
Do Disasters Affect Growth? A Macro Model-Based

Perspective on the Empirical Debate

Laura Bakkensen∗ and Lint Barrage†

Preliminary. Please do not cite without permission.

July 10, 2016

Abstract

A growing literature has sought to quantify the impacts of natural disasters on economic
growth, but has found seemingly contradictory results, ranging from positive to very large
negative effects. This paper brings a novel macroeconomic model-based perspective to
the data. We present a stochastic endogenous growth model where individual regions
face uninsurable cyclone risks to human and entrepreneurial capital, building on the tools
developed in the incomplete markets macroeconomics literature (Krebs, 2003, Angeletos,
2007). Our model can reconcile key divergent results from prior empirical studies, as they
measure different elements of the overall impact of disasters on growth: (1) Higher disaster
risk can increase growth by increasing (precautionary) savings, whereas disaster strikes
induce (potentially persistent) output losses, in line with the empirical evidence of positive
growth effects in cross-sectional analyses (e.g., Skidmore and Toya, 2002) but negative
impacts in panel studies (e.g., Hsiang and Jina, 2015a). We explore a combined two-step
estimation to assess the overall impact of cyclones on growth, which - on average - appears
to lie in between. (2) Competing measures of cyclone risk - average capital destruction,
fatalities, or storm intensity - can be related to growth in opposite ways, again in line
with the literature (e.g., Hsiang and Jina, 2015b vs. Skidmore and Toya, 2002). Intuitively,
long-run growth depends on the level and composition of investments across different assets,
which, in turn, depend differentially on the vector of expected damages to all capital goods.
(3) Finally, we show that disaster risk can have opposite effects on growth and welfare.
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1 Introduction

How do natural disasters affect economic growth? A rich empirical literature continues to analyze

this question, but has come to seemingly contradictory conclusions, ranging from positive to very

large negative impacts of disasters on growth. While the direct costs of natural disasters are well-

established to be large (Bakkensen andMendelsohn, 2016; Ranson et al., 2014) and increasing due

to global changes (Mendelsohn et al., 2012; Nordhaus, 2010), the macroeconomic consequences

of disasters thus remain an open question. Resolving this question is arguably important as both

the adaptation to and valuation of changes in disaster risks - such as due to climate change -

require a detailed understanding of disaster impacts’magnitudes and mechanisms.

This paper brings a novel macroeconomic model-based perspective to the data in order to

reconcile and build upon the empirical literature on disasters and growth. Despite its importance

and richness, this literature currently features two main gaps. First, the empirical growth liter-

ature has found a range of seemingly contradictory results, ranging from positive impacts (e.g.,

Skidmore and Toya, 2002) to extremely large negative effects (Hsiang and Jina, 2015, “HJ").

These differences have yet to be reconciled, and it remains unclear how competing empirical

settings and methodologies impact the results. The second key gap is the lack of connection

between empirical work with macroeconomic growth models. As HJ note, it is diffi cult to com-

pare empirical estimates without the context of a growth model. While there have been some

important recent advances in the theory of disasters and growth (e.g., Akao and Sakamoto, 2014;

Ikefuji and Horii, 2012), these works have pursued limited empirical connections, and/or employ

models with a different focus.1 This paper takes advantage of the tools developed in the literature

on incomplete markets and growth (e.g., Angeletos, 2007; Krebs, 2003) to develop a structural

perspective on disasters. We seek to inform both gaps by developing a macroeconomic stochastic

endogenous growth model of disaster risk and impacts, where individual regions face uninsurable

idiosyncratic cyclone risks to their human and entrepreneurial capital.2 We then use the model

to re-evaluate the literature and the data through a structural lens.

The main result is that the model can reconcile some key divergent results from prior em-

pirical studies, as they measure different elements of the overall impact of natural disasters on

growth: (1) Higher hurricane risk can increase growth by increasing (precautionary) savings

rates, whereas hurricane strikes induce (potentially persistent) output losses. Consequently, we

should potentially expect cross-sectional studies of cyclone risk and long-run growth (e.g., Skid-

1 For example, Akaho and Sakamoto (2014) employ a single-region model focusing on aggregate shocks, whereas
we focus on idiosyncratic uninsurable disaster risks to regions within a larger economy. Ikefuji and Horii’s
(2012) focus on endogenous disaster risk from pollution and growth.

2 We use tropical cyclones ("hurricanes") as natural disaster. Previous literature has shown heterogeneous
impacts of disasters on growth, making the focus on a specific category desirable. Cyclones are large, frequent,
and well-recorded for many years. The growth impacts of other types of disasters are left for future work.
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more and Toya, 2002) to find opposite results from panel fixed-effects studies identifying the

impact of cyclone strikes, as is indeed the case. While competing empirical approaches identify

different aspects of the growth question, neither cross-sectional nor panel fixed-effects specifi-

cations may thus be individually suffi cient to capture the overall effect of disasters on growth.

We explore a two-step estimation procedure that seeks to adjust directly for the dependence of

countries’average growth rates on cyclone risk. We empirically find that average growth in a

world without cyclone strikes is positively associated with cyclone risk, in line with the model.

Our best estimate of the overall impact of cyclones on growth lies between the large negative

cumulative effect of strikes and the positive effect of risk. (2) Alternative measures of cyclone

risk - such as average damages to physical versus human capital, or average storm intensity - can

be related to growth in opposite ways. Consequently, we should expect cross-sectional studies

employing different measures to find different results, as is indeed the case. For example, Hsiang

and Jina (2015b) document a negative relationship between average cyclone-induced capital de-

preciation and long-run growth, whereas Skidmore and Toya’s (2002) find a positive association

between the average number of disasters and growth. In our model, long-run growth depends on

the level and composition of households’investments in assets with different productivities and

disaster vulnerabilities. A decline in the expected returns to investments in, e.g.,. human capital

due to higher expected cyclone damages can thus increase investment in other, potentially more

productive (but riskier) assets, such as entrepreneurial capital, increasing growth. While empir-

ical studies using different individual cyclone risk measures identify different elements of growth

impacts, our model suggests that the overall impact of cyclone risk on growth depends on the

entire vector of expected damages, as well as impact variance and covariance measures, which

have seldom been included in empirical studies. (3) Finally, we show that cyclone risk can have

opposite effects on growth and welfare. That is, the growth impacts of cyclone risks may not be of

the same sign as the welfare impact of those risks. Consequently, joint advances in theory, data,

and empirics will likely be neeed to improve our understanding of these environment-economy

interactions.

The paper is structured as follows. Section 2 reviews the relevant empirical and theoretical

disaster growth literatures. Section 3 presents our model setup, predictions for cyclones and

long-run growth, transitional impacts, and implications for the empirical literature. Section 4

presents our empirical methodology, data, and results. We conclude in Section 5 and present the

Appendix in Section 6.
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2 Disasters and Growth Literature

A growing area of literature exists to identify and explain the impacts of natural disasters on

human communities. Broadly, empirical literature aims to identify the impact of natural disasters

on direct and indirect losses as well as broader macroeconomic impacts. Motivated by our model,

we include direct impact studies in our review, as they represent damages to physical and human

capital that endogenously generate growth impacts through changes in the capital stock as well

as investment behavior.

2.1 Empirical Approaches

Extensive literature exists analyzing the impacts of natural disasters on direct losses and economic

growth (Cavallo and Noy, 2011; Kousky, 2014). First, new and growing literature analyzes the

impact of exogenous disaster shocks on economic growth, with a range of conclusions. Using a

cross-sectional approach, Skidmore and Toya (2002) find that countries with higher frequencies

of disasters have, on average, higher average economic growth rates. This is driven by climatic

events, whereas geologic events, such as earthquakes, are negatively correlated with growth. Noy

(2009) empirically analyzes the impact of endogenous and exogenous variables on the annual

growth rate using a panel of 109 countries using the Hausman-Taylor estimator (1981). Using

a month of disaster onset normalization, they find that only damages impact the growth rate

and not fatalities or number of individuals affected. The analysis does not analyze the impact

of long-run disaster risk, as does Skidmore and Toya, instead looking at the contemporaneous

impacts of a disaster on economic growth. Hsiang and Jina (2015) use a panel fixed effects

specification to analyze the impact of disasters lagged up to twenty years on current growth.

They also perform simulations to model counter-factual growths rates, if no hurricanes had ever

occurred. They conclude that hurricanes have a minor but persistent impact on growth. Once

integrated over time, these losses become very large. Similar to Noy, Hsiang and Jina control for

the long-run cyclone risk in their empirical specification, identifying off of individual shocks.

In a similar spirit, Cavallo, Galiani, Noy, and Pantano (2013) use synthetic control to con-

struct counter-factual no-disaster growth rates of countries impacted by disasters. They find that

only the most extreme disasters have negative growth impacts in both the short and long runs.

However, significant political revolutions is an important variable that, once included, wash away

the negative impact of disasters on growth. Hochrainer (2009) also uses counter-factual analysis,

finding that disaster impacts are negative but small, with larger shocks leading to larger impacts.

He also analyzes factors that increase vulnerability to macroeconomic losses, finding that less

aid or remittances increases harm. Loayza, Olaberria, Rogolini, and Christiansen (2009) find

that disasters have heterogeneous impacts across disaster types and sectors, with some small dis-
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asters triggering positive growth impacts. However, large disasters only have negative impacts.

Lastly, they find that developing countries are more sensitive to natural disaster impacts. Using

a vector autoregressive approach, Fomby, Ikeda, and Loayza (2013) finds similar results. Strobl

(2011) conducts a careful analyses of the impact of hurricane strikes on county-level growth in

the United States. He finds that the average impact of a landfall on growth is -0.45 percentage

points, however one quarter of that impact is due to migration of richer individuals. Strobl does

not find any impacts at the state or national level, nor negative long run impacts. Therefore,

the empirical growth literature, taking very different approaches, finds a wide range of results.

No attempts have been made to reconcile these findings. Klomp and Valckz (2014) conduct a

meta-analysis and find a negative impact of disasters on growth, but note that this could be,

in part, due to publication bias. Lazzaroni and van Bergeijk (2014) find similar results in their

meta-analysis of 64 primary studies.

Underpinning macroeconomic growth are the stocks of both human and physical capital.

Thus, much of the literature on the direct and indirect impacts of natural disasters also usefully

informs determinants of macroeconomic growth impact channels. Concerning physical capital,

Leiter, Oberhofer, and Raschky (2009) use a difference-in-difference approach and find that flood-

hit companies have, on average, higher growth in assets and employment, relative to non-flooded

firms. These affects are concentrated among firms with more intangible assets. Mechler (2009)

analyzes nontraditional national accounting metrics, including savings rates, to model post-

disaster consumption, finding that poorer countries are most hit by capital stock losses, whereas

richer countries rely more on human capital and technology to mitigate disasters. Multiple studies

analyze determinants of direct damages from natural disasters (Bakkensen andMendelsohn, 2016;

Toya and Skidmore, 2007; Kellenberg and Mobarak, 2007; Fankhauser and McDermott, 2013;

Nordhaus, 2010) including the underlying risk rate (Hsiang and Narita, 2012; Schumacher and

Strobl, 2011). In addition, Conte and Kelly (2016) find that the distribution of property losses

can have fat tails, which is explained by property location and not distributions of hurricane

strength or damages across individual properties. All together, these findings inform policy and

risk reduction strategies.

The impacts of natural disasters on human capital is a question of fundamental importance.

