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Abstract
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1 Introduction

The last decade has witnessed a great deal of turmoil in global equity markets. These events

represent a major challenge for dynamic asset pricing models to accommodate the observed inter-

dependencies between tail events and their pricing across markets.

In this paper, we argue that the increasing liquidity of derivative markets worldwide provide

a unique opportunity to shed some light on this question. In particular, the trading in equity-

index option markets has grown sharply in most global financial centers, with both more strikes

per maturity and additional maturities on offer. The latest development is a dramatic increase in

the trading of options with short tenor. As a result, we now have access to active trade prices

for financial securities that are highly informative about the pricing of market tail risk in many

separate countries. In the current work, we draw on daily observations for option indices in the US

(S&P 500), Euro-zone (ESTOXX), Germany (DAX), Switzerland (SMI), UK (FTSE), Italy (MIB),

and Spain (IBEX) over 2007-2014 to extract factors that are critical in pricing risk across the main

equity indices in North America and Europe.

The confluence of turbulent periods render recent years an excellent “laboratory” for analysis of

the way investors treat evolving financial risks and especially their attitude towards tail risk. Over

our sample, three major shocks roiled the global financial markets, and we exploit the options data

to study how tail risk was perceived and priced across these episodes. At the same time, several of

the European countries had unique exposures to the sovereign debt crises. It is of separate interest

to determine whether these risks were priced similarly across the diverse markets. By combining the

pricing of financial risks with ex post information on actual realized returns, return volatilities and

jumps, we can gauge the size of the risk premiums and what factors drive the risk compensation.

We notice striking heterogeneity in the stock market performance over the sample, with the German

market appreciating by an average of close to 5% per year and the Italian index depreciating by

10% annually. We exploit this heterogeneity to strengthen earlier empirical evidence (Andersen

et al. (2015b) and Bollerslev et al. (2015)) regarding the connection between market tail risk and

the equity risk premium which pertains to the US market.

Standard option pricing models capture the dynamics of the equity-index option surfaces

through the evolution of factors that determine the volatility of the underlying stock market,

see, e.g., Bates (1996, 2000, 2003), Pan (2002), Eraker (2004) and Broadie et al. (2007). However,

recent evidence suggests that the fluctuations in the left tail of the risk-neutral density, extracted

from equity-index options, cannot be spanned by regular volatility factors. Hence, a distinct factor

is necessary to account for the priced downside risk in the option surface relative to the regular
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volatility factors. In empirical work focused on the US markets, this state variable has emerged as

a crucial equity risk premium factor, see Andersen et al. (2015b).1

Given the findings above, it would be natural to adopt the Andersen et al. (2015b) model for all

indices explored in this study. The specification involves two volatility and a separate jump factor,

thus encompassing most standard option pricing models in the literature, while also maintaining

the left tail features that were found to be critical for the long sample of S&P 500 options. However,

many of the European option samples are shorter and contain fewer options in the strike cross-

section. As such, separate identification of the two volatility and the tail factor is challenging

in practice. As a consequence, we pare down the model to a single volatility component and a

tail factor. This facilitates robust identification of the factors and reduces the number of model

parameters considerably, providing a solid basis for out-of-sample exploration of the predictive

power of the factors. Further, we confirm that the tail factor extracted from our simplified set-up

matches the one obtained from the original Andersen et al. (2015b) model very closely, while the

volatility factor has high predictive power for the future return volatility and jump activity. In

fact, we find a substantial gap between the time series evolution of priced tail risk and the level of

market volatility for every option market we analyze. Moreover, a common feature emerges in the

aftermath of crises: the left tail factor is correlated with volatility, yet it typically remains elevated

long after market volatility subsides to pre-crisis levels. This feature is in line with the findings of

Andersen et al. (2015b), and is not compatible with the usual approach to the modeling of volatility

and jump risk in the option pricing literature.

This stark separation of the tail risk factor and market volatility has important implications for

the pricing and dynamics of market risks. Although market volatility is a strong predictor of future

market risks, such as the jump intensity and overall return variation, it provides no forecast power

for the equity risk premium. In contrast, the component of the tail factor unspanned by volatility,

the “pure tail factor,” has highly significant explanatory power for future returns. The tail factor

also is the primary driver of the negative tail risk premium, suggesting this is the operative channel

through which it forecasts the equity premium. In particular, following crises, asset prices are

heavily discounted and the option-based tail factor is elevated long after market volatility resides.

This combination turns out to be a strong signal that the stock market will rebound in the future.

In terms of return volatility, we find the European and US markets to evolve in near unison

through the financial crisis of 2008-2009. In contrast, we observe divergences in volatility during

and after the initial European sovereign debt crisis. Overall, the UK, Swiss and, to some extent, the

1Other models that have also allowed for separate jump and volatility factors include Santa-Clara and Yan (2010),
Christoffersen et al. (2012) and Li and Zinna (2015).
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German volatilities remain very close throughout the sample. The largest divergences in volatility

dynamics occur between the US, UK and Swiss indices on one side and the Spanish and Italian

ones on the other, with the latter representing the Southern European countries in our sample.

For the left tail factor, there are interesting commonalities and telling differences. Again, the

main divergences are associated with the Southern European indices, but even within the latter

there is, at times, a stark discrepancy in the priced tail risk. Specifically, the Spanish tail factor

reacts strongly to both major phases of the sovereign debt crisis, while the Italian response is more

muted, especially for the first phase.

To separate the risk premium component of the tail risk factor, we complement the above

option-based evidence with an analysis of high frequency return data. In particular, we compare

the realized jump risks across the market indices. We focus attention in this analysis to the German,

Italian and Spanish stock markets. Our analysis shows remarkable commonality in the way the

three stock markets react to systematic jumps events (i.e., times at which all three markets jump

simultaneously) over the period of 2007-2009, including the global financial crisis. On the other

hand, in the second part of the sample, containing the European sovereign debt crises, we notice

a more muted response of the German market index to systematic jump events than that of the

Spanish and Italian markets. Meanwhile, the latter continue to have similar (i.e., statistically

indistinguishable from one-to-one) reactions to systematic jump events during this period.

This analysis shows that the differences in the tail factors in Spain and Italy is not due to the

prevalence of more frequent large negative return shocks in Spain. Instead, it seems as if the Spanish

market was gripped by “fears” and outsized risk premiums, unlike those even in Italy. A potential

explanation is the concern for a possible rupture of the eurozone area, with a subsequent creation

of a “Southern euro” that may include Spain, but not Italy. This suggests the divergence in the

option-based tail factors of the two countries reflects a so-called “peso problem” in the sense that

the stock market return data is not sufficient to capture the crash beliefs of the market participants.

In summary, we find a striking degree of robustness in the pricing of financial market risks

across the US and the European indices. Moreover, the compensation for such risks appear to

evolve similarly across the countries, with the exception of the two Southern European nations.

The result confirms that the option surfaces allow for separate identification of risk and risk premium

factors, represented by the spot variance and left tail factors respectively. For all indices, we verify

the predictive power of the tail factor for the future equity risk premium. This factor is also the

primary determinant of the left tail risk premium and an important component of the variance risk

premium. In contrast, only the spot variance factor provides predictive power for the actual future
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return variation and jump activity. Thus, the separation into risk premium (left tail) and risk

(volatility) factors is robust and economically informative. Our main conclusions elude standard

option pricing models, where the requisite separation between the tail and volatility factors is

lacking and the associated risk premiums are intertwined, and thus not suitably identifiable.

