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Abstract

How far should an industry be allowed to consolidate when competition and inno-

vation are endogenous? We extend Rust�s (1987) framework to incorporate a stochas-

tically alternating-move game of dynamic oligopoly, and estimate it using data from

the hard disk drive industry, in which a dozen global players consolidated into only

three in the last 20 years. We �nd plateau-shaped equilibrium relationships between

competition and innovation, with systematic heterogeneity across time and productiv-

ity. Our counterfactual simulations suggest the optimal policy should stop mergers

when �ve or less �rms exist, highlighting a dynamic welfare tradeo¤ between ex-post

pro-competitive e¤ects and ex-ante value-destruction side e¤ects.
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1 Introduction

How far should an industry be allowed to consolidate? This is a foundational question for

antitrust policy since its inception in 1890 as a countermeasure to merger waves (c.f., Lam-

oreaux 1985). Conventional merger analysis takes a proposed merger as given and focuses

on its immediate e¤ects on competition, which is expected to decrease after a target �rm

exits, and e¢ ciency, which might increase if su¢ cient �synergies�materialize.1 Such a static

analysis would be appropriate if mergers were completely random events in isolation from

competition and innovation, and if market structure and �rms�productivity evolved exoge-

nously over time. However, Demsetz (1973) cautioned that monopolies are often endogenous

outcomes of competition and innovation. Berry and Pakes (1993) conjectured that such dy-

namic factors could dominate static factors. Indeed, in 100% of high-tech merger cases, the

antitrust authority has tried to assess potential impacts on innovation but found little guid-

ance in the economics literature.2 This paper proposes a tractable dynamic oligopoly model

in which mergers, innovation, and entry-exit are endogenous, estimates it using data from

the process of industry consolidation among the manufacturers of hard disk drives (HDDs)

between 1996 and 2015, and quanti�es a dynamic welfare tradeo¤by simulating hypothetical

merger policies.

Mergers in innovative industries represent an opportunity to kill competition and acquire

talents, which make them strategic and forward-looking choices of �rms.3 Besides the static

tradeo¤ between market power and e¢ ciency, merger policy needs to consider both ex-post

and ex-ante impact. Ex post, a merger reduces the number of competitors and alters their

productivity pro�le, which will change the remaining �rms�incentives for subsequent mergers

and innovation. Theory predicts mergers are strategic complements (e.g., Qiu and Zhou

2007), hence a given merger increases the likelihood of subsequent mergers. Its impact on

subsequent innovation is more complicated because the competition-innovation relationship

crucially hinges on the parameters of demand, supply, and investment (e.g., Sutton 1998).

These are the ex-post e¤ects of mergers. These changes in competition and innovation will

have ex-ante impacts as well, because a tougher antitrust regime will lower �rms�expected

pro�ts and option values of staying in the market, which will in turn reduce their ex-ante

1See Williamson (1968), Werden and Froeb (1994), and Nevo (2000), for example.
2See survey by Gilbert and Greene (2015).
3According to Reggie Murray, the founder of Ministor, �Most mergers were to kill competitors, because

it�s cheaper to buy them than to compete with them. Maxtor�s Mike Kennan said, �We�d rather buy them
than have them take us out,�referring to Maxtor�s acquisition of Quantum in 2001.�(January 22, 2015, in
Sunnyvale, CA). See Appendix A for a full list of interviews with industry veterans.
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investments in productivity, survival, and market entry. Thus merger policy faces a tradeo¤

between the ex-post pro-competitive e¤ects and the ex-ante value-destruction side e¤ects.

Their exact balance depends on the parameters of demand, cost, and investment functions,

hence the quest for optimal merger policy is a theoretical as well as empirical endeavor.

Three challenges haunt the empirical analysis of merger dynamics in the high-tech con-

text. First, mergers in a concentrated industry are rare events by de�nition, and the nature

of the subject precludes the use of experimental methods, hence a model has to complement

sparse data. Second, an innovative industry operates in a nonstationary environment and

tends to feature globally concentrated market structure,4 which creates a methodological

problem for the application of two-step estimation approaches, because (at most) only one

data point exists in each state of the world, which is too few for nonparametric estimation

of conditional choice probabilities (CCPs). Third, workhorse models of dynamic oligopoly

games such as Ericson and Pakes (1995) entail multiple equilibria, which preclude the appli-

cation of full-solution estimation methods such as Rust (1987) because parameter estimates

will be inconsistent when a single vector of parameter values predicts multiple strategies

and outcomes. We solve these problems by developing a tractable model with unique equi-

librium, incorporating the nonstationary environment of the HDD industry, and extending

Rust�s framework to a dynamic game with stochastically alternating moves.

The paper is organized as follows. In Section 2, we introduce a simple model of a

dynamic oligopoly with endogenous mergers, innovation, and entry-exit. We depart from

the simultaneous-move tradition of the literature and adopt sequential or alternating moves.

An unsatisfactory feature of a sequential-move game is that the assumption on the order

of moves will generate an arti�cial early-mover advantage if the order is deterministic (e.g.,

Gowrisankaran 1995, 1999; Igami 2015, 2016). Instead, we propose a random-mover dynamic

game in which the turn-to-move arrives stochastically. Dynamic games with stochastically

alternating moves have been used as a theoretical tool since Baron and Ferejohn (1989) and

Okada (1996). Iskhakov, Rust, and Schjerning (2014, 2016) used it to numerically analyze

competition and innovation. We �nd it useful as an empirical model as well. We combine

this random-mover modeling with the HDD market�s fundamental feature that the industry

is now mature and declining: a �nite horizon. With a �nite horizon and stochastically

alternating moves, we can solve the game for a unique equilibrium by backward induction

from the �nal period, in which pro�ts and values become zero. At most only one �rm moves

within a period and makes a discrete choice between exit, investment in productivity, or

4Sutton (1998) explains this feature by low transport costs (per value of product) and high sunk costs.
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merger proposal to one of the rivals. Thus the dynamic game becomes a �nite repetition of

an e¤ectively single-agent discrete-choice problem. We estimate the sunk costs associated

with these discrete alternatives by using Rust�s (1987) maximum-likelihood method with the

nested �xed-point (NFXP) algorithm.

In Section 3, we describe key features of the HDD industry and the outline of data. This

high-tech industry has experienced massive waves of entry, shakeout, and consolidation, pro-

viding a suitable context to study the dynamics of mergers and innovation. We explain

several product characteristics and institutional background that will inform our subsequent

analysis, such as �erce competition among undi¤erentiated �brands�and an industry-wide

technological trend called Kryder�s Law (i.e., exogenous technological improvements in areal

density).5 Our dataset consists of three elements. Panel A contains aggregate HDD ship-

ments, HDD price, disk price, and PC shipments, which we will use to estimate demand in

Section 4.1. Panel B is �rm-level market shares, which we will use to estimate variable costs

and period pro�ts in Section 4.2. Panel C records �rms�dynamic choices between merger,

innovation, and entry-exit, which we will use to estimate sunk costs in Section 4.3.

In Section 4, we take three steps to estimate (i) demand, (ii) variable costs, and (iii) sunk

costs, respectively, each of which pairs a model element and a data element as follows. In

Section 4.1, we estimate a log-linear demand model from the aggregate sales data in Panel A,

treating each gigabytes (GB) as a unit of homogeneous data-storage services. As instruments

for prices, we use two cost-shifters: the price of disks (key components of HDDs) and a time

trend, both of which re�ect Kryder�s Law.6 To control for demand-side dynamics that could

arise from the repurchasing cycle of personal computers (PCs), we also include PC shipments

as a demand-shifter.

In Section 4.2, we infer the implied marginal cost of each �rm in each period from the

observed market shares in Panel B, based on the demand estimates in Section 4.1 and a

Cournot model (with heterogeneous costs across �rms) as a mode of spot-market competition.

The �rm�s �rst-order condition (FOC) provides a one-to-one mapping from its observed

market share to its marginal cost (productivity). Our preferred interpretation of Cournot

competition is Kreps and Scheinkman�s (1983) model of quantity pre-commitment followed

by price competition, given all �rms� cost functions (i.e., productivity levels). E¤ective

production capacities are highly �perishable� in our high-tech context, because Kryder�s

5Kryder�s Law is an engineering regularity that says the recording density (and therefore storage capacity)
of HDDs doubles approximately every 12 months, just like Moore�s Law, which says the circuit density (and
therefore processing speeds) of semiconductor chips doubles every 18 to 24 months

6The modeling of Kryder�s Law is outside the scope of this paper, and we regard this industry-wide trend
as an exogenous technological process that progresses deterministically. See also Section 6.
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Law makes old manufacturing equipment obsolete within a few quarters. Hence our notion

of �quantity pre-commitment�is the amount of re-tooling e¤orts that each �rmmakes in each

quarter, which determines its e¤ective output capacity for that period. Likewise, the real-

world counterpart to our notion of cost (productivity) is intangible assets such as the state

of tacit knowledge embodied by teams of engineers, rather than durable physical capacities.

Our pro�t-margin estimates strongly correlate with accounting pro�t margins in the �rms�

income statements.

In Section 4.3, we estimate the sunk costs of merger, innovation, and entry, based on

the observed choice patterns in Panel C and the bene�ts of these actions (i.e., streams of

period pro�ts) from Section 4.2. Our dynamic discrete-choice model in Section 2 provides a

clear mapping from the observed choices and their associated bene�ts to the implied costs

of these choices, which is analogous to the way Cournot FOC mapped output data and

demand elasticity into implied costs. For example, if we observe many mergers despite

small incremental pro�ts, the model will reconcile these observations by inferring a low cost

of merger: revealed preference.7 Our �rm-value estimates match closely with the actual

acquisition prices in the historical merger deals.

In Section 4.4, we investigate the equilibrium relationships between innovation, merger,

and market structure, based on our estimates of optimal strategies (i.e., CCPs of innova-

tion and merger) from Section 4.3. Three patterns emerge. First, the incentive to innovate

increases steeply as the number of �rms increases from 1 to 3, re�ecting the dynamic pre-

emption motives as in Gilbert and Newbery (1982). This pattern is robust across years

and productivity levels. Second, this competition-innovation relationship becomes hetero-

geneous and nonmonotonic with more than 3 �rms: (i) the innovation rate increases at a

decreasing rate monotonically at high-productivity �rms and in early years; (ii) it is �at

at mid-level �rms and in middle years; and (iii) it often decreases at low-level �rms and

in late years. Thus our structural competition-innovation curve exhibits a �plateau�shape

instead of the famous �inverted-U.�Moreover, this systematic heterogeneity suggests (high)

continuation values are a key factor in sustaining the (positive) competition-innovation re-

lationship. Third, mergers become more attractive as the industry matures, and all kinds of

pairs can merge. But high types tend to acquire more often and low types are more popular

as targets, because high types gain more from increased concentration and low types are a

7Computationally, the calculation of the likelihood function is the heaviest part because, for each candi-
date vector of parameter values, we use backward induction to solve a nonstationary dynamic game with 8
di¤erent types of �rms and 77,520 industry states in each of the 360 periods. We perform this subroutine in
C++ and the estimation procedure takes less than a week.

5



cheaper means for stochastic productivity gains (i.e., synergies).

In Section 5, we conduct counterfactual policy simulations to answer our main question:

how far the industry should be allowed to consolidate. In Section 5.1, we �nd the optimal

static (or �commitment�) policy is to block mergers if �ve or less �rms exist. In Section

5.2, we clarify the underlying mechanism behind this �nding by decomposing the dynamic

welfare tradeo¤ between the ex-post pro-competitive bene�ts of blocking mergers and the

ex-ante value-destruction side e¤ects, which reduce both competition and innovation in early

years. In Section 5.3, we �nd that this optimal policy threshold (N = 5) can be relaxed

slightly if the industry is declining fast and �rms are failing anyway. In Section 5.4, we

�nd the optimal dynamic (or ex-post �surprise�) policy is to initially promise no merger

enforcement at all (Nante = 1) and then block mergers once the industry reaches 3 �rms

(Npost = 3). This policy, however, relies entirely on the authority�s ability to surprise (and

the naïveness of �rms), hence its feasibility and desirability are dubious in the long run.

We conclude in Section 6 by discussing other policy implications and limitations. The

current de-facto policy of N = 3 is somewhat stricter than our optimal threshold of N = 5

for the HDD industry, but the welfare outcomes under these two policies are not drastically

di¤erent. By contrast, our results suggest allowing mergers to duopoly or monopoly (N = 2

or 1) will have a negative welfare impact that is orders of magnitude larger. Thus our main

message is, �2 are few and 6 are many.�8

1.1 Literature Context

Dynamic welfare tradeo¤ is a classical theme in the literature on market structure and

innovation (c.f., Scotchmer 2004). Tirole (1988, p. 390) summarizes Schumpeter�s (1942)

basic argument that �if one wants to induce �rms to undertake R&D one must accept the

creation of monopolies as a necessary evil.�He then proceeds to discuss this �dilemma of

the patent system�but concludes that �the welfare analysis is relatively complex, and more

work is necessary before clear and applicable conclusions will be within reach,� (p. 399)

which is exactly the purpose of this paper.

