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Abstract

A growing literature has sought to quantify the impacts of natural disasters on economic
growth, but has found seemingly contradictory results, ranging from positive to very large
negative effects. This paper brings a novel macroeconomic model-based perspective to
the data. We present a stochastic endogenous growth model where individual regions
face uninsurable cyclone risks to human and entrepreneurial capital, building on the tools
developed in the incomplete markets macroeconomics literature (Krebs, 2003, Angeletos,
2007). Our model can reconcile key divergent results from prior empirical studies, as they
measure different elements of the overall impact of disasters on growth: (1) Higher disaster
risk can increase growth by increasing (precautionary) savings, whereas disaster strikes
induce (potentially persistent) output losses, in line with the empirical evidence of positive
growth effects in cross-sectional analyses (e.g., Skidmore and Toya, 2002) but negative
impacts in panel studies (e.g., Hsiang and Jina, 2015a). We explore a combined two-step
estimation to assess the overall impact of cyclones on growth, which - on average - appears
to lie in between. (2) Competing measures of cyclone risk - average capital destruction,
fatalities, or storm intensity - can be related to growth in opposite ways, again in line
with the literature (e.g., Hsiang and Jina, 2015b vs. Skidmore and Toya, 2002). Intuitively,
long-run growth depends on the level and composition of investments across different assets,
which, in turn, depend differentially on the vector of expected damages to all capital goods.
(3) Finally, we show that disaster risk can have opposite effects on growth and welfare.
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1 Introduction

How do natural disasters affect economic growth? A rich empirical literature continues to analyze
this question, but has come to seemingly contradictory conclusions, ranging from positive to very
large negative impacts of disasters on growth. While the direct costs of natural disasters are well-
established to be large (Bakkensen and Mendelsohn, 2016; Ranson et al., 2014) and increasing due
to global changes (Mendelsohn et al., 2012; Nordhaus, 2010), the macroeconomic consequences
of disasters thus remain an open question. Resolving this question is arguably important as both
the adaptation to and valuation of changes in disaster risks - such as due to climate change -
require a detailed understanding of disaster impacts’ magnitudes and mechanisms.

This paper brings a novel macroeconomic model-based perspective to the data in order to
reconcile and build upon the empirical literature on disasters and growth. Despite its importance
and richness, this literature currently features two main gaps. First, the empirical growth liter-
ature has found a range of seemingly contradictory results, ranging from positive impacts (e.g.,
Skidmore and Toya, 2002) to extremely large negative effects (Hsiang and Jina, 2015, “HJ").
These differences have yet to be reconciled, and it remains unclear how competing empirical
settings and methodologies impact the results. The second key gap is the lack of connection
between empirical work with macroeconomic growth models. As HJ note, it is difficult to com-
pare empirical estimates without the context of a growth model. While there have been some
important recent advances in the theory of disasters and growth (e.g., Akao and Sakamoto, 2014;
Ikefuji and Horii, 2012), these works have pursued limited empirical connections, and/or employ
models with a different focus[| This paper takes advantage of the tools developed in the literature
on incomplete markets and growth (e.g., Angeletos, 2007; Krebs, 2003) to develop a structural
perspective on disasters. We seek to inform both gaps by developing a macroeconomic stochastic
endogenous growth model of disaster risk and impacts, where individual regions face uninsurable
idiosyncratic cyclone risks to their human and entrepreneurial capital’] We then use the model
to re-evaluate the literature and the data through a structural lens.

The main result is that the model can reconcile some key divergent results from prior em-
pirical studies, as they measure different elements of the overall impact of natural disasters on
growth: (1) Higher hurricane risk can increase growth by increasing (precautionary) savings
rates, whereas hurricane strikes induce (potentially persistent) output losses. Consequently, we

should potentially expect cross-sectional studies of cyclone risk and long-run growth (e.g., Skid-

! For example, Akaho and Sakamoto (2014) employ a single-region model focusing on aggregate shocks, whereas

we focus on idiosyncratic uninsurable disaster risks to regions within a larger economy. Ikefuji and Horii’s
(2012) focus on endogenous disaster risk from pollution and growth.

We use tropical cyclones ("hurricanes") as natural disaster. Previous literature has shown heterogeneous
impacts of disasters on growth, making the focus on a specific category desirable. Cyclones are large, frequent,
and well-recorded for many years. The growth impacts of other types of disasters are left for future work.



more and Toya, 2002) to find opposite results from panel fixed-effects studies identifying the
impact of cyclone strikes, as is indeed the case. While competing empirical approaches identify
different aspects of the growth question, neither cross-sectional nor panel fixed-effects specifi-
cations may thus be individually sufficient to capture the overall effect of disasters on growth.
We explore a two-step estimation procedure that seeks to adjust directly for the dependence of
countries’ average growth rates on cyclone risk. We empirically find that average growth in a
world without cyclone strikes is positively associated with cyclone risk, in line with the model.
Our best estimate of the overall impact of cyclones on growth lies between the large negative
cumulative effect of strikes and the positive effect of risk. (2) Alternative measures of cyclone
risk - such as average damages to physical versus human capital, or average storm intensity - can
be related to growth in opposite ways. Consequently, we should expect cross-sectional studies
employing different measures to find different results, as is indeed the case. For example, Hsiang
and Jina (2015b) document a negative relationship between average cyclone-induced capital de-
preciation and long-run growth, whereas Skidmore and Toya’s (2002) find a positive association
between the average number of disasters and growth. In our model, long-run growth depends on
the level and composition of households’ investments in assets with different productivities and
disaster vulnerabilities. A decline in the expected returns to investments in, e.g.,. human capital
due to higher expected cyclone damages can thus increase investment in other, potentially more
productive (but riskier) assets, such as entrepreneurial capital, increasing growth. While empir-
ical studies using different individual cyclone risk measures identify different elements of growth
impacts, our model suggests that the overall impact of cyclone risk on growth depends on the
entire vector of expected damages, as well as impact variance and covariance measures, which
have seldom been included in empirical studies. (3) Finally, we show that cyclone risk can have
opposite effects on growth and welfare. That is, the growth impacts of cyclone risks may not be of
the same sign as the welfare impact of those risks. Consequently, joint advances in theory, data,
and empirics will likely be neeed to improve our understanding of these environment-economy
interactions.

The paper is structured as follows. Section [2| reviews the relevant empirical and theoretical
disaster growth literatures. Section [3| presents our model setup, predictions for cyclones and
long-run growth, transitional impacts, and implications for the empirical literature. Section
presents our empirical methodology, data, and results. We conclude in Section [5| and present the

Appendix in Section [6]



2 Disasters and Growth Literature

A growing area of literature exists to identify and explain the impacts of natural disasters on
human communities. Broadly, empirical literature aims to identify the impact of natural disasters
on direct and indirect losses as well as broader macroeconomic impacts. Motivated by our model,
we include direct impact studies in our review, as they represent damages to physical and human
capital that endogenously generate growth impacts through changes in the capital stock as well

as investment behavior.

2.1 Empirical Approaches

Extensive literature exists analyzing the impacts of natural disasters on direct losses and economic
growth (Cavallo and Noy, 2011; Kousky, 2014). First, new and growing literature analyzes the
impact of exogenous disaster shocks on economic growth, with a range of conclusions. Using a
cross-sectional approach, Skidmore and Toya (2002) find that countries with higher frequencies
of disasters have, on average, higher average economic growth rates. This is driven by climatic
events, whereas geologic events, such as earthquakes, are negatively correlated with growth. Noy
(2009) empirically analyzes the impact of endogenous and exogenous variables on the annual
growth rate using a panel of 109 countries using the Hausman-Taylor estimator (1981). Using
a month of disaster onset normalization, they find that only damages impact the growth rate
and not fatalities or number of individuals affected. The analysis does not analyze the impact
of long-run disaster risk, as does Skidmore and Toya, instead looking at the contemporaneous
impacts of a disaster on economic growth. Hsiang and Jina (2015) use a panel fixed effects
specification to analyze the impact of disasters lagged up to twenty years on current growth.
They also perform simulations to model counter-factual growths rates, if no hurricanes had ever
occurred. They conclude that hurricanes have a minor but persistent impact on growth. Once
integrated over time, these losses become very large. Similar to Noy, Hsiang and Jina control for
the long-run cyclone risk in their empirical specification, identifying off of individual shocks.

In a similar spirit, Cavallo, Galiani, Noy, and Pantano (2013) use synthetic control to con-
struct counter-factual no-disaster growth rates of countries impacted by disasters. They find that
only the most extreme disasters have negative growth impacts in both the short and long runs.
However, significant political revolutions is an important variable that, once included, wash away
the negative impact of disasters on growth. Hochrainer (2009) also uses counter-factual analysis,
finding that disaster impacts are negative but small, with larger shocks leading to larger impacts.
He also analyzes factors that increase vulnerability to macroeconomic losses, finding that less
aid or remittances increases harm. Loayza, Olaberria, Rogolini, and Christiansen (2009) find

that disasters have heterogeneous impacts across disaster types and sectors, with some small dis-



asters triggering positive growth impacts. However, large disasters only have negative impacts.
Lastly, they find that developing countries are more sensitive to natural disaster impacts. Using
a vector autoregressive approach, Fomby, Tkeda, and Loayza (2013) finds similar results. Strobl
(2011) conducts a careful analyses of the impact of hurricane strikes on county-level growth in
the United States. He finds that the average impact of a landfall on growth is -0.45 percentage
points, however one quarter of that impact is due to migration of richer individuals. Strobl does
not find any impacts at the state or national level, nor negative long run impacts. Therefore,
the empirical growth literature, taking very different approaches, finds a wide range of results.
No attempts have been made to reconcile these findings. Klomp and Valckz (2014) conduct a
meta-analysis and find a negative impact of disasters on growth, but note that this could be,
in part, due to publication bias. Lazzaroni and van Bergeijk (2014) find similar results in their
meta-analysis of 64 primary studies.