The rest of the paper is organized as follows. We start our analysis with summarizing our key

empirical results for the US market index in Section 2. We review the data used in the paper in

Section 3. Section 4 presents the model we use to fit the option surfaces and extract information

from them, and in Section 5 we review the estimation method. Section 6 depicts the empirically

extracted tail factors for all the indices. Section 7 analyzes the implications for the predictability

of future risk premiums and return variability on international stock markets. In Section 8, we use

the option-extracted factors and the high-frequency futures data to explore the premia for negative

jump risk in the euro-zone countries. Section 9 concludes. Additional details on various aspects

related to the data, the estimation and the results are contained in Section 10.

2 Illustrative Evidence for the S&P 500 Index

This section exemplifies some of our key findings by reviewing results obtained from S&P 500

equity-index (SPX) options at the Chicago Board Options Exchange (CBOE) and high-frequency

returns on the e-mini S&P 500 futures at the CME Group. It extends evidence from Andersen et al.

(2015b), but relies on a simplified two-factor parametric model for the risk-neutral distribution.

Our sample is shorter, but contains a wider array of observations, as we include very short-dated

options. As such, the results speak to the robustness of prior evidence and serve as a benchmark

for the European indices explored below.

Our sample covers January 2007–December 2014 – the period for which we have a broad set

of option quotes for the European countries. The risk-neutral return dynamics is governed by a

traditional volatility factor and a jump factor with different intensities and amplitudes for positive

and negative jumps. Finally, the negative return and positive volatility jumps coincide. Even if

the model is significantly pared down relative to Andersen et al. (2015b), it captures the salient

features of the option surface and equity-index return dynamics across time and for all the individual

markets. Details regarding data sources, the parametric models and the inference techniques are

deferred to subsequent sections.
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2.1 The U.S. Evidence

We document robust features of the fluctuations in the option surface over time that speak to

critical aspects of the pricing of the distinct factors governing the equity return dynamics.

One primary finding of Andersen et al. (2015b) is that the downside jump factor, as manifest

in the option surface, does not obey a tight relationship with the stochastic volatility driving

the underlying equity-index return dynamics. Specifically, the magnitude and fluctuations in the

option-implied volatility skew cannot be captured adequately through traditional option pricing

models where the dynamics is governed exclusively by volatility components. Instead, we exploit a

tractable affine model with a separate downside jump intensity factor. For parsimony and ease of

identification, our representation has a single volatility factor, Vt , and a separate downside jump

intensity factor, Ut , driving the risk-neutral return dynamics. This provides a reasonable fit to the

salient features of the option surface dynamics, it ensures strong identification of the two factors,

and it facilitates the economic interpretation of the results.

Using our parametric model for the risk-neutral dynamics, we extract the implied realization of

the volatility and jump factors day-by-day from the S&P 500 options over the full sample. The top

panel of Figure 1 displays the end-of-trading-day implied (annualized) spot volatility. The extreme

spike in volatility surrounding the financial crisis stands out, while the elevation associated with

the two main stages of the European sovereign debt crisis starting in spring 2010 and summer 2011,

respectively, are evident, but decidedly more muted.

The middle panel of Figure 1 depicts the corresponding negative risk-neutral jump variation,

obtained as the (conditionally) expected number of negative jumps times the expected jump am-

plitude.2 In contrast to spot volatility, the reaction of this tail measure to the European debt crisis

is not dwarfed by the response to the 2008-09 financial crisis. Thus, while both series are highly

elevated during crises, the magnitude of their response differs importantly across events.

In the bottom panel of Figure 1, we display the residual from the regression of the negative

jump variation on the spot variance which we denote Ũ . It captures the component of the negative

jump variation that is unspanned by, i.e., not linearly related to, the spot variance. This further

illustrates the differential response of the volatility and left jump factors across distinct turbulent

episodes. At the initial phase of the financial crisis, volatility sky-rockets compared to the jump

variation, inducing a huge negative inlier in the jump residual series. Apparently, the immediate

reaction to the market crash in the option market was one of profound uncertainty rather than

a predominant perception, or fear, of future abrupt negative return shocks. However, over the

2For compatibility with spot volatility, we plot the square-root of the annualized jump variation.
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Figure 1: Implied Spot Volatility and Negative Jump Volatility. The figure displays the
five-day trailing moving average of the spot volatility (top panel), the (square-root of the) negative
jump variation (middle panel), and the residual of the negative jump variation regressed on the
spot variance (bottom panel) implied by the E-mini S&P 500 futures options for 2007-2014. All
measures are reported in annualized decimal units.
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subsequent month the implied negative jump variation rises sharply and remains highly elevated

even as spot volatility recedes. Nonetheless, the increase in the residual jump intensity only slightly

exceeds what is experienced in the following European crisis, implying a substantially lower tail

pricing relative to volatility in the former case.

The bottom panel also reveals a common trait emerging from these disruptive episodes. Fol-

lowing each, there is a prolonged period in which the left jump factor remains elevated relative

to spot volatility. In other words, the “excitement” of the left tail lingers for much longer than

for volatility. This phenomenon generates large disproportional shifts in the left part of the im-

plied volatility surface, associated with rich pricing of out-of-the-money puts, relative to the level

observed for other options.

In our model, two state variables – the spot variance and negative jump variation – govern

the risk-neutral return dynamics. To explore the implications for risk premia, we must relate the

state variables to the underlying conditional equity-index return distribution and, in particular,

the expected excess returns and risk. In affine models, this relation is linear. We first consider

the equity risk premium relation. To ensure genuine out-of-sample forecasting, we estimate the

parameters of the option pricing model over the year 2007 alone.3 Conditional on these parameter

estimates, the state variables are extracted day-by-day throughout the sample. Importantly, this

implies that the state variables for the remainder of the sample, 2008-2014, are obtained from prior

information only. Hence, when the state variables serve as explanatory variables for the future

excess index returns over this period, there is no mechanical look-ahead bias.

Figure 2 depicts the significance of the regression coefficients and the degree of explanatory

power for the state variables, i.e., the implied spot variance, Vt , and the residual jump intensity,

Ũt , for the future excess returns on the S&P 500 index in a simple bivariate predictive regression.

Given our limited sample, we consider only horizons spanning one week to about half a year.

We find the excess returns to be linked to the component of the left jump tail intensity factor

unspanned by Vt, i.e., Ũt , for horizons beyond two months, with a maximum attained around four

months. The explained variation in the excess returns exceeds 20% for horizons beyond 3 1/2

months. At the same time, the implied spot volatility is insignificant, so the information regarding

the pricing of equity return risk is embedded solely within the negative jump factor.

