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1 Introduction

The studies of inequality and discrimination are both vexed by the challenges of measuring the
returns to unobservable characteristics and the correlation between observables and unobservables.
The challenge is further complicated by the fact that the relevant unobservables reside on both
sides of the employment relationship; with both firms and workers. For example, are women paid
less because they are women? Or because their gender is correlated with particular worker side
unobservables? Or because they tend to work for firms or in jobs that pay less regardless of the
gender of the worker?

In this paper, we propose an estimation method that allows for unrestricted interactions between
worker and firm unobserved characteristics in both wages and the mobility patterns. Related to
Bonhomme et al. (2015) (BLM), our method identifies double sided unobserved heterogeneity
through an application of the EM-algorithm.

The log wage of a match is assumed to be normally distributed with a mean and variance that
depends on both observed and unobserved worker and firm heterogeneity. Unobserved heterogene-
ity is described through groupings where all workers in a given group are identical according to
the unobserved characteristics, similarly for firms.

Workers move between firms according to transition probabilities that depend both on worker
and firm characteristics. Employed workers meet other employment opportunities at a rate that
depends on the type of the current firm. The type of the employment opportunity is drawn from a
distribution that is common to all workers and independent of the type of the current firm. Finally,
the probability that the worker decides to quit the current job and move to the new firm is assumed
to depend both on the worker’s type as well as the types of the two firms involved. In our particular
specification, the choice probability takes the shape of a binomial logit. Hence, one interpretation
of the mobility patterns in the paper is that of a standard on the job search model with random
utility.

The estimator maximizes the likelihood of observing workers’ wage and employment histories
given a data structure that records the identity of the worker’s employer at any point in time as
well non-employment. We do not consider the earliest part of a worker’s history and furthermore
assume the worker’s state at the beginning of the observation window is drawn from the steady
state. Wages are observed for each employment spell and can change within the spell at an annual
frequency. Unobserved heterogeneity on the worker side is modeled as a random effect whereas
the firm side is modeled as a fixed effect because the likelihood function evaluation is infeasible in
case of a firm side random effect. The maximization of the likelihood of the data is implemented
through an application of the EM-algorithm with double sided unobserved heterogeneity.

The estimator is initialized by some firm classification. We choose to follow BLM and group
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firms by the k-means algorithm using wage data. The estimator proceeds to update the firm clas-
sification in the iteration steps. For a given firm classification, the algorithm performs an EM
step where a worker classification (in terms of a posterior on a worker’s type) is obtained in the
E step for given wage and mobility parameters, and in the M-step the wage and mobility parame-
ters are updated subject to the worker and firm classifications so as to maximize worker posterior
conditional expected log-likelihood of the data. The mobility parameters are close to those of a
Bradley-Terry model but nevertheless involve a substantial non-linearity in the likelihood function
with respect to the mobility parameters. We formulate an MM algorithm that allow a fast solution
for mobility parameters that improve on the likelihood function - a substantial contribution for the
feasibility of the estimator. With the likelihood improved by the EM step, the firm classification is
then occasionally updated before a new EM step so as to improve on the expected log-likelihood.
The firm classification updates are done subject to the entire likelihood of the data and can change
substantially from its initialization.

The model will be estimated on Danish matched employer-employee data where the worker’s
employment match state is observed at a weekly frequency. The wage data are observed specif-
ically for the given match in question and can change at an annual frequency. We observe both
hours and earnings in the match. The model allows us to provide a detailed measurement of the
returns to observable characteristics such as gender, ethnic origin, age, and education. And given
the dynamic structure of the model we can also distinguish between wage and value variance and
their decompositions.

2 The Model

Workers are indexed by i ∈ {1, ..., I} and firms are indexed by j ∈ {0,1, ...,J}, where j = 0 reflects
non-employment. For each worker i, we observe (wit , jit ,xit)

T
t=1, where jit ≡ j(i, t) ∈ {0,1, ...,J}

is the ID of worker i’s employer at time t.1 xit are observed worker controls, and wit is the worker’s
log-wage rate at time index t. Note that although the number of repeated observations many vary
across individuals, we assume a balanced panel to simplify the notations. The survey covers a
specific calendar time period, but observations for worker i may start at any date and end at any
later date. So xit is a vector that contains at least calendar time, say τit , measured for example as
different time intervals like five-year periods. In the application, xit will also contain information on
gender, education and age. We assume that xit is discrete, allowing to estimate different parameters
for different control values. Wages are measured at annual frequency within a given match but
mobility between employment states and firms is measured at a weekly frequency. Thus, wage
observations are missing except for the first week of the match and the first week of the year.

1The first employment state ji1 is necessarily with a firm: ji1 > 0.

3



We assume that emp`oyers (firms) can be clustered into L different groups indexed by ` ∈
{1, . . . ,L} and that workers can be clustered into K different groups indexed by k ∈ {1, ...,K}. The
index ` j is the type of firm j and ki is the type of worker i. We shall be treating the unobserved
firm types L = (`1, ..., `J) as a a fixed effect (i.e. a parameter to be estimated) and the worker
type as a random effect mixing conditional distributions of workers’ trajectories. Unemployment
is observable and is denoted by `= 0.

Let fk`(w|x) denote the wage density, conditional on the worker’s type k, the employer’s type
` and observable control x. In the expressions below, adopt the convention that fk0 (·|x) = 1 since
there is no wage attached to unemployment spells. We assume that wit and wit ′ are independent
conditional on ` j(i,t), ` j(i,t ′). We further denote the probability for a worker of type k of making
a transition from a firm of type ` to a firm of type `′ (possibly `′ = `) at the end of period t as
Mk``′(x), and the probability of staying with the same employer is Mk`(x) = 1−∑

L
`′=0 Mk``′(x).

