
Information and Innovation Diffusion:
The Case of Pharmaceuticals in the United States∗

Kenneth J. Arrow
L. Kamran Bilir
Alan Sorensen

July 2016

PRELIMINARY

Abstract

How does information affect the diffusion of innovations? This paper empirically
assesses the influence of physicians’ access to detailed drug information on their
decisions about which products to prescribe. Combining data on prescriptions and
electronic drug reference use for over 130,000 individual U.S. physicians, we find
that physicians with access to a pharmaceutical reference database prescribe a
significantly more diverse set of products than other doctors, and begin prescribing
newly approved drugs sooner than other doctors. These latter effects are particularly
pronounced for generic drugs, suggesting improvements to physician information
access may have important implications not only for the diffusion of new medical
technology, but also for the costs and efficiency of medical care.

∗Arrow: Department of Economics, Stanford University, 579 Serra Mall, Stanford, CA 94305, ar-
row@stanford.edu. Bilir: Department of Economics, University of Wisconsin-Madison, 1180 Observa-
tory Drive, Madison, WI 53706, kbilir@ssc.wisc.edu. Sorensen: Department of Economics, University of
Wisconsin-Madison, 1180 Observatory Drive, Madison, WI 53706, sorensen@ssc.wisc.edu. We thank the
Ewing Marion Kauffman Foundation for its financial support of this research; Bilir also thanks the Prince-
ton University IES for its generous support. We thank Nick Bloom, Michael Dickstein, Jeff Gambino, Shane
Greenstein, Bob Litan, Greg Rosston, Randall Stafford, Jeff Tangney, and the research team at IMS Health
for guidance and very helpful conversations.



I. Introduction

Disparities in the cost and quality of medical care across U.S. regions have attracted the

attention of economists and policymakers in recent years.1 While many factors potentially

contribute to these disparities, an important and intriguing possibility is that the observed

variation in doctors’ treatment decisions reflects, in part, a lack of uniformity in the infor-

mation they have about available therapies—particularly in disease areas undergoing a rapid

expansion in treatment options.

Consider for example, changes in the treatment of cardiovascular disease. When the link

between cholesterol and heart attack risk was first established in the 1950s, priorities shifted

toward disease prevention through cholesterol management, leading to the introduction of

cholesterol drugs. The first such product to be made available for medical prescription in

the United States was Mevacor, in 1987. By 2000, seven distinct products were available,

including but not limited to statins; by 2010, physicians juggled at least 18 pharmaceutical

products aimed at controlling lipids in the bloodstream (Table 1; Appendix A.1). From

the perspective of the physician, differences between these products are often subtle: ‘per-

formance’ depends on patient characteristics and preferences; prices depend on patient in-

surance coverage.2 Complicating matters further, product information evolves continually

as clinical trials reach new conclusions. Thus, while access to information about available

therapies almost certainly shapes physicians’ decisions about patient care, the magnitude

and direction of this influence are unclear.

This paper empirically assesses the influence of physicians’ access to information on their

decisions to treat patients using new medical technology. We look specifically at doctors’

decisions about which cholesterol-management drugs to prescribe, and how these decisions

are affected by their adoption and use of an electronic drug reference database. This database

allows physicians to look up detailed drug information—including, in some cases, whether

a particular drug is covered by a patient’s insurance plan—at the point of care, either on

a computer or on a mobile device. Using detailed data for over 130,000 individual U.S.

physicians between January 2000 and December 2010, we find that physicians with access

to the electronic database prescribe a significantly more diverse set of products than other

doctors, and prescribe new drugs sooner than other doctors. Such doctors are also, at any

point in time, more likely to prescribe a new drug that is within 24 months of its initial release

than are other doctors. These latter effects are particularly pronounced for generic products,

suggesting improvements to physician information access may have important implications

for both the diffusion of new medical technology and for the costs of healthcare.

Because access to the drug database is not randomly assigned—doctors choose whether

1See Wennberg et al (1996), Cooper et al (2015), Gawande (2009), and Chernew et al (2009).
2For example, Brooks et al (2014).
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and when to subscribe—identifying the causal effects of database access is challenging. Pre-

scription patterns of subscribing doctors may look different from those of non-subscribers

not due to any effects of the database itself, but rather due to differences in the types of

doctors who choose to subscribe. Indeed, we document that the observed characteristics of

early adopters are meaningfully different from late adopters and non-adopters, suggesting

that unobserved differences may also be important. With this challenge in mind, our anal-

ysis relies heavily on within-doctor variation: rather than estimating effects by comparing

database users to non-users, we estimate by comparing a doctor’s own prescriptions before

versus after she begins using the database. In addition, to address concerns about selection,

we estimate the impact of ‘placebo’ database use on the prescribing decisions of physicians

who adopt the database but never use it to search for cholesterol drugs. Taken together,

these specifications support a causal interpretation of our main results—i.e., that using the

database caused a small but statistically significant change in prescribing patterns.

Our focus on the market for pharmaceutical drug products is motivated in part by the

availability of unusually detailed data. Using a newly-assembled dataset from IMS Health

and the provider of the aforementioned drug reference database,3 we are able to evaluate

the influence of information access on the physician-level prescription response to new drug

introductions. Physician use of the electronic medical reference is extensive—over half of

U.S. physicians are users—but requires registration that associates reference activity with the

user’s unique, time-invariant American Medical Association (AMA) identifier. Pharmacies

similarly record each prescription drug purchase with the AMA identifier of the prescriber,

enabling our link between information access and prescribing for each doctor, product, and

time period. We are thereby able to compare prescriptions of new and existing products

among users and non-users of the reference database, and across physicians that use the

database with different intensities. In addition, the data we examine span 132 consecutive

months, allowing us to observe responses to the entry of multiple new drugs. The panel

structure of the data also allows us to better isolate the effects of database access by relying

on within-doctor variation over time—that is, we can examine how a doctor’s prescribing

patterns change after she begins using the database.

Two features of the market for cholesterol control therapies make it especially suitable

for our study. First, 12 new drugs were introduced to the U.S. market during our 11-year

sample period. These innovations ranged from products based on entirely new molecules to

new generic versions of existing molecules (Table 1). Second, as a class, lipid control drugs

are very widely used. The Centers for Disease Control and Prevention estimate that approx-

imately 71 million U.S. adults suffer from chronic hypercholesterolemia and dyslipidemia,

3The provider of the database is a leading U.S. point-of-care medical applications firm, but chose to
remain unnamed in this study.
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conditions in which abnormal levels of cholesterol or lipids are present in the bloodstream.

These conditions are associated with heart disease, heart attack risk, and premature death;

accordingly, sales of cholesterol therapies accounted for over $35 billion U.S. dollars in 2012

(IMS Health 2013). The rate of new product diffusion in this disease area thus has the

potential to affect a large segment of the U.S. population, both economically and physically.

The data reveal substantial differences across U.S. locations and physicians in the pre-

scription of cholesterol drugs and in their cost. In December 2010, for example, the share

of generic products in overall prescribing spanned the full range (Figure 1, Panel A); physi-

cians in 267 zipcodes prescribed only generics, while physicians in 177 others prescribed only

branded products. Some of this variation may be explained by underlying patient hetero-

geneity, but several U.S. cities simultaneously host both locations that prescribe only generic

products and locations that prescribe none; such cases strongly suggest factors beyond pa-

tient heterogeneity may influence prescribing.4 Importantly, these differences affect costs.

We summarize variation across U.S. locations in the average cost per pill dispensed in Figure

1, Panel C, using price data from the Centers from Medicare and Medicaid Services (CMS).

These data imply an approximate interquartile range for the average cost per monthly pre-

scription of $46.80 in December 2010.5 Multiplied by the average number of prescriptions

per year (916.7), this implies an approximate annual cost difference in excess of $42,000

between the 25th- and 75th-percentile prescribers. While this cost difference must reflect, to

some extent, medically-appropriate responses to patient heterogeneity, it also indicates that

a large potential exists for cost savings in the treatment of cardiovascular disease.

This paper is closely related to an extensive literature on the diffusion of new medical

technology. Classic work by Coleman, Katz, and Menzel (1957, 1996) finds that new phar-

maceutical products diffuse unevenly across medical practitioners: physicians that interact

more frequently with other physicians are more likely to adopt early. We build on these

results by examining the influence of a digital information database on physicians’ drug

adoption decisions and find that this, too, has an impact on adoption. Our work is also

related to Skinner and Staiger (2007), who examine differential rates of adoption for tech-

nologies as varied as beta blockers and hybrid corn (Griliches 1957). While their focus is on

explaining state-level variation in adoption rates, our focus is on individual (physician-level)

differences. In this respect our work is similar to Crawford and Shum (2005), who analyze

panel data on anti-ulcer prescriptions to estimate a model of physician learning; Agha and

4Three examples of this in December 2010 are Los Angeles, CA (90058 prescribes no generics, while 90056
and 90062 prescribe only generics), Birmingham, AL (35224 prescribes no generics, while 35223 prescribes
only generics), and Indianapolis, IN (46224 prescribes no generics, while 46235 prescribes only generics).
Heterogeneity is equally pronounced for Lipitor (Figure 1, Panel B), a branded statin.

5That is, we calculate the cost per prescription (a 30-day supply) written in December 2010 for each
physician, and then calculate the interquartile range (across physicians) of these averages. Note that our use
of CMS prices for these calculations implies they are only rough estimates of true prescription costs.
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Molitor (2015), who examine the influence of physician investigators on the regional diffusion

of new anti-cancer drugs; and Escarce (1996), who studies physicians’ decisions to adopt a

new surgical technology.

Our paper is also related to work investigating disparities in prescribing across U.S.

physicians, including the Dartmouth Atlas and its analysis of prescription drug use among

Medicare patients (Munson et al 2013), and Cooper et al (2015) for the privately-insured.

The data we evaluate include prescriptions for all U.S. patients, enabling our assessment of

prescribing determinants within a near-universal set of prescribers and patients. However,

we do not observe individual patient characteristics, precluding a direct extension of Munson

et al (2013) to non-Medicare patients, as well as a quantitative welfare analysis.6

We evaluate how physician access to an electronic drug database affects prescribing, and

our paper thus contributes to work aimed at evaluating the impact of information technol-

ogy on economic decisions and outcomes. Individual agents’ ability to access electronically

available information can affect productivity (Solow 1987) and has been specifically shown

to improve performance in healthcare delivery (Athey and Stern 2002, Dranove et al. 2014).7

Other studies have evaluated information technology as a cost-reducing process innovation.8

In our setting, physicians’ digital access to drug information could improve health outcomes

by improving the match quality between patients and treatments, and could also reduce

costs by accelerating the adoption of newly introduced generic drugs.

In this, our paper complements research on general theories of technology diffusion that

feature agents with imperfect information. Such theories can be shown to explain the large

existing differences in productivity across locations (Solow 1956, Arrow 1969, Parente and

Prescott 1994, Comin and Hobijn 2004) as identified in Klenow and Rodriguez-Clare (1997)

and Casselli and Coleman (2006), for example. In the medical context of our analysis,

heterogeneity in the extent of new technology adoption may be natural, reflecting differences

in patient composition; however, delay in adoption is not—particularly in the case of a new

generic product, essentially a pure, cost-reducing innovation.9

The rest of the paper is organized as follows. Section II describes the data used in our

analysis. Section III describes a simple model of prescription choice and our estimation

framework. Section IV presents the empirical results, Sections V and VI discuss interpreta-

tion, and Section VII concludes.

6This aspect of our dataset further precludes estimating a model featuring prescription dynamics within
each patient-physician pair, as in Crawford and Shum (2005) or Dickstein (2015).

7See also Bresnahan, Brynjolfsson, and Hitt (2002), Bloom, Sadun, and Van Reenen (2012).
8See, for example: Attewell 1992; Bresnahan and Greenstein 1996; Black and Lynch 2001; Brynjolfsson

and Hitt 2003; Hubbard 2003; Forman, Goldfarb, and Greenstein 2005; Bloom et al. 2009; Agha 2012.
9The idea that underlying patient heterogeneity could influence the optimal prescription mix, and poten-

tially also the diffusion of new technology, is related to David (1966); the study finds that in a neoclassical
setting, labor-saving technology optimally diffuses more readily to labor-scarce locations, a pattern confirmed
using U.S. data on the adoption of the mechanical cotton reaper.
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II. Data and Descriptive Evidence

Evaluating the influence of information access on new pharmaceutical drug diffusion re-

quires detailed measures of drug innovations and individual prescribers’ treatment decisions,

information usage, and characteristics. We introduce each of these measures below and go

on to describe physicians’ prescribing of new and existing pharmaceutical drugs.

