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Abstract

Compared to the predictions of complete market models, actual exchange rates are puz-

zlingly smooth and only weakly correlated with macro-economic fundamentals, suggesting

that market incompleteness plays a key role in exchange rate dynamics. Incompleteness in

international financial markets introduces a stochastic wedge between the growth rates of

marginal utility at home and abroad, and the change in the exchange rate. We derive a

preference-free upper bound on the effects of the FX wedges. Even if domestic agents can

invest only in the foreign risk-free asset, incomplete spanning fails to simultaneously match

the exchange rate volatility, cyclicality and the FX risk premia in the data.
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Starting with the seminal work of Lucas (1982), many models in international economics as-

sume that the menu of contingent claims spans all states of the world. Given complete spanning,

the rate of appreciation of the real exchange rate equals the difference between the marginal

utility growth rates of the foreign and domestic stand-in investor in each state of the world:

∆s = m∗ − m. Everyone agrees, however, that, in reality, financial markets certainly do not

span all possible states of the world. Departures from complete spanning introduce stochastic

FX wedges between ∆s and m∗ − m. Can these FX wedges help us understand the puzzling

features of exchange rates? Our paper addresses this question. We assume that domestic agents

invest only in the foreign risk-free asset and thus derive an upper bound on the effects of the

FX wedges. We find that this extreme departure from complete spanning can help to match

the volatility and cyclicality of exchange rates in the data, but only at the cost of eliminating

currency risk premia and restoring uncovered interest rate parity.

Our paper focuses on three key exchange rate puzzles: the volatility puzzle of Brandt,

Cochrane, and Santa-Clara (2006), the cyclicality puzzle of Backus and Smith (1993), and the

forward premium puzzle of Fama (1984). These three puzzles highlight the limits of most

international economics models, and they are the subject of a very large literature, with liter-

ally hundreds of contributions published in the last thirty years. (i) Hansen and Jagannathan

(1991) show that stochastic discount factors have to be highly volatile in order to reproduce

observed equity premia across the globe. As Brandt, Cochrane, and Santa-Clara (2006) point

out, stochastic discount factors must be almost perfectly correlated in order to match the com-

paratively low exchange rate volatility in the data. But macroeconomic variables exhibit low

correlations across countries. (ii) When markets are complete and agents have constant relative

risk aversion preferences, changes in exchange rates must be perfectly correlated with relative

consumption growth rates in the domestic and foreign economies. As was first pointed out by

Kollmann (1991) and Backus and Smith (1993), the low correlation in the data is therefore

surprising. (iii) As documented by Tryon (1979), Hansen and Hodrick (1980) and Fama (1984),

interest rate differences do not predict subsequent changes in exchange rates, thus giving rise

to large deviations from the uncovered interest rate parity condition and currency carry trade
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returns. The size of currency risk premia represents a challenge for many models in international

economics.

In this paper, we study whether departures from complete spanning in international securities

trading can help address the three key exchange rate puzzles. There is a wealth of empirical

evidence that investors act as if they face an incomplete menu of assets abroad, either because

of explicit transactions and capital controls, or because of other frictions (Lewis, 1995). To

derive an upper bound on the effects of incomplete spanning in international financial markets

on exchange rates, we focus on the case in which investors can only invest abroad in the risk-free

asset, or equivalently, investors only have access to forward currency markets.

We show that even this dramatic deviation from complete spanning cannot help us to si-

multaneously make progress on the three main exchange rate puzzles. Incomplete spanning

always lowers the volatility of exchange rates, and in some cases the correlation between macro

fundamentals and exchange rate changes, but, in doing so, incomplete spanning also restores

uncovered interest rate parity and reduces the carry trade risk premium well below its empirical

value.

To study the exchange rate puzzles, we adopt the perspective of an econometrician who com-

mits to a model for the log domestic and foreign stochastic discount factors, m and m∗, taking

allocations (e.g., aggregate consumption growth, the market return) as given. These stochastic

discount factors may depend on agents’ preferences and may, for example, vary with consump-

tion, real money balances, and work hours. They may also depend on intermediaries’ wealth,

collateral or liquidity and may reflect the impact of market incompleteness. But the economic

variables are what they are in the data, independently from their theoretical interpretation. An

econometrician would start from the time-series of these variables in the data and look for the

best-fitting model that can reproduce the empirical exchange rate and risk-free rates, testing for

example different preference parameters. We do not commit to any class of models in particular

and we let the econometrician choose any possible model. Once the model is chosen, we define

the projection of the stochastic discount factor in the space of traded assets as our initial m.

In order to derive model-free results, we build on Backus, Foresi, and Telmer’s (2001) insight
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that incomplete spanning introduces a FX wedge η between the change in exchange rates and

the domestic and foreign stochastic discount factors: ∆s = η + m∗ −m. These stochastic FX

wedges can be interpreted as ratios of tax rates on exchange rate transactions that mimic the

effects of market incompleteness in a complete markets world. Similar approaches have been

used in the macroeconomics literature, most notably in Chari, Kehoe, and McGrattan (2007).

Our theoretical results rely on two key assumptions: 1) the existence of a stochastic discount

factor in the space of traded assets in one country, 2) the existence of a domestic and a foreign

risk-free rate in which the other country’s investors can invest.1

We analyze the effect of the FX wedges η while enforcing the foreign investors’ Euler equation

only in the domestic risk-free bond market, but not in other domestic securities markets. This

is equivalent to assuming that foreign investors have unconstrained access to one-period ahead

forward currency markets, but perhaps not to other asset markets. Similarly, domestic investors

have access to foreign risk-free bonds. We find that the Euler equation restrictions imply that

the FX wedges need to be pro-cyclical, causing the real exchange rate to appreciate less when

marginal utility growth is high, and hence always reduce the volatility of exchange rates relative

to the complete markets benchmark.

To bring the volatility of exchange rates in line with the data, the volatility of the FX wedges

needs to match the maximum Sharpe ratio in the economy. These FX wedges act as a reduction

of the representative agent’s risk aversion in currency markets, thus solving the excess volatility

puzzle. But these FX wedges also shrink currency risk premia and move the model towards the

uncovered interest rate parity.

We start by analyzing the log-normal case. Our quantitative assessment relies on two em-

pirical assumptions: (i) the stochastic discount factors m and m∗ are volatile, as implied by

the Hansen and Jagannathan (1991) bounds; and (ii) the conditional correlation between the

1Our assumptions are reasonable but not trivial. If the law of one price holds in financial markets and investors
can form portfolios freely, then a unique stochastic discount factor exists in the space of traded assets (see Ross,
1978; Cochrane, 2005, for a textbook exposition). From the stochastic discount factor in one country, one can
then construct a second one using the change in exchange rate. But there are cases when investors cannot form
portfolios freely (e.g., in the presence of short-selling constraints) or when the law of one price in financial markets
fails, and thus the existence of a stochastic discount factor is not guaranteed. Likewise, risk-free assets may not
exist. Assuming that a stochastic discount factor exists in the space of traded assets and that risk-free rates exist
allows us to derive model-free results.
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domestic and foreign log stochastic discount factors is at most 0.5, a large value considering

the low cross-country correlation of any macroeconomic variable in the data. The log normality

assumption allows us to focus on the first two moments of stochastic discount factors and FX

wedges and jointly address the volatility, cyclicality, and risk premium puzzles.

Our results, however, are not a simple rejection of lognormality. We relax this assumption,

and we derive restrictions on FX wedges in terms of their entropy and co-entropy with the pricing

kernels. Even in this general case, increases in the volatility of the exchange rate changes go

hand in hand with decreases in currency risk premia.2 In a calibrated version of the benchmark

Merton (1976) and consumption disaster model, we find that the introduction of incomplete

spanning of the consumption disasters cannot address the three puzzles simultaneously.

Sofar we have assumed that all moments of the FX wedge η are free parameters, the best case

scenario for incomplete market models. Yet, in a large class of dynamic asset pricing models,

the higher-order moments of the FX wedge are related to its first moment by no arbitrage

restrictions, further restraining the ability of incomplete market models to match the data.

Imposing dynamic no-arbitrage restrictions worsens the trade-off we have described thus far.

We show that the FX wedges always lower currency market risk premia and Sharpe ratios in

this class of models. A given percentage decrease in the volatility of exchange rates relative to

the complete markets case implies the same percentage decrease in the currency markets’ Sharpe

ratio relative to the complete markets benchmark, while the uncovered interest rate parity slope

regression coefficient is always pushed towards unity. In a version of the Consumption-CAPM

model with heteroskedasticity in consumption growth, we show that the effect of incompleteness

is equivalent to lowering the coefficient of risk aversion of the representative agent for the pricing

of currency risk by the same percentage as FX volatility. Based on the data, we need at least an

80% reduction in exchange rate volatility compared to the complete market case. As a result,

the implied currency market Sharpe ratios will be too low.

Given that incomplete spanning alone cannot address the main exchange rate puzzles, what

2The only way to counteract the decrease of the risk premium brought about by the decrease in exchange rate
volatility is to impute a large non-stationary component in the exchange rate changes through a large drift in the
stochastic FX wedge. While one cannot rule out the existence of a non-Gaussian model that would match the
three exchange rate puzzles simultaneously thanks to incomplete spanning, we do not know of such a model.
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avenues may work? The literature suggests several paths. Colacito and Croce (2011), Bansal and

Shaliastovich (2012), Farhi and Gabaix (2015), Gabaix and Maggiori (2015), and Stathopoulos

(2015) address the aforementioned puzzles in models respectively based on long-run risk pref-

erences, rare disaster risk, segmented markets, or habit preferences. The long-run risk models

assume that the slow moving components of consumption growth are perfectly correlated across

countries. The disaster risk model assumes that exchange rates exhibit a low probability of

a large depreciation. The segmented market models assume a very large correlation between

exchange rate changes and the consumption growth of the market participants. While we find

these assumptions plausible, we recognize that more empirical work is needed to directly validate

them. There is yet no widely accepted solution to the exchange rate puzzles. Since we find that

incomplete spanning can only go so far in explaining exchange rate puzzles, our paper implicitly

argue in favor of more empirical work along the lines suggested by the recent contributions to

the international finance literature.

Building on Brandt, Cochrane, and Santa-Clara (2006) and Backus, Foresi, and Telmer’s

(2001), our paper also complements a growing literature in international economics and finance

that study exchange rates in incomplete markets. We do not study how market incompleteness

changes the projection of the stochastic discount factor on the space of domestically traded

assets itself. Such changes are interesting, and our paper therefore does not suggest that models

with incomplete markets are uninteresting or not useful.3

The rest of this paper is organized as follows. Section 1 defines exchange rates in the cases

of complete and incomplete spanning and presents our main result. Section 2 then studies the

exchange rate volatility, the currency risk premium, and the exchange rate cyclicality in details,

before gathering all the three puzzles together. Section 3 extends the main result to the non-

3Notable recent contributions include the work by Alvarez, Atkeson, and Kehoe (2002), Chari, Kehoe, and
McGrattan (2002), Bacchetta and van Wincoop (2006), Corsetti, Dedola, and Leduc (2008), Alvarez, Atkeson,
and Kehoe (2009), Pavlova and Rigobon (2010, 2012), Bruno and Shin (2014), Maggiori (2014), Gabaix and
Maggiori (2015), and Favilukis, Garlappi, and Neamati (2015). Instead of specifying a fully-fledged international
economics model as these authors do, we seek results that are valid for any stochastic discount factors. These
stochastic discount factors could reflect the impact of market incompleteness on the equilibrium allocations. But
the exchange rate puzzles remain: macroeconomic variables like consumption growth, whether the response to
an optimal behavior in complete or incomplete markets, exhibit a low correlation across countries and a low
correlation to the exchange rate changes in the data.
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normal case and to a large class of log-linear dynamic asset pricing models as examples. Section

4 concludes. All the proofs are presented in the Online Appendix.

1 Exchange Rates in Complete and Incomplete Markets

In this section, we define exchange rates in complete and incomplete markets and derive key

restrictions on incomplete market models.

1.1 Complete Spanning

We start by defining some notation. St denotes the nominal exchange rate in domestic currency

(e.g., U.S. dollars) per unit of foreign currency. When St increases, the foreign currency appre-

ciates and the U.S. dollar depreciates. R∗
t represents the return on a foreign asset expressed in

units of foreign currency, while Rt denotes the return on a domestic asset, expressed in units

of the domestic currency. More generally, x∗ denotes a foreign variable expressed in units of

foreign currency. M represents the stochastic discount factor. With this notation, the domestic

and foreign investor’s Euler equations for any foreign return R∗
t are:

Et

(
Mt+1

St+1

St
R∗
t+1

)
= 1, (1)

Et
(
M∗
t+1R

∗
t+1

)
= 1. (2)

We define variables in nominal terms, but a similar analysis applies to real variables.4

Definition of Complete Markets Markets are complete when investors can invest in any

contingent claim, either directly or by synthesizing contingent claims using other securities. In

other words, markets are complete when securities’ payoffs span all the possible states of nature.

4Among developed countries, in the absence of high and volatile inflation rates, the three exchange rate puzzles
that we study exist on both nominal and real variables: the volatilities of real and nominal exchange rates are
similar, and so are their correlations with macroeconomic variables and their risk premia. When dealing with
real variables, the same expressions as in Equations (1) and (2) apply, with the following interpretation. In a
world with multiple goods, we would choose one good in each country to be the numéraire; St would then denote
the real exchange rate, expressed in units of the domestic numéraire, per unit of the foreign numéraire; and Mt

would be expressed in the domestic numéraire. Our analysis allows for different consumption baskets at home
and abroad.
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Suppose that there are S possible states of nature tomorrow. Each contingent claim is a security

that pays one dollar in one state s only tomorrow; pc(s) is its price today. Each asset is defined

by the set X of its payoffs in each state of nature. Let x(s) denote an asset’s payoff in state s,

then the asset price P (X) must satisfy:

P (X) =
∑
s

pc(s)x(s) =
∑
s

π(s)
pc(s)

π(s)
x(s) = E (MX) , (3)

where the last equality is simply a definition of the stochastic discount factor M . When markets

are complete, the stochastic discount factor is clearly unique. When markets are incomplete, the

stochastic discount factor is not unique: under certain conditions, a unique stochastic discount

factor exists in the space of traded assets, but many others potentially exist outside that space.5

Implications of Complete Markets By comparing the two Euler equations (1) and (2)

above, one can guess a candidate foreign pricing kernel:

M∗
t+1 = Mt+1

St+1

St
, (4)

taking the domestic pricing kernel and the exchange rate process as given. If markets are

complete (i.e., complete spanning), then this foreign pricing kernel is the only pricing kernel

that is consistent with the absence of arbitrage opportunities.6 When goods markets are not

frictionless or domestic and foreign agents consume different goods, then real exchange rates vary

in equilibrium even if financial markets are themselves frictionless. If markets are not complete

(incomplete spanning), then there are lots of other candidate foreign pricing kernels. In the case

5If investors can form portfolios freely and the law of one price holds in financial markets, then there exists a
unique stochastic discount factor in the space of traded assets (see Cochrane, 2005, Chapter 4). The law of one
price in financial markets is defined as follows: the price of a combination of payoffs X1 and X2 is the combination
of their prices, i.e P (aX1 + bX2) = aP (X1) + bP (X2) for any real pair (a, b). Any Euler equation implies that
the law of one price holds. The spanning condition is different from the law of one price in financial assets.

6In models that feature complete spanning, one can thus back out the implied changes in exchange rates from
the stochastic discount factors at home and abroad. Equivalently, one can start from the domestic (or foreign)
stochastic discount factor and the rate of change in exchange rates, and then derive the implicit foreign (domestic)
stochastic discount factor.
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of complete markets, the log change in exchange rate is thus:

∆st+1 = m∗
t+1 −mt+1. (5)

Throughout the paper, lower case letters denote natural logarithms. This equation implies that

the foreign currency appreciates in bad times for foreign investors, while the home currency

depreciates in good times for domestic investors. This implication of complete markets is some-

times viewed as undesirable and counterintuitive (e.g., the Argentine peso depreciated in 2002,

clearly not during great times in Argentina), although not always rejected by the data (e.g., the

Japanese yen appreciated after the 2014 tsunami in Japan).

