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Abstract

The slow growth of high-paying jobs in the U.S. since 2000 and rapid advances in
computer technology have sparked fears that human labor will eventually be rendered
obsolete. Yet while computers perform cognitive tasks of rapidly increasing complexity,
simple human interaction has proven difficult to automate. In this paper, I show
that the labor market increasingly rewards social skills. Since 1980, jobs with high
social skill requirements have experienced greater relative growth throughout the wage
distribution. Moreover, employment and wage growth has been strongest in jobs that
require high levels of both cognitive skill and social skill. To understand these patterns,
I develop a model of team production where workers “trade tasks” to exploit their
comparative advantage. In the model, social skills reduce coordination costs, allowing
workers to specialize and trade more efficiently. The model generates predictions about
sorting and the relative returns to skill across occupations, which I test and confirm
using data from the NLSY79. The female advantage in social skills may have played
some role in the narrowing of gender gaps in labor market outcomes since 1980.
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“We can never survey our own sentiments and motives, we can never form any judgment
concerning them; unless we remove ourselves, as it were, from our own natural station, and
endeavour to view them as at a certain distance from us. But we can do this in no other
way than by endeavouring to view them with the eyes of other people, or as other people are
likely to view them.” - Adam Smith, The Theory of Moral Sentiments (1759)

1 Introduction

A vast literature in economics explains increasing returns to skill over the last several decades
as a product of the complementarity between technology and high-skilled labor, or skill-biased
technological change (SBTC) (e.g. Katz and Murphy 1991, Bound and Johnson 1992, Juhn
et al. 1993, Murnane et al. 1995, Grogger and Eide 1995, Heckman and Vytlacil 2001, Taber
2001, Acemoglu and Autor 2011). Beginning in the 1990s, the labor market “hollowed out”
as computers substituted for labor in middle skill routine tasks and complemented high-
skilled labor, a phenomenon referred to as job polarization or alternatively, routine-biased
technological change (RBTC) (Autor et al. 2003, 2006, Goos and Manning 2007, Autor et al.
2008, Acemoglu and Autor 2011, Autor and Dorn 2013, Michaels et al. 2014, Goos et al.
2014, Adermon and Gustavsson 2015).

However, while RBTC implies rising demand for skilled labor, there has been little or
no employment growth in high-paying jobs since 2000, and this slow growth predates the
Great Recession (Acemoglu and Autor 2011, Autor and Dorn 2013, Liu and Grusky 2013,
Beaudry et al. 2014, 2016). Beaudry et al. (2016) show that a “great reversal” in the demand
for cognitive skill occurred in the U.S. labor market around 2000, and Castex and Dechter
(2014) find that the returns to cognitive skill were substantially smaller in the 2000s than
in the 1980s. These findings are especially puzzling in light of the rising heterogeneity in
worker-specific pay premiums found in studies that use matched employer-employee data
(Card, Heining and Kline 2013, Card et al. forthcoming). If technological change is skill-
biased, why do the returns to cognitive skill appear to have declined over the last decade?

One possibility is that weak growth in high-skilled jobs is caused by a slowdown in tech-
nological progress.1 Beaudry et al. (2016) argue that declining demand for cognitive skill
can be explained as a boom-and-bust cycle caused by the progress of information technology
(IT) from adoption to maturation, and Gordon (2014) shows that innovation and U.S. pro-
ductivity growth slowed down markedly in the early 2000s. On the other hand, Brynjolfsson
and McAfee (2014) discuss advances in computing power that are rapidly expanding the set

1In the long-run, technological progress itself may respond endogenously to changes in the supply of skills
(e.g. Acemoglu 1998).
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of tasks that machines can perform. Many of the tasks they and others highlight - from
automated financial management and tax preparation to legal e-discovery to cancer diagno-
sis and treatment - are typically performed by highly skilled workers (Levy and Murnane
2012, Brynjolfsson and McAfee 2014, Remus and Levy 2015). Thus another possibility is
that computer capital is substituting for labor higher up in the skill distribution, redefining
what it means for work to be “routine” (Autor 2014, Lu 2015).

Figure 1 investigates this possibility by showing relative employment growth between 2000
and 2012 for the set of high-skilled, “cognitive” occupations that are the focus of Beaudry
et al. (2016).2 The upper panel of Figure 1 focuses on science, technology and engineering
(STE) jobs, while the lower panel shows all other “cognitive” occupations. Figure 1 shows
clearly that the slow growth of high-skilled employment over the last decade is concentrated
in STE jobs. STE jobs shrank by a total of 0.31 percentage points as a share of the U.S.
economy between 2000 and 2012, after growing by 1.33 percentage points over the previous
two decades. By comparison, all other “cognitive” occupations grew by 2.86 percentage
points between 2000 and 2012, which actually surpasses the growth rate of 1.99 percentage
points in the previous decade.3 Most importantly, the fastest growing cognitive occupations
- managers, teachers, nurses and therapists, physicians, lawyers, even economists - all require
significant interpersonal interaction.

In this paper, I show that high-paying jobs increasingly require social skills. Technological
change provides one possible explanation - the skills and tasks that cannot be substituted
away by automation are generally complemented by it, and social interaction has (at least
so far) proven extremely difficult to automate (Autor 2015). Our ability to read and react
to others is based on tacit knowledge, and computers are still very poor substitutes for tasks
where programmers don’t know “the rules” (Autor 2014).4 Human interaction requires a

2Following Beaudry et al. (2016), Figure 1 displays employment growth for what the U.S. Census refers to
as managerial, professional and technical occupation categories. Autor and Dorn (2013) create a consistent
set of occupation codes for the 1980-2000 Censuses and the 2005-2008 ACS - I follow their scheme and
update it through the 2010 Census and the 2011-2013 ACS - see the Data Appendix for details. Following
Beaudry et al. (2016), “cognitive” occupations include all occupation codes in the Data Appendix between
1 and 235. For ease of presentation, I have grouped occupation codes into larger categories in some cases
(e.g. “Engineers”, “Managers”).

3Slow growth in STE jobs might be driven by the difficulty of finding qualified workers (i.e. supply rather
than demand). One would expect this to show up in relatively higher wage growth for STE occupations, yet
I do not find any evidence of this - see Section 2 for details. Additionally, any supply story would have to
explain the timing of slow growth in STE jobs over the 2000-2012 period, but not before.

4Autor (2014) refers to this as “Polanyi’s paradox”, after the philosopher Michael Polanyi who observed
that “we can know more than we can tell”. Autor (2014) also notes that computer scientists refer to a
similar phenomenon as “Moravec’s paradox”. Moravec argues that evolution plays an important role in
the development of tacit knowledge. Skills such as interpersonal interaction and sensorimotor coordination,
while unconscious and apparently effortless, are actually the product of evolutionary design improvements
and optimizations over millions of years. In contrast, abstract thought seems difficult because humans have
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capacity that psychologists call theory of mind - the ability to attribute mental states to
others based on their behavior, or more colloquially to “put oneself into another’s shoes”
(Premack and Woodruff 1978, Baron-Cohen 2000, Camerer et al. 2005).5 Based on the
current inability of computers to recognize and replicate social interaction, Frey and Osborne
(2013) identify social intelligence tasks as a key bottleneck to automation.

I begin by presenting evidence for three important facts about the U.S. labor market.
First, I show that employment growth in social skill-intensive occupations has occurred
throughout the wage distribution, not just in low-skilled service work or in management
and other top-paying jobs. Second, consistent with Weinberger (2014), I find a growing
complementarity between cognitive skills and social skills. Since 1980, employment and
wage growth has been particularly strong in occupations with high cognitive skill and social
skill requirements. In contrast, employment has fallen in occupations with high math but
low social skill requirements, suggesting that cognitive skills are increasingly a necessary but
not sufficient condition for obtaining a high-paying job. Third, I show that measures of
an occupation’s social skill intensity and its routineness are strongly negatively correlated.
Alternative explanations such as offshoring, trade and consumer preferences can partially -
but not completely - explain the labor market trends described above.6

only been doing it for a few thousand years (Moravec 1988).
5Progress in automating social interaction is best exemplified by the continued failure of the Turing test,

which measures a machine’s ability to imitate human conversation for five minutes in a highly controlled
setting. Alan Turing proposed the following test for machine intelligence - an interviewer asks written ques-
tions of two respondents, and is given the task of determining which respondent is human and which is a
computer. Turing proposed that a machine would pass the test once it could convince a human 70 percent
of the time after five minutes of conversation. Since 1990, the Loebner prize has been awarded annually to
software programs that come closest to passing the Turing test. In 2014, a “chatbot” program called Eugene
Goostman convinced 33 percent of the contest’s judges that it was human, arguably passing the Turing
test for the first time. However, like other programs before it, Goostman passed the Turing test through
trickery, posing as a 13-year-old Ukrainian with a poor grasp of the English language. Cognitive psychol-
ogist Gary Marcus writes in the New Yorker that “the winners aren’t genuinely intelligent...It has turned
out, in fact, that the winners tend to use bluster and misdirection far more than anything approximating
true intelligence.” http://www.newyorker.com/tech/elements/why-cant-my-computer-understand-me, last
accessed June 15, 2015.

6Autor and Dorn (2013) document the rise of low-wage service occupations. In their model, this is
explained by non-neutral technological progress - computers replace routine production tasks, which reallo-
cates low-skilled workers to services (which are more difficult to automate because consumers favor variety
over specialization). However, this does not explain growth of social skill-intensive jobs at the top of the
wage distribution. Likewise, Autor et al. (2015) compare the impact of import competition from China to
technological change and find that the impact of trade is concentrated in manufacturing and larger among
less-skilled workers. Autor and Dorn (2013), Goos et al. (2014) and Michaels et al. (2014) show that rou-
tineness is a better predictor than offshorability of labor market polarization in the U.S. and across multiple
OECD countries. Oldenski (2012) shows that production requiring complex within-firm communication is
more likely to occur in a multinational’s home country. Karabarbounis and Neiman (2014) show that the
share of corporate value-added paid to labor has declined, even in labor-intensive countries such as China
and India, suggesting that offshoring alone is unlikely to explain the growth in social skill-intensive jobs.
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To understand these patterns, I develop a model of team production where workers
“trade tasks” to exploit their comparative advantage. Following existing models, teamwork
increases productivity through specialization but requires costly coordination (Becker and
Murphy 1992, Bolton and Dewatripont 1994, Lazear 1999, Garicano 2000, Garicano and
Rossi-Hansberg 2004, 2006, Antras et al. 2006).

However, I depart from prior work by treating social skills as reducing worker-specific
coordination costs. Workers draw individual task productivities from a distribution, and
cognitive skill is the mean of the distribution. Thus two workers with the same cognitive
skill differ in their productivity over individual tasks. Social skills act as a kind of social anti-
gravity, reducing the cost of task trade and allowing workers to specialize and co-produce
more efficiently. This approach takes on the structure of a Ricardian trade model, with
workers as countries and social skills acting as inverse “iceberg” trade costs as in Dornbusch
et al. (1977) and Eaton and Kortum (2002).7

The model provides a natural explanation for the empirical results described above.
Workers of all skill levels benefit from trading tasks with each other through horizontal
specialization. This contrasts with the literature on “knowledge hierarchies”, where vertical
specialization leads to less-skilled workers focusing on routine production tasks and managers
focusing on nonroutine problem solving (Garicano 2000, Garicano and Rossi-Hansberg 2004,
Antras et al. 2006, Garicano and Rossi-Hansberg 2006). These models explain increases
in managerial compensation and wage inequality, but do not explain broad-based gains in
the labor market returns to social skills. Moreover, treating social skills as a reduction in
coordination costs allows skill complementarity to emerge naturally, because the value of
lowering the cost of trade increases in task productivity and thus cognitive skill.8

The model provides a key link between social skills and routineness through the variance
of task productivity draws. Nonroutine work requires a more diverse range of tasks (for ex-
ample, consider the tasks required of management consultants vs. computer programmers).
In the model, the variance of task productivity draws acts as an elasticity, increasing the
gains from task trade and thus the wage returns to social skills.

I am aware of only a few other papers that specifically model social skills. In Borghans
7Acemoglu and Autor (2011) develop a Ricardian model of the labor market with three skill groups, a

single skill index, and comparative advantage for higher-skilled workers in relatively more complex tasks.
While their model accommodates technological change in a variety of forms, they explain job polarization as
a technological change that replaces the tasks performed by medium-skilled workers. In contrast, the model
here posits the existence of two types of skill that are distributed arbitarily across workers.