A. U.S. Innovations in Chronic Hypercholesterolemia and Dyslipidemia Therapy

At the start of the sample period in January 2000, six pharmaceutical therapies were

available to assist with patient cholesterol control, a clinical priority for the prevention and

treatment of cardiovascular disease: Lescol, Lipitor, Mevacor, Niaspan, Pravachol, and Zo-

cor.10 Thereafter, twelve new cholesterol or lipid control therapies were introduced, including

new formulations, combinations, and versions.11 These include three new molecular entities,

Crestor, Lovaza, and Zetia; three generic versions, lovastatin (Mevacor), pravastatin (Prava-

chol), and simvastatin (Zocor); two new formulations, Altoprev (extended-release Meva-

cor) and Lescol XL (extended-release Lescol); and four new drug combinations, Advicor

(extended-release niacin and Mevacor), Pravigard PAC (aspirin and Pravachol), Vytorin

(Zetia and Zocor), Simcor (extended-release niacin and Zocor). Each new therapy received

nationwide approval by the U.S. Food and Drug Administration (FDA) on a known, drug-

specific date (Table 1). All products are described in Appendix A.1.

While these 18 products are therapeutic substitutes, in that they aim at a similar clinical

endpoint—cholesterol or trigliceride reduction—they are only imperfect substitutes: each

product features distinctive characteristics relevant for the prescribing decision. First, many

but not all cholesterol therapies are pure statins, which act to reduce cholesterol synthe-

sis in the liver by inhibiting a specific coenzyme; these include Lescol (fluvastatin), Lipitor

(atorvastatin), Mevacor (lovastatin), Pravachol (pravastatin), Zocor (simvastatin), Crestor

(rosuvastatin), Altoprev (extended-release lovastatin), and Lescol XL (extended-release flu-

vastatin). Other products rely on different mechanisms of action: Zetia (ezetimibe), for

example, is distinct in that it achieves cholesterol reduction by reducing intestinal absorp-

tion of cholesterol. A second distinction involves therapeutic intensity. High doses of Lipitor

and Crestor are more effective at lowering low-density lipoprotein (LDL) cholesterol than

alternatives (Law et al 2003). Side effects are also relevant; evidence suggests, for example,

that high doses of Lipitor and Crestor may also increase the incidence of negative side effects,

10Cannon et al (2004).
11To ensure adequate coverage in the data, we consider all cholesterol therapies introduced by December

2008 but not those introduced after this date. For the same reason, our analysis excludes Baycol, a drug
that was available in January 2000 but withdrawn from the market in August 2001.
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while combination therapies such as Vytorin may in certain cases be more appropriate care

for patients with severe cholesterol abnormalities (Kastelein et al 2008).

More subtly, clinical evidence suggests the benefits and risks associated with statins are

heterogeneous across patients; randomized-controlled trials (RCTs) indicate, for example,

that the benefits of statin use are higher for patients with diabetes, negligible among those

with prior heart failure, and vary with age; risks and side-effects also vary with statin in-

tensity, age, weight, comorbidities, and so on (Brooks et al 2014). Adding to this, patients

with ‘complex’ attributes are often underrepresented in RCTs, raising clinical uncertainty

and, accordingly, the likelihood that patient preferences—including willingness to suffer side

effects and to pay for medications—may influence the prescribing choice (Brooks et al 2014).

Physicians’ decisions about which drugs to prescribe are further affected by the evolu-

tion of clinical information as new trials are completed—particularly head-to-head studies

aimed at establishing the relative efficacy of one drug therapy over another.12 These ongoing

changes in clinical evidence, combined with an expanding set of available products, suggest

that physicians may turn to drug references that help to ensure prescription decisions are

based on current information.

B. Prescriptions by U.S. Physicians

To measure physicians’ prescribing of new and existing therapies aimed at cholesterol and

lipid control over time, we use physician-level prescription data for the 18 drugs described

above from the IMS Health Xponent database. These data are provided at a monthly

frequency by drug during the period January 2000 through December 2010, and cover each

of the 280,622 U.S. physicians associated with at least ten cholesterol-drug prescriptions

during January to December 2010; this low threshold for inclusion implies that our dataset

captures essentially the universe of U.S. cholesterol drug prescriptions during this period. For

each product and month, we observe the number of prescriptions written by each physician

and filled through a U.S. pharmacy. Beginning in January 2006, the data also include

information on the method of payment used to fill each prescription (Medicaid, Medicare

Part D, Cash, or Commercial Third-Party Insurance). Importantly, each physician in the

dataset is identified by a unique medical education number, name (first name, last name,

middle name), and location (a five-digit U.S. zipcode). These identifiers enable us to match

individual prescribers with their observed pharmaceutical information technology use.

12For example, an RCT completed in 2004 demonstrated that for patients with severe cholesterol abnor-
mality, the incrementally larger reductions achieved by Lipitor resulted in fewer deaths and major coronary
events relative to patients taking Pravachol (Cannon et al 2004). Another such study released in 2008 found
that, while Vytorin achieved larger cholesterol reductions than simvastatin, the two drugs were observably
identical when it came to the thickness of arterial plaque buildup (atherosclerosis); adding to this, a second
study in 2008 found a positive association between Vytorin and cancer (Rossebo 2008) that was later reversed
(Cannon et al 2015).
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To ensure that our sample includes only those physicians actively prescribing cholesterol

drugs during the entire sample period, we restrict attention to the 131,323 physicians that

prescribe ten or more statins both during January to December 2000, and during January to

December 2010; this allows us to abstract from potential differences in prescribing that may

surround a physician’s entry into or exit from medical practice, and also ensures that we have

adequate data on database adopters’ pre-adoption and post-adoption prescribing patterns.

The final prescription dataset includes over 200 million observations (132 months × 131,323

physicians × up to 18 drugs). Summary statistics appear in Table 2, and additional details

regarding data assembly and the Xponent database appear in Appendix A.2.

C. Drug Information Access by U.S. Physicians

To construct an index for the extent of physicians’ pharmaceutical information access, we

use physician-level data from the private firm that owns and operates a prominent electronic

reference for pharmaceutical products. The data include registration status and information

on use of the drug reference for the same set of 280,622 physicians, 18 cholesterol control

products, and 132 months described above. Specifically, we observe a monthly physician-

specific indicator for whether a U.S. physician is a registered user of the pharmaceutical

reference. This variable indicates the database is widely used by physicians in the United

States: by December 2010, 44.6 percent of the 131,323 sample physicians use the reference.

The sample thus includes physicians that never use the database, but for whom we nev-

ertheless observe prescribing decisions. The data also include information about registered

physicians’ actual use of the database. We summarize this information with a variable in-

dicating whether a physician used the database to look up a cholesterol drug at least once

during the sample period. In the average month, this variable indicates 24.2 percent of

physicians are registered users, and 13.1 percent of physicians used the database to look up

one of the cholesterol drugs considered in our study. The data thus include ‘placebo’ physi-

cians that adopt the database but never use it to search for information about cholesterol

medications. There is no reason to expect the database to affect these ‘placebo’ physicians’

prescribing; we examine this hypothesis carefully in Section V.

The drug reference contains information that is, in principle, relevant for improving the

match between patient characteristics and available pharmaceutical products. At any point

in time, the drug reference contains detailed information about each available U.S. FDA-

approved medication. This information is obtained from the medical literature, specialist

recommendations, clinical guidelines, manufacturer labeling, standard medical references,

and FDA drug safety alerts and is updated continually; the results of this ongoing research

are condensed into drug-specific monographs that may be accessed through the electronic

database interface. Beyond standard clinical information such as contraindications, cautions,
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adverse reactions, safety, monitoring, and pharmacology, the reference monographs also in-

clude a set of additional variables for each product that may affect prescribing decisions.

Specifically, the monographs include retail pricing and formulary status information for each

drug, drug interaction information, FDA warnings, and off-label and pediatric usage guide-

lines. The database includes separate entries for each branded product and each generic

(if available), based on product-specific information such as available formulations, dosing,

indications, manufacturer, and pricing, as these differ even between products containing the

same active ingredient. The information contained in the drug database is updated over time

and therefore reflects both the current set of products and the current state of knowledge

regarding drug characteristics and clinical practice. Importantly, information about new

drugs approved by the FDA becomes available through the database at around the time the

drug becomes commercially available.

Because the drug reference combines existing information into a single, current mono-

graph rather than contributing novel drug information, it is best viewed as a tool that makes

it convenient for physicians to quickly access accurate and condensed clinical, insurance, and

pricing information about a drug. Doctors commonly use the reference to check dosages and

contraindications, for example, but rely onother sources, such as medical journals or other

more encyclopedic references, for information such as a drug’s results in clinical trials.

Figure 2 indicates that use of the reference database during the sample period is not

random, but instead differs across U.S. physicians according to observable characteristics.13

Physicians graduating from top-ranked U.S. medical schools, as well as recent graduates, tend

to begin use of the database sooner; a greater share of such individuals thus use the database

at any point in time during the sample period (Panels A, B). Figure 2 further indicates male

physicians adopt the database with a greater propensity than do female physicians (Panel

C). While there is little relationship between reference use and monthly statin prescribing

volumes (Panel D), doctors specializing in obstetrics and gynecology, and those practicing

in the U.S. South are slower to adopt the database, compared with others (Panels E, F).

D. Descriptive Evidence

The data provide suggestive indications that incomplete information may affect physi-

cians’ prescribing. Consider the statistics presented in Table 3, which quantify differences

in prescribing across U.S. physicians for the class of cholesterol medications evaluated. The

statistics in Panel A provide evidence for the December 2010 cross section, restricting atten-

tion to physicians prescribing at least 30 cholesterol medications during that month. Within

this group, it is apparent that the pronounced variation in cholesterol-drug prescribing pre-

13Physician characteristics were obtained from the Centers for Medicare & Medicaid Services Physician
Compare database, and were matched based on their first name, last name, and five-digit zipcode.
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viously found among Medicare patients (e.g. Munson et al 2013, Brooks et al 2014) is also

present within the overall population (columns 6 and 7). The share of prescriptions ac-

counted for by Lipitor, for example, ranges from zero to one in column 6; moreover, while

the average physician prescribes Lipitor in 19.2 percent of cases, the standard deviation is

also large (11.0 percent). Importantly, column 7 indicates these wide observed differences in

prescribing are even larger along the branded-generic margin.

Even if physicians were perfectly informed, variation in prescribing could result from an

uneven distribution of patient characteristics. For example, Lipitor is a high-intensity statin

that may be preferable for patients with a severe cholesterol abnormality, the incidence

of which may cluster geographically. Columns 4 and 5 thus evaluate prescribing among

physicians practicing within the same five-digit U.S. zipcode. Even though the scope for

patient heterogeneity should be limited within such a narrow geography, the statistics reveal

significant variation even at this level. In the case of Lipitor, the average U.S. zipcode

observes a 15.8 percentage point gap in its prescription share between the highest- and lowest-

intensity Lipitor prescribers, and a 24.6 percentage point gap in the share of prescriptions

accounted for by generics.

Unobserved patient heterogeneity likely explains some of this variation in prescribing,

but columns 1, 2, and 3 indicate that additional factors are also likely present. Specifically,

these columns assess within-zipcode variation in the diffusion of new generic products. The

advantage of this approach is that it is possible to compare prescribing of both a branded

product and its molecularly-equivalent generic, two distinct drugs that have no relevant clini-

cal differences. And, by examining changes over time in the generic share of molecule-specific

prescriptions, it is possible to determine whether stable patient heterogeneity is likely to be

the only explanation for variations in care. For each of the three generic drug introductions

(lovastatin, pravastatin, and simvastatin), the data indicate that physicians differ in their

use of generics in the short run, six months after generic entry, and that substitution toward

generics is initially incomplete at this point (Panel B). By contrast, in the long run, physi-

cians differ substantially less: nearly complete substitution toward generics is observed for

each of the three products (Panel C).14 This pattern of delayed substitution strongly sug-

gests factors other than patient heterogeneity contribute to prescribing differences among

cholesterol drugs, and is consistent with information frictions.