While the results displayed in Figure 2 are striking, they are perhaps not entirely surprising

given the evidence in Bollerslev et al. (2009) showing that the variance risk premium (VRP), and

not the (spot) variance, predicts future equity index returns. The variance risk premium consists of

3Our estimation procedure is sufficiently efficient and the available option cross-section large enough to produce
reasonably accurate point estimates, even for a limited time span.
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Figure 2: Predictive Regression for Excess Returns using the State Variables. The figure
reports findings from regressing future weekly excess equity-index returns on the option-implied
state variables – the spot variance and negative jump intensity (orthogonal to spot variance). The
left panel displays t-statistics for the regression coefficients. The right panel depicts the R2 obtained
including both explanatory variables (solid line) and excluding the jump factor (dashed line).

the option-implied return variance as, e.g., captured by the VIX index minus the expected future

realized return variation. Our left tail factor is a component of the return variation measure that

constitutes the VIX, so there is potentially a mechanical correlation between the two variables. To

gauge whether the variance risk premium subsumes the explanatory power in the tail factor, we

consider a predictive regression for the equity-index returns where the explanatory variables are

the tail factor, Ũt , and the component of the VRP that is orthogonal to the tail factor.
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Figure 3: Predictive Regression for Excess Returns using the Variance Risk Premium.
The figure reports findings from regressing future weekly excess equity-index returns on the option-
implied negative jump intensity (orthogonal to spot variance) and variance risk premium (VRP).
The VRP is estimated by non-parametric means as the difference between the CBOE VIX squared
and the predicted monthly realized variance (plus overnight squared returns). The forecast for
realized variance is obtained from the model of Corsi (2009). The left panel displays the t-statistic
for the regression coefficients on the explanatory variables (Ũ and V RP ). The right panel depicts
the R2 obtained using just the V RP (dashed line) and both Ũ and V RP (solid line).

Figure 3 confirms that the component of the variance risk premium unrelated to our tail factor

may possess some predictive power for the equity risk premium at horizons beyond four months.

However, the significance of the tail factor is much more pronounced, and the auxiliary contribution

from the VRP to the overall explained variation is marginal. In other words, the left tail factor

8



emerges as the critical component embedded within the option surface for explaining the size of

the (conditional) equity risk premium.

In contrast, when we regress the future (realized) return variation, stemming from both diffusive

volatility and jumps, on the state variables, the relative explanatory power is reversed. The jump

intensity unspanned by the market volatility has no predictive power for the actual future return

variation, whereas the spot volatility is a strong predictor of future return volatility and jump

variation. In short, the future return risks are well accounted for by the current volatility, which is

identifiable from both the option surface and return observations on the underlying asset. But, as

we have seen, this factor is unrelated to the equity risk premium which, instead, is tied to the part of

the left jump tail factor orthogonal to volatility. These findings suggest a stark separation between

equity market risk – as reflected by the expected future volatility and jumps – and the pricing of

equity risk – as manifest in the average future market excess returns. Since the option tail factor

appears detached from the actual return dynamics, it is infeasible to extract information regarding

this factor from the return observations alone. That is, our results suggest that the option surface

embodies critical information for the identification of the equity risk premium, corroborating the

evidence in Andersen et al. (2015b).
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Ũ

Weeks

5 10 15 20 25

R
2

0

0.2

0.4

0.6

SP

Figure 4: Predictive Regression for Return Variation. The figure reports findings from
regressions of future cumulative return variation on current option-implied state variables, i.e., the
spot variance and negative jump intensity. The left panel displays t-statistics for the regression
coefficients on the state variables. The right panel depicts the corresponding regression R2.

These findings raise a number of questions. Are similar option pricing and risk premium pat-

terns present in other developed economies? Are the fundamental U.S. state variables related to

corresponding factors in other countries? In other words, how universal are our results, and how

may key features of the risk-neutral distributions be linked? We explore these topics later, but we

first introduce our data sources and introduce our risk-neutral two-factor model more formally.
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3 Data

We exploit equity-index option data for the U.S. and a number of European indices. These are

supplemented by high-frequency return data for the underlying equity indices.

3.1 Equity-Index Option Data

Our option data are obtained from the new OptionMetrics Ivy DB Global Indices database that

collects historical prices from listed index option markets worldwide. Detailed information regarding

the various equity-index option contracts and the zero curve for the relevant currency are also

provided. To reduce the computational burden, we sample the data every Wednesday – or the next

trading day if Wednesday is a holiday.

We obtain data for seven indices: USA (SPX), Europe (SX5E), Germany (DAX), Switzer-

land (SMI), United Kingdom (UKX), Italy (MIB), Spain (IBEX). For each index, Table 4 of the

Appendix provides the exchange trading hours, which we use to align the observations with the

underlying high-frequency index returns, along with a number of contractual details. Given the

novelty of the database, we devote particular attention to filtering the data. For each contract at

any given time, either the last trade price or the exchange settlement price is reported. While it

is impossible to distinguish the two, the vendor notes that 98% of the data represent settlement

prices and only 2% reflect trade prices, with some variability depending of the specific exchange.

We create the final sample through the following steps. First, for each option maturity, we

compute the corresponding interest rate by interpolating the zero curve for the given country.

Second, we compute the implied forward price of the underlying index using put-call parity. For

this purpose we retain only option cross sections with at least 5 put-call contracts with the same

strike price, and then extract the futures price exploiting the full set of option pairs with the same

strike. Third, we apply a few filters to ensure that the prices are reliable. We only use options with

a tenor below one year, as longer maturity contracts tend to be illiquid. However, contrary to the

prior literature, we include very short-maturity options in our analysis. This is due to the recent

successful introduction of short-dated options by several exchanges worldwide. These options are

particularly informative regarding the current state of the return dynamics, see, e.g., Andersen

et al. (2016) for details on the weekly S&P 500 options. Finally, we only retain options whose

prices are at least threefold the minimum tick size.
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3.2 High-Frequency Equity-Index Futures Data

We obtain intra-day observations on the futures written on the underlying equity indices from

TickData. We extract the futures price each minute, but our realized variation measures are based

on five-minute returns, striking a balance between the number of observations and the extent of

market microstructure noise. We compute the daily realized return variation (RV) which is a

measure of the total quadratic variation of the log-price over the day. We further split this measure

into: (1) the truncated variation (TV), capturing the variation due to the diffusive returns, and

(2) the jump variation (JV), reflecting the variation stemming from jumps. We also compute the

negative jump variation (NJV), indicating the jump variation due to negative jumps. The measures

are obtained following the procedure of Bollerslev and Todorov (2011) and Andersen et al. (2015b);

see the Appendix for details. Table 5 of the Appendix reports, for each index, the country, the

associated exchange, and various contractual features. We stress that the trading hours are not

fully synchronized and are of different duration across the exchanges. In particular, the U.S. trading

hours only overlap with the Italian trading period by little more than two hours per day.4

Table 1 provides summary statistics for the daily measures, obtained from the high-frequency

index returns. The vast divergence in the fortunes of the indices is striking. While the U.S.

market experiences annual returns in excess of 4.5%, and the German index does slightly better,

the Italian index drops by a full 10% annually over this eight year period, and the Spanish index

is down an average of 4% per year. The indices experiencing negative excess returns generally

have higher realized return variation measures – consistent with the so-called “leverage effect” –

yet the average German volatility is also high and this index generates very attractive returns.

The decomposition of the return variation stemming from large squared negative jumps versus the

overall variation suggests that the U.S. index was less exposed to this type of negative shocks,

while the differences across the European indices are minor. However, the relative jump counts are

skewed by the fact that the U.S. markets are closed during the early trading in Europe, when many

jumps may have materialized, but simply could not be observed in the U.S. The split into positive

and negative return jumps reveal that the indices associated with the euro-zone had substantially

more downward than upward jumps, possibly reflecting the impact of the sovereign debt crises. In

contrast, the jump direction is nearly symmetric for the remaining indices. The statistic signaling

slow updating of the index values (stale prices) indicates that the Swiss, and maybe the euro-zone

ESTOXX, index may be affected by illiquidity, inducing a potential downward bias in the realized

4The trading hours are slightly ambiguous, as electronic trading takes place outside the stated interval. For
example, the S&P 500 e-mini futures trade almost 24 hours on the GLOBEX platform, while the table refers to the
most active period when pit trading is also in progress. The table follows the conventions adopted by TickData.
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variation measures, while the remaining indices are highly liquid. Nonetheless, the closeness of the

return standard deviation measure obtained from the high-frequency and daily returns suggest that

the impact of illiquidity on the measures is minimal.

