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Abstract

Advertisers are keenly interested in knowing the effectiveness of their online advertising. How-

ever, the industry seldom uses randomized experiments to estimate effectiveness, relying instead

on observational methods such as matching and regression. This is partly because, until recently,

randomized experiments have been difficult or expensive to implement in online advertising con-

texts, and partly because observational methods are widely considered within the industry to

be “good enough.” We analyze whether observational methods for causal inference can reliably

substitute for randomized experiments in online advertising measurement. This is of particular

interest because there have been enormous recent improvements in observational methods for

causal inference (Imbens and Rubin 2015). Using data from 12 US advertising lift studies at

Facebook comprising 435 million user-study observations and 1.4 billion total impressions, we

contrast the experimental results to those obtained from a variety of observational methods.

We show that observational methods often fail to produce the same results as the randomized

experiments, even after conditioning on information from thousands of behavioral variables and

using non-linear models. Our findings suggest that common approaches in industry used to

measure advertising effectiveness fail to measure accurately the true effect of ads.
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1 Introduction

Digital advertising spending is expected to exceed television advertising spending for the first time

in 2016. Firms are projected to spend $160 billion worldwide and $66 billion in the US on digital

advertising.1 Not surprisingly, advertising is one of the key funding sources for Internet content

and services. For example, the five most visited sites in the world—Google, Facebook, Youtube,

Baidu, and Yahoo—all rely on advertising revenues as their business model.2

As advertisers have shifted a larger fraction of their ad expenditures online, so has demand

grown for online ad effectiveness measurement. As a result, advertisers now routinely demand and

have access to granular-level data that link ad exposures, clicks, page visits, online purchases, and

in some cases offline purchases. When these measures are used to evaluate an advertising campaign

with a randomized experiment, or randomized controlled trial (RCT), advertisers generally have

the necessary data to estimate the causal effect of the ad campaign.

In practice, however, few online ad campaigns are evaluated using RCTs (Lavrakas 2010). This

is for multiple reasons. First, technical limitations of advertising platforms often make experimen-

tation cumbersome and labor intensive. Even large online advertisers such as Google and Facebook

enabled clients only in 2015 to perform advertising RCTs at the cookie or individual level. Second,

advertising RCTs can be seen as expensive. To see why, note that online RCTs have tradition-

ally been run using Public Service Announcements (PSAs) as control ads (Johnson, Lewis, and

Nubbemeyer 2015b). If so, the advertiser has to pay for PSAs, therefore funding ads that will have

no benefit for the firm. Third—and most importantly—RCTs are seen by many in the industry as

unnecessary in light of observational methods that rely on comparing consumers who were exposed

to an ad with appropriately chosen consumers who were not (Gluck 2011). In line with this, lead-

ing ad measurement companies rely on such observational methods to estimate the causal effect of

advertising (Abraham 2008, comScore 2010, Klein and Wood 2013).

However, due to selection of which consumers are exposed to ads, estimating the causal effect

of ads based on observational methods is far from straightforward. Selection arises, first, because

advertising platforms try to serve ads to consumers who are more likely to buy. Second, selection

arises because consumers have to be online to be exposed to an online ad. If the success metric

for the ad campaign is purely online—an online purchase, a registration, etc.—exposed users will

be more likely to convert simply because they happened to be online during the campaign. Lewis,

Rao, and Reiley (2011) show that this activity bias complicates measuring causal effects online.

1http://www.nytimes.com/2015/12/07/business/media/digital-ad-spending-expected-to-soon-surpass-tv.

html, accessed on 3-23-2016.
2http://www.alexa.com/topsites, accessed on 3-23-2016.
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In this paper we analyze whether and when observational methods can reliably substitute for

randomized experiments in online advertising measurement. We do so by using a collection of

12 large-scale advertising RCTs conducted at Facebook. We use the outcomes of these studies to

reconstruct different sets of observational methods for measuring ad effectiveness and then compare

each of them to the results obtained from the RCT.

Our data allows us to avoid common challenges faced in online advertising measurement. Most

advertising data is collected at the level of a web browser cookie. While measurement firms try

to determine which cookies belong the same individual, this is not always possible. This has two

potential consequences. First, users in an experimental control group may inadvertently also be

simultaneously assigned to the treatment group. Second, advertising exposure across devices may

not be fully captured. We avoid both of these problem because Facebook requires users to log

into Facebook each time they access the service on any browser and device. This means that ads

are never show inadvertently to users in the control group and all ad exposures are measured. In

addition, our ad campaigns were selected to have measures of purchase outcomes in addition to

registrations and web page views.

We find that across the advertising studies, on average, there is a significant discrepancy between

the observational approaches and RCTs. To illustrate, the advertising campaigns we analyzed

caused (based on the RCT), on average, a 57% increase in purchases by Facebook users (in the

industry this is referred to as the “lift” of the ad campaign). The observational methods we analyzed

yielded lift estimates that were (in absolute terms) between 173 and 661 percentage points different

from the 57% RCT estimate.

In addition, we find that there is tremendous variation in how close the observational methods

we analyzed came to replicating the RCT estimates. In some studies, observational methods that

used the most detailed data yielded estimates that were statistically indistinguishable from RCT

estimates. In other studies observational estimates were massively higher than those from the RCT.

Finally, in some studies the observational estimates were lower than those from the RCT. Based

on the limited set of studies at our disposal we could not identify characteristics of ad campaigns

that would lead to one or the other outcome.

Our paper makes two contribution. First, we shed light on whether—as is commonly believed

in the industry—observational methods for ad measurement are “good enough.” Answering this

question is important in the light of an ongoing debate on the role of RCTs (see, for example,

Deaton (2010) and Hausman (2016)). Applied to the context of advertising, the critique is that

RCTs can only test relatively few advertising strategies relative to the enormous possible variation

in advertising; which creative? which publisher? which touchpoint? which sequence? which
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frequency? This highlights one potential benefit of observational methods, which is that, relative

to RCT’s, much more data for high-dimensional problems is typically available because the data

are generated more easily and by more actors. The usual issues of selection bias, suitable controls,

etc., must be addressed, and of course this is exactly what observational methods try to do. Our

paper sheds some light on whether these efforts succeed in the context of online advertising.

Second, we contribute to a literature on observational vs. experimental approaches to causal

measurement. In his seminal paper, Lalonde (1986) compares observational methods with random-

ized experiments in the context of the economic benefits of employment and training programs. He

examined the “... results likely to be reported by an econometrician using non experimental data

and the most modern technique ...” (p. 604) with those of a field experiment. He concluded that

“... many of the econometric procedures do not replicate the experimentally determined results ...”

(p. 604). Since then, we have seen enormous improvements in observational methods for causal

inference (Imbens and Rubin 2015). In fact, Imbens (2015) shows that an application of these im-

proved methods to the Lalonde (1986) dataset manages to replicate the experimentally determined

results. In this paper we analyze whether the improvements in observational methods for causal

inference are sufficient for replicating experimentally generated results in a large industry where

such methods are commonly used in practice.

We are far from the first to write about online advertising effectiveness.3 In one of the first

papers on the subject, Lewis and Reiley (2014) run a field experiment in which they link advertising

to retail sales. The paper shows that sample sizes have to be very large in order to measure the

effect of online ads on purchase outcomes. Building on this work, Lewis and Rao (forthcoming) use

twenty-five large advertising field studies to quantify how the volatility of consumer expenditure

affects power in measuring ad effects. Lewis, Rao, and Reiley (2011) are the first to identify and

document the unobserved characteristics that lead to “activity bias,” which we have described

above. This paper is also one of the earliest works to compare advertising effect estimates from a

RCT to those obtained using observational methods (exposed vs. unexposed and regression). In

the best case, they find a regression overstates the RCT causal effect by a factor of 161.4

A variety of related work on advertising effects exists. Lewis and Nguyen (2015) show that

complementarities across display and search advertising are very hard to reliably estimate (see also

Rutz and Rucklin (2011)). Others have used purchase intent surveys to show the value of targeting

3For a comprehensive summary of issues addressed in this literature please see Lewis, Rao, and Reiley (2015).
4One challenge in Lewis, Rao, and Reiley (2011) was finding a good pseudo-control group of unexposed users for

the observational methods. The reason is that the experiment exposed 95 percent of US-based traffic to the focal

ad and held out 5 percent as the experimental control. Consequently, the pseudo-control group consisted entirely of

international users who visited www.yahoo.com on the day of the experiment but were not targeted by the ad.
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ads and the effect of context and intrusiveness of ads (Goldfarb and Tucker 2011a, Goldfarb and

Tucker 2011b). Johnson, Lewis, and Nubbemeyer (2015b) introduce a method for implementing

RCTs for display advertising. Johnson, Lewis, and Reiley (2015) measure the effect of repeated

exposure and proximity to the advertiser. Johnson, Lewis, and Nubbemeyer (2015a) show the

distribution of ad effectiveness across 431 ad experiments from varied industries. Sahni and Nair

(2016) use a series of mobile experiments to tease apart the mechanism underlying native advertis-

ing on a restaurant search platform. A closely related paper to our own is Blake, Nosko, and Tadelis

(2015) which documents that non-experimental measurement can lead to highly suboptimal spend-

ing decision for online search ads. However, in contrast to our paper, Blake, Nosko, and Tadelis

(2015) is based on randomization at the level of major markets. In summary, while there is a rich

recent literature on online advertising, we are among the first to be able to evaluate observational

methods for causal inference using the individual-level data advertisers can observe.