With this, Mk`0(x) is the layoff rate in a match between a type k worker and type ` firm. The state
of unemployment is special in that by definition, Mk00(x) = 0. The worker type k conditional job
finding rate in the model is 1−Mk0(x). Finally, let πk`(x) denote the probability for initial matches
(for t = 1) to be of type (k, `) given x.

3 Estimation

In this section we develop a Classification Esperance Maximization (CEM) algorithm for estimat-
ing the mixture model.

3.1 Likelihood with observed firm types

Let us first consider the case where the employers’ types ` j are observed. Let `it = ` j(i,t) denote,
by some abuse of notation, the type of the firm employing worker i in period t. Let also

Dit ≡ D(i, t) =

1 if ji,t+1 6= jit

0 if ji,t+1 = jit

indicate an employer change between t and t +1.
For a value β = ( f ,M,π) of the parameters and a classification L of firms, the likelihood for

one worker i is
K

∑
k=1

Li(k;β ,L ),
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where Li(k;β ,L ) is the individual likelihood conditional on worker type k, i.e.

Li(k;β ,L ) = πk,`i1(xi1)
T

∏
t=1

fk,`it (wit |xit)
T−1

∏
t=1

Mk,`it (xit)
1−Dit Mk,`it ,`i,t+1(xit)

Dit , (1)

where by convention fk`(·|x) = 1 if the wage observation is missing, and assuming that for the last
observation period we do not know whether a mobility occurs or not by the end of it.

3.2 An EM algorithm with known firm types

The EM algorithm (Dempster et al., 1977) consists of iterating the calculation of the posterior
probabilities of worker types (E-step) and the expected log-likelihood maximization using the type
probabilities calculated in the E-step (M-step). See Arcidiacono and Jones (2003); Bonhomme
and Robin (2009); Arcidiacono and Miller (2011) for recent applications in economics. The firm
classification is in the data unobserved. It is infeasible to evaluate the likelihood function for the
formulation of the model where a firm’s unobserved type is a latent variable symmetric to the
unobservable worker type formulation in equation (1). The difficulty lies with accounting for the
co-dependency between a firm’s workers resulting from their matches to a common firm type in a
setup where workers move between firms. Consequently, we estimate the model for a given firm
classification L . We shall explain in the next subsection how we set and update L .

For a given value of β = ( f ,M,π), the posterior probability of worker i to be of type k given
all wages and controls (all the available information) is

pi(k;β ,L ) =
Li(k;β ,L )

∑
K
k=1 Li(k;β ,L )

. (2)

Then, define

Qi( f ;β
(m),L ) =

K

∑
k=1

pi(k;β
(m),L )

[
T

∑
t=1

ln fk,`it (wit |xit)

]
. (3)

It is the expected log-likelihood of worker i’s wages for a given value β (m) of the parameter.
The worker posteriors are determined by the model parameters and firm classification

(
β (m),L

)
,

where the superscript is used to denote the given EM-algorithm iteration. Also, let

Hi(M;β
(m),L ) =

K

∑
k=1

pi(k;β
(m),L )

[
T−1

∑
t=1

{
(1−Dit) lnMk,`it (xit)+Dit lnMk,`it ,`i,t+1(xit)

}]
. (4)

It is the expected log-likelihood of worker i’s employment history conditional on the first state `i1.
The EM algorithm iterates the following steps.
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E-step For β (m) = ( f (m),M(m),π(m)) and L calculate posterior probabilities pi(k;β (m),L ).

M-step Update β (m) by maximizing ∑i pi(k;β (m),L ) lnLi(k;β ,L ) subject to ∑k,`πk`(x) = 1 for
all x, that is

f (m+1) = argmax
f

I

∑
i=1

Qi( f ;β
(m),L ), (5)

M(m+1) = argmax
M

I

∑
i=1

Hi(M,L ;β
(m),L ), (6)

π
(m+1)
k` (x) =

∑
I
i=1 pi(k;β (m),L )1{xi1 = x, `i1 = `}

#{i : xi1 = x}
. (7)

3.3 Firm classification

We propose an iterative algorithm where the firm classification is repeatedly updated so as to
maximize the total likelihood of the data. We must however confront that parts of the likelihood
cannot be sensibly compared across firm classifications. This concerns the likelihood of the ob-
served mobility between firms as well as the likelihood of the worker’s initial match. To see this,
consider a simple example where there is only a single firm and worker type and there is no un-
employment. Hence, in truth, the steady state probability is fully placed on a single combination
π(k, `) = 1,k = ` = 1. But the estimation divides firms arbitrarily into L = 2, half of the firms in
one group and half in the other. The model parameters are the same across the two firm types since
there is no difference between them. However, in the evaluation of the likelihood in equation (1)
it follows that π(k, `) = 1/2. The likelihood of the worker’s mobility pattern is similarly reduced.
Thus, the likelihood mechanically drops as a result of the arbitrary split of a firm group into two
identical groups. Had the likelihood understood that a firm is equally likely to be one or the other
firm type, the likelihood would have remained unchanged. But the fixed effect approach to the firm
classification does not allow this consideration.