SP ESTOXX DAX SMI FTSE MIB IBEX
√
RV 22.49 26.94 24.63 19.73 23.20 26.36 25.80
√
TV 21.79 25.59 23.27 18.46 22.22 25.20 24.40

JV/RV 0.06 0.10 0.11 0.12 0.08 0.09 0.11

NJV/JV 0.49 0.58 0.56 0.56 0.52 0.56 0.52

Average Daily Return (%) 4.58 -3.57 4.81 0.19 0.47 -9.99 -4.07

Std Daily Return (%) 22.49 27.60 25.83 20.05 23.77 27.76 27.08

% of Stale prices (%) 0.64 4.11 0.75 9.13 0.69 1.12 1.75

Table 1: Summary Statistics for Equity-Index Futures. The numbers are annualized and
given in percentage form, except for the ratios in rows 3-4 and the last row dealing with stale prices.
The realized variation measures (RV and TV) are computed from log returns within the trading day
using the procedure detailed in the Appendix, then averaged and scaled to represent one calendar
year. We report the square-root of these measures so they represent annualized standard deviation
units. The daily standard deviation (std) is computed from close-to-close index return. The stale
price statistics indicate the percentage of intervals for which neither the bid nor ask price changed
across the five observations obtained by retaining the last quotes for each calendar minute in a
given five-minute period.

Hence, the realized excess returns deviate greatly across the indices in our sample. At the same

time, the indices respond roughly similarly to the major shocks during the financial and sovereign

debt crises, as evidenced by the strong positive correlation between the daily equity-index returns

displayed in Table 6 of the Appendix.5 In comparison, the observed discrepancies of the realized

volatility measures across indices are less dramatic, albeit still highly statistically significant.

Our challenge is to provide a simple common framework for modeling the distinct return risks

(future volatilities and jump realizations) and risk pricing (as reflected in the option prices) across

this set of indices. These quantities jointly impact the individual equity and variance risk premiums

over the sample whose realizations, as observed above, are dramatically different. In particular,

a priori, it seems difficult to account for large realized risk premium differentials if risk pricing is

5The daily return correlations must be interpreted with caution, as they are not fully synchronized, especially for
the U.S. and European indices. Effectively, the table provides lower bounds for the true (synchronized) correlations.
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linked closely to volatility factors, which do not deviate sharply across the indices. Our modeling

framework, developed below, introduces a new jump factor into the risk pricing for the equity-

index options. This facilitates a more direct separation of volatility from risk pricing and enables

the shape of the option surface to speak more cleanly to the (conditional) pricing of equity risk.

4 Model

We denote the generic equity market index by X. Our two-factor model for the risk-neutral index

dynamics is given by the following restricted version of the representation in Andersen et al. (2015b),

dXt

Xt−
= (rt − δt) dt +

√
Vt dW

Q
t +

∫
R

(ex − 1) µ̃Q(dt, dx) ,

dVt = κv (v − Vt) dt + σv
√
Vt dB

Q
t + µv

∫
R
x2 1{x<0} µ(dt, dx) ,

dUt = − κu Ut dt + µu

∫
R
x2 1{x<0} µ(dt, dx) ,

(1)

where (WQ
t , B

Q
t ) is a two-dimensional Brownian motion with corr

(
WQ
t , B

Q
t

)
= ρ, while µ denotes

an integer-valued measure counting the jumps in the index, X, as well as the state vector, (V,U).

The corresponding (instantaneous) jump intensity, under the risk-neutral probability, also labeled

the jump compensator, is dt⊗νQt (dx). The difference, µ̃Q(dt, dx) = µ(dt, dx)−dt νQt (dx), constitutes

the associated martingale jump measure.

The jump component, x, captures price jumps, but also scenarios involving co-jumps. Specifi-

cally, for negative price jumps of size x, the two state variables, V and U , display (positive) jumps

proportional to x2. Thus, the jumps in the spot variance and negative jump intensity are co-linear,

albeit with distinct proportionality factors, µv and µu. This specification involves a substantial

amplification from the negative price shocks to the risk factors. The compensator characterizes the

conditional jump distribution and is given by,

νQt (dx)

dx
= c−(t) · 1{x<0} λ− e

−λ−|x| + c+(t) · 1{x>0} λ+ e
−λ+x . (2)

The right hand side refers to negative and positive price jumps, respectively. Following Kou

(2002), we assume that the price jumps are exponential, with separate tail decay parameters, λ−

and λ+, for negative and positive jumps. Finally, the jump intensities are governed by the c−(t)

and c+(t) coefficients which evolve as affine functions of the state vector,

c−(t) = c−0 + c−v Vt− + c−u Ut− , c+(t) = c+0 + c+v Vt− + c+u Ut− . (3)
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This representation involves a large set of parameters. At the estimation stage, we zero out

insignificant coefficients. Specifically, for the negative jump intensity, we fix c−0 and c−v to zero and,

for identification, normalize c−u to unity, so U equals the negative jump intensity, i.e., c−(t ) = Ut−.

Also, we set c+
v = c+

u = 0, implying that the positive jump intensity is constant, c+(t) = c+
0 . The

terms relevant for our empirical implementation are printed in bold in equation (3).

To summarize, our jump modeling involves a number of novel features. First, the price jumps are

exponentially distributed, unlike most prior studies which rely on Gaussian price jumps, following

Merton (1976). Second, the jumps in the factors V and U are linked deterministically to the negative

price jumps, with squared price jumps impacting the factor dynamics in a manner reminiscent of

discrete GARCH models. Third, the jump intensity is decoupled from the volatility. This is unlike

most existing option pricing models in the literature, with the notable exception of Christoffersen

et al. (2012) and Li and Zinna (2015). Nonetheless, as stressed by Andersen et al. (2015b), model

(1) still belongs to the affine class of models of Duffie et al. (2000). For future reference, we label

our two-factor affine model, including the negative jump intensity Ut , the 2FU model.

5 Estimation Procedure

We follow the estimation and inference procedures developed in Andersen et al. (2015a). The

option prices are converted into the corresponding Black-Scholes implied volatilities (BSIV), i.e.,

any out-of-the-money (OTM) option price observed at time t with tenor τ (measured in years)

and log moneyness k = log (K/Ft,t+τ ) is represented by the BSIV, κt,k,τ . For a given state vector,

St = (Vt, Ut), and risk-neutral parameter vector θ, the corresponding model-implied option price

is given by κk,τ (St, θ). Estimation of the parameter vector and the period-by-period realization

of the state vector now proceeds by minimizing the distance between the observed and model-

implied BSIV across the full sample in a metric that also penalizes for the discrepancies between

the inferred spot volatilities and those estimated (in a model-free way) from high-frequency return

observations on the underlying asset,

√
V̂ n
t . The latter are obtained from five-minute returns over

a three-hour window prior to the close of the trading day using the so-called truncated realized

volatility estimator, as implemented in Andersen et al. (2015b), see the Appendix for further details.