This paper proceeds as follows. We begin by describing in the next section the experimental de-

sign used in the 12 advertising RCTs we analyze. We describe how advertising works on Facebook,

how RCTs are implemented, and what determines advertising exposure. In Section 3 we introduce

the potential outcomes notation that has become standard for causal inference and relate it to ana-

lyzing our RCT. In Section 4 we introduce the observational methods we use. Section 5 introduces

the data and shows randomization checks. Next, we report on the results; for expositional reasons

we begin in Section 6 by showing all results for one example ad campaign in detail. Section 7 then

summarizes the findings for all remaining ad campaigns. Section 8 offers some concluding remarks.

2 Experimental Design

This section provides a description of how Facebook conducts advertising campaign experiments.5

First, we provide some relevant background information about the Facebook advertising platform.

Second, we define the measurement question of interest to the advertiser and relate it to the

experimental implementation. Third, we discuss the determinants of advertising exposure for users

assigned to the test group, where compliance is one-sided.

2.1 Advertising on Facebook

We focus exclusively on campaigns where the advertiser designed the campaign with a particular

“direct response” outcome in mind, for example to increase sales of a new product, to attract new

5Within Facebook these ad tests are referred to as “lift tests.” See https://www.facebook.com/business/news/

conversion-lift-measurement.
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customers, etc.6 Such outcomes are referred to as a “conversion outcome” in the industry. In each

study the advertiser measured outcomes using a piece of Facebook-provided HTML code, referred

to as a “conversion pixel,” that the advertiser embeds on its web pages.7 This enables an advertiser

to measure whether a user visited that page. These pixels can be placed on a variety of pages and

therefore measure different conversion outcomes. For example, if the conversion pixel is placed on a

checkout confirmation page the pixel measures a purchase outcome. If the conversion pixel is placed

on a registration confirmation page, the pixel measures a registration outcome, etc. These pixels

allow the advertiser (and Facebook) to record conversions irrespective of whether the user was in

the control or test group and does not require the user to click on the ad to have her conversion

outcomes measured.

Facebook’s ability to track users via “single-user login” across devices and sessions represents a

significant measurement advantage over common cookie-based settings. First, this helps to ensure

the integrity of the random assignment mechanism because a user’s assignment can be maintained

persistently throughout the campaign and prevents control users from being inadvertently shown

an ad. Second, Facebook can associate all exposures and conversions, across devices and sessions,

with a specific user. This is important because users are frequently exposed to advertising on a

mobile device but might subsequently convert on a tablet or computer.

Figure 1 displays where a Facebook user accessing the site from a desktop/laptop or mobile

device might see ads. In the middle is the “News Feed,” where new stories appear with content as

the user scrolls down the page or the site automatically refreshes. Ad impressions on Facebook are

served in the News Feed interlaced with organic content, with a smaller portion served to the right

of the page. On mobile devices, only the News Feed is visible and so no ads appear on the right

side.8

In the News Feed, an ad impression is represented by one tile. As the user scrolls and new tiles

appear, new ad impressions are interspersed with regular content. The rate at which Facebook

serves ads in the News Feed is carefully managed at the site-level to maintain the proper user

experience.

6This excludes brand building campaigns where outcomes are measured through consumer surveys.
7We use “conversion pixel” to refer to two different types of conversion pixels used by Facebook. One was

traditionally referred to as a “conversion pixel” and the other is referred to as a “Facebook pixel”. Both types

of pixels were used in the studies analyzed in this paper. For our purposes both pixels work the same way (see

https://www.facebook.com/business/help/460491677335370).
8News Feed ads are an example of ”native advertising” because the ads are interlaced with the page’s organic

content. This style of ads is increasingly common because they are thought to interfere less with the user experience

and still potentially to have better response rates. Sahni and Nair (2016) use a series of mobile experiments to tease

apart the mechanism underlying native advertising on a restaurant search platform.
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Figure 1: Facebook desktop and mobile ad placement

https://www.facebook.com/business/ads-guide

An advertising campaign is a collection of related advertisements (creatives) served during

the campaign period. A campaign may have multiple creatives associated with it, as Figure ??

illustrates for Jasper’s Market, a fictitious advertiser commonly used in examples at Facebook.

Although the imagery and text vary from one creative to the next, the overall message in the

campaigns we reviewed were generally consistent. Our analysis focuses on evaluating the effect of

the campaign as a whole rather than on the effects of specific ad creatives.

As with most online advertising, each impression is the result of an underlying auction. The

opportunity set is the collection of display ads that are entered into the auction to bid for an

impression. The advertising platform determines which ads are part of the opportunity set based

on a combination of factors such as: how recently the user was served any ad in the campaign, how

recently the user saw ads from the same advertiser, the overall number of ads the user was served

recently, whether the user is in the target audience as defined by the advertiser, etc.9 The auction

plays a role both in the implementation of the experiment and in generating endogenous variation

in exposures.

2.2 Experimental Implementation

An experiment begins with the advertiser defining a new marketing campaign which includes de-

ciding which consumers to target. For example, the advertiser might want to reach all users that

9The relevance score attempts to adjust for whether a user is likely to be a good match for an ad (https:

//www.facebook.com/business/news/relevance-score).
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Figure 2: Example of three display ads for one campaign

match a certain set of demographic variables, e.g., all women between the ages of 18 and 54. This

choice determines the set of users included in the study sample. Each user in the study sample

is randomly assigned to either the control group or the test group according to some proportion

selected by the advertiser (in consultation with Facebook). Users in the control group are never

exposed to campaign ads during the study and users in the test group are eligible to see the cam-

paign’s ads during the study. Whether these eligible users end up being exposed to the ads depends

on a variety of factors, for example, whether the user accessed Facebook during the study period.

We discuss these factors and their implications in detail in the next subsection. As a consequence,

we observe three groups of users: control-unexposed, test-unexposed, and test-exposed.

Next we consider a critical question: for users in the control group, what ads should they be

shown in place of the advertiser’s campaign? This question defines the counterfactual of interest.

To evaluate campaign effectiveness, an advertiser requires the control condition to estimate the

outcomes that would have occurred in the absence of the campaign. Thus, the ads served in the

control condition in place of the focal campaign should be the ads that would have been served if

the advertiser’s campaign had not taken place.

We illustrate how this process works using a hypothetical and stylized example in Figure 3.

Consider two users in the test and control groups, respectively. Suppose that at one particular

instant, Jasper’s Market wins the auction to display an impression for the test group user, as seen

in Figure 3a. Imagine that the control group user, who occupies a parallel world to the test user,

would have been served the same ad had this user been in the test group. However, the platform,

recognizing the user’s assignment to the control group, prevents the focal ad from being displayed.

As Figure 3b shows, instead the second-place ad in the auction is served to the control user because
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it is the ad that would have won the auction in the absence of the focal campaign.

It is worth emphasizing a few points about this mechanism. Figure 3 is a stylized view of the

experimental design (clearly there are no two identical users in parallel worlds). For users in the

test group, the platform serves ads in a regular manner, including those from the focal advertiser.

The experimental mechanism is only relevant for users in the control group and if the opportunity

set contains the focal ad on a given impression. If the focal ad does not win the auction, there is no

intervention—whatever ad wins the auction is served because the same ad would have been served

in the absence of the focal advertiser’s campaign. However, if the focal ad wins the auction, the

system removes it and instead displays the second-place ad. In the example, Waterford Lux Resorts

is the “control ad” shown to the control user. At another instant when Jasper’s Market would have

won the auction, a different advertiser might occupy the second-place rank in the auction. Thus,

instead of their being a single control ad, users in the control condition are shown the distribution

of ads they would have seen if the advertiser’s campaign had not run.

This approach relies on the fact that the auction mechanism is stable to the removal of the focal

ad. That is, the second-place ad is the same regardless of whether the focal advertiser participated

or not in the auction.10 This assumes other advertisers’ strategies are fixed in the short-run and

do not respond to the fact that the focal advertiser is running the campaign. This assumption is

reasonable because campaigns are not pre-announced, occur over relatively short periods, and it

would be hard for another advertiser to gauge the scope of any campaign given the scale of Facebook.

In addition, there are a wide variety of advertisers, each with different targeting specifications. As

a result, the chance that the ads of two competitors are the highest and second-highest ad are very

low.

Finally, as with any experiment, this one yields an estimate of the average treatment effect

of the campaign conditional on all market conditions. This includes any marketing activities the

advertiser is conducting in other channels (e.g., search, TV) and the activities of its competitors.

The estimated lift obtained during the experiment may not generalize to similar future campaigns if

market conditions change. If advertising effects are nonlinear across mediums, which is possible, the

experiment measures something akin to the average net effect of the campaign given the distribution

of non-Facebook advertising exposures across the sample.

10The auction is a modified version of a second-price auction such that the winning bidder pays only the minimum

amount necessary to have won the auction. However, due to the additional factors considered in the bid ranking

(e.g., the relevance score), bidders may not be ranked strictly based on their bid prices. For more information, see

https://www.facebook.com/business/help/430291176997542.
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Figure 3: Determination of control ads in Facebook experiments

(a) Step 1: Determine that a user in the control would have been served the focal ad

(b) Step 2: Serve the next ad in the auction.
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2.3 Determinants of Advertising Exposure

In our setting, compliance is perfect for users in the control group, who are never shown any

campaign ads. However, compliance is only one-sided in the test group, where exposure (receipt of

treatment) is an endogenous outcome that depends on factors such as the user, advertisers, and the

platform. These factors generate systematic differences (i.e., selection bias) between the exposed

and unexposed users in the test group. Three general features of online advertising environments,

not just limited to Facebook, make the selection bias of exposure particularly significant.

First, an ad is delivered when the advertiser wins the underlying auction for an impression.

