities (patent offices), 90 million awarded patents, 

160 million citations and more than 200 control variables covering the period from 1920 to 
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2014. Table 1 shows the PatStat organization for technology sectors (5 in total) and fields (34 

in total).3  

Table 1  Technology Sectors and Technology Fields in PatStat patent data 

Technology Sector Technology Field 
Chemistry Basic materials chemistry 
Chemistry Biotechnology 
Chemistry Chemical engineering 
Chemistry Environmental technology 
Chemistry Food chemistry 
Chemistry Macromolecular chemistry, polymers 
Chemistry Materials, metallurgy 
Chemistry Micro-structural and nanotechnology 
Chemistry Organic fine chemistry 
Chemistry Pharmaceuticals 
Chemistry Surface technology, coating 
Electrical Engineering Audio-visual technology 
Electrical Engineering Basic communication processes 
Electrical Engineering Computer technology 
Electrical Engineering Digital communication 
Electrical Engineering Electrical machinery, apparatus, energy 
Electrical Engineering IT methods for management 
Electrical Engineering Semiconductors 
Electrical Engineering Telecommunications 
Instruments Analysis of biological materials 
Instruments Control 
Instruments Measurement 
Instruments Medical technology 
Instruments Optics 
Mechanical Engineering Engines, pumps, turbines
Mechanical Engineering Handling 
Mechanical Engineering Machine tools 
Mechanical Engineering Mechanical elements
Mechanical Engineering Other special machines 
Mechanical Engineering Textile and paper machines 
Mechanical Engineering Thermal processes and apparatus
Mechanical Engineering Transport 
Other Fields Civil engineering 
Other Fields Furniture, games
Other Fields Other consumer goods 

 
Notes: Technology fields consist of non-overlapping IPC codes that are available from the PatStat dataset. 
 

Our analysis is based on a simple count-data model of the number of citations received by each 

patent, controlling for several confounding factors that may influence our estimates. The base 

model is of the type:  

                                                      

3 Occasionally patent classification schemes are modified and patents can change their classification. For 
our analysis we use the most recent classifications. We do not believe that past reclassifications will 
influence our analysis, as most reclassifications happen at quite granular (3 or 4 digit) levels, and our 
analysis is at the rather coarse sectoral and field levels. Put differently, it is unlikely for a patent to be 
reclassified between technology classes. 
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Ci=βktFkt+γiΧι+εi 

where Ci is the sum of all citations received by patent i, Fkt is a binary variable equal to 1 for 

patents that belong to field k and were published in year t, and 0 otherwise. This model reports 

estimators at the field-year level conditional on a broad range of controls. These controls are 

included in Xi, the vector of patent characteristics, and εi is the error term. βkt captures the 

number of citations received by each field and year, all other things being equal. Our analysis 

is done at the patent-year level allowing the maximum degree of flexibility in the estimates.4   

There are a few factors that may drive patent citation counts. First, the number of 

citations is strongly linked to the procedures followed by publication authorities (national or 

regional patent offices) that oversee the application and grant process. This can change over 

time as new processes within patent offices may affect the ways to attribute citations. Second, 

prior art citations have generally been rising in recent years thus introducing a secular trend. 

We therefore control for year and patent office effects in our model allowing direct comparisons 

across jurisdictions and over time. Third, a patent may also belong to a family of inventions 

that are submitted to multiple patent offices. The size of such a patent family can affect the 

visibility of the invention and hence increase the likelihood of the patent being cited. We 

compute and control for the numbers of patents that belong to each family and each “extended” 

family.5 Fourth, different technology sectors have varying publication and citation patterns. We 

control for the total number of inventions granted (annual patent flows) and the total number 

of citations within each patent class each year. These metrics correct for potentially inflated 

citation counts in sectors with more inventions (hence with a higher likelihood of being cited) 

and sectors that cite patents and non-patent literature more extensively than others. Further, we 

control for the citations made by patent examiners and the number of claims to capture the 

                                                      

4 The cost of this decision is that the size of the dataset exceeds common computing capacities. Therefore, 
most of the analysis has taken place using c4.8xlarge compute optimized instances and r3.8xlarge 
memory optimized instances on the Amazon cloud service. 
5 This broader definition of a patent family takes domestic application numbers as additional connecting 
elements and includes patents having the same scope but lacking a common priority (www.epo.org). 
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extent and scope for protection sought. Lastly, we capture seasonal effects with controls for the 

month of publication.  