Beyond cost implications, these same factors may impede the diffusion of new non-generic

therapies, with consequences for health outcomes. The data indicate that the physicians are

14By December 2010, physicians had broadly switched away from prescribing Mevacor, Pravachol, and
Zocor: each has an average within-molecule prescription share of essentially zero among those prescribing at
least 30 cholesterol drugs in that month. However, six months after each respective patent expired, generic
prescribing was far more varied across physicians even though the generic version was in each case already
substantially less expensive. In November 2006, the gap in generic prescription shares was over 20 percent
for each product in the average zipcode, but fell to less than four percent by December 2010.
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slow to begin prescribing new molecular entities, new drug combinations, and new dosage

forms—branded products not facing generic competition. Figure 3 plots the gradual diffu-

sion of Crestor across U.S. zipcodes; Table 1 describes how the time lag in months between

a drug’s approval and its initial prescription varies across U.S. physicians for each drug in-

troduction. The average physician delays prescribing a new drug for 19.1 months among the

new products considered in our analysis; the standard deviation is even larger (22.0 months),

and this adoption lag ranges between zero and 122 months, indicating some physicians adopt

immediately and others had yet to adopt the first new drug of the sample by the final period,

December 2010 (Table 2). With these motivating facts in hand, we now turn to evaluate the

influence of physicians’ electronic pharmaceutical reference use on prescribing for new drugs.

III. Empirical Strategy

The drug reference database we evaluate may be viewed as a technology that reduces

physicians’ costs of acquiring information relevant to matching patients with treatments. In

this section we provide a framework indicating how we expect this cost reduction to affect

database users’ prescribing patterns, and describe our approach to measuring these effects.

A. Conceptual Framework

Consider a baseline model in which physician i faces a period-t choice over which drug to

prescribe for each of her patients n = 1, 2, ..., Nit. Like other economic studies of prescribing

decisions, suppose that physician i makes this decision for each patient by selecting the single

drug j ∈ {1, 2, ..., Jt} available at t that maximizes patient utility according to physician-i

information.15 Specifically, suppose that the true utility derived by patient n from drug j

at t is unjt ≡ θjt + Vnjt, which combines the quality of drug j that is both known at t and

common across patients (θjt) with the quality of j that is unknown and partially specific to

patient n (Vnjt). The first of these terms (θjt) thus captures the accepted wisdom at t about

the efficacy, costs, side effects, and so on of drug j for the average patient, while the second

reflects novel information that may, in part, be relevant to the match between j and patient

n. In particular, suppose that Vnjt combines two terms: Vnjt ≡ vjt + εnjt, where vjt is a

drug-specific value—a revision to accepted wisdom about the quality of drug j—and where

εnjt reflects the quality of the match between patient n and drug j. While the precise value

of Vnjt is not immediately known to physician i, suppose that she may exert effort to learn

about its value. In particular, assume that by exerting effort φit ∈ [0,∞), physician i bases

15See, for example, Dickstein (2015), Crawford and Shum (2006).
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her prescribing on a partial observation of unjt, given by

ûnjt ≡ θjt + (1− e−φit)Vnjt = θjt + (1− e−φit) (vjt + εnjt). (1)

This φ may include, among other things, effort spent researching drug side effects, inter-

actions, and efficacy based on current clinical trials in standard medical references; it may

include effort put toward asking patients about symptoms or medical history; or it could

include acquiring other patient-drug specific information such as dosage, retail pricing, and

insurance formulary status.16 A higher level of effort φ in (1) thus increases physician-i sensi-

tivity to existing but novel information about drug quality (vjt) and about the patient-specific

match (εnjt). In particular, (1) implies physicians exerting no effort φ = 0 are insensitive

to Vnjt and thus prescribe the same drug—that with the highest θjt—for all patients, while

physicians exerting infinite effort respond to Vnjt perfectly.

If we assume that the εnjt follow an i.i.d. Type-1 Extreme Value distribution, it is straight-

forward in this simple setup to show that the probability physician i prescribes drug j for

patient n at t depends on the effort φit spent acquiring information as follows

pjt(φit) =
exp

{
θjt

1−e−φit + vjt

}
∑Jt

k=1 exp
{

θkt
1−e−φit + vkt

}
and that, accordingly, the probability Pijt that drug j is prescribed by physician i at least

once during period t is

Pijt(φit) ≡ P{Xijt > 0} = 1− P{Xijt = 0} = 1− (1− pjt(φit))Nit (2)

where Xijt is the number of physician-i prescriptions written for drug j at t.17 Moreover,

starting from an initial date t0 (such as the introduction date of a new drug j), the expected

number of periods Tij that lapse before drug j is prescribed at least once by physician i is

E[Tij] =
∞∑
t=t0

(t− t0)Pijt(φit)
t−1∏
s=t0

(1− Pijs(φis))

=
∞∑
t=t0

(t− t0)
(

1− (1− pjt(φit))Nit
) t−1∏
s=t0

(1− pjs(φis))Nis (3)

16For simplicity, we abstract from the idea implicit in (1) that physician i could use ûnjt and her knowledge
of both φit and θjt to infer the value of Vnjt. It would be straightforward to modify (1) in a way that rules
out this possibility, for example by assuming that ûnjt ≡ θjt + (1− e−φitηit)Vnjt with ηit unobserved.

17Qualitatively identical results hold under more general assumptions regarding the distribution of εnjt;
the Type-1 Extreme Value assumption is thus imposed here only for expositional simplicity.
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which also depends on φit, as does the expected number of unique drugs Mit prescribed by

physician i during t,

Et[Mit] ≡ Et

[
Jt∑
j=1

1{Xijt > 0}

]
=

Jt∑
j=1

Pijt(φit) =
Jt∑
j=1

(
1− (1− pjt(φit))Nit

)
. (4)

Suppose that each physician determines her optimal effort φit spent acquiring information

by weighing the benefit of reduced prescribing errors against the cost of her effort. For ease,

suppose that each physician faces a cost C(φit) of prescribing errors that increases linearly

in the sum of squared errors in beliefs across all patients n and drugs j during period t

C(φit) ≡ c

Nit∑
n=1

Jt∑
j=1

(unjt − ûnjt)2 = c e−2φit
Nit∑
n=1

Jt∑
j=1

(vjt + εnjt)
2 = c e−2φitVit,

where c is a cost parameter, and the aggregate Vit ≡
∑Nit

n=1

∑Jt
j=1(vjt + εnjt)

2 is assumed

known by physician i; this aggregate reflects the number of physician-i patients and the

sample distributions (mean and variance) of vjt and εnjt, respectively, among these patients.

Assume further an i-specific marginal cost of acquiring information ait < c. That is, assume

physician i faces a cost Ait(φ) = aitφ to exert effort φ. It is simple to show that, in this

setting, physician i optimally seeks information with an intensity

φ∗it =
1

2
ln

(
2cVit

ait

)
. (5)

According to (5) above, the introduction of an improved drug search technology that reduces

ait across all physician users induces an increase in the optimal search intensity φ∗it.
18,19

From (2), this increase in φ will result in a change in the probability drug j is prescribed:

whether Pijt increases or decreases for drug j depends on the distribution of vjt across

products. In general, Pijt will increase for drugs with high values of vjt relative to other

drugs; alternatively, if all vjt = 0, an increase in φ raises Pijt for all drugs except for that

with the highest θjt. Similarly, (3) implies the number of periods that pass before drug j is

18Although for simplicity we have not made this explicit, it is straightforward to introduce an adoption
friction for use of the improved search technology such as a one-time fixed adoption cost. In this case,
physicians for whom the marginal benefit of reduced medical errors is relatively high—that is, physicians
with high Vit values (i.e. with many, relatively diverse patients)—are more likely to adopt than others.
This implies that some physicians optimally choose not to adopt the database, while others find it optimal
to delay adoption until Vit is sufficiently high. This also raises the important question of selection that is
addressed in the empirical analysis below.

19By modeling an improvement in drug search technology as a reduction in ait, notice that this simple
model is consistent with the idea that information obtained by a physician from a new drug reference tool is
useful, but only incremental relative to the knowledge and experience the physicians have already obtained
about the drugs from other sources. An important empirical implication of this is that a decline in ait, and
the increase in φit that results, is unlikely to cause large shifts in prescribing.
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prescribed declines in φit whenever Pijt increases in φit. The impact of an increase in φit on

the number of distinct drugs prescribed (4) depends on the distribution of Vnjt across drugs

j and patients n, but in general, a higher φ implies increased sensitivity to patient-specific

match quality εnjt, which tends to increase the diversity of prescribing.

It is important to note that doctors who regularly prescribe anti-cholesterol medications

will be aware of most drugs’ clinical attributes. But for newer, less familiar drugs, doctors

may prefer to look up details like dosage and patient-specific economic details such as pric-

ing and formulary status prior to writing a prescription. It is for these newer drugs that

one may expect differences between unjt and ûnjt to be particularly relevant, and the empir-

ical analysis thus considers the distinction between new and existing products in this respect.

B. Estimating Equations

One natural approach to evaluating the influence of reductions in ait resulting from

database adoption would be to directly estimate equations derived from the conceptual

model above. However, even within the model above, it is important to control for unob-

served covariates including drug quality θjt and physician search costs ait. Given the size

of the data sample, handling the nonlinearity implied by (2) in the presence of multiple

sets of fixed effects is computationally infeasible. For this reason, we instead estimate the

effects of database adoption on prescribing primarily through linear regression equations.

An advantage of this approach is that it enables us to proceed without relying on a strong

distributional assumption for the εnjt terms.

We thus consider three estimating equations corresponding to the three outcomes dis-

cussed above (Tij, Mit, and Pijt). We first assess the impact of information access on the

duration of time Tij that elapses between the initial market release of drug j and its first

prescription by physician i as in Coleman, Katz, and Menzel (1957) using the following

specification

log Tij = ηj + ηi + β0Zij + εij, (6)

in which Zij is an indicator for database use at the time drug j is first introduced, and where

ηj and ηi are product and physician fixed effects, respectively. Equation (6) is estimated on

the subset of drugs first introduced during the sample period. Finding that the coefficient

of interest β0 is negative would indicate that when a physician obtains information access (a

decline in ait) she prescribes new drugs significantly more quickly than previously, relative

to a physician without database access. Notice that the inclusion of physician fixed effects

implies that the coefficients β are identified using within-doctor variation over time: physician

i may be a database user at the time drug j is first introduced, but may not yet be a user

at the time another product j′ is introduced. These fixed effects are important if stable,
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unobserved physician characteristics determine both physician-specific database use Zij and

the rate of new drug adoption Tij (e.g. early adopters).

Second, building from (4), we consider the possibility that information access could

affect physician i’s knowledge of the match quality between drug j and patient n, inducing

better-informed physicians to prescribe a more diverse set of products than less-informed

peers. To assess this possibility, we determine the number of unique drug products Mit ≡∑
j∈Jt 1{Xijt > 0}, where 1{Xijt > 0} is an indicator for whether physician i writes at least

one prescription for drug j during month t, and evaluate the following specification

Mit = ηt + ηi + β0Zit + εit, (7)

where ηt is a month fixed effect, and all other variables are as defined above. Mit is low

when the prescriptions of physician i are concentrated within a narrow subset of products

during month t, and is high when prescribing is diverse; finding that β0 is positive in (7)

above would thus indicate that information access is associated with higher product diversity

among physician i’s prescriptions. We also estimate (7) replacing Mit with the Herfindahl-

Hirschman index as an alternative dependent variable for each physician i-month t pair.

Notice that (7) includes physician fixed effects ηi and thus controls for any stable, unobserved

physician characteristics that affect prescription diversity and may also be correlated with

information access Zit. The coefficient β0 is thus identified using within-physician variation

over time in information access Zit. To account for changes over time in unobserved, location-

specific patient characteristics, we also estimate (7) with zipcode-month fixed effects; these

are particularly important if patient characteristics or other local factors evolve in ways that

affect prescribing and are correlated with measured physician technology adoption.

While (7) captures the scope of physician prescribing, it is also of interest to understand

changes in the composition of prescriptions across drugs—and in particular, to understand

how database users’ Pijt values across new and old drugs j differ after database adoption.

Moreover, because new patent-protected products differ from new generics in both cost and

novelty, the impact of information on prescribing may differ based on the patent status of a

new product. We thus evaluate whether physicians using the electronic drug database are

also more likely to prescribe specific product types using the following specification

1{Xijt > 0} = ηjt + ηij + β0Zit ×Newτjt ×Genj + β1Zit ×Newτjt × (1−Genj) (8)

+ β2Zit × (1−Newτjt)×Genj + β3Zit × (1−Newτjt)× (1−Genj) + εijt,

where 1{Xijt > 0} is an indicator for whether physician i writes at least one prescription

for drug j during month t, Geni is an indicator that is equal to 1 if product i is a generic

variety, and Newτjt indicates whether drug j is within 24 months of its initial approval for
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U.S. sale. The main coefficients of interest β0, β1, β2, and β3 jointly capture the influence

of database use Zit on prescription choice for both new drugs (β0 + β1) and established

products (β2 + β3), where finding β0 + β1 > 0 would indicate physicians with better access

to information are more likely to prescribe a given drug j that is within τ months of initial

market release. Finding that β0 > 0 would indicate that physicians with better access to

information (Zit = 1) are more likely to prescribe a new, generic product j at t relative to

other physicians; β1 > 0 would indicate an analogous effect for other new drugs.