Growing literature analyzes the impact of disasters on fatalities (Kahn, 2005). While extensive

literature in public health, psychology, sociology, and economics analyze the impacts of singular

events or a few case studies on a variety of specific impacts, few papers analyze these impacts

through the lens of a macroeconomic model. Clear negative consequences results from natural

disasters, including death and injury as well as reductions in nutrition, education, health, and

income-generation. These impacts are most concentrated in developing countries. However, the

empirical and theoretical impacts are ambiguous in terms of duration of consequences, as well
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as potential general equilibrium impacts that could increase investment or returns to human

capital, relative to physical capital, under natural disasters (Baez, de la Fuente, and Santos,

2010). Antilla-Hughes and Hsiang (2012) find that income loss and infant mortality in the year

following a disaster are much larger than direct losses and fatalities. Hallegatte (2015) also

finds that indirect “ripple effects”are important, but can be either negative or positive. Toya,

Skidmore, and Robertson (2012) use disasters as an exogenous instrument for human capital

shocks, to isolate the growth impacts. Cuaresma (2010) find a negative relationship between

geologic disasters and schooling. However, knowledge gaps remain, including the extent to which

impacts are long term, as well as the ultimate growth impacts from human capital shocks (Baez,

de la Fuente, and Santos, 2010).

Lastly, disasters can impact knowledge, policy, and trade. Using both cross-sectional and

panel techniques, Cuaresma, Hlouskova, and Obsersteinter (2008) find a positive relationship

between the underlying risk of disasters and knowledge spillovers taking place between developed

and developing countries. They find that this is evidence of creative destruction. Popp (2006)

reviews the literature and finds that disasters’impact on technology has a qualitatively ambiguous

impact on economic growth. Gassebner, Keck, and Teh (2010) find that disasters reduce both

imports and exports in a struck country, with reductions greatest in smaller or non-democratic

states. Noy and Nualsri (2011) analyze the fiscal impacts of disasters and Deryugina (2011) finds

that the indirect and fiscal costs of hurricanes outweigh the direct losses.

2.2 Theoretical Approaches

While the theoretical literature focusing explicitly on the impacts of natural disasters on output

and growth is “still in its infancy” (Ikefuji and Horii, 2012), we build on its important recent

advances. Most closely related to our approach, Ikefuji and Horii (2012) present an endogenous

model in the Uzawa-Lucas tradition, where individual regions are subject to hurricane shocks

to physical and human capital. The focus of their paper is on pollution taxation and growth,

as pollution affects disaster risk in their framework. They consider the potential implications

of uninsurable human - but not physical - capital risk on long-run growth. In addition, their

model is not brought to data. Akao and Sakamoto (2014) present a two-sector endogenous

growth model with different disaster shock processes, and studies the channels through which

these affect long-run growth. Their approach is complementary to our study as it focuses on

aggregate shocks in a single-region model, whereas our framework models uninsurable shocks to

individual regions in an incomplete markets endogenous growth model. Akao and Sakamoto’s

focus is moreover theoretical, whereas we focus on connecting our model to the data and to

empirical methodologies. Noy and Nualsri (2007) analyze the impact of changes in growth model
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assumptions on predictions of the impact of natural disasters while testing these predictions

empirically. McDermott, Barry, and Tol (2014) study the impact of capital markets to mitigate

the harmful growth impacts of natural disasters. Finally, Kousky, Luttmer, and Zeckhauser

(2007) analyze the interaction between private capital markets and public hazard protection,

but do not empirically quantify their results.

In addition to theoretical models, several papers develop quantitative estimates of disaster

impacts. Albala-Bertrand (1993) develops a growth-accounting framework for disaster impacts,

finding that capital losses from a disasters do not greatly impact growth. Hallegatte and Dumas

(2009) develop a dynamic growth model in a disequilibrium setting to analyze direct and indi-

rect disaster impacts. Rose (2004) highlights the importance of computable general equilibrium

models in the study of natural disasters. Finally, Narita, Tol, and Anthoff (2010) develop an

integrated assessment model to analyze hurricane costs.

We seek to add to this literature by bringing in analytic tools that have been developed

for the study of incomplete markets and their macroeconomic implications. A rich literature

in macroeconomics first studied the implications of idiosyncratic (uninsurable) labor income

risk, which was found to increase aggregate savings and growth (e.g., Bewley, 1977; Ayiagari,

1994; Huggett, 1997, Smith and Krusell, 1998). More recently, Angeletos (2007) extended this

framework to consider uninsurable investment risk, finding that it can increase or decrease growth

depending on preferences and the private (risky) capital share. Finally, most directly related to

our approach, Krebs (2003a,b; 2006) presents an endogenous growth framework with uninsurable

risk to human capital. Krebs’approach is motivated based on the idea that households within

a modern macroeconomy face idiosyncratic job separation risks, which can damage their human

capital. We apply this framework to a different context: the idiosyncratic risk to human capital

faced by different regions in countries at risk for hurricane strikes. Krebs’(as well as Ikefuji and

Horii’s) frameworks assume all physical capital is risk-free or fully diversified. For our setting

- where developing nations suffer substantial hurricane risks - this approach seems insuffi cient.

We consequently extend Krebs’(2003b) model to incorporate entrepreneurial or privately held

local capital that is subject to uninsurable hurricane risks. Krebs (2003a) briefly illustrates

such an extension of his model, but assumes that human and entrepreneurial capital shocks

are uncorrelated. Naturally, this assumption is inappropriate for the study of hurricane risk,

where these shocks are likely positively correlated. Our model thus (i) formally extends Krebs’

(2003a,b) framework to a setting with entrepreneurial and human capital with correlated shocks,

and (ii) applies this framework to evaluate hurricane risk and strike impacts on economic growth.
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3 An Endogenous Growth Model of Disaster Impacts

3.1 Setup

The model economy features a unit mass of households i ∈ [0, 1] that is spread across a continuum

of locations (as in Ikefuji and Horii, 2012). There are two types of production: First, a unit mass

of “corporate" firms j ∈ [0, 1] rent capital kjt and human capital njt in a competitive financial

market to produce output yjt with constant returns to scale technology:

y1jt = A1k
α
jtn

1−α
jt (1)

Second, there is “entrepreneurial" production that relies on local capital owned by the rep-

resentative household in region i to produce output y2it :

y2it = A2k2it

Households can thus invest in three types of assets: their human capital hit and their financial

capital sit, both of which are supplied to formal firms, and private capital k2it, which is used

for local/entrepreneurial production. As we assume a closed economy, the aggregate corporate

capital stock is given by K1t =
∫
k1jtdj =

∫
sitdj. Analogously defining aggregate human capital

via Ht =
∫
hitdi, aggregate output from firms can be written as:

Y1t ≡
∫
y1jtdj = A1K

α
1tHt

1−α (2)

Disaster strikes can damage all three types of capital. Importantly, our analysis focuses on

the (interesting) case where households cannot properly insure against risks to their human and

private capital. In contrast, even though one can also consider cyclone damages to physical capital

installed at firm j, this risk is diversified across the macroeconomy (if shocks are independently

and identically distributed across locations). That is, if households’financial assets are invested

across the economy, then idiosyncratic local damages to firms’capital stocks do not affect the

aggregate return to these assets. Financial assets sit are thus effectively a risk-free asset.

3.2 Firms

Each firm j rents human and physical capital in competitive markets. The firm pays households

gross return Rht for their provision of human capital (effi ciency units of labor services provided),

and pays Rk1t plus depreciation as return on financial capital. We assume that cyclone shocks

to firms take the form of an additive increase in the depreciation rate by ηk1jt ∼ lnN(µk1, σ
2
k1).
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The assumption of log-normality is motivated twofold. First, as shown in the Appendix, a log-

normal distribution fits the data on average cyclone capital destruction rates well. Second, for

the uninsurable cyclone risks endured by households (described below), log-normality permits a

direct mapping from expected utility maximization to a portfolio choice problem to characterize

the households’optimal investment as a function of cyclone risk. For firms in the formal sector,

however, as storm risks are identically and independently, the risk-neutral firm’s expected profit

maximization problem is given by:

max
k1jt,njt

(A1k
α
1jtn

1−α
jt )−Rhtnjt − (Rk1t + δk1 + µk1)k1jt

We assume full mobility of labor and capital across locations (within a country). Conse-

quently, factor rates of return are equated across regions, and the firm’s first-order conditions

are thus standard:

Rht = (1− α)A1

(
njt
k1jt

)−α
(3)

Rk1t + δk + µk1 = (α)A1

(
njt
k1jt

)1−α

Since (3) holds for all firms, we can also express equilibrium factor prices in terms of the

aggregate human-corporate capital ratio h̃t ≡ Ht
K1t

:

Rht = (1− α)A1(h̃t)
−α (4)

Rk1t + δk + µk1 = (α)A1(h̃t)
1−α

Note that equations (4) define Rht = Rh(h̃t) and Rkt = Rk1(h̃t).

3.3 Households

The representative household in region i maximizes his expected lifetime utility by choosing

state-contingent plans for consumption cit and his investments in financial (xsit), human (xhit),

and private (xk2it) capital. In particular, he solves:

maxE0

∞∑
t=0

βtU(cit)
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subject to constraints:

cit + xst + xht + xkt = sitRk1t + hitRht + (A2k2it)︸ ︷︷ ︸
=y2it

hit+1 = (1− δh − ηhit)hit + xhit

sit+1 = sit + xsit

k2it+1 = (1− δk2 − ηk2it )k2it + xk2it

hi0, si0, k20 given

where ηhit and η
k2
it denote the (jointly lognormally distributed) shocks to depreciation from

storms. As shown in the Appendix, a log-normal distribution appears to provide a good fit for

damage data. In contrast to Krebs (2003a), we do not assume that ηhit and η
k2
it are independent,

as both damage shocks originate from natural disasters in our setting, and are thus almost

surely positively correlated. For example, later we consider the case where there is an underlying

hurricane strength random variable εit ∼ lnN(µε, σ
2
ε) and where damage ratios are proportional

to hurricane strength: ηhit = ξhεit and ηk2
it = ξk2εit. In this case, cov(ηhit, η

k2
it ) = ξhξk2σ2

ε > 0.