Consider the expected complete log-likelihood given firm types:

L(β ,L ) = E
I

∑
i=1

K

∑
k=1

yik lnLi(k;β ,L ) =
I

∑
i=1

K

∑
k=1

pi(k;β ,L ) lnLi(k;β ,L ),

where yik is equal to 1 if individual i is of type k and is otherwise equal to 0. By analogy with
Lloyd’s algorithm for k-means, given an initial value β ,L , where β can be obtained given L
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using the previous EM algorithm, we suggest to update L firm by firm as

̂̀j(β ,L ) = argmax
` j

I

∑
i=1

K

∑
k=1

pi(k;β ,L )

[
T

∑
t=1

ln fk,` j(wit |xit)×1{ j(i, t) = j}

]

+
I

∑
i=1

K

∑
k=1

pi(k;β ,L )
[
lnπk,` j(xi1)×1{ j(i,1) = j}

]
+

I

∑
i=1

K

∑
k=1

pi(k;β ,L )

[
T−1

∑
t=1

{
(1−Dit) lnMk,` j(xit)+

Dit

[
1{` j(i,t+1) = 0} lnMk,` j,0(xit)+1{` j(i,t+1) 6= 0} ln

[
L

∑
`′=1

Mk,` j,`′(xit)

]]}
×1{ j(i, t) = j}

]
.

(8)

The first row is the likelihood contribution of the firm’s observed wages conditional on its type.
The second and third rows represent the likelihood of the observed job durations in the firm and
whether a separation is to unemployment or another firm, conditional on the type of the firm.
Because non-employment is an observed state, we can compare the likelihood of this part of the
mobility observations across classifications. Furthermore, the probability of staying with a given
firm type is also directly comparable across firm classifications.

This leaves the question of initialization of the firm classification, L 0. For this we opt for
simplicity: We rank firms by average wage per worker in the firm and divide the firms equally into
groups based on the sorting.

4 Empirical specification

4.1 Wage distribution

Wages are assumed lognormal given match type. Specifically,

fk`(w) =
1

σk`
ϕ

(
w−µk`

σk`

)
, (9)

with ϕ(x) = (2π)−1/2e−x2/2. This specification of the log-wage mean allows for a match-specific
mean µk` and variance σ2

k`.

7



The M-step update 5 takes the following form:

µ
(m+1)
k` (x) =

∑
I
i=1 pi(k;β (m))∑

T
t=1 1{`it = `,xit = x}wit

∑
I
i=1 pi(k;β (m))∑

T
t=1 1{`it = `,xit = x}

σ
(m+1)
k` (x) =

∑
I
i=1 pi(k;β (m))∑

T
t=1 1{`it = `,xit = x}[wit−µ

(m+1)
k` (x)]2

∑
I
i=1 pi(k;β (m))∑

T
t=1 1{`it = `,xit = x}

.

4.2 Transition probabilities

We omit conditioning on xit to simplify the notations. The probability for a worker of type k of a
transition from a firm of type `≥ 0 to a firm of type `′ ≥ 0 at time t is

Mk``′ = λ`ν`′Pk``′. (10)

Parameter λ` ∈ [0,1] is the probability of a meeting with an outside employer when the current state
is either unemployment or a job of type `. Parameter ν`′ ≥ 0, with ∑

L
`′=0 ν`′ = 1, is the probability

that the outside draw is unemployment or a job of type `′.
The parameter Pk``′ is the probability that the transition from ` to `′ becomes effective. We

assume a Bradley-Terry specification for Pk``′ (see e.g. Agresti, 2003; Hunter, 2004). That is,

Pk``′ =
γk`′

γk`+ γk`′
1{` 6= 0∨ `′ 6= 0}, Pk00 = 0. (11)

Parameter γk`, with ∑
L
`=0 γk` = 1, measures the quality of the match (k, `). If the worker draws a

same-type job we assume the workers moves with probability 1/2.2 For a currently unemployed
worker such same-type transitions do not make sense. A draw `′ = 0 when ` = 0 never generates
an observed mobility. So Pk00 = 0.

We assume that the offer distribution out of non-employment is the same as that when em-
ployed. Since offers are not always accepted, we do not trivially obtain the offer distribution from
the distribution of accepted jobs out of non-employment. Rather the assumption is the basis for
the identification of γk0 and λ0. Note yet that a worker can change job within the same sector `; it
makes no sense for unemployment.

2We experimented the specification

Mk,`,`′ = λ`ν`′
γk,`′

θγk`+ γk,`′
,

where θ > 0 measures the incumbent’s advantage and parametrizes mobility within the same group of firms. However
it appeared difficult to disentangle θ from λ .
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With this it follows that, for `≥ 0,

Mk` = 1−
L

∑
`′=0

Mk``′ = 1−λ`

L

∑
`′=0

ν`′Pk``′ = 1−λ`+λ`

L

∑
`′=0

ν`′(1−Pk``′).

4.3 M-step update for transition probabilities

In the M-step of the EM algorithm, we maximize the part of the expected likelihood that refers to
transitions, i.e.

H(M;β
(m))≡

K

∑
k=1

L

∑
`=0

{
nk`(β

(m)) lnMk`+
L

∑
`′=0

nk``′(β
(m)) lnMk``′

}
,

where

nk`(β
(m)) = ∑

i
pi(k;β

(m))#{t : Dit = 0, `it = `,xit = x} ,

nk``′(β
(m)) = ∑

i
pi(k;β

(m))#
{

t : Dit = 1, `it = `,`i,t+1 = `′,xit = x
}
,

where #{} denotes the cardinality of a set and where we reintroduce the control xit = x to remind
that we are estimating different parameters for all different control values x. This likelihood is
similar to the likelihood of a Bradley-Terry model except that when the incumbent firm ` wins we
do not know against which `′. The likelihood is thus rendered more nonlinear by the presence of
the term in lnMk`. An MM algorithm can still be developed as follows.3

Because the logarithm is concave, we can minorize lnMk` as follows. With obvious notations,

3The MM algorithm works by finding a function that minorizes the objective function and that is more easily max-
imized. Let f (θ) be the objective concave function to be maximized. At the m step of the algorithm, the constructed
function g(θ |θm) will be called the minorized version of the objective function at θm if

g(θ |θm)≤ f (θ),∀θ , and g(θm|θm) = f (θm).