8A related literature studies job assignment when workers have multiple skills (Heckman and Sedlacek
1985, Heckman and Scheinkman 1987, Gibbons et al. 2005, Lazear 2009, Sanders and Taber 2012, Yamaguchi
2012, Lindenlaub 2013, Lise and Postel-Vinay 2015). Models of this type would treat social skill as another
addition to the skill vector, with Roy-type selection and linear (or log-linear) wage returns rather than the
specific pattern of complementarity between cognitive skill and social skill.
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et al. (2014), there are “people” jobs and “non-people” jobs and the same for skills, with
workers sorting into jobs based on skills and relative wages.9 Kambourov et al. (2013) de-
velop a model with “relationship” skill, where high levels of relationship skill (as measured
by a worker’s occupation) are associated with stable marriage and employment outcomes.
McCann et al. (2014) develop a multi-sector matching model with teams of workers who
specialize in production tasks and a manager who specializes completely in communication
tasks.10 In contrast, there are no communication tasks in my model, nor are there formal
teams.11 This is consistent with case studies of modern teamwork, where workers are or-
ganized into temporary, fluid and self-managed groups to perform customized sets of tasks
(e.g. Lindbeck and Snower 2000, Hackman 2002, Bartel et al. 2007, Edmondson 2012).

The model generates predictions about sorting and the relative returns to skills across
occupations, which I test and confirm using data from the National Longitudinal Survey of
Youth 1979 (NLSY79). I first demonstrate that there is a positive return to social skills in the
labor market that is robust to a variety of controls, including widely used measures of cog-
nitive and non-cognitive skill, years of education, and occupation and industry fixed effects.
I find that the returns to social skills and skill complementarity are higher in nonroutine
occupations even after controlling for a variety of occupation and industry characteristics as
well as worker fixed effects.12 I also find that workers with higher social skills self-sort into
nonroutine occupations.13

I relate the growing importance of social skills to advances in information and commu-
nication technology (ICT) that have shifted the organization of work toward flexible and

9Relatedly, Borghans et al. (2008) develop a model of “interpersonal styles” where worker productivity
depends on the effectiveness of interpersonal interactions, which are determined by the worker’s levels of
caring and directness.

10In McCann et al. (2014), workers can invest in education (which increases their cognitive skill but not
their communication skill), and individuals with high communication skill can become teachers in the school
or managers within a firm as adults. When workers who specialize in communication (vertical specialization)
become managers of a team, the communication skills of the other workers on the team are irrelevant.

11Models with communication or “people” tasks face the challenge of specifying what exactly is being
produced. For example, if I spend all day in a meeting, am I devoting all of my daily effort to a communication
task? In this model, which treats communication as a friction, workers who spend more time in meetings -
conditional on total output - have lower social skill. Additionally, the model does not actually include a role
for cohesive teams that produce independently - rather, workers trade more or less with each other.

12One possible explanation for the positive labor market return to social skills is that workers with high
social skills are able to extract greater rents when negotiating for wage increases. This would also be
consistent with the large establishment-level wage premia found in Card, Heining and Kline (2013) and Card,
Cardoso and Kline (2013). However, rent extraction would not explain cognitive-social skill complementarity,
or the finding of relatively larger returns to social skills in nonroutine occupations.

13Krueger and Schkade (2008) show that gregarious workers sort into jobs that involve more social in-
teraction. They interpret this as a compensating differential, suggesting that workers have preferences for
interactive work. However, this does not explain why firms would be willing to pay more for a worker with
higher social skills. If skill in social interaction had no value in the labor market but interactive jobs were
preferred by workers, compensating differentials imply that interactive jobs should pay less all else equal.
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self-managed team structures, job rotation and worker multitasking (Bresnahan 1999, Lind-
beck and Snower 2000, Caroli and Van Reenen 2001, Bresnahan et al. 2002, Dessein and
Santos 2006, Bartel et al. 2007, Lazear and Shaw 2007, Bloom and Van Reenen 2011). This
literature has generally focused on the complementarity between technological change and
cognitive skill.14 However, I argue that the impact of computerization on the workplace is
better understood in terms of skill complementarity. As routine tasks of increasing complex-
ity are performed by machines, the remaining workplace tasks are increasingly open-ended
and interactive - they require workers to be both smart and flexible.

In the model, social skills are more important when the production environment is more
uncertain, because workers must be able to adapt flexibly to changes in their comparative
advantage (Dessein and Santos 2006). While the model studies teamwork in production,
one can view many customer-oriented occupations - consulting, health care, teaching, legal
services - as requiring joint production between worker and customer. Katz (2014) discusses
growing demand for artisanal workers who can provide a creative, personal touch and cus-
tomize production to the needs of clients. Social skills in production will be important for
customer service occupations to the extent that the final product is uncertain and crafted
specifically for the needs of the client.

Finally, I show that the economy-wide shift toward social skill-intensive occupations has
occurred disproportionately among women rather than men. This is consistent with a large
literature showing sex differences in social perceptiveness and the ability to work with others
(Hall 1978, Connellan et al. 2000, Woolley et al. 2010, Kirkland et al. 2013).

Are social skills distinct from cognitive skills, or are they simply another measure of the
same underlying ability? When surveyed, employers routinely list teamwork, collaboration
and oral communication skills as among the most valuable yet hard-to-find qualities of work-
ers (e.g. Casner-Lotto and Barrington 2006, Jerald 2009).15 In 2015, employers surveyed
by the National Association of Colleges and Employers (NACE) listed “ability to work in
a team” as the most desirable attribute of new college graduates, ahead of problem-solving
and analytical/quantitative skills (National Association of Colleges and Employers 2015).

Tests of emotional intelligence and social intelligence have been formally developed and
14Autor et al. (2003) separately show trends in nonroutine “analytical” and “interpersonal” task inputs.

Subsequent work on routine-biased technological change (RBTC) and job polarization has grouped these
two categories together as “abstract” or “cognitive” tasks, and implicitly or explicitly assumed that proxies
such as education are a sufficient statistic for both types of skill (e.g. Acemoglu and Autor 2011, Autor and
Dorn 2013, Goos et al. 2014).

15In a 2006 survey of 431 large employers, the five most important skills for four-year college graduates
(ranked in order) were 1) oral communications; 2) teamwork/collaboration; 3) professionalism/work ethic; 4)
written communications; 5) critical thinking/problem solving. For high school graduates and two-year college
graduates, professionalism/work ethic was listed as most important followed by teamwork/collaboration and
oral communications, with critical thinking/problem solving listed 7th.

7



psychometrically validated by psychologists (Salovey and Mayer 1990, Mayer et al. 1999,
Baron-Cohen et al. 2001, Goleman 2006). Woolley et al. (2010) show that a test designed to
measure social intelligence predicts team productivity even after controlling for the average
intelligence of team members.16

A growing body of work in economics documents the labor market return to “noncogni-
tive” skills, including social skills and leadership skills (Kuhn and Weinberger 2005, Heckman
et al. 2006, Lindqvist and Vestman 2011, Heckman and Kautz 2012, Borghans et al. 2014,
Weinberger 2014).17 This paper builds on the seminal observation of Heckman (1995) that
earnings are likely influenced by multiple dimensions of skill, since measured cognitive abil-
ity (i.e. g) explains only a small fraction of the variation in adult wages. Subsequent work,
summarized in Heckman and Kautz (2012), finds that “noncognitive” or “soft” skills explain
important variation in adult outcomes. This paper should be viewed as an attempt to extend
and formalize the definition of one particular dimension of “soft” skills - the ability to work
with others.

The remainder of the paper proceeds as follows. Section 2 presents evidence for three key
facts about the growing importance of social skills in the labor market. Section 3 presents
the model, first with a simple two-worker and two-task case to build intuition, and then with
many workers, a continuum of tasks and a characterization of equilibrium production and
wages. Section 4 describes the data. Section 5 presents the empirical models and results,
and discusses evidence of the importance of social skills in explaining the growing female
advantage in labor market outcomes. Section 6 concludes.

16Woolley et al. (2010) randomly assign individuals to groups and then ask the groups to perform a
variety of tasks. Group performance is positively correlated with conversational turn-taking, the share of
group members who are female, and a measure of the “average social sensitivity” of group members as
measured by a test called “Reading the Mind in the Eyes”. This test was originally developed to assist in
the diagnosis of Autism and Asperger Syndrome, but has since been demonstrated as psychometrically valid
and able to detect subtle differences in individual social sensitivity (e.g. Baron-Cohen et al. 2001).

17Kuhn and Weinberger (2005) find that men who occupied leadership positions in high school had higher
earnings as adults, even after controlling for cognitive skill and a wide variety of other covariates. Using
more recent data from multiple cohorts, Weinberger (2014) finds an increase in the return to social skills over
time, as well as an increase in the complementarity between cognitive skills and social skills. Lindqvist and
Vestman (2011) find that Swedish men who scored higher on an interview, which was designed to measure
(among other things) social skills and the ability to work in a team, had higher earnings later in life even
after conditioning on cognitive skill. Like Weinberger (2014), they also found that cognitive skill and social
skill are complements in the earnings regression. Borghans et al. (2014) document a growing labor market
return to jobs that require more “people tasks” and document self-selection of sociable workers into these
jobs.
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2 Social Skills in the Labor Market

I study changes in the the task content of work using data from the Occupational Information
Network (O*NET). O*NET is a survey administered by the U.S. Department of Labor to a
random sample of U.S. workers in each occupation. The O*NET survey began in 1998 and
is updated periodically. I use the 1998 O*NET to most accurately reflect the task content
of occupations in earlier years, although results with later versions of O*NET are generally
similar.

The O*NET survey asks many different questions about the abilities and skills, knowledge
and work activities required in an occupation. The questions are rated on an ordinal scale,
with specific examples that illustrate the value of each number to help workers answer the
question accurately. Because the scale values have no natural cardinal meaning, I follow
Autor et al. (2003) and convert average scores by occupation on O*NET questions to a 0-10
scale that reflects their weighted percentile rank in the 1980 distribution of task inputs.

Autor and Dorn (2013) create a balanced and consistent panel of occupation codes that
cover the 1980 Census through the 2005 American Community Survey (ACS). I extend their
approach through 2012, updating the occupation crosswalk to reflect changes made in 2010
and making a few minor edits for consistency - see the Data Appendix for details.

I focus on changes in four key indicators of the task content of work. First, I measure an
occupation’s routine task intensity as the average of the following two questions - 1) “how
automated is the job?” and 2) “how important is repeating the same physical activities (e.g.
key entry) or mental activities (e.g. checking entries in a ledger) over and over, without
stopping, to performing this job?”18 Second, I closely follow Autor et al. (2003) and define
nonroutine analytical (math) task intensity as the average of three O*NET variables that
capture an occupation’s mathematical reasoning requirements.19 Third, I define an occupa-
tion’s social skill intensity as the average of four O*NET skill measures - 1) Coordination;
2) Negotiation; 3) Persuasion; 4) Social Perceptiveness.20 Fourth, I define an occupation’s

18This definition of routineness differs from the task measures used by Autor et al. (2003), who use the 1977
Dictionary of Occupational Titles (DOT) measures “set limits, tolerances or standards” (STS) and “finger
dexterity” (FINGER). They call these task measures “routine cognitive” and “routine manual” respectively.
Autor and Dorn (2013) and other subsequent work combine these two measures into an index of routine task
intensity (RTI). Occupations that are at least 50 percentiles higher on the RTI measure compared to my
O*NET-based measure include telecom and line installers, masons, tilers and carpet installers, pharmacists,
and dental assistants. Occupations that rank as much more routine according to the O*NET measure include
taxi drivers and chauffeurs, bus drivers, garbage collectors and computer scientists.

19The three O*NET variables are 1) the extent to which an occupation requires mathematical reasoning;
2) whether the occupation requires using mathematics to solve problems; and 3) whether the occupation
requires knowledge of mathematics. See the Data Appendix for details.

20Appendix Figure A1 demonstrates that my preferred measure of Social Skills is strongly correlated with
other similar O*NET variables that capture coordination, interaction and team production. See the Data
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service task intensity as the average of two O*NET task measures - 1) assisting and caring
for others; 2) service orientation.21

While service tasks and social skill tasks both require human interaction, they are impor-
tant for different types of jobs. Figure 2 shows this by plotting smoothed locally weighted
regressions of O*NET occupational task intensities against that occupation’s percentile in
the 1980 wage distribution. Service tasks are typically oriented around customer service,
and are concentrated in the lowest three deciles of the wage distribution. In contrast, jobs
that require social skills emphasize teamwork in production, and are relatively high-paying
and cognitive skill-intensive.

Figure 3 demonstrates the growing importance of social skills by replicating Figure I
of Autor et al. (2003) for the 1980-2012 period using the four key O*NET task measures
described above.22 By construction, each task variable has a mean of 50 centiles in 1980.
Thus subsequent movement should be interpreted as changes in the employment-weighted
mean of each task relative to its importance in 1980. The data are aggregated to the
industry-education-sex level, which implicitly controls for changes in task inputs that are
due to changes in the industry and skill mix of the U.S. economy over time. There is no
adding-up constraint for tasks in a given year, and so changes over time can also reflect
changes in total labor supply.