Underpinning macroeconomic growth are the stocks of both human and physical capital.
Thus, much of the literature on the direct and indirect impacts of natural disasters also usefully
informs determinants of macroeconomic growth impact channels. Concerning physical capital,
Leiter, Oberhofer, and Raschky (2009) use a difference-in-difference approach and find that flood-
hit companies have, on average, higher growth in assets and employment, relative to non-flooded
firms. These affects are concentrated among firms with more intangible assets. Mechler (2009)
analyzes nontraditional national accounting metrics, including savings rates, to model post-
disaster consumption, finding that poorer countries are most hit by capital stock losses, whereas
richer countries rely more on human capital and technology to mitigate disasters. Multiple studies
analyze determinants of direct damages from natural disasters (Bakkensen and Mendelsohn, 2016;
Toya and Skidmore, 2007; Kellenberg and Mobarak, 2007; Fankhauser and McDermott, 2013;
Nordhaus, 2010) including the underlying risk rate (Hsiang and Narita, 2012; Schumacher and
Strobl, 2011). In addition, Conte and Kelly (2016) find that the distribution of property losses
can have fat tails, which is explained by property location and not distributions of hurricane
strength or damages across individual properties. All together, these findings inform policy and
risk reduction strategies.

The impacts of natural disasters on human capital is a question of fundamental importance.
Growing literature analyzes the impact of disasters on fatalities (Kahn, 2005). While extensive
literature in public health, psychology, sociology, and economics analyze the impacts of singular
events or a few case studies on a variety of specific impacts, few papers analyze these impacts
through the lens of a macroeconomic model. Clear negative consequences results from natural
disasters, including death and injury as well as reductions in nutrition, education, health, and
income-generation. These impacts are most concentrated in developing countries. However, the

empirical and theoretical impacts are ambiguous in terms of duration of consequences, as well



as potential general equilibrium impacts that could increase investment or returns to human
capital, relative to physical capital, under natural disasters (Baez, de la Fuente, and Santos,
2010). Antilla-Hughes and Hsiang (2012) find that income loss and infant mortality in the year
following a disaster are much larger than direct losses and fatalities. Hallegatte (2015) also
finds that indirect “ripple effects” are important, but can be either negative or positive. Toya,
Skidmore, and Robertson (2012) use disasters as an exogenous instrument for human capital
shocks, to isolate the growth impacts. Cuaresma (2010) find a negative relationship between
geologic disasters and schooling. However, knowledge gaps remain, including the extent to which
impacts are long term, as well as the ultimate growth impacts from human capital shocks (Baez,
de la Fuente, and Santos, 2010).

Lastly, disasters can impact knowledge, policy, and trade. Using both cross-sectional and
panel techniques, Cuaresma, Hlouskova, and Obsersteinter (2008) find a positive relationship
between the underlying risk of disasters and knowledge spillovers taking place between developed
and developing countries. They find that this is evidence of creative destruction. Popp (2006)
reviews the literature and finds that disasters’ impact on technology has a qualitatively ambiguous
impact on economic growth. Gassebner, Keck, and Teh (2010) find that disasters reduce both
imports and exports in a struck country, with reductions greatest in smaller or non-democratic
states. Noy and Nualsri (2011) analyze the fiscal impacts of disasters and Deryugina (2011) finds

that the indirect and fiscal costs of hurricanes outweigh the direct losses.

2.2 Theoretical Approaches

While the theoretical literature focusing explicitly on the impacts of natural disasters on output
and growth is “still in its infancy” (Ikefuji and Horii, 2012), we build on its important recent
advances. Most closely related to our approach, Ikefuji and Horii (2012) present an endogenous
model in the Uzawa-Lucas tradition, where individual regions are subject to hurricane shocks
to physical and human capital. The focus of their paper is on pollution taxation and growth,
as pollution affects disaster risk in their framework. They consider the potential implications
of uninsurable human - but not physical - capital risk on long-run growth. In addition, their
model is not brought to data. Akao and Sakamoto (2014) present a two-sector endogenous
growth model with different disaster shock processes, and studies the channels through which
these affect long-run growth. Their approach is complementary to our study as it focuses on
aggregate shocks in a single-region model, whereas our framework models uninsurable shocks to
individual regions in an incomplete markets endogenous growth model. Akao and Sakamoto’s
focus is moreover theoretical, whereas we focus on connecting our model to the data and to

empirical methodologies. Noy and Nualsri (2007) analyze the impact of changes in growth model



assumptions on predictions of the impact of natural disasters while testing these predictions
empirically. McDermott, Barry, and Tol (2014) study the impact of capital markets to mitigate
the harmful growth impacts of natural disasters. Finally, Kousky, Luttmer, and Zeckhauser
(2007) analyze the interaction between private capital markets and public hazard protection,
but do not empirically quantify their results.

In addition to theoretical models, several papers develop quantitative estimates of disaster
impacts. Albala-Bertrand (1993) develops a growth-accounting framework for disaster impacts,
finding that capital losses from a disasters do not greatly impact growth. Hallegatte and Dumas
(2009) develop a dynamic growth model in a disequilibrium setting to analyze direct and indi-
rect disaster impacts. Rose (2004) highlights the importance of computable general equilibrium
models in the study of natural disasters. Finally, Narita, Tol, and Anthoff (2010) develop an
integrated assessment model to analyze hurricane costs.

We seek to add to this literature by bringing in analytic tools that have been developed
for the study of incomplete markets and their macroeconomic implications. A rich literature
in macroeconomics first studied the implications of idiosyncratic (uninsurable) labor income
risk, which was found to increase aggregate savings and growth (e.g., Bewley, 1977; Ayiagari,
1994; Huggett, 1997, Smith and Krusell, 1998). More recently, Angeletos (2007) extended this
framework to consider uninsurable investment risk, finding that it can increase or decrease growth
depending on preferences and the private (risky) capital share. Finally, most directly related to
our approach, Krebs (2003a,b; 2006) presents an endogenous growth framework with uninsurable
risk to human capital. Krebs’ approach is motivated based on the idea that households within
a modern macroeconomy face idiosyncratic job separation risks, which can damage their human
capital. We apply this framework to a different context: the idiosyncratic risk to human capital
faced by different regions in countries at risk for hurricane strikes. Krebs’ (as well as Tkefuji and
Horii’s) frameworks assume all physical capital is risk-free or fully diversified. For our setting
- where developing nations suffer substantial hurricane risks - this approach seems insufficient.
We consequently extend Krebs’ (2003b) model to incorporate entrepreneurial or privately held
local capital that is subject to uninsurable hurricane risks. Krebs (2003a) briefly illustrates
such an extension of his model, but assumes that human and entrepreneurial capital shocks
are uncorrelated. Naturally, this assumption is inappropriate for the study of hurricane risk,
where these shocks are likely positively correlated. Our model thus (i) formally extends Krebs’
(2003a,b) framework to a setting with entrepreneurial and human capital with correlated shocks,

and (ii) applies this framework to evaluate hurricane risk and strike impacts on economic growth.



3 An Endogenous Growth Model of Disaster Impacts

3.1 Setup

The model economy features a unit mass of households i € [0, 1] that is spread across a continuum
of locations (as in Ikefuji and Horii, 2012). There are two types of production: First, a unit mass
of “corporate" firms j € [0, 1] rent capital k;; and human capital nj; in a competitive financial
market to produce output y;; with constant returns to scale technology:

Yijt = Alkﬁnjlfa (1)

Second, there is “entrepreneurial" production that relies on local capital owned by the rep-

resentative household in region ¢ to produce output s :
Y2ir = Aokai

Households can thus invest in three types of assets: their human capital h;; and their financial
capital s;, both of which are supplied to formal firms, and private capital ky;, which is used
for local/entrepreneurial production. As we assume a closed economy, the aggregate corporate
capital stock is given by Ky = [ k1;:dj = [ sudj. Analogously defining aggregate human capital

via H; = f hydi, aggregate output from firms can be written as:

Vi = / yiedj = A K H, O 2)

Disaster strikes can damage all three types of capital. Importantly, our analysis focuses on
the (interesting) case where households cannot properly insure against risks to their human and
private capital. In contrast, even though one can also consider cyclone damages to physical capital
installed at firm j, this risk is diversified across the macroeconomy (if shocks are independently
and identically distributed across locations). That is, if households’ financial assets are invested
across the economy, then idiosyncratic local damages to firms’ capital stocks do not affect the

aggregate return to these assets. Financial assets s;; are thus effectively a risk-free asset.

3.2 Firms

Each firm j rents human and physical capital in competitive markets. The firm pays households
gross return Ry, for their provision of human capital (efficiency units of labor services provided),
and pays Ryi; plus depreciation as return on financial capital. We assume that cyclone shocks

to firms take the form of an additive increase in the depreciation rate by 775,51 ~ In N(py,0%).