Traditional oligopoly theory suggests the main purpose of mergers is to kill competition

and increase market power. Stigler (1950) added a twist to this thesis by conjecturing that,

because a merger increases concentration at the industry level and non-merging parties can

free-ride on merging parties�e¤orts, no �rms would want to take initiatives to merge. Salant,

Switzer, and Reynolds (1983) proved this idea in a symmetric Cournot model, although Perry

8We do not model collusion, but our �nding resonates with Selten�s (1973) �4 are few and 6 are many.�

6



and Porter (1985) and Deneckere and Davidson (1986) revealed the fragility of the free-riding

result, which crucially relied on symmetry across �rms. Farrell and Shapiro (1990) used a

Cournot model with cost-heterogeneity across �rms, and formalized the notion of �synergy�

as an improvement in the marginal cost of merging �rms (above and beyond the convergence

of the two parties� pre-merger productivity levels). We follow their modeling approach

and de�nition of synergy. The latest reincarnations of this strand is Mermelstein, Nocke,

Satterthwaite, and Whinston�s (2014, henceforth MNSW) numerical theory of duopoly with

mergers and investments, which Marshall and Parra (2015) extend to more general market

structures. We provide a structural empirical companion to this literature.

Rust (1987) pioneered the empirical methods for dynamic structural models by combining

dynamic programming and discrete-choice modeling, and proposed a full-solution estimation

approach. Much of the empirical dynamic games literature has evolved within Ericson and

Pakes�s (1995) framework, and two-step methods have been developed to estimate this class

of models.9 However, typical empirical contexts of innovative industries (i.e., nonstationarity

and global concentration) pose practical challenges to these methods, which led us to propose

the pairing of a random-mover dynamic game (in a nonstationary environment and a �nite

horizon, as in Pakes 1986) with Rust�s estimation approach.10

Applications of dynamic games to mergers include Gowrisankaran�s (1995, 1999) pio-

neering computational work, Stahl (2011), and Jeziorski (2014). Applications to innovation

include Benkard (2004), Goettler and Gordon (2011), Kim (2015), and Igami (2015, 2016).11

Applications to entry and exit are the largest literature, including Ryan (2012), Collard-

Wexler (2013), Takahashi (2015), Arcidiacono, Bayer, Blevins, and Ellickson (2015), and

Igami and Yang (2016). We have not found any empirical application of stochastically

alternating-move games, but Iskhakov, Rust, and Schjerning (2014, 2016) numerically study

Bertrand duopoly with �leap-frogging�process innovations.

2 Model

This section describes our empirical model. Our goal is to incorporate a dynamic oligopoly

game of mergers and innovation within Rust�s (1987) dynamic discrete-choice model.

9Aguirregabiria and Mira (2007); Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007);
Pesendorfer and Schmidt-Dengler (2008).
10Egesdal, Lai, and Su�s (2015) proposes MPEC algorithm as an alternative to NFXP, which is conceptually

feasible but currently impractical for nonstationary, sequential-move games, due to extensive use of memory.
See Iskhakov, Lee, Rust, Schjerning, and Seo (2016) for a recent tune-up to NFXP.
11Ozcan (2015) and Entezarkheir and Moshiri (2015) analyze panel data on patents and mergers.
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2.1 Setup

Time is discrete with a �nite horizon, t = 0; 1; 2; : : : ; T , where the �nal period T is the

time at which the demand for HDDs becomes zero. Each of the �nite number of incumbent

�rms, i = 1; 2; : : : nt, has its own productivity on a discretized grid with unit interval,

!it 2 f!1; !2; :::!maxg, which represents the level of tacit knowledge embodied by its team of
R&D engineers and manufacturing engineers. Given the productivity pro�le, !t � f!itgnti=1,
these incumbents participate in the HDD spot market and earn period pro�ts, �it (!t).

Thus !t constitutes the payo¤-relevant state variable along with the time period t, which

subsumes both the time-varying demand situation and the industry-wide technological trend

(i.e., Kryder�s Law). We specify and estimate �it (!t) in Section 4.

We assume a potential entrant (denoted by i = 0 and state !0) exists in every period and

chooses whether to enter or wait when its turn-to-move arrives.12 Upon entry, it becomes

active at the lowest productivity level, !i;t+1 = !1. If it stays out, !i;t+1 = !0. Each of

the two actions entails a sunk cost and an idiosyncratic cost shock, �a0 and " (a0it), where

a0 2 A0 = fenter; outg. An incumbent chooses between exit, innovation, merger, and staying
alone without taking any major action (which we call �idling�), when its turn arrives. Each

of these dynamic actions, a 2 A =
n
exit; innovate; fpropose merger to rival jgj 6=i ; idling

o
,

entails a sunk cost, �a, and an idiosyncratic cost shock, " (ait). We follow Rust (1987) to

assume " (a0it) and " (ait) are independently and identically distributed (i.i.d.) type-1 extreme

value.

The three actions by incumbents induce the following transitions of !it. First, all exits are

�nal and implies liquidation, after which the exiter reaches an absorbing state, !i;t+1 = !00

(�dead�). Second, innovation in the HDD context means the costly implementation of re-

tooling or upgrading of manufacturing equipment to improve quality-adjusted productivity,13

!i;t+1 = !it + 1. Third, an incumbent may propose merger to one of the other incumbents

and enter a bilateral bargaining. We consider two bargaining protocols: (i) Nash bargaining

with equal bargaining powers between the acquirer and the target (henceforth �NB�), and

(ii) take-it-or-leave-it o¤er by the acquirer to the target (�TIOLI�).

Horizontal mergers and synergies in the HDD context are not so much about the realloca-

12In our data, entry had all but ceased by January 1996 (i.e., the beginning of our sample period) and
our main focus is on the process of consolidation, but we incorporate entry to keep our model su¢ ciently
general, so that it can be applied to the entire life cycle of an industry in principle. Another reason is that
at least one episode of entry actually existed. Finis Conner founded Conner Technology in the late 1990s.
13We say �quality-adjusted�productivity because the industry-wide technological trend is always improv-

ing product quality (in terms of areal density) at a deterministic rate according to Kryder�s Law, hence the
!its here should be understood as the de-trended version of raw productivity.
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tion of tangible assets (e.g., physical production capacities), which are �perishable�and tend

to become obsolete within a few quarters anyway, as about combining teams of engineers who

embody tacit knowledge.14 Thus a natural way to model the evolution of post-merger pro-

ductivity is to follow Farrell and Shapiro (1990) and specify !i;t+1 = max f!it; !jtg+�i;t+1,

where i and j are the identities of the acquirer and the target, respectively, and �i;t+1 is

the realization of stochastic improvement in productivity. The �rst term on the right-hand

side re�ects the convergence of the merging parties�productivity levels, which Farrell and

Shapiro called �rationalization,� and the second term represents what they called �syner-

gies.�Given the discrete grid of !it�s (and the fact that mergers in a concentrated industry

are rare events by de�nition), a simple discrete probability distribution is desirable, hence

we specify �i;t+1 � Poisson (�) i.i.d., where � is the expected value of synergy.

2.2 Timing

Standard empirical models of strategic industry dynamics such as Ericson and Pakes (1995)

assume simultaneous moves in each period. However, if any of the n �rms can propose

merger to any other �rm in the same period, every proposal becomes a function of the

other n (n� 1)� 1 proposals, which will lead to multiple equilibria. Instead, we consider an
alternating-move game, in which the time interval is relatively short and only (up to) one

�rm has an opportunity to make a dynamic discrete choice within a period. Gowrisankaran

(1995, 1999) and Igami (2015, 2016) are examples of such formulation with deterministic

orders of moves, but researchers usually do not have theoretical or empirical reason to favor

one speci�c order over the others. A deterministic order is particularly undesirable for

analyzing endogenous mergers because early-mover advantages will translate into stronger

bargaining powers, tilting the playing �eld and equilibrium outcomes in favor of certain

�rms.

For these reasons, we use stochastically alternating moves and model the timeline within

each period as follows.

1. Nature chooses at most one �rm (say i) with �recognition� probability, �i, at the

beginning of each period.

2. Mover i observes the current industry state, !t, forms rational expectations about its

14According to Currie Munce of HGST, a big rationale for consolidation is that �As further improvement
becomes technically more challenging, the industry has to pool people and talents, which would lead to
further break-through.�(February 27, 2015).
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future evolution, f!�gT�=t+1, and draws idiosyncratic shocks, " (ait), which represent
random costs associated with the dynamic actions.15

3. Based on these pieces of information and their implications, mover i makes the dis-

crete choice ait 2 Ait, immediately incurring the associated sunk cost, �a, and the

idiosyncratic cost shock, " (ait). If i is an incumbent and chooses to negotiate a poten-

tial merger with incumbent j, the two parties bargain over the acquisition price, pij,

which is a dollar amount to be transferred from i to j upon agreement. Our baseline

speci�cation of the bargaining protocol is NB, but we will also consider an alterna-

tive speci�cation, TIOLI.16 If the negotiation breaks down, no transfer takes place,

i�s turn ends without any other action or other merger negotiation, and j will remain

independent.

4. All incumbent �rms (regardless of the stochastic turn to move) participate in the spot-

market competition, earn period pro�ts, �it (!t), and pay the �xed cost of operation,

�c, which includes the costs of continual e¤orts to keep up with the industry-wide

technological progress (i.e., Kryder�s Law).

5. Mover i implements its dynamic action and its state evolves accordingly. If i is merging,

it draws stochastic synergy, �i;t+1, which determines the merged entity�s productivity

in the next period, !i;t+1.

These steps are repeated T times until the industry comes to an end.

2.3 Dynamic Optimization and Equilibrium

Whenever its turn to move arrives, a �rm makes a discrete choice to maximize its expected

net present value. Its strategy, �i, consists of a mapping from its e¤ective state (a vector of

the productivity pro�le !t, time t, and the draws of "it = f" (ait)ga2A) to a choice ait 2 Ait�
a complete set of such mappings across all t, to be precise. We may integrate out "it
and consider �i as a collection of the ex-ante optimal choice probabilities conditional on

(!it; !�it; t).

15Simultaneous-move entry games such as Seim (2006) characterize "it�s as private information of i, and
we follow this convention. In our sequential-move context, however, "it�s do not have to be private because
the other �rms cannot act on "it�s even if they observed their realizations.
16No systematic record exists on the actual merger negotiations, and the details are likely to be highly

idiosyncratic. In the absence of solid evidence, we prefer keeping the speci�cation as neutral as possible. See
Collard-Wexler, Gowrisankaran, and Lee (2014) for a non-cooperative foundation of NB.
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The following Bellman equations characterize an incumbent �rm�s dynamic optimization

problem.17 Mover i�s value after drawing "it is

Vit (!t; "it) = �i (!t) +max
n
�V xit (!t; "

x
it) ;

�V cit (!t; "
c
it) ;

�V ii
�
!t; "

i
it

�
;
�
�V mijt
�
!t; "

m
ijt

�	
j

o
; (1)

where �V ait s represent conditional (or �alternative-speci�c�) values of exiting, idling, innovat-

ing, and proposing merger to rival j, respectively,

�V xi (!t; "
x
it) = ��x + "xit + �E [�i;t+1 (!t+1) j!t; ait = exit] ; (2)

�V ci (!t; "
c
it) = ��c + "cit + �E [�i;t+1 (!t+1) j!t; ait = stay] ; (3)

�V ii
�
!t; "

i
it

�
= ��c � �i + "iit + �E [�i;t+1 (!t+1) j!t; ait = invest] ; and (4)

�V mij
�
!t; "

m
ijt

�
= ��c � �m + "mijt � pij (!t) + �E [�i;t+1 (!t+1) j!t; ait = merge j] : (5)

Mover i�s value before drawing "it is

EVit (st) = E" [Vit (st; "it)] (6)

= �i (st) + 
 + ln

"
exp

�
~V xit

�
+ exp

�
~V cit

�
+ exp

�
~V iit

�
+
X
j 6=i

exp
�
~V mijt

�#
;

where 
 is Euler�s constant and ~V ait is the deterministic part of �V
a
i (!t; "

a
it), that is, ~V

a
it �

�V ai (!t; "
a
it)� "ait. In equations 2 through 5, �i;t+1 represents i�s expected value at t+1 before

nature picks a mover at t+ 1,

�i;t+1 (!t+1) = �i (!t+1)EVi;t+1 (!t+1) +
X
j 6=i

�j (!t+1)W
j
i;t+1 (!t+1) . (7)

This �umbrella�value is a recognition probability-weighted average of mover�s value (EVit)

and non-mover�s value
�
W j
it

�
. Nobody knows exactly who will become the mover before

nature picks one. When nature picks j 6= i, non-mover i�s value (before j draws "jt and takes
17Appendix B features the corresponding expressions for the potential entrant.
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an action) is

W j
it (!t) = �i (!t)� �c + Eit [Pr (ajt = exit)] �E [�i;t+1 (!t+1) j!t; ajt = exit] (8)

+Eit [Pr (ajt = idle)] �E [�i;t+1 (!t+1) j!t; ajt = idle]

+Eit [Pr (ajt = invest)] �E [�i;t+1 (!t+1) j!t; ajt = invest]

+Eit [Pr (ajt = merge i)] pji (!t)

+
X
k 6=i;j

Eit [Pr (ajt = merge k)] �E [�i;t+1 (!t+1) j!t; ajt = merge k] ;

where Eit [Pr (ajt = action)] is non-mover i�s belief over mover j�s choice. These value func-

tions entail the following ex-ante optimal choice probabilities

Pr (ait = action) =
exp

�
~V actionit

�
exp

�
~V xit

�
+ exp

�
~V cit

�
+ exp

�
~V iit

�
+
P

j 6=i exp
�
~V mijt

� : (9)

In equilibrium, these probabilities constitute the non-movers�beliefs over the mover�s choice.