Like Autor and Price (2013), I find that the labor input of routine tasks has continued
to decline, and that nonroutine analytical (math) task inputs stopped growing and even
declined modestly after 2000. However, social skill task inputs grew by 24 percent from 1980
to 2012, compared to only about 11 percent for nonroutine analytical tasks. Moreover, while
nonroutine analytical task inputs have declined since 2000, the importance of social skills
held steady (growing by about 2 percent) through the 2000s. Service task inputs grew by
about 23 percent over the 1980-2012 period, consistent with Autor and Dorn (2013).

O*NET is the successor of the Dictionary of Occupational Titles (DOT), which was used
by Autor et al. (2003) and many others to study the changing task content of work. Appendix
Figure A2 shows that the two data sources yield extremely similar results for analogous task
measures. I use the O*NET in this paper because it is a more recent data source that is
updated regularly, and because it contains many more measures of the task content of work
than the DOT.

Because the task measures in Figure 3 are additive, they may mask changes over time in
the bundles of tasks demanded by employers. Figure 4 plots smoothed changes in employ-

Appendix for details.
21Results are extremely similar when I use related measures of service tasks, such as whether the job

requires dealing with external customers.
22Many thanks to David Autor and Brendan Price for generously sharing their data and programs.
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ment shares by occupation between 1980 and 2012 against each occupation’s percentile in the
1980 wage distribution. I divide occupations into four mutually exclusive categories based
on whether they are above or below the median percentile in both nonroutine analytical
(math) and social skill task intensity. This compares employment growth across occupations
that require high math skills, high social skills, both or neither.

The results in Figure 4 are striking. Since 1980, occupations with high math and high
social skill requirements have grown robustly throughout the wage distribution. Jobs with
high social skill and low math requirements have also grown, although they are mostly con-
centrated in the bottom two-thirds of the wage distribution. The worst performance in terms
of employment growth comes from jobs with high math but low social skill requirements.
Employment shares declined for almost all but the very highest-paying jobs in this cate-
gory.23 The results are also robust to choosing cutoffs other than the 50th percentile for each
type of task.

Figure 5 presents changes in inflation-adjusted median log hourly wages for occupations
according to their math and social skill task intensities. With only a few exceptions, real
wage growth since 1980 has been greatest in occupations that require workers to have both
math skills and social skills. Wage growth for jobs with high math and low social skill
requirements has been positive but relatively modest. Finally, real wages have declined
for nearly all jobs that are below the median in both math skills and social skills. Taken
together, the evidence in Figures 4 and 5 strongly suggests that the demand for social skills
has grown in occupations throughout the wage distribution, particularly for jobs that also
have high cognitive skill requirements.

Appendix Figures A3 and A4 hone in on recent trends in the labor market by presenting
analogous results with 2000 as the base year. The results are qualitatively very similar. As
noted elsewhere, job growth was strongest at the bottom of the wage distribution. However,
among occupations paying above median wages, the only net job growth between 2000 and
2012 occurred in high social skill occupations, and only occupations that required high levels
of both types of skill experienced consistent real wage growth over the same period.

Figure 6 provides further evidence of growing skill complementarity by presenting the
trend in nonroutine analytical (math) task inputs from Figure 3, with occupations split
into three terciles of social skill task intensity. The groups are constructed to be of roughly
equal size in 1980, and as in Figure 3 all changes are relative to the 1980 distribution of task

23Some examples of high-paying occupations (i.e. above the 60th percentile) with high math and low
social skill task intensity include actuaries, mathematicians and statisticians, engineering and chemical tech-
nicians, and machinists. Some examples of high-paying occupations with low math and high social skill task
intensity include dentists, air traffic controllers, lawyers, actors/directors/producers, editors and reporters,
and physical therapists.

11



inputs.24 Nonroutine analytical task inputs for occupations in the lowest tercile of social skill
intensity - including many of the STE jobs shown in Figure 1 - declined by nearly 10 centiles
between 1980 and 2012, with about half of the decline occurring since 2000. For occupations
with moderate social skill requirements, there was an initial period of growth between 1980
and 1990, followed by a decline of about 7 centiles between 1990 and 2012. In contrast,
nonroutine analytical task inputs for jobs with the highest social skill requirements grew by
about 3 centiles from 1980 to 2000 and then declined by only 2 centiles between 2000 and
2012. Overall, Figures 4 through 6 provide strong evidence for the growing complementarity
between math skills and social skills (Weinberger 2014).

Finally, I demonstrate the close linkage between the O*NET definition of “routine” work
and a job’s reliance on human interaction by estimating the correlation between the routine
task measure from the O*NET and social skill task intensity, controlling for a variety of
other occupation-level characteristics. The results are in Table 1. Column 1 controls only
for the median log hourly wage and the O*NET service task measure, while Column 2 adds
a variety of other task measures from both the O*NET and the DOT.25 The conditional
correlation between an occupation’s “routineness” and its social skill intensity moves from
-0.68 in Column 1 to -0.56 in Column 2, and both are highly statistically significant. The
bottom line from Table 1 is that an occupation’s routine task intensity is a very strong
predictor of whether that occupation also has low social skill requirements.

In the next section, I develop a model of team production that can explain the following
three empirical patterns described above - 1) social skills are valued in jobs throughout the
entire wage distribution; 2) social skill and cognitive skill are complements; 3) the importance
of social skills is strongly linked to a job’s routineness.

3 Model of Team Production

I begin with a simple example to build intuition for the formal model. Assume that the
production of research papers consists of only two tasks - data analysis and writing. Assume
further that these two tasks are perfect complements, with the Leontief production function:

Y = min (D,W ) (1)
24Because the three lines in Figure 6 are measured net of compositional changes in the sizes of each

industry-education-sex cell, they will not necessarily add up to the single line for nonroutine analytical tasks
in Figure 3.

25The model in Column 2 of Table 1 includes all five DOT measures used in Autor et al. (2003), as well as
four alternative measures of cognitive skill and three alternative measures of social skill from the O*NET.
Details on these measures are in the Data Appendix.
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A representative firm in a perfectly competitive labor market employs two workers, Jones
and Miller, in the production of research papers. Jones and Miller both produce according
to (1), either alone or as a team, and are paid their marginal product in either case. If
they trade tasks, the firm does not care who is the “buyer” and who is the “seller” - only
about total output (i.e. Jones and Miller are perfect substitutes). They have the following
productivity schedules, expressed in number of tasks completed per unit of labor:

Data Analysis Writing
Jones 6 3
Miller 3 6

Each worker allocates one unit of labor across the two tasks to maximize the production of
research papers. In the absence of task trade (i.e. autarky), workers balance factor
proportions and generate the same total output of each task. For Jones, this implies
allocating one third of her effort to data analysis and two thirds to writing, generating two
total research papers:

YJ = min [(0.333 ∗ 6), (0.667 ∗ 3)] = 2

Miller allocates two thirds of his time to data analysis and one third to writing, also
generating two total research papers:

YM = min[(0.667 ∗ 3), (0.333 ∗ 6)] = 2

In total, Jones and Miller each produce two research papers, for a total of four when
working alone. However, the firm (and thus workers, since they are paid their marginal
product) can do better by “trading tasks”, which for the moment is costless. Jones has a
comparative advantage in data analysis, and Miller has a comparative advantage in writing.
The optimal solution involves complete specialization by Jones in data analysis and Miller
in writing (producing 6 units each):

YJ = (eDJ Dj, e
W
J WJ) = [(1 ∗ 6), (0 ∗ 3)] = (6, 0)

YS = (eDMDM , e
W
MWSM) = [(0 ∗ 3), (1 ∗ 6)] = (0, 6)
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Having produced a total of 6 units of each task, Jones and Miller can engage in a variety
of trades that improve their total productivity relative to the case without task trade. Specif-
ically, any trade where Jones obtains more than 2 units of writing and Miller obtains more
than 2 units of data analysis makes them both better off, because their marginal products
both increase. This analysis so far closely mirrors Ricardo (1891), with workers as countries
and tasks as goods.26

Now I assume that trading tasks requires coordination, with social skill as a worker-
specific reduction in the coordination cost. Let Si,n ∈ (0, 1) be a depreciation factor that
is applied proportionately to any trade in tasks between workers - Si,n = Si ∗ Sn for i 6= n.
Moreover let Si,i = 1, ∀i so workers can trade costlessly with themselves. Workers with
higher levels of social skill pay a lower coordination cost to engage in task trade with all
other workers. For simplicity, I assume that social skill applies equally to all types of tasks.

Turning first to the simple 2-task, 2-worker case, let S∗ = SJ ∗SM . Since the coordination
cost is symmetric (i.e. the cost of trading from Jones to Miller is the same as from Miller
to Jones) by assumption, and there are only two workers, it does not matter in this case
how social skills are distributed (i.e. SJ = 0.75 and SM = 0.25 generate the same results
as SJ = 0.25 and SM = 0.75). Total productivity is increasing in the social skills of both
workers, and there is a threshold level of social skills below which Jones and Miller do not
engage in team production. This threshold level is equal to the S∗ at which no combination
of trades can raise each worker’s productivity above its level in autarky (i.e. where YJ = 2
and YM = 2). The threshold S∗ is equal to 0.5 in this case. The symmetric nature of each
worker’s comparative advantage and the result that they should completely specialize makes
this example particularly simple, but as shown by Eaton and Kortum (2012), the solution
can be cumbersome to compute even in the two-factor, two-task case.27

The definition of social skills in this paper is closely related to the formulation of “iceberg”
trade costs between countries as in Dornbusch et al. (1977) and Eaton and Kortum (2002).
The main difference is that iceberg trade costs are defined at the country-pair level (i.e. Sni)
and do not necessarily have a common worker (country) component.28 This is a particular

26This example also abstracts away from cost (wage) differences across workers (countries). An alternative
approach would be to specify that each worker must be made better off by task trade, rather than only being
concerned with final output. This complicates the analysis but does not lead to substantively different
insights.

27With S∗ = 0.5, Jones trades 4 units of data analysis to Miller (which becomes 0.5 ∗ 4 = 2 units) and
vice versa for Miller trading writing to Jones. This allocation is exactly equivalent to total production in
autarky. Other combinations are possible for this particular S∗ as well. For example, Jones could produce 4
units of data analysis and 1 unit of writing (and vice versa for Miller), and they could reach total production
in autarky by trading 2 units (becoming 1 unit) of the task in which each specializes.

28In principle, one could model idiosyncratic coordination costs between two individuals as an Sni term.
One could also consider other functional forms, such as a coordination cost that is the minimum or the
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definition of social skill, and it does not rule out other ways that sociability might affect
productivity and wages (i.e. taste discrimination by firms, differential rates of on-the-job
learning or information acquisition). One convenient interpretation of S is that it represents
the probability that a worker will correctly communicate her productivity schedule to another
worker.

Note that if a worker has very low social skills, she will produce the same combination
of tasks regardless of her comparative advantage relative to others. On the other hand, a
worker with high social skills will be quite sensitive to changes in the relative productivities
of her co-workers. Thus another sensible interpretation of S is that it represents flexibility,
defined as the extent to which a worker adjusts to changes in their comparative advantage
as other factors are introduced to the production process.

In the next section I develop a formal model that generalizes the analysis above to
incorporate a continuum of tasks and an arbitrary number of workers. However, one can
see two implications that arise even in this simple example. First, the return to social
skills will be increasing in a worker’s overall average productivity (i.e. absolute advantage)
- for example, if the productivity schedules of each worker doubled, the gains from trade
would increase from two extra papers produced to four.29 Second, the return to social skills
will be greater when the across-worker correlation between task productivities is lower (i.e.
comparative advantage).30 I develop these implications more formally below.

3.1 Environment

Consider a measure of firms, each producing a unique final good Y according to a simple
perfect substitutes production function:

maximum of the social skills of the two workers. The model could easily accommodate realistic cases such
as group-specific coordination costs based on ethnic or cultural differences as in Charles and Kline (2006),
Hjort (2014) and Marx et al. (2015). Finally, while the model treats “task trade” as bilateral, one could
incorporate multilateral trade between many team members. In that case the multiplicative functional form
for S described above would generate a kind of O-ring production function for tasks, where a single worker
with low social skills could greatly disrupt the operation of a team (Kremer 1993).

29If Jones’ productivity schedule was (12,6) and Miller’s was (6,12), they would each produce 4 in autarky,
for a total of 8 research papers. With task trade (assuming that Si ∗ Sn = 1 for simplicity, although this
need not be true), the optimal allocation is (12,0) for Jones and (0,12) for Miller. This would produce a
total of 12 research papers. Thus the gains from trade double when the productivity of all workers doubles.