The assumption of log-normality is motivated twofold. First, as shown in the Appendix, a log-
normal distribution fits the data on average cyclone capital destruction rates well. Second, for
the uninsurable cyclone risks endured by households (described below), log-normality permits a
direct mapping from expected utility maximization to a portfolio choice problem to characterize
the households’ optimal investment as a function of cyclone risk. For firms in the formal sector,
however, as storm risks are identically and independently, the risk-neutral firm’s expected profit

maximization problem is given by:

max (A1k{;ni, *) — Runje — (Riye + Op1 + fign) ke
k1jt,mjt
We assume full mobility of labor and capital across locations (within a country). Conse-
quently, factor rates of return are equated across regions, and the firm’s first-order conditions

are thus standard:

Ry = (1—a)4 (M> (3)
Kt
-«
Tt
Rklt + 6]€ + M1 = (O[)Al (k‘_>

1jt

Since holds for all firms, we can also express equilibrium factor prices in terms of the
aggregate human-corporate capital ratio f:t = Kiltt :

Bu = (1—a)A(h)™ (4)

Rklt + (5k + Hrgr = (OC)A1<ht)1_a

Note that equations define Ry = Rh(f;) and Ry, = Rkl(fz;).

3.3 Households

The representative household in region ¢ maximizes his expected lifetime utility by choosing
state-contingent plans for consumption ¢;; and his investments in financial (xg;), human (z,;),

and private (x2;) capital. In particular, he solves:

max EgZBtU(cit)

t=0



subject to constraints:

Cit +Tst +Tpt +Tpe = SuRp1e + hiaRpe + (Aokoir)
——
=Y2it
hitrr = (1= 6 — 0l hie + Tt
Sit41 =  Sit T Tsit
ko1 = (1 — k2 — Uff)km't + Troit

hio, si0, koo glven

where 7, and 7*2 denote the (jointly lognormally distributed) shocks to depreciation from

storms. As shown in the Appendix, a log-normal distribution appears to provide a good fit for

damage data. In contrast to Krebs (2003a), we do not assume that n”. and nt? are independent,

as both damage shocks originate from natural disasters in our setting, and are thus almost

surely positively correlated. For example, later we consider the case where there is an underlying

hurricane strength random variable e;; ~ In N(y,,02) and where damage ratios are proportional

to hurricane strength: 1l = "<, and %2 = £¥¢;,. In this case, cov(nl, nt?) = €"¢"202 > 0.

We now define some helpful notation and re-write the household’s problem in order to facili-

tate the analysis. Let 71; denote the household’s human-financial capital ratio:

o =

Sit

The share of human capital in the household’s asset allocation to firms is then given by:

hi hi ~
ht sig+hae 1+ hit (ha)

Next, let ©9;; denote the share of the household’s total wealth invested in private capital:

k2it

Opojr = ——————
Rt Sit + it + kot

The household’s overall return on his assets in period ¢ can thus be written as:

I  ho k2
Tig = T<hit7@k2itahtanit)nit)

= [(1 = Onait) (1 — O (hit)) Rirs + On(hie) (Rug + 1 — 65 — 1) + Orair(Ag + 1 — Spa — n2Yb)

It is now straightforward to write the household’s budget constraint in terms of the evolution

10



of his wealth w;; = s + hit + kogt
Witp1 = [1 4+ 7(Pit, Opait, hi, iy, M) Wi — cir (6)

Following Krebs (2003a, 2003b, 2006) we now construct a stationary equilibrium where ag-
gregate returns are defined by Ry, = Ry = Rh(ﬁ) and Ry = Ri = Rkl(ﬁ), and where the
aggregate human-physical corporate capital ratio is thus constant. The agent’s problem can

then be written recursively as:
V(wi,};m@k%???,n?) = IIl&XU(Ci) +ﬁE[ (w'nh;? k21777?/777f2l>} (7)

subject to the law of motion @H

Proposition 1 Assume preferences are of the CES form:

u(c;) = (5)

L=y
The solution to the household’s problem then involves (i) a constant consumption-wealth ratio ¢

(ii) a constant human-to-financial capital ratio h;, and (iii) a constant entrepreneurial capital-
to-wealth ratio O9;, defined by:

¢ = 1—(_BE[(l+7’(f7i,9kzz,77?'ﬂ752’))1 ) (9)
:(1—|—7“(h' @,2w771 777f2,)) (1 )
{(re2 — ?752') (1 — 0 () Ria }

(]' + T(hl 761 k2i0 ;i aniﬂl )Fy

(10)

0 = BE (11)

Proof: See Appendix. Intuitively, the optimal consumption-to-wealth ratio ¢ follows from
the household’s Euler Equation, whereas equations and express no-arbitrage conditions
based on the expected excess returns to human capital and entrepreneurial capital, respectively,
above and beyond the risk-free rate Ry;.

Given the result for ¢ = ¢; (1473 )w;, and by the law or large numbers, aggregate consumption
growth in this economy is equal to expected local consumption growth (see Krebs, 2003b). In

our setting, this is given by:

Ci _E {Cit+1:| —(1-9)(1+ E[T(fz,,@km,ﬁ?lﬂ??w) (Growth _C)

3 Note that we do assume that hurricane shocks are independently distributed across time.
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This expression allows us to preview the two main channels through which hurricane risk
affects growth in this model. Note that we provide a formal statement and proof of these effects

below after describing households’ optimal asset allocations.
Remark 1 Hurricane risk affects growth rates through two channels (Informal Statement):

1. (Precautionary) Savings Effect: Uninsurable hurricane risk affects the household’s overall
savings rate out of wealth ¢ (via @l) If hurricane risk increases overall savings, then observed

consumption growth will be higher in economies with larger hurricane risk, ceteris paribus.

2. Rate of Return Effect: Uninsurable hurricane risk affects expected returns on the household’s
1nvestments in human and entrepreneurial capital. If hurricane risk reduces expected returns
to tnvestment, then observed consumption growth will be lower in economies with larger

risks, ceteris paribus.

3. The overall effect of hurricane risks on growth are thus ambiguous despite the fact that the

effect of a hurricane strike on consumption growth is unambiguously negativeE]

3.4 Cyclone Risk, Investment, and Growth

In order to provide concrete insights on the growth impacts of disaster risk it is necessary to
assess the effect of this risk on households’ investment decisions, and thus the overall expected
return on their portfolios. In particular, we want to understand how destructive risks to human
and entrepreneurial capital affect the household’s decision to invest in different assets, as these
affect economic growth differently.

We have already demonstrated that the consumption-wealth ratio is constant in the present
model (Proposition 1). A fundamental insight from the literature (e.g., Krebs, 2003a,b) is that
the household’s investment decision in this kind of setting can be solved as a portfolio choice
problem. In our model, due to the assumptions of power utility and log-normal returns on risky
assets, we can specifically cast this problem as a mean-variance analysis portfolio choice problem
(see, e.g., Campbell and Viceira, 2001). In particular, as is standard, we will first characterize
how the household allocates resources among the two risky assets (hj, k2;1), and then consider
how he spreads his resources between the optimized risky portfolio and risky-free financial capital.

Let wra = kait/(hit + koi) denote the share of private capital kg;; in the household’s risky asset

4 To see the latter, note first that: ¢;; = ¢(1+7;)w;t. As per , the realization of a hurricane strike (ni—? >0,
nh > 0) reduces the contemporaneous return 1 + 7;;. Consequently, consumption in period ¢ is reduced by
the disaster. Consumption growth between periods ¢ — 1 and ¢ is thus also lower than normal.
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portfolio (kg;, hit). The mean-variance efficient risky portfolio then maximizes the Sharpe ratio:

maX—E(mw _ Rkl
Wi2 Up

where E(r,,) is the expected return on the risky portfolio,
E(ryp) = wiora + (1 — wia)7h

with standard deviation:

1
Orp = [Wia0ha + (1 — wia) 0% + 2wra(1 — W) pp po0nTk2] 2

where o2, and 0% are the standard deviations of private and human capital, respectively, where
Tre = Rpo — dp2 — e and 7, = Ry — 6, — iy, denote expected returns on private and human
capital, and where p;, ;. denotes the correlation between the shocks to human and entrepreneurial
capital. As is well-known, the solution to this form of optimization problem is given by:
\ (Tr2 — 1)o7}, — (P — 1a)cov (1, %)

Whe = —— — n— — 12
2 = e ol £ (R =)ol = [(Fa = re) + (7 = reeo(®) 02

with cov(n®, n*?) = Ph k20 n0k2- It should be noted that expression only defines optimal
investment shares in entrepreneurial capital wj, implicitly, as equilibrium returns depend on
households’ investment behaviors. However, can be used to derive some informal insights
into how cyclone risks affect investment. For example, in the unrealistic but illustrative case
where shocks to physical and human capital are uncorrelated (cov(n®,n*?) = 0), we see that
the optimal investment share in entrepreneurial capital wj, is increasing in the expected excess
returns to entrepreneurial capital relative to risk-free capital (753 — 7%1), holding all else equal.
Conversely, the entrepreneurial capital investment share is decreasing in the expected excess
returns to human capital (7, — ryy1), ceteris paribus. The attractiveness of human capital as
alternative investment moreover increases, the riskier entrepreneurial capital is (higher 0%,), and
vice versa. In the fully general case, the effects of cyclone risk parameters on investment depend
on additional factors such as the magnitude of the covariance between cyclone risks to human and
physical capital relative to the riskiness to these individual assets. In order to derive more formal
insights, we thus proceed to characterize the rest of households’ investment decision problem.