We now define some helpful notation and re-write the household’s problem in order to facili-

tate the analysis. Let h̃it denote the household’s human-financial capital ratio:

h̃it ≡
hit
sit

The share of human capital in the household’s asset allocation to firms is then given by:

θhit ≡
hit

sit + hit
=

h̃it

1 + h̃it
= θh(h̃it)

Next, let Θk2it denote the share of the household’s total wealth invested in private capital:

Θk2it ≡
k2it

sit + hit + k2it

The household’s overall return on his assets in period t can thus be written as:

rit = r(h̃it,Θk2it, h̃t, η
h
it, η

k2
it )

= [(1−Θk2it)(1− θh(h̃it))Rk1t + θh(h̃it)(Rht + 1− δh − ηhit) + Θk2it(A2 + 1− δk2 − ηk2it )](5)

It is now straightforward to write the household’s budget constraint in terms of the evolution
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of his wealth wit ≡ sit + hit + k2it :

wit+1 = [1 + r(h̃it,Θk2it, h̃t, η
h
it, η

k2
it )]wit − cit (6)

Following Krebs (2003a, 2003b, 2006) we now construct a stationary equilibrium where ag-

gregate returns are defined by Rht = Rh = Rh(h̃) and Rk1t = Rk1 = Rk1(h̃), and where the

aggregate human-physical corporate capital ratio is thus constant. The agent’s problem can

then be written recursively as:

V (wi, h̃i,Θk2i, η
h
i , η

k2
i ) = maxu(ci) + βE[V (w′i, h̃

′
i,Θ

′
k2i, η

h′
i , η

k2′
i )] (7)

subject to the law of motion (6).3

Proposition 1 Assume preferences are of the CES form:

u(ci) =
c1−γ
i

1− γ (8)

The solution to the household’s problem then involves (i) a constant consumption-wealth ratio c̃

(ii) a constant human-to-financial capital ratio h̃i, and (iii) a constant entrepreneurial capital-

to-wealth ratio θ̃k2i, defined by:

c̃ = 1− (βE[(1 + r(h̃i, θ̃k2i, η
h′
i , η

k2′
i ))1−γ])

1
γ (9)

0 = βE

[
{(r̃h − ηh′i )− (1−Θ′k2i)Rk1}

(1 + r(h̃i
′
,Θ′k2i, η

h′
i , η

k2′
i ))γ(1 + h̃i

′
)2

]
(10)

0 = βE

[
{(r̃k2 − ηk2′i )− (1− θh(h̃′i))Rk1}

(1 + r(h̃i
′
,Θ′k2i, η

h′
i , η

k2′
i ))γ

]
(11)

Proof: See Appendix. Intuitively, the optimal consumption-to-wealth ratio c̃ follows from

the household’s Euler Equation, whereas equations (10) and (11) express no-arbitrage conditions

based on the expected excess returns to human capital and entrepreneurial capital, respectively,

above and beyond the risk-free rate Rk1.

Given the result for c̃ = cit(1+rit)wit, and by the law or large numbers, aggregate consumption

growth in this economy is equal to expected local consumption growth (see Krebs, 2003b). In

our setting, this is given by:

Ct+1

Ct
= E

[
cit+1

cit

]
= (1− c̃)(1 + E[r(h̃i

′
,Θ′k2i, η

h′
i , η

k2′
i ) (Growth_C)

3 Note that we do assume that hurricane shocks are independently distributed across time.

11



This expression allows us to preview the two main channels through which hurricane risk

affects growth in this model. Note that we provide a formal statement and proof of these effects

below after describing households’optimal asset allocations.

Remark 1 Hurricane risk affects growth rates through two channels (Informal Statement):

1. (Precautionary) Savings Effect: Uninsurable hurricane risk affects the household’s overall

savings rate out of wealth c̃ (via 9). If hurricane risk increases overall savings, then observed

consumption growth will be higher in economies with larger hurricane risk, ceteris paribus.

2. Rate of Return Effect: Uninsurable hurricane risk affects expected returns on the household’s

investments in human and entrepreneurial capital. If hurricane risk reduces expected returns

to investment, then observed consumption growth will be lower in economies with larger

risks, ceteris paribus.

3. The overall effect of hurricane risks on growth are thus ambiguous despite the fact that the

effect of a hurricane strike on consumption growth is unambiguously negative.4

3.4 Cyclone Risk, Investment, and Growth

In order to provide concrete insights on the growth impacts of disaster risk it is necessary to

assess the effect of this risk on households’investment decisions, and thus the overall expected

return on their portfolios. In particular, we want to understand how destructive risks to human

and entrepreneurial capital affect the household’s decision to invest in different assets, as these

affect economic growth differently.

We have already demonstrated that the consumption-wealth ratio is constant in the present

model (Proposition 1). A fundamental insight from the literature (e.g., Krebs, 2003a,b) is that

the household’s investment decision in this kind of setting can be solved as a portfolio choice

problem. In our model, due to the assumptions of power utility and log-normal returns on risky

assets, we can specifically cast this problem as a mean-variance analysis portfolio choice problem

(see, e.g., Campbell and Viceira, 2001). In particular, as is standard, we will first characterize

how the household allocates resources among the two risky assets (hit, k2it), and then consider

how he spreads his resources between the optimized risky portfolio and risky-free financial capital.

Let ωk2 ≡ k2it/(hit + k2it) denote the share of private capital k2it in the household’s risky asset

4 To see the latter, note first that: cit = c̃(1+ rit)wit. As per (5), the realization of a hurricane strike (η
k2
it ≥ 0,

ηhit ≥ 0) reduces the contemporaneous return 1 + rit. Consequently, consumption in period t is reduced by
the disaster. Consumption growth between periods t− 1 and t is thus also lower than normal.
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portfolio (k2it, hit). The mean-variance effi cient risky portfolio then maximizes the Sharpe ratio:

max
ωk2

E(rrp)−Rk1

σp

where E(rrp) is the expected return on the risky portfolio,

E(rrp) = ωk2r̃2 + (1− ωk2)r̃h

with standard deviation:

σrp = [ω2
k2σ

2
k2 + (1− ωk2)2σ2

h + 2ωk2(1− ωk2)ρh,k2σhσk2]
1
2

where σ2
k2 and σ

2
h are the standard deviations of private and human capital, respectively, where

r̃k2 = Rk2 − δk2 − µk2 and r̃h = Rh − δh − µh denote expected returns on private and human
capital, and where ρh,k2 denotes the correlation between the shocks to human and entrepreneurial

capital. As is well-known, the solution to this form of optimization problem is given by:

ω∗k2 =
(r̃k2 − rk1)σ2

h − (r̃h − rk1)cov(ηh, ηk2)

(r̃k2 − rk1)σ2
h + (r̃h − rk1)σ2

k2 − [(r̃k2 − rk1) + (r̃h − rk1)]cov(ηh, ηk2)
(12)

with cov(ηh, ηk2) = ρh,k2σhσk2. It should be noted that expression (12 only defines optimal

investment shares in entrepreneurial capital ω∗k2 implicitly, as equilibrium returns depend on

households’investment behaviors. However, (12) can be used to derive some informal insights

into how cyclone risks affect investment. For example, in the unrealistic but illustrative case

where shocks to physical and human capital are uncorrelated (cov(ηh, ηk2) = 0), we see that

the optimal investment share in entrepreneurial capital ω∗k2 is increasing in the expected excess

returns to entrepreneurial capital relative to risk-free capital (r̃k2 − rk1), holding all else equal.

Conversely, the entrepreneurial capital investment share is decreasing in the expected excess

returns to human capital (r̃h − rk1), ceteris paribus. The attractiveness of human capital as

alternative investment moreover increases, the riskier entrepreneurial capital is (higher σ2
k2), and

vice versa. In the fully general case, the effects of cyclone risk parameters on investment depend

on additional factors such as the magnitude of the covariance between cyclone risks to human and

physical capital relative to the riskiness to these individual assets. In order to derive more formal

insights, we thus proceed to characterize the rest of households’investment decision problem.

Let ωrp denote the fraction of the household’s wealth invested in the risky portfolio, such

that (1 − ωrp) corresponds to the fraction of wealth invested in risk-free financial capital. The

13



optimal ωrp solves:

max
ωrp

E(rp)−
1

2
γσ2

p

where γ is the coeffi cient of relative risk aversion for our utility function 8), and subject to

constraints:

E(rp) = (1− ωrp)rk1 + ωrpE(rrp)

σ2
p = ω2

rpσ
2
rp

The optimality conditions yield:

ω∗rp =
E(rrp)− rk1

γσ2
rp

(13)

Together, (12) and (13) define the optimal overall shares of wealth invested in private capital

Θk2i , human capital, and financial capital, respectively:

Θk2i = ωrpωk2 = Private capital share

(1−Θk2i)θh(h̃it) = ωrp(1− ωk2) = Human capital share

(1−Θk2i)(1− θh(h̃it)) = (1− ωrp) = Financial capital share

Note that this system of equations provides two equations in two unknowns (Θk2i, h̃i):

Θk2i − ω2ωrp = 0 (14)

(1−Θk2i)θh(h̃i)− ωrp(1− ω2) = 0

One can use the Implicit Function Theorem to derive comparative statics on the equilibrium

relationships between cyclone damage risk and the optimal investment variables Θk2i, h̃i. These

variables, in turn, pin down the effect of storm risk on expected rates of return and thus on

aggregate consumption growth as per (Growth_C). Since it is not generally possible to sign

these comparative statics in the fully general case presented thus far, we proceed in two ways.

First, we impose some basic structure on the relationship between ηh and ηk2 and underyling

storm risks and derive predictions for for the effects of changes in the cyclone risk variance for

certain subsets of the parameter space. Second, we provide results from a numerical example to

illustrate possible effects of changes in average damages.
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3.4.1 Cyclone Variability and Long-Run Growth

Assumption 1: Disaster damages to human and physical capital are each proportional to a fun-

damental hurricane strength measure εit ∼ lnN(µε, σ
2
ε) (iid over time and space), with:

ηhit = ξhεit

ηk2
it = ξk2εit

Assumption 1 implies that damage risks are linked to underlying storm risks as follows:

cov(ηhit, η
k2
it ) = ξhξk2σ2

ε > 0, σ2
h = var(ηhit) = (ξh)2σ2

ε, and σ
2
k2 = var(ηk2

it ) = (ξk2)2σ2
ε. In order to

derive unambiguous comparative statics on the effects of cyclone risk σ2
ε on the growth-relevant

variables (Θk2i, h̃i), we further have to partition the parameter space into different cases. We

focus on the most empirically relevant case:

Case 1: ξk2 > ξh, implying that entrepreneurial capital is more vulnerable to storms of a

given intensity than human capital.

Next, we assume that households cannot short-sell human nor entrepreneurial capital.5 In

order to ensure that the household’s optimal risky investment share is interior, we further make

Assumption 2: The excess return to human capital satisfies: 0 < r̃h− rk1 < σ2
εγ[ξh]2. Intuitively,

this condition ensures that the household is willing to invest in human capital, but that the

excess returns are not so large (relative to the risks) so as to push the household to a corner

solution of only wanting to invest in human capital. Finally, for points (3)-(6) of Proposition 2

below, we additionally impose Assumption 3: (1− α) < h̃

1+h̃
.

In Case 1, given Assumptions (1)-(3), one can then use the Implicit Function Theorem on

(14) to demonstrate the following:

Proposition 2 A (mean-preserving) increase in cyclone risk σ2′
ε >σ2

ε leads to the following eco-

nomic outcomes:

1. A decreased human-financial capital ratio:

dh̃

dσ2
ε

< 0

2. A lower equilibrium return on corporate capital Rk1(h̃′) < Rk1(h̃) and a higher equilibrium

(gross) return on human capital Rh(h̃
′) > Rh(h̃) (as per equation (4)).

5 Given Assumption 1 and Case 1, this restriction will be binding as the damage shocks are perfectly corre-
lated. Consequently, in Case 1, the risk-minimizing portfolio would - in theory - involve the short-selling
of entrepreneurial capital. As we do not permit such short-sales, the household will not want to invest in
entrepreneurial capital in this particular case (Θ∗k2 = 0), investing only in human and financial assets.
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3. A lower expected return on the household’s asset portfolio: E[r(h̃i
′
,Θ′k2i, ξ

hεit, ξ
k2εit)] <

E[r(h̃i,Θk2i, ξ
hσ2

ε, ξ
k2σ2

ε)] (as per equation (5) in combination with points (1)-(3)) ⇒ Rate

of Return Effect

4. A lower, equal, or higher consumption-out-of-wealth ratio, depending on the coeffi cient of

relative risk aversion:

• c̃ > c̃′ if γ < 1

• c̃ = c̃′ if γ = 1 (logarithmic preferences)

• c̃ > c̃′ if γ > 1

This result implies that the savings rate out of wealth (1− c̃′) increases in response to larger
cyclone risks if γ > 1 ⇒ Precautionary Savings Effect.