Winning the auction implies the advertiser out-bid the other advertisers competing for the same

impression. Additionally, Facebook and some other publishers prefer to show ads to consumers

they are more likely to find interesting and useful.11. This means that an advertisers’ ads are more

likely to be shown to users who are more likely to respond to its ads (measured by the relevance

score), and users who are less likely to respond to the other advertisers who are currently active

on Facebook. Even if an advertiser triggers little selection bias based on their own advertising,

it can nevertheless end up with a selected exposure because of what another advertiser does. For

example, if another advertiser if placing high bids on mothers during the campaign period, there

is a higher likelihood that mothers will not be exposed to the campaign.

A second mechanism that drives selection is the optimization algorithms that exist on modern

advertising delivery platforms. Advertisers and platforms try to optimize the types of consumers

that should be shown an ad. For a campaign that seeks to optimize on purchases, a machine

learning algorithm will gradually refine the targeting and delivery rules to identify users who are

most likely to convert. For example, suppose an advertiser initially targets female users between

the ages of 18 and 55. After the campaign’s first day, the platform observes that females between 18

and 34 are especially likely to convert. As a result, the ad platform will increase the frequency that

the ad campaign enters into the ad auction for this set of consumers, resulting in more impressions

targeted at this narrower group. These optimization routines perpetuate an imbalance between

exposed and unexposed test group users: the exposed group will contain more 18-34 females and

the unexposed group will contain more 35-55 females. Assessing ad effectiveness by comparing

exposed vs. unexposed consumers will therefore overstate the effectiveness of advertising because

exposed users were specifically chosen on the basis of their higher conversion rates.12

The final mechanism arises from the simple observation that a user must actually visit Facebook

11See https://www.facebook.com/help/562973647153813
12Facebook’s ad testing platform is specifically designed to account for the fact that targeting rules for a campaign

change over time. This is a accomplished by applying the new targeting rules both to test and control groups, even

though users in the control group are never actually exposed to campaign ads.
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during the campaign to be exposed. If conversion is purely a digital outcome (e.g., online purchase,

registration, key landing page), exposed users will be more likely to convert simply because they

happened to be online during the campaign. For example, a user on vacation may be less likely

to not only visit Facebook but to also engage in various online activities. Lewis, Rao, and Reiley

(2011) term this form of selection as activity bias and show its effects can be substantial.

In the RCT, we address this selection bias by leveraging both the random assignment mechanism

and whether a user receives treatment. For the observational models, we discard the randomized

control group. These methods must deal with the selection bias relying solely on treatment status

and observables in the test group.

3 Analysis of the RCT

We use the potential-outcome notation that has become standard in the literature on both ex-

perimental and nonexperimental program evaluation. Our exposition in this section and the next

draws heavily on material in Wooldridge (2002), Imbens (2004), Imbens and Wooldridge (2009),

and Imbens and Rubin (2015).

3.1 Definitions and Assumptions

Each ad study contains N individuals (units) indexed by i = 1, . . . , N drawn from an infinite

population of interest. Although N varies across studies, we do not index any variable by a study-

specific subscript because all of our analysis takes place within a study. Individuals are randomly

assigned to test or control conditions through Zi = {0, 1}. Exposure to ads is given by the indicator

Wi(Zi) = {0, 1}. Users assigned to the control condition are never exposed to any ads from the

study, Wi(Zi = 0) = 0. However, assignment to the test condition does not guarantee a user

is exposed, such that Wi(Zi = 1) = {0, 1} is an endogenous outcome outside of the advertiser’s

control. We also observe a set of covariates Xi ∈ X ⊂ RK for each user that are unaffected by the

experiment.

Given an assignment Zi and a treatment Wi(Zi), the potential outcomes are Yi(Zi,Wi(Zi)) =

{0, 1}. Under one-sided noncompliance, the observed outcome is:

Y obs
i = Yi(Zi,W

obs
i ) = Yi(Zi,Wi(Zi)) =


Yi(0, 0), if Zi = 0,W obs

i = 0

Yi(1, 0), if Zi = 1,W obs
i = 0

Yi(1, 1), if Zi = 1,W obs
i = 1

(1)

We designate the observed values Y obs
i and W obs

i to help distinguish them from their potential

outcomes.
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Several standard assumptions are required for valid inference. First, a user can only receive

one version of the treatment and a user’s treatment assignment does not interfere with other users’

outcomes. This pair of assumptions is commonly known as the Stable Unit Treatment Value

Assumption (SUTVA), a term coined in Rubin (1978). In our setting, this assumption is almost

certainly satisfied due to Facebook’s tracking abilities, which prevents those in the control condition

from inadvertently being shown an ad. The second part of the SUTVA assumption could possibly

be violated if users in the test group share ads with users in the control group, but we believe this

happens rarely if at all.13

The second assumption is that assignment to treatment is unconfounded, or random. This re-

quires that the distribution of Zi is independent of all potential outcomes Yi(Zi,Wi(Zi)) and both

potential treatments Wi(Zi). Note that although assignment through Zi is random, this does not

imply treatment received Wi is random due to the one-sided non-compliance. The unconfounded-

ness assumption cannot formally be tested because we do not observe all potential outcomes and

treatments, although we believe that Facebook implements its randomization procedure correctly.

We will, however, perform a randomization check in each study to verify there are no differences

in users’ observed characteristics across test and control groups.

In principle, we could focus on the relationship between the random assignment Zi and outcome

Yi, ignoring any information contained in Wi. Such an intent-to-treat (ITT) analysis only requires

the two assumptions above. However, our interest is in estimating the causal effects of the receipt

of treatment—what happens to users who are actually exposed to ads. For this we require an

exclusion restriction:

Yi(0, w) = Yi(1, w), for all w

such that assignment affects a user’s outcome only through its receipt of the treatment. This

assumption should be valid because users are unaware of their assignment to test or control, and

so only exposure should affect outcomes. This permits Zi to serve as an instrumental variable (IV)

to recover the average treatment effect on the treated (ATT), which is our primary causal effect of

interest.

13In theory, test users could show ads to control users, even though neither user knows their own assignment status.

If this occurred, the treatment effect estimates would be conservative because this would only matter if a test user

showed an ad to a control user who ended up converting.
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3.2 Causal Effects in the RCT

Given the assumptions, the ITT effect of assignment on outcomes compares across random assign-

ment status, irrespective of a user’s treatment:

ITTY = E [Y (1,W (1))− Y (0,W (0))] (2)

The sample ITT effect can be estimated using

ÎTTY =
1

N

N∑
i=1

(
Yi(1,W

obs
i )− Yi(0,W obs

i )
)
, (3)

which can written compactly as ÎTTY = Y
obs
1 − Y

obs
0 .

The ITT effect sidesteps issues with endogenous exposure and an advertiser might reasonably

focus on this effect. However, oftentimes an advertiser wants to understand the effect of its ads on

users who actually observed them because the firm might run another campaign that at Facebook

to target this subpopulation or the firm might try to reach this group on other channels. For most

of our analysis, we focus on the ATT, the causal effect for the subpopulation of exposed users.

Imbens and Angrist (1994) show this can be expressed in an IV framework as the ITT effect on

the outcome divided by the ITT effect on the treatment receipt:

τatt =
ITTY

ITTW
=

E[Y (1,W (1))]− E[Y (0,W (0))]

E[W (1)]− E[W (0)]
(4)

With full compliance in the control, such that Wi(0) = 0 for all users, and complete randomization

of Zi, the denominator simplifies to ITTW = E[W (1)].

Another way to think about this causal effect is to decompose the ITT effect for the entire

sample into the weighted average of ITT effects for compliers and noncompliers. Compliers are

users where Wi(1) = 1 is observed such that they comply with their assignment, and noncompliers

are users with Wi(1) = 0 who do not comply with the assignment of Zi = 1. The average ITT

effect can be expressed as

ITTY = ITTY,co · πco + ITTY,nc · (1− πco), (5)

where πco = E[W (1)] is the share of compliers. The exclusion restriction requires that Yi(0, 0) =

Yi(1, 0), which implies ITTY,nc = E [Y (1, 0)− Y (0, 0)] = 0. Thus, ITTY,co can be expressed as the

overall ITT effect divided by the share of compliers

ITTY,co =
ITTY

πco
≡ τatt . (6)

πco can be estimated using the share of treated users in the test group. In a sense, scaling ITTY by

the inverse of πco “undilutes” the ITT effect according to the share of users who actually received
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treatment in the test group (the compliers). These are the users who were induced to take up the

treatment through assignment to the test condition.14

3.3 Lift

To help summarize outcomes across advertising studies, we report some results in terms of “lift”,

which is what Facebook uses internally.15 Lift simply expresses the incremental conversion rate as

a percentage effect:

Lift =
Actual conversion rate – Counterfactual conversion rate

Counterfactual conversion rate
(7)

The lift for the ITT is

LiftITT =
Y
obs
1 − Y

obs
0

Y
obs
0

=
ÎTTY

Y
obs
0

(8)

Reporting the lift facilitates the comparison of advertising effects across studies because it normal-

izes the results using the baseline conversion rate in a study, which can vary significantly depending

on the study’s characteristics (e.g., the advertiser’s identify, the outcome of interest, the period of

study). The corresponding lift for the ATT is:

LiftATT =
E[Wi · Yi(1,Wi(1))]− (E[Wi · Yi(1,Wi(1))]− τatt)

E[Wi · Yi(1,Wi(1))]− τatt
=

τatt
E[Wi · Yi(1,Wi(1))]− τatt

(9)

One complication from using lift is that statistical inference must address the dependence be-

tween the terms in the ratio. Using the experimental data, we can implement a nonparametric

bootstrap to estimate the sampling distribution of lift for both the ITT and ATT. However, for

some of the observational models described in the next section, such an approach is either infeasi-

ble computationally or impossible due to nature of the method. In particular, Abadie and Imbens

(2008) show the bootstrap is invalid as a inference technique for matching estimators. For this

reason we conduct inference using the ITT and ATT effects, for which valid standard errors can be

computed, and present lift estimates and standard errors where possible to help readers compare

across studies. More details can be found in the Appendix.