Let w,, denote the fraction of the household’s wealth invested in the risky portfolio, such

that (1 — w,,) corresponds to the fraction of wealth invested in risk-free financial capital. The
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optimal w,, solves: X
maxF(r,) — =yo?
Wrp ( p) 27 p

where 7 is the coefficient of relative risk aversion for our utility function [§)), and subject to

constraints:

E<Tp) = (1- WTp)Tkl + wrpE(Trp)

2 2 2
Tp = WrpOpp

The optimality conditions yield:

Wt = E<TTP) — k1 (13)

V07
Together, and define the optimal overall shares of wealth invested in private capital

Oy,,, human capital, and financial capital, respectively:

Oroi = wyrpwie = Private capital share
(1— @kgi)ﬁh(ﬁit) = wyp(l — wie) = Human capital share

(1 — Ok2)(1 —0(hit)) = (1 —w,y) = Financial capital share

Note that this system of equations provides two equations in two unknowns (Oya;, h;):

@k% — Waldpp = 0 (14)
(1= ©p20)0(hi) —wpp(l —w2) = 0

One can use the Implicit Function Theorem to derive comparative statics on the equilibrium
relationships between cyclone damage risk and the optimal investment variables ©q;, fz These
variables, in turn, pin down the effect of storm risk on expected rates of return and thus on
aggregate consumption growth as per (Growth _CJ). Since it is not generally possible to sign
these comparative statics in the fully general case presented thus far, we proceed in two ways.
First, we impose some basic structure on the relationship between 7" and 7*? and underyling
storm risks and derive predictions for for the effects of changes in the cyclone risk variance for
certain subsets of the parameter space. Second, we provide results from a numerical example to

illustrate possible effects of changes in average damages.
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3.4.1 Cyclone Variability and Long-Run Growth

Assumption 1: Disaster damages to human and physical capital are each proportional to a fun-

damental hurricane strength measure 4 ~ In N(u.,0?) (id over time and space), with:

h h
U §'en

k2 k2
i = & eu

Assumption 1 implies that damage risks are linked to underlying storm risks as follows:
cov(nl, nk?) = "¢P0? > 0, 02 = var(nly) = (£")%02, and o3, = var(n}?) = (€"*)%02. In order to
derive unambiguous comparative statics on the effects of cyclone risk 02 on the growth-relevant
variables (Oa;, Ez), we further have to partition the parameter space into different cases. We
focus on the most empirically relevant case:

Case 1: € > ¢" implying that entreprenecurial capital is more vulnerable to storms of a
given intensity than human capital.

Next, we assume that households cannot short-sell human nor entrepreneurial capitall’] In
order to ensure that the household’s optimal risky investment share is interior, we further make
Assumption 2: The excess return to human capital satisfies: 0 < 1, — gy < O’?’y[fh ]2. Intuitively,
this condition ensures that the household is willing to invest in human capital, but that the
excess returns are not so large (relative to the risks) so as to push the household to a corner
solution of only wanting to invest in human capital. Finally, for points (3)-(6) of Proposition 2
below, we additionally impose Assumption 3: (1 — «) < 1%

In Case 1, given Assumptions (1)-(3), one can then use the Implicit Function Theorem on
to demonstrate the following;:

Proposition 2 A (mean-preserving) increase in cyclone risk o2 >o? leads to the following eco-

nomic outcomes:

1. A decreased human-financial capital ratio:

dh

2. A lower equilibrium return on corporate capital Rm(ﬁ') < Rkl(%) and a higher equilibrium
(gross) return on human capital R,(R') > Ru(h) (as per equation (4])).

(S

Given Assumption 1 and Case 1, this restriction will be binding as the damage shocks are perfectly corre-
lated. Consequently, in Case 1, the risk-minimizing portfolio would - in theory - involve the short-selling
of entrepreneurial capital. As we do not permit such short-sales, the household will not want to invest in
entrepreneurial capital in this particular case (0}, = 0), investing only in human and financial assets.
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3. A lower expected return on the household’s asset portfolio: E|r (hZ , 00, € Ezt,szé‘zt)] <
Elr (hl,@kgz,ﬁh 2. 762 (as per equation (5 (l) in combination with points (1)-(3)) = Rate
of Return Effect

4. A lower, equal, or higher consumption-out-of-wealth ratio, depending on the coefficient of

relative risk aversion:
e c>Cify<1
o ¢ =7 ify=1 (logarithmic preferences)
e c>cify>1

This result implies that the savings rate out of wealth (1 —¢' ) increases in response to larger

cyclone risks if v > 1 = Precautionary Savings FEffect.

5. Larger cyclone risk can increase, leave unaffected, or decrease consumption growth (and
thus output growth). Whether growth is increasing or decreasing in cyclone risk depends
on whether the Precautionary Savings Effect outweighs the Rate of Return Effect as per

equilibrium consumption growth:

C i ~/
=B |2 - ()04 B B €12l 1) (19
t it

6. Larger cyclone risk unambiguously decreases welfare:

llfy

EOZBt Czt E()Zﬁt Cit (16)

Consequently, cyclone risk can affect economic growth and welfare in opposite ways.

Proof: Use the Implicit Function Theorem on (|14]) with the Case 1 assumptions and refer to
other key equations as per the Proposition. Note that the last point on welfare follows from the
fact that, as noted by Krebs (2003) one can combine and ([L6) to express expected lifetime

—y

tCz i
utility, which in our case yields EOZB L = G —BE[(1+(1—E)r(hnf1,G)kgit+1,§ e )] with

cio = ¢[l + r(hio, Ojain, Ees0, EF 5i0]wi0 where the initial values in the return are all given by

assumption.
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3.4.2 Average Cyclone Destruction Measures and Long-Run Growth

As with cyclone variability, the effects of average cyclone damages on long-run growth are the-
oretically ambiguous. We thus provide numerical results for an illustrative calibration of the
model. We emphasize that, at this stage, the calibration serves only as an example to illustrate
qualitative differences that can arise in the effects of different average cyclone damage measures
on long-run growth| We use World Bank Development Indicators data to estimate countries’
approximate aggregate capital stocks (assuming a capital share of 30%, average depreciation of
10%, and a rate of return of 5%) and populations (1960-2015). We then use EM-DAT data['
from the International Disaster Database at the Center for Research on Epidemiology of Disas-
ters (CRED) on the value of direct damages to calculate the fraction of the aggregate capital
stock destroyed by country-year. In order to approximate human capital destruction, we com-
pute the fraction of the population killed by cyclones in each country-year. We then compute the
means, variances, and co-variance of these variables across country-years in our data. Finally,
we adopt preference parameters in line with standard values in macroeconomics, and assume
illustrative values for productivity in corporate and entrepreneurial production (pinning down

excess returns). The resulting parameters are listed in Table [1}

Hpo = 214% Ok2 — 967% (772 - Tkl) = 35%
11, = 0.0047% | o), = 0.03% | (7, — r41) = 0.0004%

Table 1: Toy Calibration Parameters

At these parameter values, the household invests 36% of his wealth in entrepreneurial cap-
ital. The excess return on these investments (3.5%) is very high compared to human capital
(0.0004%); however, the riskiness of entrepreneurial capital investments is also higher, implying
a standard mean-variance tradeoff. This economy could grow faster if households invested more
in entrepreneurial capital. The effects of cyclone risks on growth thus depend in part on how
they affect households’ propensity to invest in entrepreneurial capital. We consider the effect
on the long-run growth rate of changing mean cyclone damages p,, and u, each by £50% and
425, respectively. Intuitively, an increase in the average storm damage to a given asset implies

a ceteris paribus reduction in the excess returns to investing in that asset.

6
7

A quantitatively meaningful calibration of the model is work in progress.
While EM-DAT data suffer from well-known limitations, such as selective reporting of disasters and damages,
for the purposes of this toy calibration these are not important.
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Long-Run Growth and Avg. Local Capital Destruction
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Figure 1: Long-Run Growth and Avg. Local Capital

Destruction

First, we find that growth is decreasing in the average destruction to entrepreneurial capital
o This result is in line with findings of, e.g., Hsiang and Jina (2015b), who document a negative
cross-sectional relationship between cyclone-induced capital depreciation and average growth
rates. Intuitively, this is because an increase in entrepreneurial capital losses pi;, decreases the
returns to the economy’s most productive (marginal) investment, thus lowering overall growth.

In contrast, we find the opposite for damages to human capital, as shown in Figure 2:

18



15064 Long-Run Growth and Avg. Human Capital Destruction
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Figure 2: Long-Run Growth and Avg. Human Capital

Destruction

We find that growth is increasing in the average destruction of human capital p;,. Intuitively,
this is because larger expected damages decrease the relative attractiveness of human capital as
an investment, holding all else equal. Consequently, some of the household’s risky investments
shifts to entrepreneurial capital, which has a higher excess return, thus increasing overall growth

While the quantitative results of this numerical exercise are sensitive to the parameter as-

sumptions, the central qualitative result is as follows:

Result Average cyclone damages to physical vs. human capital can affect long-run growth in

opposite ways.

Importantly, this result appears consistent with the empirical evidence. For example, Hsiang
and Jina (2015b) find a negative cross-sectional relationship between average capital depreciation
from cyclones and long-run growth. In contrast, Skidmore and Toya (2002) find a positive
cross-sectional relationship between the average number of disasters and growthf’] Some panel
studies have also documented different growth impacts of disaster damages versus fatalities (e.g.,
Noy, 2009). However, these results are not directly comparable as the structural impact of
disaster realizations is fundamentally different from the effects of cyclone risks. The next Section

formalizes this point.

