
Fiscal Policy and Debt Management with Incomplete

Markets∗

Anmol Bhandari
bhandari@umn.edu

David Evans
devans@uoregon.edu

Mikhail Golosov
golosov@princeton.edu

Thomas J. Sargent
thomas.sargent@nyu.edu

June 28, 2016

Abstract

A Ramsey planner chooses a distorting tax on labor and manages a portfolio of securities in an
economy with incomplete markets. We develop a method that uses second order approximations
of Ramsey policies to obtain formulas for conditional and unconditional moments of government
debt and taxes that include means and variances of the invariant distribution as well as speeds of
mean reversion. We establish that asymptotically the planner’s portfolio minimizes a measure of
fiscal risk. Analytic expressions that approximate moments of the invariant distribution apply to
data on a primary government deficit, aggregate consumption, and returns on traded securities.
For U.S. data, we find that an optimal target debt level is negative but close to zero, that the
invariant distribution of debt is very dispersed, and that mean reversion is slow.
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1 Introduction

This paper models a Ramsey planner who optimally manages a portfolio of debts and other
securities to smooth fluctuations in tax distortions in an incomplete markets economy hit by
aggregate shocks. Within a production economy without capital, the government raises revenue
by issuing securities and imposing linear taxes on labor income, then spends on exogenous
government expenditures, payouts on government securities, and transfers. The government
and private agents trade an exogenously specified set of risky securities whose returns depend
on the aggregate state. An economy with complete markets and an economy with a one-period
risk-free bond only are interesting special cases.

We make extensive use of an approximation to a Ramsey plan that we construct from second
order perturbations around current levels of government debt. We confirm that these quadratic
∗We thank Fernando Alvarez, David Backus, V.V. Chari, Maryam Farboodi, Emmanuel Farhi, Xavier Gabaix,

Lars Peter Hansen, Ali Shourideh, Pierre Yared, Stephen Zeldes and seminar participants at numerous conferences
and seminars for helpful comments
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approximations are accurate by comparing them to the solutions obtained using numerical meth-
ods. Under conditions that we describe, the approximating laws of motion are linear functions of
the aggregate shocks and the current level of government debt. Our quadratic approximations
then enable analytic and interpretable expressions for means, variances, and rates of conver-
gence to an invariant distribution of debt, tax revenues, and tax rates.1 Empirical counterparts
to our expressions for these objects can be constructed from data on the primary government
deficit, aggregate consumption, and returns on securities traded by the government. We show
that asymptotically the government’s optimal debt portfolio minimizes a particular criterion
measuring fiscal risk.

To isolate underlying principles, we start with a baseline setting in which agents have quasi-
linear preferences and the market structure is restricted to a single security whose payout we
allow to be correlated with the government purchase process. The joint distribution of returns
and government purchases is i.i.d. over time. From the planner’s Euler equations, we establish
existence of an invariant distribution of government debt. Up to third-order terms, we show
that the drift in the dynamics of debt is proportional to the covariance of returns with total
government spending (debt service plus exogenous government purchases). A level of debt that
minimizes the variance of total government spending sets this covariance to zero and serves as a
point of attraction for the stochastic process for debt. The speed of mean reversion is inversely
proportional to the variance of the return on the security, and the variance of the invariant dis-
tribution is proportional to the amount of risk that the government bears at its risk-minimizing
debt level. Later sections of the paper show that the principle that government debt approaches
a level that minimizes fiscal risk extends well beyond our baseline case.

Allowing trade in more securities yields additional insights. If returns satisfy a spanning
condition, the planner can replicate a complete markets allocation like Lucas and Stokey’s (1983).
When that spanning condition is not satisfied, being able to trade more securities decreases the
speed of convergence to the invariant distribution because additional securities facilitate hedging
and thereby lower the cost of being away from a long-run target level of government debt. By
assuming two particular securities, a consol and a short-term security, we derive prescriptions for
optimal maturity management. In this two-security case, the riskiness of the return on the short-
maturity asset relative to that on the consol affects the average maturity of the total debt. In
particular, if the return on the long maturity bond is riskier than the return on the short-maturity
bill, then the optimal maturity of the planner’s portfolio is inversely proportional to total public
debt and most adjustment to aggregate shocks is done with the bill. We extend the analysis
to incorporate risk aversion and more general shock processes. We show that insights from the
baseline model apply provided that we use concepts of “effective returns” and “effective shocks”
– returns on the government debt portfolio and innovations to the present discounted value of
the primary government deficit adjusted by marginal utilities of consumption, respectively.

In a quantitative section, we seek two goals: (i) to compare two numerical approximations,
one using a global method, the other using formulas derived from our quadratic approximation;
and (ii) to study the predictions of the model for realistic shock and return processes. To
this end, we use U.S. data to calibrate plausible shock and return processes. Our analytical

1We can also use our quadratic approximation to get analytic expressions for other moments.
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expressions derived under simpler environments continue to be accurate in the calibrated model.
We find that the optimal level of debt is close to zero and that the optimal policy displays slow
mean reversion (a half-life of 250 years). These results are driven by the fact that a significant
amount of variation in returns to the U.S. portfolio is uncorrelated with output; that means that
holding large quantities of debt or assets would frustrate hedging objectives.

To focus on some important forces, our paper obviously shuts down forces emphasized in
other theories of optimal levels of government debt. For example, by allowing a government
each period to choose whether or not to service its debt, the literature on sovereign debt focuses
attention on how the adverse consequences of default endogenously generates incentives to repay
debt obligations. The government in our model has no default option and requires no such
incentives. This eliminates the design of incentives to induce payment as determinants of the
level of government debt and its maturity composition and puts the hedging considerations on
which we focus front and center. Our model describes optimal fiscal policy of a government
that never contemplates dishonoring its debts. (We like to think of the U.S. and some European
governments as being in this situation.) Additionally, we focus on real debt. Extending our
approach to economies with possibilities of default and monetary economies is straightforward
but space-consuming as it would require us to introduce several layers of additional complications
to our model. We leave that for future work.

1.1 Relationships to literatures

Our paper builds on a large literature about a Ramsey planner who chooses a competitive
equilibrium with distorting taxes once-and-for-all at time zero.2 Many of these papers assume
either complete markets as in Lucas and Stokey (1983), Buera and Nicolini (2004), Angeletos
(2002), or a singe-period risk-free bond only and quasilinear preferences as in Barro (1979)
and Aiyagari et al. (2002). In contrast, our analysis allows a more general incomplete markets
structure and risk-aversion. In both complete market economies and quasilinear settings with a
risk-free bond only, any level of debt is optimal in the sense that the Ramsey planner sets a time
0 conditional mathematical expectation of public debt in all future periods equal to initial debt.
We show that this result is not generic: small departures from the assumptions in those earlier
papers imply that, driven by hedging considerations, starting from any initial debt, government
debt converges to a unique risk-minimizing level.

In a related context, Barro (1999) and Barro (2003) study tax smoothing in an environment
in which revenue needs are deterministic but refinancing opportunities are stochastic. In Barro’s
setting, it is optimal for a government to issue a consol as a way to insulate inter-temporal tax
smoothing motives from concerns about rolling over short maturity debt at uncertain prices. In
contrast, our analysis allows both revenue needs and returns on the debt to be stochastic. We
estimate empirically relevant properties of returns on debt and then find an optimal government
portfolio associated with those returns.

Technically, our paper is closely related to Aiyagari et al. (2002). Those authors include an
analysis of an economy in which a representative agent has quasilinear preferences. In addition to
a linear labor tax, they allow a uniform nonnegative lump sum transfer. There is a continuum of

2For instance Lucas and Stokey (1983), Aiyagari et al. (2002), Chari et al. (1994), Farhi (2010).
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invariant distributions for debt, all of which feature a zero labor tax rate and debt levels that are
negative and sufficiently large in absolute value to finance all government expenditures from the
government’s interest revenues, with nonnegative transfers absorbing all aggregate fluctuations
by adjusting one-to-one with the aggregate shock. A key difference in our paper is how we
treat transfers. While Aiyagari et al. (2002) exogenously restrict transfers, we deduce optimal
transfers from an explicit redistribution motive by including agents who sometimes cannot afford
to pay positive lump sum taxes. We show that so long as the utility functions of those agents
are strictly concave and the planner cares about them, the result of Aiyagari et al. (2002) about
properties of the invariant distributions goes away. A benevolent planner in such settings wants
to minimize fluctuations of both tax rates and transfers; he ultimately targets a (generally
unique) level of debt that minimizes risk. The invariant distribution studied by Aiyagari et al.
(2002) emerge only in a limit as the risk-aversion of all recipients of transfers goes to zero.

The equilibrium approximation tools that we apply in this paper are complementary to ones
used by Faraglia et al. (2012), Lustig et al. (2008), and Siu (2004), who numerically study
optimal Ramsey plans in specific incomplete markets settings. Our approximation method
allows us to derive closed form expressions for the invariant distribution of debt and taxes that
illuminate underlying forces. Our work is also related to Debortoli et al. (2016 forthcoming)
who numerically characterize optimal debt management when a government cannot commit to
future taxes.

Our theory of government portfolio management shares features of the single-investor optimal
portfolio theory of Markowitz (1952) and Merton (1969). Bohn (1990) and Lucas and Zeldes
(2009) use insights from the single-investor literature to study portfolio choices of a government
in partial equilibrium settings after having specified a government loss function. Common to
both Merton’s investor and to our Ramsey planner are hedging motives that shape portfolio
and savings choices. However, unlike Merton’s investor, our Ramsey planner is benevolent
(it maximizes the utility of the agents with whom it trades) and it internalizes the general
equilibrium effects of its distorting tax rate choices on equilibrium prices and quantities. As
a consequence, the optimal portfolio strives to minimize a measure of fiscal risk and is not
preoccupied with the usual mean-variance trade-off.

The remainder of this paper is organized as follows. In Section 2, we analyze a streamlined
setting in which only one risky security can be traded and the representative agent has quasilinear
preferences. In Section 3, we extend the analysis to include multiple assets, persistent shocks,
concerns for redistribution, and risk aversion. In Section 4, we study a quantitative example
with parameters calibrated to U.S. data.

2 Quasilinear preferences

We begin with a streamlined setting. Time is discrete and infinite with periods denoted t =

0, 1, ... Each of a measure one of identical agents has preferences over consumption and labor
supply sequences {ct, lt}t that are ordered by

E0

∞∑
t=0

βt
(
ct −

1

1 + γ
l1+γ
t

)
, (1)
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where Et is a mathematical expectations operator conditioned on time t information and β ∈
(0, 1) is a time discount factor. One unit of labor produces one unit of a nonstorable single good
that can be consumed by households or the government. Feasibility requires

ct + gt = lt, t ≥ 0, (2)

where gt denotes government consumption.
The government imposes a flat tax at rate τt on labor earnings and buys or sells a single

one-period security having an exogenous state-contingent payoff pt. Consumers sell or buy that
same security, so it is in zero net supply each period. Let Bt be the number of securities that
the government sells in period t at price qt. Government budget constraints are

gt + ptBt−1 = τtlt + qtBt, t ≥ 0. (3)

A probability measure π(ds) over a compact set S governs an exogenous i.i.d. shock st

that determines both government purchases and payoffs on the single security, positive random
variables g, p with means ḡ, p̄.

We let st = (s0, ..., st) denote a history of shocks. We often use xt to denote a random variable
x with a time t conditional distribution that is a function of history st−1. It is convenient to
define Bt ≡ qtBt and Rt+1 ≡ pt+1/qt and to re-write the government’s time t budget constraint
(3) as

gt +RtBt−1 = τtlt +Bt.

A representative agent’s time t budget constraint is

ct + bt = (1− τt) lt +Rtbt−1, (4)

where bt is his purchase of the single security. The period t market clearing condition for the
security is

bt = Bt. (5)

We exogenously confine government debt to a compact set

Bt ∈
[
B,B

]
. (6)

The assumption of compactness of the feasible debt simplifies the analysis. We make the bounds
sufficiently large that they do not affect the properties of the joint invariant distributions of
government debt and the tax rate that we analyze below.

Definition 1. A competitive equilibrium given an initial government debt B−1 at t = 0 is
a sequence {ct, lt, Bt, bt, Rt, τt}t such that (i) {ct, lt, bt}t maximize (1) subject to the budget
constraints (3); and (ii) constraints (2), (5), and (6) are satisfied. An optimal competitive
equilibrium given B−1 is a competitive equilibrium that has the highest value of (1).

The single-security incomplete markets models of Barro (1979) and Aiyagari et al. (2002)
assume that the security’s payout is risk-free, a special case of our setup in which p(s) is inde-
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pendent of s. Two purposes induce us to allow stochastic payoffs. First, standard real business
cycle models driven by productivity and/or expenditure shocks fail to generate realistic holding
period returns. Our way of modeling security markets allows us to remedy this shortcoming
parsimoniously.3 In Section 4 we document how post WWII real returns to U.S. government
portfolios have fluctuated and use those findings to discipline payoffs. Second, as we show in
Section 3.4, the optimal process for risk-free government debt when the representative consumer
is risk-averse in consumption resembles the optimal behavior of state-contingent debt when the
representative agent is risk-neutral. With risk-averse consumers and risk-free debt, a key object
is an “effective return” on debt that takes into account a shadow cost of raising revenues; this
influential return is stochastic even when the single security is risk-free. We show in Section 3.4
that the main insights of the quasilinear-stochastic-payoff formulation extend to economies with
risk-averse consumers by considering “effective returns” on securities.

The representative consumer’s first-order necessary conditions for an optimum imply that

1− τt = lγt , Et−1Rt =
1

β
. (7)

The security price qt satisfies qt = βp̄, so the return on the security Rt
(
st
)

= p(st)
βp̄ . Substitute

(7) into the consumer’s budget constraint to obtain

ct = l1+γ
t +RtBt−1 −Bt. (8)

Use (8) to eliminate ct from the feasibility condition (2) to obtain the following implementability
constraints:

lt − l1+γ
t +Bt = RtBt−1 + gt. (9)

Lemma 1. {ct, lt, Bt, bt, Rt, τt}t is a competitive equilibrium given B−1 if and only if {lt, Bt−1}t
satisfies (6) and (9) for all t ≥ 0.

Lemma 1 allows us to compute an optimal competitive equilibrium allocation and a govern-
ment debt process by solving

max
{lt,Bt}t

E0

∞∑
t=0

βt
[
(RtBt−1 −Bt) +

γ

1 + γ
l1+γ
t

]
, (10)

where maximization is subject to constraints (6) and (9). The objective function in (10) is a
version of (1) in which we have used (8) to eliminate ct.

Appendix A.1 shows that it is optimal to set the tax rate to the left of the peak of the Laffer
curve, which implies that the optimal tax rate τt and labor supply lt are described by one-to-one
mappings from total tax revenues Zt = τtlt. Tax revenues are bounded from above by the level
Z associated with a tax rate at the peak of the Laffer curve.4 For a given level of tax revenues

3In the Appendix B we show that this set up is equivalent to risk-free bonds and discount factor shocks as in
Albuquerque et al. (2016 forthcoming). We chose our stochastic payoff formulation because it naturally extends
to multiple assets and portfolio theory that we study in Section 3.2.

4The expression for the maximum revenue is Z = γ
(

1
1+γ

)1+1/γ

.
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Z, the corresponding tax rate τ (Z) and labor supply l (Z) satisfy

Z = τ (Z) (1− τ (Z))
1
γ

= l(Z)− l(Z)1+γ , (11)

which are well defined for all Z ≤ Z. Functions l (·) ,−τ (·) are decreasing. Let Ψ (Z) ≡
1

1+γ l(Z)1+γ be the utility cost of supplying labor required to raise tax revenues Z. Ψ is
strictly decreasing, strictly concave, and differentiable on (−∞, Z] and satisfies Inada condi-
tions limZ→−∞Ψ′ (Z) = 0 and limZ→Z Ψ′ (Z) = −∞.

An optimal value function V (B_) for problem (10) satisfies the Bellman equation

V (B_) = max
Z(·),B(·)

ˆ
[(R (s)B_−B (s)) + γΨ (Z (s)) + βV (B (s))]π (ds) (12)

where maximization is subject to Z(s) ≤ Z,B (s) ∈ [B,B], and

Z (s) +B (s) = R (s)B_ + g (s) for all s. (13)

Strict concavity and differentiability of Ψ implies that V is also strictly concave and differen-
tiable. Policy functions B̃ (s,B_) and Z̃ (s,B_) attain the right side of Bellman equation (12).
Let τ̃ (s,B_) denote the associated optimal tax rate policy. Gross government expenditures
E(s,B_), an important endogenous variable, are

E (s,B_) = R (s)B_ + g (s) , (14)

which equals government expenditures including interest and repayment of government debt.
Aggregate shocks have effects on E (s,B_) that depend partly on government debt B_.