5. Larger cyclone risk can increase, leave unaffected, or decrease consumption growth (and

thus output growth). Whether growth is increasing or decreasing in cyclone risk depends

on whether the Precautionary Savings Effect outweighs the Rate of Return Effect as per

equilibrium consumption growth:

Ct+1

Ct
= E

[
cit+1

cit

]
= (1− c̃′)(1 + E[r(h̃i

′
,Θ′k2i, ξ

hε′it, ξ
k2ε′it) (15)

6. Larger cyclone risk unambiguously decreases welfare:

E0

∞∑
t=0

βt
c1−γ
it

1− γ ≤ E0

∞∑
t=0

βt
c′1−γit

1− γ (16)

Consequently, cyclone risk can affect economic growth and welfare in opposite ways.

Proof: Use the Implicit Function Theorem on (14) with the Case 1 assumptions and refer to

other key equations as per the Proposition. Note that the last point on welfare follows from the

fact that, as noted by Krebs (2003) one can combine (15) and (16) to express expected lifetime

utility, which in our case yields E0

∞∑
t=0

βt
c1−γit

1−γ =
c1−γi0

(1−γ)(1−βE[(1+(1−c̃)r(h̃it+1,Θk2it+1,ξhεit,.ξk2εit))1−γ ]
with

ci0 = c̃[1 + r(h̃i0,Θk2i0, ξ
hεi0, ξ

k2εi0]wi0 where the initial values in the return are all given by

assumption.
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3.4.2 Average Cyclone Destruction Measures and Long-Run Growth

As with cyclone variability, the effects of average cyclone damages on long-run growth are the-

oretically ambiguous. We thus provide numerical results for an illustrative calibration of the

model. We emphasize that, at this stage, the calibration serves only as an example to illustrate

qualitative differences that can arise in the effects of different average cyclone damage measures

on long-run growth.6 We use World Bank Development Indicators data to estimate countries’

approximate aggregate capital stocks (assuming a capital share of 30%, average depreciation of

10%, and a rate of return of 5%) and populations (1960-2015). We then use EM-DAT data7

from the International Disaster Database at the Center for Research on Epidemiology of Disas-

ters (CRED) on the value of direct damages to calculate the fraction of the aggregate capital

stock destroyed by country-year. In order to approximate human capital destruction, we com-

pute the fraction of the population killed by cyclones in each country-year. We then compute the

means, variances, and co-variance of these variables across country-years in our data. Finally,

we adopt preference parameters in line with standard values in macroeconomics, and assume

illustrative values for productivity in corporate and entrepreneurial production (pinning down

excess returns). The resulting parameters are listed in Table 1:

µk2 = 2.14% σk2 = 9.67% (r̃2 − rk1) = 3.5%

µh = 0.0047% σh = 0.03% (r̃h − rk1) = 0.0004%

γ = 1 (log) β = 0.96 ρh,k2 = 0.34

Table 1: Toy Calibration Parameters

At these parameter values, the household invests 36% of his wealth in entrepreneurial cap-

ital. The excess return on these investments (3.5%) is very high compared to human capital

(0.0004%); however, the riskiness of entrepreneurial capital investments is also higher, implying

a standard mean-variance tradeoff. This economy could grow faster if households invested more

in entrepreneurial capital. The effects of cyclone risks on growth thus depend in part on how

they affect households’propensity to invest in entrepreneurial capital. We consider the effect

on the long-run growth rate of changing mean cyclone damages µk2 and µh each by ±50 /% and

±25, respectively. Intuitively, an increase in the average storm damage to a given asset implies

a ceteris paribus reduction in the excess returns to investing in that asset.

6 A quantitatively meaningful calibration of the model is work in progress.
7 While EM-DAT data suffer from well-known limitations, such as selective reporting of disasters and damages,

for the purposes of this toy calibration these are not important.
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Figure 1: Long-Run Growth and Avg. Local Capital

Destruction

First, we find that growth is decreasing in the average destruction to entrepreneurial capital

µk2. This result is in line with findings of, e.g., Hsiang and Jina (2015b), who document a negative

cross-sectional relationship between cyclone-induced capital depreciation and average growth

rates. Intuitively, this is because an increase in entrepreneurial capital losses µk2 decreases the

returns to the economy’s most productive (marginal) investment, thus lowering overall growth.

In contrast, we find the opposite for damages to human capital, as shown in Figure 2:
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Figure 2: Long-Run Growth and Avg. Human Capital

Destruction

We find that growth is increasing in the average destruction of human capital µh. Intuitively,

this is because larger expected damages decrease the relative attractiveness of human capital as

an investment, holding all else equal. Consequently, some of the household’s risky investments

shifts to entrepreneurial capital, which has a higher excess return, thus increasing overall growth.8

While the quantitative results of this numerical exercise are sensitive to the parameter as-

sumptions, the central qualitative result is as follows:

Result Average cyclone damages to physical vs. human capital can affect long-run growth in
opposite ways.

Importantly, this result appears consistent with the empirical evidence. For example, Hsiang

and Jina (2015b) find a negative cross-sectional relationship between average capital depreciation

from cyclones and long-run growth. In contrast, Skidmore and Toya (2002) find a positive

cross-sectional relationship between the average number of disasters and growth.9 Some panel

studies have also documented different growth impacts of disaster damages versus fatalities (e.g.,

Noy, 2009). However, these results are not directly comparable as the structural impact of

disaster realizations is fundamentally different from the effects of cyclone risks. The next Section

formalizes this point.

8 As with Proposition 2, this growth increase need not be welfare-increasing.
9 In our model, a change in the number or intensity of cyclones could affect growth positively or negatively

depending on whether it translates into larger average physical or human capital damages.
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3.5 Disaster Strikes and Observed Growth

Thus far our analysis has focused on the effects of hurricane risk on growth, corresponding

empirically most closely to cross-sectional analyses. This section compares and contrasts these

growth impacts to those we would expect to observe in the data after an actual hurricane strike.

3.5.1 Immediate Growth Impacts

Moving from expected local growth in (15) to realized local growth immediately yields the fol-

lowing results:

Result An above-average hurricane shock (strike εit > µε) decreases contemporaneous local

growth unambiguously.

This result follows immediately from applying a positive hurricane shock εit > µε to realized

growth:
cit
cit−1

= (1− c̃)(1 + r(h̃i,Θ
′
k2i, ξ

hεit, ξ
k2εit)) < Et−1[

cit
cit−1

]

This result has two main empirical implications. First, the model predicts that only above-

average disaster realizations lead to below-average growth. This prediction is in line with nu-

merous empirical studies that have found that it is mainly large disasters that induce negative

growth impacts (e.g., Hochrainer, 2009). Importantly, however, a below-average disaster could

be estimated to yield higher or lower growth depending on the counterfactual against which it

is measured.10

The second main empirical implication of this result, coupled with Proposition 2, is that

hurricane risk can increase growth even when hurricane strikes unambiguously decrease growth.

Consequently, we argue that the positive cross-sectional association between disaster risk and

growth discovered by Skidmore and Toya (2002) need not be at odds with results from panel

regressions that find large, negative cyclone strike effects.11

3.5.2 Medium-Run Growth Impacts

Our benchmark model yields two main predictions for the transitional impacts after an above-

average disaster shock. First, the contemporaneous growth rate returns to its balanced growth

10 In particular, a below-average storm season will yield higher than average growth when measured against
average growth in a given location. However, when measured against a counterfactual with no storm real-
izations, then a below-average storm season will lead to losses.

11 Although not formally developed, our model would also predict that both types of growth impacts are
greatly diminished in countries with developed insurance markets, again suggesting that differences in results
obtained by studies focused on, e.g., the U.S. only (e.g., Strobl, 2011) versus those focused on the world (e.g.,
Hsiang and Jina, 2015) need not imply a contradiction.
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path level after one period. Second, however, the loss in the output level is persistent, and the

economy remains on a permanently lower output level path after the disaster. Notably, these

results are broadly in line with the empirical findings of Hsiang and Jina (2015), who find that

contemporaneous growth rates return to normal after a number of years, but that the cumulative

output losses in the transition are not recovered.12

Figures 3 and 4 illustrate how output level and growth rates diverge, respectively, after an

above-average disaster strike in the toy model calibration.

1 1.5 2 2.5 3 3.5 4
Time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

O
ut

pu
t L

ev
el

Output Levels after Disaster

Realized Output
Counterfactual (No Strike) Output

Figure 3: Output Levels after Disaster

12 The central difference is that our model predicts a return to balanced growth after one period, whereas HJ
find that the transition takes multiple years. This difference could be reconciled either by interpreting our
model period as a decade, or by introducing capital adjustment costs or frictions that slow down the recovery
of contemporaneous growth rates.
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Figure 4: Output Growth after Disaster

As can be seen in Figure 4, the sum of the disaster’s contemporaneous growth impacts - HJ’s

main cumulative impact measure - is negative. Consequently, even though contemporaneous

growth rates are not affected by disaster strikes in the medium or long-run, the output level

remains permanently lower after the disaster strike (Figure 1).

It is useful to compare these transitional predictions to those of a standard Solow growth

model. As shown below, the Solow model yields different predictions, namely that output growth

will temporarily increase after a disaster as the economy rebuilds and transitions back to its

balanced growth path. While this prediction does not seem to align with the empirical evidence

such as presented by Hsiang and Jina (2015) and in the case of tropical cyclones, it is a central

benchmark for comparison.

3.5.3 One-Time Hurricane Strike Illustration in the Solow Growth Model

This section derives transitional impact predictions for a one-time unanticipated disaster real-

ization in a simple, single-region mode with exogenous but convex growth. We further impose

the standard assumptions well-known to permit closed-form solution of the dynamic model. Ag-

gregate output Yt, is produced from capital Kt, labor Lt, and labor effi ciency (technology) level

At via a constant returns to scale (CRS) technology:

Yt = F (Kt, AtLt) (17)

22



We assume that this economy is on a balanced growth path (BGP) at time t = 0, and study

the effects of an unanticipated one-time hurricane strike at time t = 1. The storm decreases the

capital level by fraction 1− ζK and damages effective labor by fraction 1− ζAL, with ζj ∈ (0, 1]

for j = K,AL. Consequently, period 1 output is given by:

Y1 = F (ζKK1, ζ
ALA1L1) (18)

Given the assumption of CRS, we can express (17) in terms of output per effi ciency unit of

labor yt ≡ Yt
AtLt

= f(kt) where kt ≡ Kt
AtLt

. Next, assume that the population is constant and

normalized to Lt = L = 1 ∀t. Further assume Cobb-Douglas technology:

yt = kαt

Finally, in order to obtain closed-form solutions, impose the standard simplifying assumptions

that (i) the representative household has logarithmic preferences over consumption Ct, seeking

to maximize lifetime utility:
∞∑
t=0

βtU(Ct) =
∞∑
t=0

βt ln(Ct)

and (ii) that capital depreciates fully in each model period. As is well-known and easy to

show, the savings rates that solves the representative household’s problem is constant (even in

the face of the hurricane shock) and defined by:

kt+1 = αβyt

The assumption that the economy begins on a balanced growth path equivalently implies that

the economy’s initial level of capital per effi ciency unit of labor k0 is equal to its steady-state

value k∗ = (αβ)
1

1−α . The growth rate of capital per effi ciency unit of labor in the initial (BGP)

period is thus equal to zero, gk∗ = 0. Naturally, this implies that the aggregate capital growth

rate gK equals the rate of technological progress gA (=
At+1
At
− 1).13

13 To see this, note that:

k1 = k0(
K1

A1

)
=

(
K0

A0

)
(
K1

K0

)
= 1 + gK =

(
A1
A0

)
= 1 + gA
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Immediate Disaster Impacts Assume now that disaster strikes as outlined above in (18).