Then, maximize g(θ |θm) instead of f (θ), and let θm+1 = argmaxθ g(θ |θm). The above iterative method guarantees
that f (θm) converges to a local optimum or a saddle point as m goes to infinity because

f (θm+1)≥ g(θm+1|θm)≥ g(θm|θm) = f (θm).
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for `≥ 0,

lnMk` = ln

(
1−λ`+

L

∑
`′=0

λ`ν`′(1−Pk``′)

)

≥
1−λ

(s)
`

M(s)
k`

ln

(
1−λ`

1−λ
(s)
`

M(s)
k`

)
+

L

∑
`′=0

λ
(s)
` ν

(s)
`′ (1−P(s)

k``′)

M(s)
k`

ln

(
λ`ν`′(1−Pk``′)

λ
(s)
` ν

(s)
`′ (1−P(s)

k``′)
M(s)

k`

)
.

Note that both sides of the inequality are equal if β = β (s) (no parameter change).
Let

ñ(s)k``′ = n(m)
k`

λ
(s)
` ν

(s)
`′ (1−P(s)

k``′)

M(s)
k`

.

This is the predicted number of times that home beats visitor `′. Given initial values λ
(s)
` ,ν

(s)
`′ one

can update γ(s) so as to maximize

K

∑
k=1

L

∑
`=0

L

∑
`′=0

{
ñ(s)k``′ ln

γk`

γk`+ γk`′
+nk``′ ln

γk`′

γk`+ γk`′

}
,

subject to the normalization ∑
L
`=0 γk` = 1.4 Now, because

− ln(γk`+ γk`′)≥ 1− ln(γ(s)k` + γ
(s)
k`′ )−

γk`+ γk`′

γ
(s)
k` + γ

(s)
k`′

(see Hunter, 2004), we can instead maximize

K

∑
k=1

L

∑
`=0

(
L

∑
`′=0

(ñ(s)k``′+nk`′`)

)
lnγk`−

K

∑
k=1

L

∑
`=0

L

∑
`′=0

(
(ñ(s)k``′+nk``′)

γk`+ γk`′

γ
(s)
k` + γ

(s)
k`′

)
.

That is (taking special care to indices),

γ
(s+1)
k` ∝

(
L

∑
`′=0

(ñ(s)k``′+nk`′`)

)[
L

∑
`′=0

ñ(s)k``′+nk``′+ ñ(s)k`′`+nk`′`

γ
(s)
k` + γ

(s)
k`′

]−1

,

where X` ∝ Y` means X` = Y`/∑`Y`, that is γ
(s+1)
k` should sum to one over `≥ 0.

4Notice that for ` = `′ = 0, we have an extra contribution of (ñ(s)k00 +nk00) ln 1
2 , but it does not matter because it is

independent of parameters.
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Update λ (s) by maximizing

L

∑
`=0

(
K

∑
k=1

(
nk`

1−λ
(s)
`

M(s)
k`

)
ln(1−λ`)+

K

∑
k=1

L

∑
`′=0

(
ñ(s)k``′+nk``′

)
lnλ`

)
.

Let

λ
(s+1)
` =

[
K

∑
k=1

L

∑
`′=0

(
ñ(m)

k``′+n(m)
k``′

)][ K

∑
k=1

(
n(m)

k`
1−λ

(m)
`

M(m)
k`

)
+

K

∑
k=1

L

∑
`′=0

(
ñ(m)

k``′+n(m)
k``′

)]−1

.

Finally update ν(s) by maximizing

L

∑
`′=0

[
K

∑
k=1

L

∑
`=0

(
ñ(s)k``′+nk``′

)]
lnν`′ s.t.

L

∑
`′=0

ν`′ = 1.

That is

ν
(s+1)
` ∝

K

∑
k=1

L

∑
`′=0

[
ñ(s,m)

k`′` +n(m)
k`′`

]
.

5 Variance Decomposition

5.1 Log Wage Levels

We are interested in decomposing

Var(wit |xit = x) =
1

I(x)

I

∑
i=1

T

∑
t=1

1{xit = x}w2
it−

(
1

I(x)

I

∑
i=1

T

∑
t=1

1{xit = x}wit

)2

for any x, and where I(x) = ∑
I
i=1 ∑

T
t=1 1{xit = x}.

The model predicts that the cross section variance of log wages is Var µk`(x)+Eσk`(x), where

Var µk`(x) = ∑
k, 6̀=0

pk`(x)µk`(x)2−

(
∑

k, 6̀=0
pk`(x)µk`(x)

)2

,

Eσk`(x) = ∑
k, 6̀=0

pk`(x)σk`(x),

where pk`(x) = 1
I(x) ∑

I
i=1 pi(k;β )∑

T
t=1 1{`it = `,xit = x} is the cross-sectional match distribution.

Note that the equality between Var(lnwit |xit = x) and Var µk`(x)+Eσk`(x) is exact by construction

11



with

µk`(x) =
∑

I
i=1 pi(k;β )∑

T
t=1 1{`it = `,xit = x}wit

∑
I
i=1 pi(k;β )∑

T
t=1 1{`it = `,xit = x}

,

σk`(x) =
∑

I
i=1 pi(k;β )∑

T
t=1 1{`it = `,xit = x}[wit−µk`(x)]2

∑
I
i=1 pi(k;β )∑

T
t=1 1{`it = `,xit = x}

,

with β and the firm classification estimated using the CEM algorithm.5

Next, let
µk` = ak +b`+ µ̃k`,

where ak +b` is the linear projection of µk` on the worker and firm type indicators (that is, regress
µk` on worker and firm type dummies, weighting each (k, `) observation by pk`).