In order to break the tight link between the log change in exchange rate and the two log

stochastic discount factors, one needs to abandon the assumption of complete spanning. Our

paper starts from a simple question: what do we gain by relaxing the complete spanning as-

sumption and introducing a FX wedge between the exchange rate change and the stochastic

discount factors? To address this question, we first derive some necessary conditions on the FX

wedge implied by incomplete spanning.

1.2 Incomplete Spanning

We adopt the approach of an econometrician who commits to a model for the SDF. We start

from a pair of pricing kernels (M,M∗) that can be measured by an econometrician with access

to sufficiently rich data. For example, if households have access to a rich menu of assets domes-

tically, then we can rely on standard aggregation results to construct a stand-in agent who con-

sume aggregate consumption and price assets off his inter-temporal marginal rate of substitution

(IMRS). In the case of the Breeden-Lucas-Rubenstein representative agent model with power

utility, then the real log pricing kernel is mt+1 = log δ − γ∆ct+1 where γ denotes the coefficient

of relative risk aversion, δ denotes the rate of time preference, and ∆ct+1 denotes log aggregate

consumption growth. Similarly, the foreign log pricing kernel is m∗
t+1 = log δ∗ − γ∗∆c∗t+1. The

econometrician can test this model by gathering data on aggregate consumption growth at home
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and abroad.7 This is, however, only an example: in this paper, we seek to derive model-free

results. Armed with a pair (M,M∗), we explore the effects of incomplete spanning in financial

markets.

To study the impact of incomplete spanning in international financial markets on exchange

rates, we fix the foreign and domestic SDFs, and we follow the approach pioneered by Backus,

Foresi, and Telmer (2001) who define a new ‘perturbed’ SDF denoted M̂∗
t+1:

M̂∗
t+1 = M∗

t+1 exp(ηt+1) = Mt+1
St+1

St
. (6)

These FX wedges can be interpreted as representing the effects of stochastic taxes on foreign

transactions (see, e.g., Chari, Kehoe, and McGrattan (2007)) that mimick the effects of market

incompleteness in a complete markets world.

In essence, we compare two different processes for exchange rates. The first one, highlighted

in the previous section, is the complete markets one, the second one allows for incomplete

spanning:

∆st+1 = m∗
t+1 −mt+1 vs. ∆st+1 = ηt+1 +m∗

t+1 −mt+1.

The Backus, Foresi, and Telmer (2001) approach is very general, as it encompasses many incom-

plete market models. These models rarely admit a closed-form solution for the exchange rate,

but the work of Pavlova and Rigobon (2012) provides a useful exception. In their model, agents

trade three assets (domestic and foreign stocks and an international bond), but are subject to

four shocks (two endowment shocks and two preference shocks) and markets are thus incomplete.

Log preferences lead to the following equilibrium real exchange rate, QIMt :

QIMt =
θH(t) + WF (t)

WH(t)(1− θF )

1− θH(t) + WF (t)
WH(t)θF

Y ∗
t

Yt
,

7We could also use an unconstrained individual’s IMRS, to be measured with individual consumption data,
if we do not wish to rely on aggregation results. Alternatively, we could use a cross-sectional average of the
individual IMRS to price assets, in the spirit of Mankiw (1986) and Constantinides and Duffie (1996). This would
require data on higher-order moments of individual consumption growth.
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where Yt and Y ∗
t are the domestic and foreign endowments, θH(t) denotes the domestic intra-

temporal preference shocks, and WH(t) and WF (t) denote domestic and foreign wealth. In this

model, the wealth ratio WF (t)/WH(t) is time-varying. In an earlier contribution, Pavlova and

Rigobon (2007) consider a similar model, but with only one preference shocks, and thus as many

shocks as assets. In Pavlova and Rigobon (2007), where markets are complete, the wealth ratio

is constant and the same expression holds for the equilibrium real exchange rate, QCMt . The two

models are different: market incompleteness clearly changes the consumption allocation. But

the incomplete market model can be thought as introducing an additional source of variation in

exchange rates. The ratio of the incomplete to complete market value of exchange rate is:

QIMt
QCMt

=
θH(t) + WF (t)

WH(t)(1− θF )

1− θH(t) + WF (t)
WH(t)θF

×
1− θH(t) + WF

WH
θF

θH(t) + WF
WH

(1− θF )
,

The FX wedge ηt+1 introduced in Equation (6) captures the percentage change in this ratio

(ηt+1 = ∆qIMt −∆qCMt ). Our approach offers a way to study the effects of incomplete market

models on exchange rate puzzles without committing to any preferences or frictions.

To derive an upper bound on the effects of incompleteness in international financial markets,

we start by only considering investments in the foreign risk-free assets. We assume that there

exists a risk-free asset at home and abroad that can be bought and sold by domestic and foreign

investors. Domestic investors can trade the foreign risk-free asset, and vice-versa, the foreign

investor can invest in the domestic risk-free asset. Naturally, if foreign investors can invest in

other domestic assets, this will give rise to additional restrictions. By ignoring these additional

restrictions, we are giving incomplete spanning the best shot at producing promising results that

cannot be replicated by a simple reduced form model in complete markets. Our results thus

provide an upper bound on the effects of incomplete spanning.

Based on the perturbed SDF, the domestic investor’s Euler equations for foreign assets, and
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the foreign investor’s Euler equation for the domestic assets are now given by:

Et

(
Mt+1

St+1

St
R∗
t+1

)
= Et

(
M∗
t+1 exp(ηt+1)R∗

t+1

)
= 1, (7)

Et

(
M∗
t+1

St
St+1

Rt+1

)
= Et

(
Mt+1 exp(−ηt+1)Rt+1

)
= 1. (8)

Again, if international financial markets are complete, then of course η = 0. If international

financial markets are incomplete, there are lots of possible η’s.8

Since the risk-free payoffs are in the space of traded assets for all investors, domestic and

foreign, they satisfy the Euler Equations (1) and (2), but the risk-free payoffs also satisfy the

two perturbed Euler Equations (7) and (8), in which the incomplete spanning introduces a FX

wedge η in the spot exchange rates. We start from the Euler Equations (7) and (8) for the

risk-free assets:

Et

(
Mt+1

St+1

St

)
= Et

(
M∗
t+1 exp(ηt+1)

)
= 1/Rf,∗t ,

Et

(
M∗
t+1

St
St+1

)
= Et

(
Mt+1 exp(−ηt+1)

)
= 1/Rf,t .

We can only consider perturbations η that satisfy these Euler equations. If not, we would

be violating the assumption of no arbitrage. Below, we explore the restrictions imposed by

these conditions on possible η’s. To explore these restrictions, we assume conditional joint log

normality of the SDFs and the η’s. We relax this assumption in Section 3.

Proposition 1. We fix the home log stochastic discount factor m and the foreign log stochastic

discount factor m∗. Incomplete spanning implies that the exchange rate process St satisifies

∆st+1 = ηt+1 + m∗
t+1 − mt+1. If the log stochastic discount factors and perturbations η are

jointly conditionally normal, then µt,η = Et (ηt+1) and vart (ηt+1) satisfy:

covart
(
m∗
t+1, ηt+1

)
= −µt,η −

1

2
vart (ηt+1) , (9)

covart
(
mt+1, ηt+1

)
= −µt,η +

1

2
vart (ηt+1) , (10)

8Note that incomplete spanning could change M and M∗ themselves in interesting ways by changing equilib-
rium allocations within a country. We do not take these effects into account. The econometrician is committed
to a model for M and M∗, and our results are valid for any M and M∗.
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where µt,η satisfies these additional restrictions:

−µt,η ≤ stdt (ηt+1)

(
stdt

(
m∗
t+1

)
+

1

2
stdt (ηt+1)

)
,when µt,η ≤ −

1

2
vart (ηt+1) ,

µt,η ≤ stdt (ηt+1)

(
stdt

(
m∗
t+1

)
− 1

2
stdt (ηt+1)

)
,when µt,η ≥ −

1

2
vart (ηt+1) ,

µt,η ≤ stdt (ηt+1)

(
stdt (mt+1) +

1

2
stdt (ηt+1)

)
,when µt,η ≥

1

2
vart (ηt+1) ,

−µt,η ≤ stdt (ηt+1)

(
stdt (mt+1)− 1

2
stdt (ηt+1)

)
,when µt,η ≤

1

2
vart (ηt+1) ,

stdt (ηt+1) ≤ stdt
(
m∗
t+1 −mt+1

)
, everywhere.

Hence, there are limits as to how much incomplete markets noise we can introduce. For

example, when the FX wedge has a conditional mean of zero (µt,η = 0), the amount of noise is

bounded above by the following two conditions:

2min(stdt (mt+1) , stdt
(
m∗
t+1

)
) ≥ stdt (ηt+1) and stdt

(
m∗
t+1 −mt+1

)
≥ stdt (ηt+1) .

The standard deviation of the log SDF measures the maximal Sharpe ratio among traded assets,

defined as the ratio of expected excess returns to their volatilities. This well-known result derives

directly from the Euler equation in a lognormal world; Et (Mt+1Rt+1) = 1 implies that:

Et

(
Rt+1 −Rft

)
stdt (Rt+1)

≤ stdt (mt+1) , for any return Rt+1. (11)

The maximal volatility of the wedge is thus linked to the maximal Sharpe ratio among traded

assets.

At this point, we have made no additional assumptions about the process η that describes

the incomplete spanning. In dynamic asset pricing models, the drift term µt,η imputed to

the exchange rate process is not a free parameter but is instead determined by no arbitrage

conditions. We analyze a class of dynamic asset pricing models in Section 3. Additional assets

also impose additional restrictions on the wedges. If we allow foreign investors to trade risky
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assets, in addition to the risk-free rate, this will give rise to additional restrictions. For example,

if the foreign investor’s can trade an additional risky asset, then the wedges cannot covary with

these risky returns (rt+1, r
∗
t+1):

covart
(
r∗t+1, ηt+1

)
= 0 = covart

(
rt+1, ηt+1

)
. (12)

We ignore these additional constraints, which may further limit the explanatory power of in-

complete spanning models.

2 Exchange Rate Puzzles

In this section, we study the impact of incomplete spanning on each of the key three exchange

rate puzzles in a preference-free setting. We start with the volatility puzzle, and then consider

the exchange rate cyclicality and exchange rate risk puzzles. We end this section with a simple

Lucas (1982) example.

2.1 Exchange Rate Volatility

Brandt, Cochrane, and Santa-Clara (2006) note that the exchange rate changes predicted by

complete market models are much more volatile than in the data, unless stochastic discount

factors are almost perfectly correlated across countries, which seems at odds with the evidence

on any macroeconomic variable. Colacito and Croce (2011) offer a compelling resolution to the

puzzle by assuming that the long-run risk components of the stochastic discount factors are

highly correlated across countries.9 In this section, we pursue another route, adding incomplete

spanning to the benchmark model.

We show that the volatility of the exchange rate decreases relative to the complete spanning

benchmark one-for-one with the volatility of the wedge.

9In their model, stochastic discount factors are then volatile enough to reproduce the equity premium, but,
thanks to their long-run risk components, they are almost perfectly correlated such that exchange rates are as
volatile as in the data. The long-run risk components are, however, difficult to measure in the data and most
evidence is drawn indirectly from asset prices and not macroeconomic quantities.
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Corollary 1. The volatility of exchange rates in incomplete markets is given by:

vart(∆st+1) = vart(mt+1) + vart(m
∗
t+1)− 2covt(mt+1,m

∗
t+1)− vart(ηt+1).

This result follows directly from the covariance restrictions in Equations (9) and (10). Since

the wedges are necessarily pro-cyclical, they offset the effect of m and m∗, and thus reduce the

overall volatility of the exchange rate.

To make quantitative progress on the Brandt, Cochrane, and Santa-Clara (2006) puzzle, the

wedges need to be volatile. To quantify this statement, we measure the relevant moments in

the data. Table 1 reports the annualized volatility of bilateral exchange rates for 15 developed

countries (Australia, Belgium, Canada, Denmark, France, Germany, Italy, Japan, Netherlands,

New Zealand, Norway, Sweden, Switzerland, U.K., and U.S). All exchange rates are defined with

respect to the U.S. dollar. Data are quarterly, over the 1973.IV – 2014.IV period. Across all the

countries, the average volatility is 11% in this sample. It is precisely estimated, with a standard

error (obtained by bootstrapping) of 0.4%, and there are only small variations across countries:

the cross-sectional standard deviation is 1.6%.

Suppose therefore that we want to match a 11% per annum volatility of exchange rate

changes. Then Corollary 1 implies that:

0.112 = vart(∆st+1) = vart(mt+1) + vart(m
∗
t+1)− 2covt(mt+1,m

∗
t+1)− vart(ηt+1).

As a result, we can simply back out the volatility of the wedge needed to match the volatility

of exchange rates in the data:

vart(ηt+1) = vart(mt+1) + vart(m
∗
t+1)− 2covt(mt+1,m

∗
t+1)− 0.112.

This equals the difference between the variance of the complete market exchange rates implied

by the stochastic discount factors and the target variance. For example, starting from a max-

imum Sharpe ratio of 0.50 in both countries (stdt(mt+1) = 0.50 and stdt(m
∗
t+1) = 0.50) and a

correlation across stochastic discount factors of 0.50 (ρt(mt+1,m
∗
t+1) = 0.50), the wedge must

14



Table 1: Exchange Rate Puzzles

Panel A: Volatility

Cross-country Mean Cross-country Std Cross-country Min Cross-country Max

σ∆s 11.21 1.57 6.23 12.70
(0.44) (0.22) (0.56) (0.61)

σ∆q 11.12 1.64 6.21 12.81
(0.44) (0.20) (0.48) (0.59)

corr(∆c,∆c∗) 0.17 0.10 0.02 0.35
(0.05) (0.02) (0.07) (0.08)

Equity S.R. 0.22 0.12 0.00 0.48
(0.15) (0.04) (0.15) (0.21)

Panel B: Cyclicality

Cross-country Mean Cross-country Std Cross-country Min Cross-country Max

corr(∆q,∆c−∆c∗) -0.07 0.09 -0.22 0.14
(0.05) (0.03) (0.07) (0.10)

βBackus−Smith -0.01 0.02 -0.03 0.02
(0.01) (0.00) (0.01) (0.02)

corr(−∆q,∆c∗) -0.02 0.12 -0.21 0.24
(0.03) (0.03) (0.07) (0.09)

Panel C: Risk Premium

Time-Series Mean Time-Series Std Time-Series Sharpe ratio

Et[rx
FX
t+1] 4.42 8.73 0.51

(1.36) (0.97) (0.19)

Et[rx
FX
t+1] + 1

2
vart[rx

FX
t+1] 4.80 8.73 0.55

(1.32) (0.98) (0.19)

Et[−rxFXt+1] + 1
2
vart[rx

FX
t+1] -4.04 8.73 -0.46

(1.40) (0.98) (0.20)

Cross-country Mean Cross-country Std Cross-country Min Cross-country Max

βUIP -0.26 0.63 -1.28 1.10
(0.47) (0.17) (0.51) (0.60)

Notes: The table reports summary statistics on three exchange rate puzzles. Panel A focuses on the exchange rate volatility.
It reports the cross-country mean of the bilateral nominal and real exchange rate volatilities, along with the cross-country
standard deviation of the bilateral exchange rate volatilities and the corresponding minimum and maximum values across
countries. Panel A also reports similar moments for the correlation between U.S. and foreign consumption growth rates and
equity Sharpe ratios on MSCI country indices. Panel B focuses on the exchange rate cyclicality. It reports similar moments
for the correlation between the changes in real exchange rates and the relative consumption growth, the slope coefficient in
a regression of relative consumption growth rates on exchange rate changes and a constant, and for the correlation between
the changes in real exchange rates and the foreign consumption growth. Panel C focuses on the exchange rate risk premium.
It reports the time-series mean carry trade excess return, its time-series standard deviation and its Sharpe ratio (obtained
as the ratio of the mean excess return to its standard deviation). The excess returns are either in logs, or in levels, from
the perspective of the U.S. or foreign investor. Finally, Panel C reports the slope coefficient in a regression of exchange
rate changes on the foreign minus domestic interest rate difference. Excess returns are annualized (multiplied by 4) and
reported in percentages. The standard deviation on the carry trade returns in annualized (multiplied by 2) and reported
in percentages. The countries are sorted by the level of their short-term nominal interest rates into four portfolios. The
exchange rate risk premium corresponds to the average carry trade excess return obtained by borrowing in low-interest
rate currencies (i.e., shorting the first portfolio) and investing in high-interest rate currencies (long the last portfolio).
Data are quarterly, over the 1973.IV – 2014.IV period. The panel consists of 15 countries: Australia, Belgium, Canada,
Denmark, France, Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, U.K., and U.S. The
standard errors (reported between brackets) were generated by block-bootstrapping 10,000 samples, each block containing
2 quarters.
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have a standard deviation of 49% per annum (stdt(ηt+1) = 0.49).10 Such a correlation across

stochastic discount factors is optimistic. In the data, the correlation of consumption growth

varies between 0.02 and 0.35 as shown in Panel A of Table 1. If we decrease the correlation of

the SDFs from 0.5 to zero, then we need an even more volatile wedge: stdt(ηt+1) is at least equal

to 70%. To stack the deck in favor of the incomplete spanning wedge, we assume throughout

the paper a correlation across stochastic discount factors of 0.50.