8
9

As with Proposition 2, this growth increase need not be welfare-increasing.
In our model, a change in the number or intensity of cyclones could affect growth positively or negatively
depending on whether it translates into larger average physical or human capital damages.
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3.5 Disaster Strikes and Observed Growth

Thus far our analysis has focused on the effects of hurricane risk on growth, corresponding
empirically most closely to cross-sectional analyses. This section compares and contrasts these

growth impacts to those we would expect to observe in the data after an actual hurricane strike.

3.5.1 Immediate Growth Impacts

Moving from expected local growth in to realized local growth immediately yields the fol-

lowing results:

Result An above-average hurricane shock (strike €; > pu.) decreases contemporaneous local

growth unambiguously.

This result follows immediately from applying a positive hurricane shock g; > pu. to realized

growth:

Cit Cit

=1 -0+ TUZh Olair §"%ir, €%20)) < Eia

Cit—1 Cz’t—l]

This result has two main empirical implications. First, the model predicts that only above-
average disaster realizations lead to below-average growth. This prediction is in line with nu-
merous empirical studies that have found that it is mainly large disasters that induce negative
growth impacts (e.g., Hochrainer, 2009). Importantly, however, a below-average disaster could
be estimated to yield higher or lower growth depending on the counterfactual against which it
is measured /]

The second main empirical implication of this result, coupled with Proposition 2, is that
hurricane risk can increase growth even when hurricane strikes unambiguously decrease growth.
Consequently, we argue that the positive cross-sectional association between disaster risk and
growth discovered by Skidmore and Toya (2002) need not be at odds with results from panel

regressions that find large, negative cyclone strike effects[!]

3.5.2 Medium-Run Growth Impacts

Our benchmark model yields two main predictions for the transitional impacts after an above-

average disaster shock. First, the contemporaneous growth rate returns to its balanced growth

10 Tn particular, a below-average storm season will yield higher than average growth when measured against

average growth in a given location. However, when measured against a counterfactual with no storm real-
izations, then a below-average storm season will lead to losses.

Although not formally developed, our model would also predict that both types of growth impacts are
greatly diminished in countries with developed insurance markets, again suggesting that differences in results
obtained by studies focused on, e.g., the U.S. only (e.g., Strobl, 2011) versus those focused on the world (e.g.,
Hsiang and Jina, 2015) need not imply a contradiction.

11
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path level after one period. Second, however, the loss in the output level is persistent, and the
economy remains on a permanently lower output level path after the disaster. Notably, these
results are broadly in line with the empirical findings of Hsiang and Jina (2015), who find that
contemporaneous growth rates return to normal after a number of years, but that the cumulative
output losses in the transition are not recovered[?]

Figures 3 and 4 illustrate how output level and growth rates diverge, respectively, after an

above-average disaster strike in the toy model calibration.

Output Levels after Disaster
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Figure 3: Output Levels after Disaster

12 The central difference is that our model predicts a return to balanced growth after one period, whereas HJ

find that the transition takes multiple years. This difference could be reconciled either by interpreting our
model period as a decade, or by introducing capital adjustment costs or frictions that slow down the recovery
of contemporaneous growth rates.
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Output Growth after Disaster
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Figure 4: Output Growth after Disaster

As can be seen in Figure 4, the sum of the disaster’s contemporaneous growth impacts - HJ’s
main cumulative impact measure - is negative. Consequently, even though contemporaneous
growth rates are not affected by disaster strikes in the medium or long-run, the output level
remains permanently lower after the disaster strike (Figure 1).

It is useful to compare these transitional predictions to those of a standard Solow growth
model. As shown below, the Solow model yields different predictions, namely that output growth
will temporarily increase after a disaster as the economy rebuilds and transitions back to its
balanced growth path. While this prediction does not seem to align with the empirical evidence
such as presented by Hsiang and Jina (2015) and in the case of tropical cyclones, it is a central

benchmark for comparison.

3.5.3 One-Time Hurricane Strike Illustration in the Solow Growth Model

This section derives transitional impact predictions for a one-time unanticipated disaster real-
ization in a simple, single-region mode with exogenous but convex growth. We further impose
the standard assumptions well-known to permit closed-form solution of the dynamic model. Ag-
gregate output Y}, is produced from capital K, labor L;, and labor efficiency (technology) level

A; via a constant returns to scale (CRS) technology:

}/; - F(Kt, AtLt) (17)
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We assume that this economy is on a balanced growth path (BGP) at time ¢t = 0, and study
the effects of an unanticipated one-time hurricane strike at time ¢ = 1. The storm decreases the
capital level by fraction 1 — ¢¥ and damages effective labor by fraction 1 — ¢, with ¢ ; €(0,1]
for j = K, AL. Consequently, period 1 output is given by:

V) = F(CR Ky, ¢ AL (18)

Given the assumption of CRS, we can express in terms of output per efficiency unit of

labor y; = A}:tLt = f(k;) where k;, = A[t([t/t' Next, assume that the population is constant and

normalized to L; = L = 1 Vt. Further assume Cobb-Douglas technology:
yr = ki

Finally, in order to obtain closed-form solutions, impose the standard simplifying assumptions
that (i) the representative household has logarithmic preferences over consumption C;, seeking

to maximize lifetime utility:
> BUG) =) B'I(C)
t=0 t=0

and (ii) that capital depreciates fully in each model period. As is well-known and easy to
show, the savings rates that solves the representative household’s problem is constant (even in
the face of the hurricane shock) and defined by:

ki1 = aBy,

The assumption that the economy begins on a balanced growth path equivalently implies that
the economy’s initial level of capital per efficiency unit of labor kg is equal to its steady-state
value k* = (af )ﬁ The growth rate of capital per efficiency unit of labor in the initial (BGP)
period is thus equal to zero, gi» = 0. Naturally, this implies that the aggregate capital growth

_ A

rate gx equals the rate of technological progress g4 (= <5 — 1)

13 To see this, note that:
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Immediate Disaster Impacts Assume now that disaster strikes as outlined above in .

Define the hurricane impact factor on capital per efficiency unit of labor as:

¢= (™=
Output at time 1 is then given by:
y = (C- k)" (19)
= (kS
= ("yo

where the second equation follows from the fact that we observe this economy beginning with
capital at its steady-state value, implying that ky = k;. Consequently, the observed growth in

output per efficiency unit of labor between ¢ = 0 and ¢ = 1, g, 01 is given by:

gy7071 = y]. - yO — (COL _ 1) (20)
Yo

Finally, these effects can be mapped back to the levels (aggregate or per capita) that an
econometrician would observe in the data. Noting that Y; = y; A; we can solve for the aggregate
or per capita output growth rate in the hurricane impact period as:

Y1 - Yo

gvo1 = Y, = [¢*(1+ga) — 1] (21)

= Contemporaneous growth impact

Medium-Run Disaster Impacts Next, we consider how output continues to evolve after
the storm. As the household’s optimal savings rate remains a constant fraction af of realized

output, total investment in the new capital stock for period 2 is given by:

ky = By

Output per efficiency unit of labor in period 2 thus equals:

y2 = ky = (af)"yy = (aB)*(“yo)”

where the last equation follows from . It is easy to show that the observed aggregate
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output growth rate between periods 2 and 1 will then be given by:

Yo - Y, ala—
gy12 = 2Y e C( 1)(1+9A)—1
1

The contemporaneous hurricane damages ( thus continue to affect the observed output growth
rate. Perhaps surprisingly, however, growth in the period after the disaster is increasing in
the fraction of effective capital destroyed (1 — ¢). That is, 89&1,2 < 0, implying that growth is
decreasing in the fraction of capital left after the storm, (. Intuitively, this is because of investment

as the economy rebuilds, and specifically because capital is accumulating more quickly than it is
depreciating as the economy begins to return to its balanced growth path.

We visualize these transitions by calibrating the model for parameter values o = 0.3, 5 = 0.98,
normalize Ay = L = 1, assume g4 = 2% per year, and consider a benchmark storm whose
immediate impact is to decreases effective capital by 10% (¢ = 0.9). Figure 5 displays the
evolution of GDP levels in the economy hit by the storm in year 2 (solid line with stars) compared

to counterfactual GDP had no storm occurred (dashed line with circles).
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Figure 5: GDP Levels after Disaster

The storm decreases GDP immediately when it strikes (period 2), but continues to have a
negative effect on GDP levels (relative to the counterfactual) as it takes time for the capital stock
to re-accumulate to its steady-state level. The cumulative effect of the storm on consumption
levels is thus unambiguously negative, although contemporaneous effects decline over time. In

contrast, Figure 6 plots observed versus counterfactual output growth rates:
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GDP Growth after Disaster
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Figure 6: GDP Growth after Disaster

Intuitively, growth initially falls due to the capital destruction associated with the disaster,
but rebounds as capital stocks re-accumulate to balanced growth path levelsEfl In this model,
the sum of growth impacts over time - again, HJ’s cumulative damage measure - would come
out to zero. That is, there are periods of higher growth after the disaster that compensate for
the initial loss, thus also allowing output levels to return to their baseline trajectory. Though
different from our model’s predictions and HJ’s empirical findings, the Solow framework is an
important benchmark illustrating how alternative growth models can yield different predictions

for transitional impacts after disasters.

4 Empirical Analysis

The theoretical model and results presented thus far raise a number of empirical questions and
challenges. In this section, we connect some of these questions back to the data and to established

empirical estimation frameworks.