4 Observational Models

This section is motivated around the following thought experiment. Rather than conducting a RCT,

an advertiser followed customary practice by choosing a target sample and made all of these users

14Imbens and Angrist (1994) refer to this quantity as the local average treatment effect (LATE). If there are no

“always-takers” and no “defiers” in the sample, which is true in our experimental design, the LATE is equal to the

ATT.
15DellaVigna and Gentzkow (2010) advocate the reporting outcomes in terms of the persuasion rate.
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eligible to see the ad. To estimate the treatment effect, the advertiser made use of the fact that

some of the targeted sample had in fact not been exposed to the ad campaign. This is equivalent to

creating a test sample without a control group held out. Below we describe the set of observational

methods we apply to the test sample for comparison with the RCT results. All of these methods

rely on some form of exogeneity, conditional on observables, that permits a user’s treatment status

to be considered as good as random.

To mimic this observational setting with the RCT data, we ignore the control group and focus

exclusively on the test group. It is helpful to abuse notation slightly by defining:

Yi(Wi) ≡ Yi(Zi = 1,Wi) . (10)

For each user, we observe the triple (Y obs
i ,Wi, Xi), where the realized outcome is:

Y obs
i ≡ Yi(Wi) =

 Yi(0) if Wi = 0

Yi(1) if Wi = 1
(11)

If treatment status Wi were in fact random and independent of Xi, we could compare the

conversion rates of exposed to unexposed users (Abraham 2008). The ATT effect would be:

τ euatt = E[Yi(Wi = 1)− Yi(Wi = 0)|Xi] = E[Yi(Wi = 1)]− E[Yi(Wi = 0)] (12)

Replacing the expectations with their sample counterparts to estimate τ̂ euatt is straightforward. In

reality, of course, Wi is unlikely to be independent ofXi, especially in the world of online advertising.

The estimator τ̂ euatt will contain selection bias due to the dependence between user characteristics,

treatment status, and outcomes. We report the lift based on τ̂ euatt in our results as a naive baseline.

Observational methods specifically attempt to correct for this selection bias. To accomplish this

goal, all of the observational methods rely on two assumptions: unconfoundedness and overlap. The

unconfoundedness assumption is

(Yi(0), Yi(1)) ⊥⊥Wi | Xi, (13)

which states that treatment status is independent of potential outcomes conditional on Xi. The

second assumption concerns the joint distribution of treatment and covariates, and is frequently

written as

0 < Pr(Wi = 1|Xi) < 1

This assumption implies that each user in the population has some probability of being treated

and some probability of being untreated. The probability of treatment as a function of x is known

as the propensity score:

e(x) = Pr(Wi = 1|Xi = x) = E[Wi|Xi = x]. (14)
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Rosenbaum and Rubin (1983) show that if assignment to treatment is unconfounded conditional

on Xi, then assignment is also unconfounded given the propensity score:

(Yi(0), Yi(1)) ⊥⊥Wi | e(Xi) (15)

This assumption can be interpreted as, for two people with the same (or very close) propensity

scores, exposure status is as good as random and independent of the potential outcomes. As

in section 3.1, the unconfoundedness assumption in equation (13) is untestable. Overlap can be

assessed before and after adjustments are made to each group, and which we will do in a future

version of this paper.

In the following sections, we consider several classes of methods and some that combine elements

of each. Recall that we already mentioned one naive benchmark that compares outcomes across

exposed and unexposed users in the test group (equation 12). We adopt a second naive benchmark

that is widely used in the industry, which is to adjust the exposed and unexposed groups based only

on differences in the joint distribution of age and gender. We implement this procedure through

Exact Matching (EM) on both variables, in effect matching all exposed users of a particular age-

gender pair to all unexposed users with the same age and gender.

4.1 Regression

The fundamental problem is that we do not observe all potential outcomes for any given user. In

some form or another, all methods impute the missing potential outcomes by building a model

and using it to predict what would have happened to a user if the user had received a different

treatment. Methods based on regression start with the following conditional expectation:

µw(x) = E[Y (w)|X = x] (16)

Given unconfoundedness, this can be rewritten as

µw(x) = E[Y (w)|W = w,X = x] = E[Y obs|W = w,X = x] (17)

which implies we can estimate µw(x) from the observed outcomes. Given consistent estimators

µ̂w(x), the sample average treatment effect (ATE) using regression adjustment (RA) is:

τ raate =
1

N

N∑
i=1

[µ̂1(Xi)− µ̂0(Xi)] (18)

The importance of the overlap assumption is evident because, for a given X = x, one must be

able to estimate the conditional expectations at both values of the treatment. If the goal is to
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estimate the average treatment effect of the treated, one must only estimate µ0(x) to predict the

counterfactual outcomes for the treated users:

τ raatt =
1

NT

N∑
i=1

Wi[Y
obs
i − µ̂0(Xi)] (19)

where NT =
∑

iWi is the number of treated units.

Any consistent estimator of µw(x) can be used, such as linear regression with covariates:

Y obs
i = α+ β′Xi + τ ·Wi + εi (20)

Lewis, Rao, and Reiley (2011) use a logit regression after obtaining a control sample of unexposed

users. In our implementation, we use separate regression functions for each treatment level

µw(x) = αw + β′wx (21)

and include various interactions and higher-order terms as covariates.

One problem with these regression estimators is their sensitivity to differences in the covariate

distributions for control and test groups. If these distributions differ, these estimators will rely

heavily on extrapolation. Researchers have gone beyond simple parametric regression models, with

methods that rely on local smoothing, such as kernel methods or locally linear regression (Heckman,

Ichimura, and Todd 1997, Heckman, Ichimura, and Todd 1998, Heckman, Ichimura, Smith, and

Todd 1998), and flexible global approximations, such as series estimators (Hahn 1998, Imbens,

Newey, and Ridder 2005). However, applying these methods relies on the optimal choice of a

smoothing parameter, or bandwidth, to determine the extent of local extrapolation. With the

exception of Imbens, Newey, and Ridder (2005), most work relies on ad hoc methods for this

choice.

4.2 Matching on the Propensity Score

Matching methods try to pair users in one treatment group with “similar” users in the opposite

treatment group. The treatment effect is estimated as the difference between an observation and its

paired observation(s). The result is a new matched sample of observations that hopefully have more

similar covariate distributions compared to the unmatched sample. Averaging over the relevant set

of observations—the entire sample or only treated users—yields the relevant sample treatment

effects. Thus, matching methods address a shortcoming of regression methods that may require

extrapolation from the covariate distribution in one treatment group to the estimate the outcomes in

the other treatment group. Fundamentally, though, the two approaches are similar: both impute

the missing potential outcomes from one group using outcomes in the other. In regression, the
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missing potential outcomes come from the estimated regression function. Matching methods also

impute missing outcomes but use the nearest neighbors from the opposite treatment group, defined

by some similarity metric. This approach can be viewed as being similar to a nonparametric kernel

with the number of neighbors serving as the fixed bandwidth.

Matching entails a variety of choices on the part of the econometrician: which similarity metric

to use, whether to match with or without replacement, and how many matched units to use. If Xi

is entirely discrete, one could in principle match users exactly. Given that the dimensionality of

Xi is usually large and contains a mixture of discrete and continuous variables, exact matching on

all covariates is typically infeasible even with large samples. Various metrics have been proposed,

with the most common being the Mahalanobis distance and the propensity score (Rosenbaum and

Rubin 1985, Deheji and Wahba 2002, Caliendo and Kopeinig 2008, Rubin and Thomas 2000). In

both cases, the goal is to summarize the information contained in the full set of covariates to

facilitate the construction of matched test and control groups with similar covariate distributions.

We match users based on their estimated propensity scores. Define `(x) = ln(e(x)/(1 − e(x)))

as the log-odds ratio of the propensity score. We use `(x) rather than e(x) because the former

linearizes values on the unit interval. The relevant distance metric we consider is:

d`(x, x
′) =

(
`(x)− `(x′)

)2
,

where we replace e(x) with ê(x) for estimation. We estimate the propensity scores using a logistic

regression:

e(x) =
exp(x′)

1 + exp(x′)
,

For each user in the exposed group, we find M users in the unexposed group. We implement

this matching procedure with replacement because it can reduce the bias of the estimator and is

less computationally burdensome to implement. In the studies we consider at Facebook, NT can be

quite large and so the computational advantages of matching with replacement can be important.

Two downsides of using replacement are that the sampling variance might be larger and estimating

the sampling variance is more difficult (Abadie and Imbens 2015).

To implement the estimator, let mc,k
i ∈ Ic be the index of the control unit that is the kth closest

to exposed user i based on the distance metric d`(xi, xk). The set Mc
i = {mc,1

i ,mc,2
i , . . . ,mc,M

i }

contains the M closest observations for user i. For exposed user i, we observe Y obs
i = Yi(1), and so

we require an estimate of the potential outcome Yi(0). The counterfactual estimate of this outcome

is

Ŷi(0) =
1

M

∑
j∈Mc

i

Y obs
j . (22)
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The matching estimator for the average treatment effect on the treated using the estimated propen-

sity scores is

τ̂psmatt =
1

N

∑
i∈Ic

(
Yi(1)− Ŷi(0)

)
. (23)

4.3 Blocking and Regression

Matching and regression can be combined in various ways. One approach, advocated by Imbens and

Wooldridge (2009) and others, is block the data on the estimated propensity score (also known as

subclassification or stratification) and using regression within blocks to estimate the causal effect.