30It is straightforward to show that the threshold S∗ increases - or alternatively, that the gains from trade
are lower - with a mean-preserving shift in task productivities that makes the two workers more similar.
For example, if Miller’s productivity schedule changed from (3, 6) to (4, 4), he could still produce 2 research
papers in autarky. However, the efficient allocation with costless task trade would become

(
4 2

3 ,
2
3
)
for Jones

and (0, 4) for Miller, making the total gains from trade 2
3 of a research paper rather than 2 in the original

case. A shift in Miller’s productivity schedule from (3, 6) to (6, 3) would eliminate any gains from task trade.
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Y =
I∑
i=1

Liyi (2)

with Li denoting the total labor supplied by worker i. For ease of exposition I assume
that workers are the only factor of production, although later I discuss the implications of
the model for substitution between labor and capital. There are many workers, and each
one produces output yi by combining a continuum of tasks t defined over the unit interval.
A worker’s production function over tasks takes the following Cobb-Douglas form:

yi = exp


1ˆ

0

ln xi(t)dt

 (3)

Equation (3) captures the idea that tasks must be performed jointly to produce output. I
assume a Cobb-Douglas technology for ease of exposition only - any production function with
imperfect substitution across tasks generates qualitatively similar results to those below.31

I assume for simplicity that workers supply a single unit of labor inelastically across tasks,
so Li = ∑1

t=0 lit = 1 and with constant returns to scale. I also assume that each worker can
“buy” tasks from other workers by supplying a single unit of effort, so Ei = ∑1

t=0 eit = 1.
These assumptions are normalizations that allow me to focus on the wage returns to skills,
but they could be easily relaxed.

The firm directs workers to trade with each other in order to maximize total output Y ,
subject to the two adding-up constraints for workers shown above. Worker i’s productivity
in task t, denoted by zit, is drawn from a Frechet (or type II extreme value) probability
distribution, with cumulative distribution function:32

Fit (z) = Pr (zit ≤ z) = exp
(
−Aiz−θ

)
(4)

with Ai > 1 and θ > 1. Equation (4) maps skills onto tasks probabilistically. While
higher cognitive skill Ai makes workers more productive on average, two workers of identical
cognitive skill will vary in their productivity for any particular task.

31If I assume a general constant elasticity of substitution (CES) specification for the production function

(i.e. Yi =
[´ 1

0 Q (ti)
σ−1/σ

dti

]σ/σ−1

), the only change to the main results below is in the constant term γ,
which will then depend on the elasticity of substitution σ.

32Suppose that each worker experiments with different ways to perform a task until she settles on her own
best approach. If the range of possible task productivities has a Pareto distribution, and workers select the
maximum value over a large number of draws, the limiting distribution of the maximum will converge to
the Frechet (Kortum 1997). Another important reason for choosing the Frechet distribution is analytical
convenience, because the exponential form allows for a straightforward characterization of equilibrium task
values and worker wages (Eaton and Kortum 2002).
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θ indexes the variance of productivity draws across workers. When θ increases, the
variance of task productivity draws shrinks, making cognitive skill Ai a better predictor of
productivity for any task t. At lower values of θ, task productivity draws are more dispersed,
so even low ability workers may be the best producers of some tasks. Both firms and workers
have full knowledge of Ai, Si, and θ at the time of hire. However, I assume that the individual
zits are firm-specific (i.e. workers who switch firms receive a new draw) and only observed
after a worker is hired.33

While cognitively skilled workers are always more productive on average, at lower values
of θ this relationship becomes less predictable for any given task. Thus, one interpretation
of θ is that it measures the certainty or routineness of the production environment. Empir-
ically, I treat θ as measuring the routine task intensity of a worker’s occupation.34 Autor
et al. (2003) define a task as “routine” if it can be accomplished by following explicit pro-
grammed rules. Relatedly, Bresnahan (1999) argues that computers change the workplace
by “organizing, routinizing and regularizing tasks that people- and paper-based systems did
more intuitively but more haphazardly”. The idea behind both of these statements is that
there is a well-established, correct way to perform some tasks. For example, tasks such as
complex mathematical calculations require high levels of cognitive skill but are also routine
according to this definition.

3.2 Team Production and Trading Tasks

Workers allocate their labor over tasks to produce output according to (3) and (4). They
can produce alone or “trade tasks” with other workers. I assume that worker labor and
effort is perfectly observed, as are the individual zits post-hire. Since workers are perfect
substitutes in the firm’s production function, the firm only cares about total output and
not the direction of trade (i.e. whether worker i trades to worker j or vice versa). The
firm knows each worker’s production over tasks as well as any trades that are made between
workers.

Taken together, this set of assumptions means that team production will not be hindered
33Since workers perform a continuum of tasks and there is a finite integer number of workers, this assump-

tion is not strictly necessary. Firms could not hire workers to perform “only” their most productive tasks
even if they could perfectly observe all the zits.

34One empirical indicator of routineness is the extent to which job performance can be predicted by
“hard” skills or observed measures of applicant quality. Consider two occupations that are both above the
90th percentile in terms of cognitive skill intensity based on O*NET but on opposite ends of the “routineness”
spectrum - management analysts and computer scientists. Firms hiring both types of occupations will place
a high weight on attributes that proxy for cognitive skill such as GPA and college quality. However, the
productivity of management analyst job applicants in a particular firm or team will depend much more on
their strengths and weaknesses relative to their co-workers, because the job requires a greater diversity of
tasks (i.e. analyzing data, making presentations, meeting with clients).
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by agency issues such as free-riding or hidden actions. Moreover, a worker is not maximiz-
ing her own production function - rather, she is being paid wages according to her total
contribution to the production functions of all other workers in the firm, including her own.

Incorporating social skills, the normalized “price” of one unit of task t produced by worker
i and traded to worker n is:

Ptni = 1
zitSnSi

(5)

with Si,n ∈ (0, 1) and Si,i = 1 defined as above. Just as in the simple example in Section
3.1 above, equation (5) shows that the cost per unit of effort of “buying” tasks from other
workers is decreasing in worker i’s task productivity zit and the social skills of both workers.
Substituting Ptni into (4) yields an expression for the probability that worker i can trade
task t to worker n at a price that is less than or equal to p:

Gtni (p) = Pr (Ptni ≤ p) = 1− exp
[
−Ai(SnSi)θpθ

]
(6)

Gtni (p) gives the distribution over tasks t of all prices that worker i could offer to worker n.
Under perfect competition, firms direct workers to buy tasks from the worker who provides
the lowest price per unit of effort:

Ptn = min {Ptni; i = 1, ...., N} (7)

where N is the total number of workers. This includes the possibility of workers buying from
themselves. The lowest price available to worker n will be less than p unless the price of each
worker’s tasks is greater than p. Thus the distribution Gtn (p) = Pr [Ptn ≤ p] for the lowest
price task trades (i.e. those trades that are actually made) can be obtained by computing
the complement of the probability that every worker i offers a price that is greater than p:

Gtn (p) = Pr(Ptn ≤ p) = 1−
N∏
i=1

Pr (Ptni > p) (8)

Because of the exponential form of the task productivity distribution, substituting in (6)
yields the following simple expression for Gtn (p) :

Gtn (p) = 1−
N∏
i=1

exp
[
−Ai(SnSi)θpθ

]
= 1− exp

(
−φnpθ

)
(9)

where:
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φn =
N∑
i=1

Ai (SnSi)θ (10)

See the Theory Appendix for a proof. Since φn is a function of skills only, it takes on the
same value for all tasks and thus I drop the t subscript from here forward for convenience.
φn indexes the price (in units of effort) of tasks that worker n can buy from other workers
in equilibrium. Worker n’s “purchasing power” is increasing in her own social skills and the
cognitive skills and social skills of her fellow workers. In the extreme case where worker n
has no social skills, SnSi = 0 for all i and n (i 6= n), and φn reduces to just An (because
SiSi = 1). The intuition is simply that a worker with very low social skills does not work
well in a team, and thus finds it most productive to trade only with herself.

With costless task trade (i.e. “zero gravity”, SnSi = 1 for all i and n), φn takes on the
same value for all n workers. In that case, the “law of one price” holds and a single worker
is the lowest-price supplier, leading to complete specialization of workers in tasks. However,
with variation in social skills, the price of a task traded to or from worker i will vary for each
n. The real-life analog is overlap of task performance among workers in a team or a firm.
For example a member of a research team with low social skills might conduct “too much”
of her own data analysis, rather than allowing her more productive coauthor to specialize.

Because φn depends only on worker skills, all tasks that are actually traded to worker n
in equilibrium have the same price (i.e. they are drawn from the same distribution Gtn (p)).
Thus skills affect the quantity of tasks traded but not the price. As Ai and Si increase,
worker i trades a larger range of tasks to worker n, until the exact point at which worker n
is indifferent between trading with worker i and someone else. This accords with intuition
from real workplaces, where highly productive workers are asked to perform a broader range
of tasks.

Next I derive an expression for the share of tasks traded by worker i to worker n. Since
there are a continuum of tasks, this is just equal to the probability that worker i is the
lowest-price provider of task t to worker n. Again suppressing the t subscript for clarity, let
πni = Pr [Pni ≤ min {Pnk; k 6= i}]. For any Pni = p, the probability that worker i provides
the lowest price task trade is just equal to the probability that Pnk ≥ p for all k 6= i:35

πni = Ai (SnSi)θ

φn
(11)

Moreover, since each worker’s total labor in selling tasks and total effort in buying tasks
sum to one, the share of tasks that worker i trades to worker n is just πni = eni

En
= eni.

35Equation (11) follows from πni = Pr [Pni ≤ min {Pnk; k 6= i}] =
´∞

0
∏
k 6=i [1−Gnk (p)] dGni (p) =

πni
´∞

0 dGn (p) = πni. See the Theory Appendix for a proof.
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Given the expression for φn above, eni (and thus πni) can be thought of as worker i’s relative
contribution to worker n’s total production.

3.3 Labor Market Equilibrium

Because of the Cobb-Douglas production function in (2), the exact price index for the tasks
purchased by worker n is just the geometric mean of the price distribution:

P̄n = γφ
− 1
θ

n (12)

with γ as a constant.36 Higher values of P̄n correspond to lower purchasing power.
Because skills affect only the extensive margin of task trade, the price of every task purchased
by worker n is the same, and is equal to the price index P̄n from equation (12) above.

Equilibrium with perfect competition requires that workers are paid the marginal product
of their labor, which is equal to the sum for worker i of task trades to all workers (including
herself) normalized by the price paid (in units of effort) for those trades. Summing up task
trades to all workers and separating out self-trade yields:

wi = πii

P̄i
+

N∑
n=1,n 6=i

πni

P̄n
(13)

Substituting (11) and (12) into (13) yields:

wi = γ−1

 Ai(
Ai + Sθi

∑N
n=1,n6=iAnS

θ
n

)1− 1
θ

+ AiS
θ
i

 N∑
n=1,n 6=i

Sθn

φ
1− 1

θ
n,


 (14)

The first term of equation (14) represents the relative contribution of self-trade. If Si = 0,
a worker only trades with herself and equation (14) reduces to wi = γ−1A

1
θ
i . On the other

hand, for a worker with Si > 0 the contribution of self-trade diminishes to zero as the number
of workers in the firm grows large.37 This leaves only the second term, which can be rewritten
as:

wi = γ−1AiS
θ
i

N∑
n=1,n 6=i

Sn

 N∑
k=1,k 6=i

AkS
θ
k


1−θ
θ

(15)

Define AS =
∑N

k=1 AkS
θ
k

N
as the average skill level of all other workers in the firm, and

36γ = exp
(−ε
θ

)
, with ε = 0.577... as the Euler constant. See the Theory Appendix for a proof.

37As firm size grows, the first term in equation (14) shrinks to zero because after removing self-trade from
the price parameter, we have φi = Sθi

∑N
n=1,n6=iAnS

θ
n, which is a scalar that increases with N .
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likewise for S̄. Then equation (15) becomes:

wi = γ−1AiS
θ
iN

1
θ S̄
(
AS

) 1−θ
θ (16)

By allowing a worker’s productivity to depend on the productivity of her fellow workers,
the model naturally builds in agglomeration externalities from social interaction and face-to-
face contact (Glaeser 1999, Storper and Venables 2004). Bacolod et al. (2009) find that the
labor market return to “soft skills” is increasing in city size, and a number of studies have
documented higher wages and higher returns to skills in cities (e.g. Glaeser and Mare 2001,
Bacolod et al. 2009). The framework of task trade could potentially be applied to studies of
social capital and peer effects models, where outcomes are a function of both individual and
group characteristics (Glaeser et al. 2002).

Equation (16) yields three predictions about the returns to skill across workers:

1. Wages are increasing in cognitive skill and social skill, conditional on θ. This impli-
cation is straightforward. In a wage equation that conditions on a variety of worker
characteristics and proxies for θ with covariates such as occupation and industry fixed
effects, the coefficients on both cognitive skill and social skill should be positive and
statistically significant.

2. Cognitive skill and social skill are complements. Weinberger (2014) finds evidence for
growing complementarity between cognitive skills and social skills across two cohorts of
young men. The model provides a theoretical foundation for these results. Intuitively,
the return to an increase in social skills is higher when workers have higher cognitive
skill, because they are the lowest price provider of a larger share of tasks. I test this
prediction by interacting measures of cognitive skill and social skill together in a wage
equation, as in Weinberger (2014).