We begin our analysis by stating a lemma that summarizes some key properties of optimal
policy rules.

Lemma 2. B̃, Z̃, and τ̃ are increasing in E in the sense that E (s′′, B_) > E (s′, B_) implies
B̃ (s′′, B_) ≥ B̃ (s′, B_), Z̃ (s′′, B_) ≥ Z̃ (s′, B_), and τ̃ (s′′, B_) ≥ τ̃ (s′, B_) with strict
inequalities if B̃ (s′′, B_) , B̃ (s′, B_) ∈

(
B,B

)
.

Let
{
B̃t, Z̃t

}
t
be the optimum process generated by policy functions B̃ (s,B_) and

Z̃ (s,B_). First-order conditions associated with the maximization problem (12) imply that
if B̃t is interior, then the marginal social value of assets V ′(B̃t) satisfies5

V ′(B̃t) = βEtRt+1V
′(B̃t+1) = EtV ′(B̃t+1) + βcovt(Rt+1, V

′(B̃t+1)). (15)

Monotonicity of the policy functions asserted in Lemma 2 together with (15) allow us to prove:

Proposition 1. The optimal process
{
B̃t, Z̃t

}
t
has a unique invariant distribution.

5Appendix A.1 provides an analysis of the situation in which B̃t is not required to be interior. Farhi (2010)
obtained a generalized version of this equation in an economy with capital.
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To enable us to characterize this invariant distribution, a key concept will be a level of debt

B∗ ≡ arg min
B

var
(
RB + g

)
= −cov (R, g)

var (R)
. (16)

We assume that probability measure π is such that B∗ ∈ (B,B) and that B is weakly below
the natural debt limit. We call B∗ the risk-minimizing level of debt. Let Z∗ ≡ ḡ + 1−β

β B∗ be
the constant tax revenues that satisfy government’s budget constraint on average if Bt = B∗ for
all t.

2.1 Perfectly correlated shocks: the exact characterization

We first consider a special case in which p and g are perfectly correlated that illustrates key
economic forces that determine the long-run behavior of debt and taxes more generally.

Proposition 2. Suppose that p and g are perfectly correlated. Then B̃t → B∗, Z̃t → Z∗ a.s.

Proof. If p and g are perfectly correlated then cov (E (·, B) , R (·)) ≥ 0 if B ≥ B∗,
cov (E (·, B) , R (·)) ≤ 0 if B ≤ B∗, and E (s,B) is independent of s if and only if B = B∗.

The monotonicity of policy functions established in Lemma 2 and concavity of V imply that
covt(Rt+1, V

′(B̃t+1)) ≤ 0 if B̃t ≥ B∗ and covt(Rt+1, V
′(B̃t+1)) ≥ 0 if B̃t ≤ B∗. Therefore the

martingale convergence theorem and equation (15) imply that V ′(B̃t) converges almost surely.
By strict concavity, it can converge only to a level of debt B for which E (s,B) is independent
of s, which is only possible if B̃t → B∗ a.s. Since ERt = β−1, equation (13) establishes that
Z̃t → Z∗ a.s.

An insight of Proposition 2 is that the conditional covariance in equation (15) induces a
drift in the stochastic process B̃t towards the risk-minimizing level of debt B∗. Here is some
intuition. Fluctuations in tax rates, and therefore tax revenues, have welfare costs for reasons
explained by Barro (1979). For this reason, on the margin each period the planner wants to
move closer to a risk-minimizing level of debt that reduces his need to change the tax rate in
response to shocks to government purchases. When p and g are perfectly correlated, fluctuations
in returns on government debt R(s)B∗ perfectly offset fluctuations in government expenditures
g(s), thereby providing a perfect hedge. In this situation, the tax rate τt is constant in the long
run.

2.2 General case: approximations

When p and g are imperfectly correlated, perfect hedging is impossible. To study this case, we
develop a class of second order approximations that do a good job of approximating the joint
invariant distribution of government debt and tax revenues. Under particular conditions, our
approximating policies are linear in shocks, a property that facilitates asymptotic analysis.

We start with the observation that random variables g and p can be expressed as

g(s) = ḡ + σεg(s), p(s) = p+ σεp(s),
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where εg and εp have mean zero but can be arbitrarily correlated with each other. We will
study the properties of a Ramsey plan when shocks are small, i.e. as σ approaches to zero.
Let B̃ (s,B_;σ) and Z̃ (s,B_;σ) be policy functions for a given σ. Optimality conditions for
problem (12) should hold for all realizations of p(s), g(s) and for all values of σ. Therefore
first, second, and higher order derivatives of those optimality conditions with respect to εg, εp, σ,
assuming they exist, must all be equal to zero.6 That insight allows us to calculate the Taylor
expansion of policy rules around a current level of debt since B̃(s,B_; 0) = B_. In Appendix
A.1, we show that7

B̃ (s,B_) = B_ + β [g(s)− ḡ] + [βR(s)− 1]B_− β2var(R)B_− β2cov(R, g)

+O(σ3, (1− β)σ2). (17)

The second order expansion is linear in g and R up to terms that appear in O(·). Since standard
macroeconomic calibrations set the discount factor close to 1, we drop the O(·) terms and
proceed to study an optimal debt and tax policy implied by that approximation.8 The linearity
of the policy rules allows us to obtain a simple and transparent characterization. We show
later in this section and in Section 4 that this procedure provides good approximations to other
more accurate approximations computed using global numerical algorithms and has the virtue
of shedding light on economic principles underlying optimal debt and tax policies.

We focus on three moments: means, variances, and speeds of mean reversion to the invari-
ant distribution of debt and taxes. We obtain these by re-grouping terms in equation (17) and
integrating with respect to the ergodic measure. For example, by taking unconditional expecta-
tions on both sides of (17), we deduce that the unconditional mean and variance of debt can be
estimated up to O(σ, (1− β)) terms.9

Proposition 3. The invariant distribution of
{
B̃t, Z̃t

}
t
satisfies

• Means
E
(
B̃t

)
= B∗ +O(σ, (1− β)), E

(
Z̃t

)
= Z∗ +O(σ, (1− β));

• Speeds of reversion to means

Et
(
B̃t+1 −B∗

)
B̃t −B∗

=
E0

(
Z̃t+1 − Z∗

)
E0

(
Z̃t − Z∗

) =
1

1 + β2var (R)
+O(σ3, (1− β)σ2);

• Variances

var
(
B̃t

)
=

var (RB∗ + g)

var (R)
+O(σ, (1−β)), var

(
Z̃t

)
=

(
1− β
β

)2

var
(
B̃t

)
+O(σ3, (1−β)σ2).

6This approach is originally developed by Fleming (1971) and was applied in economics by Schmitt-Grohe
and Uribe (2004). Like them, we assume that policies are twice differentiable.

7Here O(σ3, (1− β)σ2) denote all terms that appear as O(σ3) or (1− β)O(σ2).
8This approximation should work well so long as average interest rates are of similar or smaller order of

magnitude than the standard deviation of shocks that affect government’s budget constraint. This condition
holds in our calibration to the post WWII U.S. data in Section 4.

9Observe that while var(R), var(g), cov(R, g) are all of order O(σ2), functions cov(R,g)
var(R)

and
var(RB∗+g)

var(R)
are of

order O(1).
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The first part of Proposition 3 shows that the risk-minimizing debt B∗ is the mean of the
invariant distribution, and the mean level of tax revenues is Z∗. To understand the finding that
the mean of the invariant distribution of B̃t is B∗, it is useful to connect the martingale (15)
to the static variance minimization problem (16). By strict concavity of the value function V ,
there is a one-to-one relationship between debt Bt and its marginal value to the planner, V ′(Bt).
Inspection of the martingale equation (15) shows that the covariance term covt(V

′(Bt+1), Rt+1)

is important in determining the drift of the dynamics of debt in the long run. For a given Bt,
the debt next period Bt+1 depends only on Et+1 and consequently

covt(V
′(Bt+1), Rt+1) ∝ covt(Et+1, Rt+1) +O(σ3, (1− β)σ2). (18)

It is possible to verify that covt(Et+1, Rt+1) = 1
2
∂var(Rt+1Bt+gt+1)

∂Bt
. Thus, ignoring O(σ3, (1 −

β)σ2) terms, the covariance term in the martingale equation (15) is proportional to the slope
of the variance of Et with respect to government debt Bt. Since B∗ minimizes variation in
E(s,B_), the slope is zero at B∗. The change in signs of the slope implies that, to second order,
V ′(Bt) is a submartingale when Bt > B∗ and supermartingale when Bt < B∗. Then arguments
used in the proof of Proposition 2 explain why B̃t drifts towards B∗.

Proposition 3 also shows that the speed of mean reversion is determined by the variance
of returns: a lower variance of returns decreases the speed of the reversion. When Bt 6= B∗

the fluctuations in the rate of return put additional risk into E(s,Bt) that is increasing in the
volatility of R and the magnitude of Bt. A more volatile R implies that it is optimal increase
the speeds at which the government should repay debt when Bt > B∗ and should accumulate
debt when Bt < B∗. Dynamics of debt and taxes both approximate random walks when the
security is nearly a risk-free bond, confirming an insight of Barro (1979).

The last part of Proposition 3 characterizes second moments of the invariant distribution
of debt and tax tax rates. It shows several insights. First, the dispersion of the invariant
distribution of government debt is increasing in un-hedgable risk as measured by var(RB∗+g)

var(R) .
Note that this terms does not depend on σ (i.e. it is O(1)) and is zero only when g and p are
perfectly correlated. So long as g and p are imperfectly correlated, the variance of the invariant
distribution of debt does not vanish even when σ becomes small. This outcome reflects two
offsetting forces: smaller shocks imply that debt reacts less to arrival of a shock, but also that
it takes longer for debt to revert to its mean. The variance of tax revenues Z̃t is determined by
two considerations. Tax revenues must respond enough to changes in the level of government

debt to satisfy the budget constraint, which is captured by the term
(

1−β
β

)2
var
(
B̃t

)
. Tax

revenues also change in response directly to an expenditure shock. Since the planner wants to
smooth tax rates over time, only a fraction 1− β of an innovation to government expenditures
is financed by contemporaneous changes in tax revenues. Therefore, the variance induced by a
contemporaneous response to aggregate shocks is of order O(σ3, (1− β)σ2).

Figure I illustrates the accuracy of the quadratic approximation. As a baseline we set β =

0.98 and γ = 2 and choose the joint stochastic processes for (g, p) to match the standard deviation
of government expenditures, returns on government’s debt portfolio and the correlation between
these returns and government net-of-interest expenditures. The upper bound B is chosen to
be equal to the natural debt limit that we can compute explicitly for the quasilinear setup and
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the lower bound is set so that the debt-to-output ratio is approximately −300%. For all the
exercises we report below, we verify that B∗ ∈ [B,B].10 The g, p processes are modeled as

g(s) = ḡ + σεg(s),

p(s) = 1 + χσεg(s) + σεp̂(s),

where σ = 1 and the shocks εp̂, εg are finite state approximations to standardized normal random
variables.11 The moments we target in addition to the parameter values that achieve those
targets are reported in Table I.

Given these primitives, we compute the optimal policies from first order conditions for (12),
and iterating on the planner’s Euler equation using cubic splines as basis functions for ap-
proximating policies.12 We then compare the outcomes of our global solution to the quadratic
approximations. We plot the invariant distribution of debt and policy rules obtained from the
global solution method (dashed lines) and the quadratic approximations (solid lines) in Figure
I. For parsimony, we plot policies B̃(s,B_) − B_ for two values of s that correspond to the
smallest and the largest pairs of (g(s), p(s)). The top panel of Figure I reveals that the ergodic
distribution of debt obtained from the quadratic approximations of policies closely resemble
policies obtained using the global numerical method. The top right panel reveals see that, as
current debt approaches the natural debt limit, the quadratic approximation to the optimal
government debt policy does not capture the proper curvature with respect to B. However, at
the parameters that we used to compute plots in the top panel, the ergodic distribution puts
almost no mass on regions where the quadratic approximations and global approximations differ.

Proposition 3 states that our approximation errors increase with 1− β and σ. To check how
quickly these approximation errors become significant, we reduce β to 0.90 and increase σ to
4 in the second and third rows of Figure I respectively. For most of the state space, we find
that the quadratic approximation continues to do well. As a consequence of the fact that the
our quadratic approximations assume interiority, the policies reported in the right panel display
approximation errors only when debt approaches the debt limits. When 1 − β or σ is high,
the quadratic approximations imply slightly higher debt than does the solution computed with
numerical value function iteration. Almost all of these differences emerge because the quadratic
expansion puts positive probability on the region where debt is higher than B̄.

3 Extensions

Forces isolated within the Section 2 economy prevail under alternative assumptions about mo-
tives for taxation, persistence in g and p and also fluctuations in productivity, rich sets of
securities, and preferences that express aversion to consumption risk. We discuss these now.

10In Section 4 we do a comprehensive calibration where we match several moments of returns, output and debt
to U.S. post war data for a richer model that allows for persistence, risk aversion, productivity shocks. Here we
use a subset of those moments to get a reasonable baseline which when we modify in several directions to test
the accuracy of our approximations. The details of the sample and data series used to construct these moments
are in Section 4.

11The finite state approximation ensures that g(s) > 0 and p(s) > 0 for all s.
12Since the problem is concave such a fixed point corresponds to the optimal policies.
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3.1 Transfers and redistribution

Optimal debt management in our Section 2 model differs significantly from that in other in-
complete markets models studies by Aiyagari et al. (2002) and Farhi (2010). A key difference
is that we prohibit lump-sum taxes or transfers, while Aiyagari et al. (2002) and Farhi (2010)
allow positive but not negative lump-sum transfers. In our model, the invariant joint distribu-
tion of debt and taxes is unique. In the long run, debt and tax rates minimize fluctuations in
gross government expenditures including debt service requirements, E(s,B). By way of con-
trast, optimal plans in Aiyagari et al. (2002) and Farhi (2010) have a continuum of invariant
distributions of debt levels. In all of them, tax rates are zero and debt levels are negative and big
enough in absolute value to finance all net-of-interest government expenditures from earnings
on the government’s portfolio, and fluctuations in transfers fully absorb shocks to net-of-interest
government expenditures. Here we extend our analysis to an economy with lump sum transfers
by explicitly modeling the utility enjoyed by recipients of transfers. We show that our Section 2
results carry over essentially unchanged so long as the utility function of recipients of transfers is
strictly concave. In that case, uncertainty about transfers is costly, prompting the government to
use government debt to minimize fluctuations in both tax rates and transfers. We then discuss
what drives the long-run tax rate to zero in Aiyagari et al. (2002) and explain how to reconcile
their results with ours.

A standard justification for ruling out lump-sum taxes in representative agent models is
implicitly to appeal to the presence of unmodeled “poor” agents who cannot afford to pay a
lump-sum tax. In this section, we study optimal anonymous transfers in an economy with such
poor agents. We extend the Section 2 economy to have just enough heterogeneity across agents
to make the analysis meaningful. In particular, we assume that in addition to a measure 1 of
agents of type 1 with quasilinear preferences U(c, l) = c− l1+γ

1+γ , there is a measure n > 0 of type
2 agents who cannot work or trade securities and who enjoy utility

E0

∞∑
t=0

βtU (c2,t) ,

where c2,t is consumption of a type 2 agent in period t; U is strictly concave and differentiable
on R+ and satisfies the Inada condition limc→0 U

′(c) =∞.
The government and type 1 agent trade the Section 2 security. The government imposes

a linear tax rate τt on labor income and awards lump-sum transfers Tt that do not depend on
the type of agent. Negative transfers are not feasible because a type 2 agent has no income
other than transfers. Each agent receives a per-capita transfer Tt

1+n . Since agent 2 lives hand to
mouth, his budget constraint is

c2,t =
Tt

1 + n
.

The planner ranks allocations according to

E0

∞∑
t=0

βt
[(
ct −

1

1 + γ
l1+γ
t

)
+ ωU (c2,t)

]
,

for some ω > 0.
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The time t government budget constraint is now

gt + Tt +RtBt−1 = τtlt +Bt.