14 From a simple growth accounting perspective:

gyser = gy, =a(ga)+ (1 —a)ga =ga
9y, = agre  +(1—a)ga <ga
——
<0 due to storm
gy, = OgK, +(1 — a)gA >g4 >0
——

>ga>0 due to capital re-accumulation
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First, our model implies that underlying disaster risk affects growth differently than disaster
realizations (strikes). In line with this prediction, empirical studies identifying the impacts of
disaster strikes using panel data models (e.g., Hsiang and Jina, 2015) have often found different
results than cross-sectional studies estimating the effects of disaster risk (e.g., Skidmore and
Toya, 2002). For researchers interested in understanding the overall impacts of changing cyclone
distributions on growth, neither approach may thus be individually sufficient. In particular, fixed
effects panel estimation can causally identify the impact of individual disaster strikes on growth.
However, the estimated country fixed effects - representing average growth in the absence of
cyclone realizations - will depend on the underlying country risk rate. Consequently, in order
to project the growth impacts of changes in cyclone distributions - such as from climate change
- both the projected cyclone realizations and countries’ average growth rates in the absence of
disasters have to be adjusted.

We thus explore a two-step combined panel-cross sectional estimation framework that seeks to
account directly for the endogeneity of countries’ long-run average growth rates (absent disaster
strikes) to cyclone risk. The first stage runs a panel fixed effects model in the spirit of HJ. The
second stage provides a cross-sectional average growth decomposition that specifically regresses
the fixed effects from the first stage on cyclone risk and other relevant control variables. We then
re-estimate the impact of historical cyclones on growth by cleaning out both the negative impact
of disaster strikes and the positive impact of the underlying risk rate.

We further explore the prediction of our model that market incompleteness (lack of insurance)
is a central driver of disaster risk impacts on growth. We provide suggestive evidence that this
mechanism is at play by interacting a proxy for financial market development - total domestic
credit provided by the financial sector as a percentage of GDP - with our cyclone risk metrics.

The subsections below present our empirical methodology, data sources, results, and discussion.

4.1 Empirical Methodology

In this section, we discuss our empirical approach. Step 1 estimates the effect of cyclone strikes
on growth in a panel fixed effect specification in the spirit of Hsiang and Jina (2015), using

observations in a country-year panel and the Ordinary Least Squares estimator:

20
Giy = Z[BL X Sit—rn] +7;+ 0t +0; Xt + €4 (22)

L=0

where G, is real GDP per capita growth for county 7 in year ¢t and S;, is a variable describing
cyclone exposure within country ¢ in year ¢. Twenty years of lags are included to capture any

potential persistence in impacts, following HJ. The model includes country fixed effects (7,),
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year fixed effects (0;), and country-specific trends (#; x t)m The growth impacts from individual
years of cyclone landfalls are found in the [; estimated coefficients, which represent the extent
to which GDP growth is and continues to be affected after a landfall. From this model, we can

_—NS
estimate (counterfactual) country growth rates without cyclone strikes, G;;  from the following

equation:
20
—NS . R .
Gi,t = E [@LX0]+')7Z+5t+(91Xt (23)
L=0

where the estimated coefficients from equation are used and previous cyclone strikes are
assumed to be zero.

Next, we note that the impact of cyclone risk on growth is subsumed by 7, and 6;, the country
fixed effects in equation . In order to decompose its relationship with long-run cyclone risks,
we first estimate the average growth rate in the absence of cyclone strikes, é;, from the panel

estimation using the following equation:

— ~

where 7; is the estimated country fixed effect and 9/; is the estimated country trend from equation
(22) aboveF_GI Step 2 of our approach estimates the following cross-sectional model:
Gie=0a+MLi+X; x B+ 0p +6 (25)
We regress estimated average growth rates on the underlying cyclone risk characteristics in
country i, L;, relevant control variables, X;, and a regional fixed effect, 5;1». In addition, and
motivated by the theoretical model, we include landfall variance, V;, in some specifications to
further describe the risk distribution. The dependent variable is estimated from Step 1 and
therefore may have measurement error. This will not bias our estimated coefficients, but will lead
to inefficient estimates with larger standard errors (Hausman, 2001). Therefore, we bootstrap
our standard errors and, in other specifications, employ robust standard errors, to correct for
this inefficiency (Lewis and Linzer, 2005).
Finally, in order to gauge the overall impact of cyclones on economic growth, we estimate
each countr’s no-cyclones counterfactual growth rate, é;*, by subtracting underlying risk impact

_——NS
from the no-strikes growth estimates GG;;  obtained in the first stage:

—

* ——NS =
Gi,t - Gi,t - AI-LZ (26)

15 Guided by our theoretical model, we do not use an autoregressive specification, as this would change the

interpretation of the fixed effects.
The country trend is multiplied by the average year, t, for every country in our sample, to estimate its
average growth rate over its time in the panel.
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Note that based on the previous literature, we expect Xl > (0. We can then compare (i) estimated
observed growth with (ii) no-strikes growth and (iii) no-cyclones (neither strikes nor risk) growth.

Lastly, we explore the ability of financial markets to attenuate the growth impacts of cyclone
risk. To do so, we interact total domestic credit provided by the financial sector as a percentage of
GDP with our cyclone risk variables in equation (25)). If the coefficients are of the opposite sign
of the un-interacted risk variable, this is consistent with financial market development mitigating

the impact of disaster risk, in line with the theoretical model.

4.1.1 Data

Three types of data are the cornerstones of the empirical disaster growth impacts literature:
growth data, disaster shock data, and other relevant control variables. We discuss each, in turn.

We collect all available data on economic growth for all countries from 1960 to 2014 from the
World Bank’s World Development Indicators (WDI) database. We also consider growth data
from the Penn World Table as a robustness check.

Cyclone data come from the International Best Track Archive for Climate Stewardship (IB-
TrACS) and include individual track information such as wind speed, minimum sea level pressure,
latitude, and longitude. We process the data to generate country-year and average country-level
statistics on annual landfalls (count, maximum wind speed observed, sum of maximum wind
speeds per landfall) as well as long run risk. This is in the spirit of Hsiang and Jina (2015) as
well as Skidmore and Toya (2002). HJ build the LICRICE model, which takes the underlying
hurricane tracks from IBTrACS and estimates the two-dimensional wind speed structure. Hsiang
(2011) notes that the LICRICE model is a two-step process. First, the radius of maximum wind is
estimated using a linear combination of wind speed and latitude. Second, the wind speed within
the radius is estimated using the wind direction and forward speed of the storm. Ultimately,
the wind speed data are aggregated up to the country-year level using spatial area weighting.
The maximum wind speed, as well as the dissipated energy (the cube of the wind speed summed
over time the hurricane is over a country) are two relevant outputs of the LICRICE technique.
Since LICRICE is not publicly available, we are unable to know how close our variables are to
LICRICE. However, we find qualitatively consistent results. Similar to HJ, we are most confident
of the hurricane data after the satellite era begins in 1970.

We also find that early records in IBTrACS often do not have wind speeds affiliated with
the historical records when clearly a windy storm exists. Thus, we run the data two ways: 1)
We estimate the results without interpolating wind speeds. This will lead to an attenuation bias
because the measurement error will often underestimate wind speeds. 2) We approximate wind

speeds using the following assumptions, in the following order: a) interpolate missing wind speeds
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from temporally neighboring observed records from the same storm, b) using observed pressure
readings at the same time as unobserved wind readings using the approach from Atkinson and
Holliday (1977), c) based on the categorized value of the storm, and d) for a small minority of
observations for which the previous three approaches did not work, we assumed wind speeds of
25 knots. We find our results to be much more significant after this correction for the missing
wind speed data.

The main challenge in estimating our second-step cross-sectional specification is that cyclone
risks are not randomly distributed across space, but are likely correlated with other factors that
may influence growth. In particular, we would want to control for any exogenous factors that
correlate with cyclone risk such as geography (Sachs and Warner, 1997; Hall and Jones, 1996) or
institutions during early development (Acemoglu, Johnson, Robinson, 2001). Similar to Skidmore
and Toya, we thus include geographic variables such as latitude and continent controls (Barro
and Lee, 1994). Geographic variables are from Portland State University’s Country Geography
Data set. We further use Transparency International’s Corruption Perception Index to proxy for

institutional quality. Lastly, our financial markets development proxy and other societal controls
are from the World Bank’s WDI.

4.2 Empirical Findings

This section presents the empirical results. First, Table [2] provides results from the first stage
panel fixed effects estimation . The results are consistent with those of HJ, indicating negative
and persistent impacts of cyclone strikes on output levels (i.e., temporary but cumulatively
negative impacts on growth rates). Column 1 reports the growth impact of contemporaneous and
lagged maximum annual hurricane wind speed. Column 2 is identical but uses the sum of cyclone
energy (wind speed cubed and summed over the lifetime of the storm over a given country) in a
given country-year. The country-year observations occur from 1970-2015, with lagged hurricane
characteristics going back until 1950. In these main results, we used the interpolated wind
speeds described in the data section. The results are qualitatively similar, except less precisely
estimated, if we use the data with values of zero for missing wind speeds. Overall, the results are
more strongly consistent with the finding that hurricane strikes have a negative and durational
impact. All specifications include country and time fixed effects as well as country-year trends.