3. The returns to social skill are decreasing in routineness θ. I test this prediction by
interacting measures of social skill with the routine task intensity of a worker’s occu-
pation, controlling for detailed covariates plus occupation and industry fixed effects. I
can also estimate models that control for worker fixed effects. This accounts for sorting
of workers to occupations and identifies the relative returns to skill from within-worker
job transitions.

Equation (16) also shows that wages are increasing in firm size N , with relatively greater
returns to scale when work is less routine (i.e. lower θ). The positive empirical relationship
between firm size and wages is well-documented and has been attributed to a variety of
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factors (e.g. Oi and Idson 1999). Here the firm size-wage gradient arises from the posi-
tive productivity spillover that workers have on each other through specialization and task
trade.38

However, an unappealing feature of equation (16) is that it yields an equilibrium where
all workers are employed by a single firm. Thus to close the model, I follow the original
spirit of Becker and Murphy (1992) and add a firm-level coordination cost that is increasing
in team size and exactly equal to N 1

θ , implying that the marginal cost of adding workers
to the team increases when work is less routine. Dividing equation (16) by N 1

θ yields the
following:

wi = γ−1AiS
θ
i

 S̄(
AS

)1− 1
θ

 (17)

The term in brackets in equation (17) represents the spillover impact of co-workers
through task trade. All else equal, workers earn higher wages as the average social skill
of their co-workers S̄ increases. However, the denominator shows that wages are decreas-
ing in

(
AS

)
- this reflects “crowd out” of less-skilled workers when average co-worker skill

increases. This crowd-out is increasing in θ, because higher-skilled workers are better substi-
tutes for lower-skilled workers when tasks are more routine.39 I test this prediction in Section
4 by asking whether a worker’s wage declines relatively more in routine (higher θ) occupa-
tions as a rival factor - computer capital - becomes more “skilled”. I measure the “skill” of
computer capital using data on the intensity of computer use by industry, following Autor
et al. (1998) and Autor et al. (2003).

While all firms are identical ex ante, wages nonetheless differ across firms because of
co-worker spillovers. Positive productivity spillovers from S̄ and crowd-out from

(
AS

)1− 1
θ

balance out across firms to generate an equilibrium where no worker benefits from switching
firms. As in Eaton and Kortum (2002) it is not possible to obtain an analytical expression
for equilibrium wages except in a few special cases, although equilibrium is easily obtained
through simulation.40

38In Appendix Table A1 I estimate a model with worker fixed effects and allow the impact of firm size
on wages to vary with the task content of a worker’s occupation. I find that the firm size-wage gradient is
larger when workers are employed in nonroutine (lower θ) occupations. This is consistent with Mueller et al.
(2015), who find that within-firm wage differentials by size can be explained by larger firms being more likely
to automate routine tasks.

39To see this, consider a simple case where all workers have perfect social skills (Si = 1,∀i), which reduces
equation (17) to wi = Ai

γ(A)1− 1
θ
. When θ = 1, there is no crowd-out and workers are paid according to their

cognitive skill regardless of co-worker skill. As θ → ∞, crowd-out is complete - workers only earn positive
wages when they are more skilled than the average co-worker in the firm.

40Under autarky (Si = 0,∀i), all firms pay workers according to their cognitive skill - wi = γ−1A
1
θ
i .
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The existence of productivity spillovers implies positive assortative matching, with the
degree of sorting depending on θ and on the distribution of skills across individuals. In gen-
eral, lower θ increases sorting because as the penalty for crowd-out decreases, the positive
productivity spillover from S̄ dominates.41 A complete description of the equilibrium allo-
cation of workers to firms under different assumptions goes beyond the scope of this paper,
and in any case detailed firm-level data on worker skills and job tasks is necessary to test the
predictions of the model that relate to worker sorting. Wage differences due to productivity
spillovers within the firm will appear in the residual of the wage equations below.

3.4 The Growing Importance of Social Skills

The model predicts that there will be a greater return to social skill when work is less routine
(i.e. lower θ). At lower values of θ, productivity over workplace tasks is more variable, which
increases the returns to team production and “trading tasks”. In this sense, θ operates like a
trade elasticity, with social skills reducing “social gravity” and thus the cost of trading tasks
with other workers. Thus anything that causes θ to decline will increase the return to social
skills. Section 2 presents evidence of relative growth in non-routine and social skill-intensive
(i.e. low θ) jobs, which suggests that social skills are becoming more important in the labor
market.

What explains relative growth in non-routine and social skill-intensive occupations? Au-
tor et al. (2003) pinpoint technological change - in particular, the fallling price of computer
capital - as the exogenous force that drives down demand for routine tasks. They argue that
computer capital substitutes for routine tasks but complements workers in carrying out non-
routine problem-solving and complex communication tasks. The literature on routine-biased
technological change (RBTC) has mostly focused on complementarity between technological
change and cognitive skill, with education or wages as a proxy for skill (e.g. Acemoglu and
Autor 2011, Autor and Dorn 2013, Goos et al. 2014).

However, the results here and a closer look at the case study evidence both suggest
that computerization and ICT may actually increase the returns to cognitive-social skill
complementarity. A key theme in studies of ICT and organizational change is the reallocation
of skilled workers into flexible, team-based settings that facilitate group problem-solving (e.g.
Caroli and Van Reenen 2001, Bresnahan et al. 2002, Autor et al. 2003, Bartel et al. 2007,
Akerman et al. 2015).

Another special case - as shown in the footnote above - occurs when Si = 1,∀i and θ = 1. In that case,
wi = γ−1Ai for all firms.

41To see this, note that as θ → 1 equation (18) reduces to wi = γ−1AiSiS̄. Here the positive productivity
spillover of higher co-worker social skills dominates and firms will be sorted hierarchically on S̄. If there is
a positive correlation between Ai and Si then firms will also be sorted by average cognitive skills.
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Consider the impact of digital check imaging on the operation of a bank, described in
detail by Autor et al. (2002). The tasks of sorting, reading and proofing check deposits
were somewhat cognitive skill-intense - “proof machine operators” had to be able to quickly
perform mathematical calculations and find and correct errors - yet also quite routine. Dig-
ital check imaging allowed banks to replace the routine tasks performed by proof machine
operators at lower cost, leading to falling employment and wages for these workers (Autor
et al. 2002). As a result, the remaining workplace tasks became less routine and thus less
amenable to computerization. Banks bundled exceptions processing tasks so that workers
were assigned to customer accounts rather than to exception types. Autor et al. (2002) dis-
cuss how this change led to an increase in skill demands - recruiting was reorganized to focus
on problem-solving and the ability to “see the whole picture”, and candidates were “inter-
viewed by supervisors from several groups and could only be hired if multiple supervisors
vetted the hire”.

Caroli and Van Reenen (2001) show that increases in worker skill complement ICT by
decentralizing decision-making within the firm - the idea is that skilled workers are better
at analyzing and synthesizing information and are also better communicators. In discussing
the impact of ICT on firm organization, Bresnahan et al. (2002) specifically mention both
problem-solving ability and “people skills” as possible complements to computerization of the
workplace. Bartel et al. (2007) find that valve manufacturing firms who invest in new tech-
nology that automates routine tasks (computer numerically controlled machines, or CNCs)
are more likely to simultaneously 1) require worker skill upgrading through technical training
programs; 2) reorganize workers into problem-solving teams; and 3) introduce regular shop
floor meetings.

Dessein and Santos (2006) develop a model where organizations optimally choose the
extent to which employees are allowed to use discretion in response to local information -
whether to follow a rigid script or to be “adaptive”. They show when the business envi-
ronment is more uncertain - which could be interpreted as a measure of θ - organizations
endogenously allow for more ex post coordination among employees. They also show how
improvements in ICT, broad and flexible job assignments, and intensive employee commu-
nication are complements in organization design.

All of this evidence suggests that the impact of technological change on the U.S. econ-
omy over the last three decades should be reinterpreted as complementing both cognitive
skill and social skill. As computers perform routine tasks of rapidly increasing cognitive
complexity, workers must be both smart and flexible. I test this in two ways. First, I ask
whether increases in the industry intensity of computer usage lead to relative wage increases
for social skill intensive occupations - after also controlling for an occupation’s math task
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intensity. Second, I ask whether the returns to skill complementarity are increasing over
time within occupation and industry. In other words, has the return to cognitive-social skill
complementarity changed for the same workers holding the same jobs, as the structure of
the workplace changes? Results from those two tests are in Section 5.

4 NLSY Data

I test the predictions of the model using data from the 1979 National Longitudinal Survey of
Youth (NLSY79). The NLSY79 is a nationally representative sample of youth ages 14 to 22
in 1979. The survey was conducted yearly from 1979 to 1993 and then biannually from 1994
through 2012, and includes detailed measures of pre-market skills, schooling experience,
employment and wages. My main outcome is the natural log of hourly wages, excluding
respondents who are enrolled in school. The results are robust to alternative outcomes
and sample restrictions such as using the log of annual earnings or conditioning on 20 or
more weeks of full-time work. I use respondents’ standardized scores on the Armed Forces
Qualifying Test (AFQT) to proxy for cognitive skill, following many other studies (e.g. Neal
and Johnson 1996).42

Several psychometrically valid and field-tested measures of social skills exist, but none
are used by the NLSY. As an alternative, I construct a pre-market measure of social skills
using the following four variables:

1. Self-reported sociability in 1981 (extremely shy, somewhat shy, somewhat outgoing,
extremely outgoing)

2. Self-reported sociability at age 6 (retrospective)

3. The number of clubs in which the respondent participated in high school43

4. Participation in high school sports (yes/no)

I normalize each variable to have a mean of zero and a standard deviation of one. Then I
take the average across all 4 variables and re-standardize so that cognitive skills and social
skills have the same distribution. The results are not sensitive to other reasonable choices,
such as dropping any one of the four measures or constructing a composite using principal
component analysis.

42I adjust AFQT scores for age at test by subtracting the age-specific mean from each respondent’s score,
then I normalize the age-adjusted scores to have a mean of zero and a standard deviation of one.

43Options include community/youth organzations, hobby or subject matter clubs (unspecified), student
council/student government, school yearbook or newspaper staff, and band/drama/orchestra.
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The first three questions measure behavioral extraversion and prosocial orientation -
both of which have been shown in meta-analyses to be positively correlated with measures
of social and emotional intelligence (Lawrence et al. 2004, Declerck and Bogaert 2008, Mayer
et al. 2008). Participation in team sports in high school has been associated with leadership,
prosocial orientation and teamwork ability, and has been shown to positively predict labor
market outcomes in adulthood (Barron et al. 2000, Kuhn and Weinberger 2005, Weinberger
2014, Kniffin et al. 2015). These measures are very similar to those used in Weinberger
(2014).

A key concern is that this measure of social skills may simply be a proxy for unmeasured
cognitive or “non-cognitive” skills. The correlation between AFQT and social skills is about
0.32 in the analysis sample, which is consistent with the modest positive correlations (between
0.25 and 0.35) found between IQ and social and emotional intelligence across a variety of
meta-analyses and independent studies (Mayer et al. 2008, Baker et al. 2014). To account for
possible bias from unmeasured ability differences, I control for completed years of education
in addition to AFQT in most specifications. I also control for two pre-market measures of
“non-cognitive” skills - the Rotter Locus of Control and the Rosenberg Self-Esteem Scale -
which are also used by Heckman et al. (2006). To the extent that my measure of social skills
is an imperfect or even poor proxy for the underlying construct, the results may understate
their relative importance.

The NLSY79 includes information on each respondent’s occupation, which I match to
the O*NET and DOT codes using the Census occupation crosswalks developed by Autor
and Dorn (2013). The NLSY also includes Census industry codes, which I match to CPS
data on computer usage at work from the CPS following Autor et al. (1998) and Autor et al.
(2003). I also control for industry fixed effects and occupation-by-industry fixed effects in
some specifications.

Mean self-reported sociability is 2.32 at age 6 and 2.88 as an adult, so on average re-
spondents viewed themselves as less sociable in childhood than as adults. About 39 percent
of respondents participated in athletics in high school, and the mean number of clubs was
just above 1. Kuhn and Weinberger (2005) and Weinberger (2014) study the returns to
leadership skills among a sample of white males who begin as high school seniors, leading
to college-going rates that are about three times higher than in the NLSY79. Overall, the
NLSY79 sample is more disadvantaged and more representative of the U.S. population.
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5 Empirical Models and Results

5.1 Occupational Sorting on Skills

I begin by testing whether workers sort into occupations based on their skills. I regress
measures of the task content of occupations on worker skills and a variety of other covariates:

T ijt = α + β1COGi + β2SSi + β3COGi ∗ SSi + γXijt + δj + ζt + εijt (18)

where T indexes the task content of a worker’s occupation. The baseline model includes cog-
nitive skills (AFQT), social skills (the composite measure described above), the interaction
between cognitive skills and social skills, race-by-gender indicators, age and year fixed effects
(indexed by t), fixed effects for years of completed schooling, and industry-region-urbanicity
fixed effects (indexed by j). Each observation is a person-year, and I cluster standard errors
at the individual level.