We will use these optimal choice probabilities to construct a likelihood function for estimation

in Section 4.3.

The bargaining protocol determines the equilibrium acquisition price, pij. Under NB, the

two parties jointly maximize the following expression,

f�E [�i;t+1 (!t+1) j!t;merge j]� pij � ��i;t+1 (!t+1 = !t)g� (10)

�fpij � ��j;t+1 (!t+1 = !t)g1�� ;

where � 2 [0; 1] represents the bargaining power of the acquirer (i here), which equals :5 under
NB (with 50-50 split) and 1 under TIOLI. The last term in each bracket is the disagreement

payo¤.18

We solve this dynamic game for a unique sequential equilibrium in pure strategies that

are type-symmetric. Note that "it�s are i.i.d. shocks whose realizations do not a¤ect anyone�s

future payo¤except through the actual choice ait, hence we may solve this game by backward

induction from the �nal period, T . At T , all �rms�pro�ts and continuation values are zero,

so no decision problem exists. At T � 1, a single mover (denoted by i = T � 1) draws "T�1
18Only up to one deal (between i and j here) can be negotiated within a period.This setting is not as

restrictive as it might seem at a �rst glance, because the time interval is relatively short and all other potential
deals in the future are embedded in the disagreement payo¤ (i.e., each �rm�s stand-alone continuation value).
This speci�cation shares the �avor of Crawford and Yurukoglu (2012) and Ho (2009).

12



and takes whichever action aT�1 that maximizes its expected net present value. At T � 2,
another mover (i = T � 2) draws "T�2 and makes its discrete choice, in anticipation of: (i)
the evolution of !t from T � 2 to T � 1, (ii) the recognition probabilities and other common
factors, and (iii) the optimal CCPs of all types of potential movers at T � 1, which imply
the transition probabilities of !t from T � 1 to T . This iterative process repeats itself until
the initial period t = 0.

An equilibrium exists and is unique. First, each of the (at most) T discrete-choice prob-

lems has a unique solution given the i.i.d. draws from a continuous distribution. Second, in

each period t, only (up to) one �rm solves this problem in our alternating-move formulation.

Third, mover t�s choice completely determines the transition probability of !t to !t+1, but

it cannot a¤ect future movers�optimal CCPs at t+1 and beyond in any other way. In other

words, this game is e¤ectively a sequence of T single-agent problems. By the principle of

optimality, we can solve it by backward induction for a unique equilibrium.

2.4 Other Modeling Considerations

To clarify our modeling choices, we discuss �ve alternative modeling possibilities that we

have considered: (i) an in�nite horizon, (ii) continuous time, (iii) heterogeneous recognition

probabilities, (iv) alternative bargaining protocols, and (v) private information on synergies.

First, we have chosen a �nite horizon over an in�nite one primarily because we study the

process of industry consolidation in an innovative, nonstationary industry. Another reason

is multiple equilibria. Iskhakov, Rust, and Schjerning (2016) �nd numerous equilibria in a

stochastically alternating-move duopoly game of innovation with an in�nite horizon. Multi-

ple equilibria would preclude the use of full-solution estimation methods and counterfactual

analysis.

Second, continuous time modeling is an attractive alternative, but Arcidiacono, Bayer,

Blevins, and Ellickson (2015) acknowledge that the feasibility of its application to a nonsta-

tionary environment is currently unknown. Another problem with a shorter or in�nitesimal

time interval in our context is its potential con�ict with the i.i.d. idiosyncratic shocks and

timing assumptions. For major and infrequent decisions such as mergers, the actual decision

making and implementation take at least a month or a quarter. Shorter intervals would

imply that �rms draw i.i.d. random shocks every day or week. Incorporating a persistent

unobserved state could alleviate this problem but create another technical challenge.

Third, some �rms might be more active in M&A than others, and recognition probabilities

can accommodate such heterogeneity. For example, making �i depend on !it would be
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conceptually straightforward, albeit computationally costly. One problem with this idea is

that we have no theory. Another problem is identi�cation. Since we have no theoretical

or empirical foundation for a priori speci�cation of asymmetric �i�s, we prefer keeping it

symmetric and instead focus on the extent of heterogeneity in the equilibrium CCP estimates.

Section 4.4 shows that high-type �rms are more likely to acquire low-type �rms, indeed.

Fourth, regarding the speci�cations NB and TIOLI, we may leave the bargaining powers,

�, as free parameter and try to estimate them. However, mergers in a concentrated industry

are rare events by de�nition, which leads to a data environment with only a handful of actual

acquisition deals to estimate �. Thus we pre-specify NB and TIOLI as alternative models,

and implement both as a sensitivity analysis.

Fifth, regarding the nature of synergies, we may consider a more complicated model of

synergies with private information (e.g., some �rms might privately know that their merger

would yield particularly high �i;t+1), but we have chosen not to add more structures, for

three reasons. First, such non-trivial private information will constitute unobserved state

variables and generate a selection problem, which is an interesting problem but beyond the

scope of this paper. Second, no systematic record exists on �rms�subjective assessments of

�chemistry,�hence the identi�cation of such factors would appear hopeless without strong

additional assumptions anyway. Third, our simple model of �i;t+1 as a completely random

draw actually seems the most consistent with our personal interview with Finis Conner, the

co-founder of Seagate Technology, the founder of Conner Peripherals, and the founder of

Conner Technology. Having founded two Fortune-500 companies in the HDD industry and

engaged in some of the historical mergers, he is an embodiment of the industry�s highest-

quality private information. Nevertheless, he stated, �You have to dive into the water to

see where the skeletons are,�which means even an industry veteran would not know the

internal functioning of the other �rms su¢ ciently to predict the synergy realizations with

much precision, until after the actual mergers take place.19 Thus ours is an empirical model

of Finis Conner. We keep our synergy function simple, and conduct sensitivity analysis with

respect to � in Section 4.3.

For these reasons, we believe our speci�cation strikes the right balance amid many con-

ceptual and practical challenges.

19From author�s personal interview on April 20, 2015, in Corona del Mar, CA.
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3 Data

3.1 Institutional Background and Product Characteristics

Computers are archetypical high-tech goods that store, process, and transmit data. HDDs,

semiconductor chips, and network equipment perform these tasks, respectively. HDDs o¤er

the most relevant empirical context to study mergers and innovation in the process of industry

consolidation. The industry has experienced massive waves of entry and exit, followed by

mergers among a dozen survivors (Figure 1).

Figure 1: Evolution of the World�s HDD Industry

Note: The number of �rms counts only the major �rms with market shares exceeding one percent at some
point of time. See Igami (2015, 2016) on product and process innovations during the 1980s and 1990s.

The manufacturing of HDDs requires engineering virtuosity in assembling heads, disks,

and motors into an air-tight black box, managing volume production in a reliable and eco-

nomical manner, and keeping up with the technological trend that constantly improves

quality and e¢ ciency (Kryder�s Law).

Despite such complexity, HDDs are also one of the simplest products in terms of eco-
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Figure 2: Product Characteristics of HDDs

Note: Left panel shows 3.5-inch HDDs of Hitachi GST, Western Digital, and Seagate Technology. Right panel
shows evidence of successful marketing e¤orts by Microsoft and Intel (and lack thereof by HDD makers).

nomics because they are �completely undi¤erentiated product�according to Peter Knight,

former vice president of Conner Peripherals and Seagate Technology, and former president of

Conner Technology.20 Consumers typically do not observe or distinguish �brands�(Figure

2, left). Moreover, HDDs are physically durable but do not drive the repurchasing cycle of

PCs. Microsoft and Intel (�Wintel�) do, as is evident from the fact that PC users tend to

be aware of the technological generations of operating systems (OS) and central processing

units (CPU) but not HDDs (Figure 2, right), which means the demand for HDDs can be

usefully modeled within a static framework as long as we control for the PC shipments as a

demand shifter. These product characteristics inform our demand analysis in Section 4.1.

Two institutional features inform our analysis of the supply side in Section 4.2. First,

unlike car manufacturing in Japan (say), the manufacturers of PCs and HDDs do not engage

in long-term contract or relationship in a strict sense. The architecture of PC is highly mod-

ular, and standardized interfaces connect its components, which makes di¤erent �brands�of

HDDs technologically substitutable. Furthermore, �second sourcing�has long been a stan-

dard practice in the computer industry, by which a down-stream �rm keeps close contact

with multiple suppliers of a key component so that there will always be a backup supplier or

two in cases of accidental supply shortage at the primary one, . According to Peter Knight,

�Compaq, HP, nobody cared who makes their disk drives. They bought the lowest-price

product that had reasonable quality. There was no reason for single-sourcing.�Second, PC

makers might appear to have consolidated as much as HDD makers, but the actual market

structure of the global PC industry is more fragmented. The average combined market share

of the top four vendors (i.e., CR4) between 2006 and 2015 is 52.5%, which is considered be-

tween �low�and �medium�concentration. By contrast, the HDD industry�s average CR4 is

20From author�s personal interview on June 30, 2015, in Cupertino, CA. See also Section 4.1.
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91.6% during the same period.21

Finally, our data include some kind of solid-state drives (SSDs), but we do not explicitly

model them because: (i) pure SSDs comprised less than 10% of industry sales even in

the last �ve years of our sample period; (ii) they are made of NAND �ash memory (a

type of semiconductor devices), whose underlying technology is totally di¤erent from HDD�s

magnetic recording technology; and (iii) NAND �ash memories are supplied by a di¤erent

set of �rms (i.e., semiconductor chip makers specialized in �ash memories). Modeling SSDs

means modeling the semiconductor industry. However, most of �SSDs�for desktop PCs are

actually �hybrid HDDs,�which combine a small NAND part with HDDs. These hybrids

are part of our HDD data, and their increasing presence is captured as a secular trend of

quality improvement in our data analysis.22 Thus, when we control for the industry-wide

technological trend, we are incorporating Kryder�s Law for HDDs as well as Moore�s Law

for semiconductor devices in a reduced-form manner.

Table 1: Summary Statistics

Variable Unit of Number of Mean Standard Minimum Maximum
measurement observations deviation

Panel A
HDD shipments, Qt Exabytes� 78 15.882 17.368 0.021 53.196
HDD price, Pt $/Gigabytes� 78 14.991 37.305 0.032 178.617
Disk price, Zt $/Gigabytes� 78 1.952 5.252 0.005 23.508
PC shipments, Xt Million units 78 29.286 7.188 14.468 40.312
Panel B
Market share, msit % 590 13.2 11.0 0.0 45.7
Panel C
Indicatorfait = mergeg 0 or 1 1,766 0.0034 0.0582 0 1
Indicatorfait = investg 0 or 1 1,766 0.0142 0.1181 0 1
Indicatorfait = exitg 0 or 1 1,766 0.0028 0.0531 0 1
Indicatorfait = enterg 0 or 1 233 0.0043 0.0654 0 1
Variable pro�t, �it Million $ see note 42.70 91.19 0.00 9725.22

Note : 1 exabytes (EB) = 1 billion gigabytes (GB) = 1 billion bytes. Panel A is recorded in quarterly

frequency at aggregate level, Panel B is quarterly at �rm-level, and Panel C is monthly at �rm level. �it

is our period-pro�t estimates and contains 42,325,920 values across 7 productivity levels, 78 quarters, and

77520 industry states. See Sections 4.1 and 4.2.

Source : TRENDFOCUS Reports (1996�2015).

21Modeling the entire supply chain of PCs and HDDs as bilateral oligopoly would be an interesting exercise,
but it is beyond the scope of this paper, whose main focus is horizontal mergers and long-run dynamics.
22Pure SSDs have become common for note PCs, but we focus on HDDs (including hybrids) for desktop

PCs, which is still the mainstream market for HDDs.
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3.2 Three Data Elements

Our empirical analysis will focus on the period between 1996 and 2015 for three reasons.

First, most of the exits prior to the mid-1990s were shakeout of fringe �rms that occurred

through plain liquidation, whereas our main interest concerns mergers in the �nal phase of

industry consolidation. Second, the de-facto standardization of both product design and

manufacturing processes had mostly �nished by 1996. Speci�cally, the 3.5-inch form factor

had come to dominate the desktop market (see Igami 2015), and manufacturing operations

in South-East Asia had achieved the most competitive cost-quality balance (see Igami 2016).