We can then decompose the variance of mean log wages by match type as

Var µk` = Varak +Varb`+2Cov(ak,b`)+Var µ̃k`,

with

Varak = ∑
k, 6̀=0

pk`a2
k−

(
∑

k, 6̀=0
pk`ak

)2

,

Varb` = ∑
k, 6̀=0

pk`b2
` −

(
∑

k, 6̀=0
pk`b`

)2

,

Cov(ak,b`) = ∑
k, 6̀=0

pk`akb`−

(
∑

k, 6̀=0
pk`ak

)(
∑

k, 6̀=0
pk`b`

)
.

5.2 Wage Growth

We can do a similar exercise for wage growth ∆ lnwi = lnwi2− lnwi1 conditional on being em-
ployed in two consecutive periods 1 and 2:

Var(∆ lnwi) = VarE
(
∆ lnwi|k, `, `′,D

)
+EVar

(
∆ lnwi|k, `, `′,D

)
,

where D is the j2j mobility indicator and `,`′ denote the job types in periods 1 and 2.

5For example, it is easy to see that

Eµk`(x) = ∑
k, 6̀=0

pk`(x)µk`(x) =
1
I

I

∑
i=1

wit .
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We have

EVar
(
∆ lnwi|k, `, `′,D

)
= E(σk`′−σk`) = ∑

k
∑
6̀=0

∑
`′ 6=0

1

∑
D=0

Pk``′D (σk`′−σk`) ,

where

Pk``′D =
πkmk`M

1−D
k` MD

k``′

∑k ∑ 6̀=0 ∑`′ 6=0 ∑
1
D=0 πkmk`M

1−D
k` MD

k``′
.

As for wage levels, we can write the between-variance as

VarE
(
∆ lnwi|k, `, `′,D

)
= Var(µk`′−µk`) = Var(∆ak +∆b``′D +∆µ̃k``′D) ,

where ∆ak +∆b``′D denotes the projection of µk`′−µk` on worker type dummies and consecutive
job type dummies, and ∆µ̃k``′D denotes the residuals (i.e. regress µk`′ − µk` on k and on job mo-
bility indicators (`,`′,D), weighting each observation (k, `, `′,D) by Pk``′D). Finally, decompose
Var(µk`′−µk`) further as

Var(µk`′−µk`) = Var∆ak +Var∆b``′D +2Cov(∆ak,∆b``′D)+Var∆µ̃k``′D.

6 Estimation and Monte Carlo simulations

6.1 Data

We use the matched employer-employee data from Denmark from 1985-2011. Wages are reported
at annual frequency and adjusted for the aggregate trend. Mobility data of workers are reported at
a weekly level.

6.2 Estimator performance

We illustrate the performance of the estimator by its ability to recover model parameters use to
generate simulated data from the model. For this purpose, we use a simplified estimate for all men
aged 30-34 over the entire period 1985-2011 that imposes steady state on πk` and assumes away
dependence on covariates x. The estimate is presented in Table 2. The estimation is done subject
to K = 4 and L = 4. The simulation assumes stationarity whereas the estimator does not. Thus,
part of the performance evaluation is whether the estimated πk` coincides with the simulation’s
initialization by steady state.

The simulation replicates the sample size which has 1,089,764 workers and 253,150 firms and
the worker’s initial state is drawn from the stationary distribution associated with the specified mo-
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bility parameters. To match the estimations in the following section, each worker in the simulation
is simulated to have a 10 year employment history. We first estimate the model on the simulated
data for the case of K̂ = K = 4 and L̂ = L = 4. To account for simulation noise we repeat the es-
timation 500 times, where each repetition simulates the data subject to a different random number
generator seed and a different initial parameters guess where guesses are drawn randomly. The
initial firm classification is always a uniform distribution by firm wages as described in section 3.3.

Table 3 presents the wage parameter estimates denoted by CEM E [µk`] and CEM E
[
σ2

k`

]
. As

can be seen, the estimator performs exceedingly well, matching the true parameters closely. The
variation of the estimator over simulation repetitions is very small as well. The estimator requires
enough mobility data to perform well, and as can be seen 10 years of employment histories is more
than enough. The table also demonstrates the improvement associated with the firm classification
updates in the CEM algorithm. The estimates denoted by EM E [µk`] and EM E

[
σ2

k`

]
show the

wage parameter estimates based on the initial firm classification where the EM algorithm on the
remaining model parameters has been run to full convergence. As can be seen, there is a significant
discrepancy between the true model parameters and the estimates in this case.

Table 4 presents the mobility parameter estimates using the same labeling as above. Again, it
is seen that the full CEM estimator performs very well and matches the true mobility parameters
closely. This includes matching the initial match distribution. The EM estimates again demon-
strates that the firm classification updating plays an important role in the strong performance of the
estimator in that the estimated mobility parameters given the initial firm classification are substan-
tially different from the true model parameters.

6.3 (Preliminary) Estimation Results

We restrict employment spells to include only individuals between the age of 30-50. Furthermore,
we stratify the data by education level and 10 year time intervals. Education level is based on the
normed number of years of education associated with the worker’s highest completed degree. The
low education group comprises all degrees normed to less than 12 years of education. The medium
education group has a norm of exactly 12 years, and the high eduction group is any education level
with a norm greater than 12 years.