The first two columns of Table 2 present results from an estimate of equation (18) where
the outcome is the nonroutine analytical (math) task measure from O*NET. Column 1
presents results from the basic model. Since the O*NET task measure is on a 0 to 10 point
scale, a one standard deviation increase in cognitive skill increases the nonroutine analytic
task content of a worker’s occupation by about 4.3 percentiles, and the impact is highly
statistically significant. Social skill also predicts the nonroutine analytic task content of a
worker’s occupation, although the coefficient is only about one-fifth the size of the coefficient
on cognitive skill. Finally, note that the interaction between cognitive skills and social skills
is negative in Column 1, suggesting that workers with high levels of both kinds of skill are
somewhat less likely to sort into math-intensive occupations.

Column 2 adds controls for three other O*NET task measures related to social interaction.
This reduces the coefficient on cognitive skills to about half its size in Column 1, and reduces
the coefficient on social skills to zero. Columns 3 and 4 repeat the same pattern except
with the routine task intensity of an occupation as the outcome. With no task controls,
the coefficient on cognitive skill is indistinguishable from zero and the coefficient on social
skill is negative and statistically significant. Adding controls for cognitive task content in
Column 4 switches the sign on the AFQT coefficient to positive, yet the coefficient on social
skills remains negative and statistically significant. In both models, the coefficient on the
interaction between cognitive skills and social skills is negative and statistically significant.
The outcome in Columns 5 and 6 is the social skill intensity of an occupation, and the
pattern of results is very similar (but opposite in sign) to Columns 3 and 4.

Overall, workers with higher cognitive skills sort into occupations that are more cogni-
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tive skill-intensive, and workers with higher social skills sort into occupations with higher
nonroutine and social skill task intensity. Moreover, there is strong evidence for sorting on
skill complementarity for low θ occupations.

5.2 Labor Market Returns to Skills

The model predicts that there will be a positive return to cognitive skill and social skill
in the labor market, and that cognitive skill and social skill are complements. I test these
predictions by regressing log hourly wages on both measures of skill plus their interaction:

ln(wageijt) = α + β1COGi + β2SSi + β3COGi ∗ SSi + γXijt + δj + ζt + εijt (19)

The results are in Table 3. As in Table 2, the regression includes controls for demographic
covariates, each observation is a person-year and standard errors are clustered at the indi-
vidual level. Columns 1 and 2 present estimates of a sparse model that only controls for
demographic covariates. Column 1 shows that the return to social skills is positive and sta-
tistically significant. A one standard deviation increase in social skills increases log hourly
earnings by 9.3 percent. Column 2 adds the AFQT, the interaction between AFQT and
social skills, and the two measures of non-cognitive skill. This shrinks the coefficient on
social skills down to about 4 percent, although it is still highly statistically significant.

Column 2 shows that the two non-cognitive skill measures are strongly correlated with
wages. However, the coefficient on social skills increases to only 4.6 percent when they
are excluded, which suggests that the social skill measure includes independent information
about productivity. The interaction between cognitive skills and social skills is positive and
statistically significant at the 10 percent level.

Column 3 adds controls for years of completed education and drops 13 percent of the
sample in public sector jobs such as teachers and government employees, since their wages
are likely to be determined by rigid pay scales. This reduces the coefficient on social skills
further to about 3.1 percent and reduces the impact of a one standard deviation increase
in AFQT from 16.2 percent to 10 percent, although both remain statistically significant.
Column 4 adds controls for θ using the full set of occupational task intensities from O*NET,
which lowers the coefficient on AFQT further to 6.8 percent but leaves the coefficient on
social skill nearly unchanged.

Column 5 includes occupation by industry by region by urbanicity fixed effects. The
coefficients on AFQT and social skill fall to 5.8 percent and 2.1 percent respectively, but
both are still statistically significant at the less than one percent level. Interestingly the
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coefficient on the interaction between cognitive skills and social skills, which hovered around
statistical significance in Columns 2 through 4, is largest in Column 5 (0.9 percent, statisti-
cally significant at the 5 percent level). The R-squared of the regression moves from 0.38 in
Column 1 to 0.71 in Column 5. Table 3 strongly confirms the model’s predictions about the
returns to skill and skill complementarity.

In Appendix Table A2 I conduct the same set of analyses as in Table 4, but also adding
an average of the two non-cognitive skill measures interacted with AFQT as well as the
O*NET task measures. The interaction between AFQT and non-cognitive skills is never
statistically significant and positive, there is still statistically significant complementarity
between cognitive skills and social skills, and all of the findings in Table 4 regarding the
interactions with routine and social skill task intensity continue to hold.

5.3 Heterogeneous Returns to Skill by Occupation Task Intensity

Columns 6 and 7 of Table 3 add interactions between skills and task intensities by occupa-
tion. Column 6 includes interactions between skills and routine task intensity while Column
7 repeats the exercise except with the direct measure of an occupation’s social skill task
intensity. The model predicts that the returns to social skill will be decreasing in routine
(or increasing in social skill) task intensity. I also include interactions with AFQT as well as
the triple interactions between both measures of skill and occupation task content.

Column 6 provides strong support for the predictions of the model. I find that the return
to social skills is relatively lower in routine occupations - the coefficient on the interaction is
negative and statistically significant at the less than one percent level. The magnitude implies
that a worker who has social skill that is one standard deviation above average earns about
4.5 percent less at the 100th relative to the 1st percentile of routine task intensity, making
the returns to social skill roughly zero for the most routine occupations. The coefficient on
the triple interaction between cognitive skills, social skills and routine task intensity is also
negative and statistically significant at the ten percent level, suggesting greater returns to
skill complementarity in nonroutine occupations.

Column 7 replaces routine task intensity with social skill task intensity. The coefficient
on the interaction between social skills and social skill task intensity is of roughly similar
magnitude (although opposite in sign) to the results in Column 6, and is also statistically
significant at the less than one percent level. I also find some evidence of relatively higher
returns to cognitive skill in nonroutine and social skill-intensive occupations.44

44Although this result is not directly predicted by the model, one possible explanation is that skills in the
NLSY (particularly social skills) are mismeasured. Another possibility is that sorting across occupations,
combined with the fact that AFQT and social skills are correlated about 0.3 for individuals, leads to positive
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Table 4 estimates models with worker fixed effects, plus interactions between skills and
occupation task intensities:

ln(wageijt) = α+β1COGi∗Tijt+β2SSi∗Tijt+β3COGi∗SSi∗Tijt+δXijt+ζt+ηi+εijt (20)

This restricts the variation to within-worker job transitions, and so only the interactions
with skills are identified. I also control for the full complement of O*NET task measures
and age, year, census division, and urbanicity fixed effects as well as the natural log of the
number of employers in the worker’s primary job in each year and an indicator variable that
is equal to one if the worker’s employer has multiple establishments.45 Column 1 estimates
equation (20) with interactions between the routine task intensity of a worker’s occupation
and worker skills. Column 2 repeats the same exercise, except with social skill instead of
routine task intensity.

The results in Columns 1 and 2 are broadly similar to the results in Columns 6 and 7
of Table 3, even though the variation is restricted to within-worker job transitions. The
interactions between the social skill intensity of a worker’s occupation and the worker’s
cognitive skill and social skill are large, positive and statistically significant. Additionally,
the triple interaction between cognitive skills, social skills and the social skill intensity of a
worker’s occupation is positive and statistically significant at the 5 percent level.

The cumulative impact of these interactions is large - for example, a worker who switches
to an occupation that is 10 percentage points higher in the distribution of social skill intensity
earns a wage increase of about 1.6 percent when they have average cognitive skill and social
skill (the main effect on social skill intensity in Column 2), but the wage premium increases
by another 1.1 percent for a worker who is one standard deviation above average on both skill
measures. While not reported here, none of the results in Tables 4 and 5 change meaningfully
if I also add interactions between skills and the nonroutine analytic (math) task intensity of
a worker’s occupation.

One possible interpretation of the positive coefficients on social skills is that they reflect
the promotion of employees to management positions. To test for this possibility, Columns 3
and 4 present results like Columns 1 and 2 except that the sample excludes any occupation
with the words “manager” or “supervisor” in the title. This eliminates about 15 percent of
the sample, and importantly it does not reflect wage gains for workers from occupational

cross-interactions.
45Data on firm size are available in the NLSY for all years except the 1981-1985 period, so these years are

excluded from the regression. Results with these controls excluded are extremely similar, and are available
upon request.
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switches that sound like promotions - such as “sales representative” to “sales manager”.
Columns 3 and 4 show that eliminating managers from the sample has almost no impact
on the main results. In fact, the coefficients on social skills and skill complementarity are
somewhat larger when managers are excluded.46

5.4 Industry Computer Usage and Routine Task Intensity

The final prediction of the model is that increases in the “skill” of rival factors such as
computer capital will crowd out workers and lead to relatively larger wage declines in routine
occupations. I proxy for increases in the skill of computer capital with the intensity of
computer use at work by industry. This question is asked of CPS respondents in selected
years, and following Autor et al. (1998) and Autor et al. (2003) I collapse the questions
about the frequency of computer use at work to the industry level. The first year of data
that is available is 1984, and the CPS stopped asking this question in 2003. I construct a
time-varying measure using all available years between 1984 and 2003 and interpolating data
for missing years.

The results are in Table 5. Columns 1 through 3 estimate a version of equation (20)
adding interactions between O*NET task measures and a time-varying measure of industry
computer usage, which restricts the sample to the years between 1984 and 2003. These mod-
els include industry fixed effects in addition to worker fixed effects and the set of covariates
described above. I find that workers experience larger relative wage declines in computer-
intensive industries when they are employed in routine occupations. The estimates in Column
1 suggest that a 10 percentage point increase in industry computer usage raises wages by
around 2.2 percent (the main effect on industry computer use intensity) for the least routine
occupations, but by only about 0.3 percent for the most routine occupations. Similarly, the

46However, social skills may still be important for managers. Lazear et al. (2012) show that managers
have a large impact on worker productivity and retention. In Garicano and Rossi-Hansberg (2004), Garicano
and Rossi-Hansberg (2006) and Antras et al. (2006), managers have greater knowledge than workers, and
production is organized so that highly skilled managers can optimally leverage their knowledge. Lazear (2012)
presents a model of leadership skill where successful leaders have high ability, seek out higher-variance settings
(where the value of a correct decision is greatest), and are “generalists” with a broad range of skills. Lazear
(2004) presents a similar model of the importance of balanced skills to entrepreneurship. One could readily
accommodate management in a variety of ways. One approach would be to model managers as receiving noisy
signals of productivity in each task, with the accuracy of the signal increasing in the manager’s skill. The
manager’s problem is then to allocate factors across projects or divisions of the firm with different values
of θ, maximizing total output given workers’ skills. This is consistent with Adhvaryu et al. (2014), who
find that “relatable” managers smooth productivity shocks by more efficiently reallocating low-performing
workers. Managerial skill could also be treated as a coordination cost that affects all task trades under the
manager’s purview. An unskilled manager would impose a high coordination cost on task trade between
workers, leading to more self-production and lowering the gains from trade. This accords with the intuition
that effective managers encourage more collaboration between the workers that they supervise, and that
effective managers are optimally assigned a larger span of control.
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results in Column 2 imply that a 10 percentage point increase in industry computer usage
leads to impacts on wages that range from -1.2 percent to 3.5 percent as occupations range
from least to most social skill-intensive.

5.5 Growing Returns to Skill Complementarity

Column 3 of Table 5 adds an interaction between industry computer usage and math task in-
tensity (interactions with skills are also included, although those are not reported to conserve
space). I find statistically significant relative wage gains in computer-intensive industries for
workers in mathematically intensive occupations, which is consistent with many other stud-
ies (e.g. Krueger 1993, Autor et al. 1998). Notably, however, this coefficient is much smaller
in magnitude than the interaction between computer usage and social skill task intensity -
I can strongly reject that the two coefficients are equal. This provides strong circumstantial
evidence that computer adoption complements social interaction in the workplace in addition
to mathematical reasoning.

I also test whether the returns to skill complementarity are increasing over time within
occupation and industry. I estimate a version of equation (20) with worker, occupation and
industry fixed effects, plus additional interactions between task intensity, worker skill, and
year. This specification asks whether the returns to skill are increasing over time within-
worker and within-occupation and industry. Figure 7 presents coefficients and 90 percent
confidence intervals for the interaction between cognitive skill, social skill, the social skill
task intensity of the worker’s occupation (the solid line), and year. I group NLSY survey
waves into four-year or six-year intervals to aid with precision, with the first four years of
the survey (1979 to 1982) as the base period. The regression is fully saturated with all the
other interactions (skill by year, task by year, etc.), although those results are not shown.
Thus the reported coefficients represent changes over time in the relative return to skill
complementarity within-worker, within-occupation and within-industry. To allay concerns
about career progression driving the results, I follow the specification in Columns 3 and 4 of
Table 5 and exclude managers from the sample.