Third, our main data source, TRENDFOCUS, an industry publication series, started most

of its systematic data collection at quarterly frequency in 1996.23

Table 1 summarizes our main dataset, which consists of three elements corresponding to

three steps of our empirical analysis in the next section. Panel A is the aggregate quarterly

data on HDD shipments, HDD price, disk price, and PC shipments,24 which we will use to

estimate HDD demand in Section 4.1. Panel B is the �rm-level market shares at quarterly

frequency, a graphic version of which is displayed in Figure 1 (top right). We will use demand

estimates and Panel B to infer variable cost of each �rm in each period in Section 4.2. Panel

C is a systematic record of �rms�dynamic choices between merger, R&D investment, and

entry/exit, at monthly frequency. Panel C includes some elements that are derived from

the other two panels, such as the indicator of R&D investment and the equilibrium variable

pro�ts.25 We will use these dynamic choice data and stage-game payo¤s to estimate the

implied sunk costs associated with these actions in Section 4.3.

4 Empirical Analysis

We �esh out our model (Section 2) with the actual data (Section 3), which contained three

elements: (A) aggregate sales, (B) �rm-level market shares, and (C) dynamic discrete choice.

Each of these data elements is paired with a model element and an empirical method to

estimate demand, variable costs, and sunk costs. Table 2 provides an overview of such

model-data-method pairing as well as Section 4�s roadmap.

23By contrast, Igami (2015, 2016) used Disk/Trend Reports (1977�1999), an annual publication series.
24Appendix C features more details on Panel A, including visual plots of these variables.
25Appendix D.2 explains the details of this data construction.
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Table 2: Overview of Empirical Analysis

Section Step Model Data Method
4.1 Demand Log-linear demand Panel A IV regression
4.2 Variable cost Cournot competition Panel B First-order condition
4.3 Sunk cost Dynamic discrete choice Panel C Maximum likelihood

Note : See Section 2 for the dynamic game model, and Section 3 for the three data elements.

4.1 Demand Estimation

We follow Peter Knight�s characterization of HDDs as �completely undi¤erentiated prod-

ucts�(see Section 3.1). To be precise, HDDs come in a few di¤erent data-storage capacities

(e.g., 1 terabytes per drive), but all �rms are selling these products with �the same capaci-

ties, the same speed, and similar reliability�at any given moment, so that cost becomes the

only dimension of competition.26 Most consumers, including the authors, do not even know

which �brand�of HDDs are installed inside their desktop PCs, and PC manufacturers typ-

ically do not let consumers choose a brand. Thus homogeneous-good demand and Cournot

competition are useful characterization of the spot-market transactions.

To ensure our data format is consistent with our notion of product homogeneity, we

consider units of data storage (measured in bytes) as undi¤erentiated goods. We specify a

log-linear demand for raw data-storage functionality of HDDs,

logQt = �0 + �1 logPt + �2 logXt + "t; (11)

where Qt is the world�s total HDD shipments in exabytes (EB = 1 billion GB), Pt is the

average HDD price per gigabytes ($/GB), Xt is the PC shipments (in million units) as a

demand-shifter, and "t represents unobserved demand shocks.

Because the equilibrium prices in the data may correlate with "t, we instrument Pt by Zt,

the average disk price per gigabytes ($/GB). Disks are one of the main components of HDDs,

and hence their price is an important cost-shifter for HDDs. Disks are made from substrates

of either aluminum or glass. The manufacturers of these key inputs are primarily in the

business of processing materials, and only a small fraction of their revenues come from the

HDD-related products. Thus we regard Zt as exogenous to the developments within the HDD

market. In Table 3, column 1 shows OLS estimates, and column 2 shows the IV estimates

with disk prices as Zt. The estimates for price-elasticity, �1, are within the standard errors of

26From author�s personal interview on June 30, 2015, in Cupertino, CA.
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each other. This �nding of inelastic demand (i.e., j�1j < 1) is rationalizable under oligopoly
but creates a conceptual problem under monopoly (i.e., its pro�t-maximizing price would

be arbitrarily high). Consequently, we will ignore the top 5% of consumers with the highest

willingness-to-pay to keep monopoly price �nite.

Table 3: Demand Estimates

Dependent variable: (1) (2) (3) (4)
log total EB shipped OLS IV-1 IV-2 IV-2 rolling

(mean)
log price per GB (�1) �:8549��� �:8244��� �:8446��� �:8420

(:0188) (:0225) (:0259) (�)
log PC shipment (�2) :8430��� 1:0687��� :9198��� :7836

(:1488) (:1817) (:2180) (�)
Constant (�0) �1:6452��� �2:4039��� �1:9033��� �1:3196

(:4994) (:6084) (:7320) (�)
Number of observations 78 78 78 �
Adjusted R2 :9971 :9971 :9972 �
First stage regression
IV for HDD price � Disk price T ime trend T ime trend
F-value � 3009:80 742:14 �
Adjusted R2 � :9889 :9469 �

Note : Heteroskedasticity and autocorrelation consistent standard errors are in parentheses. ***, **, and
* indicate signi�cance at the 1%, 5%, and 10% levels, respectively. See Appendix D.1 for column 4.

Although we believe disk prices represent an exogenous cost-shifter, one might still sus-

pect the existence of some unknown endogeneity problems because, after all, disks and HDDs

are close neighbors in the supply chain of computers. To address this concern, we use a log-

arithm of time trend as an alternative IV in column 3. This IV relies on a classical notion

of technological progress as a time trend, which is particularly natural in the HDD context.

Kryder�s Law dictates a secular trend in the improvement of areal density (i.e., bytes per

square inch), which mechanically translates into the reduction of materials cost per bytes

because the same number of disks can store more information.

Yet another concern is that consumers�preferences might have changed over two decades.

Casual empiricism suggests people have dramatically increased the amount of data usage

in everyday life, which could alter the demand parameters over time. To investigate this

matter, we use rolling estimation in which we roll through the sample of 78 quarters with a

12-quarter window, using 12 observations for estimation at a time. Detailed results do not

�t the table format, hence we plot the estimated coe¢ cients against time in Appendix D.1,

and report only their time-averages in column 4 of Table 3. We use this last speci�cation

for the subsequent analysis.
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Other concerns and modeling considerations include: (i) demand-side dynamics, such as

durability of HDDs and the repurchasing cycle of PCs, (ii) supply-side dynamics, such as

long-term contract with PC makers, and (iii) non-HDD technological dynamics, including

SSDs and the semiconductor industry. Our summary views are as follows: (i) the physical

durability of HDDs does not determine the dynamics of PC demand; (ii) the actual inter-

action between HDD makers and PC makers is more adequately described as spot-market

transactions rather than long-term relationship; and (iii) the non-HDD technological trend

and the growing presence of hybrid HDDs are incorporated as part of Kryder�s Law in our

analysis. Section 3.1 provides further details.

4.2 Variable Costs and Spot-market Competition

The second data element is the panel of �rm-level market shares (Figure 1, top right),

which we will interpret through the analytical lens of Cournot competition, for two reasons.

Despite selling undi¤erentiated high-tech commodities, HDD makers��nancial statements

report positive pro�t margins (see dotted lines in Figure 3), which suggests Cournot model

as a reasonable metaphor for analyze their spot-market interactions. Another appeal is that

classical oligopoly theory of mergers has mostly focused on Cournot model (see Section 1.1),

which brings conceptual clarity and preserves economic intuition.

Figure 3: Comparison of Pro�t Margins (%) in the Model and Financial Statements
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Note: The model predicts economic variable pro�ts, whereas the �nancial statements report accounting
pro�ts (gross pro�ts), and hence they are conceptually not comparable. The correlation coe¢ cient between
the model and the accounting data is .8398 for Western Digital, and .5407 for Seagate Technology. With a
management buy-out in 2000, Seagate Technology was a private company until 2002, when it re-entered the
public market. These events caused discontinuity in the �nancial record.

Each of the nt �rms observes the pro�le of marginal costs fmcitgnti=1 as well as the concur-
rent HDD demand, and chooses the amount of re-tooling e¤orts to maintain e¤ective output
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level, qit, to maximize its variable pro�t

�it = (Pt �mcit) qit; (12)

where Pt is the price per GB of a representative HDD at t andmcit is the marginal cost, which

is predetermined at t� 1 and constant with respect to qit.27 Firm i�s �rst-order condition is

Pt +
@P

@Q
qit = mcit: (13)

which provides one-to-one mapping between qit (observed) and mcit (implied) given Pt in

the data and @P=@Q from the demand estimates. Intuitively, the higher the �rm�s observed

market share, the lower its implied marginal cost.

The interpretation of mcit requires special attention in the high-tech context. As we

discussed in Section 2 regarding synergies, �productivity� in HDD manufacturing is not

so much about tangible assets as about tacit knowledge embodied by teams of engineers.

Thus our preferred interpretation of Cournot spot-market competition follows Kreps and

Scheinkman�s (1983) model of quantity pre-commitment followed by price competition, given

the cost pro�le (i.e., all active �rms�productivity levels).28

Appendix D.2 shows the details of our marginal-cost estimates and how we convert them

into productivity levels, !it, for the subsequent dynamic analysis. Meanwhile, we focus our

main-text exposition on an external validity check of our static model. Figure 3 compares

the model�s predictions with accounting data, in terms of pro�t margins at Western Digital

(left) and Seagate Technology (right), respectively. Our model takes as inputs the demand

estimates and the marginal-cost estimates, and predicts equilibrium outputs, prices, and

hence each �rm�s variable-pro�t margin in each year,

mit (!t) =
Pt (!t)�mcit

Pt (!t)
; (14)

27In principle, we may replace this constant marginal-cost speci�cation with other functional forms. In
the high-tech context, however, marginal costs are falling every period across the industry, and the only
geographical market is the Earth. Thus one cannot rely on either inter-temporal or cross-sectional variation
in data to identify marginal-cost curves nonparametrically.
28One might wonder whether such �pre-committed quantities� are hard-wired to physical production

capacities. In the context of high-tech manufacturing, e¤ective physical capacities are highly �perishable�
because of the constant improvement in the industry�s basic technology (i.e., Kryder�s Law), which makes
previously installed manufacturing equipment obsolete. Thus we prefer a rather abstract phrase �quantity
pre-commitment� to �capacity�because the latter could mislead the reader to imagine �durable�physical
facilities.
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under any industry state, !t (i.e., the number of �rms and their productivity levels). The

solid lines represent such predictions of economic pro�t margins along the actual history,

whereas the dotted lines represent �gross pro�t�margins (i.e., revenue minus �cost of rev-

enues�) in the �rms��nancial statements.

Economic pro�ts and accounting pro�ts are di¤erent concepts, which explains the exis-

tence of systematic gaps in their levels. On average, (economic) variable pro�t margins are

higher than (accounting) gross pro�t margins by 11.4 and 13.8 percentage points at these

�rms, respectively, because the former excludes �xed costs of operation and sunk costs of

investment, whereas the latter includes some elements of �xed and sunk costs.29 Thus cor-

relation is more important than levels, which is :8398 for Western Digital, and :5407 for

Seagate Technology. If we accept accountants as conveyor of truth, then this comparison

should con�rm the relevance of our spot-market model.

These static analyses are interesting by themselves, but merger policy will a¤ect not only

�rms�spot-market behaviors but also their incentives for mergers and investments, hence the

entire history of competition and innovation. Thus a complete welfare analysis of industry

consolidation requires endogenous mergers, innovation, and entry-exit dynamics, which will

be the focus of the subsequent sections.

4.3 Sunk Costs and Dynamic Discrete Choice

The third data element is the panel of �rms�discrete choices between mergers, innovation,

entry, and exit, which we will interpret through the dynamic model. We have already

estimated pro�t function, that is, period pro�ts of all types of �rms, in each period, in each

industry state, �it (!t). In other words, we observe the actual choices and the �bene�t�side

of equation, hence the �cost�side of equation is the only unknown now.

Con�guration

Table 4 lists all the parameters and key speci�cations of our model. Before engaging in the

MLE of the core parameters, (�i; �m; �e), we determine the values of the other parameters

either as by-products of the previous two steps or directly from auxiliary data.

29For example, manufacturing operations in East Asia accounted for 41304, or 80:8%, of Seagate�s 50988
employees on average between 2003 and 2015, whose wage bills constitute the labor component of the �cost
of revenues� in terms of accounting. However, some of these employees spent time and e¤orts on techno-
logical improvements, such as the re-tooling of manufacturing equipment for new products (i.e., product
innovation), as well as the diagnosis and solution of a multitude of engineering challenges to improve the
cost-e¤ectiveness of manufacturing processes (i.e., process innovation), which are sunk costs of investment
in terms of economics.
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Table 4: List of Parameters and Key Speci�cations

Parameter Notation Empirical approach
1. Static estimates
Demand �0; �1; �2 See Section 4.1
Variable costs mcit See Section 4.2
Period pro�ts �it (!t) See Section 4.2
2. Dynamics (sunk costs)
Innovation, mergers, and entry �i; �m; �e MLE (main task of Section 4.3)
Fixed cost of operation �ct (!it) Accounting data (see Appendix D.3)
Liquidation value �x = 0 Industry background
3. Dynamics (transitions)
Discount factor (annual) � = :9 Calibrated to the literature�s standard
Prob. stochastic depreciation � = :0190 Implied by mcit
Average synergy � = 1 Implied by mcit (sensitivity analysis with 0 & 2)
4. Other key speci�cations
Terminal period T = Dec-2025 Sensitivity analysis with Dec-2020 & Dec-2015
Bargaining power NB: � = :5 Sensitivity analysis with TIOLI: � = 1

First, we pin down the other two ��s as follows. The �xed cost of operations and keeping

up with Kryder�s Law, �ct (!it), comes directly from the accounting data on sales, general,

and administrative (SGA) expenses, and are allowed to vary over time and across �rm�s

productivity level.30 We set liquidation value, �x, to zero because tangible assets quickly

become obsolete and have no productive use outside the HDD industry.