The idea is that the covariate distribution within a block should be relatively balanced, such that

a regression should not have to overly rely on extrapolation across the test and control groups.

After estimating the propensity score, the sample is divided into blocks (or strata) such that within

each block the estimated propensity scores are approximately constant. The causal effect could be

estimated within each block as if assignment was actually random within the block. We can go one

step further by applying regression to help correct for any remaining imbalances within a block.

This estimator begins by partitioning the range of the propensity score into M intervals of

[bj−1, bj), for j = 1, . . . , J , where b0 = 0 and bJ = 1. One way to implement this is to divide

the unit interval into equispaced blocks with boundary values at m/M for m = 1, . . . ,M − 1. Let

Bi(m) be a binary indicator that user i is contained in block m, defined as

Bi(m) = 1 ·
{
m− 1

M
< e(Xi) ≤

m

M

}
(24)

for m = 1, . . . ,M . Each block contains Nwm observations with treatment w ∈ {0, 1}, Nwm =∑
i 1{Wi = w}Bi(m). For each subgroup, we estimate the average treatment effect as if random

assignment held within that subgroup,

τ̂m =
1

N1m

N∑
i=1

Bi(m)WiYi −
1

N0m

N∑
i=1

Bi(m)(1−Wi)Yi . (25)

The overall average treatment effect can be estimated by calculating the weighted average of the

block-specific treatment effects according to the number of users within each block relative to the

full sample. Similarly, the average treatment effect of the treated is the average using weights equal

to the proportion of treated users in each block,

τ̂block =

M∑
m=1

τ̂m
N1m

NT
(26)

Blocking can be combined with regression for added flexibility. Within a block, we can re-express

the treatment effect using the least squares estimator of τm in the regression

Yi = αm + τm ·Wi + β′mXi + εi. (27)

19



using only individuals in block m. As in equation (26), this produces a set of M estimates which can

be averaged appropriately to calculate the average treatment on the treated, and the estimates are

equivalent if covariates are omitted from 27. The benefit of incorporating regression is that blocking

on the propensity score should have already helped to balance approximately the covariates within

each block. This implies the block-specific regressions rely less on extrapolation to estimate the

treatment effect but can still adjust for any remaining covariate imbalance within the block.

One question is how many blocks to use. Assuming unconfoundedness, all the bias is due to

the propensity score. With a single normally distributed covariate, five blocks removes most of

the bias (Cochran 1968). More recent methods, developed in Imbens and Rubin (2014), follow a

data-driven procedure to determine the optimal number of blocks and their boundaries, and where

the number of blocks increases with the sample size.

4.4 Inverse Probability-Weighed Regression Adjustment

Another approach combines regression and the propensity score in a different manner. Rather

than matching on the propensity score, we use it to form weights to help control for correlation

between treatment status and the covariates. This method belongs to a class of procedures that

have the “doubly robust” property (Robins and Ritov 1997). This means the estimator for the

ATT (or ATE) is consistent even if one of the underlying models—either the propensity model or

the outcome model—turns out to be misspecified.

Suppose the propensity score is modeled using e(x) = ρ(x; γ), with γ̂ estimated by maximum

likelihood to obtain the estimated propensity scores ê(Xi) = ρ(Xi, γ̂). Next we weight the objec-

tive function of the outcome model, in this case a linear regression, by the inverse probability of

treatment or non-treatment.

min
{αw,βw}

N∑
i=1

(1−Wi)
(Y obs
i − α0 + β′0Xi)

2

1− ρ(Xi, γ̂)
+Wi

(Y obs
i − α1 + β′1Xi)

2

ρ(Xi, γ̂)

This method is known as inverse-probability-weighed regression adjustment (IPWRA) model. In

practice, we use a logit model for both the outcomes and propensity models, and the estima-

tion procedure combines the two steps in a GMM specification to help calculate standard errors

(Wooldridge 2007).

5 Data

The 12 advertising studies analyzed in this paper were chosen by two of the authors (Gordon and

Zettelmeyer) for their suitability for comparing several common ad effectiveness methodologies and
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Table 1: Summary statistics for all studies

Study Vertical Observations Test Control Impressions Clicks Conversions Outcomes*

1 Retail 2,427,494 50.0% 50.0% 39,167,679 45,401 8,767 C, R

2 Finan. serv. 86,183,523 85.0% 15.0% 577,005,340 247,122 95,305 C, P

3 E-commerce 4,672,112 50.0% 50.1% 7,655,089 48,005 61,273 C

4 Retail 25,553,093 70.0% 30.0% 14,261,207 474,341 4,935 C

5 E-commerce 18,486,000 50.0% 50.0% 7,334,636 89,649 226,817 C, R, P

6 Telecom 141,254,650 75.0% 25.0% 590,377,329 5,914,424 867,033 P

7 Retail 67,398,350 17.0% 83.0% 61,248,021 139,471 127,976 C

8 E-commerce 8,333,319 50.0% 50.1% 2,250,984 204,688 4,102 C, R

9 E-commerce 71,068,955 75.0% 25.0% 35,197,874 222,050 113,531 C

10 Tech 1,955,375 60.0% 40.0% 2,943,890 22,390 7,625 C, R

11 E-commerce 13,339,044 50.0% 50.0% 11,633,187 106,534 225,241 C

12 Finan. serv. 16,578,673 85.0% 15.0% 23,105,265 173,988 6,309 C

* C = checkout, R = registration, P = page view

for exploring the problems and complications of each. All 12 studies were randomized controlled

trials held in the US. The studies are not representative of all Facebook advertising, nor are they

intended to be representative. Nonetheless, they cover a varied set of verticals (retail, financial

services, e-commerce, telecom, and tech). Each study was conducted recently (January 2015 or

later) on a large audience (at least 1 million users) and with conversion tracking implemented by

the advertiser. All studies restrict attention to users aged 18 and older.

5.1 Descriptive Statistics and Covariates

Table 1 provides summary statistics for each study. The studies range in size, with the smallest

containing around two million users and the largest about 140 million. There is a mix of test/control

splits. The studies also differed by the conversion outcome that the advertiser measured; some

advertisers tracked multiple outcomes of interest. In all studies but one, the advertiser placed a

conversion pixel on the checkout confirmation page, therefore gaining the ability to measure whether

a Facebook user purchased from the advertiser. In four studies the advertiser placed a conversion

pixel to measure whether a consumer registered with the advertiser. In three studies the advertiser

placed a conversion pixel on a (landing) page of interest to the advertiser (termed a “key page

view”).

Table 2 provides brief information on the variables we observe. Eleven of the studies contain

each of the variables in this table, but for one study we only observe variables in group 1. For

most of the observational models, we implement a sequence of specifications corresponding to the

following grouping of covariates:

1. The first specification includes group 1 variables from Table 2, which are common Facebook
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Table 2: Description of Variables

Group Variable Description Source

1 age Age of user FB
1 gender 1 = female, 0 = male FB
1 married 1 = user is married FB
1 single 1 = user is single FB
1 inrelationship 1 = user is in a relationship FB
1 engaged 1 = user is engaged FB
1 FB age Days since user joined FB FB
1 friends # of friends FB
1 num initiated # of friend requests sent FB
1 L7 # of last 7 days accessed FB FB
1 L28 # of last 28 days accessed FB FB
1 web L7 # of last 7 days accessed FB by desktop FB
1 web L28 # of last 28 days accessed FB by desktop FB
1 mobile L7 # of last 7 days accessed FB by mobile FB
1 mobile L28 # of last 28 days accessed FB by mobile FB
1 mobile phone OS operating system of primary phone FB
1 region region of user’s residence FB
2 population population in zip code ACS
2 housingunits # of housing units ACS
2 pctblack % black residences ACS
2 pctasian % asian residences ACS
2 pctwhite % white residences ACS
2 pcthisp % hispanic residences ACS
2 pctunder18 % residents under age 18 ACS
2 pctmarriedhh % married households ACS
2 yearbuilt average year residences built ACS
2 pcths % residents with at most high school degree ACS
2 pctcol % residents with at most college degree ACS
2 pctgrad % residents with graduate degree ACS
2 pctbusfinance % working in business/finance ACS
2 pctstem % workign in STEM ACS
2 pctprofessional % working in professional jobs ACS
2 pcthealth % working in health industry ACS
2 pctprotective % working in protectice services ACS
2 pctfood % working in food industry ACS
2 pctmaintenance % working in maintenance ACS
2 pcthousework % working in home services ACS
2 pctsales % working in sales ACS
2 pctadmin % working in adminstration ACS
2 pctfarmfish % working at farms or fisheries ACS
2 pctconstruction % working in construction ACS
2 pctrepair % working in repair industry ACS
2 pctproduction % working in production indutry ACS
2 pcttransportation % working in transportation industry ACS
2 income average household income ACS
2 medhhsize median household size ACS
2 medhvalue median household value ACS
2 vehperh average vehicles per household ACS
2 pcthowned % households who own a home ACS
2 pctvacant % vacant residences ACS
2 pctunemployed % unemployment ACS
2 pctbadenglish % residents with “bad” english ACS
2 pctpoverty % residents living below poverty line ACS
3 match score Composite variable of FB data FB

First seven rows are self-reported by the users. ACS data is from 2010.
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variables such as age, gender, how long users have been on Facebook, how many Facebook

friends the have, their reported relationship status, their phone OS, and other user charac-

teristics.

2. In addition to the variables in 1, this specification uses Facebook’s estimate of the user’s zip

code of residence to associate with each user nearly 40 variables drawn from the most recent

Census and American Communities Surveys (ACS).