Define the hurricane impact factor on capital per effi ciency unit of labor as:

ζ ≡ (ζk(ζAL)
1−α
α )

Output at time 1 is then given by:

y1 = (ζ · k1)α (19)

= ζαkα0

= ζαy0

where the second equation follows from the fact that we observe this economy beginning with

capital at its steady-state value, implying that k0 = k1. Consequently, the observed growth in

output per effi ciency unit of labor between t = 0 and t = 1, gy,0,1 is given by:

gy,0,1 ≡
y1 − y0

y0

= (ζα − 1) (20)

Finally, these effects can be mapped back to the levels (aggregate or per capita) that an

econometrician would observe in the data. Noting that Yt = ytAt we can solve for the aggregate

or per capita output growth rate in the hurricane impact period as:

gY,0,1 ≡
Y1 − Y0

Y0

= [ζα(1 + gA)− 1] (21)

= Contemporaneous growth impact

Medium-Run Disaster Impacts Next, we consider how output continues to evolve after

the storm. As the household’s optimal savings rate remains a constant fraction αβ of realized

output, total investment in the new capital stock for period 2 is given by:

k2 = αβy1

Output per effi ciency unit of labor in period 2 thus equals:

y2 = kα2 = (αβ)αyα1 = (αβ)α(ζαy0)α

where the last equation follows from (19). It is easy to show that the observed aggregate
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output growth rate between periods 2 and 1 will then be given by:

gY,1,2 =
Y2 − Y1

Y1

=
[
ζα(α−1)(1 + gA)− 1

]
The contemporaneous hurricane damages ζ thus continue to affect the observed output growth

rate. Perhaps surprisingly, however, growth in the period after the disaster is increasing in

the fraction of effective capital destroyed (1 − ζ). That is, ∂gY,1,2
∂ζ

< 0, implying that growth is

decreasing in the fraction of capital left after the storm, ζ. Intuitively, this is because of investment

as the economy rebuilds, and specifically because capital is accumulating more quickly than it is

depreciating as the economy begins to return to its balanced growth path.

We visualize these transitions by calibrating the model for parameter values α = 0.3, β = 0.98,

normalize A0 = L = 1, assume gA = 2% per year, and consider a benchmark storm whose

immediate impact is to decreases effective capital by 10% (ζ = 0.9). Figure 5 displays the

evolution of GDP levels in the economy hit by the storm in year 2 (solid line with stars) compared

to counterfactual GDP had no storm occurred (dashed line with circles).
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Figure 5: GDP Levels after Disaster

The storm decreases GDP immediately when it strikes (period 2), but continues to have a

negative effect on GDP levels (relative to the counterfactual) as it takes time for the capital stock

to re-accumulate to its steady-state level. The cumulative effect of the storm on consumption

levels is thus unambiguously negative, although contemporaneous effects decline over time. In

contrast, Figure 6 plots observed versus counterfactual output growth rates:

25



1 1.5 2 2.5 3 3.5 4 4.5 5
Time

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

G
D

P 
G

ro
w

th

GDP Growth after Disaster

Actual GDP Growth
Counterfactual (No Storm) GDP Growth

Figure 6: GDP Growth after Disaster

Intuitively, growth initially falls due to the capital destruction associated with the disaster,

but rebounds as capital stocks re-accumulate to balanced growth path levels.14 In this model,

the sum of growth impacts over time - again, HJ’s cumulative damage measure - would come

out to zero. That is, there are periods of higher growth after the disaster that compensate for

the initial loss, thus also allowing output levels to return to their baseline trajectory. Though

different from our model’s predictions and HJ’s empirical findings, the Solow framework is an

important benchmark illustrating how alternative growth models can yield different predictions

for transitional impacts after disasters.

4 Empirical Analysis

The theoretical model and results presented thus far raise a number of empirical questions and

challenges. In this section, we connect some of these questions back to the data and to established

empirical estimation frameworks.

14 From a simple growth accounting perspective:

gY BGP = gY1 = α(gA) + (1− α)gA = gA

gY2 = αgK2︸ ︷︷ ︸
<0 due to storm

+ (1− α)gA < gA

gY3 = αgK3︸ ︷︷ ︸+(1− α)gA > gA > 0

>gA>0 due to capital re-accumulation
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First, our model implies that underlying disaster risk affects growth differently than disaster

realizations (strikes). In line with this prediction, empirical studies identifying the impacts of

disaster strikes using panel data models (e.g., Hsiang and Jina, 2015) have often found different

results than cross-sectional studies estimating the effects of disaster risk (e.g., Skidmore and

Toya, 2002). For researchers interested in understanding the overall impacts of changing cyclone

distributions on growth, neither approach may thus be individually suffi cient. In particular, fixed

effects panel estimation can causally identify the impact of individual disaster strikes on growth.

However, the estimated country fixed effects - representing average growth in the absence of

cyclone realizations - will depend on the underlying country risk rate. Consequently, in order

to project the growth impacts of changes in cyclone distributions - such as from climate change

- both the projected cyclone realizations and countries’average growth rates in the absence of

disasters have to be adjusted.

We thus explore a two-step combined panel-cross sectional estimation framework that seeks to

account directly for the endogeneity of countries’long-run average growth rates (absent disaster

strikes) to cyclone risk. The first stage runs a panel fixed effects model in the spirit of HJ. The

second stage provides a cross-sectional average growth decomposition that specifically regresses

the fixed effects from the first stage on cyclone risk and other relevant control variables. We then

re-estimate the impact of historical cyclones on growth by cleaning out both the negative impact

of disaster strikes and the positive impact of the underlying risk rate.

We further explore the prediction of our model that market incompleteness (lack of insurance)

is a central driver of disaster risk impacts on growth. We provide suggestive evidence that this

mechanism is at play by interacting a proxy for financial market development - total domestic

credit provided by the financial sector as a percentage of GDP - with our cyclone risk metrics.

The subsections below present our empirical methodology, data sources, results, and discussion.

4.1 Empirical Methodology

In this section, we discuss our empirical approach. Step 1 estimates the effect of cyclone strikes

on growth in a panel fixed effect specification in the spirit of Hsiang and Jina (2015), using

observations in a country-year panel and the Ordinary Least Squares estimator:

Gi,t =
20∑
L=0

[βL × Si,t−L] + γi + δt + θi × t+ εi,t (22)

where Gi,t is real GDP per capita growth for county i in year t and Si,t is a variable describing

cyclone exposure within country i in year t. Twenty years of lags are included to capture any

potential persistence in impacts, following HJ. The model includes country fixed effects (γi),
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year fixed effects (δt), and country-specific trends (θi× t).15 The growth impacts from individual
years of cyclone landfalls are found in the βL estimated coeffi cients, which represent the extent

to which GDP growth is and continues to be affected after a landfall. From this model, we can

estimate (counterfactual) country growth rates without cyclone strikes, Ĝi,t

NS
from the following

equation:

Ĝi,t

NS
=

20∑
L=0

[β̂L × 0] + γ̂i + δ̂t + θ̂i × t (23)

where the estimated coeffi cients from equation 22 are used and previous cyclone strikes are

assumed to be zero.

Next, we note that the impact of cyclone risk on growth is subsumed by γi and θi, the country

fixed effects in equation (22). In order to decompose its relationship with long-run cyclone risks,

we first estimate the average growth rate in the absence of cyclone strikes, Ĝi,t, from the panel

estimation using the following equation:

Ĝi,t = γ̂i + (θ̂i × t) (24)

where γ̂i is the estimated country fixed effect and θ̂j is the estimated country trend from equation

(22) above.16 Step 2 of our approach estimates the following cross-sectional model:

Ĝi,t = α̃ + λ̃1Li +Xi × β + δ̃Ri + εi (25)

We regress estimated average growth rates on the underlying cyclone risk characteristics in

country i, Li, relevant control variables, Xi, and a regional fixed effect, δ̃Ri. In addition, and

motivated by the theoretical model, we include landfall variance, Vi, in some specifications to

further describe the risk distribution. The dependent variable is estimated from Step 1 and

therefore may have measurement error. This will not bias our estimated coeffi cients, but will lead

to ineffi cient estimates with larger standard errors (Hausman, 2001). Therefore, we bootstrap

our standard errors and, in other specifications, employ robust standard errors, to correct for

this ineffi ciency (Lewis and Linzer, 2005).

Finally, in order to gauge the overall impact of cyclones on economic growth, we estimate

each countr’s no-cyclones counterfactual growth rate, Ĝi,t

∗
, by subtracting underlying risk impact

from the no-strikes growth estimates Ĝi,t

NS
obtained in the first stage:

Ĝi,t

∗
= Ĝi,t

NS
− ̂̃λ1Li (26)

15 Guided by our theoretical model, we do not use an autoregressive specification, as this would change the
interpretation of the fixed effects.

16 The country trend is multiplied by the average year, t̄, for every country in our sample, to estimate its
average growth rate over its time in the panel.
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Note that based on the previous literature, we expect ̂̃λ1 > 0. We can then compare (i) estimated

observed growth with (ii) no-strikes growth and (iii) no-cyclones (neither strikes nor risk) growth.

Lastly, we explore the ability of financial markets to attenuate the growth impacts of cyclone

risk. To do so, we interact total domestic credit provided by the financial sector as a percentage of

GDP with our cyclone risk variables in equation (25). If the coeffi cients are of the opposite sign

of the un-interacted risk variable, this is consistent with financial market development mitigating

the impact of disaster risk, in line with the theoretical model.

4.1.1 Data

Three types of data are the cornerstones of the empirical disaster growth impacts literature:

growth data, disaster shock data, and other relevant control variables. We discuss each, in turn.

We collect all available data on economic growth for all countries from 1960 to 2014 from the

World Bank’s World Development Indicators (WDI) database. We also consider growth data

from the Penn World Table as a robustness check.

Cyclone data come from the International Best Track Archive for Climate Stewardship (IB-

TrACS) and include individual track information such as wind speed, minimum sea level pressure,

latitude, and longitude. We process the data to generate country-year and average country-level

statistics on annual landfalls (count, maximum wind speed observed, sum of maximum wind

speeds per landfall) as well as long run risk. This is in the spirit of Hsiang and Jina (2015) as

well as Skidmore and Toya (2002). HJ build the LICRICE model, which takes the underlying

hurricane tracks from IBTrACS and estimates the two-dimensional wind speed structure. Hsiang

(2011) notes that the LICRICE model is a two-step process. First, the radius of maximum wind is

estimated using a linear combination of wind speed and latitude. Second, the wind speed within

the radius is estimated using the wind direction and forward speed of the storm. Ultimately,

the wind speed data are aggregated up to the country-year level using spatial area weighting.

The maximum wind speed, as well as the dissipated energy (the cube of the wind speed summed

over time the hurricane is over a country) are two relevant outputs of the LICRICE technique.

Since LICRICE is not publicly available, we are unable to know how close our variables are to

LICRICE. However, we find qualitatively consistent results. Similar to HJ, we are most confident

of the hurricane data after the satellite era begins in 1970.