The imposition of (statistical) equality between the spot volatility estimated from the actual and

risk-neutral measure reflects an underlying no-arbitrage condition which must be satisfied for the

option pricing paradigm to be valid.

To formally specify the estimation criterion, we require some notation. We let t = 1, . . . , T ,

denote the dates for which we observe the option prices at the end of trading. We focus on OTM
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options, with k ≤ 0 indicating OTM puts and k > 0 OTM calls. Due to put-call parity, there is no

loss of information from using only OTM options in the estimation.

We obtain point estimates for the parameter vector θ and the period-by-period state vector

St = (Vt , Ut ) from the following optimization problem,

(
{Ŝt}Tt=1, θ̂

)
= argmin
{St}Tt=1,θ

T∑
t=1

{∑
τj ,kj

(
κt,kj ,τj − κkj ,τj (St, θ)

)2
Nt

+
ξn
Nt

(√
V̂ n
t −

√
Vt
)2

V̂ n
t /2

}
, (4)

where the penalty for the deviation between the realized and model-implied spot volatility is given

by ξn > 0 and the superscript n denotes the number of high-frequency returns exploited by the

spot return variance estimator, V̂ n
t . For our implementation with a given fixed n, we set ξn = 0.05,

as in Andersen et al. (2015b). Moreover, to reduce the computational burden, we only estimate

the system for options sampled on Wednesday or, if this date is missing, the following trading day.

The critical feature ensuring good identification of the parameters is to obtain observations across

heterogeneous constellations of the option surface. We achieve this by sampling widely across the

full sample period. The shape of the surface varies dramatically across the early and late years,

when the market is fairly quiet, relative to the periods associated with the financial and European

debt crises. Once the parameter vector and the state variable realizations for those Wednesdays

have been obtained, it is straightforward to “filter” the state variables for the remaining trading

days, exploiting the estimated parameters and the criterion (4). Thus, we have daily estimates for

the state realizations available, even if full-fledged estimation is performed only for weekly data.

6 Option Factors

Given our limited sample period and the lower number of observations available for some of the

European indices relative to the S&P 500 illustration in Section 2, our purpose is not to obtain a

perfect option pricing model, but rather to settle on a specification that captures the salient features

across all indices in a robust manner. Thus, our specification involves only a single volatility factor

and the dynamics of the negative jump intensity factor is pared down relative to the model in

Andersen et al. (2015b). This largely eliminates instances where separate identification of the

factors is troublesome and contributes to a sharp separation of the volatility and jump features for

all the indices, ensuring that the cross-country comparisons are meaningful. We start by illustrating

the extent to which the jump intensity series for the S&P 500 index extracted using the current

model is similar to the one obtained from the more elaborate specification in Andersen et al.

(2015b).
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6.1 Comparison with a More Elaborate Asset Pricing Specification

As discussed earlier, our model is parsimonious, and in particular it contains only one volatility

factor. One potential concern is that the relatively constrained modeling of the volatility process

may induce excessive bias into the extraction of the implied jump dynamics from the option surface.

For the S&P 500 sample, we have a natural benchmark. Andersen et al. (2015b) estimate

an extended version of model (1) which provides an excellent fit to the volatility series, clearly

outperforming more standard and equally heavily parameterized representations.

The sample exploited in this paper is shorter than in Andersen et al. (2015b), due to the

synchronization with the data available for the European markets. However, the current sample

covers a wider cross-section since we include the full set of short-dated (weekly) options which

were excluded from the analysis in Andersen et al. (2015b). Moreover, the current sample extends

through December 2014, while the elaborate model is estimated over January 1996–July 21, 2010,

but with out-of-sample extraction of the jump intensity factor through July 23, 2013. Hence, the

two series of option-implied jump factors overlap over the period January 2007 till July 2013.

Figure 5 depicts the jump factor extracted from the two separate models, estimated from

partially overlapping periods and option samples. In spite of these differences, the models deliver

remarkably similar time series paths for the jump factor, corroborating the assertion that the

dynamic specification of either model enables robust identification of this factor.

1998 2000 2002 2004 2006 2008 2010 2012 2014

U
t

-2

-1

0

1

2

3

4

5

6
U Factor

Figure 5: Left Jump Tail Factor Comparison. The figure depicts the daily option-implied
left jump tail factor from the models (1) and the one in Andersen et al. (2015b). The series are
extracted based on parameter estimates from weekly SPX option prices observed over January
2007–December 2014 and January 1996-July 21, 2010, respectively. The correlation between the
two extracted jump factors in the period of overlap is 0.987.
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6.2 Country-by-Country Factor Realizations

We now provide a more detailed account of the implied factors extracted from the various equity-

index option markets based on our 2FU (two factors, including U) model (1). We first compare the

implied spot variance for each of the individual equity indices enumerated in Section 3 to the spot

variance extracted from the S&P 500 options, depicted in Section 2. Figure 6 plots the extracted

spot volatilities from the Euro ESTOXX (Eurozone), DAX (Germany), SMI (Switzerland), FTSE

100 (U.K.), FTSE MIB (Italy), and IBEX 35 (Spain) markets. The most striking feature is the

extraordinary close association between some of these factors and the S&P 500 spot volatility, not

just in terms of correlation, but also level. For example, the U.K. volatility is barely distinguishable

from the S&P 500 factor throughout the sample, while the Swiss factor only deviates for a couple

of episodes during the fixed Swiss franc-euro exchange rate policy implemented in September 2011

and lasting through the remainder of our sample. In the former case, the correlation between the

volatilities is about 98% and in the latter around 95%. In contrast, the discrepancies between the

S&P 500 and German DAX indices emerge during the second phase of the European sovereign

debt crisis, when the DAX volatility spikes significantly more than the S&P 500, and a positive

gap remains for the remainder of the sample, albeit to a varying degree. For the broader euro-zone

ESTOXX index, the same effect is clearly visible and originates with the first phase of the European

debt crisis. Thus, while the volatility patterns were strikingly similar for some of the primary equity

indices in North America and Europe through the financial crisis, the impact of the sovereign debt

crisis is clearly heterogeneous. Moreover, the relative effect across the national indices appears

consistent with the perceived sensitivity of the respective economies to the European crisis. This

is especially transparent for the Italian and Spanish indices, as both react very strongly to the

crisis events, but with different amplitudes across the main episodes. The volatility levels for the

latter indices attain a plateau well above the others ever since the first signs of the sovereign debt

problems surfaced in early 2010. This systematic divergence over the second half of our sample

lowers the volatility correlations for MIB and IBEX with S&P 500 to 0.75 and 0.77, respectively.