3. In addition to the variables in 2, this specification adds a composite metric of Facebook

data that summarizes thousands of behavioral variables. This is a machine-learning based

metric used by Facebook to construct target audiences that are similar to consumers that

an advertiser has identified as desirable.16 Using this metric bases the estimation of our

propensity score on a non-linear machine-learning model with thousands of features.17

5.2 Randomization Checks

An important step is to check whether the randomization was implemented correctly. Table 3

provides evidence that several variables have comparable means across the test and control groups

for one typical study (study 4).

To summarize this information across studies, we compared means across test and control for

each study and variable, resulting in 624 p-values. Of these, 10.4% are below 0.10, 5.1% are below

0.05, and 0.9% are below 0.01. Under the null hypothesis that the means are equal, the resulting

p-values from the hypothesis tests should be uniformly distributed on the unit interval. Figure 4

shows this is indeed the case. We have also looked unsuccessfully for any evidence that particular

variables might be more likely to exhibit imbalance. Thus, based on this collection of results, we

fail to find any evidence that the randomization was implemented improperly.

6 Results for Study 4

Before presenting the finding across all the studies, in this section we walk through the results in

detail for a typical advertising study (we refer to it as “study 4”). To preserve confidentiality, all of

16See https://www.facebook.com/business/help/164749007013531 for an explanation.
17Please note that, while this specification contains a many user-level variables, in this version of the paper we

have no data at the user level that varies over time within the duration of each study. For example, while we know

whether a user used Facebook during the week prior to the beginning of the study, we don’t observe on any given

day of the study whether the user used Facebook on the previous day or whether the user engaged in any shopping

activity. It is possible that using such time-varying user-level information could improve our ability to match. We

hope to explore this in a future version of the paper.
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Table 3: Randomization check for study 4

Variable Control group Test group p-value

Average user age 31.7 31.7 0.33

% of users who are male 17.2% 17.2% 0.705

Length of time using FB (days) 2,288 2,287 0.24

% of users with status “married” 19.6 19.6 0.508

% of users status “engaged” 13.8 13.8 0.0892

% of users status “single” 14.0 14.0 0.888

# of FB friends 485.7 485.7 0.985

# of FB uses in last 7 days 6.377 6.376 0.14

# of FB uses in last 28 days 25.5 25.5 0.172

Figure 4: Distribution of p-values across all studies
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the conversion rates in this section and in section 7 have been scaled by a random constant, such

that relative comparisons across studies are valid but their absolute levels have been masked.

Study 4 was performed for the advertising campaign of an omni-channel retailer. The campaign

took place over two weeks in the first half of 2015 and comprised a total of 25.5 million users. Ads

were shown on mobile and desktop Facebook news feeds in the US. For this study the conversion

pixel was embedded on the checkout confirmation page. The outcome measured in this study is

whether a user purchased online during the study and up to several weeks after the study ended.18

Users were randomly split into test and control groups in proportions of 70%, and 30%, respectively.

18Even if some users convert as a result of seeing the ads further in the future, this still implies the experiment will

produce conservative estimates of advertising’s effects.
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6.1 RCT

Figure 5 summarizes the results from the RCT. The conversion rates in the control and test group

were 0.030% and 0.042%, respectively, implying an ITT lift of 44%. The estimated ATT was

0.045%. Based on the conversion rate of 0.104% for treated users in the test group, this implies the

ATT lift was 77% (=0.045%/0.059%). The 95% confidence interval for this lift is [37%, 117%].19

Note that we do not actually know which users in the control group would have been exposed had

they been assigned to the test group—this represents one of the basic challenges for estimating the

ATT.

We will interpret the 77% lift measured by the RCT as our gold standard measure of the truth.

In the following subsections we will calculate alternative measures of advertising effectiveness to see

how close they come to this 77% benchmark. These comparisons reveal how close to (or far from)

knowing the truth an advertiser who was unable to (or chose not to) evaluate their campaign with

an RCT, would be.

Figure 5: Results from RCT

6.2 Observational Models

In the current version of the paper, we present estimates using Exact Matching (EM) based only on

age and gender (as a naive benchmark widely used in industry), propensity score matching (PSM),

and inverse probability weighted regression adjustment (IPWRA). In the next version, we will add

19See the technical appendix for details on how to compute the confidence interval for the lift.
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simple regression adjustment (RA), Blocking/Regression, and provide additional robustness checks

for each method.

Before delving into the observational models, it will be useful to characterize some of the

selection bias present in this study. Figure 6 depicts the differences between the two groups in

study 4. The percentage differences are relative to the average of the entire test group. For

example, the second item in Figure 6 shows that exposed users are about 10% less likely to be

male than the average for the test group as a whole, while unexposed users are several percentage

points more likely to be male than the average for the whole group. The figure also shows that

exposed users are more likely to be female, are slightly younger, are more likely to be married, have

more Facebook friends, and tend to access Facebook more frequently from a mobile device than a

desktop.

If we are willing to (incorrectly) assume that exposure is random, we could compare the exposed

and unexposed groups, as in equation (12). The conversion rate among exposed users was 0.104%

and the conversion rate among unexposed users was 0.020%, implying an ATT lift of 416%. This

estimate is more that five times the true lift of 77%.

Figure 6: Comparison of exposed and unexposed users in the test group of study 4

(expressed as percentage differences relative to average of the entire test group)
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EM. Within the test group of study 4, there were 113 unique combinations of age and gender
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for which there was at least one exposed and at least one unexposed user. Seven age-gender

combinations were dropped due to a lack of overlap, reducing the sample by only 15 users. The

remaining unexposed users are matched to the exposed users by age-pair value, leading to some

amount of re-weighting among the unexposed users. The (unweighted) exposed users converted at

a rate of 0.104% and (weighted) unexposed users at 0.032%, for a lift of 221%. This estimate is

roughly half the lift obtained from directly comparing exposed and unexposed users but still much

greater than the RCT lift of 77%. This remaining bias is not surprising given the differences in

user characteristics evident in Figure 6.

PSM. Table 4 presents a summary of the estimates of advertising effectiveness produced by the

exact matching and propensity score matching approaches. As before, the main result of interest

will be the lift. In the context of matching models, lift is calculated as the difference between the

conversion rate for matches exposed users and matched unexposed users, expressed as a percentage

of the conversion rate for matched unexposed users. Table 4 reports each of the components of

this calculation, along with the 95% confidence interval for each estimate. The bottom row reports

the AUCROC, a common measure of the accuracy of classification models (it applies only to the

propensity score models).20

Note that the conversion rate for matched exposed users barely changes across the model speci-

fications. This is because for the most part we are holding on to the entire set of exposed users and

changing across specifications which unexposed users are chosen as the matches.21 Consequently,

the conversion rate of the matched unexposed users changes across specification. This is because

different specifications choose different sets of matches from the unexposed group, When we go

from exact matching (EM) to our most parsimonious propensity score matching model (PSM 1),

the conversion rate for unexposed users increases from 0.032% to 0.042%, decreasing the implied

advertising lift from 221% to 147%. PSM 2 performs similarly to PSM 1, with an implied lift of

154%.22 Finally, adding the composite measure of Facebook variables in PSM 3 improves the fit

of the propensity model (as measured by a higher AUCROC) and further increases the conversion

rate for matched unexposed users to 0.051%. The result is that our best performing PSM model

estimates an advertising lift of 102%.

20See http://gim.unmc.edu/dxtests/roc3.htm for a short and Fawcett (2006) for a detailed an explanation of

AUCROC.
21Exposed users are dropped if there is no unexposed user that has a close enough propensity score match. In

study 4, the different propensity score specifications we use do not produce very different sets of exposed users who

can be matched. This need not be the case in all settings.
22As we add variables to the propensity score model, we must drop some observations in the sample with missing

data. However, the decrease in sample size is fairly small and these dropped consumers do not significantly differ

from the remaining sample.
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Table 4: Exact Matching (EM) and Propensity Score Matching (PSM 1-3)

EM PSM 1 PSM 2 PSM 3

Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI

Conversion rates for matched unexposed users (%)

0.032 [0.029, 0.034] 0.042 [0.041, 0.043] 0.041 [0.040, 0.042] 0.051 [0.050, 0.052]

Conversion rates for matched exposed users (%)

0.104 [0.097, 0.109] 0.104 [0.097, 0.109] 0.104 [0.097, 0.109] 0.104 [0.097, 0.110]

Lift (%) 221 [192, 250] 147 [126, 168] 154 [132, 176] 102 [83, 121]

AUCROC N/A 0.72 0.73 0.81

Observ 7,674,114 7,673,968 7,608,447 7,432,271

∗Slight differences in the number of observations are due to variation in missing characteristics across users in

the sample. Note that the confidence intervals for PSM 1-3 on the conversion rate for matched unexposed users

and the lift are approximate (consult the appendix for more details).

We assessed how well matching on propensity score balanced the exposed and unexposed groups.

The upper part of panel (a) of Figure 7 shows the distributions of the propensity scores for all

exposed and unexposed users prior to matching. The lower part of panel (a) shows the distributions

of the matched sample. Prior to matching, the propensity score distribution for the exposed and

unexposed users differ substantially. After matching, however, there is no visible difference in the

distributions, implying that matching did a good job of balancing the two groups based on their

likelihood of exposure.23 Propensity score matching matches users based on a composition of their

characteristics. One might wonder how well propensity-score matched samples are matched on

individual characteristics. In panel (b) of Figure 7, we show the distribution of age for exposed

and unexposed users in the unmatched samples (upper) and in the matched samples (lower). Even

though we did not match directly on age, matching on the propensity score nevertheless balanced

the age distribution between exposed and unexposed users.