Figure 1 plots the implied volatility of the incomplete markets exchange rate against the

volatility of the wedge stdt(ηt+1) for various choices of µt,η. We only plot the admissible

(µt,η, stdt(ηt+1)) pairs that satisfy the inequalities in Proposition 1. The figure is drawn as-

suming a maximum (annualized) Sharpe ratio of 0.50. In the figure, we gradually increase µt,η,

but it has no bearing on the volatility of the exchange rates. For high values of stdt(ηt+1) close

to 50% the volatility of exchange rates drops within the plausible range. Incomplete spanning

helps with the volatility puzzle, but the volatility of the wedges needed is of the same order of

magnitude as the maximum Sharpe ratio.

2.2 Currency Risk Premia

Next, we turn to the currency risk premium, assuming that investors have access to domestic and

foreign risk-free rates. When markets are incomplete, we do not recover the standard expression

for the log currency risk premium established in Bekaert (1996), Bansal (1997), Backus, Foresi,

and Telmer (2001). But a similar expression emerges, highlighted in the following corollary to

Proposition 1.

Corollary 2. The currency risk premium in logs on a long position in foreign currency is:

Et[rx
FX
t+1] = rf,∗t − r

f
t + Et(∆st+1) =

1

2

[
vart

(
mt+1

)
− vart

(
m∗
t+1 + ηt+1

)]
=

1

2

[
vart

(
mt+1

)
− vart

(
m∗
t+1

)]
+ µt,η.

10A maximum Sharpe ratio of 0.50 is a conservative estimate: while MSCI indices that track the unconditional
returns on large firms exhibit relatively low Sharpe ratios, many investment strategies (e.g. conditional on firms’
characteristics or using different asset classes) deliver Sharpe ratios well beyond 0.5.
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Figure 1: Exchange Rate Volatility: The figure reports the implied volatility of the changes
in the log exchange rate, denoted stdt(∆st+1), against the volatility of the incomplete market
wedge, denoted stdt(ηt+1). The figure is drawn assuming a maximum Sharpe ratio of 0.50 in
both countries (stdt(mt+1) = 0.50 and stdt(m

∗
t+1) = 0.50) and a correlation across stochastic

discount factors of 0.50 (ρt(mt+1,m
∗
t+1) = 0.50). Large dots indicate parameters that imply

exchange rate volatilities less than 11%, the average volatility of exchange rates in our sample
(stdt(∆st+1) ≤ 0.11). The gray area indicates the value of the exchange rate volatility in the
data: it is centered around the cross-country mean volatility (11%); the area represents one
cross-country standard deviation (1.6%) above and below the cross-country mean volatility.

The currency risk premium in levels on a long position in foreign currency is given by:

Et[rx
FX
t+1] +

1

2
vart[rx

FX
t+1] = −covt(mt+1,∆st+1)

= vart
(
mt+1

)
− covart

(
m∗
t+1,mt+1

)
− 1

2
vart (ηt+1) + µt,η.
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The currency risk premium in levels, from the perspective of the foreign investor, is given by:

Et[−rxFXt+1] +
1

2
vart[rx

FX
t+1] = −covt(m∗

t+1,−∆st+1)

= vart
(
m∗
t+1

)
− covart

(
m∗
t+1,mt+1

)
− 1

2
vart (ηt+1)− µt,η.

In the data, as Table 1 reports, the average carry trade excess return is 4.4%, implying a

Sharpe ratio of 0.5. To obtain the estimate of the carry trade excess return, the countries are

sorted by the level of their short-term nominal interest rates into four portfolios. The exchange

rate risk premium corresponds to the average carry trade excess return obtained by borrowing

in low-interest rate currencies (i.e., shorting the first portfolio) and investing in high-interest

rate currencies (long the last portfolio). Larger average currency risk premia and Sharpe ratios

can be obtained on larger sets of countries (Lustig and Verdelhan, 2007).

Figure 2 plots the theoretical currency risk premium in levels against the volatility of the

wedge, stdt(ηt+1), from the perspective of either the home investor (left panel) or foreign investor

(right panel). The parameters are identical to those in Figure 1. They imply a large complete

markets currency risk premium of 12% on average per year, above the actual return on currency

carry trades in developed countries. The high value of the currency risk premium in complete

markets stacks the deck in favor of incomplete markets, allowing for a potential large decrease

in risk premia brought by the incomplete market wedge.

For purely expositional purposes, we highlight three useful examples of drifts. First, when

the disturbance η is mean-zero (µt,η = 0), incomplete spanning does not introduce any non-

stationarity in exchange rates. In this case, the effects of the η perturbations are completely

identical for the home and foreign countries. This is a natural benchmark case to consider. In

this case, the log risk premium is the same as in complete markets, but the risk premium in

level decreases for both the home and foreign investor: for values of the wedge volatility that

matches the exchange rate volatility in the data, these currency risk premia are zero.

Second, when the foreign investor is wedge-risk-neutral, Et (eηt+1) = 1, the disturbance η is
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Figure 2: Currency Risk Premia in Level: The figure reports the foreign currency risk premium
in level, from the perspective of the home investor (left panel) or foreign investor (right panel),
against the volatility of the incomplete market wedge, denoted stdt(ηt+1). For the home investor,
the foreign currency risk premium in level is denoted Et[rx

FX
t+1] + 1

2vart[rx
FX
t+1]. The figure is

drawn assuming a maximum Sharpe ratio of 0.50 in both countries (stdt(mt+1) = 0.50 and
stdt(m

∗
t+1) = 0.50) and a correlation across stochastic discount factors of 0.50 (ρt(mt+1,m

∗
t+1) =

0.50). The gray area indicates the value of the average carry trade excess return in the data: it
is centered around the mean excess return (4.4%); the area represents one standard error (1.3%)
above and below the mean. Large dots indicate parameters that imply exchange rate volatilities
less than 11% (stdt(∆st+1) ≤ 0.11).

such that µt,η = −vart(ηt+1)/2, as shown in Equation (9). The risk premium in level from the

perspective of the home investor decreases, but it remains equal to its complete market value

from the perspective of the foreign investor.

Third, when the home investor is wedge-risk-neutral, Et (e−ηt+1) = 1, the disturbance η is
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such that µt,η = +vart(ηt+1)/2, as shown in Equation (10). In this case, the risk premium in

level from the perspective of the foreign investor decreases, but it remains equal to its complete

market value from the perspective of the home investor. Those three corner cases are clearly

rejected by the data on currency risk premia. It seems, however, that when the drift term takes

on intermediate values (for example, µt,η = +vart(ηt+1)/8), high values of stdt(ηt+1) around

50% imply currency risk premia in levels that are close to their data counterpart. As we shall

see, unfortunately, these parameters imply counterfactual exchange rate cyclicality.

2.3 Exchange Rate Cyclicality

Complete market models have strong implications for the sign and the magnitude of the exchange

rate cyclicality. Complete markets imply, perhaps counterintuitively, that currencies depreciate

in relatively good times for home investors, i.e. when they experience low marginal utility

growth compared to the foreign investors. Complete markets in fact imply a perfect correlation

between the difference in log stochastic discount factors and the log change in exchange rates:

when applied to CRRA preferences, complete markets thus imply a perfect correlation between

relative consumption growth rates and exchange rate changes.

In the data, as shown in Panel B of Table 1, the corresponding unconditional correlation is

not statistically different from zero. This is the Kollmann (1991) and Backus and Smith (1993)

puzzle. Likewise, the unconditional correlation between changes in exchange rates and foreign

consumption growth or the slope coefficient in a regression of relative consumption growth rates

on exchange rate changes and a constant are also not statistically different from zero. Moving

away from complete markets can potentially address the puzzle. Corsetti, Dedola, and Leduc

(2008) and Kollmann (1996), for example, offer interesting models in incomplete markets that

lower the correlation between exchange rates and consumption growth. Instead of studying one

particular model, we consider the potential effect of any wedge introduced by the incomplete

spanning on these measures of exchange rate cyclicality.

Corollary 3. The covariance between the difference in log stochastic discount factors m∗ −m
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and the change in exchange rates in incomplete markets is non-negative:

covart
(
m∗
t+1 −mt+1,∆st+1

)
= covart

(
m∗
t+1 −mt+1, ηt+1

)
+ vart

(
m∗
t+1 −mt+1

)
,

= vart
(
m∗
t+1 −mt+1

)
− vart (ηt+1) = vart (∆st+1) ≥ 0

The slope coefficient in a regression of m∗−m on exchange rate changes is equal to 1, its value

when markets are complete:

βBackus−Smith =
covart

(
m∗
t+1 −mt+1,∆st+1

)
vart (∆st+1)

= 1.

This corollary shows that the impact of incomplete spanning on measures of exchange rate

cyclicality is limited for three reasons. First, incomplete spanning does not change the sign

of the covariance between exchange rate changes and the difference in log stochastic discount

factors spanned by asset markets. Even in incomplete markets, as soon as agents can trade in

risk-free bonds, exchange rates will depreciate when the home investor experience better times

than the foreign investor; those times, however, are defined by the marginal utility spanned by

asset markets, whereas the total marginal utility of the investor may be high or low. Second,

incomplete spanning does not change the slope coefficient in a regression of the difference in log

stochastic discount factors on exchange rate changes; it is equal to one, as in complete markets.

Third, incomplete spanning decreases the correlation between exchange rates and the stochastic

discount factor

corrt
(
m∗
t+1 −mt+1,∆st+1

)
=

√
vart(mt+1) + vart(m∗

t+1)− 2covt(mt+1,m∗
t+1)− vart(ηt+1)√

vart(mt+1) + vart(m∗
t+1)− 2covt(mt+1,m∗

t+1)
≤ 1,

only at the cost of a lower Sharpe ratio on the currency risk premium. We now study this

tradeoff quantitatively.

Figure 3 plots the correlation between the log home SDF and the change in the exchange

rates, corrt(∆st+1,mt+1), in the left panel, and the correlation between consumption growth

and the change in exchange rates, corrt(∆st+1,∆ct+1), in the right panel, both against the
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volatility of the incomplete market wedge, denoted stdt(ηt+1). In the right panel, we assume

that the coefficient of relative risk aversion is 10. The correlation between the log home stochastic

discount factors m and the change in exchange rates is :

corrt
(
mt+1,∆st+1

)
=

covart
(
mt+1,∆st+1

)
stdt

(
mt+1

)
stdt (∆st+1)

= −
Et[rx

FX
t+1] + 1

2vart[rx
FX
t+1]

stdt
(
mt+1

)
stdt (∆st+1)

=
−SRFXt

stdt
(
mt+1

) ,
where SRFX denotes the Sharpe ratio on the currency risk premium. As we lower the correlation

between exchange rates and the home stochastic discount factor, we also lower the currency

Sharpe ratios proportionally.

Let us again describe our three simple examples. First, when µt,η = −vart(ηt+1)/2 (the

case of risk-neutral foreign investors), the correlation decreases in absolute value, and can even

change sign. Unfortunately, as we saw in the previous section, this parametrization does not

reproduce the exchange rate volatility or risk premia. Second, when µt,η = 0 (the symmetric

case), the correlation tends to zero for very volatile incomplete market wedges. Such parameters

can reproduce the exchange rate volatility in the data but still imply zero currency risk premia.

Third, when µt,η = vart(ηt+1)/2 (the case of risk-neutral domestic investor), the correlation

actually increases in absolute value. The sweet spot, identified in the previous section, where

the drift term takes on intermediate values (for example, µt,η = +vart(ηt+1)/8) and the model

implies a reasonable currency risk premium, unfortunately makes the correlation larger in abso-

lute values. In this case, the incomplete market model is even less attractive than its complete

market counterpart. In the special case of power utility, the correlation between exchange rate

changes and consumption growth rates exceeds 0.7 in the relevant region of the parameter space.

While these simple examples illustrate the issue at hand, they rely on specific characteristics of

the wedge. We thus now present general results.

2.4 The Intersection of Three Currency Puzzles

We bring together the insights gained on exchange rate volatility, cyclicality, and risk premium

to show that markets incompleteness cannot improve on the three puzzles at the same time.

We summarize our findings in Figure 4, focusing on the parameter space that reproduces the
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Figure 3: Correlation Between the Changes in Exchange Rates and the SDF or Consumption
Growth Rates: The figure reports the correlation between the log home SDF and the change
in the exchange rates, corrt(∆st+1,mt+1), in the left panel, and the correlation between con-
sumption growth and the change in exchange rates, corrt(∆st+1,∆ct+1), in the right panel,
both against the volatility of the incomplete market wedge, denoted stdt(ηt+1). The figure
is drawn assuming a maximum Sharpe ratio of 0.50 in both countries (stdt(mt+1) = 0.50 and
stdt(m

∗
t+1) = 0.50) and a correlation across stochastic discount factors of 0.50 (ρt(mt+1,m

∗
t+1) =

0.50). Large dots indicate parameters that imply exchange rate volatilities less than 11%
(stdt(∆st+1) ≤ 0.11). In the right panel, the coefficient of constant relative risk aversion is
10 (γ = 10).

exchange rate volatility. This volatility is precisely measured and fairly similar across developed

markets. We assume that it is equal to 11%, the average value observed in our sample, and

derive the implicit relationship between the first and second conditional moments of the wedge

ηt+1. As in the rest of the paper, the figure is drawn assuming a maximum Sharpe ratio of 0.50
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in both countries (stdt(mt+1) = 0.50 and stdt(m
∗
t+1) = 0.50) and a correlation across stochastic

discount factors of 0.50 (ρt(mt+1,m
∗
t+1) = 0.50). For those parameters, the standard deviation

of the wedge ranges from around 0.4 to 0.5.
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Figure 4: The Intersection of Three Currency Puzzles: The figure reports the results for the
admissible combinations of µt,η and stdt(ηt+1) that produce a 11% volatility of exchange rate
changes. The figure is drawn assuming a maximum Sharpe ratio of 0.50 in both countries
(stdt(mt+1) = 0.50 and stdt(m

∗
t+1) = 0.50) and a correlation across stochastic discount factors

of 0.50 (ρt(mt+1,m
∗
t+1) = 0.50). The first panel reports the currency risk premium for each

value of µt+1. The second panel reports the implied Sharpe ratios on currency risk premia.
The third panel reports the correlation of changes in the exchange rate with the domestic SDF,
corrt(∆st+1,mt+1). The fourth panel reports the correlation with the consumption growth
difference, corrt(∆st+1,∆ct+1). The gray area represents the empirical counterpart of each
moment.