Next, Figure 7 depicts the option-implied (risk-neutral) negative jump variation for these indices

along with the corresponding quantity for the S&P 500. Formally, the risk-neutral negative jump

variation is defined as
∫
x<0 x

2νQt (dx). In the 2FU model it equals 2
λ2−
Ut, so these jump variation

series are directly proportional to the negative jump intensity factor, U . Consequently, the relative

variation in the series reflects the corresponding variation in the extracted negative jump intensity

state variables for the individual indices.
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Figure 6: Volatility Factor Comparison. For each option-implied spot variance daily factor, we
report the trailing five-day moving average of

√
Vt. The pairwise correlation between the volatility

factor of the S&P 500 and each of the European indices is as follows: SP-ESTOXX: 0.948; SP-DAX:
0.939; SP-SMI: 0.953; SP-FTSE: 0.979; SP-MIB: 0.750; and SP-IBEX: 0.770.
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Figure 7: U Factor Comparison. For each option-implied negative jump intensity factor, we re-
port the trailing five-day moving average of the implied risk-neutral jump variation

∫
x<0 x

2νQt (dx) ≡
2
λ2−
Ut. The pairwise correlation between the jump factor of the S&P 500 and each of the Euro-

pean indices is as follows: SP-ESTOXX: 0.949; SP-DAX: 0.970; SP-SMI: 0.951; SP-FTSE: 0.981;
SP-MIB: 0.854; and SP-IBEX: 0.798.
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Qualitatively, the pattern is similar to the one observed for the volatility factors. For each index,

the volatility and jump factors are highly correlated. Nonetheless, as for the U.S., the relative size

of the spikes in the jump intensity versus volatility varies substantially, with the European crisis

inducing a stronger surge in the jump intensity relative to (diffusive) volatility. Again, the U.K.

and U.S. series evolve in near unison and display a correlation of over 98%, even if the British

jump variation is slightly lower throughout. Similarly, the jump intensity factor for the Swiss index

correlates strongly with the S&P 500 factor, although the Swiss factor tends to be above the one

in the U.S. before and during the financial crisis and then below after the summer of 2009. We

also observe strong coherence between the S&P 500 series and the ESTOXX and DAX series up

through the financial crisis and then a relative elevation in the latter from the summer of 2009 and

onwards, with the effect being notably more pronounced for ESTOXX than DAX, again suggesting

a smaller economic exposure of Germany to the debt crisis than for the broader euro-zone. The

most striking contrast occurs for the two Southern European indices, however. The Italian jump

variation spikes to a level corresponding to the financial crisis during the latter part of 2011, and

the Spanish one is exceptionally highly elevated during several phases of the sovereign debt crisis.

For these two countries, the jump intensities convey a very different impression of the severity of

the debt crisis, both relative to the other countries and to the corresponding volatility factors. This

is perhaps not surprising given the widespread speculation at the time that either country might

be forced to abandon the euro currency. In summary, our decomposition of the primary risk factors

documents a substantially larger increase in return volatility for these two indices along with a

further amplification of the negative jump risk, especially for Spain.

The coherence across the volatility and jump variation series as well as the striking, but eco-

nomically interpretable, discrepancies observed during crisis episodes adds further credence to the

robustness of our methodology in extracting the salient pricing features from the option surfaces.

7 Option-Based Prediction of Future Risk and Risk Premium

We now explore the ability of the option-implied factors, spot variance and left jump intensity, to

forecast the (realized) future return variation – defined as the sum of the squared high-frequency

equity-index futures returns – and the (realized) equity excess return. The former signifies whether

the factors are associated with market-wide risk as captured by equity volatility and jump activity,

while the latter speaks to their predictive power for the equity risk premium. A third subsection

compares the predictive performance for the equity risk premium to the one obtained from the

variance risk premium, which has been stressed as an important explanatory variable in the recent
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literature.

We rely on standard predictive regressions to assess the forecast power of the state variables.

Similar to the case of the S&P 500 index, to avoid look ahead bias, we re-estimate the parameters

of the risk-neutral 2FU model for all indices using only data from 2007. We then implement the

predictive regressions conditional on these predetermined model parameters for the “out-of-sample”

period 2008-2014.6 Specifically, we extract the state vector realizations from the objective function

(4) by optimizing over St for each date t over the period 2008-2014, with θ fixed at the parameter

vector estimated from the 2007 data.

7.1 Predicting Equity Risk Premium

This section focuses on the evidence for predictability of the equity risk premium. We regress the

future excess returns for each of our equity indices on their option-implied state variables. For all

indices, the two state variables are correlated so, for ease of interpretation, we supplement the spot

variance factor, V , by the component of the left jump factor that is orthogonal to the spot variance,

denoted Ũ , as the second explanatory variable. This approach will ascribe all explanatory power

that stem from joint variation in the state variables to the traditional spot variance factor, while

the residual variation in the left tail factor captures only the explanatory power of the regression

that is orthogonal to the variance factor, i.e., the incremental information in the tail factor.

Our regression takes the following form for each index and t = 1, . . . , T − h,

rt,t+h = log(Xt+h)− log(Xt) = c0,h + cv,h · Vt + cu,h · Ũt + εt,h , (5)

where h is the horizon (in days), rt,t+h denotes the h-day continuously-compounded return, and Ũt

is the option-implied left jump intensity orthogonalized with respect to the spot variance.

Given our limited sample period, we run the predictive regression on a weekly basis, forecasting

from 1 to 28 weeks, or roughly 6 months, into the future. We compute robust Newey-West standard

errors using a lag length that is twice the number of weeks within the forecast horizon. Finally,

given the short sample period and the variability in liquidity for some of our index options, the

results can be sensitive to outliers. The more extreme observations may be genuine, but can

also arise from data errors, non-synchronous observations, or occasional poor identification of the

factor realizations. Thus, for robustness, we winsorize all explanatory variables in the subsequent

6The one-year estimation period renders the point estimates less accurate than those obtained for the full sample.
Nonetheless, the general shape of the volatility surface is quite stable, enabling the short sample to capture the salient
features of the risk-neutral dynamics. We have confirmed that the extracted realizations of the state vector for 2008-
2014 are qualitatively similar whether based on parameter estimates for 2007 or the full sample. The estimates for
the 2007 sample are available in a Supplementary Appendix, available upon request.
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predictive regressions at the 98 percent level, thus limiting the influence of the 1% extreme negative

and positive observations. Importantly, we do not exclude the corresponding daily return or return

variation from the cumulative measures appearing as left-hand-side variables, i.e., the extreme

return or volatility realizations are included in the definition of the multi-horizon excess returns

and return variation measures. Finally, the inference is based on Newey-West robust standard

errors, taking into account the estimation errors in any potential first-stage regression used to

normalize the regressors.

The regression results are, qualitatively, similar across the indices. For example, the top left

panel of Figure 8 plots the t-statistics for the ESTOXX regression slopes in equation (5), while

the top right panel displays the corresponding regression R2. Consistent with the hypothesis of

a slowly moving equity risk premium, the predictive power of the regression rises steadily over

time. We note that the unpredictable return component seems to dominate at the weekly horizons,

but as the random noise innovations cancel over time, the predictable component emerges clearly

for the longer horizons. Within the four month mark, the R2 surpasses 10% and exceeds 15%

after six months. It is further evident that the explanatory power stems primarily from the jump

intensity factor, while the variance factor is insignificant for all horizons beyond one week. Thus, the

commonly employed volatility factor has no discernible relationship with the equity risk premium,

while unrelated variation in the left side of the option surface is indicative of systematic shifts in

the pricing of equity risk. Of course, this is also consistent with our findings for the S&P 500 index

in Section 2 as well as Andersen et al. (2015b).

Turning to the remaining indices in Figure 8, we observe strikingly similar features across them

all. Apart from Swiss SMI index, we find the residual left tail factor to attain significance at

the (one-sided) 2.5% level around the three month mark. The degree of explained variation is

consistently between 15-20%, again excluding the Swiss index. And, uniformly, the variance factor

is bereft of explanatory power in these regressions. These findings are quite remarkable given

the extremely different equity returns the indices have offered over the sample, and the highly

diverse exposures they display vis-a-vis the European debt crisis. Hence, the finding that the spot

variance has no systematic relation to the future excess returns is robust across this sample period.