IPWRA. We estimated three different regression adjustment models. Table 5 presents the results.

The results are similar to those obtained using PSM: including additional variables reduces the

estimated lift from 145% to 107%.

6.3 Summary of Results for Study 4

Figure 8 summarizes the results from all methods applied to Study 4. When we naively compared

exposed to unexposed users, we estimated an ad lift of 416%. Adjusting these groups to achieve

23This comparison also helps us check that we have sufficient overlap in the propensities between the exposed and

unexposed groups.
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Figure 7: Comparison of Unmatched and Matched Characteristic Distributions

Table 5: Inverse-probability-weighted Regression Adjustment

IPWRA 1 IPWRA 2 IPWRA 3

Est. CI Est. CI Est. CI

Conversion rate for exposed users if unexposed as predicted by RA mdoel (%)

0.045 [0.037, 0.046] 0.045 [0.039, 0.046] 0.049 [0.044, 0.056]

Actual conversion rate of exposed users

0.104 [0.097, 0.109] 0.102 [0.096, 0.107] 0.104 [0.097, 0.110]

Lift% 145 [120, 171] 144 [120, 169] 107 [79, 135]

balance on age and gender alone through exact matching yields a lift of 221%. Matching the groups

based on their propensity score, estimated with a rich set of explanatory variables, gave us a lift of

102%. Compared to the starting point, we have gotten much closer to the true RCT lift of 77%.

As the figure shows, propensity score matching and regression methods perform compara-

bly well. Both methods tend to overstate lift, although including our complete set of predictor

variables—especially the composite Facebook variable—produce lift estimates that are statistically

indistinguishable from the RCT lift. However, if one ignores the uncertainty represented in confi-

dence intervals and focuses on the point estimates alone, even a model with a rich set of predictors

overestimates the lift by about 50%.
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Figure 8: Summary of lift estimates and confidence intervals for Study 4
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7 Results From All 12 Studies

In section 6 we presented the results from applying a variety of observational approaches to estimate

the lift of study 4 in comparison to the RCT estimate. In this section we summarize the findings

of using the same approaches for all 12 studies.

7.1 RCT Results

Table 6 presents the results of the RCTs for all studies. A reasonable amount of variation exists

across studies in the percentage of the test group who are exposed to ads and in the ATT lift. Of

the 11 studies with a checkout conversion, three failed to produce statistically significant lifts.

The lifts for registration and page view outcomes are typically higher than for checkout out-

comes. The reason is as follows: Since specific registration and landing pages are typically tied to

ad campaigns, users who are not exposed to an ad are much less likely to reach that page than users

who see the ad, simply because unexposed users may not know how to get to the page. For checkout

outcomes, however, users in the control group lead to a checkout outcome simply by purchasing

from the advertiser—it does not take special knowledge of a page to trigger a conversion pixel.24

24One might ask why lifts for registration and page view outcomes are not infinite since—as we have just claimed—

users only reach those pages in response to an ad exposure. The reason is that registration and landing pages are

often shared among several ad campaigns. Therefore, users who are in our control group might have been exposed

to a different ad campaign which shared the same landing or registration page.
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Table 6: Lift for all studies and measured outcomes

Study Outcome Pct Exposed RCT ATT Lift Confidence Interval

1 Checkout 76% 33% [19.5% 48.9%]

2 Checkout 46% 0.91% [-4.3% 7.2%]

3 Checkout 63% 6.9% [0.02% 14.3%]

4 Checkout 25% 77% [55.4% 108.2%]

5 Checkout 29% 418% [292.8% 633.5%]

7 Checkout 49% 3.5% [0.6% 6.6%]

8 Checkout 26% -3.6% [-20.7% 19.3%]

9 Checkout 6% 2.5% [0.2% 4.8%]

10 Checkout 65% 0.6% [-13.8% 16.3%]

11 Checkout 40% 9.8% [5.8% 13.8%]

12 Checkout 21% 76% [56.1% 101.2%]

1 Registration 65% 789% [696.0% 898.4%]

5 Registration 29% 900% [810.0% 1001.9%]

8 Registration 29% 61% [12.3% 166.1%]

10 Registration 58% 8.8% [0.4% 18.2%]

2 Page View 76% 1617% [1443.8% 1805.2%]

5 Page View 46% 601% [538.6% 672.3%]

6 Page View 26% 14% [12.9% 14.9%]

RCT Lift in red: statistically different from zero at 5% level. 95% confidence

intervals obtained via bootstrap.

7.2 Observational Models Results

We summarize the results of the exact matching specification (EM), the three propensity score

matching specifications (PSM 1-3), and the three regression adjustment specifications (IPWRA

1-3) using the same graphical format with which we summarized study 4 (see Figure 8). Figures 9

and 10 summarize results for the eleven studies for which there was a conversion pixel on the

checkout confirmation page.

• In study 1, the exact matching specification (EM), the first two propensity score matching

specifications (PSM 1 and 2), and the first two inverse-probability-weighed regression adjust-

ment specifications (IPWRA 1 and 2) yield lift estimates between 85% and 117%, which are

statistically higher than the RCT lift of 33%. Including the composite metric of Facebook

data that summarizes thousands of behavioral variables (PSM 3 and IPWRA 3) lowers the

lift estimate to 59%, which is not statistically different from the RCT lift. Hence, study 1

shows a similar pattern to the one we observed in study 4.

• The results for study 2 look very different. The RCT shows no significant lift. Nonetheless,

the EM and all PSM specifications yield lift estimates of 116 to 535%, all of which are

statistically higher than the RCT estimate of 0.91%. The lift estimates of the IPWRA

specifications are between 65 and 72%, however, they are also very imprecisely measured and
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therefore statistically not different from the RCT estimate.

• Study 3 follows yet another pattern. The RCT lift is 6.9%. EM, PSM 1, PSM 2, IPWRA 1,

and IPWRA 2 all overestimate the lift (34-73%). PSM 3 and IPWRA 3, however, significantly

underestimate the RCT lift (-12 to -14%).

• Study 4 was already discussed in section ??.

• In study 5 all estimates are statistically indistinguishable from the RCT lift of 418%. The

point estimates range from 515% for EM to 282% for PSM 3.

• Study 6 did not feature a checkout conversion pixel.

• In study 7 all estimates are different from the RCT lift of 3.5%. EM overestimates the lift

with an estimate of 38%. All other methods underestimate the lift with estimates between

-11 and -18%.

• Moving to Figure 10, study 8 finds an RCT lift of -3.6% (not statistically different from 0).

All methods overestimate the lift with estimates of 23 to 49%, except for IPWRA3 with a lift

of 16%, which is not statistically different from the RCT lift.

• The RCT lift in study 9 is 2.5%. All observational methods massively overestimate the lift;

estimates range from 1413 to 3288%.

• Study 10 estimates an RCT lift of 0.6% (not statistically different from 0). The point

estimates of different methods range from -18 to 37%, however, only the EM lift estimate

(37%) is statistically different from the RCT lift.

• Study 11 estimates an RCT lift of 9.8%. EM massively overestimates the lift at 276%.

PSM 1, PSM 2, IPWRA 1, and IPWRA 2 also overestimate the lift (22-25%), but to a much

smaller degree. PSM 3 and IPWRA 3, however, estimate a lift of 9.4 and 3.5%, respectively.

The latter estimates are not statistically different from the RCT lift. PSM 3 in study 11 is

the only case in these 12 checkout conversion studies of an observational method yielding a

lift estimate very close to that produced by the RCT.

• In study 12 we did not have access to the data that allowed us to run the “2” and “3”

specifications. The RCT lift is 76%. The observational methods we could estimate massively

overstated the lift; estimates range from 1231 to 2760%.

Figure 11 summarizes results for the four studies for which there was a conversion pixel on

a registration page. Figure 12 summarizes results for the three studies for which there was a
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Figure 9: Results for checkout conversion event, studies 1-7
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[*] Lift of method significantly different from RCT lift at 5% level; [**] at 1% level.

[RCT Lift in red]: statistically different from zero at 5% level.

33



Figure 10: Results for checkout conversion event, studies 8-12
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[*] Lift of method significantly different from RCT lift at 5% level; [**] at 1% level.

[RCT Lift in red]: statistically different from zero at 5% level.
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conversion pixel on a key landing page. The results for these studies vary across studies in how

they compare to the RCT results, just as they do for the checkout conversion studies reported in

Figures 9 and 10.

We summarize the performance of different observational approaches using two different metrics.

We want to know first how often an observational study fails to capture the truth. Said in a

statistically precise way, “For how many of the studies do we reject the hypothesis that the lift of

the observational method is equal to the RCT lift?” Table 7 reports the answer to this question.

We divide the table by outcome reported in the study (checkout is in the top section of Table 7,

followed by registration and page view). The first row of Table 7 tells us that of the 11 studies

that tracked checkout conversions, we statistically reject the hypothesis that the exact matching

estimate of lift equals the RCT estimate. As we go down the column, the propensity score matching

and regression adjustment approaches fare a little better, but for all but one specification, we reject

equality with the RCT estimate for half the studies or more.

We would also like to know how different the estimate produced by an observational method is

from the RCT estimate. We present the average absolute deviation in percentage points between

the observational method estimate of lift and the RCT lift. For example, the RCT lift for study

1 (checkout outcome) is 33%. The EM lift estimate is 117%. Hence the absolute lift deviation is

84 percentage points. For study 2 (checkout outcome) the RCT lift is 0.9%, the EM lift estimate

is 535%, and the absolute lift deviation is 534 percentage points. Averaging over all studies, exact

matching leads to an average absolute lift deviation of 661 percentage points relative to an average

RCT lift of 57% across studies (see the last two columns of the first row of the table.)