We also find that early records in IBTrACS often do not have wind speeds affi liated with

the historical records when clearly a windy storm exists. Thus, we run the data two ways: 1)

We estimate the results without interpolating wind speeds. This will lead to an attenuation bias

because the measurement error will often underestimate wind speeds. 2) We approximate wind

speeds using the following assumptions, in the following order: a) interpolate missing wind speeds
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from temporally neighboring observed records from the same storm, b) using observed pressure

readings at the same time as unobserved wind readings using the approach from Atkinson and

Holliday (1977), c) based on the categorized value of the storm, and d) for a small minority of

observations for which the previous three approaches did not work, we assumed wind speeds of

25 knots. We find our results to be much more significant after this correction for the missing

wind speed data.

The main challenge in estimating our second-step cross-sectional specification is that cyclone

risks are not randomly distributed across space, but are likely correlated with other factors that

may influence growth. In particular, we would want to control for any exogenous factors that

correlate with cyclone risk such as geography (Sachs and Warner, 1997; Hall and Jones, 1996) or

institutions during early development (Acemoglu, Johnson, Robinson, 2001). Similar to Skidmore

and Toya, we thus include geographic variables such as latitude and continent controls (Barro

and Lee, 1994). Geographic variables are from Portland State University’s Country Geography

Data set. We further use Transparency International’s Corruption Perception Index to proxy for

institutional quality. Lastly, our financial markets development proxy and other societal controls

are from the World Bank’s WDI.

4.2 Empirical Findings

This section presents the empirical results. First, Table 2 provides results from the first stage

panel fixed effects estimation (22). The results are consistent with those of HJ, indicating negative

and persistent impacts of cyclone strikes on output levels (i.e., temporary but cumulatively

negative impacts on growth rates). Column 1 reports the growth impact of contemporaneous and

lagged maximum annual hurricane wind speed. Column 2 is identical but uses the sum of cyclone

energy (wind speed cubed and summed over the lifetime of the storm over a given country) in a

given country-year. The country-year observations occur from 1970-2015, with lagged hurricane

characteristics going back until 1950. In these main results, we used the interpolated wind

speeds described in the data section. The results are qualitatively similar, except less precisely

estimated, if we use the data with values of zero for missing wind speeds. Overall, the results are

more strongly consistent with the finding that hurricane strikes have a negative and durational

impact. All specifications include country and time fixed effects as well as country-year trends.

Table 3 presents the cumulative sum and significance of the estimated cyclone strike coeffi -

cients across five, ten, fifteen, and twenty years following a landfall, corresponding to maximum

annual wind speed in Columns 2 and 3, and cyclone energy in Columns 4 and 5. We calculate the

cumulative significance using the F-Test. We find that the Wind Sum model (Table 2 Column

1) performs the best, and therefore we employ that specification for the second stage of our
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Table 2: Hurricane Strikes in Panel Fixed Effects Regressions

(1) (2)
Dependent Variable GDP PC Growth GDP PC Growth
Hurricane Variable Max Wind Energy

Years 1970-2015 1970-2015

Hurricane t -0.00220 -9.22e-08*
(0.00455) (5.41e-08)

Hurricane t-1 -0.00134 1.95e-08
(0.00382) (5.03e-08)

Hurricane t-2 -0.00420 -4.22e-08
(0.00382) (4.90e-08)

Hurricane t-3 -0.00163 -5.53e-08
(0.00409) (4.93e-08)

Hurricane t-4 -0.00379 4.29e-09
(0.00376) (4.55e-08)

Hurricane t-5 -0.00188 -8.44e-08
(0.00392) (5.21e-08)

Hurricane t-6 -0.00478 -7.17e-08
(0.00395) (4.71e-08)

Hurricane t-7 0.00164 -3.73e-08
(0.00389) (5.95e-08)

Hurricane t-8 -0.00686 -6.14e-08
(0.00472) (5.56e-08)

Hurricane t-9 0.00336 3.92e-08
(0.00378) (5.27e-08)

Hurricane t-10 -0.00727* -6.69e-08
(0.00377) (5.60e-08)

Hurricane t-11 -0.00597 -1.04e-07*
(0.00391) (5.85e-08)

Hurricane t-12 -0.00496 -1.83e-08
(0.00389) (6.02e-08)

Hurricane t-13 0.00322 -9.25e-09
(0.00390) (5.91e-08)

Hurricane t-14 -0.00514 -1.63e-08
(0.00452) (7.10e-08)

Hurricane t-15 -0.00243 -6.05e-08
(0.00465) (6.45e-08)

Hurricane t-16 -0.00535 -9.57e-08*
(0.00441) (5.77e-08)

Hurricane t-17 -0.00171 -8.13e-10
(0.00449) (5.98e-08)

Hurricane t-18 0.00439 1.09e-07
(0.00438) (8.19e-08)

Hurricane t-19 -0.000989 8.15e-08
(0.00506) (7.41e-08)

Hurricane t-20 0.00120 5.73e-08
(0.00415) (6.04e-08)

Country FE Y Y
Year FE Y Y

Country-Year Trend Y Y
Observations 7,348 7,348
R-squared 0.268 0.268

Robust standard errors in parentheses
** p<0.01, ** p<0.05, * p<0.1
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empirical analysis.

Table 3: Hurricane Strike Cumulative Impacts

Max Wind Max Wind Energy Energy
Lags Coeffi cient Sum P-Values Coeffi cient Sum P-Values
5 -0.015 0.1902 -1.58E-07 0.0862
10 -0.022 0.0831 -3.56E-07 0.0284
15 -0.037 0.0348 -4.61E-07 0.0151
20 -0.039 0.0851 -2.14E-07 0.1369

4.2.1 Cyclone Risk and Strikes: Growth Decomposition

We next estimate average country growth in the absence of cyclone strikes through the fixed

effects estimated in the panel regression as per equation (23). We use Column 1 from Table

2 to extract the estimated parameters. We then regress the estimated growth rate on relevant

cyclone risk variables and controls as per equation 25, including the Corruption Perception Index

(CPI), latitude, additional control variables found in Skidmore and Toya (2002), and, in some

specifications, region fixed effects. Table 4 presents the results. In line with the theoretical

model, we find that countries’average growth rates in the absence of strikes are still a function

of underlying cyclone risk. In particular, growth appears positively and significantly associated

with average cyclone risk (measured as maximum wind speed), in line with Skidmore and Toya

(2002). The results remain strongly significant and stable in the point estimate across all seven

specifications. Driven by our model, we also include the variance of annual maximum wind in

Columns 6 and 7. We find that the sign is as expected, and opposite of the average wind, but

imprecisely estimated. This is likely due to the multicollinearity between the mean and variance

of wind speed in the data. Overall, the results are consistent with the central implication of our

model that changes in cyclone distributions - such as from climate change - will have two effects

on growth. On the one hand, more intense or frequent disaster realizations will lead to larger,

persistent output losses. On the other hand, households will respond to this change by adjusting

their savings behavior to account for these risks. The net effect on observed output growth is

thus ex-ante ambiguous.

Finally, Table 5 presents our estimates of (i) average observed growth, (ii) no-strikes growth,

and (iii) no-cyclones (neither strikes nor risk) growth as per equation (26). To estimate the overall

impact of cyclones on growth, one must account for both the effects of strikes and risk in the

counterfactual comparison. In Table 5, Columns 2 and 8 present our estimated average country
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Table 4: Average Growth Decomposition

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable Ĝi,t Ĝi,t Ĝi,t Ĝi,t Ĝi,t Ĝi,t Ĝi,t

Average Max Wind 0.0203*** 0.0230*** 0.0184*** 0.0213*** 0.0195*** 0.0216** 0.0213**
(0.00686) (0.00737) (0.00695) (0.00503) (0.00731) (0.00904) (0.00926)

Variance Max Wind -5.01e-05 -0.000348
(0.00117) (0.00123)

Absolute Latitude -0.00362 -0.00168 -0.0458 -0.0225 -0.0452 -0.0164
(0.0462) (0.0297) (0.0388) (0.0501) (0.0409) (0.0501)

Corruption Perception Index 0.0582* 0.0248 0.0450* 0.0173 0.0448* 0.0158
(0.0329) (0.0254) (0.0233) (0.0227) (0.0230) (0.0255)

Ln Initial GDP -0.202 -0.199 -0.204 -0.205
(0.443) (0.483) (0.397) (0.424)

Avg Education Labor Force -0.0689* -0.0549* -0.0691*** -0.0562**
(0.0372) (0.0303) (0.0226) (0.0232)

Avg Birth Rate -0.107* -0.119 -0.108* -0.118*
(0.0598) (0.0807) (0.0545) (0.0662)

Avg Capital Formation 0.0691 0.0778 0.0690 0.0789
(0.0734) (0.0905) (0.0655) (0.0702)

Avg Gov Consumption 0.0727 0.0553 0.0732 0.0603
(0.0785) (0.0901) (0.0611) (0.0653)

Avg Trade 0.00323 0.00249 0.00319 0.00247
(0.0118) (0.0115) (0.0108) (0.0108)

Ln Land Area -0.270 -0.383 -0.273 -0.414
(0.241) (0.279) (0.251) (0.284)

Ln Population 0.571 0.509 0.574 0.537
(0.518) (0.520) (0.459) (0.478)

Ln Urbanization 0.549 0.726 0.557 0.758
(0.721) (0.834) (0.743) (0.784)

Pct Tropical -0.175 -0.416 -0.148 -0.252
(1.381) (1.542) (1.415) (1.525)

Constant 3.082*** 0.183 3.234*** 0.654 4.075 0.659 3.841
(0.434) (0.783) (0.810) (6.861) (7.599) (6.773) (7.358)

Region FE N N Y N Y N Y
Observations 203 149 149 81 81 81 81
R-squared 0.017 0.064 0.106 0.464 0.539 0.464 0.540

Bootstrapped SE in parentheses
** p<0.01, ** p<0.05, * p<0.1
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growth rates.17 Columns 3 and 9 present the no-strikes counterfactual that does not remove the

growth bump from the underlying risk. While these columns correctly estimate counterfactual

growth without cyclone strikes, they do not estimate a no-cyclone world. Columns 4 and 10

calculate the impact of strikes on average growth. Columns 5 and 11 estimate the counterfactual

comparison of each country with no cyclone strikes or risk. Columns 6 and 12 present the overall

impact of cyclones (strikes plus risk) on average growth.

We find that careful consideration of the appropriate counterfactual matters greatly. For

example, analyzing the impact of strikes alone will lead to an overestimate of the negative impacts

of cyclones. Similarly, only identifying the impact of the underlying cyclone risk rate will lead

to an underestimate of the true impact of cyclones on growth. The truth is in between. Overall,

we find that, conditional on ever experiencing cyclones, the strike-only approach will estimate

an average cyclone impact of -0.72 percentage points from the annual growth rate. However,

once the increase in growth due to long run cyclone risk is accounted for, the estimated average

growth impact is a -0.09 percentage point reduction form the annual growth rate. Thus, focusing

on strikes, alone, will overestimate losses by a significant amount. Similarly, only focusing on

the underlying risk rate, and conditional on having hurricanes, would indicate that cyclones

positively impact growth by 0.63 percent per year, on average. While these are preliminary

results, they highlight the need for both factors to be included in impact estimates.

Cyclones and Risk Reduction: Credit Lastly, we present some suggestive evidence to em-

pirically test the model’s prediction that financial markets can attenuate the impacts of cyclone

risk on growth.18 We do so by interacting a proxy for financial market development - total domes-

tic credit provided by the financial sector as a percentage of GDP - with cyclone risk variables.