Within stratification, the wage parameters are allowed to vary in age, time, and gender. Age is
divided into 3 groups; ages 30-36, 37-43, and 44-50. Time is divided into 2 year periods, meaning
that a 10 year stratification has 5 different time groups. With the two gender groups, µk` (x) and
σ2

k` (x) depend on 30 different x groups. The mobility parameters and the initial distribution πk` are
restricted to depend only on gender. It is straightforward to relax this assumption, subject to the
identification restrictions that come with the mobility rates in the data. Finally, ν` is constrained to
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be same across genders consistent with a random search model where the two genders are searching
in the same markets.

We set the number of worker types to K = 4 and the number of firm types to L = 6. Thus,
in total a model estimate consists of 1,564 separate parameters. We create 18 different 10 year
intervals (1985-1994, 1986-1995,...) each of which is stratified by education into three groups. In
the following we present selected results for the 64 estimations.

6.3.1 Wages and mobility

We sort worker and firm types according to the average wage. Hence, by construction µk` will
on average be increasing in the k and ` indices. In Figures 1-3 we show the µ parameters by time
window and education stratifications as well as 2 particular sets of controls: 30-36 men and women
in the first 2 year period of each time window. It is a robust feature that wages are increasing in
firm type for all worker types, in particular, with few exceptions, the highest wage firm type is
the same for all worker types. In a related point, a simple linear projection as in Abowd et al.
(1999) generally provides a good approximation to the estimates of µk`. Specifically, estimate
µ̂k` (x) = ak (x)+ b` (x)+ εk`, which has an average R2 of ?? (.85) across the stratifications and
controls.

Figures 4-6 show the γk` estimates for the same 3 time windows as Figures 1-3 stratified by
education and controlled for gender. The mobility parameters do not control for age and within
time window time variation. Consistently, male workers prefer higher wage firm types to lower
types in the sense of Bradley-Terry competition. Furthermore, there is agreement across male
worker types about the ranking of firm types according to γ . There is also agreement across female
worker types about the ranking of firm types, but there are for women significant exceptions to the
result that high wage firm types are also high γ types. The γ estimates suggest a solid firm ladder
structure in the data, and that this ladder is global across worker types. Furthermore, the ladder
structure is strongly related to wages, more so for men than women.

To explore the ladder structure further Figures 7-9 present the expected firm type destination
conditional on the type of current firm and a job-to-job move. As can be seen, the expected firm
type is solidly increasing in current firm type for men, as one would expect in a classic random
search job ladder model. On the whole, the same is true for women, but in a reflection of the more
complex patterns in γ, there are some exceptions.

The estimation estimates the initial allocation of worker types to firm types separately from
the mobility patterns. Table 1 compares compares the stationary distribution associated with the
mobility parameters with the initial distribution for the case of low education men in the 1985-1994
time window. By construction, the first spell in a worker history is an employment spell. Hence,
we condition the stationary distribution on employment and correct for the bias that unemployed
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workers enter with employment drawn from unemployment.

Table 1: Comparison of initial distribution with stationary distribution. 1985-1994, High educa-
tion. Men.

πk`(male)
`= 1 `= 2 `= 3 `= 4 `= 5 `= 6
0.0253 0.0754 0.0358 0.0570 0.0683 0.0278
0.0108 0.0463 0.0153 0.0202 0.0377 0.0206
0.0157 0.0678 0.0240 0.0406 0.0522 0.0286
0.0115 0.1251 0.0216 0.0409 0.0820 0.0495

πss
k`

`= 1 `= 2 `= 3 `= 4 `= 5 `= 6
0.0309 0.1046 0.0362 0.0752 0.0581 0.0220
0.0125 0.0588 0.0154 0.0268 0.0248 0.0110
0.0124 0.0487 0.0173 0.0236 0.0781 0.0614
0.0131 0.1341 0.0218 0.0407 0.0483 0.0244

As can be seen, the stationary distribution associated with the mobility patterns is quite close
to the initial match distribution. We see the same close match for other education levels, gender
and time windows. This is a reassuring consistency check between the mobility part of the data
and the observed cross section allocations.

To further illustrate the allocation patterns, Figures 10-12 show contour plots for the initial dis-
tribution of worker types to firm types for the same time windows as the previous tables. The fig-
ures also show the correlation coefficient between types. As can be seen, if there is sorting between
worker and firm types, it is modest. Figure 13 shows the evolution of the correlation coefficient
between worker and firm types over time from 1985 to 2003 in both the initial match distribution
and the stationary distribution based on the mobility parameters, conditional on employment. The
figure is another piece of evidence between the observed cross section match distribution and the
stationary distribution from the mobility patterns. It is also seen that there is a tendency toward
increased positive sorting over time. This is particularly strong for women, who early in the sam-
ple tend to be negatively sorted but come to have much the same sorting pattern as men later on.
Regardless of the time period, sorting remains quite modest. This is consistent with the sorting
estimates in Bagger and Lentz (2013) where sorting in the Danish private sector for the 1992-2002
period is estimated at a correlation coefficient of about 6%.
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6.3.2 Gender wage gap

Define the average log wage of a type x worker by,

µ (x) =
K

∑
k=1

L

∑
`=1

µk` (x) pk` (x) .

Specifically, denote by µm (x) and µ f (x) the average male and female log wage where x in this
case does not include gender. We will discuss the gender gap conditional on x characteristics by
gap(x) = exp

(
µm (x)−µ f (x)

)
. Our framework allows us to decompose this difference into an

allocation effect and an a wage effect. For this purpose, define the counter factual female average
log wage for the case where the allocation is set according to that of the corresponding male match
allocation,

µ
c f
f (x) =

K

∑
k=1

L

∑
`=1

µk` ( f ,x) pk ( f ,x)
pk` (m,x)
pk (m,x)

,

where pk` (m,x) is the allocation of a male type x worker. Furthermore, pk (g,x) = ∑
L
`=1 pk` (g,x)

for g = {m, f}. The fraction of a type x wage gap that is explained by mobility pattern differences
is then

(
µ

c f
f (x)−µ f (x)

)
/
(

µm (x)−µ f (x)
)
.