Moreover, this conclusion is in line with an extensive time series oriented literature which has

failed to generate consistent evidence that the equity-index return volatility predicts future equity

returns, see, e.g., French et al. (1987) and Glosten et al. (1993) for early references. Importantly,

our evidence suggests that the option surface does embed critical information for future market

returns, but it is contained within factors that are unspanned by volatility.
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Figure 8: Predictive Regressions for Equity Excess Returns. Left Panel: t-statistics for the
regression slopes; Right Panel: Regression R2, where the full drawn line depicts the total degree of
explained variation and the dashed line represents the part explained by the spot variance alone.
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7.2 Predicting Equity Risk

What do the option-implied factors tell us about the risk characteristics of the underlying equity-

index? To explore this issue, we again consider regressions of the form (5), but the dependent

variable is now a measure of the future realized return variation over the time interval [t, t + h],

RVt,t+h. The latter is constructed from the high-frequency intraday observations on the equity-index

futures augmented with the squared overnight returns. The high-frequency data afford accurate

measurement of the ex-post return variability, so they provide good proxies for the risk associated

with exposure to the market index, see, e.g., Andersen et al. (2003). The regressions take the form,

RVt,t+h = k0,h + kv,h · Vt + ku,h · Ũt + εt,h , (6)

The left panels of Figure 9 reveal, in line with the prior S&P 500 evidence, that the left jump

intensity factor has no explanatory power for the ex-post realized return variation for any of the

indices. Instead, all predictor power is concentrated in the implied spot variance which, of course,

is well known to be a powerful predictor of short-term return volatility. The right panels show

that the explained variation is very high and qualitatively similar across all indices. The complete

absence of predictive power in the jump factor is striking. This is the component that encompasses

the relevant information for predicting the equity returns, but it is entirely unrelated to return

volatility.

To summarize, we document a clear empirical separation between the determinants of the equity

risk premium and market risks: the latter are well captured by the level of market volatility while

the former is driven by the component of the option-implied risk-neutral left jump intensity not

spanned linearly by market volatility. The finding is consistent across all indices in our analysis.

7.3 Comparison with the Variance Risk Premium

Our predictive results can rationalize the US and international evidence of Bollerslev et al. (2009)

and Bollerslev et al. (2014), respectively, that the country-specific variance risk premium has predic-

tive power for that country’s future excess returns.7 The variance risk premium is the compensation

demanded by investors for bearing variance risk. Formally, it is defined as the gap between the con-

ditional risk-neutral and statistical expectation of future return variation. The former can be easily

measured in a model-free way using a portfolio of close-to-maturity options and it corresponds to

7Our findings are also related to the broader extensive literature documenting return predictability for international
equity indices, see e.g., Harvey (1991), Bekaert and Hodrick (1992), Campbell and Hamao (1992), Ferson and Harvey
(1993) and Hjalmarsson (2010).

23



Weeks

5 10 15 20 25

t-
s
ta

ti
s
ti
c

-2

0

2

4

6

8

10

Vt

Ũ
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Ũ

Weeks

5 10 15 20 25

R
2

0

0.2

0.4

0.6

0.8

FTSE

Weeks

5 10 15 20 25

t-
s
ta

ti
s
ti
c

-5

0

5

10

15

Vt

Ũ
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Figure 9: Predictive Regressions for Return Variation. Left Panel: t-statistics for the
regression slopes; Right Panel: Regression R2, where the full drawn line depicts the total degree of
explained variation and the dashed line represents the part explained by the spot variance alone.
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the value of the VIX index. Since tail risk is part of the total return variation, our U factor forms

part of the VIX index. In fact, within our risk-neutral model, the VIX index is a simple affine

function of the two option factors, U and V . Therefore, a natural question that arises in light of

our findings above is whether the predictive ability of the variance risk premium is solely due to

the “pure-tail” factor we discovered here, i.e., Ũ .

To address this question, we will explore predictive regressions for the equity premium including

both the tail factor and the variance risk premium (V RP ) as explanatory variables. As in Section

2, we estimate the expected future return variation using the model of Corsi (2009). However, in

contrast to the U.S. case, where we rely on the VIX measure provided by the CBOE, we do not

use official exchange measures for the risk-neutral return variation. Instead, this component of the

variance risk premium is computed following the procedure of Carr and Wu (2009).8

Given the strong correlation among the two variables, we focus on the auxiliary explanatory

power provided by the variance risk premium in the following specification,

rt,t+h = log(Xt+h)− log(Xt) = c0,h + cu,h · Ũt + cp,h · Ṽ RP t + εt,h , (7)

where Ṽ RP t denotes the (estimated) variance risk premium at the end of trading day t, orthogo-

nalized with respect to the tail factor developed in the preceding sections.

The results are summarized in Figure 10. The qualitative features are remarkably similar to

those of Figure 8. In fact, the overall regression R2 is now, if anything, lower than before and

the significance of the jump factor remains strong for the longer return horizons. Finally, there is

no systematic evidence of auxiliary predictive power of the variance risk premium over-and-above

what is captured by the jump factor. In summary, we conclude that the jump factor is the driving

force behind the predictive power of the variance risk premium for future equity excess returns.

We strongly reject the reverse hypothesis that the variance risk premium is a superior predictor

relative to our negative jump intensity factor.

8 Downside Jump Risk and Risk Premium Linkages

We have identified the negative jump factor as a primary indicator of the future equity risk premium.

Since this factor represents the risk-neutral negative jump intensity, it may increase through two

8Specifically, on each day, we take the two option cross-sections with tenor closest to 30 calendar days. For each
cross section, we create a fine grid of strike prices K covering the moneyness range defined as −8 ≤ m ≤ 8 with
increments of 0.1. We then interpolate the implied volatility as a function of K. When K is lower (higher) than
the lowest (highest) available strike, we extrapolate the implied volatility outside the defined moneyness range as
constant and equal to the implied volatility at the lowest (highest) available strike level. Finally, we compute the
VIX index for both maturities and linearly interpolate to obtain the VIX index corresponding to 30 calendar days.
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Ũ
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Ũ
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Ũ
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Figure 10: Predictive Regressions of Excess Returns. Left Panel: t-statistics for the regression
slopes; Right Panel: Regression R2, where the full drawn line depicts the total degree of explained
variation and the dashed line represents the auxiliary explanatory power afforded by the VRP.
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separate channels. It may be due to a rise in the expected left jump intensity under the objective

measure or, alternatively, it may reflect an elevation of the negative jump risk premium, i.e., the

gap between the negative jump intensity under the risk-neutral (Q) and the objective (P) measure.

Given the critical role of the jump factor, it is of interest to gauge the extent to which each of the

channels identified above contribute to fluctuations in the option-implied negative jump intensity

and to the co-movements of these measures across the international markets.