Second, three parameters govern transitions. The discount factor is calibrated to � =

:9 at an annualized rate, a standard level in the literature. We introduce the possibility

of exogenous and stochastic depreciation of !it at the end of every period, because our

estimates of mcit (or equivalently, !it) exhibit occasional deterioration with probability � =

:0190. Likewise, our mcit estimates suggest the extent of synergy. The average post-merger

improvement is approximately $1 (measured in terms of the discretized bin, to be precise),31

which constitutes our �estimates�of the Poisson synergy parameter,

�̂MLE =
1

#m

#mX
m=1

�m; (15)

where #m is the number of mergers in data and �m is the productivity improvement from

merger m. Mergers in a concentrated industry are rare events (#m = 6 in our main sample),

and most IO economists feel skeptical about merging parties�claim about synergy. Con-

sequently, we consider � = 1 as our baseline �calibration�and conduct sensitivity analysis

30See Appendix D.3 for details.
31See Appendix D.2 for details.
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with � = 0 (no synergy) and � = 2 (strong synergy) instead of arguing over what its �right�

value should be.

Third, two aspects of our dynamic model require �ne-tuning. The �rst such aspect is

the terminal condition. Our sample period ends in 2015Q2 but the HDD industry does

not, hence we need to assume something about the post-sample end game. Our baseline

speci�cation is relatively optimistic to assume that the HDD demand continues to exist until

the end of year 2025, with linear interpolation between June 2015 and December 2025. Our

sensitivity analyses employ more pessimistic scenarios, with T = Dec-2015 and Dec-2020.

The second aspect is bargaining protocols. Our baseline speci�cation is Nash bargaining

with equal bargaining powers between acquirer and target, � = :5, but we also estimate the

TIOLI version, � = 1.

Extending Rust (1987) to Random-mover Dynamic Games

Having determined the baseline con�guration, we proceed to estimate (�m; �i; �e). The out-

line of our MLE procedure follows Rust (1987), who constructed the likelihood of bus engine

replacement as a function of Harold Zurcher�s decisions whether to replace old bus engines

(choice data), their mileages (observed state variable), and the sunk cost of replacement

(parameter to be estimated). Just like his identi�cation of the replacement cost relied on

the variation in the mileage of bus engines (i.e., observed di¤erences in payo¤-relevant state

across time), our identi�cation of (�i; �m; �e) relies on variation in period pro�ts and their

dynamic counterparts (i.e., expected net present values associated with discrete alternatives).

Similarly, just like his NFXP approach nested the solution of Harold Zurcher�s optimal choice

problem (the �inner loop�) within the calculation of the likelihood function (to be maximized

in the �outer loop�), our likelihood function nests the HDD makers�optimal choice problem.

Thus our overall scheme closely follows Rust�s.

We di¤er from Rust (1987) in three respects: (i) the HDDmakers�optimal choice problem

take place within a dynamic game, rather than a single-agent problem; (ii) their turns-to-

move arrive stochastically rather than deterministically; and (iii) the underlying payo¤s

change over time and eventually disappear. Feature (i) fundamentally complicates the es-

timation problem because games generally entail multiple equilibria, which would make

estimates inconsistent because one cannot use model-generated CCPs to pin down parame-

ter values if a single parameter value predicts multiple CCPs. Our solution is three-fold.

First, we use an alternating-move formulation to streamline the decision problems, so that

only (up to) one player makes a choice in each period. Second, we avoid tilting the playing
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�eld (i.e., assuming a deterministic sequence would embed early-mover advantage a priori)

by making the turn-to-move stochastic, which led us to feature (ii) in the above. Third, we

exploit the high-tech context of feature (iii) to set a �nite time horizon, which enables us to

solve the game for a unique equilibrium by backward induction. In other words, we address

methodological challenges stemming from feature (i) by crafting (ii) and exploiting (iii), so

that the overall scheme of estimation can proceed within the NFXP framework. Thus we

regard our approach as an extension to Rust (1987) as well as an illustration of a particular

kind of dynamic games that is amenable to NFXP.

The optimal choice probabilities of entry, exit, innovation, and mergers in equation 9

constitute the likelihood function. Firm i�s contribution at t is

lit (aitjst;�) = �i(st)
Y

action2Ait(st)

Pr (ait = action)
1fait=actiong ; (16)

where 1 f�g is an indicator function. The MLE is

�̂MLE = arg max
(�i;�m;�e)

1

T

1

I

X
t

X
i

ln
�
lit
�
aitj!t;�i; �m; �e

��
; (17)

where T is the number of sample periods and I is the number of �rms.

The realizations of turns-to-move are not always evident in the data, hence the imple-

mentation of MLE needs to distinguish �active�periods in which some �rm took an action

(such as exit, merger, or entry) and altered !t, and �quiet�periods in which no such proac-

tive moves were made by any �rm. Speci�cally, we incorporate the random turns-to-move

by setting

�̂i (st) =

(
1 if ait 2 fexit;merge; enterg , and

1
nmax

Pr (ait = idle; out) if ait 2 fidle; outg 8i:
(18)

That is, when exit, merge, or entry is recorded in the data, we may assign probability 1 to

the turn-to-move of the �rm that took the action, whereas in a �quiet�period, nature may

have picked any one of the �rms, who subsequently decided to idle (or stay out) and did not

alter !t.

Results

In Table 5, column 1 shows our baseline estimates with (i) Nash bargaining with equal

bargaining powers, � = :5, (ii) mean synergy from the data, � = 1, and (iii) optimistic
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terminal condition, T = Dec-2025. As a sensitivity analysis, column 2 alters �, columns 3

and 4 alter �, and columns 5 and 6 alter T . All the speci�cations lead to similar estimates

that are within the 95% con�dence interval of each other.

Table 5: MLE of Dynamic Parameters and Sensitivity Analysis

Speci�cation (1) (2) (3) (4) (5) (6)
Bargaining (�): :5 (NB) 1 (TIOLI) :5 :5 :5 :5
Synergy (�): 1 1 0 2 1 1
Terminal period (T ): 2025 2025 2025 2025 2020 2015

�i 3:0365 3:0335 3:0411 3:0326 3:0353 3:0283
[2:65; 3:48] [2:64; 3:47] [2:65; 3:48] [2:64; 3:47] [2:65; 3:48] [2:64; 3:47]

�m 5:2043 5:9239 4:9135 5:4411 5:2040 5:2049
[4:47; 6:14] [5:19; 6:86] [4:18; 5:85] [4:47; 6:14] [4:47; 6:14] [4:47; 6:14]

�e 5:2069 4:8092 5:3330 5:0667 5:3416 5:4529
[�] [�] [�] [�] [�] [�]

Log likelihood �320:6502 �321:0507 �320:3957 �320:8940 �320:8981 �323:8451

Note : The 95% con�dence intervals are constructed from the likelihood-ratio tests.

The directions of these di¤erences are logical and provide an intuitive understanding of

identi�cation. Compare �m in columns 1 (� = :5) and 2 (� = 1). The TIOLI assumption

in column 2 gives greater bargaining power to acquirers, lowers acquisition prices, pij, and

increases values of mergers, �V mij . Ceteris paribus, the TIOLI model predicts higher CCPs of

merger, ~Pmij , but the actual CCPs in data, �P
m
ij , do not change, which decouples these two

objects (i.e., ~Pmij > �Pmij ). Consequently, the only way for the model to reconcile them is to

increase �m, so that ~Pmij comes down again (i.e., ~P
m
ij � �Pmij ). The same mechanism applies

to the sensitivity of �m in columns 3 (� = 0) and 4 (� = 2), where the expected synergy

level plays the same role as � in column 2. By contrast, columns 5 (T = Jan-2020) and

6 (T = Jan-2015) suggest the assumption on a time horizon hardly a¤ects any estimates,

because terminal values are relatively small and the data variation in the sample period

remains unchanged.

The innovation cost, �i, is in the ballpark of HDD makers�R&D spending. The entry

cost, �e, does not carry meaningful con�dence intervals because almost any high value of

�e could rationalize the data that contain only one entry, hence our estimate is a lower

bound. Nevertheless, one entry is more informative than zero entry. �Almost� any high

�e can rationalize the data, but it cannot be arbitrarily high, because it must permit some

possibility that a potential entrant with a lucky draw of "eit (such as Finis Conner, who

founded Conner Technologies in the late 1990s) would choose to enter.

Besides these sunk costs, the NFXP estimation provides the equilibrium value and policy

27



functions as by-products. Hence, as an external validity check, we may compare these model-

generated enterprise values with the actual acquisition prices in the six merger cases.32 The

comparison reveals that at least three out of the six historical transaction values closely

match the target �rms�predicted values. See Appendix D.3 for further details.

Another way of assessing �t is to compare the actual and the predicted trajectories of

market structure (Figure 4). The estimated model generates a smooth version of the industry

consolidation process in the data, with approximately 3 �rms remaining at the end of the

sample period. The model also replicates some aspects of their productivity composition

(e.g., the survival of a few low-level �rms). We believe the estimated model provides a

reasonable benchmark, with which we may compare welfare performances of hypothetical

antitrust policies in Section 5.

Figure 4: Fit of the Estimated Model (Number of Firms)
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Note: The model outcome is the average of 10,000 simulations based on the estimated model. The produc-
tivity types are de�ned on a discretized grid of levels 1 through 7, each step of which corresponds to an
approximately $1 reduction in marginal cost.

4.4 Competition, Innovation, and Merger

Whereas the value-function estimates and the simulations of industry dynamics were useful

for assessing �t, the policy functions are interesting by themselves because they represent

structural relationships between competition, innovation, and merger. Figure 5 shows the

equilibrium R&D and M&A strategies by year, type, and market structure.

The top panels feature plateau-shaped relationship between the optimal R&D invest-

ment (vertical axis) and the number of �rms (horizontal axis). Regardless of how we slice

32In principle, we may use these six observed acquisition prices to �estimate�the bargaining parameter,
�. However, we prefer calibrating � because six cases are too few for precise estimation.

28



Figure 5: Plateaus and Cascades in Equilibrium Strategies
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CCP estimates across !it, st, or t.

the equilibrium strategy, the incentive to innovate sharply increases between one, two, and

three �rms, because a monopolist has little reason to replace itself (Arrow 1962) whereas

duopolists and triopolists have to race and preempt rivals (Gilbert and Newbery 1982). Ex-

plained in this way, the upward slopes may look obvious in hindsight, but this pattern is

actually not so obvious. A static Cournot model (or other standard models of imperfect com-

petition) predicts the opposite, because �i (n) decreases with n, and the incremental pro�t

from innovation, ��i � �i
�
!high

�
� �i

�
!low

�
, also decreases with n.33 Thus the fact that

positive slopes came out of our Cournot-based model highlights the importance of dynamic

incentives. Dynamics make innovation increase with competition.

After three or four �rms, the plateaus exhibit ample heterogeneity both across time (top-

left panel) and productivity (top-right panel). Innovation rates are high and increasing with

n in early years and at high-productivity �rms because continuation values (and hence the

incremental value of investment) are high. By contrast, the incentives are low and often

33See Igami (2016) for a stylized model, and Dasgupta and Stiglitz�s (1980) for rent-dissipation.
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decreases with n in later years and at low-productivity �rms because the possibility of exit

becomes more realistic in such cases, and increased competition make them give up. Thus

�heterogeneous plateaus� is the structural-empirical cousin of the celebrated �inverted U�

curve (e.g., Scherer 1967, Aghion et al. 2005), and the plateaus�heterogeneity is governed

by option values and the probability of death.

The incentive for merger is equally intriguing. The bottom-left panel of Figure 5 plots the

optimal M&A strategy as a function of time and competition. Two patterns emerge. First,

mergers become more popular in later years because killing rivals becomes more attractive

when the �xed cost of operations has grown and new entry stops. Second, more mergers

occur when more rivals exist, because they represent potential merger targets. Once we

divide the CCP by nt, the merger-competition slope (per active �rm) becomes virtually �at.

Who merges with whom? The bottom-right panel of Figure 5 plots the CCP of merger

(sliced by acquiring �rm�s level) against target �rm�s level. Three patterns emerge. First, all

combinations are possible, as is the case in our data.34 Second, high types acquire more than

low types, because the former expect higher values from reduced competition and increased

productivity. Third, low types are more attractive targets than high types, which seems

intuitive but the mechanism is subtle. On the one hand, eliminating a low type does not

soften competition by much, hence the bene�ts are limited. On the other hand, low types�

reservation values are low, so they represent a cheaper means to obtain synergy draws. Our

results incorporate all of these economic factors in equilibrium. We do not model every single

detail of M&A because this paper focuses on long-run industry dynamics. Nevertheless, the

fact that rich nuances come out of our relatively simple model highlights the fruitfulness of

analyzing mergers as dynamic and endogenous choices.