All these controls reassure us about the validity of comparisons over time, across patent 

offices, and across technology fields. Our assumption thus is that patents submitted in a patent 

office, at the same time, within the same field, and with the same family size will be treated 

equally by the authorities.  

Results 

We first look at the relative influence of the four primary technology classes (the highest level 

of classification within PatStat), namely electrical engineering, instruments, mechanical 

engineering, chemistry, and other fields over the period 1920 to 2014 (Figure 1). Given the 

shorter window of observations for recently published patents we observe that their citation 

counts drop quickly after 2000. To avoid a systematic bias, we consider results until 2000 in 

our analysis. Given the increasing patenting activity in recent years – for which we explicitly 

control – this choice reduces our sample to approximately 54 million. 

Although the four technology classes display distinct citation profiles, all of them 

present a changing pattern starting around year 1970s. Prior to 1970 mechanical engineering 

and chemistry technology classes closely followed the general trend. Soon after this period their 

influence starts to drop. In contrast, the electrical engineering technology class also follows the 

mean until the 1970s, after which it begins to increase more rapidly, peaking just before the 

2000s. Amidst these changes, the instruments class remains above the citation mean for the 

whole period of study, and, similar to electrical engineering, also begins to attract more interest 

after 1970. These patterns correspond to a shift from mechanical and chemical technologies to 

electrical ones. 
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Figure 1  Predicted patent citation coefficients by sector and by year 

  

Notes: Blue dots represent the sector-level coefficients βkt while the red dots represent the mean of all technology 
classes (reported as a reference in all figures. These results control for year and publication authority fixed effects, 
citations added by examiners, publication claims, family and broad family size, stock of published patents by sector 
and year and stock of citations by field. 
 

Digging deeper into technology classes within each sector at the time of this major 

technological shift, Figure 2 presents a graph of the citation flows among technology classes in 

1970. The size of each node represents the number of citations received from all fields (in-

degree), and the thickness of the edge represents the number of citations from each of the other 

nodes. Lines originating from and going back to the same node represent self-citations by the 

sector itself. This figure illustrates the beginning of the Information and Communication 

Technology (ICT) revolution, and the emergence of information technologies as invention 

machines. Semiconductors and Data Processing are the most cited classes with Surface 

Technology sending and receiving the most cites to and from Semiconductors.  
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Figure 2  Cross-sector citation flows in 1970 

 
Notes: 1) Color of the circle represents the broader sector of each technology field (Red: Electrical Engineering, 
Yellow: Instruments, Green: Chemistry, 4: Cyan: Mechanical Engineering, 5: Blue: Other sectors)  2) Size of the 
circle represents the number of incoming citations; 3) Thickness of the edge represents the magnitude of citations 
from one sector to another (only showing the links with statistically significant coefficients greater than 0; the full 
version is available in the Figure A4)  4) The curve of the edge indicates the direction of citations (origin of 
citation clockwise linked to destination) 5) These results control for year and publication authority FE, citations 
added by examiners, publication claims, family and broad family size, stock of published patents by sector and 
year and stock of citations by field. 
 