Equation (8) includes two sets of controls. Physician-drug fixed effects ηij absorb any

physician-specific characteristics that affect prescribing differentially across drugs j such as

location, patient composition, age, education, and medical specialty. These effects are thus

able to account for the possibility that patients in some locations are price-sensitive and tend

to prefer a generic product when available, or that a physician prefers prescribing a particular

drug based on the history of patient experience known to the physician. Importantly, these

effects also capture underlying differences across physicians in the tendency to prescribe new

products, first introduced during the sample period. The coefficients of interest β are thus

identified primarily from within doctor-drug variation over time in information access Zit

and drug status Newτjt. Drug-month fixed effects ηjt further account for the average per-

ceived quality of drug j by sample physicians at t, which may depend on factors such as drug

potency and side effects known at t and the average pharmacy price faced by consumers at t.

The error term εijt combines any omitted factors that affect physicians’ prescribing patterns.

IV. Main Results

A. Time to First Prescription

Estimates of equation (6) appear in Table 4. Columns 1–4 evaluate the relationship

between physician-i information access and the time lapse Tij between the market introduc-

tion of a new drug j and its initial prescription by i for the full sample of U.S. prescribers.

Columns 5–6 replicate columns 3 and 4 but restrict the physician sample to include only

those who register for the database and use it to look up at least one cholesterol drug during

the sample period; physicians included in these latter specifications thus differ only in their

respective database adoption dates. The independent variable Information (Zij) is specific

to each physician-drug pair and takes a value of 1 if physician i has access to the electronic

drug reference at the time drug j is approved for sale in the U.S. market, and is otherwise

zero; Information x Generic interacts Zij with an indicator for generic products. All columns

include drug fixed effects that account for differences in product characteristics such as qual-

ity, average physician reference access at the date the drug was approved for sale, and the

set of competing products available for prescription at that approval date; physician fixed
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effects are also included in columns 2, 4, and 6, which thus rely on within-physician changes

in database access across drug introductions for identification. These latter specifications

therefore account for the persistent component of a physician’s prescription volume, ten-

dency to adopt new technology, and patient characteristics, all of which may impact the

timing of new drug adoption independently of Zij.

The estimated coefficients on Zij in columns 1 and 2 are negative and highly significant,

indicating physicians using the electronic drug database are, on average, significantly faster

to begin prescribing a newly-approved drug than physicians not using the database. The

magnitude of this effect suggests physician users write initial prescriptions of a new drug

seven percent sooner than non-users in column 1 and 2.5 percent sooner when controlling for

fixed, unobserved physician characteristics in column 2. As the adoption delay Tij is 19.14

months on average (Table 2), these estimates imply database users adopt a new drug 1.33

months (column 1) or 0.48 months (column 2) sooner, on average, than non-users.

The estimates in columns 3 and 4 indicate these effects are driven primarily by pre-

scriptions for newly-introduced generic products. Specifically, with prescriber fixed effects

in column 4, physicians using the database are significantly faster (six percent) to prescribe

new generic products; by contrast, the coefficient on branded products is insignificant, sug-

gesting users and non-users are indistinguishable in their adoption rate for new branded

products, once controlling for physician fixed effects. The results in column 6, which reduce

the possible influence of selection by including only eventual database users, confirm this

result for generics, with physicians users adopting new drugs 3 percent more quickly, on

average, than prior to database adoption. Given that generic drugs share identical clinical

attributes with branded versions, an explanation for these effects is that the drug database

includes both retail price and insurance formulary information, providing physicians with

patient-specific cost information at the point of care, and potentially influencing the choice

of drug prescribed in favor of generics. Physician users in column 6 also appear to delay

prescribing new branded products, though the coefficient is small and only weakly significant.

B. Prescription Diversity

To assess the possible relationship between database use and prescription diversity, we

evaluate specification (7); results appear in Table 5. Estimates for the complete sample of

U.S. physicians appear in columns 1–3. These estimates indicate that database users pre-

scribe, on average, a significantly larger number of distinct drugs per month than physician

non-users. In terms of empirical magnitudes, the least-squares estimate of β0 in column 1

indicates that a database user prescribes 0.25 additional drug varieties each month relative

to a non-user, a result that is confirmed qualitatively in a Poisson specification (column 2).

Column 3 considers the prescription HHI as an alternative dependent variable, and indicates
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that the concentration of prescribing across drugs is significantly lower among database users.

Columns 4–6 restrict the physician sample to include only eventual database users, as

in Table 4 above; physicians included in these latter specifications thus differ only in their

respective drug reference adoption dates. Estimates in columns 4–6 are small in magnitude

relative to columns 1–3, suggesting that the extent of within-physician increases in prescrip-

tion diversity over time may be positively correlated with database adoption during the

sample period. This possibility would be consistent with a version of the model described in

Section 3 above featuring a database adoption friction such as a one-time fixed setup cost.

Nevertheless, qualitatively identical results obtain across the two physician samples, with

prescription diversity increasing significantly when physicians adopt the drug database.

C. The Composition of Prescriptions

Estimates of the propensity equation (8) above appear in Table 6; the main coefficients

of interest β0 and β1 correspond to physician-i information access Zit in month t, and its sep-

arate interactions with an indicator for new generic and new branded products, respectively.

New drugs are defined as those products that are within τ = 24 months of initial market

approval in month t. The estimated coefficient corresponding to new generic products β̂0

is positive and highly significant in column 1, which includes the full sample of physicians.

This is consistent with information technology encouraging the prescription of new generic

drugs. However, though the coefficient is an order of magnitude smaller, the estimate of β1

in column 1 indicates that physician database users are also somewhat less likely to prescribe

a new branded product. This is consistent with the estimates in Table 4, which indicate that

in the presence of physician fixed effects, physician database users are significantly faster to

begin prescribing a new generic drug, but slightly slower for new branded products. Column

1 also indicates database users are significantly more likely to prescribe old generic products,

and to a mild extent, old branded products; the estimated coefficients β2 and β3 for old

drugs are both positive in specification 1.

As in Tables 4 and 5, column 2 restricts the sample of prescribers to those who eventually

adopt the drug database. These estimates indicate that physicians using the database are

considerably more likely to prescribe drugs in each category, consistent with the estimates in

Table 5. However, while Table 5 indicates a tendency toward increased prescription diversity

among database users relative to non-users, Table 6 reveals that this does not reflect a

symmetric shift in prescribing across drug products. Physician users are substantially more

likely to prescribe generic products, but are only moderately more likely to prescribe branded

drugs as coefficients for new and old generics are substantially larger than those for branded

products: β̂2 > β̂0 >> β̂3 > β̂1. Specifically, while a physician with access to the electronic

drug reference is only 0.25 percent more likely to prescribe an branded product that is within
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24 months of approval, she is more than six times as likely (1.61 percent) to prescribe a new

generic product within the same timeframe, relative to a physician without information

access. But she is even more likely (2.28 percent) to prescribe an existing generic product.

Importantly, all specifications in Table 6 include physician-drug fixed effects, which cap-

ture stable physician-specific differences in the tendency to prescribe certain drugs, whether

new, generic, or both. In addition, the drug-month fixed effects included in each column

account for drug-specific changes in pricing, perceived quality, available information, and

advertising, Further including zipcode-month fixed effects to account for location-specific

changes over time in drug advertising, internet connectivity, policies and pricing, insurance

generosity, income, health, demographics and so on results in nearly identical estimates.20

V. Interpreting the Results

The results in Tables 4 through 6 above indicate that physicians using the database

begin prescribing new drugs, particularly new generics, sooner than non-users, and also pre-

scribe a more diverse set of drugs than non-users. However, because database adoption is

not randomly assigned, it remains unclear whether a causal interpretation of these results

is supported by the data. Our baseline strategy of including physician (or physician-drug)

fixed effects to account for stable unobservables, correlated with both database adoption and

prescribing, helps rule out certain alternative explanations including cases in which ‘early-

adopter’ physicians begin both using the database and prescribing a new drug sooner than

other physicians. A limitation of this approach, however, arises when adoption is either

correlated with, or involves selection on, time-varying rather than stable physician charac-

teristics that are relevant to the prescribing outcomes we consider. In Table 5, for example,

it is possible that a physician’s decision to adopt the database is partially determined by the

rate of increase in her prescribing diversity: naturally, adopting the database today could

be a more attractive option for a physician who anticipates prescribing a wider range of

products in the future, than for a physician in the opposite situation.

One approach to handling such cases is to find an instrument that generates quasi-random

variation in database adoption, and to estimate relying on variation in this instrument. We

have considered two such instruments: 1) a measure of location-specific hospital I.T. use

from Dranove et al (2014), and 2) a measure of location-specific high-speed internet pen-

etration; both are factors that could influence doctors’ database adoption decisions while

being plausibly unrelated to choices over which anti-cholesterol drugs to prescribe. How-

ever, we find these instruments to be only weak predictors of database adoption, resulting

in second-stage estimates highly sensitive to small specification changes. Thus lacking com-

pelling instruments, we take an alternative approach: specifically, we consider placebo tests

20Results available on request.
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and split-sample tests that help to determine whether non-causal interpretations of the re-

sults are consistent—or instead inconsistent—with the data.

A. Placebo Tests

An important feature of the data is that we observe not only a physician’s database

registration date, but also indicators for the extent of physicians’ database use. In particular,

we observe an indicator variable for whether a registered physician uses the reference for a

cholesterol drug at least once during the sample period. Using this indicator, we find that

the data include a large set of ‘placebo’ physicians that adopt the database, but never use

it to search for information about the drugs we consider. There is no reason to expect the

database to affect prescription outcomes for such physicians in Tables 4 through 6.

Tables 7, 8, and 9 thus report results from regressions analogous to those reported in

Tables 4, 5, and 6, with effects estimated separately for actual and ‘placebo’ database users.

In Table 7, the results for the placebo users are statistically indistinguishable from zero

in all but one case, and in every case the point estimates of the effects are near zero. By

contrast, the results for actual users closely resemble those reported in Table 4. This suggests

that the estimated effects for actual users in Table 7 cannot be dismissed as reflections of

endogenous selection: if the results are driven by a correlation between database adoption

and a prescribing pattern or trend that affects prescribing broadly, in a way not specific to

cholesterol drugs, that correlation would affect both actual and ‘placebo’ users. To ascribe

the results in Table 7 to endogenous selection, one would, in this case, need to contend that

selection effects are systematically related not only to a physician’s database usage, but to

a physician’s database usage specifically for cholesterol drugs.

Table 8 considers the diversity of physicians’ prescriptions. Although effects for placebo

users are smaller than for actual users, they are nevertheless statistically significant. These

non-zero estimates suggest database adoption may indeed by correlated with some factor

related to changes in the diversity of a doctor’s prescriptions. However, the strictest of these

tests in columns 4–6 indicate that, while actual users’ prescription diversity increases with

adoption, placebo users’ diversity falls. This distinction is consistent with the idea that

adopters that actually use the database to look up cholesterol drugs increase the diversity

of prescribing beyond what could potentially be explained by selection.

Similarly, the estimates in Table 9 for placebo users are not statistical zeroes, but in most

cases are smaller in magnitude than the estimates for actual users. For example, the largest

estimated effects for database users are the 1.64 and 2.38 percentage-point increases in the

likelihood of prescribing new generics and old generics, respectively. For placebo users, the

corresponding estimates are 1.34 and 1.29 percentage points—smaller by roughly a factor of

2 in the latter case. Thus, as in Table 8, the difference in estimated magnitudes suggests it
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is plausible that actual users’ database access has a causal impact on prescribing, beyond

what could be explained by selection.

Taken together, these placebo tests provide sharper evidence about the impact of the

database, relative to Section IV above. While the results in section IV are robust to con-

cerns of selection on stable physician characteristics, they are subject to the caveat that the

timing of database adoption may be correlated with, or even driven by, anticipated changes

in a physician’s prescribing. The placebo tests indicate that this is unlikely to be a concern,

provided that the anticipated changes are general across drug products rather than specific

to cholesterol drugs. In this case, all physicians adopting the database are affected by the

same selection forces, but a causal effect should only be present for physicians who actually

use the database to look up cholesterol drugs. The results in Table 7 are consistent with

this. However, the placebo tests cannot rule out the possibility that database adoption is

driven by anticipated changes that are specific to cholesterol drugs. Thus the placebo tests

rule out some, but not all, non-causal alternative interpretations of our results.