The upper left subplot of Figure 4 shows the currency risk premium in complete markets
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(dotted line) and in incomplete markets. As already noted, our parameters imply that the

complete markets risk premium is around 12%. But the wedge introduced by the markets

incompleteness reduces the risk premium to less than 6%. The risk premium is in line with its

empirical value only for large drift parameters. For zero or negative drifts, the currency risk

premium is essentially zero or turn negative. The upper right subplot of Figure 4 shows the

same link between the value of the drift and the currency Sharpe ratio. The lower subplots

show that large values of the drifts imply exchange rate correlations with log stochastic discount

factors (and consumption growth in the case of CRRA preferences) that are in absolute values

even larger than their complete markets counterpart. The wedge exacerbates these features of

the complete markets models that incomplete spanning is supposed to address.

2.5 A Simple Consumption-CAPM Example

We end this section with a simple consumption-based example, in the tradition of Lucas (1982).

Consider a model in which the domestic and foreign representative agents have power utility

with risk aversion coefficient γ. The domestic aggregate consumption growth ∆c consists of a

standard Gaussian component w ∼ N(µ, σ2). The same applies to foreign consumption growth:

w∗ ∼ N(µ∗, σ2,∗). The domestic and foreign consumption growth rates are thus:

∆ct+1 = wt+1, (13)

∆c∗t+1 = w∗
t+1, (14)

where the correlation of domestic and foreign shocks is ρw,w∗ . Assume that the incomplete

market wedge takes the form: ηt+1 = γdt+1, where d ∼ N(µd, σ
2
d). The correlations between

the initial consumption growth shocks and the wedge are denoted ρw,d and ρw∗,d. In this case,

Proposition 1 implies that the wedges satisfy:

µd = γ2σ2
d/2 + ρw,dγ

2σσd, (15)

−µd = γ2σ2
d/2− ρw∗,dγ

2σ∗σd. (16)
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With only two consumption growth innovations, the only interesting case is as follows: the

domestic investor cannot invest in any foreign risky asset. If the foreign investor could, then the

additional covariance restrictions in Equation (12) would apply, and markets would be complete

complete.11 We thus focus on the case where investors can only invest in risk-free bonds.

Volatility In the absence of wedges, the volatility of the exchange rate changes is γ2σ∗2 +

γ2σ2 − 2γ2ρw,w∗σσ∗. Adding the wedge, as shown in Corollary 1, reduces the exchange rate

variance by γ2σ2
d. The unspanned shocks dt+1 are counter-cyclical, i.e. negatively correlated

with domestic consumption growth, and as a result, always reduces the exchange rate’s volatility.

Cyclicality The Backus-Smith correlation coefficient is given by:

1 ≥ corrt
(
∆ct+1 −∆c∗t+1,∆st+1

)
=

√
γ2σ∗,2 + γ2σ2 − 2γ2ρw,w∗σσ∗ − (γσd)2√

γ2σ∗,2 + γ2σ2 − 2γ2ρw,w∗σσ∗
≥ 0

The correlation is smaller than one, its complete markets value, but always positive. In the

symmetric case where the drift µd is zero, the unspanned risk is always negatively correlated

with domestic consumption growth, as implied by Equation (15), and positively correlated with

foreign consumption growth, as implied by Equation (16).

Risk Premium When markets are complete, the currency risk premium in levels (defined from

the perspective of the home investor) is given by γ2σ2 − γ2ρw,w∗σσ∗. Likewise, the currency

risk premium in levels, this time defined from the perspective of the foreign investor, is equal

to γ2σ∗2 − γ2ρw,w∗σσ∗. When markets are incomplete, the currency risk premia change. The

difference in the currency risk premium (defined from the perspective of the home investor)

between the incomplete and complete market cases, ∆RP = RP IMt −RPCMt , is equal to ∆RP =

ρw,dγ
2σσd. Similarly, the difference in the currency risk premium (defined from the perspective

of the foreign investor) is ∆RP ∗ = −ρw∗,dγ
2σσd. Hence, the total change in the risk premia

11These conditions imply that dt+1 is orthogonal to wt+1 and w∗
t+1, because the log return on the domestic

(foreign) risky asset is affine in the domestic (foreign) innovation. The additional covariance restrictions in
Equation (12), ρw,d = 0 and ρw∗,d = 0, combined with Equations (15) and (16), imply that σd = 0 and µd = 0.
We are back in the case of complete markets: ηt+1 = 0.
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has to be negative; Equations (15) and (16) imply that the sum of the last two expressions is

negative. In simple words, a positive drift to mitigate the effect on currency risk premia from

the perspective of the domestic investor implies a larger decline for the other investor. The

Lucas (1982) model provides a simple example to our preference-free results. We now turn to

potential extensions of our benchmark results.

3 Extensions

In this section, we consider two key extensions: we first relax the log-normal assumption, and

then consider dynamic asset pricing models.

3.1 Non-normality

When relaxing the log-normality assumption, we first present preference-free results and then

develop a consumption-based example with jumps.

3.1.1 Preference-free Results

Some of our preference-free results can be extended to an environment with non-Gaussian shocks.

To do so, we use a different, entropy-based measure of risk. The conditional entropy of a random

variable Xt+1 is equal to: Lt(Xt+1) = logEt(Xt+1)−Et(logXt+1). If the random variable Xt+1 is

log normally distributed, then its entropy is equal to one half of its variance. In general, entropy

measures all higher order cumulants κi of logX: Lt(Xt+1) = κ2t/2! + κ3t/3! + κ4t/4! + . . .

Similarly, the co-entropy is defined as Lt(Xt+1Yt+1) − Lt(Xt+1) − Lt(Yt+1), which is a natural

measure of the covariation. This measure is zero if the variables are conditionally independent.

Using these measures of risk, we derive an analog to Proposition 1 in the case of non-Gaussian

shocks.

Proposition 2. We fix the home m and foreign m∗ log stochastic discount factors. Incomplete

spanning implies that the exchange rate process St satisfies ∆st+1 = ηt+1 +m∗
t+1 −mt+1 where
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η satisfies the following restrictions:

µt,η − Lt (exp(−ηt+1)) = Lt (Mt+1 exp(−ηt+1))− L (Mt+1)− Lt (exp(−ηt+1)) , (17)

−µt,η − Lt (exp(ηt+1)) = Lt
(
M∗
t+1 exp(ηt+1)

)
− L

(
M∗
t+1

)
− Lt (exp(ηt+1)) , (18)

and where the trend µt,η satisfies:

−µtη ≤ logEt
(
Mt+1 exp(−ηt+1)

)
− Et log (Mt+1) ,

µtη ≤ logEt
(
M∗
t+1 exp(ηt+1)

)
− Et log

(
M∗
t+1

)
,

µtη ≤ logEt

(
M∗
t+1

Mt+1e−ηt+1

)
− Et log

(
M∗
t+1

Mt+1

)
.

These η- drift conditions are the exact equivalent of the covariance conditions in the log-

normal case. When the stochastic discount factor and the wedge are jointly lognormal, one

recovers the same conditions derived in Proposition 1. We can then compare the entropy of

the incomplete markets exchange rates to the entropy of the complete markets version, denoted

Lt

(
M∗
t+1

Mt+1

)
:

Corollary 4. The entropy of the changes in exchange rates is:

Lt

(
St+1

St

)
= Lt

(
M∗
t+1 exp(ηt+1)

Mt+1

)
,

= Lt

(
M∗
t+1

Mt+1

)
− µt,η + logEt

(
M∗
t+1

Mt+1e−ηt+1

)
− logEt

(
M∗
t+1

Mt+1

)
.

Hence, the difference between the entropy of the exchange rate change in incomplete versus

complete markets is equal to:

∆Lt = LIMt − LCMt = −µt,η + logEt

(
M∗
t+1

Mt+1e−ηt+1

)
− logEt

(
M∗
t+1

Mt+1

)
.
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The change in entropy of exchange rates introduced by incomplete spanning is tightly linked

to the change in currency risk premia. To see this point, let us first define the currency risk

premium when shocks are non-Gaussian. Backus, Foresi, and Telmer (2001) show that the

complete markets’ risk premium in logs is simply Lt
(
Mt+1

)
−Lt

(
M∗
t+1

)
. The complete markets’

risk premium in levels is thus given by:

Et[rx
FX
t+1] + Lt(St+1/St) = Lt

(
Mt+1

)
− Lt

(
M∗
t+1

)
+ Lt

(
M∗
t+1

Mt+1

)
.

The following proposition describes the risk premium with incomplete spanning; it is the coun-

terpart to Corollary 2 in Section 2.2.

Corollary 5. The risk premium in logs on a long position in foreign currency is:

Et[rx
FX
t+1] = Lt

(
Mt+1

)
− Lt

(
M∗
t+1

)
+ µt,η.

The risk premium in levels on a long position in foreign currency (from the perspective of the

domestic investor) is given by:

Et[rx
FX
t+1] + Lt(St+1/St) = Lt

(
Mt+1

)
− Lt

(
M∗
t+1

)
+ µt,η + Lt

(
M∗
t+1 exp(ηt+1)

Mt+1

)
.

The difference between the currency risk premium in incomplete versus complete markets is thus

related to the changes in exchange rate entropy introduced by the incomplete spanning:

∆RPt = RP IMt −RPCMt = ∆Lt + µt,η.

In the symmetric case, where the drift of the wedge is zero (µt,η = 0), a decrease in the

entropy of the exchange rate leads to a commensurate decrease in the foreign currency risk

premium. When the drift of the wedge is not zero, it may be possible to lower the entropy of

exchange rates without lowering their risk premia.
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While Corollaries 4 and 5 offer a clear link between the entropy and risk premia of exchange

rates, there is no equivalent result for their cyclicality. In a preference-free setting, we are not

able to bound the co-entropy of exchange rates and stochastic discount factors. As a result,

the trilemma that we highlight in the lognormal case cannot be formally expressed here. The

intuition is simple: as entropy depends on an infinite sum of higher moments, it may be possible

to pick some higher moments that affect the co-entropy of exchange rates and stochastic discount

factors without affecting much the entropy of the exchange rates or the currency risk premium.

We do not know of such a model, but we cannot mathematically rule out its existence.

In the class of non-normal models often used in the option pricing and macro-finance liter-

ature, however, we show that the same trilemma applies: introducing incomplete spanning to

decrease the volatility of exchange rates also decreases the currency risk premium and implies

counterfactual links between stochastic discount factors and exchange rate changes. To illustrate

these forces, we turn to a classic jump-based model.

3.1.2 Merton Jump-based Model

The domestic and foreign representative agents have power utility with identical risk aversion γ.

Consumption growth in each country consists of a standard Gaussian component and a jump

component. The first component is the same as in the previous consumption-based example; it

is denoted w and normally distributed as N(µ, σ2). The second component is a Poisson mixture

of normals, denoted z. Foreign variables are denoted with a ∗. Log consumption growth is the

sum of these two components:

∆ct+1 = wt+1 + zt+1, (19)

∆c∗t+1 = w∗
t+1 + z∗t+1. (20)

At each date, the number of jumps j takes on non-negative integer values with probabilities

e−$$j/j!. The parameter $, the jump intensity, is the mean of j. Each jump triggers a draw

from a normal distribution with mean θ and variance δ2 for the domestic agent and with mean

θ∗ and variance δ∗2 for the foreign agent. The jumps are thus common across countries, but
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the jump sizes are not. Conditional on the number of jumps j, the domestic jump component

is normally distributed as zt|j ∼ N(jθ, jδ2), while the foreign jump component is normally

distributed as z∗t |j ∼ N(jθ∗, jδ2,∗). If $ is small, the jump model is well approximated by a

Bernoulli mixture of normals. If $ is large, multiple jumps can occur frequently. This functional

form is known as the Merton (1976) model. In the macro-finance literature, it has been applied

notably by Bates (1988), Naik and Lee (1990), Backus, Chernov, and Zin (2011), and Martin

(2013).

Next, we introduce incomplete spanning in this model. We assume that the wedge takes the

form ηt+1 = γdt+1, where dt+1 follows the same Poisson mixture as zt+1, but with parameters

θd and δd. Conditional on the number of jumps j, the jump and wedge components are jointly

normal: zt|j ∼ N(jθ, jδ2) and dt|j ∼ N(jθd, jδ
2
d). We use ρz,d and ρz∗,d to denote the correlation

of jump sizes between the spanned and unspanned components of exchange rates. The jumps

are common for the zt+1 and dt+1 components.

Result 1. Following Proposition 2, the wedges satisfy the following restrictions:

−γθd + γ2δδdρz,d +
γ2δ2

d

2
= 0, (21)

γθd − γ2δ∗δdρz∗,d +
γ2δ2

d

2
= 0. (22)

Corollary 4 implies that the change in volatility from complete to incomplete spanning is given

by:

∆Lt = LIMt − LCMt = −γ$θd +$e−γθ
∗+γθ−γ2ρz,z∗δδ

∗+(γδ)2/2+(γδ∗)2/2
(
eγ

2δδdρz,d − 1
)
. (23)

When markets are complete, the foreign currency risk premium in levels (from the perspective

of the domestic investor) is given by:

Et
[
rxFXt+1

]
+ Lt

[
rxFXt+1

]
= γ2σ2 +$

(
e−γθ+(γδ)2/2 − 1

)
−$

(
e−γθ

∗+(γδ∗)2/2 − 1
)

+ $
(
e−γθ

∗+γθ−2γ2ρz,z∗δδ
∗+(γδ)2/2+(γδ∗)2/2 − 1

)
.
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Introducing incomplete spanning wedges, Corollary 5 implies that the corresponding change in

the risk premium is given by:

∆RPt = RP IMt −RPCMt = $e−γθ
∗+γθ−γ2ρz,z∗δδ

∗+(γδ)2/2+(γδ∗)2/2
(
eγ

2δδdρz,d − 1
)
. (24)

When the wedge does not have a drift (θd = 0), Equations (23) and (24) imply that, again, the

market incompleteness change the exchange rate volatility and the exchange rate risk premium

by the same amount. More precisely, in the absence of a drift, the market incompleteness always

reduces the exchange rate volatility and the exchange rate risk premium. Equations (21) and

(22) imply that the correlation is given by ρz,d = −ρz∗,d = −0.5δd/δ. The change in volatility

and risk premium is thus negative:

∆RPt = RP IMt −RPCMt = $e−γθ
∗+γθ−γ2ρz,z∗δδ

∗+(γδ)2/2+(γδ∗)2/2

(
e−

γ2δ2d
2 − 1

)
= ∆Lt < 0.

We turn to a simple calibration, where the wedge does not have a drift (θd = 0) and countries

are symmetric (θ = θ∗, δ = δ∗) in order to study the magnitudes of volatilities and risk premia.

Calibration We follow Backus, Chernov, and Martin (2011) and set the risk-aversion param-

eter (γ) to 5.19, the mean (µ) and standard deviation (σ) of the normal consumption growth

shocks to 2.3% and 1%, the jump intensity $ to 1.7%, the mean jump size θ to −38%, and the

jump size volatility δ to 25%. These parameters were chosen to match the international evidence

reported in Nakamura, Steinsson, Barro, and Ursua (2013). We assume that the jump sizes are

uncorrelated across countries, but the jumps are common. The absence of idiosyncratic jumps

helps the model to generate low exchange rate volatility.

Figure 5 plots the exchange rate volatility
√

2L and the currency risk premium on a long

position in foreign currency from the perspective of the home investor. In this calibration,

there is no wedge that can simultaneously deliver a reasonable exchange rate volatility and a

significant risk premium. When the variance of the jumps in the wedge reaches its maximum,
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the exchange rate volatility is still close to 20% and the currency risk premium is less than 2%.

Finally, we also explored a calibration due to Backus, Chernov, and Martin (2011) that

is based on equity index options rather than aggregate consumption growth data with more

frequent but much smaller jumps. In this ‘Merton’ model, we choose γ =8.70 , σ = 2.53%,

ω = 139%, θ = −0.74% and δ = 1.91%. These results are displayed in Figure 6, which, again,

plots the exchange rate volatility
√

2L and the currency risk premium on a long position in

foreign currency. When we use the more conservative calibration with smaller, more frequent

disasters, we can match the exchange rate volatility, but the currency risk premia are too small.