The results in Figure 7 are consistent with a growing return to skill complementarity. The
coefficients increase gradually, from near zero in the 1980s to large, positive and statistically
significant by the 2000s. The magnitudes are economically significant - for example, they
imply that an individual worker with cognitive skill and social skill one standard deviation
above the average and in an occupation at the 100th percentile of social skill intensity would
earn about 5 percent more in 2010 compared to the 1980s. Appendix Table A3 shows a
similar pattern of results from a simpler model where I interact the main coefficients of
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interest with an indicator variable for whether a wage observation occurs in the year 2000
or later.

However, one limitation of both of these approaches is that the structure of the NLSY
sample does not allow separate identification of age and cohort effects. Although I exclude
managers and control for age and year fixed effects plus interactions between year and other
variables, I cannot confidently rule out the alternative hypothesis that returns to skill com-
plementarity increase with age and experience rather than year.

5.6 Social Skills and Gender

Since 1980, U.S. gender gaps in achievement, educational attainment, employment and wages
have narrowed substantially and in some cases reversed (Welch 2000, Goldin et al. 2006,
Autor andWasserman 2013). Several authors have shown that narrowing gender employment
and wage gaps can be explained by technological change that favors women - colloquially,
that women have a comparative advantage in “brains” relative to “brawn” (Welch 2000,
Bacolod and Blum 2010, Black and Spitz-Oener 2010, Beaudry and Lewis 2014).

However, it is also possible that the relationship between computerization and narrowing
gender gaps is driven primarily by a female advantage in social skills. Females consistently
score higher on tests of emotional and social intelligence (Hall 1978, Woolley et al. 2010,
Kirkland et al. 2013). Sex differences in sociability and social perceptiveness have been
shown to have biological origins, with differences appearing in infancy and higher levels of
fetal testosterone associated with lower scores on tests of social intelligence (Connellan et al.
2000, Baron-Cohen et al. 2005, Chapman et al. 2006). Woolley et al. (2010) show that
teams with a higher share of female participants perform better on group tasks, even after
conditioning on group-average cognitive skills. Large gender gaps in “non-cognitive” skills
and problem behaviors appear early in life and are strongly correlated with later educational
outcomes (Jacob 2002, DiPrete and Jennings 2012, Bertrand and Pan 2013).

Figures 8 and 9 show the importance of sex differences in explaining the changing task
content of work by reproducing Figure 3 (the extension of Figure 1 from Autor et al. (2003)
that uses O*NET task measures) separately by gender.47 Figure 8 presents trends in the task
content of work between 1980 and 2012 for males, and Figure 9 presents analogous results
for females. Since 1980, the task content of work for males has barely changed. In contrast,
Figure 9 shows a dramatic decline in routine task intensity (from 57 to 35 centiles) for

47One key difference between the results here and Autor et al. (2003) and Autor and Price (2013) is that
the DOT task values were linked to the 1971 CPS microdata, which allowed the authors to compute separate
task values by gender for each occupation. This analysis assigns the same task values for an occupation by
gender, and is thus only comprised of gender differences across Census occupation codes.
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females. Not surprisingly, this is matched by an increase of nearly-equal size (approximately
19 centiles) in social skill task inputs. While there has also been an increase in nonroutine
analytic task inputs for females, it has been only about half as large as the increase in social
skills.

The patterns in Figures 8 and 9 are driven by two factors - 1) changes in the task
composition of the labor force that favor female-dominated occupations; 2) changes in the
gender composition of social skill and nonroutine-intensive occupations. In Figure 10, I
restrict attention to the latter channel by plotting the within-occupation change in female
employment share between 1980 and 2012 against the occupation’s social skill task intensity.
Each dot is an occupation, and the dashed line represents the results of a linear regression
with weights equal to the occupation’s 1980 labor supply. The patten is clear - occupations
with higher social skill requirements employ relatively more women in 2012 than they did in
1980. While not shown, this pattern holds inversely for routine occupations.

Appendix Table A4 presents selected results for heterogeneity in the returns to skills by
race, gender and education. I find no evidence of differential returns to skills by gender.
However, I do find that the returns to social skills are somewhat greater for whites. Finally,
while the returns to cognitive skill and social skill do not vary greatly by education, the
return to skill complementarity is much greater for workers that have completed at least 16
years of schooling (equivalent to a bachelor’s degree).

6 Conclusion

In a much discussed paper, Frey and Osborne (2013) estimate that 47 percent of total U.S.
employment is at high risk of automation over the next one to two decades, suggesting that
even highly skilled workers may eventually lose the “Race Against the Machine” (Bryn-
jolfsson and McAfee 2012). In this paper, I show that high-paying, difficult-to-automate
jobs increasingly require social skills. Nearly all job growth since 1980 has been in occupa-
tions that are relatively social skill-intensive. Jobs that require high levels of analytical and
mathematical reasoning but low levels of social interaction have fared especially poorly.

Why are social skills so important in the modern labor market? One reason is that
computers are still very poor at simulating human interaction. Reading the minds of others
and reacting is an unconscious process, and skill in social settings has evolved in humans
over thousands of years. Human interaction in the workplace involves team production, with
workers playing off of each other’s strengths and adapting flexibly to changing circumstances.
Such nonroutine interaction is at the heart of the human advantage over machines. The
growing importance of social skills can potentially explain a number of other trends in
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educational outcomes and the labor market, such as the narrowing - and in some cases
reversal - of gender gaps in completed education and earnings.

I formalize the importance of social skills with a model of team production in the work-
place. Because workers naturally vary in their ability to perform the great variety of work-
place tasks, teamwork increases productivity through comparative advantage. However, the
benefits of teamwork can only be realized through costly coordination among workers. I
model social skills as a reduction in worker-specific coordination costs. Workers with high
social skills can “trade tasks” at a lower cost, enabling them to work with others more
efficiently.

The model generates testable predictions about sorting and the relative returns to skills
across occupations. I find that the wage return to social skills is positive even after condi-
tioning on cognitive skill, non-cognitive skill, and a wide variety of other determinants of
wages. I also find that cognitive skill and social skill are complements in the wage equation,
and that skill complementarity has grown over time. Finally, I find that workers with higher
social skills are more likely to work in social skill-intensive and less routine occupations, and
they earn a relatively higher wage return in these occupations. I identify the key results of
the model on the relative returns to skills across occupations using worker fixed effects, i.e.
transitions of the same worker across different types of jobs.

This paper argues for the importance of social skills, yet it is silent about where social
skills come from and whether they can be affected by education or public policy. A robust
finding in the literature on early childhood interventions is that long-run impacts on adult
outcomes can persist can even when short-run impacts on test scores “fade out” (e.g. Deming
2009, Chetty et al. 2011).

It is possible that increases in social skills are a key mechanism for long-run impacts of
early childhood interventions. Heckman et al. (2013) find that the long-run impacts of the
Perry Preschool project on employment, earnings and criminal activity were mediated pri-
marily by program-induced increases in social skills. The Perry Preschool curriculum placed
special emphasis on developing children’s skills in cooperation, resolution of interpersonal
conflicts and self-control. Recent longitudinal studies have found strong correlations between
a measure of socio-emotional skills in kindergarten and important young adult outcomes such
as employment, earnings, health and criminal activity (Dodge et al. 2014, Jones et al. 2015).

If social skills are learned early in life, not expressed in academic outcomes such as
reading and math achievement, but then important for adult outcomes such as employment
and earnings, this would generate the “fade out” pattern that is commonly observed for
early life interventions. Indeed, preschool classrooms focus much more on the development
of social and emotional skills than elementary school classrooms, which tend to emphasize
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“hard” academic skills such as literacy and mathematics. Still, these conclusions are clearly
speculative, and the impact of social skill development on adult labor market outcomes is
an important question for future work.
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Figure 1 

 
Each row presents 100 times the change in employment share between 2000 and 2012 for the indicated 
occupation. Consistent occupation codes for 1980-2012 are updated from Autor and Dorn (2013) and 
Autor and Price (2013) and consolidated to conserve space – see the Data Appendix for details.
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Figure 2 

 
Each line plots the average task intensity of occupations by wage percentile, smoothed using a locally weighted regression with bandwidth 
0.8. Task intensity is measured as an occupation’s employment-weighted percentile rank in the Census IPUMS 1980 5 percent extract. All 
task intensities are taken from the 1998 O*NET. Mean log wages in each occupation are calculated using workers’ hours of annual labor 
supply times the Census sampling weights. Consistent occupation codes for 1980-2012 are updated from Autor and Dorn (2013) and 
Autor and Price (2013). 
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Figure 3 

 
Figure 3 is constructed to parallel Figure I of Autor, Levy and Murnane (2003). O*NET 1998 task measures by occupation are paired with 
data from the IPUMS 1980-2000 Censuses and the 2005-2013 American Community Survey samples. Consistent occupation codes for 
1980-2012 are from Autor and Dorn (2013) and Autor and Price (2013). Data are aggregated to industry-education-sex cells by year, and 
each cell is assigned a value corresponding to its rank in the 1980 distribution of task input. Plotted values depict the employment-
weighted mean of each assigned percentile in the indicated year. See the text and Appendix for details on the construction of O*NET task 
measures. 
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Figure 4 

 
Each line plots 100 times the change in employment share between 1980 and 2012 for occupations that are above and/or below the 50th 
percentile in nonroutine analytical and social skill task intensity as measured by the 1998 O*NET. Lines are smoothed using a locally 
weighted regression with bandwidth 1.0. Wage percentiles are measured as the employment-weighted percentile rank of an occupation’s 
mean log wage in the Census IPUMS 1980 5 percent extract. Consistent occupation codes for 1980-2012 are updated from Autor and 
Dorn (2013) and Autor and Price (2013). See the text and Appendix for details on the construction of O*NET task measures. 
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Figure 5 

 
Each line plots 100 times the change in median log hourly real wages between 1980 and 2012 for occupations that are above and/or below 
the 50th percentile in nonroutine analytical and social skill task intensity as measured by the 1998 O*NET. Lines are smoothed using a 
locally weighted regression with bandwidth 1.0. Wage percentiles on the horizontal axis are measured as the employment-weighted 
percentile rank of an occupation’s mean log wage in the Census IPUMS 1980 5 percent extract. Consistent occupation codes for 1980-
2012 are updated from Autor and Dorn (2013) and Autor and Price (2013). See the text and Appendix for details on the construction of 
O*NET task measures. 
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Figure 6 

 
Figure 6 is constructed following the method of Figure I of Autor, Levy and Murnane (2003). O*NET 1998 nonroutine analytical task 
measures by occupation are paired with data from the IPUMS 1980-2000 Censuses and the 2005-2013 American Community Survey 
samples. Consistent occupation codes for 1980-2012 are updated from Autor and Dorn (2013) and Autor and Price (2013). Data are 
aggregated to industry-education-sex cells by year, and each cell is assigned a value corresponding to its rank in the 1980 distribution of 
task input. Plotted values depict the employment-weighted mean of each assigned percentile in the indicated year. Occupations are divided 
into three groups of roughly equal size (centiles 0-37, 38-75, 76-100) by their social skill task intensity. See the text and Appendix for 
details on the construction of O*NET task measures. 
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Figure 7 

 
Figure 7 presents coefficients and 90 percent confidence intervals from a version of equation (21) in the paper, with log hourly wages as 
the outcome and person-year as the unit of observation. Cognitive skills are measured by each NLSY79 respondent's score on the Armed 
Forces Qualifying Test (AFQT), and are normed by age and standardized to have a mean of zero and a standard deviation of one. Social 
skills is a standardized composite of four variables - 1) sociability in childhood; 2) sociability in adulthood; 3) participation in high school 
clubs; and 4) participation in team sports - see the text for details on construction of the social skills measure. The reported coefficients are 
interactions between cognitive skill, social skill and the social skill task intensity of a worker’s occupation. The model is fully saturated 
with other interactions and main effects, although those coefficients are not reported.  Person-years employed in managerial occupations 
and in public sector jobs are excluded from the sample. All models include fixed effects for individual workers, occupation, industry, age, 
year and census division by urbanicity and controls for firm size. Standard errors are clustered at the individual level.   
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Figure 8 

 
Figure 8 is constructed to parallel Figure I of Autor, Levy and Murnane (2003), with the sample restricted to males. O*NET 1998 task 
measures by occupation are paired with data from the IPUMS 1980-2000 Censuses and the 2005-2013 American Community Survey 
samples. Consistent occupation codes for 1980-2012 are updated from Autor and Dorn (2013) and Autor and Price (2013). Data are 
aggregated to industry-education-sex cells by year, and each cell is assigned a value corresponding to its rank in the 1980 distribution of 
task input. Plotted values depict the employment-weighted mean of each assigned percentile in the indicated year. See the text and 
Appendix for details on the construction of O*NET task measures. 
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Figure 9 