B. Mandatory Substitution Laws

To encourage cost savings, many U.S. states impose regulations mandating generic substi-

tution where available; in most cases, such laws have been in force since the 1970s (Grabowski

and Vernon 1979) and were thus in effect during the sample period. This observation raises

the possibility that, in the case of generics, a physician may write a prescription for the

branded drug, yet her patient may receive its generic form. If the implementation of manda-

tory substitution laws differs across states and over time in a manner correlated with physi-

cians’ adoption of the drug database, it could affect the interpretation of our results. We

address this possibility in two ways. First, we re-evaluate results on prescription diversity

(Table 5) and drug-specific prescribing propensity (Table 6) including zipcode-month fixed

effects that control for the possibility of differential substitution regulations across observa-

tions. Even without these fixed effects, notice that mandatory substitution laws are likely

to affect prescribing similarly for users and non-users of the drug database, and our baseline

specifications therefore account for this consideration. Second, to capture this possibility in

the duration regressions (Table 4), we adopt a split-sample approach, re-estimating Table

4 separately for states with, and states without, mandatory substitution laws in for at the

start of the sample period in January 2000. The estimates appear in Table 10 and reveal no

substantive differences across the two samples; it therefore appears unlikely that mandatory

substitution laws are able to explain the results.

C. Academic Medicine
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Physicians practicing in locations known for pharmaceutical innovation may have ac-

cess to frontier knowledge regarding pharmaceutical development, limiting the scope for use

of the condensed drug information database we observe to influence prescribing decisions;

within the conceptual framework outlined in section 3, such physicians may have near-zero

information costs ait, and database adoption has, correspondingly, little potential to impact

prescribing outcomes. As innovation tends to cluster geographically (e.g. Sohn 2016), adding

zipcode-month fixed effects to the specifications in Tables 5 and 6 should help to account

for this. To more directly evaluate the potential influence of location-specific differences in

innovativeness, we rely on patent data from the NBER U.S. Patent Citations Data File (Hall,

Jaffe, and Trajtenberg 2001). These data specify, for each U.S. patent, the location of the in-

ventor as well as detailed information about the patented technology. We use information on

the number of pharmaceutical patents granted between 1975 and 1999 by zipcode to identify

U.S. locations in the top and bottom five percent by drug patenting, and then re-estimate

the duration analysis in Table 4 separately for these two samples. The estimates appear in

Table 11, and suggest that physicians plausibly located near the knowledge frontier—that

is, physicians in zipcodes among the top five percent by drug patenting—indeed respond

to drug information differently than their more distant peers. Specifically, the estimates in

column 4 indicate that while use of the database in non-innovative locations is associated

only with faster adoption of new generics, the database is only weakly influential among

innovative frontier locations and affects impact branded and generics similarly (column 8).

D. Other robustness checks

To account for the possibility of spatially-correlated measurement error, which could arise

due to the pharmacy sampling methodology used by IMS Health to build the prescription

data, we re-estimate the results in Tables 4 and 5 with standard errors clustered by zipcode.

We also estimate the specifications in Tables 4 and 5 using Poisson or Negative Binomial

regressions, and we estimate the specifications of Table 6 with logistic fixed effects regressions.

These robustness checks reveal qualitatively similar results.21

As noted above, we also estimate the regressions in Tables 5 and 6 with zipcode-month

fixed effects, which help rule out concerns that pharmaceutical detailing could be influencing

doctors’ prescriptions (e.g. Datta and Dave 2013). If the influence of detailing differs across

drugs but is similar across physicians at a point in time, then the drug-month dummies

included in Table 6 would account for it. If, by contrast, the intensity of drug detailing

differs across physician-drug pairs but is relatively stable over time, then the physician-drug

fixed effects in Table 6 would account for it. Zipcode-month fixed effects would account for

broad differences across locations over time. Our estimates indicate that that the results

21Detailed results available on request.
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are robust to including zipcode-month fixed effects, which have essentially no impact on

the coefficients of interest. This is not surprising: our results our unlikely to be driven by

detailing, because there is little reason to expect detailing to be correlated with database

adoption. Also, the consistent result emerging from Tables 4 and 6 is that the impact of

database use appears largest for generic products, which tend not to benefit from detailing.

The fact that the clearest effects are for generic drugs raises a separate possibility, how-

ever. A physician’s decision to prescribe a generic drug may be related to the insurance

coverage of the patient. We therefore evaluate split-sample estimates based on whether

physicians receive a high or low share of Medicare and Medicaid patients, relative to the

privately insured; separately, we repeat this split-sample analysis, distinguishing physicians

based on whether a high or low share of their patients pay for prescriptions with cash. In

both cases, we found negligible differences across groups.

VI. Physician Heterogeneity

As a final point, we consider whether the data support the idea that incomplete infor-

mation may contribute to disparities in care across U.S. physicians. To evaluate this, we

assign each physician to one of two groups based on her drug database registration status

in December 2010. Within each group, we measure the extent of prescribing heterogeneity

across physicians: specifically, we determine the unit vector of prescriptions written in De-

cember 2010 for each prescriber i. We then compute the distance between this physician-i

unit vector and either a) the average unit vector among physicians using the database, if

i is a database user, or if not, b) the average unit vector among physicians not using the

database. If physician users more closely resemble eachother in prescribing than do nonusers,

it would be consistent with information frictions contributing to prescribing heterogeneity;

if not, it would suggest disparities are primarily the result of other factors.

Corresponding results appear in Table 12, Panel A. These indicate that the distribution

of prescriptions among physicians using the database is more compressed than among non-

users, in line with the idea that information reduces prescribing heterogeneity. Specifically,

the average Euclidean distance between the physician-i unit vector and the group-specific

average is higher for non-users (0.1762) than for users (0.1522), and the estimated difference

in column 3 (-0.0236) is highly significant. Importantly, note that the results in Table 5

indicate physicians using the database prescribe a significantly more diverse set of products

than non-users, so this does not imply a loss of variation in therapies generally. Rather,

physicians resemble eachother more closely when connected to the same information source.

Replicating this exercise with prescription data from January 2000 and an indicator for

database use in December 2010—applied prematurely, as though eventual users had already

adopted in January 2000—in Panel B reveals two important observations. First, both groups
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(users and non-users) experience considerable homogenization over time, with the average

Euclidean distance declining by 0.040 points for database non-users and by 0.052 percentage

points for users. Second, based on prescribing in January 2000, physicians that only later

register as database users already exhibit greater homogeneity in prescribing than other

physicians, suggesting database users form a selected sample in this respect, and indicat-

ing the importance of controlling for pre-existing physician characteristics. With this in

mind, the estimates in Panel C indicate that despite these pre-existing differences, eventual

database users undergo significantly more within-group homogenization than non-users, even

when controlling for physician fixed effects.22

VII. Discussion and Concluding Remarks

This paper has examined whether access to product information encourages physician

adoption of new cholesterol control drugs. Using data on prescriptions and electronic drug

reference use for over 130,000 individual U.S. physicians and 18 products during January

2000—December 2010, our results indicate that physicians with access to pharmaceutical

product information at the point of care prescribe a significantly more diverse set of products

than other doctors, and first prescribe new products—particularly new generics—sooner

than other doctors. These results hold after controlling for stable unobserved physician

characteristics that may influence adoption and prescribing decisions. Such doctors are also,

at any time, more likely to prescribe a new product that is within 24 months of its initial

release, particularly if it is generic, than are other doctors.

Taken together, our results support the hypothesis that physicians’ use of the electronic

database caused a small but statistically significant shift in their prescribing patterns. That

the effects were small should not be surprising: physicians who prescribe cholesterol drugs are

generally well-informed about the therapeutic options, and adopting the database therefore

did not present a significant shock their information sets. However, our results indicate that

even such incremental changes in physicians’ access to information impact their behavior.

And, given the size of the market for cholesterol drugs, even small shifts in physicians’

prescribing patterns can have substantial effects on aggregate drug costs.

These findings thus speak to policy debates regarding U.S. healthcare provision, particu-

larly those concerning wide variation in the observed cost and quality of medical care across

U.S. locations (Wennberg et al 1996). Specifically, our estimates suggest that uneven access

to information may contribute to heterogeneity in U.S. healthcare provision and costs. In

this, an implication of our findings is that connecting physicians to electronic information

22For clarity, Panel C reports coefficients from a least-squares regression of the Euclidean distance to the
mean Dit for doctor i at t = {January 2000, December 2010} on an indicator I2010 for December 2010, and
its interaction Z2010 × I2010 with an indicator Zi,2010 for physician-i database access in December 2010, and
physician fixed effects.
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resources has the potential to reduce disparities in care. Importantly, this reduction need not

come at the expense of careful medical decision-making: indeed, our observation that physi-

cians with access to electronic product information prescribe a more diverse set of products

suggests a closer match between patient characteristics and available therapies.
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Drug  Name Release  Date FDA  Category Mean SD Final  Share

Lescol  XL October  2000 New  dosage  form 28.856 23.486 0.628
Advicor December  2001 New  combination 64.752 15.434 0.298
lovastatin December  2001 New  generic  version 19.914 22.688 0.936
Altoprev June  2002 New  dosage  form 42.504 24.057 0.154
Zetia October  2002 New  molecular  entity 15.181 17.384 0.941
Pravigard  PAC June  2003 New  combination 7.328 5.954 0.038
Crestor August  2003 New  molecular  entity 22.668 21.823 0.936
Vytorin July  2004 New  combination 14.122 13.498 0.903
Lovaza November  2004 New  molecular  entity 34.039 17.075 0.670
pravastatin April  2006 New  generic  version 7.451 12.332 0.922
simvastatin June  2006 New  generic  version 3.128 7.497 1.000
Simcor February  2008 New  dosage  form 12.353 9.188 0.228

Notes:  This  table  summarizes  the  variation  across  individual  U.S.  physicians  in  the  initial  use  of  twelve  new  pharmaceutical  
products,  each  aimed  at  controlling  blood  cholesterol  or  lipid  levels.    Each  product  was  initially  released  for  sale  in  the  U.S.  
market  on  the  date  indicated.    New  drug  applications  are  categorized  by  the  FDA  based  on  whether  the  proposed  product  is  
a  new  molecular  entity,  a  new  drug  combination,  a  new  dosage  form,  or  a  new  generic  equivalent.    The  distribution  of  initial  
prescription  dates  is  described  by  the  mean  and  standard  deviation  (SD)  in  months  from  initial  U.S.  market  approval.    The  
share  of  physicians  that  prescribe  the  product  at  least  once  by  December  2010  (Final  Share)  ranges  from  15  percent  
(Altoprev)  to  100  percent  (simvastatin).    Prescription  data  are  from  IMS  Health.  

Table  1:  Heterogeneity  in  Initial  Prescription  of  a  New  Pharmaceutical  Drug



Variable Mean SD Min Max

Physician-­Drug-­Month  Level:
Number  of  Prescriptions 4.411 12.560 0 2383
Indicator  for  Positive  Prescriptions 0.358 0.479 0 1
Log  Prescriptions,  Conditional  on  Positive  Prescriptions 1.725 1.256 0 7.776

Physician-­Month  Level:
Drug  Database  Indicator 0.242 0.429 0 1
Drug  Database  and  Use  Indicator 0.131 0.338 0 1
Number  of  Unique  Drugs  Prescribed 5.210 2.798 1 16
Prescription  Herfindahl  Index 0.447 0.232 0.097 1

Physician-­Drug  Level:
Months  to  First  Prescription 19.140 21.950 0 122

Drug-­Month  Level:
Indicator  for  New  Drug,  24  months 0.159 0.365 0 1

General:
Number  of  Unique  Prescribers   131323
Number  of  Drugs,  January  2000 6
Number  of  Drugs,  January  2000  -­  December  2010 18

Table  2:  Regression  Summary  Statistics

Notes:  This  table  summarizes  the  physician-­level  prescription  and  information  access  data  used  in  the  analysis.      Statistics  
correspond  to  U.S.  physicians  that  prescribe  a  minimum  of  ten  statin  or  lipid-­lowering  products  both  during  January-­December  
2000  and  January-­December  2010.    The  Drug  Database  indicator  is  a  binary  variable  reflecting  physician-­month  level  information  
access,  Drug  Database  and  Use  indicates  physicians  that  use  the  information  database  for  cholesterol  drugs,  and  prescription  
diversity  is  summarized  by  Number  of  Unique  Drug  Prescribed  and  the  physician-­month  level  Herfindahl  index.    Drugs  are  
considered  New  if  within  24  months  of  market  approval  by  U.S.  Food  and  Drug  Administration.    Prescription  variables  are  from  
IMS  Health  and  database  registration  data  are  from  a  leading  U.S.  point-­of-­care  medical  applications  firm.  .    