In addition, varying the coefficient of risk aversion does not resolve this tension. Since we cannot

even match these two exchange rate moments in a rare disaster model, at least not in a model

with zero drift in the wedges, we ignore the exchange rate cyclicality puzzle. The next section

illustrates why the drift of the FX wedge is not really a free parameter in a large class of dynamic

asset pricing models.
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Figure 5: Exchange Rate Volatility and Risk Premia in a Barro-Rietz disaster version of the
Merton (1976) Model: In the model, the incomplete spanning wedge follows the same Poisson
mixture as the jump components of consumption growth. Each jump triggers a draw from a
normal distribution with mean θ and variance δ2 for the domestic agent, with mean θ∗ and
variance δ∗2 for the foreign agent, and with mean θd and variance δ2

d for the wedge. We assume
that the wedge does not introduce non-stationarity in exchange rates (θd = 0), that the two
countries’ consumption growth processes are symmetric (θ = θ∗, δ = δ∗) and that the jump
components are not correlated across countries. We follow Backus, Chernov, and Martin (2011)
and set the risk aversion parameter (γ) to 5.19, the mean (µ) and standard deviation (σ) of the
normal consumption growth shocks to 2.3% and 1%, the jump intensity ($) to 1.7%, the mean
jump size (θ) to −38%, and the jump size volatility (δ) to 25%. The figure reports the exchange
rate volatility (defined as

√
2L, where L denotes the average entropy) and the currency risk

premium in levels from the perspective of the home investor, Et
[
rxFXt+1

]
+ Lt

[
rxFXt+1

]
, for the

admissible combinations of the jump parameters δd ≤ 2δ. The gray area represents the empirical
counterpart of each moment.
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Figure 6: Exchange Rate Volatility and Risk Premia in an option-based Merton (1976) Model:
In the model, the incomplete spanning wedge follows the same Poisson mixture as the jump
components of consumption growth. Each jump triggers a draw from a normal distribution
with mean θ and variance δ2 for the domestic agent, with mean θ∗ and variance δ∗2 for the
foreign agent, and with mean θd and variance δ2

d for the wedge. We assume that the wedge does
not introduce non-stationarity in exchange rates (θd = 0), that the two countries’ consumption
growth processes are symmetric (θ = θ∗, δ = δ∗) and that the jump components are not corre-
lated across countries. We follow Backus, Chernov, and Martin (2011) and set the risk aversion
parameter (γ) to 8.70, the mean (µ) and standard deviation (σ) of the normal consumption
growth shocks to 3.03% and 2.53%, the jump intensity ($) to 139%, the mean jump size (θ) to
−0.74%, and the jump size volatility (δ) to 1.91%. The figure reports the exchange rate volatility
(defined as

√
2L, where L denotes the average entropy) and the currency risk premium in levels

from the perspective of the home investor, Et
[
rxFXt+1

]
+ Lt

[
rxFXt+1

]
, for the admissible combina-

tions of the jump parameters δd ≤ 2δ. The gray area represents the empirical counterpart of
each moment.
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3.2 Dynamic Asset Pricing Models

In this section, we extend our benchmark results to a large class of dynamic asset pricing models.

Specifying a law of motion for the stochastic discount factor further restrains the ability of the

incomplete spanning wedge to address the main currency puzzles because it completely pins down

the first moment of the wedge. We use the Cox, Ingersoll, and Ross (1985) model (denoted CIR)

model to illustrate this finding. Similar results appear naturally in the case of CRRA preferences

with heteroskedastic consumption, since that model is isomorphic to the CIR model. For the

sake of clarity and space, we focus on a simple CIR model with country-specific factors. The

Appendix presents a CIR model with common factors and a consumption-based model.

In discrete time, the simplest version of the CIR model is defined by the following two

equations:

− logMt+1 = α+ χzt +
√
γztut+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

where M denotes the home stochastic discount factor. The disturbances ut+1 ∼ N(0, 1) are i.i.d.

over time.12 The foreign stochastic discount factor follows a similar law of motion but with its

own factor z∗t and shocks u∗t+1.

− logM∗
t+1 = α+ χz∗t +

√
γ∗z∗t u

∗
t+1,

z∗t+1 = (1− φ)θ + φz∗t − σ
√
ztu

∗
t+1,

As noted in Equation (11), since the SDF is lognormal, the maximum Sharpe ratios at home and

12In this model, log bond prices are affine in the state variable zt: p
(n)
t = −Bn0 − Bn1 zt. The price of a one

period-bond is: P (1) = Et (Mt+1) = e−α−(χ− 1
2
γ)zt . Bond prices are defined recursively by the Euler equation:

P
(n)
t = Et(Mt+1P

(n−1)
t+1 ). Thus the bond price coefficients evolve according to the following second-order difference

equations:

Bn0 = α+Bn−1
0 +Bn−1

1 (1− φ)θ,

Bn1 = χ− 1

2
γ +Bn−1

1 φ− 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 .
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abroad are stdt(mt+1) =
√
γzt, and stdt(m

∗
t+1) =

√
γ∗z∗t , respectively. The real version of this

CIR model with χ = 0 is isomorphic to a model in which the domestic (foreign) representative

agent has power utility preferences over consumption with CRRA coefficient
√
γ (
√
γ∗) and

aggregate consumption growth is heteroskedastic.

We assume that domestic investors can trade at least one risky domestic asset (e.g., a longer

maturity bond) and the one-period risk-free bond, but they can only trade the foreign risk-free

bond. They cannot trade any foreign risky assets. All domestic shocks are spanned, but not the

foreign shocks.

When markets are complete, the volatility of exchange rate changes is simply equal to

vart(∆st+1) = γzt + γ∗z∗t . In order to describe the class of potential wedges, we define the

target volatility of the incomplete spanning exchange rate as vart(∆st+1) = κzt + κ∗z∗t . As

noted in Corollary 1, the implied volatility of the incomplete spanning exchange rate process

is then equal to vart(∆st+1) = γzt + γ∗z∗t − vart(ηt+1), which implies that the volatility of

the wedge is vart(ηt+1) = (γ − κ)zt + (γ∗ − κ∗)z∗t . The following result defines the incomplete

markets wedge that matches the desired volatility of the exchange rates while satisfying all the

restrictions of Proposition 1.

Result 2. In the CIR model with country-specific factors that define the domestic mt+1 and

foreign m∗
t+1 log stochastic discount factors, incomplete spanning leads to a wedge ηt+1 and an

exchange rate process St that satisfies ∆st+1 = ηt+1 +m∗
t+1−mt+1 with variance vart(∆st+1) =

κzt + κ∗z∗t , where ηt follows:

ηt+1 = ψzt + ψ∗z∗t −
√

(γ − λ)ztut+1 +
√

(γ∗ − λ∗)z∗t u∗t+1

+
√

(λ− κ)ztεt+1 +
√

(λ∗ − κ∗)z∗t ε∗t+1. (25)

where εt+1 ∼ N(0, 1) and ε∗t+1 ∼ N(0, 1) are i.i.d., and where the parameters λ, λ∗, ψ, and ψ∗
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satisfy κ ≤ λ ≤ γ, κ∗ ≤ λ∗ ≤ γ∗, as well as:

κ = γ −√γ
√
γ − λ, (26)

κ∗ = γ∗ −
√
γ∗
√
γ∗ − λ∗ (27)

ψ = −1

2
(γ − κ), (28)

ψ∗ =
1

2
(γ∗ − κ∗). (29)

The class of incomplete spanning models built on the CIR framework has only two degrees

of freedom, described by the two parameters κ and κ∗. Again, these two parameters determine

the exchange rate volatility. Once they are chosen, the law of motion of the incomplete spanning

wedge is entirely determined. Equations (26) and (27) implicitly pin down the parameters λ

and λ∗. As Equations (28) and (29) show, the drift term in the η process is not a free parameter

either, it is determined by the other parameters of the model.13

The incomplete markets wedges leave the domestic and foreign term structure unchanged.

The term (γ − λ) measures the exchange rate’s exposure to spanned shocks, while (λ − κ)

measures the exposure to unspanned shocks. If we allow the domestic investor to trade any

foreign risky bond, then the wedges are zero again: κ = γ = λ and κ∗ = γ∗ = λ∗, because

we need to impose two additional orthogonality conditions given by Equation (12) between log

returns and η. This result is intuitive: if there are as many assets as exogenous shocks, markets

are complete.

The key result is that the drift of the wedge is determined by the rest of the model; it is no

longer a free parameter. Once we impose these dynamic no-arbitrage restrictions on the drift

term, the effect on currency risk premia is unambiguous. When markets are complete, the log

currency risk premium is given by Et[rx
FX
t+1] = 1

2(γzt − γ∗z∗t ), while the currency risk premium

in levels is given by γzt. When markets are incomplete, the risk premium in levels is always

13In the symmetric case, where γ = γ∗ (the two SDFs react in the same proportion to exogenous shocks) and
κ = κ∗ (the exchange rate volatility exhibit the same sensitivity to the two state variables), then Equations (28)
and (29) imply that ψ = −ψ?, and the drift term is zero on average (E[µt,η] = 0). In the symmetric case, on
average, the wedge has no impact on exchange rates.
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smaller than in complete markets because κ ≤ γ.

Result 3. In the incomplete market model described in Result 2, the risk premium in logs on a

long position in foreign currency is:

Et[rx
FX
t+1] =

1

2
[κzt − κ∗z∗t ] .

The risk premium in levels on a long position in foreign currency is always smaller in incomplete

markets than in complete markets:

Et[rx
FX
t+1] +

1

2
vart[rx

FX
t+1] = κzt ≤ γzt.

In the incomplete market model, the Fama slope coefficient in a regression of exchange rates

(−∆st+1) on the interest rate difference r∗t − rt is:

cov(−∆st+1, r
∗
t − rt)

var(r∗t − rt)
= 1 +

1

2

κ(χ− 1
2γ) + κ∗(χ− 1

2γ
∗)

(χ− 1
2γ)2 + (χ− 1

2γ
∗)2

.

If incomplete spanning reduces the standard deviation of exchange rates by 50% (
√
κ/γ =

0.5), then the currency risk premium is reduced by a factor of 0.25 (κ/γ = 0.25, implying a

reduction by 75%).14 Since a real version of the CIR model is isomorphic to the Consumption-

CAPM with heteroscedastic consumption growth, this result implies that incomplete spanning

effectively reduces the representative agent’s risk aversion coefficient when pricing currency risk,

but not for other risk sources.

To quantitatively illustrate the trade-off between exchange rate volatility and risk premia,

we adopt the following parameters for the two countries: λd = −1.07, γ = λ2
d, θ = 0.004428,

φ = 0.976, α = 0, χ = −1 + λ2
d/2, σ = 0.008356. These parameters match the mean short-term

14Currency Sharpe ratios decrease as well, since for all zt, z
∗
t :

Et[rx
FX
t+1] + 1

2
vart[rx

FX
t+1]

stdt(∆st+1)
=

κzt√
κzt + κz∗t

=
√
κ

zt√
zt + z∗t

≤ √γ zt√
zt + z∗t

.
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interest rate rate, its volatility, and its autocorrelation. They are close to those used in Backus,

Foresi, and Telmer (1998): the only difference is that we defined χ = −1 + λ2
d/2 (instead of

χ = 1 + λ2
d/2) in order to obtain counter-cyclical short-term interest rates, a necessary feature

to replicate the uncovered interest rate (UIP) puzzle in this class of models.

Figure 7 reports the annualized volatility of the exchange rate and the UIP slope coefficients

for all admissible combinations of the parameters κ. The first panel plots the parameters κ

and λ against the annualized volatility of the wedge, stdt(ηt+1). The second panel plots the

annualized volatility of the exchange rate. The third panel plots the UIP slope coefficient in a

regression of exchange rates (−∆st+1) on the interest rate difference r∗t − rt. UIP implies that

this slope coefficient is one; in the data, it is statistically different from one and often negative.

As the volatility of the wedge increases, the exchange rate volatility decreases. It can reach its

empirical value, but only at the cost of driving the UIP slope coefficients to one. The fourth

panel reports the currency risk premium. In the model, as shown in Corollary 3, it varies with

the state variable z. In order to focus on potentially large values, it is here evaluated at the

mean plus two standard deviations of the state variable z. Even in this very favorable case,

when the exchange rate volatility reaches its empirical value, the currency risk premium is zero.

These conclusions do not depend on the country-specific nature of the factors. When we

include common factors, we find that incomplete spanning still lowers the currency risk premium

in levels and also forces the UIP regression coefficient to one. We analyze this general case

with common factors in the Appendix, along with a version of the Lucas (1982) model with

hetereroskedastic consumption growth. In this model, we show that incompleteness lowers the

risk aversion of the representative agent by the same percentage amount as it lowers FX vol.
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Figure 7: Cox, Ingersoll, and Ross (1985) Example: The figure reports the wedge parameters,
the annualized volatility of the exchange rate, the UIP slope coefficient, and the currency risk
premium for different volatilities of the incomplete spanning wedge. The first panel plots the
parameters κ and λ that characterize the wedge against its annualized volatility, stdt(ηt+1).
The second panel plots the annualized volatility of the exchange rate. The third panel plots the
UIP slope coefficient in a regression of exchange rates on the foreign minus domestic interest
rates. If the uncovered interest rate parity were to hold, the UIP slope coefficient would be one.
The fourth panel reports the currency risk premium evaluated at the mean plus two standard
deviations of the state variable. We adopt the following parameters for the two countries:
λd = −1.07, γ = λ2

d, θ = 0.004428, φ = 0.976, α = 0, χ = −1 + λ2
d/2, σ = 0.008356.
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4 Conclusion

Our paper investigates whether incomplete spanning in international financial markets can ac-

count for the behavior of exchange rates. To answer this question, we allow for a great deal of

incompleteness by only enforcing the Euler equations in forwards and futures currency markets.

To help resolve the currency volatility and correlation puzzles, the quantity of unspanned risk

needed in currency markets is of the same size as the maximum Sharpe ratio. Adding this

amount of noise to exchange rates shrinks all currency risk premia to zero in violation of a large

body of empirical evidence from currency markets.

The limits of incomplete spanning underlines the robustness of the key exchange rate puzzles.

In the future, the solutions to these puzzles may involve two ingredients. As suggested by

complete market models, stochastic discount factors may be very highly correlated, even if

macroeconomic series are not. To support this view further, researchers need to find direct

evidence of such high correlations. In the realm of segmented markets, models that segment

international currency markets by only allowing a subset of investors (see, e.g., Chien, Lustig,

and Naknoi, 2015 and Dou and Verdelhan, 2015) to trade a complete (or incomplete) menu of

international securities are promising. These models sever the link between aggregate quantities

and real exchange rates by concentrating aggregate risk among a small pool of investors. But

these segmented markets models face a challenging measurement test: researchers need to show

that changes in exchange rates are highly correlated with the marginal utility growth of these

market participants.
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Appendix
For Online Publication

Section A presents the proof of our main general results. Section B studies three examples: a simple
consumption-based example; a Cox, Ingersoll, and Ross (1985) model with common factors; a consumption-based
example with heteroscedasticity. Section C reports summary statistics on the exchange rate entropy.

A Proofs of Main Results

In this section, we gather all the proofs of the main results in the text, in the order they appear there. We
distinguish between the propositions and their corollaries, which are model-free findings, and the results, which
are model-specific.

Proof of Proposition 1:

Proof. We start from the domestic investor’s Euler equation for the foreign risk-free asset, and the foreign in-
vestor’s Euler equation for the domestic risk-free asset respectively:

Et
(
M̂∗
t+1

)
= Et

(
Mt+1

St+1

St

)
= Et (M∗

t+1 exp(ηt+1)) = 1/Rf,∗t ,

Et (Mt+1) = Et

(
M∗
t+1

St
St+1

)
= Et (Mt+1 exp(−ηt+1)) = 1/Rf,t .

By using conditional joint log normality of the foreign SDF and exp(η), the first Euler equation implies that:

Et (logM∗
t+1) +

1

2
V art (logM∗

t+1) = Et (logM∗
t+1) + µt,η +

1

2
V art (logM∗

t+1)

+
1

2
V art (ηt+1) + covart(ηt+1, logM∗

t+1),

where µt,η = Et (ηt+1). This implies that covart (m∗
t+1, ηt+1) = −µt,η−0.5vart (ηt+1). We move on to the second

equation. The second Euler equation for the domestic risk-free asset implies that:

Et (logMt+1) +
1

2
V art (logMt+1) = Et (logMt+1)− µt,η +

1

2
V art (logMt+1)

+ (1/2)V art (ηt+1)− covart(ηt+1, logMt+1).