With only minimal modifications, the budget constraint of a type 1 agent, definition 1 of a
competitive equilibrium, and the Section 2 recursive formulation of the optimal policy problem
all extend to this environment. The planner’s optimal value function satisfies the Bellman
equation

V (B_) = max
Z(·),B(·),T (·)

ˆ [(
R (s)B_−B (s) +

T (s)

1 + n

)
+ γΨ (Z (s))

+ωU

(
T (s)

1 + n

)
+ βV (B (s))

]
π (ds) (19)

subject to Z(s) ≤ Z,B (s) ∈ [B,B], and

Z (s)− T (s) +B (s) = R (s)B_ + g (s) for all s. (20)

Denoting by
{
B̃t, Z̃t, T̃t

}
t
the outcomes associated with policies that attain V (B_) and

following the same steps as in the proofs of Section 2, we obtain

Proposition 4. The invariant distribution of
{
B̃t, Z̃t, T̃t

}
t
is unique. The invariant distribution

of B̃t satisfies properties stated in Proposition 3. The invariant distribution of Z̃t − T̃t has
the same properties as the invariant distribution of Z̃t in Proposition 3. Let F (T̃ ;ω) be the
cumulative distribution function of the ergodic distribution of T̃t. If ω > ω′ then F (T̃ ;ω) first
order stochastically dominates F (T̃ ;ω′).

Insights from Section 2 about optimal debt management carry over to this heterogeneous
economy. Fluctuations in the tax rate and (non-agent-specific) lump-sum transfers now are both
costly, so an optimal policy smooths both. Adjusting the tax rate in response to government
expenditure shocks is costly because the dead-weight loss of taxation is convex in tax rates, as
stressed by Barro (1979). Adjusting transfers is also costly because that induces fluctuations in
inequality.

In Aiyagari et al. (2002) and Farhi (2010) the government eventually sets tax rates to zero
and thereafter adjusts transfers one-to-one with government expenditures. They do not model
heterogeneity explicitly but appeal to it only implicitly when they impose Tt ≥ 0. That re-
striction puts a kink in the cost of using transfers: for sufficiently large government assets, the
marginal cost of an increase in transfers is zero, while the marginal cost of a decrease in trans-
fers is infinite at Tt = 0. A high marginal cost of negative transfers creates an incentive for the
governments in Aiyagari et al. (2002) and Farhi (2010) to accumulate enough assets to make the
constraint Tt ≥ 0 eventually become slack. Since fluctuations in positive transfers are costless,
in the long-run the government uses those transfers to offset all fluctuations in expenditures gt.

By way of contrast, in our economy, the welfare cost of using transfers is endogenous and
smooth, so that marginal costs from increasing and decreasing transfers around an optimal level
T̃t are the same, ω

1+nU
′
(
T̃t

)
; welfare costs of departing from the optimal inequality level are
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strictly convex. This difference accounts for the very different long run dynamics than those
discovered by Aiyagari et al. (2002).13

The restriction that transfers, Tt are common across all types of agents is not essential for
Proposition 4. Consider a slightly modified taxation scheme where the government uses a linear
tax rate, meaning one with a zero intercept, for the productive type of agent and a lump sum
transfer for the unproductive types. The budget constraint of type 2 is c2,t = Tt

n and the Bellman
equation (19) is altered to

V (B_) = max
Z(·),B(·),T (·)

ˆ [
(R (s)B_−B (s)) + γΨ (Z (s)) + ωU

(
T (s)

n

)
+ βV (B (s))

]
π (ds) .

We show in Appendix A.2 that Proposition 4 continues to hold. While the assumption that only
unproductive agents receive transfers changes the average level of optimal tax revenues and the
tax rate, it leaves unaffected the moments of the Ramsey policy characterized in Proposition 4.

3.2 More general asset structure

In this section, we study optimal management of a government’s portfolio of securities by mod-
ifying the baseline Section 2 setup to allow K ≥ 1 securities. Let pk(s) be the payoff of security
k in state s. Each security is available in fixed net supply Qk, which can be nonzero. Our setup
thus allows for trade in financial assets like government debt and claims to Lucas trees. When
Lucas trees are available, the feasibility constraint reads

ct + gt = lt +
K∑
k=1

pktQ
k.

To simplify, we assume that available securities consist of one period lived securities and infinitely
lived consols, and that s is an i.i.d. process.14 Let Bk

t be the government’s holdings of security
k at the end of period t, qkt its market price, and ιk an indicator variable that is equal to 1 if
security k is a consol. The government’s time t budget constraint is

gt +

K∑
k=1

(
pkt + ιkqkt

)
Bk
t−1 = τtlt +

K∑
k=1

qkt Bk
t .

Let Rkt =
pkt+ιkqkt
qkt−1

be the gross return on security k and let Bk
t = qkt Bk

t be the market value of
holdings of security k so that we can write this budget constraint as

gt +
K∑
k=1

RktB
k
t−1 = τtlt +

K∑
k=1

Bk
t .

Let Bt ≡
∑K

k=1B
k
t be the market value of the government’s portfolio, which we restrict to be

in a compact set
[
B,B

]
. We assume that these bounds are sufficiently large so that the risk-

13Bhandari et al. (2015b) show that this insight carries over to richer economies with much more heterogeneity
and in which no agent is excluded from the financial markets.

14The extension of our results to arbitrary finite period securities is straightforward but requires additional
notation. Extensions to richer shock processes will follow along the lines of Section 3.3.
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minimizing portfolio B∗ to be defined below is feasible. Without loss of generality, we assume
that no security is redundant in the sense that the vectors

{
Rk
}K
k=1

are linearly independent.
We use R(s) to denote returns

(
R1(s), ..., RK(s)

)
, B and 1 to denote a K dimensional (column)

vector of security holdings and of ones, respectively. Let C[R,R] and C[R, g] be a matrix of
the covariances of returns and a vector of covariances of returns with government purchases g,
respectively. When the matrix C[R,R] is nonsingular, we define

B∗ ≡ −1ᵀC[R,R]−1C[R, g], (21)

which, as we show below, is the risk-minimizing level of government debt that generalizes
equation (16) to the case of multiple assets. Whenever B∗ is well defined, we also define
Z∗ ≡ 1−β

β B∗ + ḡ.
Temporarily suppose that government portfolio weights are fixed, meaning that there exist

constants ψ1, ..., ψK such that Bkt∑
k B

k
t

= ψk for all t. Define R (s) ≡
∑K

k=1 ψkR
k (s). Then the

optimal policy problem is equivalent to the one in Section 2. Thus, if the government arbitrarily
fixes its portfolio weights then, subject to that arbitrary choice, all Section 2 insights about
optimal debt management and fiscal policy still apply.

Now suppose that the Ramsey planner optimally chooses government portfolio weights each
period. The Ramsey problem in this case can be written recursively. The end of period market
value of the government’s portfolio the only state variable in the planner’s value function:

V (B_) = max
Z(·),B(·),B

ˆ [(
R (s)T B−B(s)

)
+ γΨ (Z (s)) + βV (B (s))

]
π (ds) (22)

where maximization is subject to Z(s) ≤ Z,B (s) ∈ [B,B], 1ᵀB = B_, and

B (s) + Z(s) = R (s)T B + g (s) for all s. (23)

We first establish that:

Lemma 3. Problem (22) has a unique solution. If C[R,R] is nonsingular or if g is not in the
span of R, then the invariant distribution generated by policies that attain V (B_) is unique;
otherwise optimal policies satisfy B̃ (s,B_) = B_ for all s and Z(s,B_) is independent of s.

As in the Section 2 baseline model, we scale the volatility of all shocks shocks by σ and
take a second order Taylor expansion of the policies Z̃ (s,B_;σ), B̃ (s,B_;σ), and B̃ (B_;σ)

around σ = 0. At σ = 0 the portfolio problem is indeterminate, but the next lemma shows that
there is a unique limiting portfolio as σ → 0 that solves a variance minimization problem.

Lemma 4. limσ→0 B̃ (B_;σ) = B∗ (B_) where B∗ (B_) solves

min
B

var

(∑
k

BkRk + g

)
subject to 1ᵀB = B_. (24)

We can relate B∗ in equation (21) to B∗ (·) defined in Lemma 4. Suppose that the matrix
C[R,R] is non-singular. Then the constraint 1ᵀB = B_ in problem (24) binds, making the
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variance depend on the level of debt B_. The variance is minimized at B_ = B∗, making B∗

the risk-minimizing debt level satisfying B∗ = 1ᵀB∗ (B∗).15

As in Section 2, we show that the B∗ is the long-run mean of the second-order approximation
to the optimal policy for the market value of the government debt portfolio. When C[R,R] is
nonsingular, the Taylor expansion around B∗ (B_) yields

B̃ (s,B_) = B_ + β [g(s)− ḡ] + [βR(s)− 1]T B∗ (B_)

− β2B_
1ᵀC[R,R]−11

− β21ᵀC[R,R]−1C[R, g]

1ᵀC[R,R]−11
+O(σ3, (1− β)σ2).

When C[R,R] is singular,

B̃(s,B_) = B_ + β [g(s)− ḡ] + β [R(s)− 1]T B∗ (B_) +O(σ3, (1− β)σ2). (25)

Proposition 5. Suppose that C[R,R] is non-singular. The invariant distribution of
{
B̃t, Z̃t

}
t

has

• Means
E
(
B̃t

)
= B∗ +O(σ, (1− β)), E

(
Z̃t

)
= Z∗ +O(σ, (1− β)).

• Speeds of mean reversions

Et
(
B̃t+1 −B∗

)
B̃t −B∗

=
E0

(
Z̃t+1 − Z∗

)
E0

(
Z̃t − Z∗

) =
β−21ᵀC[R,R]−11

1 + β−21ᵀC[R,R]−11
+O(σ3, (1− β)σ2),

• Variances

var
(
B̃t

)
=
(
1ᵀC[R,R]−11

)
var
(
−C[R, g]ᵀC[R,R]−1R + g

)
+O(σ, (1− β)),

var
(
Z̃t

)
=

(
1− β
β

)2

var
(
B̃t

)
+O(σ3, (1− β)σ2).

Government holdings of individual securities satisfy

B̃t = −C[R,R]−1C[R, g] +
C[R,R]−11

1ᵀC[R,R]−11

(
B̃t + 1ᵀC[R,R]−1C[R, g]

)
+O(σ, (1− β)). (26)

Some examples illustrate these findings.

Example 1. Suppose that there are two securities with var
(
Rk
)
> 0 for k = 1, 2 and that the

return on security 1 is perfectly correlated with g while the return on security 2 is orthogonal
to the return on security 1. Then Proposition 5 implies that the ergodic mean of the value
of government’s debt portfolio is B∗ = − cov(R1,g)

var(R1)
, that the speed of convergence to B∗ is(

1 + β2 var(R2)
var(R1)+var(R2)

var
(
R1
))−1

, and that its ergodic variance is zero. From formula (26),

15If C[R,R] is singular, then the constraint 1ᵀB = B_ does not bind and any debt level is risk-minimizing.
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the optimal portfolio along transition paths satisfies

B̃1(B̃t) =
var
(
R2
)

var (R1) + var (R2)
B̃t +

var
(
R1
)

var (R1) + var (R2)
B∗

B̃2(B̃t) =
var
(
R1
)

var (R1) + var (R2)
B̃t −

var
(
R1
)

var (R1) + var (R2)
B∗,

with B̃2(B̃t)→ 0 a.s.

Complete hedging can be achieved with the government holding security 1 only, just as in
Proposition 2, so that holding any security 2 is suboptimal asymptotically. If the market value
of the initial government debt does not equal B∗, it is optimal to invest in security 2 along
the transition path because doing this reduces risk for the government until the steady state is
reached. As a result, noting that var(R2)

var(R1)+var(R2)
< 1, the speed of convergence to the long-run

portfolio is slower than when only security 1 can be traded.

Example 2. Consider a setting with two securities which payoffs are perfectly correlated with
g and 0 ≤ var(R1) < var(R2).16 There exist unique constants ψ1, ψ2, ξ1, and ξ2 such that

ψ1R
1(s) + ψ2R

2(s) = g(s)

and
ξ1R

1(s) + ξ2R
2(s) =

1

β
.

Note that ψ1+ψ2 = βḡ and ξ1+ξ2 =1. Now the covariance matrix C[R,R] is singular. The risk-
minimizing portfolio satisfies B∗,k(B_) = (B_ + βḡ) ξk−ψk. Holding it allows the government
to attain complete markets allocations for any B_; the value of government debt equal its initial
value for all t ≥ 0.

It is instructive to study how an optimal portfolio changes as R2 approaches R1. For simplic-
ity, suppose that R1(s) = 1

β and R2(s) = 1
β−ε(g(s)−ḡ). For a given B_, optimal asset positions

are B∗,2 = 1
ε and B∗,1 = B_ − B∗,2, both of which become arbitrarily large as ε → 0. This

outcome explains why Buera and Nicolini (2004) and Farhi (2010) found that the government
should take extremely large asset positions to hedge its risk. Those papers allowed a planner
to trade a risk-free one period security plus other securities (long bonds in Buera and Nicolini
(2004), capital in Farhi (2010)). The returns on those securities had low volatilities and high
correlations with government expenditures. Consistent with our example, those authors found
that an optimal portfolio has huge positions in these securities.

Example 3. Suppose that cov
(
Rk, Rl

)
= 0 for all k 6= l. Now C[R,R] is a diagonal matrix and

∂B̃k(B_)
∂B_ ∝ 1

var(Rk)
from (26). As the value of the outstanding government debt increases, its

optimal composition shifts towards securities that have lower variances of returns. In the limit,
as the variance of returns of one security approaches zero, all of the adjustments to changes
in B_ use that security. We can use this example to construct a simple model of an optimal

16Note that risk-free returns are in the closure of the set of returns that are perfectly correlated with g. We
follow a convention of calling a risk-free security to be perfectly correlated with g.
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maturity structure of government debt. Suppose that the government can issue a one-period
risk-free bond and a consol with a stochastic coupon. Then the optimal issue of the consol is
B̃2
t = − cov(R2,g)

var(R2)
, which is independent of B̃t, while the optimal issue of the riskless security is

B̃1
t = B̃t − B̃2

t . Hence, the optimal effective maturity B̃2
t

B̃1
t

of government debt is decreasing in

the value of outstanding debt B̃t.

3.3 More general shock processes

In this section, we modify the Section 2 baseline model setup to include richer shock processes.
In addition to expenditure and payoff shocks, we introduce fluctuations in productivity θ and
allow g, p, θ to be correlated across time and with each other.

We follow the set up of Section 2 but assume that state s = (p, g, θ) follows a first order
Markov process. The conditional probability density of st is described by a Markov kernel
π (·|s_), where s_ is the realization of the shock in period t−1. We assume that π has a unique
invariant measure λ. The feasibility constraint now takes the form

ct + gt = θtlt (27)

and the return in state s is R(s, s_) = p(s)
β
´
p(s′)π(ds′|s_)

.

Let Θ ≡ θ
1+γ
γ and Z ≡ τ (1− τ)

1
γ . As in Section 2, there is a one to one correspondence

between Z and τ for Z ≤ Z̄. The tax revenues with productivity shocks are equal to ΘZ. Let ḡ
and Θ̄ denote ergodic means of g and Θ. Let Ω(Z, s) ≡ l1+γ(Z,s)

1+γ , where the function l1+γ(Z, s)

is now defined as
Θ(s)Z = Θ(s)

γ
1+γ l(Z, s)− l1+γ(Z, s).

Following Section 2 arguments, the Ramsey planner’s value function satisfies the Bellman equa-
tion

V (B_, s_) = max
Z(·),B(·)

ˆ
[(R(s, s_)B_−B (s)) + γΩ (Z(s), s) + βV (B (s) , s)]π (ds|s_) (28)

where maximization is subject to Z(s) ≤ Z, B (s) ∈ [B,B] and

B (s) = R(s, s_)B_ + g (s)−Θ(s)Z(s) for all s. (29)

In the interior, optimal debt satisfies

V
(
B̃t, st

)
= EtV

(
B̃t+1, st+1

)
+ βcovt(Rt+1, V

′(B̃t+1, st+1)), (30)

which extends the martingale equation (15) to persistent shocks.
As a counterpart to expression (16), we now define the risk-minimizing government debt B∗

for the general case being studied here. As before, the Ramsey planner chooses government
debt to minimize risk and fluctuations in the tax rate. The shocks here introduce additional
considerations not present in the Section 2 baseline model. First, fluctuations in productivity
imply that tax revenues are stochastic even when the tax rate is constant. Fix the tax rate at
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level τ and observe that primary deficit Xτ , defined as the difference between expenditures and
tax revenues, is

Xτ (s) = g(s)−Θ(s)(1− τ)
1
γ τ. (31)

Fluctuations in the primary government deficit are driven by shocks to both government ex-
penditures and to productivity. Furthermore, when these processes are persistent, the current
state st conveys information about future primary deficits. Now government debt will play an
important role in hedging fluctuations in the expected present value of primary deficits.