5 Optimal Policy and Dynamic Welfare Tradeo¤

How far should an industry be allowed to consolidate? We are now ready to simulate welfare

outcomes under hypothetical merger policies, and our short answer is �ve. The following

subsections will clarify exactly how we reach this �nding (Section 5.1), the underlying mech-

anism that led to this �nding (Section 5.2), how the outcomes may change if the industry is

declining fast (Section 5.3), and the possibility of �smarter�policies (Section 5.4).

34We observe 2 high-low, 1 mid-mid, 2 mid-low, and 1 low-mid mergers between 1996 and 2015.
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5.1 Commitment Policy

Table 6 shows the highest present value of social welfare is achieved under a static (or

�commitment�) policy in which antitrust authorities block mergers if nt is �ve or less (i.e.,

N = 5). Each of the nine columns reports the discounted sums of consumer surplus (CS),

producer surplus (PS), and social welfare (SW) under a hypothetical regime with N 2
f1; 2; :::; 9g relative to the baseline model (N = 3).

We set N = 3 in the baseline (estimated) model based on the following evidence. The

FTC reports that, in merger enforcement concerning high-tech markets between 1996 and

2011, no merger was blocked until the number of �signi�cant competitors� reached three.

Speci�cally, (i) none of the 5-to-4 mergers was blocked; (ii) 33% of the 4-to-3 merger proposals

was blocked; and (iii) 100% of the 3-to-2 and 2-to-1 proposals was blocked.35 Thus N = 3

is an accurate description of the actual policy during our sample period. This de facto rule

of the game is a shared perception among antitrust practitioners and �rms in Silicon Valley,

according to our conversations with former chief economists at the FTC and the Antitrust

Division of the DOJ, antitrust economic consultants, as well as senior managers at the HDD

manufacturers.

Table 6: Welfare Performance of Commitment Policies

Threshold number of �rms (N) 1 2 3 4 5 6 7 8 9

Discounted Jan-1996 value
Consumer surplus (%) N24:12 N7:40 �0 +0:45 +0:65 +0:73 +0:77 +0:80 +0:82
Producer surplus (%) +118:46 +32:68 �0 N3:11 N5:26 N5:55 N8:12 N9:19 N10:39
Social welfare (%) N14:64 N4:74 �0 +0:21 +0:26 +0:24 +0:18 +0:13 +0:07

Undiscounted sum
Consumer surplus (%) N79:61 N20:74 �0 +1:14 +1:62 +1:84 +1:97 +2:06 +2:11
Producer surplus (%) +278:70 +64:64 �0 N4:87 N7:62 N9:21 N10:67 N11:68 N12:64
Social welfare (%) N48:16 N13:24 �0 +0:62 +0:81 +0:87 +0:86 +0:85 +0:81

Note : All welfare numbers are expressed in terms of percentage change from the baseline outcome under N = 3.
These changes might appear small because most of the counterfactual policies�impacts are concentrated in later
periods, at which point the market size is shrinking and discounting attenuates their values as of January 1996.

Computational implementation is straightforward. We estimated the baseline model by

searching over the parameter space of (�i; �m; �e) to maximize the likelihood of observing

the actual choice patterns in the data (in the outer loop), and by solving the dynamic game

by backward induction to calculate the predicted choice patterns based on the model (in

35See Federal Trade Commission (2013), Table 4.7 entitled �Number of Signi�cant Competitors in
Electronically-Controlled Devices and Systems Markets.�Our model can incorporate similar policy regimes
based on HHI thresholds instead of N , but we found no clear HHI threshold in the report.
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the inner loop), in which the sunk cost of merger is �m when nt > 3 but 1 when nt 6 3.

Simulating welfare outcomes under an alternative regime is simpler than estimation. First,

solve the counterfactual game with the same parameter estimates
�
�̂i; �̂m; �̂e

�
but in a dif-

ferent policy environment (N 6= 3) just once, and obtain the optimal choice probabilities in
the counterfactual equilibrium. Second, use these CCPs to simulate 10,000 counterfactual

industry histories, fstgTt=0. Third, calculate f(CSt; PSt; SWt)gTt=0 along each simulated his-
tory, take their average across the 10,000 simulations, and summarize their (undiscounted)

time pro�les in terms of time-0 discounted present values.

Figure 6: Time Pro�le of Undiscounted Welfare (% change)
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Note: Each panel shows the average of 10,000 simulations under an alternative policy regime.

The threshold policy N = 5 optimally trades o¤ the ex-post pro-competitive e¤ect of

blocking mergers with the negative ex-ante value-destruction side e¤ects. Figure 6 visualizes

the dynamic welfare tradeo¤ by showing the time pro�les of undiscounted social welfare,

relative to the baseline performance under N = 3. The most staggering patterns emerge

from the more permissive regimes (N = 1 and 2), in which the deadweight losses under

monopoly and duopoly during the second half of the sample period dominates any positive

changes during the �rst half. Thus an obvious �nding from our welfare analysis is that

allowing mergers to monopoly or duopoly is a bad idea, even if we account for potentially

positive side e¤ects on ex-ante incentives to enter and innovate.

By contrast, stricter policies (N = 4 through 9) generate more nuanced and qualitatively

interesting welfare tradeo¤s between positive ex-post performances and negative ex-ante

side e¤ects. The positive changes re�ect the direct impact of blocking mergers, but this pro-
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competitive e¤ect is partially o¤set by preceding negative changes, which seem to suggest

some side e¤ects on entry and R&D investments. Both the positive and the negative e¤ects

become larger as the threshold rises, but their rates of change are not always in balance.

That is, the negative side e¤ects grow faster than the positive main e¤ect, to the extent that

the net improvement peaks at N = 5 and then declines (Table 6). Thus our main �nding is

the optimality of N = 5 and the inter-temporal tradeo¤ that it epitomizes. Tougher merger

policy is not unambiguously better, and this subtlety would have been totally absent had

we employed a static framework. The next subsection dissects its underlying mechanisms.

5.2 Decomposing Dynamic Welfare Tradeo¤

Figure 7 illustrates this dynamic welfare tradeo¤, �rst by decomposing the changes in con-

sumer surplus into the changes in competition and innovation, and then by further decom-

posing: (i) the changes in competition into the changes in mergers and entry/exit, and (ii)

the changes in innovation into the changes in mergers and in-house investments.

The summary of welfare performances under alternative policy regimes in the previous

subsection indicated the presence of dynamic tradeo¤. This subsection clari�es its underlying

mechanisms by focusing on changes in CS, whose good �summary statistic�36 is price in the

current empirical context with homogeneous goods.

The top panel of Figure 7 Shows the CS-performance of the optimal policy (N = 5)

relative to the baseline (N = 3). The line graph represents the change of price (�pt), and

the two bar graphs show its two determinants, the average markup (�mt) and the average

marginal cost (�mct) across active �rms.37 Their accounting relationship permits our �rst

decomposition,

�CSt / �pt = �mt +�mct: (19)

In words, CS increases when the price decreases, which can be the result of either reduced

markups (i.e., increased �competition�), reduced costs (i.e., increased productivity or �in-

novation�), or both. Thus we are decomposing �CS into changes in �competition� and

�innovation.�The graph suggests �mt and �mct tend to move in opposite directions and

36We do not intend to claim that �p completely determines �CS. It does not, because we allow both the
covariate (i.e., Xt) and the parameters (i.e., �̂ts) to change over time. Here we mean �summary statistic�
for illustration purposes only.
37The average markup and cost do not re�ect all of the changes in individual �rms�performances, but

these measures are �su¢ cient�for our current purpose of illustrating the key determinants of welfare under
di¤erent policy regimes.
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Figure 7: Decomposition of Dynamic Welfare Tradeo¤
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the market share-weighted average do not qualitatively alter the decomposition patterns.

cancel each other.

The two bottom panels of Figure 7 further decompose the �competition�and the �inno-

vation�e¤ects of the optimal policy regime. On the competition side, �mt re�ects changes

in the number of �rms, �nt, which in turn re�ects the changes in net entry (= entry � exit),
�NEt, and M&As, �MAt,

�mt / �nt = �NEt +�MAt: (20)

In the bottom-left panel, the line graph shows �nt, and the two bar graphs show �NEt and

�MAt, respectively. The contribution of the policy to competition (�nt) is mostly positive

from the merger channel (�MAt) because more mergers are blocked under N = 5 than

under N = 3, which represents the classical pro-competitive e¤ect of blocking mergers.

However, this gain is partially o¤set by the negative contribution from the entry/exit
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channel (�NEt). The mechanism behind this countervailing e¤ect is partial destruction

of �rms�continuation values. The reduced opportunities for mergers mean reduced pro�t

margins due to more competition in the future, reduced opportunities for productivity growth

by stochastic synergy draws, and reduced opportunities for pro�table exit by being acquired,

all of which reduce the option value of entry and survival. Entry and survival require lump-

sum and continual investments (i.e., �e and �c) to catch up and keep up with the industry-

wide technological trend, respectively. Less rosy prospect for the future pro�t opportunities

reduces expected bene�ts but not expected costs, which is the reason for less entry and more

exits, hence �NEt < 0.

The microeconomic mechanism is similar but more complicated and interesting on the

innovation side. �mct primarily re�ects the productivity levels of �rms, �!it, which can

change either as a result of in-house R&D investments, �RDt, or stochastic synergy draws

upon successful mergers, �MAt,

�mct / �!it = �RDt +�MAt: (21)

The bottom-right panel of Figure 7 features a line graph representing the counts of �!it, and

two bar graphs representing�RDt and�MAt, respectively. TheN = 5 policy�s contribution

to �innovation�is negative on the synergy side because it blocks more mergers than under

the N = 3 regime.

However, the in-house R&D channel does not seem to su¢ ciently o¤set these forgone

synergies, for two reasons. First, the policy promotes more competition ex post, but this

increased competition does not necessarily translate into increased R&D. As Figure 5 illus-

trated, the equilibrium R&D investment CCPs all but stop increasing after three or four

�rms, and occasionally decrease. Second, the aforementioned destruction of �rms�continu-

ation values re-surfaces here and discourages in-house investments. The side e¤ects of value

destruction are not limited to entry and survival; they a¤ect all kinds of investments including

in-house R&D, which is an investment in productivity growth and hence incremental pro�ts

and values. The overall level of continuation values decreases, and so does the incremental

values from making such investments. Thus the impact of value-destruction manifests itself

through multiple side e¤ects, which is the reason the �optimal� policy (N = 5) does not

substantially outperform its neighboring thresholds such as N = 3 and N = 4.
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5.3 Failing Firms and Declining Industries

In a mature industry such as HDDs, regulators often have to deal with �failing �rms,�that is,

�rms which: (i) are in imminent danger of failure (in a more severe condition than insolvency

and close to ceasing operations), (ii) cannot be reorganized in Chapter 11 bankruptcy, and

(iii) cannot �nd alternative purchaser (or other less anti-competitive uses) of their assets.38

To our knowledge, no formal economic analysis exists on this subject, because a systematic

evaluation of failing �rms requires a framework like ours. Exits (through liquidation) in our

model meets all of the three criteria for �failing �rms,�hence our model can handle such cases,

in principle. However, the equilibrium CCPs of exit are less than 10% in almost all states

and periods in our baseline estimate. Consequently, we have chosen not to study failing

�rms per se but to ask a broader question regarding the optimal policy toward declining

industries, in which exits become more likely.39

Table 7: Commitment Policies in Fast-declining Industry

Threshold number of �rms (N) 1 2 3 4 5 6 7 8 9

T = Dec-2020
Consumer surplus (%) N17:37 N6:18 �0 +0:42 +0:77 +0:84 +0:89 +0:89 +0:93
Producer surplus (%) +90:89 +28:83 �0 N3:08 N5:93 N7:33 N8:89 N10:13 N11:63
Social welfare (%) N10:28 N3:89 �0 +0:19 +0:33 +0:31 +0:25 +0:17 +0:10

T = Dec-2015
Consumer surplus (%) N10:58 N4:52 �0 +0:34 +0:48 +0:49 +0:54 +0:54 +0:53
Producer surplus (%) +64:42 +23:86 �0 N2:77 N4:66 N5:93 N7:58 N8:87 N10:35
Social welfare (%) N5:73 N2:69 �0 +0:14 +0:15 +0:08 +0:01 N0:07 N0:17
Note : All welfare measures net present values as of January 1996, expressed in terms of percentage change from
the baseline outcome under N = 3.