This implies that covart (mt+1, ηt+1) = −µt,η + 0.5vart (ηt+1).
The inequality restrictions on µt,η follow directly from the Cauchy-Schwarz inequality for (1) |covart (m∗

t+1, ηt+1) | ≤
stdt (m∗

t+1) stdt (ηt+1) and (2) |covart (mt+1, ηt+1) | ≤ stdt (mt+1) stdt (ηt+1). Finally, we also impose that (3):

|covart (m∗
t+1 −mt+1, ηt+1) | ≤ stdt (m∗

t+1 −mt+1) stdt (ηt+1) .

When µt,η ≤ −(1/2)vart (ηt+1), the first inequality implies that:

−(µt,η +
1

2
vart (ηt+1)) ≤ stdt (m∗

t+1) stdt (ηt+1) .

This in turn implies that:

−(µt,η) ≤ stdt (m∗
t+1) stdt (ηt+1) +

1

2
vart (ηt+1)).

When µt,η ≥ −(1/2)vart (ηt+1), the first inequality implies that:

µt,η +
1

2
vart (ηt+1) ≤ stdt (m∗

t+1) stdt (ηt+1) .

This in turn implies that:

µt,η ≤ stdt (m∗
t+1) stdt (ηt+1)− 1

2
vart (ηt+1) .
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Next, we turn to the second inequality. When µt,η ≥ (1/2)vart (ηt+1), the second inequality implies that:

µt,η −
1

2
vart (ηt+1) ≤ stdt (mt+1) stdt (ηt+1) .

This in turn implies that:

µt,η ≤ stdt (mt+1) stdt (ηt+1) +
1

2
vart (ηt+1) .

When µt,η ≤ (1/2)vart (ηt+1), the second inequality implies that:

−(µt,η −
1

2
vart (ηt+1)) ≤ stdt (mt+1) stdt (ηt+1) .

This in turn implies that:

−µt,η ≤ stdt (mt+1) stdt (ηt+1)− 1

2
vart (ηt+1) .

Finally, the third inequality implies that:

stdt (ηt+1) ≤ stdt (m∗
t+1 −mt+1) .

Proof of Corollary 1:

Proof. We start from the definition of log changes in exchange rates: vart(∆st+1) = vart(ηt+1 +m∗
t+1 −mt+1).

This can be simplified to:

vart(∆st+1) = vart(mt+1) + vart(m
∗
t+1) + vart(ηt+1)− 2covt(mt+1,m

∗
t+1)

− 2covt(mt+1, ηt+1) + 2covt(ηt+1,m
∗
t+1).

Proposition 1 implies that:

vart(∆st+1) = vart(mt+1) + vart(m
∗
t+1)− 2covt(mt+1,m

∗
t+1)

− vart (ηt+1)− vart (ηt+1) + vart(ηt+1),

which establishes the result. Finally, we prove the volatility results. The volatility of the log pricing kernel in the
foreign country is given by

vart (m∗
t+1 + ηt+1) = vart(m

∗
t+1) + vart(ηt+1) + 2covart(m

∗
t+1, ηt+1).

The result follows directly from the covariance condition. Note that covart (m∗
t+1, ηt+1) = −µt,η − 1

2
vart (ηt+1).

vart (m∗
t+1 + ηt+1) = vart(m

∗
t+1) + vart(ηt+1) + 2(−µt,η −

1

2
vart (ηt+1)).

Proof of Corollary 2

Proof. The expression for the log risk premium follows because covart (m∗
t+1, ηt+1) = −µt,η − vart (ηt+1) /2. The

expression for the risk premium in level follows because vart[rx
FX
t+1]/2 = vart(∆st+1)/2 which is given by:

1

2
vart(mt+1) +

1

2
vart(m

∗
t+1)− covt(mt+1,m

∗
t+1)− 1

2
vart(ηt+1).

The log risk premium is increased by µt,η relative to the complete markets case. The foreign investor’s log risk
premium on domestic currency is naturally the opposite of the one above. The symmetry does not hold in levels
because of the usual Jensen term. The foreign investor’s risk premium in levels on a long position in domestic
currency is given by:

Et[rx
FX
t+1] +

1

2
vart[rx

FX
t+1] = covt(m

∗
t+1,∆st+1) = vart (m∗

t+1)− covart (m∗
t+1,mt+1)− 1

2
vart (ηt+1)− µt,η.
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Proof of Corollary 3

Proof. This result follows immediately from Proposition 1. We subtract the second covart (mt+1, ηt+1) = −µt,η+
0.5vart (ηt+1) from the first covariance condition covart (mt+1, ηt+1) = −µt,η + 0.5vart (ηt+1). That delivers the
results.

Proof of Proposition 2:

Proof. By definition, the conditional entropy of a random variable Xt+1 is equal to:

Lt(Xt+1) = logEt(Xt+1)− Et(logXt+1)

We assume here that both investors have access to risk-free rates. Let us start again from the Euler equation of
the foreign investor:

1

Rf,∗t
= Et (M∗

t+1 exp(ηt+1))

Taking logs leads to:

−rf,∗t = logE (M∗
t+1 exp(ηt+1)) = Lt (M∗

t+1 exp(ηt+1)) + Et (logM∗
t+1) + Et(ηt+1).

But the risk-free rate also satisfies the Euler equation E
(
M∗
t+1R

f,∗
t

)
= 1. Taking logs again leads to:

logE
(
M∗
t+1R

f,∗
t

)
= L

(
M∗
t+1R

f,∗
t

)
+ Et (logM∗

t+1) + rf,∗t = 0

Plugging the implied value of the log risk-free rate in the first equation above delivers the result, noting that
Lt(atXt+1) = Lt(Xt+1) for any variable at known at date t:

L (M∗
t+1) + Et (logM∗

t+1) = Lt (M∗
t+1 exp(ηt+1)) + Et (logM∗

t+1) + Et(ηt+1),

which simplifies to:
Lt (M∗

t+1 exp(ηt+1)) = L (M∗
t+1)− Et(ηt+1).

Likewise, one can show that:

Lt (Mt+1 exp(−ηt+1)) = L (Mt+1) + Et(ηt+1).

Finally, we derive restrictions the set of feasible µt,η from non-negativity of Lt (Mt+1 exp(−ηt+1)), Lt (M∗
t+1 exp(ηt+1))

and Lt
(
St+1

St

)
. To start, note that:

Lt (Mt+1 exp(−ηt+1)) = logEt (Mt+1 exp(ηt+1))− Et log (Mt+1) + Et(ηt+1) ≥ 0

Lt (M∗
t+1 exp(ηt+1)) = logEt (M∗

t+1 exp(ηt+1))− Et log (M∗
t+1)− Et(ηt+1) ≥ 0

This implies that the following restrictions need to be satisfied:

−µtη ≤ logEt (Mt+1 exp(−ηt+1))− Et log (Mt+1) .

µtη ≤ logEt (M∗
t+1 exp(ηt+1))− Et log (M∗

t+1) ,

which in turn implies that:

− (logEt (Mt+1 exp(−ηt+1))− Et log (Mt+1)) ≤ µtη ≤ logEt (M∗
t+1 exp(ηt+1))− Et log (M∗

t+1)

Finally, we also know that

Lt

(
St+1

St

)
= −Et(ηt+1) + logEt

(
M∗
t+1

Mt+1e−ηt+1

)
− Et log

(
M∗
t+1

Mt+1

)
≥ 0
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This, in turn, implies that:

logEt

(
M∗
t+1

Mt+1e−ηt+1

)
− Et log

(
M∗
t+1

Mt+1

)
≥ µtη

Proof of Corollary 4:

Proof. Note that the entropy of the ratio of two random variables is:

Lt

(
Xt+1

Yt+1

)
= logEt

(
Xt+1

Yt+1

)
− Et(logXt+1) + Et(log Yt+1)

= logEt

(
Xt+1

Yt+1

)
+ Lt(Xt+1)− logEt(Xt+1)− L(Yt+1) + logEt(Yt+1).

By applying this fomula to the following expression with Xt+1 = M∗
t+1/Mt+1 and Yt+1 = M∗

t+1/[Mt+1e
−ηt+1 ],

we obtain

Lt
(
e−ηt+1

)
= Lt

(
M∗
t+1/Mt+1

M∗
t+1/[Mt+1e−ηt+1 ]

)
= Lt

(
M∗
t+1

Mt+1

)
− Lt

(
M∗
t+1

Mt+1e−ηt+1

)
+ logEt

(
e−ηt+1

)
− logEt

(
M∗
t+1

Mt+1

)
+ logEt

(
M∗
t+1

Mt+1e−ηt+1

)
,

This last step leads to the result in the text as the second term is the entropy of the change in exchange rates.

Proof of Corollary 5:

Proof. The first result just follows from the definition of the log change in the exchange rate and the definition
of the risk-free rate at home and abroad. The second result follows immediately because Et[rx

FX
t+1] +Lt(rx

FX
t+1) =

Et[rx
FX
t+1] + Lt(St+1/St); only St+1/St is random.

∆RP = RP IM −RPCM = −Lt
(
M∗
t+1

Mt+1

)
+ µt,η + Lt

(
M∗
t+1e

ηt+1

Mt+1

)
= −Lt

(
e−ηt+1

)
+ logEt

(
e−ηt+1

)
− logEt

(
M∗
t+1

Mt+1

)
+ logEt

(
M∗
t+1e

ηt+1

Mt+1

)
+ µt,η

= − logEt

(
M∗
t+1

Mt+1

)
+ logEt

(
M∗
t+1e

ηt+1

Mt+1

)
= ∆L+ µt,η.

The second line uses the entropy of a ratio of two random variables.

Proof of Result 1:

Proof. We start from the complete market benchmark. The conditional entropy of the pricing kernel Mt+1 is
equal to:

Lt(Mt+1) = Lt
(
e−γ∆ct+1

)
= Lt

(
e−γwt+1

)
+ Lt

(
e−γzt+1

)
=

γ2σ2

2
+$

(
e−γθ+(γδ)2/2 − 1

)
+ γ$θ.

The entropy of the jump component is presented in Equation (24), page 1981 of Backus, Chernov, and Zin (2011)
and derived in their Appendix A. The entropy of the ‘complete spanning’ exchange rate is given by:

Lt

(
M∗
t+1

Mt+1

)
= Lt

(
e−γ(∆c∗t+1−∆ct+1)

)
= Lt

(
e−γw

∗
t+1

)
+ Lt

(
e−γz

∗
t+1+γzt+1

)
+ Lt (eγwt+1) ,

=
γ2,∗σ∗,2

2
+
γ2σ2

2
+$

(
e−γθ

∗+γθ−γγ∗ρz,z∗δδ
∗+(γδ)2/2+(γδ∗)2/2 − 1

)
+ γ∗$θ∗ − γ$θ.
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The log currency risk premium is given by the difference in the entropy of the domestic and the foreign pricing
kernels:

Et
[
rxFXt+1

]
= −Lt(M∗

t+1) + Lt(Mt+1) = −Lt(e−γ∆c∗t+1) + Lt(e
−γ∆ct+1),

= −Lt(e−γw
∗
t+1)− Lt(e−γz

∗
t+1) + Lt(e

−γwt+1) + Lt(e
−γzt+1),

= −γ
2,∗σ∗,2

2
−$

(
e−γθ

∗+(γδ∗)2/2 − 1
)

+
γ2σ2

2
+$

(
e−γθ+(γδ)2/2 − 1

)
− (γ∗$θ∗ − γ$θ).

Hence, the foreign currency risk premium in levels is given by:

Et
[
rxFXt+1

]
+ Lt

[
rxFXt+1

]
= γ2σ2 +$

(
e−γθ+(γδ)2/2 − 1

)
−$

(
e−γθ

∗+(γδ∗)2/2 − 1
)

+ $
(
e−γθ

∗+γθ−2γγ∗ρz,z∗δδ
∗+(γδ)2/2+(γδ∗)2/2 − 1

)
.

Next, we introduce incomplete spanning as described in the main text. The conditional entropy of the
perturbed pricing kernel is equal to:

Lt
(
Mt+1e

−ηt+1
)

= Lt
(
e−γ∆ct+1−γet+1

)
= Lt

(
e−γwt+1

)
+ Lt

(
e−γzt+1−γdt+1

)
,

= γ2σ2/2 +$
(
e−γ(θ+θd)+γ2δδdρz,d+(γδd)2/2+(γδ)2/2 − 1

)
+ γ$(θ + θd)

The entropy of the sum of two Poisson mixtures (Lt
(
e−γzt+1−γdt+1

)
above) is a generalization of the result pre-

sented in Backus, Chernov, and Zin (2011). The co-entropy condition in Proposition 2, µt,η = Lt
(
Mt+1e

−ηt+1
)
−

L (Mt+1), implies here that:

γ$θd = Lt
(
Mt+1e

−ηt+1
)
− L (Mt+1)

= $
(
e−γ(θ+θd)+γ2δδdρz,e+(γδd)2/2+(γδ)2/2 − 1

)
−$

(
e−γθ+(γδ)2/2 − 1

)
+ γ$θd.

Simplifying, we obtain:

0 = e−γ(θ+θd)+γ2δδdρz,d+(γδd)2/2+(γδ)2/2 − e−γθ+(γδ)2/2.

This leads to:

−γ(θ + θd) + γ2δδdρz,d + (γδd)
2/2 + (γδ)2/2 = −γθ + (γδ)2/2.

This is equivalent to the following restriction on the wedge:

−γθd + γ2δδdρz,d + (γδd)
2/2 = 0.

Next, we turn to the foreign pricing kernel. The conditional entropy of the perturbed pricing kernel is equal to:

Lt (M∗
t+1e

ηt+1) = Lt
(
e−γ∆c∗t+1+γdt+1

)
= Lt

(
e−γw

∗
t+1

)
+ Lt(e

−γzt+1+γdt+1)

= γ2σ2,∗/2 +$∗
(
e−γ (θ∗−θ∗e )−γ2δ∗δdρz∗,d+(γδ∗d)2/2+(γδ∗)2/2 − 1

)
+ γ$(θ∗)− γ$(θd)

The co-entropy condition in Proposition 2, −µt,η = Lt (M∗
t+1 exp(ηt+1))− L (M∗

t+1), implies here that:[
1− eγθd−γ

2δδdρz∗,d+(γδd)2/2)
]
$e−γθ

∗+(γδ∗)2/2 = 0.

This is equivalent to the following condition:

γθd − γ2δ∗δdρz∗,d + (γδd)
2/2 = 0.
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Collecting all of the no-arbitrage restrictions, we obtain the conditions first described in Result 1:

−γθe + γ2δδeρz,e + (γδe)
2/2 = 0

γθe − γ2δ∗δeρz∗,e + (γδe)
2/2 = 0

γ2δδeρz,e − γ2δ∗δeρz∗,e + (γδe)
2/2 = 0.

The third condition is implied by the first two conditions.

We turn now to the entropy of the exchange rate. When markets are incomplete, the exchange rate’s entropy
is given by:

Lt

(
M∗
t+1e

ηt+1

Mt+1

)
= Lt

(
e−γ∆c∗t+1+γdt+1+γ∆ct+1

)
,

= Lt
(
e−γw

∗
t+1

)
+ Lt (eγwt+1) + Lt

(
e−γz

∗
t+1+γzt+1+γdt+1

)
,

=
γ2σ∗,2

2
+
γ2σ2

2
+ γ∗$∗θ∗ − γ$θ − γ$θd

+$

(
eγ(θ+θd−θ∗)−γ2δ∗δdρz∗,d+γ2δδdρz,d−γ2ρz,z∗δδ

∗+
(γδd)

2

2
+

(γδ)2

2
+

(γδ∗)2

2 − 1

)
.