For a random variable x(s) that is a function of the current state only, a discounted present
value of x conditional on s is PV (x; s) ≡ E

[∑∞
t=0 β

txt|s0 = s
]
. Since the planner keeps the tax

rate approximately constant, the mean of the invariant distribution for debt and the level of tax
rate are linked through the government budget constraint by(

1− β
β

)
B = ḡ − Θ̄(1− τ)

1
γ τ, (32)

which defines an implicit function τ(B). We define B∗ as the level of debt that minimizes
fluctuations in PV (Xτ(B); s):

B∗ ≡ arg min
B

var
[
RB + PV (Xτ(B))

]
. (33)

We define Z∗ as Z∗ ≡ 1
Θ̄

[
ḡ + 1−β

β B∗
]
.

We again use a second order approximation of policies to show that B∗ is the long-run target
level of government debt. To state things compactly, it helps to define two mappings. For a pair
of random variables x(s, s_), y(s, s_), the covariance conditional on s_ is

Cx,y (s−) ≡
ˆ
x(s, s_)y(s−, s)π (ds|s−)−

(ˆ
x(s, s_)π (ds|s−)

)(ˆ
y(s, s_)π (ds|s−)

)
and the conditional mean of x(s) is

E(x; s_) ≡
ˆ
x(s, s_)π (ds|s−) .

Note that both Cx,y (·) and E(x; ·) are random variables on S. Taking a Taylor expansion
of optimal policies that attain the optimal value function V (B_, s_) that satisfies Bellman
equation (28) along lines taken in Section 2 we get17

B̃ (s,B_, s_) = B_ + [g(s)− (1− β)PV (g; s)]− Φ̄(B_) [Θ(s)− (1− β)PV (Θ; s)] +B_ [βR(s, s_)− 1]

− (1− β)β2
[
B_PV

(
CR,R; s

)
+ PV

(
CR,PV (g); s

)
− Φ̄(B_)PV

(
CR,PV (Θ); s

)]
+O(σ3, (1− β)σ2), (34)

where Φ̄(B_) = 1
Θ̄

[(
1−β
β

)
B_ + ḡ

]
.

The first line on the right side of equation (34) collects first order expansion terms that
capture direct effects of shocks to g, p, θ on the asset positions. Government debt increases if the
current realization of g is greater than annuitized expected future expenditures, (1− β)PV (g; s);
if current realization of productivity is less than then annuitized expected future productivity

17A detailed derivation of equation (34) appears in Appendix A.4.
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(1− β)PV (Θ; s); or if the interest payments on debt are unexpectedly high. These terms express
how optimal policy uses debt to smooth aggregate shocks and embody principles conveyed by
Barro (1979). The second line on the right side of equation (34) collects second order terms that
consist of conditional variances and covariances of the return with expenditure and productivity
shocks. They capture hedging motives.

It is convenient to re-write equation (34) in terms of ergodic moments of (g, p, θ). For a
random variable x(s, s_), let Ex =

´ ´
x(s, s_)π(ds|s_)λ(ds_) be its ergodic mean. Similarly,

let var (x) and cov (x, y) denote ergodic variances and covariances of random variables x and y,
respectively. In Appendix A.4, we show that under our assumption about π, we can write (34)
as

B̃ (s,B_, s_) = B_ + [g(s)− (1− β)PV (g; s)]− Φ̄(B_) [Θ(s)− (1− β)PV (Θ; s)] +B_ [βR(s, s_)− 1]

− β2
[
B_var(R) + cov(R,PV (g))− Φ̄(B_)cov(R,PV (Θ))

]
+O(σ3, (1− β)σ2). (35)

For a random variable x(s, s_), let x̂(s, s_) ≡ x(s, s_)− E(x; s_). We can use (35) to obtain

Proposition 6. The invariant distribution of
{
B̃t, Z̃t

}
t
has

• Means
E
(
B̃t

)
= B∗ +O(σ, (1− β)), E

(
Z̃t

)
= Z∗ +O(σ, (1− β)),

• Speeds of reversion to means

Et
(
B̃t+1 −B∗

)
B̃t −B∗

=
E0

(
Z̃t+1 − Z∗

)
E0

(
Z̃t − Z∗

) =
1

1 + β2var (R)
+O(σ3, (1− β)σ2).

• Variances Define B(s) ≡ B∗ − β
[
E (PV (g − ḡ; s′); s)− Φ̄(B∗)E

(
PV (Θ− Θ̄; s′); s

)]
.

Then

var
(
B̃t − Bt

)
= var

(
P̂ V (g)− Φ̄(B∗)P̂ V (Θ) + BR̂

)
+O(σ, (1− β)),

var
(
Z̃t

)
=

(
1− β
β

)2

var
(
B̃t − Bt

)
+O(σ3, (1− β)σ2).

Proposition 6 shows that just as in Section 2, the Ramsey planner chooses government debt to
minimize risk and keep the tax rate approximately constant. One can extend our approximations
(18) to show that the Euler equation (30) induces reversion of government debt to a risk-
minimizing level. Productivity shocks now induce fluctuations in tax revenues even when the
tax rate is constant.

The risk-minimizing debt level B∗ can be computed from formula (33) and further simplified
after we observe that ∂

∂B τ(B) = O(1− β). Given this, we have
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B∗ = −
cov

(
R,PV (Xτ(B))

)
var(R)

+O(σ, (1− β)) for any B

= −
cov (R,PV (g))− ḡ

Θ̄
cov (R,PV (Θ))

var(R)
+O(σ, (1− β)). (36)

The simple formula (36) for the approximate risk-minimizing debt level presents a further insight
that we shall exploit in Sections 3.4 and 4. It shows that the endogenous covariances that appear
in this formulas are not very sensitive to values of τ(B) at which they are evaluated. That means
tat if we were to observe data generated under a suboptimal tax rate policy τ(B), observations of
the primary deficit Xτ(B) would still allow us to compute the optimal level of debt B∗ accurately
by using (36).

We end this section by applying our formulas when g,Θ, p obey the AR(1) processes

gt = (1− ρg)ḡ + ρggt−1 + εg,t,

Θt = (1− ρΘ)Θ̄ + ρΘΘt−1 + εΘ,t

pt = p̄+ εp,t,

where εg,t, εp,t, εΘ,t are i.i.d over time with zero means. Now cov(R,PV (g)) = cov(R,g)
1−ρgβ and

cov(R,PV (Θ)) = cov(R,Θ)
1−ρΘβ

. Therefore

B∗ = −
(

1

1− ρgβ

)
cov(R, g)

var(R)
+
ḡ

Θ̄

(
1

1− ρΘβ

)
cov(R,Θ)

var(R)
,

= −
(

β

1− ρgβ

)
cov(εp, εg)

var(εp)
+
ḡ

Θ̄

(
β

1− ρΘβ

)
cov(εp, εΘ)

var(εp)
.

This formula shows how autocorrelations affect the target level of government debt. For instance,
keeping ρΘ fixed, higher persistence of the expenditure shocks as measured by ρg implies a higher
absolute value of government debt asymptotically. The sign of the covariance between returns
and the primary government deficit determines the sign of the mean level of government debt.

3.4 Risk aversion and endogenous returns

We extend our analysis to a setting in which the representative agent has preferences that display
risk-aversion. We retain other assumptions of Section 3.3 but now allow curvature in the utility
of consumption by assuming that preferences are described by

U(c, l) =
c1−α − 1

1− α
− l1+γ

1 + γ
. (38)

A constant elasticity of substitution assumption simplifies exposition, but our results prevail
for U ’s that are strictly concave in (c,−l) and twice continuously differentiable. We let Ux,t or
Uxy,t denote first and second derivatives of U with respect to x, y ∈ {c, l} . We assume that
natural debt limits restrict the consumer, which ensures that first-order conditions are satisfied
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off corners.
An allocation {ct, lt,Bt}t is a competitive equilibrium if and only if it satisfies the feasibility

constraint (27) and implementability conditions

Uc,tBt + Uc,t

[
θtlt +

Ul,t
Uc,t

lt − gt
]

=
ptUc,t

βEt−1ptUc,t
Uc,t−1Bt−1 t ≥ 1, (39)

c0 + b0 = −
Ul,0
Uc,0

l0 + p0β
−1B−1. (40)

An optimal allocation maximizes E0
∑

t β
tU(ct, lt) subject to constraints (27), (39), and (40).

It is helpful to redefine variables. Let Bt ≡ Uc,tBt, Rt ≡ Uc,tpt
βEt−1Uc,tpt

, and Xt ≡ Uc,t [gt − τtθtlt]
be marginal utility adjusted debt, return and primary deficit. Using the household’s first-
order necessary conditions and the resource constraint, at any state s for a given tax rate τ , a
household’s consumption cτ (s) satisfies

(1− τ) θ(s)cτ (s)−α +

(
cτ (s) + g(s)

θ(s)

)γ
= 0. (41)

Along any history
(
st−1, st

)
effective returns and effective deficits can be expressed in terms of

exogenous states st and a period-t tax rate τ as

Rτ
(
st, s

t−1
)

=
cτ (st)

−α p (st)

β
´
cτ (s′)−α p (s′)π (ds′|st−1)

,

Xτ
(
st, s

t−1
)

=

(
cτ (st) + g (st)

θ (st)

)1+γ

− cτ (st)
1−α .

These transformations allow us to assert that the Ramsey planner’s optimal value function for
t ≥ 1 satisfies the Bellman equation:

V (B_, s_) = max
τ(·),B(·)

ˆ [
U

(
cτ(s)(s),

cτ(s)(s) + g(s)

θ(s)

)
+ βV (B(s), s)

]
π (ds|s_) (42)

where maximization is subject to

B(s) = Rτ(s) (s, s_)B_ + Xτ(s) (s) for all s. (43)

Problem (42) closely resembles problem (28) except that all variables have been transformed
into their effective counterparts.18 The planner now uses effective debt to smooth risk, and the
evolution of optimal effective government debt level satisfies

V ′
(
B̃t, st

)
= EtV ′

(
B̃t+1, st+1

)
+ βcovt(Rt+1, V

′(B̃t+1, st+1)),

18The planner’s problem at t = 0 at initial debt B−1 and state s−1 is

max
τ(·),B(·)

ˆ [
U

(
cτ(s)(s),

cτ(s)(s) + g(s)

θ(s)

)
+ βV (B(s), s)

]
π (ds|s−1)

subject to
B(s0) = Xτ (s) + Uc

(
cτ(s)(s)

)
p(s)β−1B−1 ∀s
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an analogue of (30). The economic intuition for this equation is that the planner still uses
covariance of returns with shadow cost of debt to hedge risk, but adjusts all the variables for
the shadow costs of raising revenues.

We can use insights from Section 3.3 to define a risk-minimizing level of effective debt as

B∗ ≡ arg min
B

var
[
RB + PV (Xτ(B))

]
, (44)

where τ(B) satisfies the following ergodic version of the government budget constraint(
1− β
β

)
B = EXτ (·) . (45)

We extend Proposition 6 to accommodate risk averse preferences.

Proposition 7. The ergodic mean and the speed of mean reversion of effective debt
{
B̃t
}
t
are

EB̃t = B∗ +O(σ, 1− β),

Et
(
B̃t+1 − B∗

)
B̃t − B∗

=
1

1 + β2var(Rτ(B∗))
+O(σ3, (1− β)σ2).

Furthermore, B∗ satisfies

B∗ = −
cov

(
Rτ(B), PV

(
Xτ(B)

))
var
(
Rτ(B)

) +O(1− β) for all B. (46)

Proposition 7 confirms our theme that a target level of government debt under the optimal
plan solves a variance-minimization problem. It also extends a finding from equation (36) that
while second moments of returns and the primary government deficit depend on government
policy, effects of the tax rate are is small, so omitting them lead to errors of order only O(1−β).
This means that we can also simply estimate the variance of effective returns and their covariance
with the effective deficit directly and then use that estimate to estimate a risk-minimizing level
of government debt. We apply that procedure in Section 4.

Formula (46) has implications about an optimal level of risk-free debt that relate to findings
of Aiyagari et al. (2002). The return on risk-free debt is known one period in advance, but the
effective return are not. In particular, the effective return is high in states in which consumption
is low, namely, states in which the primary government deficit is high, either because govern-
ment expenditures are high or productivity is low, making cov (Rτ , PV (Xτ )) > 0. Therefore,
formula (46) implies that an optimal long-run level of risk-free debt is negative, i.e., the planner
accumulates assets. Furthermore, since aggregate consumption growth is not volatile, at least
in U.S. data, var(Rτ ) would be low in most U.S. calibrations, implying that the long-run asset
level should be quite high (see also Example 2 in Section 3.2). This provides intuition for some
of the numerical findings in Aiyagari et al. (2002) and some subsequent contributions too.

We can apply insights from Section 3.2 to situations in which the planner manages a portfolio
of K securities. A version of the planner’s Bellman equation (42), modified to have effective
total assets to be the state variable, extends along the lines in (22). In the interior, a martingale
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equation restricts every security, namely,

V ′
(
B̃t, st

)
= EtRkt+1V

′
(
B̃t+1, st+1

)
= EtV ′

(
B̃t+1, st+1

)
+ βcovt(Rkt+1, V

′(B̃t+1, st+1)), (47)

where Rkt+1 is the effective return on security k. Equation (47) implies equation (34) of Farhi
(2010) that describes CCAPM Euler equations. Now let Rkτ be the effective returns on asset
k evaluated at tax rate τ and let Rτ =

[
R1
τ ...RKτ

]
be a matrix of these returns. Combining

the insights from this section and Lemma 4, it follows that the risk-minimizing portfolio can be
approximated, up to the order O(σ, (1− β)), by

−C[Rτ(0),Rτ(0)]
−1C[Rτ(0), PV (Xτ(0))]. (48)

4 A quantitative example

We now study an economy with a risk-averse representative consumer together with g, p, θ pro-
cesses calibrated to match stylized U.S. business cycle facts during the post WWII period. We
use our expressions from Proposition 7 and the equation (48) risk-minimizing portfolio and
related extensions of expressions for other moments reported in Proposition 6. Among other
things, we use these calculations to verify the accuracy of our approximations for the ergodic
behavior of government debt, the tax rate, and tax collections under an optimal plan.

We set utility function parameters α, γ, β equal to 1, 2, 0.98. We begin by assuming that
households and the government trade a single one-period security and parameterize a stochastic
process for (θt, pt, gt) in terms of the following AR(1) specifications:

ln θt = ρθ ln θt−1 + σθεθ,t

ln gt = ln ḡ + χgεθ,t + σgεg,t

ln pt = χpεθ,t + σpεp,t,

where εθ,t, εg,t and εp,t are i.i.d. standard normal random variables.
Our parameterizations of productivity and government expenditures are standard, but our

calibration of asset payoff is less common. The literature typically assumes that the real payoff
on government debt is risk-free and calculates returns on that asset from a marginal utility of
a representative consumer within a neoclassical growth model. This approach unfortunately
implies asset returns that are not consistent with observed returns on government debt. That
deficiency matters for us because our formulas assert that the variance and covariance of returns
on government debt are important determinants of optimal debt management. Therefore, we
simply set parameters of the stochastic process of payoffs pt to assure that the return on the
government’s portfolio matches the return on the security held or issued by the government in
our model.19

Table II documents our calibration targets for parameters (ḡ, ρθ, χg, χp, σθ, σg, σp) in terms
19Amore sophisticated approach would be to model the reason for the fluctuations in real returns on government

debt explicitly. The asset pricing literature in finance proposes several ways to do this. One approach is the
discount factor shock model of Albuquerque et al. (2016 forthcoming). Appendix B shows that our model with
payoff shocks to debt is essentially equivalent to a model with discount factor shocks but risk-free debt.
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of moments of output, government expenditures, and bond returns. We use time series for these
variables for 1947-2014 at annual frequencies. Except for returns, we took logarithms of all
variables and then Hodrick-Prescott pre-filtered them, using a smoothing parameter equal to
6.25. For output yt and government expenditures gt, we use Bureau of Economic Analysis data
for aggregate real labor earnings and federal government consumption expenditures plus transfer
payments.20 We measure Bt as the real market value of gross federal debt series published by
the Federal Reserve Bank of Dallas.21

We propose two measures of returns on government debt. As a baseline, we impute real
returns Rt using data on the real federal primary deficit22 Xt and market value of government
debt Bt. The observed duration of government debt has been approximately constant, allowing
us to write the government budget constraint as

(pt + qt)Bt−1 = qtBt −Xt. (49)

Multiply and divide the first term by qt−1 and use the fact that the holding period return for
long term debt is Rt = qt+pt

qt−1
to rewrite equation (49) as

Rt =
Bt −Xt

Bt−1
, (50)

where Bt = qtBt is the observed market value of government debt. The average annual return
in our sample is about 5% and its standard deviation is 5%. As an alternative measure, we also
calibrate payoffs to match the moments of the real one year U.S. treasury yield, obtained from
release H.15 of the Board of Governors of the Federal Reserve System. The average return in
our sample is 2.0% with a standard deviation of 2.6%. The main difference between the two
return measures comes from the fact that we capital gains from revaluations of long term debt
are captured in imputed returns, but not in one year treasury yields.