Table [3] presents the cumulative sum and significance of the estimated cyclone strike coeffi-
cients across five, ten, fifteen, and twenty years following a landfall, corresponding to maximum
annual wind speed in Columns 2 and 3, and cyclone energy in Columns 4 and 5. We calculate the
cumulative significance using the F-Test. We find that the Wind Sum model (Table [2| Column

1) performs the best, and therefore we employ that specification for the second stage of our
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Table 2: Hurricane Strikes in Panel Fixed Effects Regressions

(1) (2)
Dependent Variable GDP PC Growth GDP PC Growth
Hurricane Variable Max Wind Energy
Years 1970-2015 1970-2015
Hurricane t -0.00220 -9.22e-08%*
(0.00455) (5.41e-08)
Hurricane t-1 -0.00134 1.95e-08
(0.00382) (5.03e-08)
Hurricane t-2 -0.00420 -4.22e-08
(0.00382) (4.90e-08)
Hurricane t-3 -0.00163 -5.53e-08
(0.00409) (4.93¢-08)
Hurricane t-4 -0.00379 4.29e-09
(0.00376) (4.55e-08)
Hurricane t-5 -0.00188 -8.44e-08
(0.00392) (5.21e-08)
Hurricane t-6 -0.00478 -7.17e-08
(0.00395) (4.71e-08)
Hurricane t-7 0.00164 -3.73e-08
(0.00389) (5.95e-08)
Hurricane t-8 -0.00686 -6.14e-08
(0.00472) (5.56e-08)
Hurricane t-9 0.00336 3.92e-08
(0.00378) (5.27¢-08)
Hurricane t-10 -0.00727* -6.69¢-08
(0.00377) (5.60e-08)
Hurricane t-11 -0.00597 -1.04e-07*
(0.00391) (5.85e-08)
Hurricane t-12 -0.00496 -1.83e-08
(0.00389) (6.02e-08)
Hurricane t-13 0.00322 -9.25e-09
(0.00390) (5.91e-08)
Hurricane t-14 -0.00514 -1.63e-08
(0.00452) (7.10e-08)
Hurricane t-15 -0.00243 -6.05e-08
(0.00465) (6.45e-08)
Hurricane t-16 -0.00535 -9.57e-08%*
(0.00441) (5.77e-08)
Hurricane t-17 -0.00171 -8.13e-10
(0.00449) (5.98¢-08)
Hurricane t-18 0.00439 1.09e-07
(0.00438) (8.19¢-08)
Hurricane t-19 -0.000989 8.15e-08
(0.00506) (7.41e-08)
Hurricane t-20 0.00120 5.73e-08
(0.00415) (6.04e-08)
Country FE Y Y
Year FE Y Y
Country-Year Trend Y Y
Observations 7,348 7,348
R-squared 0.268 0.268

Robust standard errors in parentheses
** p<0.01, ** p<0.05, * p<0.1
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empirical analysis.

Table 3: Hurricane Strike Cumulative Impacts

Max Wind Max Wind Energy Energy

Lags Coefficient Sum  P-Values  Coefficient Sum P-Values
5 -0.015 0.1902 -1.58E-07 0.0862
10 -0.022 0.0831 -3.56E-07 0.0284
15 -0.037 0.0348 -4.61E-07 0.0151
20 -0.039 0.0851 -2.14E-07 0.1369

4.2.1 Cyclone Risk and Strikes: Growth Decomposition

We next estimate average country growth in the absence of cyclone strikes through the fixed
effects estimated in the panel regression as per equation . We use Column 1 from Table
to extract the estimated parameters. We then regress the estimated growth rate on relevant
cyclone risk variables and controls as per equation including the Corruption Perception Index
(CPI), latitude, additional control variables found in Skidmore and Toya (2002), and, in some
specifications, region fixed effects. Table 4 presents the results. In line with the theoretical
model, we find that countries’ average growth rates in the absence of strikes are still a function
of underlying cyclone risk. In particular, growth appears positively and significantly associated
with average cyclone risk (measured as maximum wind speed), in line with Skidmore and Toya
(2002). The results remain strongly significant and stable in the point estimate across all seven
specifications. Driven by our model, we also include the variance of annual maximum wind in
Columns 6 and 7. We find that the sign is as expected, and opposite of the average wind, but
imprecisely estimated. This is likely due to the multicollinearity between the mean and variance
of wind speed in the data. Overall, the results are consistent with the central implication of our
model that changes in cyclone distributions - such as from climate change - will have two effects
on growth. On the one hand, more intense or frequent disaster realizations will lead to larger,
persistent output losses. On the other hand, households will respond to this change by adjusting
their savings behavior to account for these risks. The net effect on observed output growth is
thus ex-ante ambiguous.

Finally, Table 5 presents our estimates of (i) average observed growth, (ii) no-strikes growth,
and (iii) no-cyclones (neither strikes nor risk) growth as per equation (26)). To estimate the overall
impact of cyclones on growth, one must account for both the effects of strikes and risk in the

counterfactual comparison. In Table 5, Columns 2 and 8 present our estimated average country
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Table 4: Average Growth Decomposition

(1)
Dependent Variable ﬁ
Average Max Wind 0.0203***
(0.00686)
Variance Max Wind
Absolute Latitude
Corruption Perception Index
Ln Initial GDP
Avg Education Labor Force
Avg Birth Rate
Avg Capital Formation
Avg Gov Consumption
Avg Trade
Ln Land Area
Ln Population
Ln Urbanization
Pct Tropical
Constant 3.082%**
(0.434)
Region FE N
Observations 203
R-squared 0.017

Bootstrapped SE in parentheses
*¥* p<0.01, ¥* p<0.05, * p<0.1

(2)

Git

0.0230%**
(0.00737)

-0.00362
(0.0462)
0.0582%
(0.0329)

0.183
(0.783)

N
149
0.064

0.0184%%x
(0.00695)

-0.00168
(0.0297)
0.0248
(0.0254)

3.234%%
(0.810)
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3)

Git

Y
149
0.106

(4)

Gzt

0.0213%%*
(0.00503)

-0.0458
(0.0388)
0.0450*
(0.0233)
-0.202
(0.443)
-0.0689*
(0.0372)
-0.107*
(0.0598)
0.0691
(0.0734)
0.0727
(0.0785)
0.00323
(0.0118)
-0.270
(0.241)
0.571
(0.518)
0.549
(0.721)
-0.175
(1.381)

0.654
(6.861)

N
81
0.464

()

Git

0.0195%%*
(0.00731)

-0.0225
(0.0501)
0.0173
(0.0227)
-0.199
(0.483)
-0.0549*%
(0.0303)
-0.119
(0.0807)
0.0778
(0.0905)
0.0553
(0.0901)
0.00249
(0.0115)
-0.383
(0.279)
0.509
(0.520)
0.726
(0.834)
-0.416
(1.542)

4.075
(7.599)

Y
81
0.539

(6)

Git

0.0216%*
(0.00904)
-5.01e-05
(0.00117)
-0.0452
(0.0409)
0.0448*
(0.0230)
-0.204
(0.397)
-0.0691%**
(0.0226)
-0.108*
(0.0545)
0.0690
(0.0655)
0.0732
(0.0611)
0.00319
(0.0108)
-0.273
(0.251)
0.574
(0.459)
0.557
(0.743)
-0.148
(1.415)

0.659
(6.773)

N
81
0.464

(M)

Git

0.0213%*
(0.00926)
-0.000348
(0.00123)
-0.0164
(0.0501)
0.0158
(0.0255)
-0.205
(0.424)
-0.0562%*
(0.0232)
-0.118*
(0.0662)
0.0789
(0.0702)
0.0603
(0.0653)
0.00247
(0.0108)
-0.414
(0.284)
0.537
(0.478)
0.758
(0.784)
-0.252
(1.525)

3.841
(7.358)

Y
81
0.540



growth rates[”’| Columns 3 and 9 present the no-strikes counterfactual that does not remove the
growth bump from the underlying risk. While these columns correctly estimate counterfactual
growth without cyclone strikes, they do not estimate a no-cyclone world. Columns 4 and 10
calculate the impact of strikes on average growth. Columns 5 and 11 estimate the counterfactual
comparison of each country with no cyclone strikes or risk. Columns 6 and 12 present the overall
impact of cyclones (strikes plus risk) on average growth.

We find that careful consideration of the appropriate counterfactual matters greatly. For
example, analyzing the impact of strikes alone will lead to an overestimate of the negative impacts
of cyclones. Similarly, only identifying the impact of the underlying cyclone risk rate will lead
to an underestimate of the true impact of cyclones on growth. The truth is in between. Overall,
we find that, conditional on ever experiencing cyclones, the strike-only approach will estimate
an average cyclone impact of -0.72 percentage points from the annual growth rate. However,
once the increase in growth due to long run cyclone risk is accounted for, the estimated average
growth impact is a -0.09 percentage point reduction form the annual growth rate. Thus, focusing
on strikes, alone, will overestimate losses by a significant amount. Similarly, only focusing on
the underlying risk rate, and conditional on having hurricanes, would indicate that cyclones
positively impact growth by 0.63 percent per year, on average. While these are preliminary

results, they highlight the need for both factors to be included in impact estimates.

Cyclones and Risk Reduction: Credit Lastly, we present some suggestive evidence to em-
pirically test the model’s prediction that financial markets can attenuate the impacts of cyclone
risk on growth[™® We do so by interacting a proxy for financial market development - total domes-
tic credit provided by the financial sector as a percentage of GDP - with cyclone risk variables.
Though imprecisely estimated in most specifications, the interaction between average cyclone
risk and financial market development is negative, suggestively consistent with the hypothesis

that market completeness mitigates the effects of cyclone risk on growth[”]

17 For transparency, we present the raw numbers. Alternatively, we could calculate the percent change in the

values and then apply them back to the observed (historical) growth rates.