The entropy gap between the complete and incomplete spanning exchange rate is thus:

Lt

(
M∗
t+1e

ηt+1

Mt+1

)
− Lt

(
M∗
t+1

Mt+1

)
= $

(
eγ(θ+θd−θ∗)−γ2δ∗δdρz∗,d+γ2δδdρz,d−γ2ρz,z∗δδ

∗+
(γδd)

2

2
+

(γδ)2

2
+

(γδ∗)2

2 − 1

)
− γ$θd −$

(
e−γθ

∗+γθ−γ2ρz,z∗δδ
∗+(γδ)2/2+(γδ∗)2/2 − 1

)
Using the no-arbitrage condition on the wedges γθd = γ2δ∗δdρz∗,d − (γδd)

2/2 = 0, we obtain the following result:

Lt

(
M∗
t+1e

ηt+1

Mt+1

)
− Lt

(
M∗
t+1

Mt+1

)
= $

(
eγ(θ−θ∗)+γ2δδdρz,d−γ2ρz,z∗δδ

∗+
(γδ)2

2
+

(γδ∗)2

2 − 1

)
− γ$θd$

(
e−γθ

∗+γθ−γ2ρz,z∗δδ
∗+

(γδ)2

2
+

(γδ∗)2

2 − 1

)
.

This can be restated as :

∆Lt = LIMt − LCMt = Lt

(
M∗
t+1e

ηt+1

Mt+1

)
− Lt

(
M∗
t+1

Mt+1

)
= −γ$θd +$

(
e−γθ

∗+γθ−γ2ρz,z∗δδ
∗+

(γδ)2

2
+

(γδ∗)2

2

)
(eγ

2δδdρz,d − 1).

This is the second part of Result 1. Taking into account the no-arbitrage conditions on the wedge, when the wedge
does not have a drift (θd = 0) and the two countries share the same parameters (θ = θ∗, δ = δ∗), we obtain:

∆Lt = $
(
e−γ

2ρz,z∗δ
2+(γδ)2

)
(e(−γ2δ2e − 1) < 0.

Finally, we turn to the risk premium in levels on a long position in foreign currency, which is given by :

Et
[
rxFXt+1

]
+ Lt

(
St+1

St

)
= Lt (Mt+1)− Lt (M∗

t+1) + µt,η + Lt

(
M∗
t+1e

ηt+1

Mt+1

)
.

Hence, the change in the risk premium from complete to incomplete spanning is given by the change in entropy,
LIMt − LCMt , plus the drift term: γ$θd. As a result, the change in the risk premium is given by:

∆RPt = RP IMt −RPCMt = $

(
e−γθ

∗+γθ−γ2ρz,z∗δδ
∗+

(γδ)2

2
+

(γδ∗)2

2

)
(eγ

2δδdρz,d − 1).

This is the third part of Result 1.
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Proof of Result 2:

Proof. We need to implement the following conditions:

covart (m∗
t+1, ηt+1) = −µt,η −

1

2
vart (ηt+1) ,

covart (mt+1, ηt+1) = −µt,η +
1

2
vart (ηt+1) ,

Using the expression for the SDF, we obtain the following conditions:

−
√
γ∗
√

(γ∗ − λ∗)z∗t = −(ψzt + ψ∗z∗t )− 1

2
((γ − κ)zt + (γ∗ − κ∗)z∗t ) ,

+
√
γ
√

(γ − λ)zt = −(ψzt + ψ∗z∗t ) +
1

2
((γ − κ)zt + (γ∗ − κ∗)z∗t ) .

These conditions imply that:

ψ∗ =
1

2
(γ∗ − κ∗),

ψ = −1

2
(γ − κ).

as well as:

−
√
γ∗
√

(γ∗ − λ∗) = −ψ∗ − 1

2
(γ∗ − κ∗) = − (γ∗ − κ∗) ,

+
√
γ
√

(γ − λ) = −ψ +
1

2
(γ − κ) = (γ − κ) ,

where we have used the expressions for the ψ’s. This delivers the following end result:

γ∗ −
√
γ∗
√

(γ∗ − λ∗) = κ∗,

γ −√γ
√

(γ − λ) = κ.

Proof of Result 3:

Proof. The risk premium in logs on a long position in foreign currency is given by:

Et[rx
FX
t+1] = rf,∗t − rft + Et(∆st+1) =

1

2
[vart (mt+1)− vart (m∗

t+1 + ηt+1)]

=
1

2
[(γ + 2ψ)zt − (γ∗ − 2ψ∗)z∗t ] .

=
1

2
[(γ − (γ − κ))zt − (γ∗ − (γ∗ − κ∗))z∗t ]

=
1

2
[κzt − κ∗z∗t ]

The risk premium in levels on a long position in foreign currency is given by:

Et[rx
FX
t+1] +

1

2
vart[rx

FX
t+1] = −covt(mt+1,∆st+1)

=
1

2
[(κ+ κ)zt − (κ∗ − κ∗)z∗t ]

= κzt

Recall that the short rate is given by: rt = α+ (χ− 1
2
γ)zt. Hence, the regression slope coefficient on rt − r∗t is

cov(rxFXt+1, rt − r∗t )

var(rt − r∗t )
=
.5κ(χ− 1

2
γ) + .5κ∗(χ− 1

2
γ∗)

(χ− 1
2
γ)2 + (χ− 1

2
γ∗)2
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Hence, in the symmetric case, we end up with:
.5κ

(χ− 1
2
γ)

B Three Examples

This section presents three examples: a simple consumption-based example; a Cox, Ingersoll, and Ross (1985)
model with common factors; a consumption-based example with heteroscedasticity.15

B.1 A Simple Consumption-Based Example

In this section, we study in detail the consumption-based example that is mentioned rapidly in the main text.

Complete Markets We start from the complete market benchmark. The model is described in the main
text.

Result 4. The complete markets foreign currency risk premium in levels (defined from the perspective of the
home investor) is given by:

Et
[
rxFXt+1

]
+ Lt

[
rxFXt+1

]
= γ2σ2 − γ2ρw,w∗σσ∗.

The proof of Result 4 is as follows.

Proof. The entropy of the domestic pricing kernel is given by:

Lt(Mt+1) = Lt
(
e−γ∆ct+1

)
=
γ2σ2

2
.

As a result, the entropy of the exchange rate is:

Lt

(
M∗
t+1

Mt+1

)
= Lt(e

−γw∗
t+1+γwt+1) =

γ2σ∗2

2
+
γ2σ2

2
− γ2ρw,w∗σσ∗.

When markets are complete, the log currency risk premium is given by the difference in the entropy of the domestic
and the foreign pricing kernels:

Et
[
rxFXt+1

]
= −Lt (M∗

t+1) + Lt(Mt+1) = −Lt(e−γ∆c∗t+1) + Lt(e
−γ∆ct+1)

= −Lt(e−γw
∗
t+1) + Lt(e

−γwt+1) = −γ
2,∗σ∗,2

2
+
γ2σ2

2
.

As a result, the currency risk premium in levels (defined from the perspective of the home investor) is given by:

Et
[
rxFXt+1

]
+ Lt

[
St+1

St

]
= γ2σ2 − γ2ρw,w∗σσ∗.

Likewise, the currency risk premium in levels (defined from the perspective of the foreign investor) is given by:

−Et
[
rxFXt+1

]
+ Lt

[
St
St+1

]
= γ2σ∗2 − γ2ρw,w∗σσ∗.

15Other examples of multi-country term structure models that rely on the complete market assumption to
address the carry trade and forward premium puzzle include Frachot (1996), Hodrick and Vassalou (2002), Brennan
and Xia (2006), Graveline and Joslin (2011), Sarno, Schneider, and Wagner (2012), and Lustig, Roussanov, and
Verdelhan (2011, 2014).
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Incomplete markets Next, we introduce incomplete spanning. Assume that the wedge takes the form
ηt+1 = γdt+1, where d ∼ N(µd, σ

2
d).

Result 5. The wedge has to satisfy the following conditions:

µd =
γ2σ2

d

2
+ ρw,dγ

2σσd,

−µd =
γ2σ2

d

2
− ρw∗,dγ

2σ∗σd.

The change in exchange rate variance from complete to incomplete spanning is given by:

∆V art = V arIMt − V arCMt = −γ2σ2
d.

The change in the currency risk premium (defined from the perspective of the home investor) from complete to
incomplete spanning is given by:

∆RPt = RP IMt −RPCMt = ρw,dγ
2σσd.

The change in the currency risk premium (defined from the perspective of the foreign investor) from complete to
incomplete spanning is:

∆RP ∗
t = RP ∗IM

t −RP ∗CM
t = −ρw∗,dγ

2σσd.

Result 5 implies that in the symmetric case (when the drift of the wedge is zero), the change in the currency
risk premium in level is ∆RPt = ∆RP ∗

t = −.5γ2σ2
d. In that case, introducing a wedge decreases the currency risk

premium from the perspective of both domestic and foreign agents. The Sharpe ratio declines as well:

SRFXt =
γ√
2

√
σ2(1− ρ)−

σ2
d

2
.

The proof of Result 5 is as follows:

Proof. The conditional entropy of the perturbed home pricing kernel is given by:

Lt
(
Mt+1e

−ηt+1
)

= Lt(e
−γ∆ct+1−γdt+1) = Lt(e

−γwt+1−γdt+1) =
γ2σ2

2
+
γ2σ2

d

2
+ ρw,dγ

2σσd.

Applying Proposition 2, it then implies that the drift of the wedge satisfies:

µe =
γ2σ2

d

2
+ ρw,dγ

2σσd.

The conditional entropy of the perturbed foreign pricing kernel is equal to:

Lt (M∗
t+1e

ηt+1) = Lt(e
−γ∆c∗t+1+γdt+1) = Lt(e

−γw∗
t+1+γdt+1) =

γ2σ2,∗

2
+
γ2σ2

d

2
− ρw∗,dγ

2σσd.

Proposition 2 then implies that the drift of the wedge satisfies:

−µd =
γ2σ2

d

2
− ρw∗,dγ

2σσd.

When markets are incomplete, the entropy of the ‘incomplete spanning’ exchange rate is given by:

Lt

(
M∗
t+1e

ηt+1

Mt+1

)
= Lt(e

−γ∆c∗t+1+γdt+1+γ∆ct+1) = Lt(e
−γw∗

t+1+γwt+1+γdt+1)

=
γ2σ∗,2

2
+
γ2σ2

2
− γ2σ∗σdρw∗,d + γ2σσdρw,d − γ2ρw,w∗σσ∗ +

γ2σ2
d

2
.

By summing the two conditions that define the drift of the wedge, one obtains that:

0 = γ2σ2
d + ρw,dγ

2σσd − ρw∗,dγ
2σσd.
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The entropy of the ‘incomplete spanning’ exchange rate is thus simply:

Lt

(
M∗
t+1e

ηt+1

Mt+1

)
=
γ2σ∗,2

2
+
γ2σ2

2
− γ2ρw,w∗σσ∗ − γ2σ2

d

2
.

The entropy gap between the complete and incomplete spanning exchange rate is then:

∆Lt = Lt

(
M∗
t+1e

ηt+1

Mt+1

)
− Lt

(
M∗
t+1

Mt+1

)
= −γ

2σ2
d

2
.

According to Proposition 5, the risk premium in levels on a long position in foreign currency is given by :

Et
[
rxFXt+1

]
+ Lt

(
St+1

St

)
= Lt (Mt+1)− Lt (M∗

t+1) + µt,η + Lt

(
M∗
t+1e

ηt+1

Mt+1

)
.

The change in the risk premium from complete to incomplete spanning is thus given by the change in entropy,
−.5γ2σ2

d, plus the drift term, µd = 0.5γ2σ2
d + ρw,dγ

2σσd. The difference between the risk premium in incomplete
and complete markets is:

∆RPt = RP IMt −RPCMt = µt,η + Lt

(
M∗
t+1e

ηt+1

Mt+1

)
− Lt

(
M∗
t+1

Mt+1

)
= ρw,dγ

2σσd.

Similarly, the foreign risk premium in levels on a long position in foreign currency is given by :

−Et
[
rxFXt+1

]
+ Lt

(
St
St+1

)
= −Lt (Mt+1) + Lt (M∗

t+1)− µt,η + Lt

(
Mt+1

M∗
t+1e

ηt+1

)
.

The change in the foreign risk premium from complete to incomplete spanning is given by:

∆RP ∗
t = RP ∗IM

t −RP ∗CM
t = −ρw∗,dγ

2σσd.

Proposition 2 implies that the restrictions on the wedges are given by:

µd = γ2σ2
d/2 + ρw,dγ

2σσd,

−µd = γ2σ2
e/2− ρw∗,dγ

2σ∗σd.

B.2 A Cox, Ingersoll, and Ross (1985) Example with Common Factors

The stylized model in the main text rules out correlation of interest rates across countries. However, the key
insights carry over to a setting with correlated interest rates. To show this result, we use a CIR model with
common factors. The Cox, Ingersoll, and Ross (1985) model (denoted CIR) is defined by the following two
equations:

− logMt+1 = α+ χzt + ϕz∗t +
√
γztut+1 +

√
δz∗t u

∗
t+1, (30)

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

z∗t+1 = (1− φ)θ + φzt − σ
√
z∗t u

∗
t+1, (31)

where ut+1 ∼ N(0, 1) and u∗
t+1 ∼ N(0, 1) are i.i.d. The foreign pricing kernel is specified as in Equation (30) with

the same parameters. However, the foreign country has different loadings:

− logMt+1 = α+ χ∗zt + ϕ∗z∗t +
√
γ∗ztut+1 +

√
δ∗z∗t u

∗
t+1.

To give content to the notion that zt is a domestic factor and z∗t is a foreign factor, we assume that γ ≥ γ∗

and that δ ≤ δ∗: the domestic (foreign) pricing kernel is more exposed to the domestic (foreign) shock than the
foreign (domestic) pricing kernel. We assume that investors can trade the domestic risk-free and at least two risky
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domestic assets16, but they can only trade the foreign risk-free asset. The squared maximum SRs at home and
abroad are, respectively, vart(mt+1) = γzt + δz∗t , and vart(m

∗
t+1) = γ∗zt + δ∗z∗t .

We denote the target volatility of the incomplete markets exchange rate can be stated as: vart(∆st+1) =
κzt + κ∗z∗t . We can compute the implied volatility of the incomplete markets exchange rate process using our
formula:

vart(∆st+1) = (γ + γ∗ − 2
√
γ
√
γ∗)zt + (δ + δ∗ − 2

√
δ
√
δ∗)z∗t − vart(ηt+1).

Then we simply choose the volatility of the noise to be equal to: vart(ηt+1) = (γ + γ∗ − κ)zt + (δ + δ∗ − κ∗)z∗t .

Result 6. In the CIR model with country-specific factors, we can define an exchange rate process St that satisfies
∆st+1 = ηt+1 +m∗

t+1 −mt+1 with variance vart(∆st+1) = κzt + κ∗z∗t . where ηt follows:

ηt+1 = β + ψzt + ψ∗z∗t −
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ)ztut+1 +

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗)z∗t u

∗
t+1

+
√

(λ− κ)ztεt+1 +
√

(λ∗ − κ∗)z∗t ε
∗
t+1,

where εt+1 and ε∗t+1 are ∼ N(0, 1), κ ≤ λ ≤ γ + γ∗ − 2
√
γ
√
γ∗ and κ∗ ≤ λ∗ ≤ δ + δ∗ − 2

√
δ
√
δ∗ . The drift

imputed to exchange rates is given by µt,η = β + ψzt + ψ∗z∗t . where εt+1 and ε∗t+1 are ∼ N(0, 1), κ ≤ λ ≤ γ and
κ∗ ≤ λ∗ ≤ γ∗ satisfies:

κ = −(
√
γ +
√
γ∗)
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ)) + γ + γ∗ − 2

√
γ
√
γ∗,

κ∗ = −(
√
δ +
√
δ∗)

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗)) + δ + δ∗ − 2

√
δ
√
δ∗,

ψ = −(1/2)(
√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ,

ψ∗ = −(1/2)(
√
δ −
√
δ∗)

√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗.

If we allowed domestic investors to trade two foreign risky assets, then the wedges disappear. The additional
covariance restrictions in (12) imply that κ = λ = γ + γ∗ − 2

√
γ
√
γ∗ and κ∗ = λ∗ = δ + δ∗ − 2

√
δ
√
δ∗, because

the log returns are affine in the shocks. This in turn implies that the wedges are zero (η = 0).