Product:     lovastatin pravastatin simvastatin Lipitor Generic Lipitor Generic
Variable (1) (2) (3) (4) (5) (6) (7)

A.  Share  in  total  prescriptions
Final  month,  December  2010

Mean 0.0648 0.0986 0.4304 0.1805 0.5938 0.1920 0.5695
Standard  deviation 0.0606 0.0764 0.1323 0.0795 0.1248 0.1103 0.1692
Min 0.0279 0.0462 0.3024 0.1111 0.4651 0 0
Max 0.1457 0.1931 0.5586 0.2696 0.7107 1 1
Max-­min  gap 0.1178 0.1469 0.2562 0.1584 0.2456 1 1

Observations 11950 11950 11950 11950 11950 81412 81412

B.  Share  in  molecule-­specific  prescriptions
Six  months  after  generic  release

Mean 0.8357 0.8725 0.8267
Standard  deviation 0.2306 0.1144 0.2159
Min 0.6370 0.7330 0.5746
Max 0.9286 0.9475 0.9402
Max-­min  gap 0.2916 0.2145 0.3656

C.  Share  in  molecule-­specific  prescriptions
Final  month,  December  2010

Mean 0.9997 0.9949 0.9980
Standard  deviation 0.0011 0.0138 0.0051
Min 0.9973 0.9669 0.9874
Max 1.0000 0.9990 0.9995
Max-­min  gap 0.0027 0.0322 0.0122

Physician  Level,  Within-­Zipcode  Average  

Table  3:  Descriptive  Statistics

Physician  Level                                                

Notes:  This  table  describes  prescription  heterogeneity  across  U.S.  physicians.  Statistics  correspond  to  U.S.  physicians  that  prescribe  a  minimum  of  30  statin  
or  lipid-­control  products  in  the  observation  month  indicated.    Panel  A  describes  prescribing  in  December  2010  across  all  physicians  (columns  6,  7),  and  the  
average  zipcode-­specific  value  across  U.S.  zipcodes  (columns  1-­5).  Panels  B  and  C  describe  physicians'  within-­molecule  substitution  toward  generics  for  
lovastatin  (column  1),  pravastatin  (column  2),  and  simvastatin  (column  3);;  all  report  average  zipcode-­specific  values  across  U.S.  zipcodes.  Panel  B  describes  
this  substitution  six  months  after  generic  release,  while  Panel  C  describes  the  final  sample  period  in  December  2010.    The  upper-­left  number  in  Panel  A  
(mean,  lovastatin,  0.0648)  is  the  average  across  U.S.  zipcodes  in  the  mean  share  (across  physicians  in  that  zipcode)  of  all  prescriptions  accounted  for  by  
lovastatin  in  December  2010;;  the  upper-­left  number  in  Panel  B  (mean,  lovastatin,  0.8357)  is  the  average  across  U.S.  zipcodes  in  the  mean  share  of  lovastatin  
and  Mevacor  prescriptions  accounted  for  by  lovastatin,  six  months  after  lovastatin's  release;;    the  upper-­left  number  in  Panel  C  (mean,  lovastatin,  0.9997)  is  the  
average  across  U.S.  zipcodes  in  the  mean  share  of  lovastatin  and  Mevacor  prescriptions  accounted  for  by  lovastatin  in  December  2010.  Generic  approval  
dates  are  from  the  U.S.  Food  and  Drug  Administration;;  all  other  variables  are  from  IMS  Health.    



Dependent  Variable:    

(1) (2) (3) (4) (5) (6)

Physician-­Drug  Information -­0.0691*** -­0.0257*** -­0.0414*** -­0.0010 0.0138** 0.0147*
0.0036 0.0069 0.0040 0.0073 0.0056 0.0083

Physician-­Drug  Information  x  Generic -­0.0751*** -­0.0578*** -­0.0470*** -­0.0469***
0.0079 0.0069 0.0120 0.0106

Drug  FE Y Y Y Y Y Y
Doctor  FE N Y N Y N Y

N 935745 935745 935745 935745 204386 204386
R-­Squared 0.3928 0.6202 0.3929 0.6202 0.4210 0.6340

Table  4:  Time  to  First  Prescription  of  New  Drug,  U.S.  Physicians,  2000—2010

Log(time  to  first  prescription  of  drug  j  by  physician  i)

                                                                    All  physicians                                                                                       Eventual  users                  

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (6)  for  U.S.  physicians'  prescription  of  
cholesterol  drugs  first  introduced  to  the  U.S.  market  during  January  2000  through  December  2010.    The  dependent  variable  captures  the  time  
lapse  between  FDA  approval  of  drug  j  and  physician  i's  initial  prescription  of  it  for  the  full  sample  of  physicians  (columns  1-­4)  and  for  the  
subset  of  physicians  that  eventually  use  the  electronic  reference  for  cholesterol  drugs  (columns  5-­6).    Information  is  an  indicator  variable  that  
is  equal  to  1  for  physicians  with  information  access  through  the  electronic  drug  reference  at  the  time  of  drug  j's  FDA  approval  and  is  otherwise  
zero.    Generic  is  an  indicator  for  the  products  pravastatin,  lovastatin,  and  simvastatin.    Regressions  include  drug  fixed  effects  (columns  1-­6)  
and  physician  fixed  effects  (columns  2,  4,  6).    Qualitatively  identical  results  obtain  with  Poisson  and  Negative  Binomial  estimation.  Robust  
standard  errors  appear  below  each  point  estimate.  
                    



Dependent  Variable:         Drug  HHI         Drug  HHI    

(1) (2) (3) (4) (5) (6)

Physician-­Month  Information   0.2517*** 0.0237*** -­0.0115*** 0.0721*** 0.0074*** -­0.0019***
0.0022 0.0007 0.0002 0.0027 0.0019 0.0003

Doctor  FE Y Y Y Y Y Y
Month  FE Y Y Y Y Y Y

N 16378056 16378056 16378056 3515201 3515201 3515201
R-­Squared 0.7496 -­ 0.5756 0.7524 -­ 0.5710

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  estimates  of  equation  (7)  for  cholesterol  drug  prescriptions  by  U.S.  physicians  during  January  
2000  through  December  2010,  including  all  sample  physicians  (columns  1-­3)  and  the  subset  of  physicians  that  eventually  use  the  electronic  reference  for  
cholesterol  drugs  (columns  4-­6).  The  dependent  variable  in  columns  1,  2,  4,  and  5  captures  the  prescription  diversity  of  physician  i  as  captured  by  the  
number  of  unique  drugs  j  she  prescribes  during  month  t.  The  dependent  variable  in  columns  3  and  6  is  the  prescription  Herfindahl-­Hirschman  index  for  
physician  i  in  month  t.    Each  column  includes  all  132  months  in  the  sample  period.    Columns  1,  3,  4,  and  6  provide  least-­squares  estimates;;  columns  2  and  5  
provide  Poisson  estimates.    Information  is  an  indicator  variable  that  is  equal  to  1  for  physicians  with  information  access  through  the  electronic  drug  reference  
database  in  month  t  and  is  otherwise  zero.    All  regressions  include  physician  and  month  fixed  effects.    Results  are  robust  to  including  zipcode-­month  fixed  
effects.  Robust  standard  errors  appear  below  each  point  estimate.  
                    
                    

Table  5:  Prescription  Diversity,  U.S.  Physicians,  2000—2010

    Number  of  Unique  Drugs         Number  of  Unique  Drugs    

                              Eventual  users                                                                All  physicians                                  



Table  6:  Prescription  Propensity,  U.S.  Physicians,  2000-­2010

Dependent  Variable:    

All  physicians Eventual  users

(1) (2)

Information  x  New  x  Generic 0.0161*** 0.0151***
0.0005 0.0005

Information  x  New  x  Branded   -­0.0025*** -­0.0017***
0.0002 0.0002

Information  x  Old  x  Generic   0.0228*** 0.0176***
0.0004 0.0004

Information  x  Old  x  Branded 0.0041*** 0.0020***
0.0001 0.0001

Drug  x  Month  FE Y Y
Physician  x  Product  FE Y Y

N 238351245 106290030
R-­Squared 0.6645 0.6660

1{Prescriptions  of  drug  j  >  0}

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (8)  
for  prescriptions  of  cholesterol  drugs  by  U.S.  physicians  during  January  2000  through  December  
2010,  including  all  sample  physicians  (column  1)  and  the  subset  of  physicians  that  eventually  use  the  
electronic  reference  for  cholesterol  drugs  (column  2).    The  dependent  variable  is  an  indicator  for  
whether  the  doctor  i   prescribes  drug  j  during  month  t.     Information  is  an  indicator  variable  that  is  
equal  to  1  for  physicians  with  information  access  through  the  electronic  drug  reference  database  and  
is  otherwise  zero.    New  is  an  indicator  that  is  equal  to  1  for  drug  products  that  are  within  24  months  of  
initial  approval  by  the  U.S.  FDA,  and  is  otherwise  zero.    Generic  indicates  the  products  pravastatin,  
lovastatin,  and  simvastatin.    All  regressions  include  drug-­month  fixed  effects  and  physician-­drug  fixed  
effects.    Results  are  robust  to  logit  estimation  and  zipcode-­month  fixed  effects.  Standard  errors  
appear  below  each  point  estimate.    
                    



Dependent  Variable:    

(1) (2) (3) (4)

Physician-­Drug  Information   -­0.0688*** -­0.0266*** -­0.0406*** -­0.0014
0.0036 0.0069 0.0041 0.0073

Physician-­Drug  Information  x  Generic   -­0.0768*** -­0.0594***
0.0080 0.0070

Physician-­Drug  Placebo  Information   0.0029 -­0.0128* 0.0079 -­0.0091
0.0042 0.0071 0.0048 0.0076

Physician-­Drug  Placebo  Information  x  Generic   -­0.0145 -­0.0113
0.0091 0.0079

Drug  FE Y Y Y Y
Doctor  FE N Y N Y

N 935745 935745 935745 935745
R-­Squared 0.3928 0.6202 0.3929 0.6202

Table  7:  Placebo  Test,  Time  to  First  Prescription  of  New  Drug,  U.S.  Physicians,  2000—2010

Log(time  to  first  prescription  of  drug  j  by  physician  i)

All  physicians

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (6)  for  U.S.  physicians'  
prescription  of  cholesterol  drugs  first  introduced  to  the  U.S.  market  during  January  2000  through  December  2010.    The  
dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i's  initial  prescription  of  it  for  the  full  
sample  of  physicians.  Information  is  an  indicator  variable  that  is  equal  to  1  for  physicians  with  information  access  through  the  
electronic  drug  reference  at  the  time  of  drug  j's  FDA  approval  and  is  otherwise  zero;;  Placebo  Information  indicates  physicians  
that  have  database  access  but  during  the  sample  period  never  use  it  to  look  up  a  cholesterol  drug.  Generic  is  an  indicator  for  
the  products  pravastatin,  lovastatin,  and  simvastatin.    Regressions  include  drug  fixed  effects  (columns  1-­4)  and  physician  fixed  
effects  (columns  2,  4).    Qualitatively  identical  results  obtain  with  Poisson  and  Negative  Binomial  estimation.  Robust  standard  
errors  appear  below  each  point  estimate.  
                    