As the table shows, inverse probability weighted regression adjustment with the most detailed

set of variables (IPWRA3) yields the smallest average absolute lift deviation across all evaluated

outcomes. For checkout outcomes, the deviation is large, namely 173 vs. an average RCT lift

of 57%. For registration and page view outcomes, however, the average absolute lift deviation is

relatively small, namely 80 vs. an average RCT lift of 440%, and 94 vs. an average RCT lift of

744%.

In general, observational methods to a better job of approximating RCT outcomes for registra-

tion and page view outcomes than for checkouts. We believe that the reason for this lies in the

nature of these outcomes. Since unexposed users (in both treatment and control) are compara-

tively unlikely to find a registration or landing page on their own, comparing the exposed group in

treatment to a subset of the unexposed group in the treatment group (the comparison all observa-

tional methods are based on) yields relatively similar outcomes to comparing the exposed group in

treatment to the (always unexposed) control group (the comparison the RCT is based on).
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Figure 11: Results for registration conversion event
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[*] Lift of method significantly different from RCT lift at 5% level; [**] at 1% level.

[RCT Lift in red]: statistically different from zero at 5% level.
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Figure 12: Results for key page view conversion event

4200**

2214*
1994 1974 1916 1954 1790 1617

0
20

00
40

00
60

00
Li

ft

EM
PSM1

PSM2
PSM3

IPWRA1

IPWRA2

IPWRA3
RCT

S2 Page View

839**

749** 740**

489**

748** 744**

506*

601

50
0

60
0

70
0

80
0

90
0

Li
ft

EM
PSM1

PSM2
PSM3

IPWRA1

IPWRA2

IPWRA3
RCT

S5 Page View

228**

17 20
6.6

33

.59** .12**

14

0
50

10
0

15
0

20
0

25
0

Li
ft

EM
PSM1

PSM2
PSM3

IPWRA1

IPWRA2

IPWRA3
RCT

S6 Page View

[*] Lift of method significantly different from RCT lift at 5% level; [**] at 1% level.

[RCT Lift in red]: statistically different from zero at 5% level.
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Table 7: Summary of performance by method for different conversion types

Method Outcome # of # of studies % of studies Average absolute Average RCT Lift

evaluated studies with Lift 6= with Lift 6= Lift deviation in percent

RCT Lift∗ RCT Lift∗ from RCT Lift

in percentage points

EM Checkout 11 10 91 661 57

PSM1 Checkout 11 9 82 296 57

PSM2 Checkout 10 8 80 202 57

PSM3 Checkout 10 5 50 184 57

IPWRA1 Checkout 11 8 73 288 57

IPWRA2 Checkout 10 7 70 201 57

IPWRA3 Checkout 10 3 30 173 57

EM Registration 4 3 75 180 440

PSM1 Registration 4 2 50 120 440

PSM2 Registration 4 2 50 110 440

PSM3 Registration 4 2 50 82 440

IPWRA1 Registration 4 1 25 114 440

IPWRA2 Registration 4 1 25 115 440

IPWRA3 Registration 4 2 50 80 440

EM Page View 3 3 100 1012 744

PSM1 Page View 3 2 67 250 744

PSM2 Page View 3 1 33 174 744

PSM3 Page View 3 1 33 159 744

IPWRA1 Page View 3 1 33 155 744

IPWRA2 Page View 3 2 67 165 744

IPWRA3 Page View 3 2 67 94 744

* Difference is statistically significant at a 5% level.

8 Conclusion

In this paper we have analyzed whether and when observational methods can reliably substitute for

randomized experiments in online advertising measurement. We have done so by using a collection

of 12 large-scale advertising RCTs conducted at Facebook. We used the outcomes of these studies to

reconstruct different sets of observational methods for measuring ad effectiveness and then compared

each of them to the results obtained from the RCT.

Our results showed that observational methods could some times—but not reliably—replicate

the result from an RCT. In some cases, one or more of these methods obtained ad lift estimates

that were statistically indistinguishable from those of the RCT. However, even the best method

produced an average absolute deviation of 173% relative to an average RCT lift of 57% for checkout

conversion outcomes, with most of the methods yielding upwardly biased estimates. Results were

somewhat better for registration and page view outcomes, where the best methods produced an

average absolute deviation of 80% and 94% relative to an average RCT lift of 400% and 744%,

respectively.

Our paper has made two contribution. First, we have shown that—in contrast to the belief
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in industry that observational methods for ad measurement are “good enough”—the nature of

selection in online advertising does not seem to make observational methods a reliable alternative

to RCTs for online ad effectiveness measurement. Similar to the critique of RCTs in other fields

(Deaton 2010, Hausman 2016), RCTs in online advertising can only test a few advertising strategies

relative to the enormous space of possible advertising strategies. This highlights one potential

benefit of observational methods, which is that, relative to RCT’s, much more data for high-

dimensional problems is typically available because the data are generated more easily and by

more actors. However, this presumes that observational methods can correct for selection using

suitable observables and estimation approaches. Our results suggests that they can not. One caveat

in coming to this conclusion is that the performance of the observational methods we study is only

as good as the data we have at our disposal. It is possible that better data, for example time-varying

user-level data on online activity and generalized shopping behavior, would significantly improve

the performance of observational methods. We should note, however, that industry insiders have

told us that the data we use in this paper is at par with (and potentially better than) what is

normally available to industry researchers.

Our second contribution is to add to the literature on observational vs. experimental approaches

to causal measurement. Over the last two decades we have seen enormous improvements in obser-

vational methods for causal inference (Imbens and Rubin 2015). In this paper we have analyzed

whether the improvements in observational methods for causal inference are sufficient for replicat-

ing experimentally generated results in a large industry where such methods are commonly used in

practice. We have found they do not—at least with the data we had at our disposal.

Our paper presents a work in progress. The degree to which our analysis is useful depends on

the quality of both the data and methods. We are planning to make improvements on both fronts

in future versions of this paper. First, we expect to obtain time-varying user-level data on online

activity and generalized shopping behavior, which might allow us to better control for activity bias.

Second, we plan to implement additional observational methods (such as blocking/regression) and

to more carefully examine the overlap in observables between users in the matched exposed and

unexposed groups.
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ONLINE APPENDIX

Lift Confidence Intervals

Below we have copied equation (7) from section 2 that defines lift:

Lift =
Actual conversion rate – Counterfactual conversion rate

Counterfactual conversion rate

To facilitate exposition, we rewire the above with some notation:

Lift =
ye(e)− ye(u)

ye(u)

where ye(e) is the conversion rate of the exposed users assuming they had actually been exposed

and ye(u) is the conversion rate of exposed users had they instead been unexposed. The former

is directly observed in the data whereas the latter requires a model to generate the counterfactual

prediction. Next we can rewrite this equation another way, using the fact that the counterfactual

conversion rate is the difference between the actual conversion rate and the estimated average

treatment effect on the treated (ATT), which is ye(u) = ye(e)−ATT , and gives us:

Lift =
ye(e)− ye(u)

ye(u)

=
ye(e)− (ye(e)−ATT )

ye(e)−ATT

=
ATT

ye(e)−ATT

To determine the confidence interval on the lift, we require the standard error of the numerator

and the denominator. The standard error of the ATT is available in each of the methods we

consider. In the denominator, the standard error on ye(e) is straightforward to calculate because,

unlike the ATT, the term does not rely on a model to estimate it. That is, given the set of

relevant exposed users, we calculate the standard error on their conversion rates using the usual

formula for a standard error. However, the tricky issue is that the numerator and denominator are

clearly not independent. This implies we must calculate the covariance between the numerator and

denominator to estimate the standard error on the lift. The exception is when we can performing

a bootstrap is feasible and the standard error can be calculated from the bootstrapped samples.

We discuss our procedures for estimating the standard errors for each method below.

• RCT Lift. Rather than estimating the covariance explicitly, we implement a nonparametric

bootstrap to calculate the confidence intervals for the RCT lift estimates. We use the method

in Andrews and Buchinsky (2000) to choose a suitable number of bootstrap draws to ensure

an accurate estimate of the confidence interval. This approach has the advantage that it

automatically integrates uncertainty about ye(e), the ATT, the share of exposed users, and

the ratio statistic.

• IPWRA. We recover the covariance for the estimates through the covariance matrix estimated

from the GMM procedure in Stata. This output contains separate estimates of the ATT and
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(ye(e) − ATT ), estimates for the standard errors of each term, and the covariance estimate.

We can substitute these point estimates for the means, standard errors and covariance into

the following approximation (based on Taylor expansions) for the variance of the ratio of two

(potentially dependent) random variables:

V ar

(
x

y

)
≈
(
E(x)

E(y)

)2(V ar(x)

E(x)2
+
V ar(y)

E(y)2
− 2

Cov(x, y)

E(x)E(y)

)
The interested reader should refer to Stuart and Ord (2010).

• PSM. The standard errors for the ATT are computed using the methods explained in Abadie

and Imbens (2015) to account for the uncertainty in the propensity score estimates. The

standard error for the conversion rate of exposed matched users (ye(e)) is calculated directly

from the data using the standard formula. However, no formal results exist to estimate the

covariance between the ATT and conversion rate of exposed users. Instead, we implement a

subsampling procedure (Politis and Romano 1994) to generate multiple estimates of the ATT

and the conversion rate of the exposed users, since bootstrapping is invalid in the context of

matching prodedures (Abadie and Imbens 2008). We calculate the covariance based on these

results and use it to construct the standard error on the lift using the approximation above.

In general, the covariance is small enough relative to the standard error of each term that both

the quantitative and qualitative conclusions of the various hypothesis tests are unaffected.
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