To further explore the exceptional patterns of the instrument and electrical engineering sectors 

we discovered in Figure 1, we break down sector-level citations into more specific technology 

fields including analysis of biological materials, control, measurement, medical technology, 

and optics (Figure 3). The fields of optics and measurement generally track the mean of all 

technology classes while the other three fields show some distinct patterns. With the exception 
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of the 1920s, medical technology appears to consistently receive fewer citations than other 

instrument fields; this points to the increasing specialization of medicine over the 20th century, 

whereby medical technologies are not frequently used in other fields. Analysis of biological 

materials generally follows the mean of all citations until the 1980s, when it appears to increase 

its overall influence. Whereas this could suggest the emergence of biological analysis as an 

invention machine, a closer analysis suggests otherwise: the rise of biological analysis appears 

to reflect the adoption of digital technologies within this field – the highly cited patents in this 

technology class tend to be co-listed in the digital communications and data processing classes 

(see Figure A1 in the Appendix for more detail).  

Figure 3  Predicted patent citation coefficients by instrument field and by year 

 
 
Notes: Blue dotted line represents the coefficients for the technology class in question while the red dotted line 
represents the mean of all technology classes. These results control for year and publication authority FE, citations 
added by examiners, publication claims, family and broad family size, stock of published patents by sector and year 
and stock of citations by field. 
 

The most striking field of instruments is control technologies, which consistently receive more 

citations than the mean of all classes for the entire period. Control technologies relate to the 

electrical or mechanical manipulation and management of machinery (see Appendix A1 and 
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A2 for examples of each). The above-average citations to the instruments sector can almost 

entirely be attributed to this specific field. Control technologies thus appear to qualify as 

invention machines that enable the manipulation of information or physical properties in a 

broad range of applications, inciting follow-on invention in those application sectors.  

Figure 4  Predicted electrical engineering patent citations by technology field and by 
year 

 

 
 
Notes: Blue dotted line represents the coefficients for the technology class in question while the red dotted line 
represents the mean of all technology classes. These results control for year and publication authority FE, citations 
added by examiners, publication claims, family and broad family size, stock of published patents by sector and year 
and stock of citations by field. 

 

We carry out a similar analysis of the subfields of electrical engineering. Figure 4 reports the 

yearly coefficients for these fields. Again, the red dotted line marks the average of all sectors 

and the blue dotted lines the coefficients of the specific field in question. AV technologies, 

basic communication, electrical machinery, and telecommunications are all not different from 

the average in any sustained pattern. In contrast, semiconductors had a long (albeit variable) 
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spike prior to 1960; computer technology has been above average after 1970 and particularly 

in the 1990s; and digital communications have experienced a seemingly exponential growth 

after 1970 (ignoring the 2000s for which we do not yet have comprehensive data). Perhaps 

surprisingly, computer technologies have not been as impactful or persistent in their influence 

on other fields as have control technologies or digital communications. We have left out the 

field of IT methods for management which is included in the Appendix A3. Because of a 

relatively small number of patents in this field, its coefficients are very unstable and therefore 

difficult to interpret. 

Next we exploit the fact that patents can be classified in multiple patent classes via co-

listed patent classes. Figure 5 and Table 2 present analyses of those technology classes that 

instrument patents are co-listed with. We define as “mechanical instruments” those patents that 

list both mechanical engineering and instrument classes while “electrical instruments” list both 

electrical engineering and instrument classes. 

To highlight the impact of “electronification” of production,  we utilize a differences-

in-differences approach around the year 1970, when Electrical Engineering patent citations 

counts first rose above the mean (cf. Figure 1). In Table 2 we estimate a model for both types 

of instruments, mechanical and electrical. Here we also consider a narrower definition of 

sectoral spillovers by estimating both models that include all citations (both within-sector and 

cross-sector citations) in specifications 1 and 3, and models that only include cross-sector 

citations in specifications 2 and 4.  