Dependent  Variable:           Drug  HHI         Drug  HHI    

(1) (2) (3) (1) (2) (3)

Physician-­Month  Information   0.2614*** 0.0248*** -­0.0121*** 0.1335*** 0.0106*** -­0.0048***
0.0021 0.0007 0.0002 0.0024 0.0018 0.0003

Physician-­Month  Placebo  Information 0.0825*** 0.0094*** -­0.0056*** -­0.0420*** -­0.0038** 0.0015***
0.0021 0.0006 0.0002 0.0023 0.0018 0.0002

Doctor  FE Y Y Y Y Y Y
Month  FE Y Y Y Y Y Y

N 16378056 16378056 16378056 7338162 7338162 7338162
R-­Squared 0.7497 -­ 0.5756 0.7497 -­ 0.5723

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  estimates  of  equation  (7)  for  cholesterol  drug  prescriptions  by  U.S.  physicians  during  January  
2000  through  December  2010,  including  all  sample  physicians  (columns  1-­3)  and  the  subset  of  physicians  that  eventually  use  the  electronic  reference  for  
cholesterol  drugs  (columns  4-­6).  The  dependent  variable  in  columns  1,  2,  4,  and  5  captures  the  prescription  diversity  of  physician  i  as  captured  by  the  number  of  
unique  drugs  j  she  prescribes  during  month  t.  The  dependent  variable  in  columns  3  and  6  is  the  prescription  Herfindahl-­Hirschman  index  for  physician  i  in  month  
t.    Columns  1,  3,  4,  and  6  provide  least-­squares  estimates;;  columns  2  and  5  provide  Poisson  estimates.    Information  is  an  indicator  variable  that  is  equal  to  1  for  
physicians  with  information  access  through  the  electronic  drug  reference  database  in  month  t  and  is  otherwise  zero;;  Placebo  Information  indicates  physicians  
that  have  database  access  but  durign  the  sample  period  never  use  it  to  look  up  a  cholesterol  drug.      All  regressions  include  physician  and  month  fixed  effects.    
Results  are  robust  to  including  zipcode-­month  fixed  effects.  Robust  standard  errors  appear  below  each  point  estimate.    
                    
                    

Table  8:  Placebo  Test,  Prescription  Diversity,  U.S.  Physicians,  2000—2010

                              Eventual  adopters                                  

                Number  of  Drugs              

                              All  physicians                                  

                Number  of  Drugs              



Dependent  Variable:    

All  physicians Eventual  adopters

(1) (2)

Information  x  New  x  Generic 0.0164*** 0.0166***
0.0005 0.0005

Information  x  New  x  Branded   -­0.0021*** 0.0005**
0.0002 0.0003

Information  x  Old  x  Generic   0.0238*** 0.0176***
0.0004 0.0005

Information  x  Old  x  Branded 0.0042*** 0.0013***
0.0001 0.0001

Placebo  Information  x  New  x  Generic   0.0134** 0.0136**
0.0005 0.0005

Placebo  Information  x  New  x  Branded   0.0060*** 0.0089***
0.0002 0.0003

Placebo    Information  x  Old  x  Generic   0.0129*** 0.0073***
0.0003 0.0004

Placebo  Information  x  Old  x  Branded 0.0024*** -­0.0001
0.0001 0.0001

Drug  x  Month  FE Y Y
Physician  x  Product  FE Y Y

N 238351245 106290030
R-­Squared 0.6645 0.6660

Table  9:  Placebo  Test,  Prescription  Propensity,  U.S.  Physicians,  2000-­2010

1{Prescriptions  of  drug  j  >  0}

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (8)  for  
prescriptions  of  cholesterol  drugs  by  U.S.  physicians  during  January  2000  through  December  2010,  
including  all  sample  physicians  (column  1)  and  the  subset  of  physicians  that  eventually  use  the  electronic  
reference  for  cholesterol  drugs  (column  2).    The  dependent  variable  is  an  indicator  for  whether  the  doctor  i  
prescribes  drug  j  during  month  t.    Information  is  an  indicator  variable  that  is  equal  to  1  for  physicians  with  
information  access  through  the  electronic  drug  reference  database  in  month  t  and  is  otherwise  zero;;  
Placebo  Information  indicates  physicians  that  have  database  access  but  durign  the  sample  period  never  
use  it  to  look  up  a  cholesterol  drug.    New  is  an  indicator  that  is  equal  to  1  for  drug  products  that  are  within  
24  months  of  initial  approval  by  the  U.S.  FDA,  and  is  otherwise  zero.    Generic  indicates  the  products  
pravastatin,  lovastatin,  and  simvastatin.    All  regressions  include  drug-­month  fixed  effects  and  physician-­
drug  fixed  effects.    Results  are  robust  to  logit  estimation  and  zipcode-­month  fixed  effects.  Standard  errors  
appear  below  each  point  estimate.                  



Dependent  Variable:  

(1) (2) (3) (4) (5) (6) (7) (8)

Physician-­Drug  Information -­0.0580*** -­0.0297** -­0.0277*** 0.0005 -­0.0738*** -­0.0238*** -­0.0468*** -­0.0012
0.0065 0.0127 0.0082 0.0137 0.0044 0.0085 0.0055 0.0092

Physician-­Drug  Information  x  Generic -­0.0809*** -­0.0688*** -­0.0736*** -­0.0534***
0.0134 0.0118 0.0091 0.0081

Drug  FE Y Y Y Y Y Y Y Y
Doctor  FE N Y N Y N Y N Y

N 304153 303778 304153 303778 631529 630916 631529 630916
R-­Squared 0.3949 0.6262 0.3950 0.6262 0.3928 0.6179 0.3926 0.6180

Table  10:  Mandatory  Substitution  Laws  by  Zipcode,  Time  to  First  Prescription,  U.S.  Physicians,  2000—2010

With  Mandatory  Substitution  Law Without  Mandatory  Substitution  Law

Log  Time  to  First  Rx

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (6)  for  U.S.  physicians'  prescription  of  cholesterol  drugs  first  
introduced  to  the  U.S.  market  during  January  2000  through  December  2010.    The  estimates  are  presented  for  two  subsamples:  physicians  located  in  states  with  active  
mandatory  substitution  laws  (columns  1-­4)  and  those  without  such  laws  (columns  5-­8).    The  dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  
and  physician  i's  initial  prescription  of  it.    Information  is  an  indicator  variable  that  is  equal  to  1  for  physicians  with  information  access  through  the  electronic  drug  
reference  at  the  time  of  drug  j's  FDA  approval  and  is  otherwise  zero.    Generic  is  an  indicator  for  the  products  pravastatin,  lovastatin,  and  simvastatin.    Regressions  
include  drug  fixed  effects  (columns  1-­8)  and  physician  fixed  effects  (columns  2,  4,  6,  8).    Qualitatively  identical  results  obtain  with  Poisson  and  Negative  Binomial  
estimation.  Robust  standard  errors  appear  below  each  point  estimate.  



Dependent  Variable:  

(1) (2) (3) (4) (5) (6) (7) (8)

Physician-­Drug  Information -­0.0647*** -­0.0552*** -­0.0336** -­0.0191 -­0.0589*** -­0.0628*** -­0.0394** -­0.0427*
0.0127 0.0228 0.0161 0.0249 0.0130 0.0236 0.0165 0.0258

Physician-­Drug  Information  x  Generic -­0.0823*** -­0.0831*** -­0.0517 -­0.0468*
0.0262 0.0233 0.0269* 0.0239

Drug  FE Y Y Y Y Y Y Y Y
Doctor  FE N Y N Y N Y N Y

N 49479 49479 49479 49479 45100 45100 45100 45100
R-­Squared 0.3784 0.5519 0.3784 0.5520 0.3883 0.5596 0.3884 0.5596

Log  Time  to  First  Rx

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (6)  for  U.S.  physicians'  prescription  of  cholesterol  drugs  first  
introduced  to  the  U.S.  market  during  January  2000  through  December  2010.    The  estimates  are  presented  for  two  subsamples:  physicians  located  in  U.S.  4-­digit  
zipcodes  in  the  bottom  five  percent  based  on  the  number  of  pharmaceutical  patents  filed  with  the  USPTO  since  1976  (columns  1-­4)  and  those  located  in  the  top  five  
percent  (columns  5-­8).    The  dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i's  initial  prescription  of  it.    Information  is  an  
indicator  variable  that  is  equal  to  1  for  physicians  with  information  access  through  the  electronic  drug  reference  at  the  time  of  drug  j's  FDA  approval  and  is  otherwise  
zero.    Generic  is  an  indicator  for  the  products  pravastatin,  lovastatin,  and  simvastatin.    Regressions  include  drug  fixed  effects  (columns  1-­8)  and  physician  fixed  
effects  (columns  2,  4,  6,  8).    Qualitatively  identical  results  obtain  with  Poisson  and  Negative  Binomial  estimation.  Robust  standard  errors  appear  below  each  point  
estimate.  

Top  5  Percent  by  Pharmaceutical  Innovation

Table  11:  Medical  Innovation  by  Zipcode,  Time  to  First  Prescription,  U.S.  Physicians,  2000—2010

Bottom  5  Percent  by  Pharmaceutical  Innovation



        Z  =  0                 Z  =  1        
(1) (2) (3)

A.  December  2010
Mean 0.1762 0.1522
Estimated  difference  in  means     -­0.0236***
Standard  error 0.0014

B.  January  2000
Mean 0.2162 0.2037
Estimated  difference  in  means     -­0.0093***
Standard  error 0.0015

C.  January  2010  vs.  2000
Difference  in  means   -­0.0400 -­0.0515
Estimated  difference  in  differences   -­0.0107***
Standard  error   0.0017
Estimated  average  change   -­0.0447***
Standard  error   0.0011

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  summarizes  prescription  heterogeneity  across  U.S.  
physicians  and  over  time.    Columns  1  and  2  indicate  the  average  Euclidean  distance  (norm)  between  the  
vector  of  physician-­i  prescription  shares  across  drugs  j  and  the  vector  of  average  prescription  shares  in  
December  2010  (Panel  A)  and  in  January  2000  (Panel  B)  for  physicians  without  access  to  the  electronic  
database  in  December  2010  (column  1)  and  for  physicians  with  access  in  December  2010  (column  2).    Column  
3  presents  estimates  from  two  cross-­section  regressions  in  which  the  mean  Euclidean  distance  between  
physician  i  and  his  group  average  is  the  dependent  variable,  regressed  on  an  indicator  for  database  access  in  
December  2010  and  zipcode  fixed  effects.    Panel  C  provides  difference-­in-­differences  estimates  with  two  time  
periods  (January  2000  and  December  2010);;  the  dependent  variable  is  as  in  Panels  A  and  B,  and  is  regressed  
on  an  indicator  for  December  2010,  its  interaction  with  the  indicator  for  database  access,  and  physician  fixed  
effects.    Standard  errors  appear  below  each  point  estimate.      

Table  12:  Information  and  Prescribing  Heterogeneity  Among  U.S.  Physicians

      Rx  Shares  -­  Euclidean  Distance  to  the  Mean    



Panel  A  —  Generic  Share  in  Cholesterol  Drug  Prescriptions Panel  B  —  Lipitor  Share  in  Cholesterol  Drug  Prescriptions

Panel  C  —  Cost  per  Tablet  Dispensed  

Notes:  This  figure  illustrates  the  prescription  of  pharmaceutical  drug  products  across  U.S.  zipcodes,  specifically  for  products  aimed  at  adjusting  blood  cholesterol  and  lipid  
levels.    Panel  A  illustrates  the  share  of  dispensed  prescriptions  corresponding  to  generic  products  (lovastatin,  pravastatin,  and  simvastatin)  by  zipcode;;  Panel  B  illustrates  
the  share  corresponding  to  Lipitor,  the  most  expensive  drug  at  the  time;;  Panel  C  illustrates  an  approximation  of  the  average  cost  per  pill  disensed  using  price  data  from  the  
Centers  for  Medicare  and  Medicaid  Services.    In  each  panel,  darker  shades  indicate  higher  values  of  the  variable  indicated.    All  figures  correspond  to  prescriptions  filled  in  
December  2010  based  on  data  from  IMS  Health.
                    

Figure  1:  Heterogeneity  in  Prescribing,  by  U.S.  Zipcode,  December  2010



Panel  A  —  By  school  rank Panel  B  —  By  graduation  year

Panel  C  —  By  sex Panel  D  —  By  monthly  prescription  volume  

Panel  E  —  By  medical  specialty Panel  F  —  By  U.S.  region

Notes:    This  figure  plots  the  fraction  of  the  131,232  sample  U.S.  physicians  that  are  registered  users  of  the  electronic  drug  reference  
database  by  the  date  indicated,  and  shows  the  extent  to  which  adoption  rates  differ  across  physicians  according  their  observable  
characteristics.    Database  registration  data  are  from  a  leading  U.S.  point-­of-­care  medical  applications  firm.    Medical  school  rank  is  
determined  based  on  data  from  the  U.S.  News  and  World  Report  service,  and  all  other  variables  are  from  the  CMS  Physician  Compare  
database.
                    