The proof of Result 6 is as follows:

Proof. Hence, we can write a square root process for η:

ηt+1 = β + ψzt + ψ∗z∗t −
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ)ztut+1 +

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗)z∗t u

∗
t+1

+
√

(λ− κ)ztεt+1 +
√

(λ∗ − κ∗)z∗t ε
∗
t+1,

where εt+1 and ε∗t+1 are ∼ N(0, 1), κ ≤ λ ≤ γ and κ∗ ≤ λ∗ ≤ γ∗ . The drift imputed to exchange rates is given
by µt,η = β + ψzt + ψ∗z∗t .

To ensure that the Euler equations for the risk-free are satisfied, we also need to implement the following
conditions:

covart (m∗
t+1, ηt+1) = −µt,η −

1

2
vart (ηt+1) ,

covart (mt+1, ηt+1) = −µt,η +
1

2
vart (ηt+1) .

16If they can trade two different longer maturity bonds, then the domestically traded assets span all of the
shocks.
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Using the expressions for the log SDFs and η, these expressions can be restated as follows:

−
√
γ∗
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ)zt −

√
δ∗
√

(δ + δ∗ − 2
√
δ
√
δ∗ − λ∗)z∗t

= −(ψzt + ψ∗z∗t )− 1

2

(
(γ + γ∗ − 2

√
γ
√
γ∗ − κ)zt + (δ + δ∗ − 2

√
δ
√
δ∗ − κ∗)z∗t

)
,

+
√
γ
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ)zt +

√
δ

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ)z∗t

= −(ψzt + ψ∗z∗t ) +
1

2

(
(γ + γ∗ − 2

√
γ
√
γ∗ − κ)zt + (δ + δ∗ − 2

√
δ
√
δ∗ − κ∗)z∗t

)
.

By collecting the terms in zt and z∗t , we obtain the following four equations that need to be solved for 4 unknowns:

−
√
γ∗
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) = −(ψ)− 1

2
(γ + γ∗ − 2

√
γ
√
γ∗ − κ),

−
√
δ∗
√

(δ + δ∗ − 2
√
δ
√
δ∗ − λ∗) = −(ψ∗)− 1

2
(δ + δ∗ − 2

√
δ
√
δ∗ − κ∗).

+
√
γ
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) = −(ψ) +

1

2
(γ + γ∗ − 2

√
γ
√
γ∗ − κ)

+
√
δ

√
(δ + δ∗ − 2

√
δ
√
δ∗ − κ) = −(ψ∗) +

1

2
(δ + δ∗ − 2

√
δ
√
δ∗ − κ∗).

By adding the 1st and 3rd, and the 2nd and 4th equation, we obtain the following expression for the drift
terms:

(
√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ = −2ψ),

(
√
δ −
√
δ∗)

√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗ = −2ψ∗.

By substituting for ψ and ψ∗ in the original four equations, we obtain the following conditions:

+
√
γ
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) = +

1

2
(
√
γ −
√
γ∗)
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) +

1

2
(γ + γ∗ − 2

√
γ
√
γ∗ − κ),

−
√
δ∗
√

(δ + δ∗ − 2
√
δ
√
δ∗ − λ∗) = +

1

2
(
√
δ −
√
δ∗)

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗) +

1

2
(δ + δ∗ − 2

√
δ
√
δ∗ − κ∗).

These conditions can be solved for κ and κ∗:

κ = −2
√
γ
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) + (

√
γ −
√
γ∗)
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) + (γ + γ∗ − 2

√
γ
√
γ∗),

κ∗ = +2
√
δ∗
√

(δ + δ∗ − 2
√
δ
√
δ∗ − λ∗) + (

√
δ −
√
δ∗)

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗) + (δ + δ∗ − 2

√
δ
√
δ∗).

These conditions imply that:

κ = −(
√
γ +
√
γ∗)
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ)) + γ + γ∗ − 2

√
γ
√
γ∗,

κ∗ = −(
√
δ +
√
δ∗)

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗)) + δ + δ∗ − 2

√
δ
√
δ∗.

Result 7. The risk premium in logs on a long position in foreign currency is:

Et[rx
FX
t+1] =

1

2

[
γ − γ∗ − (

√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ

]
zt

+
1

2

[
δ − δ∗ − (

√
δ −
√
δ∗)

√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗

]
z∗t
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The risk premium in levels on a long position in foreign currency is given by:

Et[rx
FX
t+1] +

1

2
vart[rx

FX
t+1] =

[
γ −√γ

√
(γ + γ∗ − 2

√
γ
√
γ∗ − λ)−√γ

√
γ∗
]
zt

+

[
δ −
√
δ

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗)−

√
δ
√
δ∗
]
z∗t .

These expressions can readily be compared to the complete markets log currency risk premium, 1
2

[(γ − γ∗)zt + (δ − δ∗)z∗t ],

and the complete markets risk premium in levels, (γ −√γ
√
γ∗)zt + (δ−

√
δ
√
δ∗)z∗t . Clearly, this establishes that

the incomplete markets risk premium in levels is always smaller than the complete markets risk premium. In
addition, there is less return predictability as well.

The proof of Result 7 is as follows:

Proof. Note that the risk premium in logs is given by

Et[rx
FX
t+1] = rf,∗t − rft + Et(∆st+1) =

1

2
[vart (mt+1)− vart (m∗

t+1 + ηt+1)]

=
1

2
[(γ − γ∗ + 2ψ)zt + (δ − δ∗ + 2ψ∗)z∗t )]

=
1

2

[
γ − γ∗ − (

√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ

]
zt

+
1

2

[
δ − δ∗ − (

√
δ −
√
δ∗)

√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗

]
z∗t

The risk premium in levels on a long position in foreign currency is given by:

Et[rx
FX
t+1] +

1

2
vart[rx

FX
t+1] = −covt(mt+1,∆st+1)

=
1

2
[(γ − γ∗ + 2ψ + κ)zt + (δ − δ∗ + 2ψ∗ + κ∗)z∗t )]

=
1

2

[
γ − γ∗ + κ− (

√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ

]
zt

+
1

2

[
δ − δ∗ + κ∗ − (

√
δ −
√
δ∗)

√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗

]
z∗t ,

=
1

2

[
γ − γ∗ − 2

√
γ
√

(γ + γ∗ − 2
√
γ
√
γ∗ − λ) + (γ + γ∗ − 2

√
γ
√
γ∗)

]
zt

+
1

2

[
δ − δ∗ + 2

√
δ∗
√

(δ + δ∗ − 2
√
δ
√
δ∗ − λ∗) + (δ + δ∗ − 2

√
δ
√
δ∗)

]
z∗t

=

[
γ −√γ

√
(γ + γ∗ − 2

√
γ
√
γ∗ − λ)−√γ

√
γ∗
]
zt

+

[
δ −
√
δ

√
(δ + δ∗ − 2

√
δ
√
δ∗ − λ∗)−

√
δ
√
δ∗
]
z∗t

Result 8. The Fama slope coefficient in a regression of log currency excess returns on ft − st = rt − r∗t is

cov(rxFXt+1, ft − st)
var(ft − st)

=
.5
(
γ − γ∗ − (

√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ

) (
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)

(
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)2

+
(
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)2

+
.5
(
δ − δ∗ − (

√
δ −
√
δ∗)
√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗

) (
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)

(
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)2

+
(
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)2
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In the relevant region of the parameter space, (χ − 1
2
γ) − (χ∗ − 1

2
γ∗) < 0 and (φ − 1

2
δ) − (φ∗ − 1

2
δ∗) > 0.

Then the interest rate spread rt − r∗t decreases (increases) when zt increases (z∗t decreases) –the precautionary
motive dominates. This is needed to account for U.I.P. deviations in the data. As a benchmark, we note that the
complete markets slope coefficient is given by:

=
.5 (γ)

(
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)

+ .5 (δ)
(
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)(

(χ− 1
2
γ)− (χ∗ − 1

2
γ∗)
)2

+
(
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)2

Recall that γ ≥ γ∗ and δ ≤ δ∗. As a result, the first term now decreases in absolute value relative to the complete
markets case. The second term decreases as well in absolute value. Even in the model with common factors, the
slope coefficients in the predictability regression are pushed closer to zero by the incomplete spanning and we get
closer to U.I.P.

The proof of Result 8 is as follows:

Proof. Recall that the short rate is given by: rt = α + (χ − 1
2
γ)zt + (φ − 1

2
δ)z∗t . Hence, the regression slope

coefficient on ft − st = rt − r∗t is

cov(rxFXt+1, ft − st)
var(ft − st)

=

.5
(
γ − γ∗ − (

√
γ −
√
γ∗)
√
γ + γ∗ − 2

√
γ
√
γ∗ − λ

) (
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)

(
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)2

+
(
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)2

+
.5
(
δ − δ∗ − (

√
δ −
√
δ∗)
√
δ + δ∗ − 2

√
δ
√
δ∗ − λ∗

) (
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)

(
(χ− 1

2
γ)− (χ∗ − 1

2
γ∗)
)2

+
(
(φ− 1

2
δ)− (φ∗ − 1

2
δ∗)
)2

B.3 A Consumption-Based Example with Heteroscedasticity

To develop some economic intuition for the dynamics of these wedges, we look at a version of the two-country
Lucas (1982) model with heteroskedastic consumption growth. This model produces time-varying risk premia.
We use δ to denote the rate of time preference and γ to denote the coefficient of relative risk aversion. The real
stochastic discount factor is thus given by:

− logMt+1 = −(log δ − γµg) + γσg,tet+1,

σ2
g,t = (1− φ)θ + φσ2

g,t − σg,tet+1,

− logM∗
t+1 = −(log δ − γµg) + γσ∗

g,te
∗
t+1,

σ2,∗
g,t = (1− φ)θ + φσ2,∗

g,t − σ
∗
g,te

∗
t+1.

where ∆ct+1 = µg + σg,tet+1, and ∆ct+1 = µg + σ∗
g,te

∗
t+1. The consumption growth innovations et+1 ∼ N(0, 1)

and e∗t+1 ∼ N(0, 1) are i.i.d. as well as uncorrelated across countries. When markets are complete, the exchange
rate variance is thus vart(∆st+1) = γ2σ2

g,t + γ2,∗σ2,∗
g,t . Domestic investors can invest in the domestic risk-free and

at least one domestic risky asset (e.g. a longer maturity real zero-coupon bond), and the foreign risk-free, but
they cannot invest in foreign risky assets. Hence, only the domestic shocks are spanned.

In this model, we can back out the dynamic process for the wedges that satisfy the necessary conditions of
Proposition 1. It turns out that all the wedges take the form:

ηt+1 = ψσg,t + ψ∗σ∗
g,t −

√
(γ2 − λ)σg,tet+1 +

√
(γ2 − λ∗)σ∗

g,te
∗
t+1

+
√

(λ− κ)σg,tεt+1 +
√

(λ − κ∗)σ∗
g,tε

∗
t+1.

where εt+1 and ε∗t+1 are standard i.i.d. Gaussian shocks uncorrelated with the consumption growth innovations
et+1 and e∗t+1. These shocks are the unspanned component of the exchange rate changes. The parameters κ and
κ∗ govern the volatility of the exchange rate when markets are incomplete: vart(∆st+1) = κσ2

g,t + κ∗σ2,∗
g,t . These
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wedges only affect exchange rates, and as a result, the returns on foreign investments. The returns on domestic
investments remain unchanged.

The parameters κ and κ∗ are the only two degrees of freedom in the law of motion of the wedge. The other
parameters that describe the wedge are implied. The drift term (denoted µt,η in Proposition 1 and here equal to
ψσg,t+ψ

∗σ∗
g,t) is governed by the consumption growth volatilities; it is determined by the no-arbitrage conditions,

which imply that ψ = − 1
2
(γ2 − κ), and ψ∗ = 1

2
(γ2 − κ∗). The unexpected component of the wedge depends on

the parameters λ and λ∗, which have to satisfy the following restrictions: κ ≤ λ ≤ γ2 and κ∗ ≤ λ∗ ≤ γ2, and are
implicitly defined by the following conditions: κ = γ2 −

√
γ2
√
γ2 − λ, κ∗ = γ2 −

√
γ2
√
γ2 − λ∗.

In this example, the domestic investor cannot invest in any foreign risky asset. If we allow the foreign investor
to do so, then we need to impose the additional covariance restrictions in condition (12). These conditions imply
that η is orthogonal to et+1 and e∗t+1, because the log return on the domestic (foreign) risky asset is affine in the
domestic (foreign) innovation, which in turn implies κ = λ = γ2 and κ∗ = λ∗ = γ∗,2. We are back in the case of
complete markets: ηt+1 = 0.

In the two-country Lucas (1982) model, incomplete spanning reduces the exchange rate’s exposure to the
consumption growth innovations. Instead, the exchange rates are now exposed to shocks uncorrelated with
aggregate consumption growth in either country. In the following sections, we study the impact of incomplete
spanning on each of the key three exchange rate puzzles without restricting ourselves to the Lucas (1982) model.
We start with the Brandt, Cochrane, and Santa-Clara (2006) puzzle.

The two-country Lucas (1982) model with heteroskedastic consumption growth provides a simple laboratory
for understanding the effects of incompleteness. In that model, the complete markets risk premium in logs on
a long position in foreign currency is: Et[rx

FX
t+1] = 1

2
γ2
[
σ2
g,t − σ2,∗

g,t

]
, while the complete markets risk premium

in levels is given by: Et[rx
FX
t+1] + 1

2
vart[rx

FX
t+1] = γ2σ2

g,t. In the incomplete spanning economy, the risk premium

in logs on a long position in foreign currency is Et[rx
FX
t+1] = 1

2
κ
[
σ2
g,t − σ2,∗

g,t

]
, while the risk premium in levels

on a long position in foreign currency is given by: Et[rx
FX
t+1] + 1

2
vart[rx

FX
t+1] = κσ2

g,t. The incomplete markets
model behaves as if risk aversion γ was effectively reduced to

√
κ. There is also less return predictability in

the incomplete spanning economy. The Fama slope coefficient in a regression of log currency excess returns on
ft − st = rt − r∗t is −2κ/γ2. Hence, the slope coefficient falls below 2, its complete markets value, in absolute

value. The percentage reduction in the slope coefficient is twice the percentage reduction in volatility 2 log(
√

κ
γ2

).

C Exchange Rate Entropy

Table 2 reports summary statistics on exchange rate entropy. At the quarterly frequency, the entropy and half-
volatility are essentially the same, as if exchange rate changes were normally distributed.
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Table 2: Exchange Rate Entropy

Cross-country Mean Cross-country Std Cross-country Min Cross-country Max

L(∆s) 0.64 0.15 0.19 0.80

(0.05) (0.02) (0.03) (0.08)
1
2
σ2

∆s 0.64 0.15 0.19 0.81

(0.05) (0.02) (0.03) (0.08)

L(∆q) 0.63 0.15 0.19 0.81

(0.05) (0.02) (0.03) (0.08)
1
2
σ2

∆q 0.63 0.16 0.19 0.82

(0.05) (0.02) (0.03) (0.08)

Notes: The table reports summary statistics on exchange rate entropy and volatility. The entropy, denoted L(∆s), is
measured as the log of the mean change in exchange rate minus the mean of the log change in exchange rate: L(∆s) =
logE

(
e∆s

)
− E(log∆s). The volatility is measured as half the variance of the log change in exchange rates. Similar

moments are defined for real exchange rates. The table presents the cross-country mean of the bilateral nominal and real
exchange rate volatilities, along with the cross-country standard deviation of the bilateral exchange rate volatilities and
the corresponding minimum and maximum values across countries. Similar statistics are reported for entropies. Moments
are annualized (multiplied by 4) and reported in percentages. Data are quarterly, over the 1973.IV – 2014.IV period. The
panel consists of 15 countries: Australia, Belgium, Canada, Denmark, France, Germany, Italy, Japan, Netherlands, New
Zealand, Norway, Sweden, Switzerland, U.K., and U.S. The standard errors (reported between brackets) were generated by
block-bootstrapping 10,000 samples, each block containing 2 quarters.
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