 
Figure 9 is constructed to parallel Figure I of Autor, Levy and Murnane (2003), with the sample restricted to females. O*NET 
1998 task measures by occupation are paired with data from the IPUMS 1980-2000 Censuses and the 2005-2013 American 
Community Survey samples. Consistent occupation codes for 1980-2012 are from Autor and Dorn (2013) and Autor and Price 
(2013). Data are aggregated to industry-education cells by year, and each cell is assigned a value corresponding to its rank in the 
1980 distribution of task input. Plotted values depict the employment-weighted mean of each assigned percentile in the indicated 
year. See the text and Appendix for details on the construction of O*NET task measures. 
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Figure 10 

 
Figure 10 plots the within-occupation change in female employment share between 1980 and 2012 against the percentile of each 
occupation’s social skill task intensity from the 1998 O*NET. Dots are weighted by the occupation’s labor supply in 1980, based on the 
IPUMS 1980 Census 5 percent extract. The dashed line is a fitted regression line that is weighted by 1980 labor supply. A small number of 
dots greater than 0.5 in absolute value are excluded from the graph for convenience. 2012 occupation shares are computed using the 2011-
2013 ACS IPUMS extracts. Consistent occupation codes for 1980-2012 are updated from Autor and Dorn (2013) and Autor and Price 
(2013).
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Table 1 - Correlation between Routine and Social Skill Task Intensity
Outcome is the Routine Task Intensity of an Occupation (1) (2)

Social Skill Intensity of Occupation -0.679*** -0.560***
[0.113] [0.155]

Add Other O*NET and DOT tasks X
Observations 337 337
R-squared 0.439 0.662
Notes: Data from the 1980-2000 Census, 2006-2013 ACS, 1991 DOT, and 1998-2013 O*NET. 
Observations are at the occupation level. Additional DOT task measures are nonroutine 
analytical, nonroutine interactive, routine cognitive, routine manual and nonroutine manual. 
Additional O*NET task measures are Number Facil ity, Inductive/Deductive Reasoning, 
Use/Analyze Information, the Service task composite and Require Social Interaction.  See text 
and Appendix for details on all  O*NET task measures. All  models also control for median log 
hourly wage and are weighted by total labor supply in each cell. Standard errors are clustered 
at the occupation level. *** p<0.01, ** p<0.05, * p<0.10



Table 2 - Sorting into Occupations by Cognitive and Social Skills

(1) (2) (3) (4) (5) (6)

Cognitive Skills (AQT, standardized) 0.428*** 0.225*** -0.011 0.097*** 0.267*** -0.031***
[0.019] [0.014] [0.020] [0.017] [0.017] [0.011]

Social Skills (standardized) 0.094*** -0.007 -0.150*** -0.095*** 0.162*** 0.065***
[0.014] [0.011] [0.015] [0.013] [0.013] [0.008]

    Cognitive * Social -0.037*** -0.040*** -0.040*** -0.030** 0.003 0.015*
[0.014] [0.011] [0.014] [0.013] [0.012] [0.008]

Controls for O*NET Interactive Tasks X
Controls for O*NET Cognitive Tasks X X
Observations 174,382 174,382 174,382 174,382 174,382 174,382
R-squared 0.359 0.615 0.258 0.426 0.354 0.729

Analytical (Math) Routine Social Skills

Notes: Each column reports results from an estimate of equation (18) in the paper, with the indicated 1998 O*NET task intensity 
of an occupation as the outcome and person-year as the unit of observation. The task measures are percentiles that range from 
0 to 10 and are weighted by labor supply to conform to the 1980 occupation distribution. The additional O*NET interactive task 
measures are Social Skil ls, Service Tasks, and Require Social Interaction. The additional O*NET cognitive task measures are 
Nonroutine Analytical, Number Facil ity, Inductive/Deductive Reasoning, and Analyze/Use Information. See the text and 
Appendix for details on the construction of each O*NET task measure. Cognitive skil ls are measured by each NLSY79 
respondent's score on the Armed Forces Qualifying Test (AFQT), and are normed by age and standardized to have a mean of zero 
and a standard deviation of one. Social skil ls is a standardized composite of four variables - 1) sociabil ity in childhood; 2) 
sociabil ity in adulthood; 3) participation in high school clubs; and 4) participation in team sports - see the text for details on 
construction of the social skil ls measure. The regression also controls for race-by-gender indicator variables, fixed effects for 
years of completed education, age and year fixed effects, and industry-by-census division-by urbanicity fixed effects. Standard 
errors are in brackets and clustered at the individual level. *** p<0.01, ** p<0.05, * p<0.10

Outcomes are O*NET Task 
Measures



 

Table 3 - Labor Market Returns to Cognitive Skills and Social Skills
Outcome is Log Hourly Wage (1) (2) (3) (4) (5) (6) (7)

Cognitive Skills (AQT, standardized) 0.1621*** 0.1002*** 0.0679*** 0.0580*** 0.1050*** 0.0411**
[0.0050] [0.0058] [0.0052] [0.0055] [0.0093] [0.0084]

Social Skills (standardized) 0.0932*** 0.0396*** 0.0310*** 0.0298*** 0.0206*** 0.0470*** 0.0066
[0.0044] [0.0042] [0.0044] [0.0039] [0.0041] [0.0078] [0.0076]

      Cognitive * Social 0.0073* 0.0067 0.0077* 0.0089** 0.0197** -0.0021
[0.0043] [0.0045] [0.0041] [0.0042] [0.0080] [0.0080]

Rotter Locus of Control 0.0209*** 0.0210*** 0.0181*** 0.0144*** 0.0152*** 0.0152***
[0.0041] [0.0041] [0.0037] [0.0038] [0.0038] [0.0038]

Rosenberg Self-Esteem Scale 0.0475*** 0.0414*** 0.0348*** 0.0259*** 0.0282*** 0.0289***
[0.0043] [0.0044] [0.0039] [0.0040] [0.0040] [0.0040]

Cognitive * Routine Task Intensity -0.0052**
[0.0015]

Social * Routine Task Intensity -0.0045***
[0.0012]

    Cognitive * Social * Routine -0.0024*
[0.0013]

Cognitive * Social Skill Task Intensity 0.0088**
[0.0016]

Social * Social Skill Task Intensity 0.0041***
[0.0015]

    Cognitive * Social * Social Skill 0.0012
[0.0015]

Years of completed education X X X X X
Exclude government jobs X X X X X
O*NET task measures X
Occ-Ind-Region-Urban Fixed Effects X X X
Observations 143,163 143,163 125,013 125,013 125,013 125,013 125,013
R-squared 0.3786 0.4188 0.4503 0.4927 0.7087 0.7073 0.7074
Notes: Each column reports results from an estimate of equation (19) in the paper, with log hourly wages as the outcome and person-year as 
the unit of observation. Cognitive skil ls are measured by each NLSY79 respondent's score on the Armed Forces Qualifying Test (AFQT), and are 
normed by age and standardized to have a mean of zero and a standard deviation of one. Social skil ls is a standardized composite of four 
variables - 1) sociabil ity in childhood; 2) sociabil ity in adulthood; 3) participation in high school clubs; and 4) participation in team sports - 
see the text for details on construction of the social skil ls measure. The Rotter and Rosenberg scores are widely used measures of "non-
cognitive" skil ls. The models in Columns 3-7 drop person-years employed in public sector jobs, which comprise about 13 percent of the 
employed sample. The regression also controls for race-by-gender indicator variables, fixed effects for years of completed education, and age, 
year, census region, and urbanicity fixed effects - plus additional controls as indicated. Column 4 includes controls for a variety of O*NET 
occupation task measures - see the text and Appendix for details. Standard errors are in brackets and clustered at the individual level. *** 
p<0.01, ** p<0.05, * p<0.10



 

 

Table 4 - Returns to Skills by Occupation Task Intensity - Worker Fixed Effects Models
Outcome is Log Hourly Wage (1) (2) (3) (4)

Routine Task Intensity 0.0095*** 0.0087*** 0.0098*** 0.0091***
[0.0011] [0.0011] [0.0013] [0.0012]

     Cognitive * Routine -0.0018* -0.0006
[0.0009] [0.0011]

     Social Skills * Routine -0.0011 -0.0014
[0.0010] [0.0011]

          Cognitive * Social * Routine -0.0011 -0.0016
[0.0009] [0.0011]

Social Skill Task Intensity 0.0172*** 0.0156*** 0.0123*** 0.0109***
[0.0022] [0.0022] [0.0026] [0.0026]

     Cognitive * Social Skill Task Intensity 0.0059*** 0.0063***
[0.0011] [0.0014]

     Social Skills * Social Skill Task Intensity 0.0026** 0.0041***
[0.0011] [0.0014]

     Cognitive * Social * Social Skill Task Intensity 0.0024** 0.0038***
[0.0011] [0.0014]

O*NET Task Measures X X X X
Worker Fixed Effects X X X X
Exclude management occupations X X
Observations 96,104 96,104 81,442 81,442
R-squared 0.4115 0.4120 0.4015 0.4021
Number of individuals 10,421 10,421 10,294 10,294

Notes: Each column reports results from an estimate of equation (20) in the paper, with log hourly wages as 
the outcome and person-year as the unit of observation. Cognitive skil ls are measured by each NLSY79 
respondent's score on the Armed Forces Qualifying Test (AFQT), and are normed by age and standardized to 
have a mean of zero and a standard deviation of one. Social skil ls is a standardized composite of four 
variables - 1) sociabil ity in childhood; 2) sociabil ity in adulthood; 3) participation in high school clubs; and 
4) participation in team sports - see the text for details on construction of the social skil ls measure. The 
interactions between cognitive/social skil ls and routine/social skil l  task intensity measure whether the 
returns to skil ls vary with the task content of the worker's occupation. All  models drop person-years employed 
in public sector jobs, which comprises about 13 percent of the employed sample. All  models control for  
worker fixed effects - plus age, year and census division by urbanicity fixed effects, the natural log of firm size 
and an indicator variable for whether the worker's firm has multiple establishments, and a variety of O*NET 
occupation task measures (see text and Appendix for details). Columns 3 and 4 drop any occupation with the 
words "manage" or "manager" in the title, as well  as CEOs. Standard errors are in brackets and clustered at 
the individual level. *** p<0.01, ** p<0.05, * p<0.10



 

Table 5 - Industry Computer Usage and Nonroutine Task Intensity
Outcome is Log Hourly Wage (1) (2) (3)

AFQT * Routine Task Intensity -0.0003
[0.0010]

Social Skill * Task Routine Intensity -0.0006
[0.0010]

    AFQT * Social * Routine -0.0006
[0.0009]

AFQT * Social Skill Task Intensity 0.0036*** 0.0038***
[0.0012] [0.0014]

Social Skills * Social Skill Task Intensity 0.0004 0.0005
[0.0011] [0.0014]

    AFQT * Social * Social Skill 0.0003 0.0003
[0.0011] [0.0013]

Industry Computer Use Intensity (1984-2003) 0.2253*** -0.1181** -0.1324**
[0.0570] [0.0569] [0.0577]

Computer Use * Routine Intensity -0.0193***
[0.0037]

Computer Use * Social Skill Intensity 0.0466*** 0.0399***
[0.0043] [0.0051]

Computer Use * Math Task Intensity 0.0106**
[0.0051]

Industry Fixed Effects X X X
Worker Fixed Effects X X X
Observations 72,231 72,231 72,231
R-squared 0.2760 0.2779 0.2780
Number of individuals 10,028 10,028 10,028
Notes: Each column reports results from an estimate of equation (20) in the paper, with log hourly 
wages as the outcome and person-year as the unit of observation. Cognitive skil ls are measured by 
each NLSY79 respondent's score on the Armed Forces Qualifying Test (AFQT), and are normed by age 
and standardized to have a mean of zero and a standard deviation of one. Social skil ls is a 
standardized composite of four variables - 1) sociabil ity in childhood; 2) sociabil ity in adulthood; 3) 
participation in high school clubs; and 4) participation in team sports - see the text for details on 
construction of the social skil ls measure. The interactions between cognitive/social skil ls and 
nonroutine analytical/routine/social skil l  task intensity measure whether the returns to skil ls vary 
with the task content of the worker's occupation. Computer usage is the share of workers who report 
using a computer at work by industry and year from the 1984-2003 Current Population Survey 
Computer Use Supplements. All  models interact time-varying industry computer usage with 
occupation task intensities from 1984-2003, and computer usage is interpolated for missing CPS 
years - see text for details. All  models drop person-years employed in public sector jobs, which 
comprises about 13 percent of the employed sample. All  models control for  worker fixed effects - 
plus age, year and census division by urbanicity fixed effects, industry fixed effects, the natural log 
of firm size and an indicator variable for whether the worker's firm has multiple establishments,  
and a variety of O*NET occupation task measures (see text and Appendix for details).  Column 3 also 
includes interactions between cognitive skil l , social skil l  and math task intensity. Standard errors 
are in brackets and clustered at the individual level. *** p<0.01, ** p<0.05, * p<0.10
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