Figure  2:  Heterogeneity  in  Adoption  of  the  Drug  Reference  Database,  January  2000  -­  December  2010



Panel  A  —  One  Month  After  Release Panel  B  —  Three  Months  After  Release

Panel  C  —  Six  Months  After  Release Panel  D  —  Thirty-­Six  Months  After  Release

Notes:  This  figure  illustrates  the  gradual  diffusion  of  a  new  pharmaceutical  drug,  the  statin  Crestor,  across  zipcodes  within  the  continental  United  States.    Dark  shades  indicate  
zipcodes  in  which  at  least  one  prescription  of  Crestor  has  been  written  and  filled,  light  shades  indicate  zipcodes  in  which  Crestor  has  not  yet  been  prescribed;;  areas  shaded  
white  contain  no  data.    The  four  panels  correspond  to  four  points  in  time  following  the  initial  market  introduction  of  Crestor  in  August  2003.    These  four  points  are  September  
2003  (Panel  A),  November  2003  (Panel  B),  February  2004  (Panel  C),  and  August  2006  (Panel  D).    Prescription  data  are  from  IMS  Health.
                    

Figure  3:  Heterogeneity  in  the  Initial  Use  of  a  New  Medical  Technology,  by  U.S.  Zipcode



Appendix

A.1 Medical Innovation

Innovation in hypercholesterolemia and dyslipidemia therapy: Information about the
evolving set of pharmaceutical therapies available for prescription was obtained from the U.S. Food
and Drug Administration (FDA) for the period January 2000 through December 2010. Twelve
new statin or lipid-lowering drugs, including new formulations, combinations, and versions, intro-
duced during this period and are described below. These include three new molecular entities
Crestor, Lovaza, and Zetia; three generic versions lovastatin (Mevacor), pravastatin (Pravachol),
and simvastatin (Zocor); two new formulations Altoprev (extended-release Mevacor) and Lescol XL
(extended-release Lescol); and four new drug combinations Advicor (extended-release niacin and
Mevacor), Pravigard PAC (aspirin and Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-
release niacin and Zocor). A description of each drug innovation appears below based on publicly
available data including approval letters and administrative, medical, and pharmacological review.
Baycol was withdrawn early in the sample period in August 2001 and is thus omitted.

Existing therapies available in January 2000:
1. Lescol (fluvastatin) is a statin marketed by Novartis since its FDA approval as a new molecular
entity on December 31, 1993; its patent protection expired in 2012. Like other statins, its mechanism
of action is to limit a specific enzyme in the liver, preventing cholesterol synthesis.
2. Lipitor (atorvastatin) is a statin marketed by Pfizer. Its mechanism of action is similar to that
of fluvastatin, but unlike other statins, atorvastatin is a synthetic compound. The therapy was
approved by the FDA as a new molecular entity on December 17, 1996. Between 1996 and 2012,
Lipitor was the best-selling drug globally; its patent expired in November 2011.
3. Mevacor (lovastatin) is the first statin to receive FDA approval. The drug was approved as a
new molecular entity on August 31, 1987 for sale in the United States by Merck. The therapy was
protected by patents through June 2001.
4. Niaspan (extended-release niacin) is vitamin B3, or nicotinic acid, and is marketed by Abbott
Laboratories. Extended-release niacin was approved for sale in the United States on July 28, 1997.
5. Pravachol (pravastatin) is a statin marketed by Bristol Myers Squibb since its FDA approval on
October 31, 1991. In addition to inhibiting cholesterol synthesis, Pravachol also inhibits low-density
lipoprotein synthesis. Two clinical trials, each completed in November 2003, suggest Pravachol is
outperformed by both Zocor and Lipitor. Patent protection expired in June 2006.
6. Zocor (simvastatin) is a statin marketed by Merck since its FDA approval as a new molecu-
lar entity on December 23, 1991. Zocor outperformed Pravachol in its prevention of cholesterol
synthesis in a clinical trial completed in November 2003. Patent protection expired in April 2006.

New chemical entities, January 2000–December 2010:
1. Crestor (rosuvastatin calcium) is a new molecular entity approved by the FDA for sale in the
United States by Astra Zeneca Pharmaceuticals on August 12, 2003. The molecule acts by reducing
intestinal absorption of cholesterol and related phytosterols, and is thereby distinct relative to
other statin therapies. The drug was approved for use in treating primary hypercholesterolemia
and mixed dyslipidemia (by reducing total-C, LDL-C, and Apo B), and as an adjunct to other
lipid-lowering treatments. It was thus approved for use alone or with other statins. A 2008 clinical
trial revealed additional evidence supporting the superior performance of Crestor compared with a
placebo treatment. Patent protection expires in January 2016.
2. Lovaza (omega-3-acid ethyl esters) is a new molecular entity introduced by Abbott labs and
approved by the FDA on November 10, 2004. It was initially introduced under the trade name
Omacor. Unlike statins, Lovaza is aimed at reducing tricylerides rather than low-density lipopro-



teins and may thus be combined with a statin as an adjunct therapy. Patent protection expired in
September 2012.
3. Zetia (ezetimibe) is a new molecular entity introduced by Schering and approved by the FDA on
October 25, 2002 for sale in the United States. The molecule acts by reducing intestinal absorption
of cholesterol and related phytosterols, and is thus distinct from statins. The drug was initially
approved for use in treating hypercholesterolemia for use alone or with other statins. In January
2008, a clinical trial found Zetia performed poorly compared with other therapies, and it was at
that time recommended that Zetia not be prescribed except in cases for which all other cholesterol
drugs had previously failed. Patent protection expires in April 2017.

New generic versions, January 2000–December 2010:
1. Lovastatin is the generic equivalent of Mevacor, and was initially approved by the FDA for sale
in the United States by Geneva Pharmaceuticals applied on December 17, 2001.
2. Pravastatin is the generic equivalent of Pravachol, and was initially approved by the FDA for
sale in the United States by Teva Pharmaceuticals on April 24, 2006.
3. Simvastatin is the generic equivalent of Zocor, and was initially approved by the FDA for sale
in the United States by Teva Pharmaceuticals on June 23, 2006.

New dosage forms, January 2000–December 2010:
1. Altoprev (extended-release lovastatin) is a new dosage form and was approved by the FDA
on June 26, 2002 for sale in the United States, following a new drug application by Aura Phar-
maceuticals, Inc. of March 30, 2001. The approval is for use of Altoprev for lowering cholesterol
and LDL-C to target levels along with diet and exercise, to slow the progression of atherosclerosis
in patients with coronary heart disease, and to reduce total-C, LDL-C, Apo B, and triclycerides
and to increase HDL-C in patients with dyslipoproteinemia. The drug was found to outperform
Mevacor (lovastatin). Altoprev is protected by patents though at least December 2017.
2. Lescol XL (extended-release Lescol) is a new dosage form and was approved by the FDA for sale
in the United States by Novartis on October 6, 2000. Patent protection expired in 2012.

New drug combinations, January 2000–December 2010:
1. Advicor (Mevacor and extended-release Niacin) is a new drug combination approved by the
FDA on December 17, 2001 for sale in the United States by Kos Pharmaceuticals. Advicor was
approved for use in treating primary hypercholesterolemia and mixed dyslipidemia in two types of
patients: a) those treated with lovastatin who require further triglyceride lowering or HDL raising
who may benefit from adding niacin to their regimen, and b) patients previously treated with niacin
who require further LDL lowering and may benefit from having lovastatin added to their regimen.
Thus, Advicor was not approved as an initial therapy for lowering LDL levels. Moreover, in clinical
trials, Advicor was found to perform no better than Mevacor as a first-line agent.
2. Pravigard PAC (Pravachol and aspirin) is a new drug combination approved by the FDA on
June 24, 2003 for sale in the United States by Bristol Myers Squibb.
3. Vytorin (Zetia and Zocor) is a new drug combination approved by the FDA for use, along
with diet or with other lipid-lowering treatments to reduce total C, LDL-C and raise HDL-C, on
July 23, 2004 by MSP Singapore company, LLC. The drug combination was more effective at
lowering lipids, but was also associated with more adverse events (both serious and leading to
discontinuation) than either monotherapy. In January 2008, a completed clinical trial revealed
Zetia, a component of Vytorin, performed poorly relative to other therapies.
4. Simcor (simvastatin and extended-release niacin) is a new drug combination approved by the
FDA on February 15, 2008 for sale in the United States by Abbott Laboratories. Like Advicor,
Simcor is approved only as a second-line treatment for cases in which the monotherapy is considered
to be inadequate.



A.2 Data

U.S. Prescriptions for Hypercholesterolemia and Dyslipidemia Therapies: Prescription
data for U.S. medical practitioners and each of the products described above were obtained from
the IMS Health Xponent database. IMS Health draws its prescription data from a large but non-
random sample of approximately 70 percent of U.S. pharmacies. As of 2011, Xponent includes direct
information from over 38,000 retail stores, including approximately 119 mail-service pharmacies
and 820 long-term care facilities; this compares with a universe of approximately 57,000 retail
pharmacies, 327 mail-service outlets, and 3,000 long-term care facilities. To correct for sampling
error and to ensure the data are representative, IMS Health has applied a proprietary re-weighting
procedure to arrive at the prescription data provided to us for this study. Weights are constructed by
combining pharmacy data with additional pharmaceutical sales data derived from multiple payor-
based sources; these latter data provide detailed information regarding the prescription sales of
nearly all non-sample pharmacies so that it may accurately represent the universe of prescription
sales. If the response rate for a particular pharmacy is low relative to other pharmacies in a
region, for example, IMS Health is able to re-weight observed prescription data for that pharmacy
so that the total quantity purchased by a physician in that region is nevertheless representative.
Importantly, this weighting procedure applies only to strictly positive prescription levels, but does
not apply to zeros, enabling us to accurately track the initial adoption of new products over time
for each physician.

The data IMS Health provided include prescriptions by 280,622 unique U.S. physicians for each
product in each month during January 2000 through December 2010. To avoid studying physicians
specialized outside cardiovascular care, we restrict analysis to physicians that prescribe at least
some cholesterol products. Specifically, for a physician to be included in the dataset, he or she
needs to have written at least ten filled prescriptions for cholesterol therapies during the calendar
year 2010. The data provide precise identifying information for each prescribing physician, includ-
ing the unique, 11-digit American Medical Association Medical Education Number, the first name,
last name, and middle name, and the five-digit zipcode corresponding to the medical practice of the
physician. From January 2006 through December 2010, the data provide additional detail regard-
ing prescriptions: for each drug, a separate prescription count is observed for each of four payment
methods, including Medicare Part D, Fee-for-Service Medicaid, cash, and commercial insurance. In
the data, approximately half of dispensed prescriptions for cholesterol drugs correspond to individ-
uals with commercial insurance; 34 percent obtain products through Medicare Part D, ten percent
purchase medications with cash, and the remaining six percent are covered by Medicaid.

To prepare the data for analysis, we reshaped the files provided so that each row corresponds to
a doctor-drug-month triplet. With guidance from IMS Health, zeros were explicitly introduced in
this step for missing observations corresponding to existing products not associated with positive
prescriptions in the IMS data. Starting in 2006, we aggregated prescriptions across methods of
payment to arrive at a single number of prescriptions written by physician, drug, and month. We
combined prescriptions for “Pravastatin” and “Pravastatin SOD”, which are the same product, and
did likewise for “Lovaza” and “Omacor”, which are the same product. We dropped Baycol from the
dataset. For some years, due to the projection calculation described above, the prescription variable
was not a whole number; with guidance from IMS Health, we rounded the number of prescriptions
to the nearest whole number. To abstract from physician entry during the sample period, we impose
a sample restriction in addition to that described above: specifically, each physician included must
prescribe at least ten cholesterol drugs during the calendar year 2000. Finally, we used information
from the U.S. FDA to determine the approval date for each therapy. The first month after this
date was determined to be the first month of a drug’s market life in the United States. We created
indicator variables for drugs that are new corresponding to the first six months of the drug’s market



life in the United States, and separately, to the first 24 months of the drug’s market life in the United
States. We created indicator variables for generic products lovastatin, pravastatin, and simvastatin.

Electronic Database Use for Hypercholesterolemia and Dyslipidemia Therapies, by
U.S. Physicians: We obtained data on individual physicians’ information access from the leading
U.S. point-of-care medical applications firm. For each physician, we observe the corresponding
initial database registration date; this is used to construct the indicator variable Zit that takes on
a value of one for registered users, and that is otherwise zero. For each physician-product-month
triplet, we also observe a proxy for the number of lookups completed. During January 2000 through
December 2010, the share of sample physicians registered as database users rose from 0.003 to 0.446.
Our analysis is thus based on a sample combining a) physicians that first registered during or before
the sample period (44.3 percent), and b) physicians that registered before the sample period (0.3
percent) and c) physicians that never registered (55.4 percent). Each physician is identified in the
data by a unique, 11-digit American Medical Association Medical Education Number, first name,
last name, middle name, and five-digit zipcode. These characteristics form the basis for a merge
with the prescription information described above.