Returns is in our model are endogenous and depend both on parameters and on government
policy {τt, Bt}t. We assume that the tax rate conformed to the rule

τt = (1−ρτ )τ̄+ρττt−1 +ρY log yt+ρY_ log yt−1 +ρggt+ρg_gt−1 +ρRRt+ρR_Rt−1 +ρB_ logBt,

(51)
whose coefficients we estimated with an OLS regression using our series on output, expenditure,
returns, debt, and an average marginal income tax rate τt obtained from Barro and Redlick
(2011). Our specification (51) is flexible enough to capture how tax rates are persistent and how
they adjust to movements in government expenditures, returns, and the level of government
debt. We report estimated coefficients of (51) in Table III and the in-sample fit in Figure II.
Given our estimated tax rule, we set debt {Bt}t to satisfy the government’s budget constraint.
Appendix C provides details about how we compute a competitive equilibrium given government

20Since in our model we abstract from capital, our measure of output y is aggregate labor earnings. Results
remain essentially unchanged if we use GDP per capita instead.

21Calculation of this series takes into account outstanding marketable and non-marketable debt of different
maturities issued by the Treasury and uses current market prices to convert par value to market value.

22We measure this as government expenditure, i.e., federal consumption and transfer payments, minus total
federal tax receipts, both from the Bureau of Economic Analysis.

25



policy {τt, Bt}t. Table II summarizes parameters values and the fit of a competitive equilibrium
outcomes to U.S. data.

Using this calibration, we compute a global approximation to the Ramsey allocation. Ap-
pendix C reports details about the numerical procedure. In Table IV, we compare predictions
of our quadratic approximations about the behavior of government debt and tax revenues to
those obtained by using a more accurate global numerical procedure. Given our assumption
of logarithmic utility, effective debt and returns are simply Bt = Bt/ct and Rt = Rtct/ct−1.
Following Proposition 7, we use equation (46) evaluated at τ(0) to calculate the risk-minimizing
level of debt and var(Rτ(0)) to compute the speed of mean reversion. We similarly use equations
in Proposition 6, now written in terms of effective units, to compute the ergodic variance of
effective debt and moments of tax rates Zt = τt (1− τt)

1
γ .

We computed the ergodic distribution by simulating policies computed using the global
approximation method. The first two columns in Table IV show that for the baseline calibration,
our expressions for the ergodic distribution of debt and tax revenues approximate well those
obtained from the simulations. As an illustration of how the approximations do away from the
ergodic distribution, we plot E0Bt using

E0[Bt − B∗] ≈ (Bt − B∗)
(

1

1 + β2var(Rτ(0))

)t
, (52)

and compare it to the mean path constructed using 10000 simulations under policies computed
using the more accurate global methods of length 15000 periods. Figure III indicates that
formula (52) gives a very accurate approximation for the entire path and not just its long run
target level of effective debt.

An insight of Proposition 7 is that covariances and variances are not very sensitive to the
policies under which they are evaluated. Therefore, one should expect that the calculation of
these variances in the data, generated by the actual rather than an optimal policy, produce
reliable estimates of the optimal long-run debt level. We verify this as follows. Consider a
simple first order VAR [

Xt
log yt

]
= A

[
Xt−1

log yt−1

]
+ Σ

[
εX ,t

εy,t

]
.

Let [aX ay] be the first row of the matrix [I − βA]−1. Then the expected present value of the
primary government surplus conditional on (Xt, log yt) is

PV (X ; (Xt, log yt)) = [aX ay]

[
Xt

log yt

]
,

and an appropriate estimate of the target level of debt is

B∗ = −ay
cov(Rt, log yt)

var(Rt)
− aX

cov(Rt,Xt)
var(Rt)

.

We use our time series for returns, consumption, output, and the primary government deficit to
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construct time series of Rt and Xt. Table V presents the estimated coefficients that we then use
to estimate both the target level of effective debt and the speed of the mean reversion reported
in the column titled “VAR” in Table IV.

The findings in Table IV convey that at our baseline calibration of the long-run effective
debt is close to zero, that the convergence is slow (half life of 250 years), that government debt
has large fluctuations (the standard deviation is 20%), while there are small movements in the
tax rate and tax revenues (whose standard deviations is 0.5%). A key empirical fact that drives
these results is that a substantial component of fluctuations in returns is uncorrelated with
fundamentals. That makes holding large positions frustrate the hedging motive and drives the
optimal plan towards low assets.

In our baseline, we chose the payoff process to match imputed returns on the total debt
portfolio traded by the government. To check robustness of our results we show that our ap-
proximation procedure continues to work when we instead measure the returns using the 1 year
U.S. treasury yield or assume that the real debt traded by the government is risk-free. In Table
IV, the columns “1 yr. yield” and “risk-free debt” report moments of the ergodic distribution
for our calibrated economy in which we set χp = −0.10, σp = 0.02 to match the standard
deviation of 1 year U.S. treasury yields and the correlation of those yields with output, which
are 2.6% and -0.20 in our sample, respectively, and then, alternatively, χp = σp = 0 to obtain
the risk free payoff. These alternative assumptions about returns progressively weaken the or-
thogonal component. Consistent with our discussion of equation (46), the government holds a
larger asset position (i.e., a negative debt) to exploit the stronger positive correlation of returns
and deficits. Because the speed of mean reversion is inversely related to the volatility of returns,
the half-life of debt increases from 237 years in the baseline calibration to 655 years for the
calibration with one year yields and increases further to 1244 years for the risk-free debt. In all
of these settings, our simple formulas capture the comparative outcomes extremely well.

We now extend our analysis to allow the government to trade multiple assets. We pursue two
aims with this extension. First, we want to evaluate the accuracy of approximations provided
by equation (48). Second, we want to highlight additional insights about optimal government
portfolio management and to re-examine an argument of Lucas and Zeldes (2009) that it is
optimal for a government to take a positive position in a risky security that pays a risk premium.
Although our problem has some features in common with the problem solved by Merton (1969),
there are two critical differences: our problem is posed within a general equilibrium in which
a Ramsey planner takes into account how its government actions affect asset returns; and the
Ramsey planner is benevolent.

We fix parameters as described above except that now we assume that the government trades
two securities. One is a riskless real bond; the logarithm of the payoff on the other security is
described by ln pt = χpεθ,t + σpεp,t, where χp, σp are now calibrated to match the correlation
of dividends on the S&P500 with output and the standard deviation of these dividends, which
for our sample take the values 0.30 and 4.5%. Making the payoffs positively comove with TFP
makes this asset risky resulting in higher expected holding period returns relative to the risk
free rate.23 We set the initial debt at 130% of output.

23Given our assumption of isoelastic preferences, we cannot match the magnitude of the risk premium quan-
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From Table VI we see that the formula in equation (48) accurately describes the long-run
portfolio in addition to the speed of mean reversion and standard deviation of total assets. In
the long run, the optimal plan has negative debt invested almost solely in the risk free asset.
Initially, when it is indebted, the government shorts the stock market. Although the initial short
position in the stock market exposes the government to the orthogonal component εp,t in the
payoff, temporarily it provides a good hedge by delivering higher returns in times of low TFP.
Eventually, the government uses only the risk free bond to hedge. The dynamics of portfolio
re-balancing are consistent with Example 3 from Section 3.2. The two lines in Figure IV show
the marginal utility adjusted government positions in the risk-free security (solid line) and in
the risky security (dashed line).

Our quantitative analysis confirms the optimality of a portfolio management rule based
on the variance-minimization principle outlined in Section 3.2 and cautions against following
recommendations that a government should on the margin invest in assets that pay a risk
premium. In our economy, the Ramsey planner shares households’ aversion to consumption risk,
an aversion that in general equilibrium requires a return premium to compensate for bearing
risk. The Ramsey planner finds it optimal to invest in such assets only in so far as doing so
helps to reduce the total riskiness of gross government expenditures.

5 Concluding remarks

This paper characterizes optimal debt management and flat rate taxation in a fairly general
incomplete markets model. We express dynamic hedging motives in a terms of a fiscal risk
minimization problem. We present simple formulas for the mean, variance, and speed of con-
vergence to an ergodic distribution of government debt. We analyze some extensions of our
basic environment, an endeavor we pursue more in Bhandari et al. (2015b), where we study
economies whose substantial ex ante heterogeneity coming from persistent differences in skills
that unleash social motives for redistribution and social insurance. The analysis here sets the
stage for such extensions – partly by providing appropriate tools for approximating equilib-
ria well and for formulating Ramsey problems in mathematically convenient ways, and partly
by isolating transcendent forces that ultimately determine transient and long-run dynamics of
government debt and taxes in richer settings. For example, appropriately adjusted fiscal risk
minimization problems continue to shape the mean of an ergodic distribution of government
debt, while the hedging costs of being away from that fiscal risk-minimizing debt level shape
speeds of convergence. Another extension, Bhandari et al. (2015a), uses the empirical properties
of returns across maturities to compute an optimal maturity structure of government debt.

titatively but we conjecture that our approach extends to the Epstein-Zin preferences and richer environments
with more realistic implications for asset pricing behavior such as the one considered by Albuquerque et al. (2016
forthcoming). We leave this extension it to future work.
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A Proofs

A.1 Proofs for Section 2

We first show preliminary results that we discussed in Section 2. Let
{
B̃t, l̃t

}
t
be a solution to

(10) and Z̃t = l̃t − l̃1+γ
t .

Lemma 5. l̃γt ≥ 1
1+γ for all t and there is one to one map between l̃t and Z̃t and τ̃t and Z̃t

with Z̃t ≤ Z for all t. The function Ψ : (−∞, Z] → R is strictly decreasing, strictly concave,
differentiable and satisfies limZ→−∞Ψ′ (Z) = 0 and limZ→Z Ψ′ (Z) = −∞.

Proof. First we show that l̃γt ≥ 1
1+γ for all t. Suppose there exists a k such that l̃γk < 1

1+γ .
Let total revenues Z(l) ≡ l − l1+γ . The maximum value of Z(·) is achieved at l∗ = 1

(1+γ)
1
γ
.

Since Z(∞) = −∞ < Z(l̃k) < Z(l∗), applying the Intermediate Value Theorem, we can find a
l
′
k >

1

(1+γ)
1
γ
> l̃k such that Z(l

′
k) = Z(l̃k). Construct an alternative sequence of

{
B̃t, l̂t

}
t where

l̂t = l
′
k for t = k and l̂t = l̃t for t 6= k. This sequence

{
B̃t, l̂t

}
t also satisfies constraints (9) for

all t but has a strictly higher welfare as the objective function (10) is strictly increasing in lt.
Thus, we obtain a contradiction that {B̃t, l̃t} is a optimal solution.

Since l̃γt ≥ 1
1+γ , it implies that Z̃t ≤ γ

(
1

1+γ

)1+1/γ
, which is our definition of Z, and the

relationship between Z̃t and l̃t and τ̃t and Z̃t is one to one in the relevant range of Z̃t. Since the
Ψ satisfies Ψ(l − l1+γ) = 1

1+γ l
1+γ and defined for lγ ≥ 1

1+γ . Differentiate it twice and take the
limits as lγ → 1

1+γ and lγ →∞ (which corresponds to Z → Z̄ and Z → −∞) to show properties
of Ψ.

For our analysis we need the optimality conditions to (12):

V ′ (B_) = β

ˆ
R (s)V ′

(
B̃ (s,B_)

)
π (ds)− κ̄+ κ (53)

and
γΨ′

(
Z̃ (s,B_)

)
= −1 + βV ′

(
B̃(s,B_)

)
− κ̄ (s) + κ (s) , (54)

where κ̄ (s) and κ (s) are the Lagrange multipliers on B ≤ B and B ≥ B, and κ̄ =´
κ̄ (s)R (s)π(ds), κ =

´
κ (s)R (s)π(ds).

Proof of Lemma 2

Proof. The right side of expression (12) can be maximized separately for each s. As the objective
function being additively separable and concave in (Z,B) and the constraint (13) takes the form
Z+B = E(s,B_), we can apply Corollary 2(ii) in Quah (2007) to conclude that optimal values
of Z (s) , B (s) are increasing in E (s,B_). We next show that the solution is strictly increasing
when it is interior. Suppose that E(s′′, B_) > E(s′, B_) but B̃(s′′, B_) = B̃(s′, B_). Then
Z̃(s′′, B_) > Z̃(s′, B_) from (13). Strict concavity of Ψ(·) and an interior solution to (54) then
implies

−1 + βV ′(B̃(s′, B_)) = −1 + βV ′(B̃(s′′, B_)) = γΨ′(Z̃(s′′, B_)) < γΨ′(Z̃(s′, B_)),
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contradicting (54) when solution is interior. Therefore B̃(s′′, B_) > B̃(s′, B_). Strict mono-
tonicty of Z̃ and τ̃ then follows from (54) and the fact that τ̃ is an increasing function of Z̃.

Proof of Proposition 1

For the proof of Proposition 1 we will use the observation:

Lemma 6. The random variables p(s) and g(s) are perfectly correlated if and only if there exists
a B such that E(s,B_) is independent of s.

Proof. If p and g are perfectly correlated we can write them as p(s) = p̄+ψg(s) for some ψ 6= 0.
Set B = −βp̄

ψ and observe that E(s,B) = − p̄
ψ . The “only if” part follows immediately from the

definition of E(s,B).

To show existence of the invariant distribution we consider two cases that depend on whether
or not p(s) and g(s) are perfectly correlated. In cases where they are, the arguments in the proof
of Proposition 2 show limt→∞ B̃t = B∗ and thus the (unique) invariant distribution exists with
all mass on B∗.

Now we deal with the case p(s) and g(s) are not perfectly correlated. Our strategy is use
to use Theorem 2 in Hopenhayn and Prescott (1992) and a crucial step is to establish that the
probability of reaching

[
B − ε, B

]
starting from any B_ ∈

[
B,B − ε

]
in a finite number of steps

is bounded from below. To show that we will use the next lemma.

Lemma 7. There are sets S′, S′′ ⊂ S of positive measure such that B̃ (s′, B_) ≥ B_ for all
s′ ∈ S′ and B_ ≥ B̃ (s′′, B_) for all s′′ ∈ S′′ with at least one inequality strict and both
inequalities strict if B_ ∈

(
B,B

)
.

Proof. Suppose B > B_ ≥ B̃ (s,B_) for almost all s, which by strict concavity of V implies

V ′(B_) ≤ βER (·)V ′
(
B̃ (·, B_)

)
. (55)

From Lemma 2, except when B_ = B̃(s,B_) = B for almost all s, the inequality (55) can
hold with an equality only if E(s,B_) is independent of s. This is ruled out when p(s) and
g(s) are not perfectly correlated and thus V ′ (B_) < βER (·)V ′

(
B̃ (·, B_)

)
. On the other

hand equation (53) implies that V ′ (B_) ≥ βER (·)V ′
(
B̃ (·, B_)

)
, a contradiction. Thus, if

B > B_ then there exists S′ ⊂ S with positive measure such that B̃(s′, B_) > B_ for all
s′ ∈ S′. Analogous arguments show that if B_ > B then there exits S′′ with positive measure
such that B̃(s′′, B_) < B_ for all s′′ ∈ S′′ and that there exist s′ and s′′ such that B(s′, B) = B

and B̃(s′′, B) = B.

Lemma 7 implies that both E
[
B̃(s,B_)−B_

∣∣∣∣B̃(s,B_) ≥ B_
]
and Pr

{
B̃(s,B_) ≥ B_

}
are positive for all B_ ∈ [B,B − ε] for any ε > 0. As both of these terms are continuous
functions of B_, compactness of [B,B − ε] implies that there exists d, p > 0 such that

E
[
B̃(s,B_)−B_

∣∣∣∣B̃(s,B_) ≥ B_
]
≥ d (56)
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and
Pr
{
B̃(s,B_) ≥ B_

}
≥ p (57)

for all B_ ∈ [B,B − ε]. As B̃(s,B_)−B_ is bounded above by D = B −B, we obtain that24

Pr
{
B̃(s,B_)−B_ > d/2

}
≥ d/2

D
p

for all B_ ∈ [B,B− ε]. Therefore, there must exist an integer n and % > 0 that that probability
of reaching

[
B − ε, B

]
starting from any B_ ∈

[
B,B − ε

]
in n steps is greater than %. Analogous

arguments establish that probability of reaching
[
B,B − ε

]
starting from B_ ∈

[
B − ε, B

]
in

finite number of steps is finite. Since by Lemma 2 policy functions are monotone in B_, Theorem
2 in Hopenhayn and Prescott (1992) establishes the existence of an unique invariant distribution.