We find that mechanical instruments are the most frequently cited patents across all 

instruments but electrical instruments gradually replace them after 1970. Specifically, prior to 

1970 mechanical instruments receive on average 0.364 more citations (compared to other 

technology fields at the same time period) whereas electrical instruments increase their share 

after this milestone to receive 1.026 citations (columns 1 and 3, Table 2) more. Regarding cross-

sector spillovers, we find that electrical instrument spillovers increase by 0.388 citations after 

1970 whereas mechanical instrument spillovers drop by 0.307 during the same period (columns 

2 and 4). This take-off of electrical instruments coincides with the information technology 
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revolution since the early 1970s and continued in the following decades. Nevertheless, 

instrument technologies appear to have generated substantial and sustained knowledge 

spillovers over several decades regardless of the underlying technological base.  

Table 2  Citations for electrical and mechanical instruments, before and 
after 1970 

 
 (1) (2) (3) (4) 

Estimation method FE FE FE FE 

Dependent variable All citations 
X-sector 

Spillovers 
All citations 

X-sector 
Spillovers 

   

Postt 1.735 0.096 1.706 0.095 

dummy=1 after 1970 (70.18)** (143.23)** (68.86)** (33.92)** 

Electrical Instruments 4.23 1.32    

 (238.42)** (432.28)**    

Electrical Instruments X Post 1.026 0.388    

 (56.24)** (123.53)**    

Mechanical Instruments     5.14 1.39 

     (346.00)** (829.03)** 

Mechanical Instruments X Post     -0.364 -0.307 

     (23.53)** (175.63)** 

       

Observations 53,980,888 53,980,888 53,980,888 53,980,888 

R2 0.24 0.14 0.25 0.12 

Year FE yes yes yes yes 

Publication Authority yes yes yes yes 
Stock of published patents by 
field & year 

yes yes yes yes 

Family Size yes yes yes yes 

Family Size Broad yes yes yes yes 

Publication Claims yes yes yes yes 

Citations (#) by examiners yes yes yes yes 

Stock of citations by field&year yes yes yes yes 
 
Notes: The dependent variable is the total number of citations per patent i in year t (columns 1 
and 3) and the number of citations from all other sectors excluding Electrical Instruments 
(column 2) and Mechanical Instruments (column 4). Standard errors clustered at the patent 
family level are reported in parenthesis below coefficients: *significant at 5%; **significant at 
1%. 
Source: Authors’ calculations based on data from PATSTAT.

 

Figure 5 illustrates the dramatic switch to electric engineering as the basis of industrial 

instruments around the watershed year 1970. The difference between mechanical and electric 
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instruments is particularly clear and consistent for the cross-sectoral spillovers post 1970 

(panel on the right). 

Figure 5  All predicted citations and cross-sector spillovers of mechanical 
and electrical instruments 
 

 
 
Notes: These results control for year and publication authority FE, citations added by examiners, publication claims, 
family and broad family size, stock of published patents by sector and year and stock of citations by field. 
 

In our final illustration of technological discontinuities involving industrial control and 

electronics, we delve into the technology areas cross-listed with control technologies (Figure 

6). We find that pre-1970 the above-average knowledge spillovers from control technologies 

(above the solid line that represents average citation rate of control technologies) take place 

when inventions are co-listed with a variety of mechanical technology fields, including thermal, 

transport, materials, and machine tools (square symbols). In contrast, post-1970, the most 

frequent senders of control technology spillovers are co-listed with electrical engineering 

technology fields (round symbols) and dominated by digital communications. Although 

computer technologies have been assumed to play a central role in automation, it appears that 

communication technologies actually generate the most invention impact. 
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Figure 6  Predicted control patent citations with co-listed technology fields 
 

	
Notes: The results presented include controls for year and publication authority FE, citations added by examiners, 
publication claims, family and broad family size, stock of published patents by sector and year and stock of citations 
by field. For clarity, hollow circles represent the Electrical X Control categories and the squares the Mechanical X 
Control categories. Colors indicate the relevant sup-group. 
 
Discussion and Conclusion 

Expanded data storage and processing capabilities allow social scientists to tackle ever-larger 

datasets in comprehensive and complex analyses of networks and dynamics. We analyzed the 

entire global history of patenting since about 1920 to detect long-term patterns of technological 

influence via prior-art citations of patented inventions. 