Should the authority relax its merger policy in declining industries? We will answer

this question as follows. We capture the notion of �declining industry�(and hence higher

exit rates in equilibrium or �failing �rms�) by hypothetically eliminating much of the HDD

demand in the post-sample period (i.e., after June 2015). Our baseline model assumes

the demand will linearly decline to zero between June 2015 and December 2025, re�ecting

what we presume to be a consensus forecast among industry participants. By contrast, this

subsection simulates alternative industry dynamics in which the demand converges to zero

in December 2020 and December 2015 (i.e., T = Dec-2020 and Dec-2015), �ve and ten

38See McFarland and Nelson (2008) for legal details.
39�Declining industries�do not constitute a valid defense in the U.S. legal context (except under a brief

period during the Great Depression), and the permission of �recession cartels� in Japan was repealed in
1999. We are not using this phrase in a strictly legal sense.
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years earlier than our baseline scenario. We solve these new games for equilibrium CCPs,

simulate 10,000 histories, and calculate their average welfare performances. We maintain the

baseline policy regime (N = 3) throughout these procedures. Finally, within each of these

hypothetical demand scenarios (i.e., T = Dec-2020 and Dec-2015), we compute welfare

outcomes under alternative policy regimes (i.e., N 6= 3), so that we can determine the

optimal policy under each end-game scenario.

Table 7 demonstrates how the dynamic welfare tradeo¤ alters its balance, albeit slightly,

when the industry is declining faster. The optimal static threshold continues to be �ve,

but permitting mergers to quadropoly, triopoly, or even duopoly would not be as harmful

as in Table 6, because there are not too many consumers to be harmed when the demand

is disappearing precipitously. The fact that N = 5 continues to be optimal might appear

surprising, but the contribution of the last 5 or 10 years of the industry�s life cannot be

too large in terms of present value as of January 1996. Hence it is actually surprising to

witness any qualitative change, such as the negative SW performance of N = 8 and 9 under

T = Dec-2015 scenario. Thus the optimal policy is likely to feature more relaxed thresholds

but the di¤erence is small.

5.4 Opportunistic Policy

Thus far we have considered only a static (or time-invariant) policy design that commits the

authority to a particular merger threshold. We have intentionally kept our discussions within

such static thresholds because of their simplicity and direct connection to the practitioners�

rule of thumb. Detailed analysis of dynamic welfare tradeo¤ is quite complicated even under

such a simple policy design. Nevertheless, a sophisticated reader would be wondering if the

authority can craft a smarter policy than simply committing to N = 5. Our short answer is

�yes�in the short run and �no�in the long run.

Table 8 considers �smart� policies in which the authority acts opportunistically and

alters the merger threshold ex post.40 The optimal surprise policy is to initially promise

no antitrust scrutiny at all (i.e., declare Npre = 1). An elusive quest for monopoly pro�ts

will attract massive entry and innovation early on (i.e., no value-destruction side e¤ects).

However, when the industry reaches nt = 3, the planner should start blocking mergers, so

40We refrain from simulating more complicated policies (and their possible strategic interactions with
the �rms) because intuitive understanding of the results will become increasingly more di¢ cult, the actual
policy implementation will become impractical, and we could not �nd anecdotal or quantitative evidence.
Nevertheless, these ideas do stimulate theoretical curiosity, and we refer the reader to MNSW (2014) and
Jeziorski (2014) for such investigations.
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that �rms have to compete to death (i.e., Npost = 3). This surprise ban on mergers at

triopoly will ensure su¢ cient pro-competitive outcome ex post.41

Table 8: Performance of Opportunistic Policies

Promised threshold (Npre) 1 1 1 1 1 1 1 1 1
True threshold

�
Npost

�
1 2 3 4 5 6 7 8 9

Consumer surplus (%) N24:12 N7:86 +1:04 +0:69 +0:75 +0:80 +0:86 +0:91 +0:91
Producer surplus (%) +118:46 +34:50 N5:24 N4:52 N5:95 N7:11 N8:71 N9:96 N11:10
Social welfare (%) N14:64 N5:04 +0:62 +0:34 +0:30 +0:27 +0:23 +0:19 +0:11

Note : All welfare measures net present values as of January 1996, expressed in terms of percentage change from
the baseline outcome under N = 3 (both promised and true).

To some readers, this simulation experiment might appear too complicated and unrealistic

at a �rst glance, but negative surprises are facts of life. In the American political context, for

example, consider a long spell of the Republican �pro-business�regime, followed by stronger

regulatory oversight under the Democratic regime. Another example is the inception of the

Chinese antitrust policy in 2008. Its Ministry of Commerce (MOFCOM) almost stopped the

latest HDD merger between Western Digital and Hitachi GST in 2012, which had already

been cleared by the authorities in the U.S., Japan, South Korea, and Europe. Thus we

believe academic literature should clarify the pros and cons of surprise changes, so that

policy makers can at least understand the true meaning of such actions.

In the long run, such a �smart� policy is not going to be wise, because governments

cannot fool �nancial markets forever. One industry might be tricked, but the subsequent

cohorts of high-tech industries may not. The authority can surprise only once.

6 Conclusion

This paper proposed an empirical model of mergers and innovation to study the process of

industry consolidation, with HDDs as a working example. We used quantitative methods to

clarify the dynamic welfare tradeo¤ inherent in antitrust policy, and determined the welfare-

maximizing merger threshold to be �ve in the HDD context. That is, �4 are few and 6 are

many�(Selten 1973).

41Computationally, we implement these opportunistic policies as follows. First, we start simulating the
industry�s history by using the equilibrium CCPs under N = Npre = 1, which corresponds to the N = 1
counterfactual in Section 5.1. Second, whenever the simulated nt reaches the true (unannounced) threshold,
Npost > 1, our algorithm switches to the equilibrium CCPs underN = Npost and keeps simulating the history
until t = T . Third, collect 10,000 simulated histories and calculate their average welfare performance. This
is the outcome that we attribute to each pair

�
Npre; Npost

�
that represents a particular ex-post policy.
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This �nding is speci�c to the parameters of consumers�preferences, production technol-

ogy, and investment technology in our data, hence each high-tech industry requires careful

modeling and measurement, just like the actual enforcement of antitrust policy proceeds

case by case. The fact that the authority has permitted mergers to triopoly in the HDD

market (i.e., beyond our optimal threshold of �ve) does not appear particularly troubling,

because the magnitude of welfare di¤erences is small as long as the threshold is three or

higher. Thus the danger of type II errors (i.e., not rejecting what needs to be rejected) is

not overwhelming. By contrast, permitting mergers to duopoly or monopoly would lead to

negative welfare impacts that are larger by an order of magnitude or two.

Our model focuses on the direct or �unilateral�e¤ect of mergers on prices through market

structure and productivity, and does not incorporate the �coordinated�e¤ect with respect

to collusive conducts, such as those studied by Selten (1973) or Miller and Weinberg (2015).

Hence the negative e¤ect on consumer surplus in our study represents a lower bound, and

the actual harm of monopoly and duopoly could be greater in practice.

Moore�s Law (or its HDD-equivalent, Kryder�s Law) is another important subject beyond

the scope of this paper. Our empirical framework can incorporate such secular technological

trends on a larger scale without any conceptual di¢ culty, because the only change will be to

re-de�ne a larger state space that can span a wider range of productivity levels. A larger state

space, however, creates a computational problem. Our current implementation already uses

approximately 48 gigabytes of physical memory (DRAM). A drastic expansion of state space

requires more data-storage capacity with faster access speed. Consequently, our structural

estimation of Moore�s Law has to wait until Moore�s Law makes such a venture possible.42

42We would also need new IVs for demand estimation if we endogenize Moore�s Law.
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Appendices: Table of Contents

Appendix A lists our interviews with industry veterans. Appendices B, C, and D supplement

the details of Sections 2 (Model), 3 (Data), and 4 (Empirical Analysis), respectively.

Appendix A List of Interviews

For con�dentiality reasons, we do not quote from our personal interviews with the industry

sources. The only exceptions are historical overviews and remarks on events in the distant

past (by the standard of Silicon Valley). Nevertheless, almost every modeling choice, pa-

rameterization, and estimation result has tight connections to the actual data-generating

process, which we learned through these interviews.

Table 9: Interviews with Industry Sources

# Date Location Name A¢ liation (position)
1 Various TRENDFOCUS o¢ ce Mark Geenen TRENDFOCUS (president & VPs)

(Cupertino, CA) John Kim Microscience International
John Chen Komag
Don Jeanette Toshiba, Fujitsu

2 1/22/2015 Fibbar MaGees Irish pub Reggie Murray Ministor (founder)
(Sunnyvale, CA) Maxtor (thin-�lm head)

Memorex
3 2/27/2015 HGST/IBM o¢ ce Currie Munce HGST/IBM (SSD)

(San Jose, CA)
4 3/5/2015 SIEPR Lawrence Wu NERA Consulting (president)

(Stanford, CA)
5 3/11/2015 SIEPR Orie Shelef Former merger consultant

(Stanford, CA)
6 3/23/2015 Residence Tu Chen Komag (founder)

(Monte Sereno, CA)
7 4/17/2015 Seagate headquarters Je¤ Burke Seagate (VP of strategic

(Cupertino, CA) marketing & research)
8 4/20/2015 Residence Finis Conner Conner Technology (founder)

(Corona del Mar, CA) Conner Peripherals (founder)
Seagate (co-founder)
International Memories Inc.
Shugart Associates (co-founder)

9 6/30/2015 BJ�s restaurant & brewery Peter Knight Conner Technology (president)
(Cupertino, CA) Conner Peripherals (senior VP)

IBM
10 7/1/2015 Gaboja restaurant MyungChan Jeong HGST/IBM (R&D engineer)

(Santa Clara, CA) Seagate, Maxtor
Samsung Electronics

Note : A¢ liations are listed from new to old. VP stands for vice president. SIEPR stands for the Stanford
Institute for Economic Policy Research, where Igami spent his 2014�2015 sabbatical.
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Appendix B Supplementary Materials for Section 2

Potential Entrant�s Problem

Section 2.3 focused on the exposition of incumbent �rms�problem. This section explains the

detail of potential entrant�s problem.

If nature picks a potential entrant i as a proposer, i draws "0it = ("
e
it; "

o
it) and chooses to

enter or stay out, which entail the following alternative-speci�c values,

�V ei (st; "
e
it) = ��e + "eit + �E [�i;t+1 (st+1) jst; ait = enter] ; and (22)

�V oi (st; "
o
it) = "oit + �E [�i;t+1 (st+1) jst; ait = out] ; (23)

respectively. Thus the potential entrant�s value after drawing "0it is

V 0it
�
st; "

0
it

�
= max

�
�V ei (st; "

e
it) ;

�V oi (st; "
o
it)
	
; (24)

and its expected value before drawing "0it is

EV 0it (st) = E"
�
V 0it
�
st; "

0
it

��
= 
 + ln

h
exp

�
~V eit

�
+ exp

�
~V oit

�i
: (25)

These expressions correspond to equations 1 through 6 in the main text.

When the non-mover is a potential entrant, its non-mover expected value is simpler than

incumbent�s version in equation 8,

W 0j
it (st) = �it (ajt = exit) �E [�i;t+1 (st+1) jst; ajt = exit] (26)

+�it (ajt = stay) �E [�i;t+1 (st+1) jst; ajt = stay]

+�it (ajt = invest) �E [�i;t+1 (st+1) jst; ajt = invest]

+
X
k 6=i;j

�it (ajt = merge k) �E [�i;t+1 (st+1) jst; ajt = merge k] ;

because it does not earn pro�t, pay �xed cost, or become a merger target.
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When nature picks a potential entrant j as a mover, equations 8 and 26 become

W j
it (st) = �i (st)� �c (27)

+�it
�
a0jt = enter

�
�E

�
�i;t+1 (st+1) jst; a0jt = enter

�
+�it

�
a0jt = out

�
�E

�
�i;t+1 (st+1) jst; a0jt = out

�
; and

W 0j
it (st) = �it

�
a0jt = enter

�
�E

�
�i;t+1 (st+1) jst; a0jt = enter

�
(28)

+�it
�
a0jt = out

�
�E

�
�i;t+1 (st+1) jst; a0jt = out

�
for an incumbent non-mover and a potential entrant non-mover, respectively.

These value functions entail the following optimal choice probabilities before potential-

entrant mover i draws "0it,

Pr
�
a0it = action

�
=

exp
�
~V actionit

�
exp

�
~V eit

�
+ exp

�
~V oit

� ; (29)

which corresponds to equation 9.

Appendix C Supplementary Materials for Section 3

Data Patterns Underlying Demand Estimation (Panel A)

Figure 8 summarizes data patterns of Panel A, that is, the four variables for demand esti-

mation, (Qt; Pt; Xt; Zt). The HDD shipment volume in EB (Qt) has grown steadily on the

back of PC shipments (Xt) as the upper- and lower-let panels show. The HDD price per

GB (Pt) has been decreasing as a result of Kryder�s Law. With this secular trend in storage

density, the disk price per GB (Zt) has fallen dramatically, because more data can be stored

on the disk surface of the same size. The upper- and lower-right panels capture these trends.

Thus the downward trends in Pt and Zt re�ect both process innovation (i.e., lower marginal

costs) and product innovation (i.e., higher �quality�or data-storage capacity per HDD unit)

in this industry.