Proof of Proposition 3

Since R(s) = p(s)
βp̄ , we can assume that R(s) is an exogenous stochastic process given by R(s) =

1
β [1 + σεR(s)] for some mean zero random variable εR. Let ε = (εg, εR) and write policy functions
as B̃(σε, B_;σ) and Z̃(σε, B_;σ). Let µ̃(B_;σ) ≡ V ′(B_;σ). When the solution is interior,
the first order condition with respect to Z, equation (54) implies that

Z̃ (σε, B_;σ) = Ψ
′−1

−1 + βµ̃
(
B̃ (σε, B_;σ) ;σ

)
γ

 ≡ Φ
(
µ̃
(
B̃ (σε, B_;σ) ;σ

))
. (58)

Therefore we can write equations (13) and (53) as

B_
β

(1 + σεR) + ḡ + σεg = Φ
(
µ̃
(
B̃ (σε, B_;σ) ;σ

))
+ B̃ (σε, B_;σ) for all ε,B_, σ (59)

and
µ̃(B_;σ) = E

[
(1 + σεR) µ̃

(
B̃ (σε, B_;σ) ;σ

)]
for all B_,σ. (60)

We use B̃g, B̃R, B̃B_, B̃σ to denote derivatives of B̃(σε, B_;σ) with respect to its first,
second, third and fourth argument evaluated at (0, B_; 0). All the second derivatives and
derivatives of µ̃ evaluated at (0, B_; 0) are defined analogously. Finally we use Φ̄ and Φµ to
denote the value and derivative of Φ(·) evaluated at µ̃ (B_; 0). Observe that the optimality
requires that B̃ (0, B_; 0) = B_.

To calculate these derivatives, differentiate (59) and (60) with respect to εg, εR, B_ and

24An arbitrary random variable f(s,B_), standing in for the B̃(s,B_) ≥ B_, that minimizes probability of
Pr
{
B̃(s,B_)−B > d

2

}
while still satisfying equations (56) and (57) is obtained by placing a mass ψ on B−B_

and a mass Pr
{
B̃(s,B_)−B_ ≥ 0

}
− ψ on d

2
. As B −B_ ≤ D, ψ can be bounded from below by d/2

D−d/2p.
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evaluate them as σ → 0 to obtain

B_
β

=
[
Φµµ̃B_ + 1

]
B̃R, 1 =

[
Φµµ̃B_ + 1

]
B̃g,

1

β
=
[
Φµµ̃B_ + 1

]
B̃B_, µ̃B_ = µ̃B_B̃B_.

These equations can be solved for

B̃B_ = 1, Φµµ̃B_ + 1 =
1

β
, B̃R = B_, B̃g = β. (61)

Using the same steps for the second order derivatives we can show that

B̃B_B_ = B̃gg = B̃RR = B̃Rg = 0,

Φµµµ̃
2
B_ + Φµµ̃B_B_ = 0. (62)

Similarly, differentiating (59) and (60) with respect to σ and its cross-partials we get

µ̃σ = B̃σ = B̃σp = B̃σg = 0,

βµσσΦµ +Bσσ = 0,

B̃σσ = −2E

[
εR (εRB_ + βεg) +

Φ̄(1− β)

β (Φµ)2 (εRB_ + βεg)
2

]
. (63)

Using these expressions and after dropping terms that are zero, the second order Taylor
expansion of B̃ (σε, B_;σ) gives

B̃ (σε, B_;σ) = B_ + B̃gσεg + B̃RσεR +
σ2

2
B̃σσ +O(σ3)

= B_ + βσεg +B_σεR − var (εR)σ2B_− βcov(εR, εg)σ
2 +O(σ3, (1− β)σ2). (64)

Substituting σεg = g(s) − ḡ, σεR = R(s) − β−1 into this expression we obtain (17). Use the
definition of B∗ and the fact that 1 − xσ2 = 1

1+xσ2 + O(σ3) and σ = σ
1+σ2x

+ O(σ3) for any
constant x we can rewrite (64) as

B̃ (s,B_) = B∗ + β [g(s)− ḡ] +B∗ [βR(s)− 1] +
βR(s)− 1

1 + β2var(R)
(B_−B∗)

+
(B_−B∗)

1 + β2var(R)
+O(σ3, (1− β)σ2),

which immediately gives the mean and the speed of mean-reversion of B̃ in Proposition 3. To
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compute ergodic variance, use the law of total variance.

var(B̃t) = E
(

var
[
B̃(σεt, Bt−1)−B∗|Bt−1

])
+ var

(
E
[
B̃(σεt, Bt−1)−B∗|Bt−1

])
= E

(
β2var(RB∗ + g) +

β2var(R)(Bt−1 −B∗)2

(1 + β2var(R))2

)
+ var

(
B∗ +

(Bt−1 −B∗)
(1 + β2var(R))

)
+O(σ3, (1− β)σ2)

= β2var(RB∗ + g) +
β2var(R)var(B̃t−1)

(1 + β2var(R))2 +
var(B̃t−1)

(1 + β2var(R))2
+O(σ3, (1− β)σ2).

By definition in the invariant distribution var(B̃t) = var(B̃t−1) and replacing 1
1+β2var(R)

=

1−β2var(R)+O(σ3, (1−β)σ2) we get the expression for ergodic variance of B̃t in Proposition 3.
For Z̃t we exploit the fact that Z̃(s,B_) = Φ (µ (s,B_)) and obtain the second order Taylor

expansion of Φ (µ (s,B_)) as

Φ (µ (s,B_)) = Φ∗ +

(
1− β
β

)
(B_−B∗) +

(
1− β
β

)
β [g(s)− ḡ] +

(
1− β
β

)
B∗ [βR(s)− 1] +(

1− β
β

)
(B_−B∗) [βR(s)− 1] + β (B_−B∗) var (R) +O

(
σ3, (1− β)σ2

)
,

where Φ∗ =
(

1−β
β

)
B∗ + ḡ. The steps to compute the ergodic moments of Z̃t that are reported

in Proposition 3 are similar to those of B̃t and hence we omit them.

A.2 Proof of Proposition 4

Using strict concavity of U and Ψ, standard arguments show that value function characterizing
the optimal plan with transfers in equation (19) is continuous, strictly concave, and differentiable
on
[
B,B

]
. The steps to show uniqueness of invariant distribution of

{
B̃t, Z̃t, T̃t

}
are identical

to those in the proof of Proposition 1 as in Appendix A.1. They follow from the concavity of
the value function and the properties that optimal policy rules B̃ (·, ·) , Z̃ (·, ·) and −T̃ (·, ·) are
continuous and increasing in B_ for all s and strictly increasing in E in the interior as in Lemma
2.

The first order conditions with respect to Z(s), T (s), B(s) are

γΨ′ (Z(s)) = µ(s), (65)

ω

1 + n
Uc

(
T (s)

1 + n

)
+

1

1 + n
+ µ(s) = 0, (66)

−1 + βV ′ (B(s))− κ̄ (s) + κ (s) = µ(s), (67)

where µ(s) is the multiplier on constraint (20) and κ̄ (s) , κ (s) are the multipliers on the bound-
aries

[
B,B

]
. Equations (65) and (66) allow us to solve for net-tax revenues, I(s) ≡ Z(s)−T (s)

as a function of µ(s)

I(µ) = Ψ′
−1
(
µ

γ

)
− (1 + n)U−1

c

(
− 1

ω
− 1 + n

ω
µ

)
. (68)

The equilibrium conditions for an interior solution to the planners problem can then be written
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as

B_p(s)
βp̄

+ g(s) = I
(
µ̃
(
B̃(s,B_)

))
+ B̃(s,B_), (69)

µ̃(B_) = E
[(

p(s)

p̄

)
µ̃
(
B̃(s,B_)

)]
. (70)

Note that the system of equations (69) and (70) exactly mirrors the system of equations (59)
and (60) with Ψ replaced with I. The approximation of B̃t in the proof of Proposition 3 (see
Appendix A.1) does not rely on the properties of Ψ, and thus the approximation of the optimal
policies B̃t and Ĩt that solve (69) and (70) will be identical to the representative agent case.
Importantly, the approximation to the ergodic distribution of B̃t and Ĩt is independent of the
value of ω.

Define the level of transfers when the government has a net tax revenue of I as T (I;ω).
Combine the first order conditions, (65) and (66) and substitute Z = I +T to express transfers,
T (I;ω) implicitly using

ω

1 + n
Uc

(
T (I;ω)

1 + n

)
+ γΨ′(I + T (I;ω)) = − 1

1 + n
.

Differentiating with respect to ω we get,

∂T

∂ω
(I;ω) = −

1
1+nUc

(
T (I;ω)
1+n

)
ω

(1+n)2Ucc

(
T (I;ω)
1+n

)
+ γΨ′′(I + T (I;ω))

Both Ucc < 0 and Ψ′′ < 0, we can conclude that ∂T
∂ω (I;ω) > 0. Thus Tt = T (It;ω) is increasing

in ω and first order stochastic dominance follows immediately.
Finally, when we modify the tax scheme to allow transfers only to unproductive agents, the

first order conditions are unchanged except equation (66) that is modified to

ω

n
Uc

(
T (s)

n

)
+

1

n
+ µ(s) = 0

and all the subsequent arguments remain the same.

A.3 Proofs for Section 3.2

Proof for Lemma 3

Problem (22) maintains the structure of a concave objective function and linear constraints so
using the same arguments as in the single asset case we can conclude that V (B_) is differentiable
and strictly concave on the domain

[
B,B

]
and consequently the optimal policies B̃(s,B_) and

Z̃(s,B_) are unique. The next lemma shows that there is a unique optimal portfolio choice
B̃(B_).

Lemma 8. If the random variables R are linearly independent, then there exists a unique port-
folio associated with policy rules B(s,B_) and Z(s,B_).
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Proof. Suppose that there exists two optimal portfolio rules
{
B†,k(B_)

}
6=
{
B∗,k_(B_)

}
such

that
∑

k B
†,k(B_) =

∑
k B
∗,k(B_) = B_. Substituting in budget constraint (23) and taking

differences we obtain that for all states s ∈ S∑
k

[{
B†,k(B_)

}
−
{
B∗,k_(B_)

}]
Rk(s) = 0.

This contradicts the assumption that R are linearly independent.

The gross government expenditures, E(s,B_) with multiple assets are

E(s,B_) = RT (s)B̃(B_) + g(s).

Lemma 2 extends to the policy rules for total assets B̃(s,B_) and tax revenues Z̃(s,B_). To
show uniqueness of the invariant distribution we will split the problem into two cases depending
on whether g(s) is in the span of R.

We begin when g(s) is not in the span of R. Then var(E(·, B_)) > 0 for all B_, and is
uniformly bounded from below by a positive constant. We can then immediately apply our
results from the single asset case to show that there exists a unique invariant distribution using
Theorem 2 in Hopenhayn and Prescott (1992).

When g(s) is in the span of R, the mixing condition required by Hopenhayn and Prescott
(1992) fails. Instead, we shall prove the existence of unique invariant distribution along the lines
of Proposition 2 by showing that B̃t → B∗ almost surely. Without loss of generality assume
that

R1(s) =
1

β
− ψḡ + ψg(s)

for some non zero ψ and that the remaining Rk satisfy the orthogonality condition E(Rk|R−j) =
1
β for all j and k where R−j refers to the vector of returns with out the jth return.25 E(s,B_)

can then be written as

E(s,B_) =
∑
k≥2

Rk(s)B̃k(B_) + B̃1(B_)

(
1

β
− ψḡ

)
+ g(s)(1 + ψB̃1(B_)). (71)

Since g(s) is in the span of R we set C[R,R] to be non-singular. From equation (21), B∗ = − 1
ψ

and set B̃1(B∗) = B∗, B̃k(B∗) = 0 for k ≥ 2 to get that B̃(s,B∗) = B∗ for all s. Thus B∗ is a
steady state, it remains to be shown that B̃t → B∗ almost surely.

The Euler equation for each of the k security

V ′(B_) = βE[Rk(·)V ′(B̃(·, B_))] = E[V ′(B̃(·, B_))] + cov(Rk(·), V ′(B̃(·, B_))

= E[V ′(B̃(·, B_))] + E
[
cov

(
Rk(·), V ′(B̃(·, B_)|R−k

)]
.

In the last equality we used the law of total covariance combined with E(Rk|Rj) = 1
β for k, j 6= 1.

Let B_ < B∗ and suppose that B̃1(B_) ≥ B∗. Equation (71) tells us that, conditional on
R−1, E(·, B_) is perfectly positively correlated with R1(s). As B̃ is increasing in E and V ′ is

25In effect we choose an orthogonal basis of the space spanned by the returns.
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a decreasing function we can immediately conclude that E
[
cov

(
R1(·), V ′(B̃(·, B_)|R−1

)]
≤ 0.

However, B̃1(B_) ≥ B∗ implies that B̃k < 0 for some k ≥ 2. As conditioning on
R−k implies conditioning on g,26 we can immediately conclude that, conditional on R−k

E(·, B_) is perfectly negatively correlated with Rk. The logic from above then implies
that E

[
cov

(
Rk(·), V ′(B̃(·, B_)|R−k

)]
> 0, a contradiction as all K Euler equations must

hold. We can therefore conclude that for B_ ≤ B∗ that B̃_1(B_) ≤ B∗, and hence,
E
[
cov

(
R1(·), V ′(B̃(·, B_)|R−1

)]
≥ 0. Applying this to the Euler equation allows us to con-

clude that if B−1 < B∗ then B̃t ≤ B∗ for all t and

V ′(B̃t) ≥ EV ′(B̃t+1).

Using the same steps as the proof of Proposition 2 we can apply the martingale convergence
theorem to conclude that B̃t → B∗ almost surely. The case when B−1 > B∗ is symmetric.

Lastly we show that g(s) in the span of R and C(R,R) singular characterizes an optimal
policy where tax revenues are constant and total debt is equal to its initial value for all dates.

Lemma 9. g(s) is in the span of R and C(R,R) is singular if and only if the optimal rule for
total debt satisfies B̃(s,B_) = B_ for B_ ∈

[
B,B

]
.

Proof. In the proof we will use the observation that in absence of redundant securities, the
matrix C[R,R] is singular, if and only if there exists a linear combination of R that yields a
risk free return. Now if g(s) is in the span of R then there exist a non-zero vector ψ1 such that
g(s) =

∑
k ψ

k
1R

k(s) and with singular C[R,R] there exists a exist a non-zero vector ψ2 such
that

∑
k ψ

k
2R

k(s) = 1
β . For any initial assets B−1 ∈ [B,B], consider the portfolio that allocates

Bk =

(
B_ +

∑
k ψ

k
1∑

k ψ
k
2

)
ψk2 − ψk1

in security k. It is easy to check that
∑

k B
k = B_ and now we verify that RT (s)B + g(s) is

independent of s:

RT (s)B + g(s) =
∑
k

Rk(s)

[(
B_ +

∑
k ψ

k
1∑

k ψ
k
2

)
ψk2 − ψk1

]
+ g(s) =

1

β

(
B_ +

∑
k ψ

k
1∑

k ψ
k
2

)
.

Thus the policy rule B̃(s,B_) = B_ and Z̃(s,B_) =
(

1−β
β

)
B_ + ḡ is satisfy the budget

constraint (23). As our setting with K securities and returns R is a restricted version of a
complete markets problem27 where policies B̃(s,B_) = B_ and Z̃(s,B_) =

(
1−β
β

)
B_+ ḡ are

optimal, we can conclude that the same policies are optimal for (22) too.
Now we show the converse. Suppose B̃(s,B_) = B_ for all B_ . The budget constraint

implies that
g(s) = B_ + Z∗(B_)−

∑
k

BkRk(s) (72)

Now set B_ = −βEg and equation (72) gives
26As R1 is perfectly correlated with g
27By this we mean a market setting with a complete set of Arrow securities as in Lucas and Stokey (1983)
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g(s) =
∑
k

Bk +
1− β
β

∑
k

Bk + Eg −
∑
k

BkRk(s)

g(s) =
∑
k

BkRk(s)

This shows that g(s) is in the span of R. For B′_ 6= B′′_ and respective optimal portfolios{
B
′k
}
,
{
B
′′k
}

equation (72) again implies that

0 = B′_−B′′_ + Z∗(B′_)− Z∗(B′′_)−
∑
k

(
B
′k −B′′k

)
Rk(s) (73)

Since
(
B
′k −B′′k

)
cannot be a zero vector, we see from (73) that a linear combination of R

yields a constant. Thus a risk free bond is in the space spanned by the returns R and C[R,R]

is singular.