Though imprecisely estimated in most specifications, the interaction between average cyclone

risk and financial market development is negative, suggestively consistent with the hypothesis

that market completeness mitigates the effects of cyclone risk on growth.19

17 For transparency, we present the raw numbers. Alternatively, we could calculate the percent change in the
values and then apply them back to the observed (historical) growth rates.

18 McDermott, Barry, and Tol (2014) explore the effect of financial market development on the growth impact
of disaster strikes in a panel estimation, finding a significant protective effect. Our model implies that the
underlying mechanisms rendering financial markets beneficial in disaster strike recovery likely differs from
the effect on long-run growth (via changes in investment patterns). We hope to explore this question more
formally in the future.

19 In current work we are exploring other financial market and insurance availability proxies, as well as other
cyclone risk interactions, to test the strength and robustness of these results.
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Table 5: Strike and Cyclone Growth Impacts

Country Estim ated No-Strikes Strike No-Cyclones Cyclone Country Estim ated No-Strikes Strike No-Cyclones Cyclone
Avg Growth Growth Impact G rowth Impact Avg Growth Growth Impact G rowth Impact

(% ) (% ) (% ) (% ) (% ) (% ) (% ) (% ) (% ) (% )
AFG 3.40 3.40 0.00 3.40 0.00 LBY 2.70 2.70 0.00 2.70 0.00
AGO 2.83 2.83 0.00 2.83 0.00 LCA 2.65 2.97 -0 .31 2.69 -0 .04
ALB 4.02 4.02 0.00 4.02 0.00 LIE 3.13 3.13 0.00 3.13 0.00
ARE -1.66 -1 .66 0.00 -1 .66 0.00 LKA 4.95 5.44 -0 .49 5.05 -0 .10
ARG 2.60 2.60 0.00 2.60 0.00 LSO 3.57 3.57 0.00 3.57 0.00
ARM 3.30 3.30 0.00 3.30 0.00 LTU 6.60 6.60 0.00 6.60 0.00
ATG 2.77 3.30 -0 .53 3.09 -0 .32 LUX 2.97 2.97 0.00 2.97 0.00
AUS 2.26 6.43 -4 .17 2.78 -0 .52 LVA 7.04 7.04 0.00 7.04 0.00
AUT 2.24 2.24 0.00 2.24 0.00 MAC 6.31 6.31 0.00 6.31 0.00
AZE 2.11 2.11 0.00 2.11 0.00 MAR 3.44 3.44 0.00 3.40 0.03
BDI 0.09 0.09 0.00 0.09 0.00 MCO 2.89 2.89 0.00 2.89 0.00
BEL 2.04 2.04 0.00 2.04 0.00 MDA 1.50 1.50 0.00 1.50 0.00
BEN 1.77 1.77 0.00 1.77 0.00 MDG -0.54 2.63 -3 .17 0.51 -1 .05
BFA 3.03 3.03 0.00 3.03 0.00 MDV 6.77 6.77 0.00 6.77 0.00
BGD 4.05 5.37 -1 .32 4.12 -0 .07 MEX 1.32 5.93 -4 .62 2.07 -0 .75
BGR 3.46 3.46 0.00 3.46 0.00 MHL 1.86 1.86 0.00 1.86 0.00
BHR 1.08 1.08 0.00 1.08 0.00 MKD 1.04 1.04 0.00 1.04 0.00
BHS 0.83 2.26 -1 .43 1.06 -0 .23 MLI 2.06 2.06 0.00 2.06 0.00
BLR 3.05 3.05 0.00 3.05 0.00 MMR 7.17 8.48 -1 .31 7.51 -0 .35
BLZ 3.33 3.58 -0 .25 2.71 0.62 MNE 1.91 1.91 0.00 1.91 0.00
BMU 1.49 1.49 0.00 1.45 0.04 MNG 4.54 4.54 0.00 4.52 0.02
BOL 2.41 2.41 0.00 2.41 0.00 MOZ 4.35 5.76 -1 .41 4.73 -0 .37
BRA 2.38 2.38 0.00 2.30 0.07 MRT 1.73 1.73 0.00 1.73 0.00
BRB 1.49 1.49 0.00 1.43 0.06 MUS 4.43 4.43 0.00 4.35 0.07
BRN -0.18 -0 .18 0.00 -0 .21 0.02 MW I 1.90 1.90 0.00 1.88 0.02
BTN 6.27 6.27 0.00 6.27 0.00 MYS 4.31 4.39 -0 .08 4.28 0.03
BWA 4.50 4.56 -0 .05 4.54 -0 .04 NAM 2.17 2.23 -0 .05 2.21 -0 .04
CAF -1.18 -1 .18 0.00 -1 .18 0.00 NCL 2.05 4.30 -2 .25 3.15 -1 .10
CAN 2.13 3.97 -1 .84 2.02 0.11 NER 0.63 0.63 0.00 0.63 0.00
CHE 1.73 1.73 0.00 1.73 0.00 NGA 2.97 2.97 0.00 2.97 0.00
CHI 1.04 1.04 0.00 1.04 0.00 N IC 1.38 2.38 -1 .00 1.55 -0 .17
CHL 4.03 4.03 0.00 4.03 0.00 NLD 2.09 2.09 0.00 2.09 0.00
CHN 9.50 13.08 -3 .58 9.50 -0 .01 NOR 2.35 2.35 0.00 2.32 0.02
C IV 0.37 0.37 0.00 0.37 0.00 NPL 3.27 3.27 0.00 3.25 0.02
CMR 1.21 1.21 0.00 1.21 0.00 NZL 1.58 2.79 -1 .20 2.24 -0 .65
COG 1.79 1.79 0.00 1.79 0.00 OMN 1.00 1.45 -0 .45 1.15 -0 .14
COL 2.85 3.23 -0 .38 3.14 -0 .29 PAK 2.70 2.95 -0 .24 2.59 0.12
COM 0.53 0.53 0.00 0.43 0.10 PAN 4.17 4.17 0.00 4.13 0.04
CPV 5.93 5.89 0.05 5.77 0.16 PER 3.03 3.03 0.00 3.03 0.00
CRI 3.18 3.18 0.00 3.16 0.02 PHL 2.76 6.68 -3 .92 2.97 -0 .21
CUB 3.99 5.20 -1 .21 3.36 0.63 PLW -0.20 -0 .17 -0 .03 -0 .26 0.05
CYM 2.77 2.77 0.00 2.71 0.06 PNG 2.44 2.84 -0 .39 2.52 -0 .07
CYP 2.45 2.45 0.00 2.45 0.00 POL 4.33 4.33 0.00 4.33 0.00
CZE 2.16 2.16 0.00 2.16 0.00 PRI 1.75 2.49 -0 .73 2.12 -0 .37
DEU 2.28 2.28 0.00 2.28 0.00 PRT 2.23 2.22 0.00 1.99 0.24
DJI -0 .40 -0 .40 0.00 -0 .40 0.00 PRY 2.74 2.74 0.00 2.74 0.00
DMA 3.33 3.47 -0 .13 3.31 0.02 PYF 0.70 0.70 0.00 0.70 0.00
DNK 1.75 1.75 0.00 1.75 0.00 QAT 1.38 1.38 0.00 1.38 0.00
DOM 4.30 4.80 -0 .49 3.83 0.47 ROM 2.48 2.48 0.00 2.48 0.00
DZA 1.76 1.76 0.00 1.73 0.02 RUS 0.40 2.37 -1 .97 0.52 -0 .12
ECU 2.32 2.32 0.00 2.32 0.00 RWA 3.85 3.85 0.00 3.85 0.00
EGY 3.09 3.09 0.00 3.09 0.00 SAU 1.28 1.52 -0 .24 1.49 -0 .22
ERI 3.38 3.38 0.00 3.38 0.00 SDN 3.45 3.45 0.00 3.45 0.00
ESP 1.78 2.10 -0 .32 2.00 -0 .22 SEN 1.27 1.27 0.00 1.18 0.09
EST 6.69 6.69 0.00 6.69 0.00 SGP 4.64 4.64 0.00 4.64 0.00
ETH 3.85 3.85 0.00 3.85 0.00 SLB 1.56 1.95 -0 .39 1.43 0.13
FIN 2.26 2.26 0.00 2.26 0.00 SLE 2.47 2.47 0.00 2.47 0.00
FJI 1.84 2.70 -0 .87 1.97 -0 .14 SLV 2.17 2.17 0.00 2.17 0.00
FRA 1.85 1.85 0.00 1.80 0.05 SMR 3.02 3.02 0.00 3.02 0.00
FSM 1.36 1.42 -0 .06 1.38 -0 .02 SOM 2.24 2.76 -0 .51 2.62 -0 .38
GAB 0.80 0.80 0.00 0.80 0.00 SRB 3.74 3.74 0.00 3.74 0.00
GBR 2.11 2.67 -0 .56 2.42 -0 .31 SSD 4.78 4.78 0.00 4.78 0.00
GEO 2.55 2.55 0.00 2.55 0.00 STP 2.30 2.30 0.00 2.30 0.00
GHA 3.23 3.23 0.00 3.23 0.00 SUR 2.07 2.07 0.00 2.07 0.00
G IN 0.95 0.95 0.00 0.93 0.02 SVK 4.69 4.69 0.00 4.69 0.00
GMB 0.90 0.90 0.00 0.88 0.02 SVN 3.84 3.84 0.00 3.84 0.00
GNB 0.82 0.82 0.00 0.80 0.02 SWE 2.26 2.26 0.00 2.26 0.00
GRC 1.11 1.11 0.00 1.11 0.00 SYC 3.34 3.34 0.00 3.34 0.00
GRD 3.17 3.46 -0 .30 3.32 -0 .15 SYR 1.76 1.76 0.00 1.76 0.00
GRL 2.02 2.02 0.00 1.95 0.07 TCD 3.42 3.42 0.00 3.42 0.00
GTM 2.10 2.33 -0 .23 1.64 0.46 TGO 0.91 0.91 0.00 0.91 0.00
GUY 3.18 3.18 0.00 3.18 0.00 THA 4.55 5.92 -1 .38 4.82 -0 .27
HKG 4.15 4.15 0.00 4.15 0.00 TJK -0.17 -0 .17 0.00 -0 .17 0.00
HND 2.44 2.79 -0 .35 2.11 0.32 TKM 3.94 3.94 0.00 3.94 0.00
HTI -1 .63 -1 .31 -0 .33 -2 .12 0.49 TON 2.14 2.24 -0 .10 2.09 0.05
HUN 2.72 2.72 0.00 2.72 0.00 TTO 3.39 3.57 -0 .17 3.46 -0 .07
IDN 4.66 4.92 -0 .26 4.56 0.09 TUN 3.21 3.21 0.00 3.21 0.00
IMY 5.71 5.92 -0 .21 5.88 -0 .17 TUR 3.26 3.26 0.00 3.26 0.00
IND 5.42 7.73 -2 .31 5.73 -0 .31 TUV 2.86 2.86 0.00 2.86 0.00
IRL 3.83 4.16 -0 .33 3.91 -0 .09 TZA 2.64 2.64 0.00 2.60 0.04
IRN 1.70 1.70 0.00 1.70 0.00 UGA 3.41 3.41 0.00 3.41 0.00
IRQ 5.36 5.36 0.00 5.36 0.00 UKR -0.29 -0 .29 0.00 -0 .29 0.00
ISL 2.39 2.47 -0 .08 2.33 0.06 URY 3.44 3.44 0.00 3.44 0.00
ISR 2.95 2.95 0.00 2.95 0.00 USA 1.80 6.07 -4 .27 2.31 -0 .50
JAM 0.66 1.41 -0 .75 1.11 -0 .46 VCT 3.48 3.48 0.00 3.44 0.04
JPN 2.41 5.56 -3 .16 2.23 0.17 V IR 7.95 9.12 -1 .18 8.97 -1 .02
KAZ 2.12 2.12 0.00 2.12 0.00 VNM 5.50 8.14 -2 .64 5.82 -0 .32
KEN 1.76 1.76 0.00 1.76 0.00 VUT 0.86 2.79 -1 .93 1.86 -1 .00
KGZ 1.08 1.08 0.00 1.08 0.00 WBG 4.79 4.79 0.00 4.79 0.00
KHM 5.30 6.56 -1 .26 5.85 -0 .55 WSM 2.67 2.55 0.11 2.37 0.29
K IR 0.67 0.67 0.00 0.67 0.00 YEM 1.43 1.56 -0 .13 1.50 -0 .07
KOR 5.61 7.48 -1 .87 5.88 -0 .27 ZAR -0.59 -0 .59 0.00 -0 .59 0.00
KWT -0.86 -0 .86 0.00 -0 .86 0.00 ZWE 0.83 1.22 -0 .39 1.11 -0 .28
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Table 6: Hurricane and Risk Reduction: Credit
(1) (2) (3) (4)