The history of knowledge spillovers as measured by patent citations is dominated 

throughout the 20th century by instrument technologies and, after 1970, by electrical 

engineering, particularly information and communication technologies. We described these 

technologies as “invention machines” because they play critical roles in the processes of 

invention in many sectors of the economy. Thus, they are not only general-purpose technologies 

that can be utilized in many different sectors but also general invention technologies that 

facilitate the discovery of other technologies. Instruments enable the manipulation of physical 



 

17 

processes whereas information and communication technologies enable the manipulation of 

data. Both capabilities are fundamental to most economic and industrial activity. 

Our analyses imply that industrial automation technologies coming out of the subfield 

of control instruments have been the most generative (and probably the most valuable) general-

purpose technologies over the past century of invention. Meanwhile, the sources and 

implications of control technologies have rarely been considered in the debates around 

computerization, digitization, and productivity. Our analysis suggests that automation actually 

requires a great deal of instrumentation which, to our knowledge, has not been studied in detail 

by historians or economists.  

We also find a watershed moment around year 1970 when the modal invention 

trajectory switched from mechanics to electronics. Here we confirm the finding of Jovanovic 

and Rousseau (2005) of the ICT revolution commencing about this time. Electronics invention 

in technologies such as semiconductors and data processing, and later computer technologies 

and particularly digital communications paved the way for digitization and automation of 

production and economic coordination. In particular, digitized industrial control systems appear 

to have had a tremendous technological impact since 1970. We leave it for future research to 

connect these technological advances with effects on productivity and competition that 

probably continue to this day.  

As the control and communication revolution appears to continue, we may wonder 

what is in store for the future. We investigated the conspicuous rise of biological analysis 

technologies but concluded that their initial rise is primarily caused by the adoption of 

electronics, not necessarily by the application of biological techniques in other industries. 

However, the convergence of digital communication technologies and control technologies 

may well prove to generate the next generation of invention machines. Advanced digital 

communications make it possible to simultaneously and immediately utilize information in a 

wide variety of contexts. This bodes well for the integration of techniques related to cloud 

computing, big data, and the industrial internet with control technologies such as different types 

of sensors and actuators that, together, allow observing and manipulating physical, chemical, 
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biological, and social processes in connected industrial activities in a vast set of contexts. As 

the onslaught of automation may continue to create tremendous industrial value but also 

societal upheaval via creative destruction of jobs, occupations, and organizations, it is 

interesting to notice that the set of technologies that fundamentally enables this, control 

instruments, has gone relatively unnoticed in the economics of technology. In ongoing research, 

we examine the geographic origins and implications of these patterns of knowledge flows. 
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Appendix  

Figure	A1		 US	Patent	9,268,320	B2:	Wireless	Industrial	Control	User	
Interface	with	Configurable	Software	Capabilities	(2016)	
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Figure A2  US Patent 3,444,896: Hydraulic Interval Timer (1969) 
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Figure A3  Cross-sector citation flows in 1970 (no filtering) 

Notes: 1) Color of the circle represents the broader sector of each technology field (Red: Electrical Engineering, 
Yellow: Instruments, Green: Chemistry, 4: Cyan: Mechanical Engineering, 5: Blue: Other sectors)  2) Size of the 
circle represents the number of incoming citations; 3) Thickness of the edge represents the magnitude of citations 
from one sector to another (showing all links with statistically significant coefficients) 4) The curve of the edge 
indicates the direction of citations: origin of citation clockwise linked to destination 5) These results control for year 
and publication authority FE, citations added by examiners, publication claims, family and broad family size, stock 
of published patents by sector and year and stock of citations by field. 
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Figure A4 Biological analysis patent citations with co-listed technology fields 
	

	
 
Notes: These results control for year and publication authority FE, citations added by examiners, publication claims, 
family and broad family size, stock of published patents by sector and year and stock of citations by field. 

 
 