Proof of Lemma 4 and Proposition 5

Let ε ≡ (εg, εR) and functions B̃ (σε,B_;σ), B̃(B_;σ) and µ̃(B_;σ) solve the optimality
conditions for Problem (22) with K assets:

β−1 [1 + σεR]T B̃(B_;σ) = Φ
(
µ̃
(
B̃ (σε, B_;σ)

))
− ḡ − σεg + B̃ (σε, B_;σ) , (74)

µ̃(B_) = E
[
(1 + σεRk) µ̃

(
B̃ (σε, B_;σ)

)]
for all k, (75)

1T B̃(B_;σ) = B_. (76)

The proof will follow the similar steps and notation convention as used in Appendix A.1.
With K > 1 equation (74)-(76) has multiple solutions for B̃(B_; 0) at σ = 0. However unique-
ness of policy rules as asserted in Lemma 3 implies that limσ→0 B̃(B_;σ) exists, which for
now we denote by Bk(B_), and then show below that the existence of second derivatives of
B̃ (σε, B_;σ) along with equations (74)-(76) implies that this limiting portfolio is given by
B∗(B_) as required by Lemma 4.

Many of the first order and second order terms including the the steps to obtain them are
very similar to the single asset case. We get28

B̃Rk(B_) = Bk(B_)

B̃σ(B_) = µ̃σ(B_) = B̃k
σ(B_) = 0.

28The derivatives B̃kB_(B_) are undetermined, but this does not affect any future calculations or the approxi-
mated policy rules for total assets B̃.
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For the second order terms,

B̃B_B_(B_) = 0, µ̃B_B_(B_) = −Φµµ(B_)

Φµ(B_)

(
µ̃B_B_(B_)

)2
,

B̃RkRk = B̃gg = B̃Rkg = 0 ∀k.

The calculations for the second derivative with respect to σ is key to show Lemma 4. Differen-
tiating (75) twice with respect to σ, we obtain

µ̃σσ(B_) = E

[
µ̃σσ(B_) + µ̃B_(B_)B̃σσ(B_) + 2εRk µ̃B_(B_)

∑
j

B̃Rj (B_)εRj + B̃g(B_)εg


+ µ̃B_B_(B_)

∑
j

B̃Rj (B_)εRj + B̃g(B_)εg

2 ]
.

(77)

We can eliminate µ̃σσ(B_) from (77), substitute for B̃Rj (B_) and solve out for B̃σσ(B_). For
all k we obtain,

B̃σσ(B_) = −2E

εRk
∑

j

εRj B̃
j_(B_) + βεg

+
Φ(B_)(1− β)

βΦµ(B_)

∑
j

εRj B̃
j_(B_) + βεg

2 .
(78)

System (78) has K equations, one for each security k. To satisfy all of them, there must exist a
constant δ and portfolio B such that

E

εRk
∑

j

εRj B̃
j_(B_) + βεg

 = δ ∀k, (79)

1TB = B_. (80)

Equations (79) corresponds exactly to the first order conditions of the Problem 24 when we set
the Lagrange multiplier on the constraint 1TB = B_ to be 2δ

β2 . This shows Bk(B_) = B∗,k(B_)

as stated by Lemma 4.
Now we derive an expression forB∗(B_) in terms of the primitives and B_ . Write equations

(79) and (80) as a linear system of equations of the following form[
β2C(R,R) 1

1ᵀ 0

][
B∗

−δ

]
=

[
−β2C(R, g)

B_

]
(81)

where 1 is a K dimensional vector of ones. There are two possible types of solutions to (81). If
C(R,R) is not of full rank, the minimization problem (24) has multiple solutions and further
the minimum is independent of B_. In these cases δ(B_) = 0 for all B_. The other case, when
C(R,R) is invertible, we can express δ(B_) and B∗(B_) as functions of B_. Define a scalar
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η ≡ β−21ᵀC(R,R)−11, and using equation (81) we have

δ(B_) =
1

η

(
B_ + 1ᵀC(R,R)−1C(R, g)

)
, (82)

B∗(B_) = −
(
β−2C(R,R)−1 − β−4C(R,R)−111ᵀC(R,R)−1

η

)
β2C(R, g) +

β−2C(R,R)−11B_
η

,

which after simplification gives us formula (26) in the text.
After substituting for B̃g(B_),

{
B̃Rk(B_)

}
and B̃σσ(B_) in the second order Taylor ex-

pansion we obtain

B̃(s,B_;σ) = B_ + β [g(s)− ḡ] +
∑
k

Bk_(B_)
[
Rk(s)− β−1

]
− δ(B_) +O(σ3, (1− β)σ2),

which after substituting for δ(B_) yields (25). Taking unconditional means of equation (25),
we see that B∗ satisfies δ(B∗) = 0 and from equation (82) we can verify the expression for the
mean of B̃t asserted in Proposition 5. Next taking the mean conditional on B̃t on both sides of
equation (25) we can verify that the speed of mean reversion equals

1− 1

η
=

1

1 + η−1
+O(σ3) =

β−21
ᵀC(R,R)−11

1 + β−21ᵀC(R,R)−11
.

The steps to compute the ergodic variance of B̃ and the ergodic moments of Z̃ are exactly same
as in the proof of Proposition 3 and are omitted.

A.4 Proof of Proposition 6

The proof proceeds along the lines in Proposition 3 and for brevity we will focus on the steps
that different. The PV operator defined in the text satisfies the recursion

PV (x; s) = x(s) + βE
(
PV (x; s′); s

)
∀s ∈ S. (83)

Without loss of generality, we parametrize the exogenous shock process by defining three mean
zero (under the ergodic measure induced by π) random variables ε = (εg, εΘ, εR) as

g(s) = ḡ + σεg(s), R(s_, s) =
1

β
(1 + σεR(s, s_)) , Θ(s) = Θ̄ (1 + σεΘ(s)) ,

where the definition of returns implies that additionally E (εR; s_)=0 for all s_. The policy rule
for debt B̃(σε, B_, s_;σ) and µ(B_, s_;σ) = V ′(B_;σ) satisfy

B_
β

(1 + σεR) + ḡ + σεg = Θ̄ (1 + σεΘ) Φ(µ̃(B̃(σε, B_, s_;σ);σ)) + B̃(σε, B_, s_;σ), (84)

µ̃(B_, s_;σ) = E
[
(1 + σεR) µ̃

(
B̃ (σε, B_, s_;σ) ;σ

)
; s_

]
. (85)
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We use the same convention as in Appendix A.1 for denoting the derivatives which are now
evaluated at (0, B_, s_; 0) and

Φ̄ ≡ Φ(µ̃(B_, s_; 0)) =
1

Θ̄

(
1− β
β

B_ + ḡ

)
.

First order terms
Differentiating equation (84) and (85) with respect to B_, ε we obtain

B̃B_ = 1, µ̃B_ =
1− β
βΦµΘ̄

,

B̃R = B_, B̃g = β, and B̃Θ = −βΘ̄Φ̄. (86)

We show the calculation of the derivatives with respect to σ as they are different with Markov
shocks. First differentiate (84) and (85) with respect to σ to obtain29

0 = Θ̄Φµ(µ̃σ + µ̃B_B̃σ) + B̃σ = Θ̄Φµµ̃σ +
1

β
B̃σ (87)

µ̃σ = E
[
µ̃σ + εRµ̄+ µ̃B_

(
B̃σ + B̃RεR + B̃gεg + B̃ΘεΘ

)
; s_

]
. (88)

Equation (87) implies µ̃σ = − µ̃B_
1−β B̃σ and using E (εR; s_) = 0 and B̃R, B̃g and B̃Θ from equation

(86) we get
B̃σ = E

[(
βB̃σ − (1− β)βεg + (1− β)βΘ̄Φ̄εΘ

)
; s_

]
Now apply the recursive characterization of PV operator from (83) to obtain

B̃σ = −(1− β)βE
[
PV (εg)− Θ̄Φ̄PV (εΘ); s_

]
. (89)

Second order terms
Differentiating equation (84) with respect to B_ and ε we can show that

µ̃B_B_ = −
Φµµ(µ̃B_)2

Φµ
,

B̃B_B_ = B̃gg = B̃Rg = B̃RR = B̃B_g = 0 and B̃B_R = 1.

The cross-partial with respect to TFP shock B̃ΘΘ, B̃Θp, B̃Θg, and B̃ΘB_ end up contributing
O((1 − β)σ2) in the Taylor expansion. As in the i.i.d case, except B̃σσ, all the cross-partials
with respect to σ are zero. Differentiating equation (84) and (85) twice with respect to σ we
have

B̃σσ = −2(1− β)
[
B_PV (CεR,εR) + βPV

(
CεR,PVεg

)
− βΘ̄Φ̄PV

(
CεR,PVεΘ

)]
+O(1− β) (90)

Taylor expansion
Combining all the first order and second order terms, we obtain the the approxima-

tion to B̃ as in equation (34). Let var(x) and cov(x) denote the variance and covariance
29The terms associated with εR, εΘ and εg drop out after we substitute for B̃R, B̃g and B̃Θ from equation (86).
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with respect to the ergodic measure induced by π. We will now show that terms (1 −
β)
[
B_PV

(
CR,R; s

)
+ PV

(
CR,PV (g); s

)
− Φ̄PV

(
CR,PV (Θ); s

)]
can be expressed as

B_var(R) + cov (R,PV (g))− Φ̄cov (R,PV (Θ)) +O(σ3, (1− β)σ2). (91)

Consider the first term (1− β)B_PV
(
CR,R; s

)
. Its easy to see that we can express

(1− β)B_PV
(
CR,R; s

)
= (1− β)B_PV

(
CR,R − var(R); s

)
+B_var(R).

Our assumptions on π imply that the (linear) operator E has a spectral representation30, i.e.,
there exists a sequence of scalars (eigenvalues) {λj} with 1 = λ0 > λ1 > . . . > λj > λj+1 > . . . ,

and sequence of orthonormal31 family of random variables (eigenfunctions) {ψj} such that

E(x; s) =

∞∑
j=0

λj < ψj , x > ψj(s), (92)

where < x, y >≡ Exy is the inner product of random variables x and y with respect to the
ergodic measure induced by π. It is straightforward to verify that eigenfunction associated with
the unit eigenvalue i.e., ψ0(s) = 1 and this allows us to express (92) as

E(x; s) = Ex+
∞∑
j=1

λj < ψj , x > ψj(s).

Note that the eigenvalues of the h period ahead conditional expectation operator, Eh(x; s) ≡
E(x(st+h); s) are

{
λhj

}
and the eigenfunctions {ψj} remain the same as those of E. So for any

random variable x,

PV (x; s) =
∑
t

βtEt(x; s) =
Ex

1− β
+
∑
t

βt
∞∑
j=1

λtj < ψj , x > ψj(s).

Thus (1− β)PV (x− Ex; s) = (1− β)
∑

t β
t
∑∞

j=1 λ
t
j < ψj , x > ψj(s) and it follows that

‖(1−β)PV (x−Ex)‖ ≤ (1−β)
∑
t

(βλ1)t ‖
∞∑
j=1

< ψj , (x− x̄) > ψj‖ =
(1− β)

1− βλ1
‖ (x− x̄) ‖ ∈ O(1−β).

For the last equality we use the fact λ1 < 1. The same arguments can be applied to the other
terms in equation (34) to obtain equation (35).

To compute the ergodic moments of B̃, define B : S → R as

B(s) ≡ B∗ − β
[
E
(
PV (g − ḡ; s′); s

)
− Φ̄(B∗)E

(
PV (Θ− Θ̄; s′); s

)]
and adjusting terms that are of orderO(σ3) using 1−xσ2 = 1

1+xσ2 +O(σ3) and σ = σ
1+σ2x

+O(σ3)

30The argument is standard and follows from the fact that E is both compact and self-adjoint. See Dunford
and Schwartz (1963, 1966) for more details.

31This means < ψj , ψj >= 1 and < ψj , ψk >= 0 for all 0 ≤ k < j.
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for any constant x equation (35) can be expressed as

B̃(s,B_, s_;σ) = B(s) + β [PV (g; s)− E (PV (g; s); s_)]− βΦ̄ [PV (Θ; s)− E (PV (Θ; s); s_)]

+ B(s)[βR(s, s_)− 1] +

(
1

1 + β2var(R)

)
(B_− B(s_)) [βR(s, s_)− 1] +

(
1

1 + β2var(R)

)
(B_− B(s_))

+O(σ3, (1− β)σ2)

Its immediate to verify the mean and speed of mean reversion reported in Proposition 6. We
omit the steps to obtain the ergodic variance of B̃t and the moments for Z̃t as they are same as
in the proof of Proposition 3.

A.5 Proof of Proposition 7

We prove the case when s is i.i.d. The details of the more general case when s is Markov are in
an online appendix. The first order conditions of problem (42) with B and τ yield

V ′(B_) =
E[V ′(B(s))Uc(s)p(s)]

E[Uc(s)p(s)]
,

∂U

∂τ
(τ(s), s)− µ(s)

∂X
∂τ

(τ(s), s)− ∂Uc
∂τ

(τ(s), s)
B_

βE[Ucp]
(µ(s)− µ_) = 0. (93)

where µ_ = βV ′(B_). Let ε = (εg, εp, εθ) be the mean zero innovations to the stochastic
processes (g, p, θ) and ξ ≡ E[Ucp]. Equation (93) implicitly defines the function τ(µ, µ_, ξ,B, σε)
and using τ (·) we can define functions Uc(µ, µ_, ξ,B, σε) ≡ Uc(µ̃, µ̃_, ξ̃,B_, σε)(1 + σεp) and
X (µ, µ_, ξ,B, σε). The optimal policy functions µ̃(B_;σ), ξ̃(B_;σ) and B̃(σε,B_;σ) satisfy

B_Uc(µ̃, µ̃_, ξ̃,B_, σε)
βξ̃

+ X (µ̃, µ̃_, ξ̃,B_, σε) = B̃, (94)

0 = E [(µ̃− µ̃_)Uc] , (95)
˜ξ = E[Uc]. (96)

For brevity we have dropped the arguments of the ·̃ functions and µ̃ represents µ̃(B̃(σε,B_;σ);σ)

while µ̃_ represents µ̃(B_;σ). The steady state associated with B_ and after setting σ = 0 has
µ(s) = µ_ = µ̄.32

As in proof of Proposition 3, we now proceed to compute the terms needed for the second
order Taylor expansion of B̃(σε,B_;σ) at σ = 0. At the outset we derive some properties of τ(·)
that will be useful in simplifying terms as we go along. Differentiating (93) with respect to B, ξ
and µ and evaluating them at σ = 0 where µ(s) = µ_, we obtain that the following derivatives
are zero:

∂τ

∂B
,
∂τ

∂ξ
,
∂2τ

∂B2
,
∂2τ

∂ξ2
, and

∂2τ

∂B∂ξ
.

32In particular for a given B_ the steady state µ̄, ξ̄ solve

B_(1− β)

β
= X (µ̄, µ̄, ξ̄,B_, 0)

ξ̄ = Uc(µ̄, µ̄, ξ̄,B_, 0) = Ūc.
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In addition,
∂2τ

∂B∂µ
+

∂2τ

∂B∂µ_
= 0 and

∂2τ

∂ξ∂µ
+

∂2τ

∂ξ∂µ_
= 0.

These properties extend to Uc(µ, µ_, ξ,B, σε) and X (µ, µ_, ξ,B, σε).
We begin by obtaining the first order terms. Differentiate (94)-(96) of w.r.t B_ to obtain

B̃B_ = 1, µ̃B_ =
1− β

β(−X̄µ − X̄µ_)
, ξ̃B_ = Ūc,µµ̃B_ + Ūc,µ_µ̃B_. (97)

Next differentiate with respect to ε to obtain

B̃ε =

(
B_Ūc,ε
ξ̄β

+ X̄ε

)(
1

β
+ X̄µ_µ̃B_ −

B_Ūc,µ
βξ̄

µ̃B_

)−1

.

Using µ̃B_ = O(1− β) from (97) it follows that

(
1

β
+ X̄µ_µ̃B_ −

B_Ūc,µ
βξ̄

µ̃B_

)−1

= β +O(1− β)

and thus
B̃ε =

(
B_Ūc,ε
Ūc

+ βX̄ε

)
+O(1− β) (98)

Finally differentiating with respect to σ and some algebra yields µ̃σ = B̃σ = ξ̃σ = 0.
Next we compute the the second order terms. Differentiating twice with respect to B_ and

simplifying we find that

B̃B_B_ = 0, µ̃B_B_ =

(
X̄µµ + 2X̄µµ_ + X̄µ_µ_

)
X̄µ + X̄µ_

µ̃2
B_. (99)

It is easy to show that the cross-partials with σ are zero. Next differentiatiating equation (95)
twice with respect to σ we can show that

B̃σσ = −2E
[(
Ūc,ε
Ūc
ε

)
(B̃εε)

]
− E[ε′B̃εεε] +O(1− β). (100)

We are left with B̃εε which, in principle, can be quite complicated with risk aversion. However,
we show that for computing the ergodic mean of effective debt and the speed of mean reversion
we do not need the second derivatives with respect to ε. To see this note that the Taylor
expansion of B̃ after dropping terms that we have already shown to be zero is

B̃(σε,B_;σ) =B_ + B̃εε+
1

2
ε′B̃εεεσ2 − 1

2
E[ε′B̃εεε]σ2

− E
[(
Ūc,ε
Ūc
ε

)
(B̃εε)

]
σ2 +O((1− β)σ2, σ3).