McDermott, Barry, and Tol (2014) explore the effect of financial market development on the growth impact
of disaster strikes in a panel estimation, finding a significant protective effect. Our model implies that the
underlying mechanisms rendering financial markets beneficial in disaster strike recovery likely differs from
the effect on long-run growth (via changes in investment patterns). We hope to explore this question more
formally in the future.

In current work we are exploring other financial market and insurance availability proxies, as well as other
cyclone risk interactions, to test the strength and robustness of these results.
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Strike and Cyclone Growth Impacts

Table 5

Impact

Strike No-Cyclones Cyclone

No-Strikes

Estimated
Avg Growth
(%)

Country
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Table 6: Hurricane and Risk Reduction: Credit

Avg Max Wind

Avg Credit

Avg Max Wind X Avg Credit
Abs Latitude

Corruption Perception Index
Constant

Region FE

Observations

R-squared

Robust SE in parentheses
** p<0.01, ** p<0.05, * p<0.1

1) ) 3)
Dependent Variable Avg Growth Avg Growth Avg Growth
0.0374%*** 0.0477*** 0.0365***
(0.0137) (0.0136) (0.0102)
-0.000261 -0.00276 0.00446
(0.00581)  (0.00526)  (0.00488)
-6.80e-06 -3.71e-05 -0.000133*
(9.82e-05) (7.90e-05) (7.88e-05)
0.0182
(0.0231)
0.00646
(0.0166)
1.3471%*% 0.593 0.604
(0.502) (0.493) (0.598)
N N Y
112 87 92
0.055 0.107 0.164
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(4)

Avg Growth

0.0339%**
(0.0100)
-0.00300
(0.00468)
-9.49¢-05
(7.44e-05)
0.0148
(0.0163)
0.0174
(0.0147)
2.152%%*
(0.602)

Y
87
0.188



5 Conclusion

A growing body of empirical work has sought to quantify the impacts of natural disasters on
economic growth. To date, this literature has found seemingly contradictory results, ranging
from positive effects to very large negative impacts. This paper brings a novel macroeconomic
model-based perspective to the data in order to reconcile and build upon these findings. Taking
advantage of the tools developed in the literature on incomplete markets and macroeconomic
outcomes (Krebs, 2003, 2006), we present a stochastic endogenous growth model where individual
regions face uninsurable cyclone risks to human and entrepreneurial capital. The first central
result is that the model can reconcile some key divergent results from prior empirical studies as
they measure different elements of the overall impact of natural disasters on growth: (1) Higher
hurricane 7isk can increase growth by increasing (precautionary) savings rates, whereas hurricane
strikes induce (potentially persistent) output losses. These results are in line with differences
in empirical results of, e.g., the positive cross-sectional impact estimates of Skidmore and Toya
(2002) versus the negative cyclone strike impacts documented in panel estimation by Hsiang
and Jina (2015). While competing empirical approaches identify different aspects of the growth
question, neither cross-sectional nor panel fixed-effects specifications may thus be individually
sufficient to capture the overall effect of disasters growth. We explore a two-step combined
estimator that seeks to adjust directly for the dependence of countries’ average growth rates on
cyclone risk. We empirically find that average growth (in a world without cyclone strikes) is
positively associated with cyclone risk, in line with the model. Based on these results we find
that the overall impact of cyclones on growth lies between the large negative cumulative effect
of strikes and the positive effect of risk. (2) We find that competing measures of cyclone risk -
specifically average damages to physical versus human capital, or average storm intensity - can
be related to growth in opposite ways. This result is in line with, e.g., Hsiang and Jina’s (2015b)
finding that average cyclone-induced capital depreciation is negatively associated with long-run
growth, in contrast with Skidmore and Toya’s (2002) finding that the average number of disasters
is positively associated with long-run growth. The intuition for our result is as follows. Long-run
growth depends on the level and composition of households’ investments in assets with different
productivities and cyclone vulnerabilities. A decline in the expected returns to investments in,
e.g., human capital due to higher expected cyclone damages can thus increase investment in
other, more productive (albeit riskier) assets, such as entrepreneurial capital, increasing growth.
Again, empirical studies using different average cyclone risk measures estimate different aspects
of the overall growth impacts. However, our model implies that the overall impact of cyclone
risk on growth depends on the entire vector of different assets’ returns, average damages, as well

as cyclone risk variance and covariance measures, which have seldom been included in empirical
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studies. (3) Finally, we show that cyclone risk can have opposite effects on growth and welfare.
For example, an increase in cyclone risk can increase growth by strengthening precautionary
savings motives, but this change will unambiguously decrease welfare. While this ambiguity is
known in the macroeconomics incomplete markets literature (e.g., Krebs, 2003, 2006; Angeletos,
2007), we demonstrate its relevance for the environmental literature seeking to map reduced form
output growth impact estimates into welfare. In particular, this result highlights the importance
of decomposing output growth changes into underlying changes in savings rates, productivity,
etc. in order to inform such a mapping.

In summary, our model can both reconcile and contextualize key results from the empirical
literature on disasters and economic growth. We argue that this rich literature has carefully iden-
tified different elements of disaster growth impacts (e.g., risk versus strikes). However, through
the lens of a macroeconomic model, the pieces of the puzzle can be assembled to inform a
more comprehensive understanding of the impact of disasters on growth, and to highlight the
key empirical challenges that remain open. Overall, our results highlight the potential value of
joint advances in theory and empirics to improve our understanding of environment-economy

interactions.

6 Appendix

6.1 Lognormal Distribution Fit for Cyclone Damages

In order to gauge the plausibility of a log-normal distribution of cyclone-induced shocks to the
depreciation of human and physical capital, we obtain EM-DAT data from the International
Disaster Database at the Center for Research on Epidemiology of Disasters (CRED). These
data provide both the value of direct damages and total fatalities. We then obtain World Bank
Development Indicators data on countries’ real GDP and populations over time (for all available
countries and years from 1960-2014). We approximate countries’ capital stocks by assuming a
marginal product of capital of r = 5%, a uniform depreciation rate of 10% and a capital share in
output of 30%. We then calculate the fraction of the capital stock destroyed, and the fraction of
human capital destroyed (i.e., population killed) by cyclones in each country-year. Figures Al
and A3 plot the histogram for these variables conditional on damages being positive. Figures A2
and A4 plot the histogram of the logarithm of these variables, along with a normal distribution

fit line. Both variables appear well-approximated by a log-normal distribution.
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6.2 Proof of Proposition 1
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The household’s recursive dynamic optimization problem is given by:

V (ws, By Opaiy 'y 1E2) = maxu(e;) + BE[V (w], hl, Oy 1)

subject to:

w) = [1+7(hi, Opas, 1l ) w; —
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where:

T(’Z; @inv 77?7 7752)
= [(1 = Oui)(1 = O,(h:))Riet + O (i) (R + 1 — 8 — 1) + Opai(As 4+ 1 — 64y — 12)]

First, substituting into and taking the FOCs for ¢;, Hi, and O;9;, respectively, yields:

u,, = BEV, (29)
0 = BEVL
0 = BEV,

k2i

Second, we substitute in the decision rules ¢; = g(wj, hl, Oai, N, mF?), h’ = f(w, fz, Orai, N, mF?),

O, = v(w;, hi, Opzi, ", n¥2) and derive the Belnvenlste—Schelnkman conditions:

V! = BE[VL[+r(hi, Oai,nl, 1))
VL = BEV! A1 = Oui)(=1)(1 + ki) 2Ris + (14 hy) (R + 1 = 6 — /") }wi]

hq

V@,kZi = 6E[V, {( )(1 - Hh(h ))Rkl + (AQ + 1-— 5k2 ﬁf2>}wi]
Substituting out based on the FOCs yields:

V,u/] == U//CZ[]- +T(ﬁ;7®k2i7n?7n?2)]
VE = (1= O4)(=1) (1 + ) *Ria + (1 + hi) >(Rn + 1= 6 — ) b

Vo = ueA(=1)0n(h )Rkl + (A + 1= 62 — %) b,
Next, iterating forward provides:

Vi = b1+ r(hi, Ol )]
Ve =l {(1 = O (=1)(1+ hi ) 2Ria + (1+ b ) 2(Ry + 16 — ) bt
Vo = b {(=D( = 0u(h))Ria + (Az + 1 — 30 — ') Ju]

Next, substituting back into the consumer’s optimality conditions yields the following Euler

equation and no-arbitrage conditions, respectively:

ul, = BER N+ r(hi, O 0] (30)
0 = BE[u, {(1—Ou)(~1)(L+h; ) 2Ry + (1+h ) 2(Ry +1 -5 —n") ] (31)
0 = BE[u,{(~1)(1 = 0u(hi ) Ria + (A2 + 1 — G2 — ) }uw]) (32)
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Finally, (i) applying our assumed utility function , (ii) defining mean returns 74, = Az + (1 —

dre) and 7, = R+ (1—0y,), (iii) invoking the budget constraint w) = (1—1—7“(51-, Oai, N, ) w; —c;

and ¢; = ¢(1 + 7")w’, and rearranging yields:

& = 1—(BE[(1+r(h Ol )5 (33)
[ o by —_ O .

0 4B K@nﬁf}@m&ﬁ] (34)
(14 Ry )2(1 + 7r(hi , Oy mi! k2 )Y

{(Fra — 0) — (1 — 03,(h})) Ry }
(1 + 7 (s , Oy, i) )

i

0 = BE

(35)

Our three unknowns (c, @;m,ﬁ;) are thus defined by equations —. Importantly, they

do not depend on wealth nor on the current hurricane shock, but only on the (time-invariant)

expectations over future realizations. [J.
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