Market Shares Before and After Mergers (Panel B)

In Section 3, we visualized and summarized the data patterns of �rm-level market shares

(Panel B) in Figure 1 and Table 1. In this section, we supplement these exhibits with the

list of 14 merger cases and the Her�ndahl-Hirschman Index (HHI).
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Figure 8: Data for Demand Estimation at the Level of Gigabytes (GB)

0.01

0.1

1

10

100

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

HDD Shipments in Exabytes (EB)

0.01

0.1

1

10

100

1000

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

HDD Price per Gigabytes ($/GB)

0

5

10

15

20

25

30

35

40

45

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Desktop PC Shipments (Million Units)

0.001

0.01

0.1

1

10

100

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Disk Price per Gigabytes ($/GB)

Note: See Sections 3.2 and 4.1 for summary statistics and demand estimation, respectively.

Table 10 shows the combined market share of the acquiring �rm and the target �rm

declined after merger in each of the 14 cases, which suggests the theoretical prediction of

free-riding by the non-merging parties could be a real phenomenon. At the same time, the

acquiring �rms managed to achieve expansions relative to their individual pre-merger market

shares, which is consistent with our interviews with the industry participants, in which they

explained gaining market shares as the primary motivation for mergers. Finally, a larger

�rm acquires a smaller �rm in most of the cases, which seems intuitive.

Figure 9 overlays the historical HHI on the number of �rms, nt. The HHI correlates

negatively with nt by construction. It started at around 2; 000 in the late 1970s, decreased

to 1; 000 in the mid 1980s due to massive entry, and was mostly una¤ected by the shakeout

because fringe �rms�liquidation-exit did not really change the surviving �rms�market shares.

Once nt reached 10 around year 2000, the consolidation process through mergers increased

the HHI from 1; 500 to 2; 500 during the �rst decade of the 21st century, and then to almost

4; 000 on the back of the 5-to-4 and 4-to-3 mergers.
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Table 10: Market Shares Before and After Mergers (%)

Year Target Acquiror msT msA msT +msA

name name Before Before Before After
1982 Memorex Burroughs 7:83 1:85 9:68 2:73
1983 ISS/Univac/Unisys Control Data 0:75 27:08 27:83 19:85
1984 Vertex Priam 0:93 2:52 3:45 2:78
1988 Plus Dev. Quantum 0:89 1:41 2:30 4:64
1988 Imprimis Seagate 13:92 18:16 32:08 29:23
1989 MiniScribe Maxtor 5:68 4:99 10:68 8:53
1994 DEC Quantum 1:65 18:60 20:25 20:68
1995 Conner Seagate 11:94 27:65 39:58 35:41
2001 Quantum Maxtor 13:87 13:87 27:73 26:84
2002 IBM Hitachi 13:86 3:64 17:50 17:37
2006 Maxtor Seagate 8:19 29:49 37:67 35:27
2009 Fujitsu Toshiba 4:41 10:32 14:72 11:26
2011 Samsung Seagate 6:89 39:00 45:89 42:82
2012 Hitachi Western Digital 20:32 24:14 44:46 44:27

Note : msT and msA denote the target and the acquiring �rms�market shares, respectively. For

each merger case, �before�refers to the last calendar quarter in which msT was recorded separately

from msA, and �after�is four quarters after �before.�Alternative time windows including 1, 8, and

12 quarters lead to similar patterns.

Source : DISK/TREND Reports (1977�99), TRENDFOCUS Reports (1996�2014), and interviews.

Figure 9: Her�ndahl-Hirschman Index (HHI) of the Global HDD Market
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Note: The HHI is the sum of the squares of the �rm�s market shares.
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Appendix D Supplementary Materials for Section 4

D.1 Supplementary Materials for Section 4.1

Demand Estimates by Subsample

Our initial demand estimates (Table 3, columns 1, 2, and 3) used the entire sample pe-

riod, implicitly assuming that the demand function remained constant over time. However,

changing uses of digital technology could have altered the consumers�willingness to pay for

the same amount of data storage. To investigate this possibility, we estimate our demand

model using two subsamples (i.e., the �rst and the second halves). Table 11 shows that the

�rst-half and the second-half estimates for the main parameter, the price coe¢ cient (�1),

are within the 95% con�dence intervals of each other, across all of the three speci�cations.

Thus consumers�valuation for gigabytes of data storage does not exhibit time trend in a

statistically signi�cant manner.

Table 11: Demand Estimates by Subsample

Dependent variable: (1) (2) (3)
log total EB shipped OLS IV-1 IV-2
Subsample period: First half Second half First half Second half First half Second half

log price per GB (�1) �:8165��� �:8594��� �:8188��� �:8504��� �:8959��� �:8624���
(:0246) (:0264) (:0172) (:0233) (:0484) (:0249)

log PC shipment (�2) :8053��� 1:6302��� :7896��� 1:6191��� :2773 1:6340���

(:1728) (:2422) (:1222) (:3809) (:3191) (:3797)
Constant (�0) �1:6405��� �4:3901��� �1:5868��� �4:3337��� :1649 �4:4094���

(:5863) (:8718) (:4102) (1:3306) (1:0895) (1:3275)

Number of observations 39 39 39 39 39 39
Adjusted R2 :9972 :9746 :9973 :9765 :9966 :9766

First stage regression
IV for HDD price � � Disk price Disk price T ime trend T ime trend
F-value � � 2973:32 536:17 350:51 1056:23
Adjusted R2 � � :9944 :9638 :9346 :9824

Note : Standard errors are in parentheses. ***, **, and * indicate signi�cance at the 1%, 5%, and 10% levels,
respectively.

Figure 10 shows the price-elasticity estimates from a re�ned version of the estimation

by subsample, in which we roll through the full sample with a 12-quarter window. The use

of wider windows (i.e., 16 and 20 quarters) produced similar patterns, whereas a narrower

window with 8 quarters led to highly volatile estimates.

We see no obvious trend. The exceptions are several low values (i.e.,more elastic demand)

at the beginning and higher values (i.e., less elastic demand) at the end, but the �rst 6 and
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Figure 10: Rolling Estimates of Price Elasticity
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Note: Each dot represents a 12-quarter rolling estimate of the price coe¢ cient,

�1. This plot visualizes Table 3 (column 4).

the last 6 quarters are carbon copies of the adjacent estimates because one can run less than

78 regressions on a sample of 78 observations. The cyclicality has no obvious explanations

either. The IT boom around 2000 coincides with marginally more elastic demand, but no

such event accompanied another streak of elastic demand around 2006. Thus we do not see

a time trend or systematic �uctuations in our rolling estimates of people�s willingness to pay.

Nevertheless, we believe it is natural that the demand parameters for high-tech products

exhibit some variation across time, and have chosen to use this rolling-estimation version as

the baseline for subsequent analysis.

D.2 Supplementary Materials for Section 4.2

Discretization of Productivity Levels

We de�ne the empirical state space by discretizing the levels of �rm-speci�c productivity

based on the marginal cost estimates in Section 4.2. Figure 11 (left) plots the trajectories

of marginal costs at the �rm level between 1996 and 2015. Because the entire industry has

experienced a secular trend of cost reduction, we de-trend these estimates and express them

relative to the trajectory of Kryder�s Law, in the natural logarithm of dollars.

To parameterize the dynamic oligopoly game parsimoniously and keep it computationally

tractable, we discretize this relative marginal-cost space as shown in Figure 11 (right). This

discretization scheme eliminates small wiggles of productivity evolution but preserves the

overall patterns of these �rms�relative performances, including their major shifts as well
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Figure 11: Marginal Cost Estimates and Their Discretization
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Note: The left panel plots our marginal cost estimates. The right panel displays its discretized version.

as leader-follower di¤erences (at least most of the persistent ones). Finer grids resulted in

too many zig-zag patterns, frequently amplifying small wiggles which happened to cross

the discretization thresholds. More coarse grids tended to eliminate such noises, but the

transitions between levels became too infrequent and each of these productivity changes

became too impactful in terms of its pro�t implications via Cournot competition. After

experimenting with these alternative grids, we have come to prefer the 0.1 log-dollar grid

because it appears to strike the right balance between noise reduction and smooth transitions.

These discretized marginal cost estimates (say, mcits) span the state space of �rm-speci�c

productivity levels, which will be denoted by !it 2 f�!1; �!2; :::; �!Mg, where M = 7 with our

preferred grid. Note that the ranking convention reverses as we rede�ne marginal costs as

productivity levels. That is, a lower marginal cost will be referred to as a high productivity

level.

D.3 Supplementary Materials for Section 4.3

Fixed Costs and Accounting Data

We determine the �xed cost of operations and technological catch-up, �c, directly from ac-

counting data rather than estimating it along with the three sunk-cost parameters (�i; �m; �e)

in Section 4.3, for the following reasons. Our previous experience with the estimation of

dynamic games (i.e., Igami 2015, 2016; Igami and Yang 2016) suggests the �xed cost of

operations is an order of magnitude smaller than the sunk costs of entry and other major

investments (e.g., product and process innovations). Moreover, the �xed-cost estimates tend
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to be statistically indistinguishable from zero when sparse data are used, and play a relatively

minor role in the overall performance of the dynamic models. Thus, rather than adding �c as

another parameter to the main estimation procedure, we prefer pinning it down separately

from auxiliary data, such as the �rms��nancial statements.

Accounting data are not always conceptually equivalent to the objects in economic mod-

els, as our discussion of pro�ts in Section 4.2 clari�es. But they are nevertheless useful for

some purposes, such as �xing the values of a relatively unimportant parameter that cannot

be precisely estimated anyway. Our notion of �c is something stable over time, and the

accounting data on SGA and R&D expenses share this property.

Table 12: Summary Statistics of Accounting Data on Fixed Costs

Variable Unit of Number of Mean Standard Minimum Maximum
measurement observations deviation

Fixed cost, �c Million $ 35 1; 078 686:7 230:9 2; 422
Year, t Fiscal year 35 2; 007 5:419 1; 996 2; 015
Productivity level, !it Levels 1�7 35 4:943 0:996 3 6
Indicatorfi = Seagateg 0 or 1 35 0:428 0:502 0 1
Indicatorf(i; t) 2 Specialg 0 or 1 35 0:114 0:323 0 1

We estimate �c from the �nancial statements of Seagate Technology and Western Digital

between 1996 and 2015. We rely on these �rms simply because they are the only publicly

traded companies for which systematic records exist. Moreover, they specialize in the man-

ufacturing of HDDs, whereas other survivors such as Hitachi and Toshiba are conglomerates

and disclose limited information on HDD-speci�c activities. The two �rms clearly represent

a highly selective sample but not a terrible source of information when our only purpose is

to capture a ballpark trend in operating costs over two decades.

Table 12 shows summary statistics. Sample size is smaller than 40 (i.e., 2 �rms times 20

years) because Seagate became privately owned for �nancial restructuring in 2000 and its

�nancial statements lost consistency after it went public again. Our main variable is fixed

cost, which is the sum of SGA and R&D expenses. The right-hand side variable include

year, productivity level (based on the discretized version of our marginal-cost estimates),

Seagate dummy (the omitted category is Western Digital), and a special-occasion dummy

(to distinguish abnormal periods for Western Digital when its facilities were hit by a natural

disaster).

Table 13 shows the results of OLS regressions. Time trend is positive and statistically

signi�cant, whereas productivity level (i.e., control for concurrent �rm sizes) is positive but
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Table 13: Fixed Cost Estimates from Accounting Data

Dependent variable: (1) (2) (3) (4)
Fixed cost, �c OLS OLS OLS OLS
Year (t) 89:80��� � 61:73��� 48:13���

(11:16) (�) (13:95) (9:81)
Productivity level (!it) � 540:09��� 332:30��� 25:96

(�) (74:50) (75:86) (72:76)
I f(i; t) 2 Specialg � � � 728:61���

(�) (�) (�) (132:69)
I fi = Seagateg � � � 1; 182���

(�) (�) (�) (187:4)

Number of observations 35 35 35 35
Adjusted R2 0:633 0:603 0:746 :888

imprecisely estimated presumably because of multi-collinearity. Historically, Seagate spent

more than Western Digital, but the latter had to spend large sums when it recovered from

a �ood in Thailand in October 2011. We use predicted �xed costs based on the last (full)

speci�cation as �ct (!it) in our main estimation task in Section 4.3.

Implied vs. Actual Acquisition Prices

We conduct a sanity check of �t by comparing predicted enterprise values and the actual

acquisition prices. Figure 12 plots our �rm-value estimates along the historical path of

market structure in the data, and overlays the actual transaction prices in the six merger

cases from Thomson�s �nancial data (marked by red crosses). Because target �rms�stand-

alone values underpin their equilibrium acquisition prices in our model, comparison of the

estimated values and the actual acquisition prices provides a ballpark assessment of the �t

in terms of dollar values. In at least half of the cases, each of the acquisition prices is located

close to the estimated value of �rms with the corresponding productivity level (1, 2, 3, or

4) and stays within the range of the focal level and its adjacent level. Thus we regard the

estimated model as a reasonable benchmark with which we may compare our counterfactual

simulation to assess the impacts of a hypothetical merger policy.
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Figure 12: Firm Value Estimates and Actual Acquisition Prices
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