Taking expectations we then have that

E
(
B̃(σε,B_;σ)|B_

)
= B_− E

[(
Ūc,ε
Ūc
ε

)
(B̃εε)

]
σ2 +O((1− β)σ2, σ3). (101)
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Now substituting for B̃ε from equation (98) in equation (101) and noting that for any B we have

Rτ(B)(σε;σ)−Rτ(B)(0; 0) =
∂Rτ(B)(σε;σ)

∂ε
σε+O(σ2),

χτ(B)(σε;σ)− χτ(B)(0; 0) =
∂χτ(B)(σε;σ)

∂ε
σε+O(σ2),

we get

E
(
B̃(σε,B_;σ)|B_

)
= B_− β2var

(
Rτ(B_)

)
B_− β2cov

(
Rτ(B_), χτ(B_)

)
+O((1− β)σ2, σ3).

(102)
As τ(B) satisfies the implicit equation (45), we can differentiate (45) with respect to B to see
that

∂τ(B)

∂B
E
∂

∂τ
XτB =

1− β
β

= O(1− β).

As β → 1, τ(B)→ τ(0) and thus E
(
∂XτB
∂τ

)
limits to a constant as β → 1 which implies that

∂τ(B)

∂B
,
∂

∂B
Xτ(B) and

∂

∂B
Rτ(B) = O(1− β).

After taking fist order conditions with respect to B of the variance minimization problem
(44) we find that B∗ satisfies

E
(
Rτ(B∗)B∗ + Xτ(B∗)

)(
Rτ(B∗) + B∗ ∂

∂B
Rτ(B∗) −

∂

∂B
Xτ(B∗)

)
= 0.

Rearranging terms and using our expressions from above33 we get

B∗ = −
cov

(
Rτ(B∗),Xτ(B∗)

)
var
(
Rτ(B∗)

) +O (1− β) .

Finally τ(B∗)− τ(B) = O(1− β) and thus

B∗ = −
cov

(
Rτ(B∗),Xτ(B∗)

)
var
(
Rτ(B∗)

) = −
cov

(
Rτ(B),Xτ(B)

)
var
(
Rτ(B)

) +O(1− β). (103)

Using (103) and 1− xσ2 = 1
1+xσ2 +O(σ3) we then can rewrite (102) as

E
(
B̃(σε,B_;σ)|B_

)
= B∗ +

1

1 + β2var
(
Rτ(B∗)

)(B_− B∗) +O((1− β)σ2, σ3).

The expressions for the ergodic mean of B̃ and speed of mean reversion reported in Proposition 7
follow immediately.

33B∗ that solves the the risk minimizing level of debt that solves (44) is implicitly as a function of β. It can be
verified that limβ→1 τB∗(β);β = τ(0). For the remainder of this proof we will drop the implicit dependence on β.
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B Discount Factor Shocks

Quasilinear preferences

Following the specification in Albuquerque et al. (2016 forthcoming), we modify agent’s prefer-
ences over consumption and labor in equation to

E0

∞∑
t=0

βtηt

(
ct −

l1+γ
t

1 + γ

)
. (104)

We maintain the rest of the assumptions of Section 3.3.

Proposition 8. Suppose preferences satisfy (104). Let {τ̃t, B̃t}t be the optimal tax, debt policy
in an economy with initial debt B−1 and shocks (p, g, θ, η) with η(s) = 1 for all s. There exists
an economy with shocks (p′, g′, θ′, η′), where p′(s) = 1 and η′(s) = p(s), g′(s) = g(s)

p(s) , θ
′(s) =

θ(s)p(s)
−
(

γ
1+γ

)
and initial debt B′−1 = η′−1B−1 such that the optimal policy {τ̃ ′t , B̃′t}t for such

economy satisfies τ̃ ′t(st) = τ̃t(s
t) and B̃′t(st) = η′t

˜(st)B(st) for histories st.

Proof. Allowing for ηt modifies the Rt = ptηt−1

βEt−1ηtpt
. Define Bt = ηtBt and multiplying the

implementability constraint (9) by ηt, the optimal allocation maximizes (104) subject to

ptηt
βEt−1ηtpt

Bt−1 + ηtgt = ηt(θtlt − l1+γ
t ) + Bt, (105a)

ct + gt = θtlt. (105b)

Let µt, ξt be the multipliers on (105a) and (105b). The first order conditions with respect to ct
and lt are

ξt = ηt,

−ηtlγt + µtηt(θt − (1 + γ)lγt ) + θtξt = 0.

Substituting for ξt we obtain,

τtlt = θtlt − l1+γ
t = θ

1+γ
γ

t Φ(µt), (106)

where Φ(·) is defined in equation (58). Combining (106) with (105a) the optimal allocation
satisfies

ptηt
βEt−1ηtpt

Bt−1 + ηtgt = ηtθ
1+γ
γ

t Φ(µt) + Bt, (107)

µt−1 = Et−1ηtptµt. (108)

The solutions {Bt, µt} that solve (107) and (108) are invariant across economies that differ

in {pt, gt, θt, ηt}t as long they have the same values for ptηt, ηtgt and ηtθ
1+γ
γ

t .
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Risk aversion

We show that the level of risk minimizing debt upto O(σ, (1 − β)) terms is the same if we use
discount factor shocks η(s) in place of payoff shocks p(s). The counterpart of problem (42) with
discount factor shocks can be also expressed recursively with the state variable Bt = ηtUc,tBt.
The implementability constraint then becomes

B_Uc(s)η(s)

βEUc(s)η(s)
+ η(s)X (s) = B(s).

In comparison to the same expression with payoff shocks

B_Uc(s)p(s)
βEUc(s)p(s)

+ X (s) = B(s),

both η(s) and p(s) appear in a similar fashion in the effective returns term. However, the deficits
are adjusted by the discount factor shocks and not by the payoff shocks. Let Rt =

ηtUc,t

βEt−1ηtUc,t

and Xt = Uc,tct + Ul,tlt. Augmenting problem (44), the risk minimizing level B̂∗ with discount
factor shocks is then given by

B̂∗ ≡ arg min
B

var
(
Rτ(B)B + PV (ηXτ(B))

)
. (109)

Proposition 9. Let B∗ and B̂∗ be solutions to minimization problems (44) and (109) respectively,
we have

B̂∗ = B∗ +O(σ, 1− β).

Proof. Arguments on the lines in Appendix A.5 shows that

B̂∗ = arg min
B

var
[(
Rτ(0)B + PV (ηXτ(0))

)]
+O(1− β).

The first order condition with respect to B gives

E
[(
Rτ(0) −

1

β

)((
Rτ(0) −

1

β

)
B̂∗ + PV (ηXτ(0))

)]
= 0.

A little algebra shows that, under the normalization of Eη = 1,

PV (ηXτ(0)) = PV (Xτ(0)) + PV (η)EXτ(0) +O(σ2) = PV (Xτ(0)) +O(σ2, (1− β)σ).

Thus
var(Rτ(0))B̂∗ + cov(Rτ(0), PV (Xτ(0))) +O(σ3, (1− β)σ2) = 0,

and after dividing by var(Rτ(0)) we recover

B̂∗ = −
cov(Rτ(0), PV (Xτ(0)))

var(Rτ(0))
+O(σ, 1− β).
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C Numerical Appendix

To obtain the optimal allocation we approximate functions{
cs,s_(·), ls,s_(·), ξs,s_(·), µ′s,s_,Bs_(·)

}
for s, s_ ∈ S × S, all defined on a compact interval [µmin, µmax], that satisfy the following set
of equations

0 =



θ(s)ls,s_(µ)− cs,s_(µ)− g(s)
Bs_(µ)p(s)Uc(cs,s_(µ))

βEs_Uc(c(µ))p
− Uc(cs,s_(µ))cs,s_(µ)− Ul(ls,s_(µ))ls,s_(µ)− Bs

(
µ̃s,s_

)
µ̃s,s_ −min

{
µmax,max

{
µ′s,s_(µ), µmin

}}
Ul(ls,s_(µ))− µ′s,s_(µ)

(
Ul(ls,s_(µ))ls,s_(µ) + Ul(ls,s_(µ))

)
+ θξs,s_(µ)

µ− Es_
[
µ′s,s_(µ)

(
p(s)Uc(cs,s_(µ))

Es_Uc(c(µ))p

)]
Uc(cs,s_(µ))− µ′s,s_(µ)

(
Ucc(cs,s_(µ))cs,s_(µ) + Uc(cs,s_(µ))

)
+
Bs_(µ)p(s)Ucc(cs,s_(µ))

βEs_Uc(c(µ))p

(
µ′s,s_(µ)− µ

)
− ξs,s_(µ)

These equations are the resource constraints, implementability constraints, and the first order
necessary conditions with respect to l(s), B(s) and c(s) for the t ≥ 1 recursive Bellman
equation stated in (42). We describe our numerical procedure below:

1. Domain: The functions are defined on domain that has a mix of discrete states, i.e., s, s_
and continuous states µ ∈ [µmin, µmax] .

(a) To obtain S, and π(s|s_), we follow Kopecky and Suen (2010) to obtain a 5 state
discrete approximation for the shock processes. For the shocks εp, εg we use a 5 state
Gaussian quadrature.

(b) The bounds on domain for µ indirectly impose bounds on B. 34 We use 30 points on
the µ grid, with more points near both the end points.

2. All functions are indexed with s, s_ and for the µ dimension we use cubic splines as basis
functions with the knot points placed on the 30 grid points that we chose in the previous
step.

3. Next we iterate on the functions {Bs(·)}s∈S

(a) Start with a guess for
{
Bjs(·)

}
s∈S

(b) For each point µ, s_ we use the Bjs for evaluating Bs
(
µ̃s,s_

)
with

µ̃s,s_ = min
{
µmax,max

{
µ′s,s_(µ), µmin

}}
in first equation in the sys-

tem of equations above. Then using a non-linear root solver get
c(s;µ, s_), l(s;µ, s_), ξ(s;µ, s_), µ′(s;µ, s_),B(µ, s_) as 4S + 1 unknowns in
4S + 1 equations.

(c) Lastly we update
{
Bj+1
s (·)

}
s
by interpolating the B(µ, s) that we solved in the pre-

vious step.
34Since the natural debt limit implies that a µmax =∞, our µ grid, [µmin, µmax] ensures that the implied debt

limits are tighter than the natural debt limit

49



(d) Iterate until supµ,s_ ‖B
j+1
s_ (µ)− Bjs_(µ)‖ ≤ 1e− 5

4. To check that our solution to the first order conditions is a global maximum, we compute
the value function for the government using the policy rules solved in steps 1-4 and use
a numerical global optimizer to confirm that the solution to the first order condition also
achieve the maximum value for the government.

5. The time-0 problem is solved using the time 0 first order conditions and our approximation
of the solution t ≥ 1 policy rules.

Competitive Equilibrium

Here we detail the methodology used to solve for the competitive equilibrium under the tax rule
in equation (51). Given the tax rule in equation (51)35 a competitive equilibrium satisfies

c−αt (1− τt)θ(st) = lγt ,

c−αt−1 = βEt−1
p(st)

qt−1
cαt ,

ct + g(st) = θ(st)lt.

To compute the competitive equilibrium we begin by noting that, conditional on the shocks
g(st), θ(st), the combination of labor leisure choice and the aggregate resource constraint pin
down c and l for any choice of τ . This implicitly defines the functions c(τ, s) and l(τ, s). The
lagged variables in equation (51) imply that the state variable for this problem will be at least
zt−1 = (τt−1, Rt−1,Bt−1, st−1).36 Our goal is to determine the τ(st) that satisfy (51) conditional
on zt−1, however we face the immediate problem that many of the variables on the R.H.S. of (51)
are endogenous objects. Fortunately this reduces to solving a system of S non-linear equations
and S unknowns.

Begin with a guess of the equilibrium τ(s) given the previous state z_. Output for each
realization of the aggregate shock s is given by y(s) = θ(s)l(τ(s), s), while the return is

R(s) =
(y_− g(s_))−αp(s)

β
∑

s Π(s, s_)c(τ(s), s)−α
.

From equation (51) the prescribed tax policy can be computed as

τ̂(s) = (1−ρτ )τ+ρττ_+ρY log y(s)+ρY_ log y_+ρgg(s)+ρg_g(s_)+ρRR(s)+ρR_R_+ρB_ logB_.

The competitive equilibrium is found by solving for the vector τ(s) such that τ̂(s) = τ(s) for
all s. For a given realization of the shock s the current state z is determined by using the
government budget constraint to solve for B(s) (as y(s) and R(s) were determined above).

35We additionally impose that government debt to GDP cannot exit the region [.1, 3.]. The government will
only violate (51) if its debt level would exit this region and would set tax policy to ensure issued government debt
was set at the boundary of this admissible region. This event never occurs in our simulations and the numerical
procedure to do this follows identically to what is described below.

36yt−1 is not required as τt−1 and st−1 jointly determine yt−1.
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Figure I: Using the quadratic approximation (red line) and a more accurate global approximation
(black line), the top, middle, and bottom panels plot smoothed kernel densities (left side) and
decision rules (right side) associated with baseline parameters in Table I, high discount factor
(β = 0.90) and large shocks (σ = 4) settings. The right panel displays policies B̃(s,B_)− B_
for two values of s that correspond to the smallest and the largest pairs of (g(s), p(s)).
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Figure II: Fitted debt versus (H.P. filtered) average marginal tax rates
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Figure III: The solid line is the conditional mean path for effective debt, E0Bt after averaging
across 10000 simulated paths. The dashed line is computed using the formula 52.
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Figure IV: Marginal utility weighted holdings of the risk free bond (solid line) and “stock market”
security (dashed line). Negative values implies that the government is shorting the security.
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Parameter Value Moments Values
ḡ 0.25 mean government expenditure relative to output 25%
std. εg 0.01 std. of log government expenditures 2.6%
std. εp̂ 0.05 std. of returns of debt portfolio 5.1%
χ 0.6 correlation of returns and log government expenditures 0.078

Table I: Parameters and moments used for comparing the accuracy of the quadratic approxima-
tions in the quasilinear economy.
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Param Value Moment Model Data
Log Output

σθ 0.02 std. dev 1.7% 1.6%
ρθ 0.35 auto corr 0.23 0.23

Returns
σp 0.05 std. dev 5.2% 5.1%
χp 0.25 corr with log yt -0.008 -0.004

Log expenditures
ḡ 0.25 mean gt/yt 25% 25%
σg 0.02 std. dev 2.6% 2.6%
χg -0.2 corr with log yt -0.14 -0.15

Table II: Parameters and targeted moments in the competitive equilibrium with fitted U.S. tax
policies.
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Parameter Value

τ̄ 0.25 (0.021)

ρτ_ 0.19 (0.14)

ρy, ρy_ 0.09 (0.08),0.21 (0.08)

ρg, ρg_ 0.11 (0.06), 0.11 (0.06)

ρR, ρR_ 0.04 (0.03), -0.02 (0.03)

ρB_ 0.02, (0.05)

Table III: OLS estimates for tax rule. The numbers in brackets are standard errors.
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Moments Baseline 1 yr. yields Risk-free bond
global quadratic VAR global quadratic global quadratic
solution approx. solution approx. solution approx.

Effective debt, Bt
mean -7% -7% -6% -24% -23% -42% -42%
half-life (years) 237 244 249 655 678 1244 1299
std. 18% 20% - 25% 33% 18% 46%

Tax rates, Zt
mean 20% 20% - 20% 20% 20% 20%
half-life (years) 263 244 - 667 678 1234 1299
std. 0.2% 0.4% - 0.3% 0.7% 0.2% 0.9%

Table IV: Ergodic moments for effective debt and tax revenues.
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Parameter Value
αy -0.83
αχ 0.50
cov(R, log y)/var(R) 0.063
cov(R, χ)/var(R) -0.006
var(R) 0.003

Table V: VAR estimates
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global quadratic
Portfolio holdings solution approx
risk-free bond -42.40% -43.00%
risky asset -0.05% 0.06%

Table VI: Ergodic portfolio using global solution and formula (48)
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