In Figure 14, we show the evolution of the wage gap from the period 1985-2002, which is
calculated by use of the first time interval in each of 10 year windows from 1985 to 2011. As
seen, the wage gap is trending down during this time period for all age groups with the exception
of older high education workers. It is also seen that women tend to move to high type firms less
intensely than men. Consequently, mobility explains a significant part the wage gap. The relative
contribution from mobility is the strongest for low education women.

7 Conclusion

TBC
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Figures and Tables

Table 2: Parameter estimates of men, aged 30-34 with all education levels

µk` σk`

`= 1 `= 2 `= 3 `= 4 `= 0 `= 1 `= 2 `= 3 `= 4
k=1 3.730 4.100 4.388 4.904 1.397 0.838 0.771 0.870

k = 2 4.100 4.256 4.421 4.592 0.555 0.253 0.258 0.273
k = 3 4.422 4.376 4.499 4.644 0.150 0.110 0.126 0.141
k = 4 4.714 4.617 4.784 4.972 0.245 0.200 0.210 0.228

λ` ν` ηk η` γk`

`= 0 0.157 0.583
`= 1 0.022 0.128 0.146 0.233 0.100 0.069 0.042 0.124 0.666
`= 2 0.018 0.132 0.311 0.302 0.097 0.062 0.056 0.164 0.621
`= 3 0.033 0.110 0.313 0.256 0.005 0.047 0.028 0.143 0.777
`= 4 0.090 0.047 0.231 0.209 0.018 0.034 0.014 0.113 0.821

πk`

`= 0 `= 1 `= 2 `= 3 `= 4
k = 1 0.029 0.032 0.024 0.033 0.028
k = 2 0.056 0.056 0.063 0.085 0.050
k = 3 0.004 0.062 0.047 0.108 0.092
k = 4 0.013 0.038 0.020 0.074 0.085

Table 3: CEM wage parameter estimates

CEM E[µs
k`] CEM Std[µs

k`] EM E[µs
k`]

3.729 4.098 4.387 4.903 0.0018 0.0012 0.0009 0.0013 3.711 4.120 4.366 4.811
4.100 4.255 4.421 4.592 0.0006 0.0002 0.0002 0.0003 4.033 4.195 4.398 4.638
4.422 4.376 4.499 4.644 0.0002 0.0001 0.0001 0.0001 4.269 4.331 4.470 4.638
4.714 4.616 4.784 4.972 0.0003 0.0004 0.0002 0.0002 4.556 4.577 4.702 4.890

CEM E
[
σ s

k`

]
CEM Std

[
σ s

k`

]
EM E

[
σ s

k`

]
1.396 0.837 0.771 0.869 0.0013 0.0009 0.0007 0.0008 1.200 1.016 0.753 0.788
0.555 0.253 0.258 0.273 0.0003 0.0002 0.0001 0.0002 0.644 0.538 0.379 0.392
0.150 0.110 0.126 0.141 0.0001 0.0001 0.0001 0.0001 0.355 0.283 0.211 0.233
0.245 0.200 0.210 0.228 0.0002 0.0003 0.0001 0.0002 0.261 0.243 0.226 0.246
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Table 4: CEM mobility parameter estimates

CEM E[γs
k`] CEM Std[γs

k`]

0.102 0.075 0.044 0.126 0.652 0.0020 0.0007 0.0011 0.0018 0.0036
0.099 0.068 0.059 0.167 0.607 0.0019 0.0007 0.0015 0.0022 0.0039
0.005 0.051 0.031 0.146 0.767 0.0001 0.0004 0.0007 0.0022 0.0026
0.019 0.037 0.015 0.116 0.814 0.0004 0.0003 0.0004 0.0018 0.0023

CEM E
[
λ s
`

]
CEM Std

[
λ s
`

]
0.156 0.022 0.018 0.032 0.086 0.0002 0.0002 0.0001 0.0002 0.0013

CEM E
[
νs
`

]
CEM Std

[
νs
`

]
0.588 0.124 0.128 0.112 0.048 0.0027 0.0016 0.0018 0.0007 0.0004

EM E[γs
k`]

0.136 0.140 0.093 0.145 0.486
0.119 0.118 0.102 0.162 0.500
0.059 0.099 0.101 0.175 0.567
0.037 0.095 0.093 0.153 0.622

EM E
[
λ s
`

]
0.152 0.025 0.023 0.030 0.060

EM E
[
νs
`

]
0.580 0.103 0.099 0.109 0.109

Table 5: CEM proportions of firm and worker types

CEM EM
E [(ηk)

s] Std [(ηk)
s] E [(η`)

s] Std [(η`)
s] E [(ηk)

s] E [(η`)
s]

0.146 0.0001 0.234 0.001 0.135 0.250
0.311 0.0001 0.295 0.001 0.208 0.250
0.313 0.0001 0.261 0.001 0.322 0.250
0.231 0.0001 0.209 0.000 0.335 0.250

CEM E [πk`] EM E [πk`]