Dependent Variable Avg Growth Avg Growth Avg Growth Avg Growth

Avg Max Wind 0.0374*** 0.0477*** 0.0365*** 0.0339***
(0.0137) (0.0136) (0.0102) (0.0100)

Avg Credit -0.000261 -0.00276 0.00446 -0.00300
(0.00581) (0.00526) (0.00488) (0.00468)

Avg Max Wind X Avg Credit -6.80e-06 -3.71e-05 -0.000133* -9.49e-05
(9.82e-05) (7.90e-05) (7.88e-05) (7.44e-05)

Abs Latitude 0.0182 0.0148
(0.0231) (0.0163)

Corruption Perception Index 0.00646 0.0174
(0.0166) (0.0147)

Constant 1.341*** 0.593 0.604 2.152***
(0.502) (0.493) (0.598) (0.602)

Region FE N N Y Y
Observations 112 87 92 87
R-squared 0.055 0.107 0.164 0.188

Robust SE in parentheses
** p<0.01, ** p<0.05, * p<0.1
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5 Conclusion

A growing body of empirical work has sought to quantify the impacts of natural disasters on

economic growth. To date, this literature has found seemingly contradictory results, ranging

from positive effects to very large negative impacts. This paper brings a novel macroeconomic

model-based perspective to the data in order to reconcile and build upon these findings. Taking

advantage of the tools developed in the literature on incomplete markets and macroeconomic

outcomes (Krebs, 2003, 2006), we present a stochastic endogenous growth model where individual

regions face uninsurable cyclone risks to human and entrepreneurial capital. The first central

result is that the model can reconcile some key divergent results from prior empirical studies as

they measure different elements of the overall impact of natural disasters on growth: (1) Higher

hurricane risk can increase growth by increasing (precautionary) savings rates, whereas hurricane

strikes induce (potentially persistent) output losses. These results are in line with differences

in empirical results of, e.g., the positive cross-sectional impact estimates of Skidmore and Toya

(2002) versus the negative cyclone strike impacts documented in panel estimation by Hsiang

and Jina (2015). While competing empirical approaches identify different aspects of the growth

question, neither cross-sectional nor panel fixed-effects specifications may thus be individually

suffi cient to capture the overall effect of disasters growth. We explore a two-step combined

estimator that seeks to adjust directly for the dependence of countries’average growth rates on

cyclone risk. We empirically find that average growth (in a world without cyclone strikes) is

positively associated with cyclone risk, in line with the model. Based on these results we find

that the overall impact of cyclones on growth lies between the large negative cumulative effect

of strikes and the positive effect of risk. (2) We find that competing measures of cyclone risk -

specifically average damages to physical versus human capital, or average storm intensity - can

be related to growth in opposite ways. This result is in line with, e.g., Hsiang and Jina’s (2015b)

finding that average cyclone-induced capital depreciation is negatively associated with long-run

growth, in contrast with Skidmore and Toya’s (2002) finding that the average number of disasters

is positively associated with long-run growth. The intuition for our result is as follows. Long-run

growth depends on the level and composition of households’investments in assets with different

productivities and cyclone vulnerabilities. A decline in the expected returns to investments in,

e.g., human capital due to higher expected cyclone damages can thus increase investment in

other, more productive (albeit riskier) assets, such as entrepreneurial capital, increasing growth.

Again, empirical studies using different average cyclone risk measures estimate different aspects

of the overall growth impacts. However, our model implies that the overall impact of cyclone

risk on growth depends on the entire vector of different assets’returns, average damages, as well

as cyclone risk variance and covariance measures, which have seldom been included in empirical
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studies. (3) Finally, we show that cyclone risk can have opposite effects on growth and welfare.

For example, an increase in cyclone risk can increase growth by strengthening precautionary

savings motives, but this change will unambiguously decrease welfare. While this ambiguity is

known in the macroeconomics incomplete markets literature (e.g., Krebs, 2003, 2006; Angeletos,

2007), we demonstrate its relevance for the environmental literature seeking to map reduced form

output growth impact estimates into welfare. In particular, this result highlights the importance

of decomposing output growth changes into underlying changes in savings rates, productivity,

etc. in order to inform such a mapping.

In summary, our model can both reconcile and contextualize key results from the empirical

literature on disasters and economic growth. We argue that this rich literature has carefully iden-

tified different elements of disaster growth impacts (e.g., risk versus strikes). However, through

the lens of a macroeconomic model, the pieces of the puzzle can be assembled to inform a

more comprehensive understanding of the impact of disasters on growth, and to highlight the

key empirical challenges that remain open. Overall, our results highlight the potential value of

joint advances in theory and empirics to improve our understanding of environment-economy

interactions.

6 Appendix

6.1 Lognormal Distribution Fit for Cyclone Damages

In order to gauge the plausibility of a log-normal distribution of cyclone-induced shocks to the

depreciation of human and physical capital, we obtain EM-DAT data from the International

Disaster Database at the Center for Research on Epidemiology of Disasters (CRED). These

data provide both the value of direct damages and total fatalities. We then obtain World Bank

Development Indicators data on countries’real GDP and populations over time (for all available

countries and years from 1960-2014). We approximate countries’capital stocks by assuming a

marginal product of capital of r = 5%, a uniform depreciation rate of 10% and a capital share in

output of 30%. We then calculate the fraction of the capital stock destroyed, and the fraction of

human capital destroyed (i.e., population killed) by cyclones in each country-year. Figures A1

and A3 plot the histogram for these variables conditional on damages being positive. Figures A2

and A4 plot the histogram of the logarithm of these variables, along with a normal distribution

fit line. Both variables appear well-approximated by a log-normal distribution.
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6.2 Proof of Proposition 1

The household’s recursive dynamic optimization problem is given by:

V (wi, h̃i,Θk2i, η
h
i , η

k2
i ) = maxu(ci) + βE[V (w′i, h̃

′
i,Θ

′
k2i, η

h′
i , η

k2′
i )] (27)

subject to:

w′i = [1 + r(h̃i,Θk2i, η
h
i , η

k2
i )]wi − ci (28)
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where:

r(h̃i,Θk2i, η
h
i , η

k2
i )

= [(1−Θk2i)(1− θh(h̃i))Rk1 + θh(h̃i)(Rh + 1− δh − ηhi ) + Θk2i(A2 + 1− δk2 − ηk2i )]

First, substituting (28) into (27) and taking the FOCs for ci, h̃i, and Θk2i, respectively, yields:

u′ci = βEV ′w′ (29)

0 = βEV ′
h̃i
′

0 = βEV ′Θ′k2i

Second, we substitute in the decision rules ci = g(wi, h̃i,Θk2i, η
h
i , η

k2
i ), h̃′i = f(wi, h̃i,Θk2i, η

h
i , η

k2
i ),

Θ′k2i = v(wi, h̃i,Θk2i, η
h
i , η

k2
i ) and derive the Beinveniste-Scheinkman conditions:

V ′w = βE[V ′w′ [1 + r(h̃i,Θk2i, η
h
i , η

k2
i )]]

V ′
h̃i

= βE[V ′w′{(1−Θk2i)(−1)(1 + h̃i)
−2Rk1 + (1 + h̃i)

−2(Rh + 1− δ − ηhi )}wi]
V ′Θk2i = βE[V ′w′{(−1)(1− θh(h̃i))Rk1 + (A2 + 1− δk2 − ηk2i )}wi]

Substituting out based on the FOCs (29) yields:

V ′w = u′ci [1 + r(h̃i,Θk2i, η
h
i , η

k2
i )]

V ′
h̃i

= u′ci{(1−Θk2i)(−1)(1 + h̃i)
−2Rk1 + (1 + h̃i)

−2(Rh + 1− δ − ηhi )}wi
V ′Θk2i = u′ci{(−1)θh(h̃i)Rk1 + (A2 + 1− δk2 − ηk2i )}wi

Next, iterating forward provides:

V ′w = u′c′i [1 + r(h̃i
′
,Θ′k2i, η

h′
i , η

k2′
i )]

V ′
h̃i

= u′ci′{(1−Θ′k2i)(−1)(1 + h̃i
′
)−2Rk1 + (1 + h̃i

′
)−2(Rh + 1− δ − ηh′i )}w′i

V ′Θk2i = u′c′i{(−1)(1− θh(h̃i
′
))Rk1 + (A2 + 1− δk2 − ηk2′i )}w′i

Next, substituting back into the consumer’s optimality conditions yields the following Euler

equation and no-arbitrage conditions, respectively:

u′ci = βE[u′c′i [1 + r(h̃i
′
,Θ′k2i, η

h′
i , η

k2′
i )]] (30)

0 = βE[u′ci′{(1−Θ′k2i)(−1)(1 + h̃i
′
)−2Rk1 + (1 + h̃i

′
)−2(Rh + 1− δ − ηh′i )}w′i] (31)

0 = βE[u′c′i{(−1)(1− θh(h̃i
′
))Rk1 + (A2 + 1− δk2 − ηk2′i )}w′i] (32)
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Finally, (i) applying our assumed utility function , (ii) defining mean returns r̃k2 ≡ A2 + (1−
δk2) and r̃h = Rh+(1−δh), (iii) invoking the budget constraint w′i = (1+r(h̃i,Θk2i, η

h
i , η

k2
i ))wi−ci

and c′i = c̃(1 + r′)w′, and rearranging yields:

c̃ = 1− (βE[(1 + r(h̃i
′
,Θ′k2i, η

h′
i , η

k2′
i ))1−γ])

1
γ (33)

0 = βE

[
{(r̃h − ηh′i )− (1−Θ′k2i)Rk1}

(1 + h̃i
′
)2(1 + r(h̃i

′
,Θ′k2i, η

h′
i , η

k2′
i ))γ

]
(34)

0 = βE

[
{(r̃k2 − ηk2′i )− (1− θh(h̃′i))Rk1}

(1 + r(h̃i
′
,Θ′k2i, η

h′
i , η

k2′
i ))γ

]
(35)

Our three unknowns (c̃,Θ′k2i, h̃
′
i) are thus defined by equations (33)-(35). Importantly, they

do not depend on wealth nor on the current hurricane shock, but only on the (time-invariant)

expectations over future realizations. �.
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