`= 0 `= 1 `= 2 `= 3 `= 4 `= 0 `= 1 `= 2 `= 3 `= 4
k = 1 0.029 0.032 0.024 0.033 0.028 0.027 0.029 0.021 0.029 0.030
k = 2 0.056 0.056 0.062 0.086 0.050 0.034 0.037 0.034 0.053 0.050
k = 3 0.004 0.062 0.046 0.108 0.092 0.024 0.052 0.053 0.094 0.098
k = 4 0.013 0.038 0.020 0.074 0.085 0.016 0.050 0.049 0.095 0.124
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Figure 1: µk`, High Ed Workers (men left, women right), ages 30-36
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(b) 1993-1994
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Figure 2: µk`, Med Ed Workers (men left, women right), ages 30-36

(a) 1985-1986

ℓ

1 2 3 4 5 6

µ
w

3.5

4

4.5

5

Estimated µw with K,L=4,6 group 1

k=1

k=2

k=3

k=4

ℓ

1 2 3 4 5 6

µ
w

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Estimated µw with K,L=4,6 group 2

k=1

k=2

k=3

k=4

(b) 1993-1994

ℓ

1 2 3 4 5 6

µ
w

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Estimated µw with K,L=4,6 group 1

k=1

k=2

k=3

k=4

ℓ

1 2 3 4 5 6

µ
w

4.2

4.3

4.4

4.5

4.6

4.7

Estimated µw with K,L=4,6 group 2

k=1

k=2

k=3

k=4

(c) 1999-2000

ℓ

1 2 3 4 5 6

µ
w

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Estimated µw with K,L=4,6 group 1

k=1

k=2

k=3

k=4

ℓ

1 2 3 4 5 6

µ
w

3.8

4

4.2

4.4

4.6

4.8

Estimated µw with K,L=4,6 group 2

k=1

k=2

k=3

k=4

21



Figure 3: µk`, Low Ed Workers (men left, women right), ages 30-36
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Figure 4: γk`, High Ed Workers
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Figure 5: γk`, Med Ed Workers
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Figure 6: γk`, Low Ed Workers
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Figure 7: High Ed Workers
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Figure 8: Med Ed Workers
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Figure 9: Low Ed Workers
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Figure 10: High Ed Workers
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Figure 11: Med Ed Workers

(a) 1985-1994

0.01

0.01

0.02

0.02

0.02

0.02

0.03

0.03

0.0
3

0.03

0.03

0.03

0
.0

4

0.0
4

0.04

0.0
4

0.0
4

0
.0

4

0.0
5

0
.0

5

0
.0

5

0.0
5

0.06

0
.0

6

0
.0

6

0.0
6

0.07

0.07

0
.0

7

0.0
8

0.0
8

0.09

0.1

Male π(k, ℓ) with cov(k, ℓ) =0.016 ρk,ℓ =0.0087

ℓ
1 2 3 4 5 6

k

1

2

3

4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.01

0.01 0.01

0.02

0.02

0.02

0.02

0.03

0.03

0.03

0.0
3

0
.0

3

0.04

0.04

0.0
4

0.04

0
.0

4

0
.0

4

0
.0

5

0.0
5

0
.0

5

0.05

0
.0

5

0
.0

6

0
.0

6

0.06

0
.0

7

0
.0

8

0
.0

9

0
.1

Female π(k, ℓ) with cov(k, ℓ) =-0.18 ρk,ℓ =-0.087

ℓ
1 2 3 4 5 6

k

1

2

3

4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(b) 1993-2002

0.01

0.02

0.02

0.0
2

0.02

0.02

0.0
3

0.03

0.03

0.03

0
.0

3

0.03

0.04

0.04

0
.0

4

0.04

0
.0

4

0.04

0.05

0.05

0
.0

5

0.0
5

0.0
6

0.06

0.06

0.07

0.07

0.08

0.09

Male π(k, ℓ) with cov(k, ℓ) =0.15 ρk,ℓ =0.076

ℓ
1 2 3 4 5 6

k

1

2

3

4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.02
0.02

0.02
0.02

0.03

0.03

0.0
3

0.03

0
.0

3

0.04

0.04

0.04

0
.0

4

0
.0

4

0.05

0.05

0
.0

5

0.06

0.06

0
.0

6

0.07

Female π(k, ℓ) with cov(k, ℓ) =-0.0084 ρk,ℓ =-0.0039

ℓ
1 2 3 4 5 6

k

1

2

3

4

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(c) 1999-2008

0
.0

2

0.02

0
.0

2

0.04

0.0
4

0.04

0.04

0.0
6

0.06

0.0
6

0.0
8

0.08
0
.0

8

0
.1

0
.1

0
.1

2

Male π(k, ℓ) with cov(k, ℓ) =0.16 ρk,ℓ =0.14

ℓ
1 2 3 4 5 6

k

1

2

3

4

0.02

0.04

0.06

0.08

0.1

0.12

0
.0

1

0.02

0
.0

2

0
.0

2

0.03 0.03

0.03

0.03

0
.0

3

0.04

0.0
4

0
.0

4

0.04 0.04

0.05

0.05

0
.0

5

0.05
0.0

5

0.06

0
.0

6

0
.0

6

0.06
0
.0

6

0
.0

6

0
.0

7

0
.0

7

0.0
7

0
.0

7

0
.0

7

0
.0

8 0
.0

8

0
.0

8

0.09

0
.0

9

0
.0

9

0
.1

Female π(k, ℓ) with cov(k, ℓ) =0.12 ρk,ℓ =0.095

ℓ
1 2 3 4 5 6

k

1

2

3

4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

30



Figure 12: Low Ed Workers

(a) 1985-1994
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Figure 13: Sorting over time. Correlation coefficient (k, `). Initial and steady state distributions.
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Figure 14: Gender wage gap (left) and contribution from mobility (right).
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