While risk-neutral expectations of future jump risk are easy to generate (and are readily provided

by our parameter and factor estimates), it is rather difficult to compute reliable estimates for their

counterparts under the statistical probability, especially given our short and unusually turbulent

sample. Large jumps are influential in evaluating the jump variation, but they are relatively rare

and cluster, leading to imprecise small-sample inference. Under such circumstances, one may turn

to a tight parametric model that facilitates identification of the link between the jump variation and

the underlying state variables. However, we have, so far, avoided imposing parametric structures

on the P distribution, as we instead rely on inference under the Q measure, which embeds the

market’s assessment of the state variables and their (risk-neutral) dynamics into the pricing of the

option surface. There is no corresponding source of rich information regarding the price dynamics

under the objective measure, so those parametric assumptions on that dimension are much harder

to assess.

In view of these difficulties, we instead explore the observed realized negative jump variation

across different indices and use the findings to learn about the evolution of their relative jump risk

premiums, NJVt,t+h. These realized jump variation measures are given by,

NJVt,t+h =
1

h

 ∑
s∈[t,t+h]

(∆Xs)
21{∆Xs<0}

 . (8)

Although large idiosyncratic innovations renders estimation of the mean and standard deviation of

the jump variation difficult, we may infer a great deal about the relative exposure of the various

equity indices to shocks that induce actual jumps in asset returns. This may be achieved, throughout

this eventful period for the global markets, by measuring whether the realized jump activity for the

indices display similar or divergent jump behavior. To the extent their responses are well aligned, it

is natural to infer that the (a priori) expected jump variation measures also were highly correlated.9

Nonetheless, there are additional complications to confront before undertaking this type of

analysis. One stems from a review of our prior findings regarding the option-implied (priced)

9This follows if agents rationally update their expectations about the relative jump exposures of the indices to
reflect the observations over time.
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negative jump variation. In Section 6.2, we document a strong qualitative correspondence between

the negative jump factor for the U.S., U.K., and Germany over the period 2007-2009. However,

thereafter, during 2010-2014, the German jump factor rises above the others in periods surrounding

the main phases of the sovereign debt crisis. Similarly, the Italian jump factor is aligned with these

three factors through the great recession, but elevates more than the others from the onset of the

sovereign debt problems. Even the Spanish factor is roughly proportional with the above factors

through 2009, although it clearly is more volatile. In contrast, after the debt crisis emerges in

2010, the Spanish jump factor fluctuates violently throughout the remainder of the sample and

frequently attains truly extreme levels compared to the other indices. This suggests the presence of

a structural break in the relationship between the equity indices in 2010, with the jump exposures

diverging significantly from the patterns observed over the first three years of the sample.

A second complication is the different currency denominations of the indices. While large

currency movements may not have been anticipated a priori, we expect economic shocks, that

induce differentially sized jumps in the equity indices, to induce concurrent jumps in the exchange

rates. To avoid such confounding effects, we exploit the fact that three of them are denominated

in the identical (euro) currency, namely the German (DAX), the Italian (MIB) and the Spanish

(IBEX) indices. As just noted, these indices also display a highly divergent dynamic in the pricing

of jumps across the sample, rendering them excellent candidates for an exploration of potential

shifts in the relative jump risk premiums over time.

8.1 Realized Jump Risk Co-Movements in the Euro-Zone

In light of the complications discussed above, this section focuses on the three euro-denominated

indices, and we conduct a separate analysis for the first and second part of the sample to allow for

a potential break in the objective jump exposure of the indices.

To assess their relative exposure to the jump factor, we first extract a series of index return

jumps from each individual market, using five-minute index futures data and the jump identification

techniques detailed in the Appendix. We restrict the sample to the common trading hours across

the exchanges, so that we can monitor their simultaneous response to events that generate return

jumps. Specifically, we classify the jumps for a given index as common or country-specific depending

on whether the jump occurrence is observed simultaneously with jumps in both of the other indices

or not. The arrival of common jumps enables us to assess the relative sensitivity of the indices

to global events that have a significant affect on all of them, while the country-specific jumps are

indicative of residual or more idiosyncratic jump activity.

Figure 11 displays the 344 common jumps for the three indices plotted pairwise against each
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other over the period 2007-2009, encompassing the great recession but not the sovereign debt

crisis. The plots reveal a remarkable similarity in the jump response across the three markets. The

regression lines all have a slope close to, and insignificantly different from unity, suggesting that

they move one-for-one in response to the news generated around the financial crisis. The associated

R2 values range from 0.88 to 0.94. In brief, the common jumps appear to reflect a similar exposure

of all three indices to this type of event.
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Figure 11: Scatter of Common Market Jumps in Germany, Italy and Spain. The straight
lines on the plots represent the fit from a linear regression (without an intercept) of the jumps on
the Y-axis on the jumps on the X-axis.

The country-specific jumps cannot be analyzed in the same manner as they, by definition, do

not occur simultaneously. Instead, we assess the residual jump activity by computing the country-

specific monthly realized negative and positive jump variation across the sample period. These

realized measures are depicted in Figure 12. Focusing on the 2007-2009 period, we do not observe

any major differences in the series. The most noteworthy discrepancy is the limited degree of

positive jump variation in the DAX index. However, on the downside, the DAX jump variation

spikes along with the IBEX at the beginning of 2008 and during the depth of the financial crises,

while the MIB response is much smaller in the first instance but more dramatic in the second.

Finally, after October 2008, the DAX appears less susceptible to large negative idiosyncratic shocks

than the other two indices. Nonetheless, overall, for the period from 2007 through the main part

of the financial crisis, there is no evidence of systematic discrepancies in the realized negative jump

exposures of these equity indices. These conclusions are corroborated by the summary statistics

for the monthly country-specific jump variation measures in Table 2. In particular, it is evident

that the correlation of the DAX measures with the other two are much stronger for the negative

than the positive jump variation.10

10This is consistent with evidence from lower frequency data, see e.g., Longin and Solnik (2001), Ang and Chen
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variation due to the positive and negative jumps is above and below, respectively, the zero line.
The jump variations are computed over periods of months from the detected jumps over these
intervals. The jump variations are reported in annualized decimal units.

Figure 13 provides the corresponding scatter plots for the 547 common jumps over the period

2010-1014. The jump realizations continue to be approximately linearly aligned. However, the

relative amplitudes have shifted significantly. Now, the DAX index responses are more muted

than for the Southern European counterparts. The slopes for the middle and right panels in the

figure are 0.80 and 0.75, respectively, while the slope in the left panel remains indistinguishable

from unity. Hence, while the Italian and Spanish markets continue to display similar responses to

common shocks, the German exposure has declined in relative terms. This is consistent with the

sovereign debt crisis having a disproportional impact on Italy and Spain compared to Germany.

Not surprisingly, the R2 values for the DAX plots, at 0.87 and 0.84, have dropped relative to

before, while the value for the IBEX-MIB plot is 0.94 and, if anything, has increased relative to

the financial crisis, speaking to a great deal of commonality in the jump exposures for Italy and

Spain during the debt crisis.

Inspection of Figure 12 suggests a fair degree of commonality in the country-specific jump

variation measures over the second part of the sample. However, the German country-specific

jump exposure now appears decidedly lower than for the other two indices. In fact, apart from the

fairly dramatic spike associated with the onset of the second phase of the sovereign debt crisis, the

(2002), Poon et al. (2004), Bae et al. (2003) and more recent evidence from high-frequency stock data, see, e.g.,
Bollerslev et al. (2013).
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Figure 13: Scatter of Common Market Jumps in Germany, Italy and Spain. The straight
lines on the plots represent the fit from a linear regression (without an intercept) of the jumps on
the Y-axis on the jumps on the X-axis.

realized German jump variation is almost uniformly lower than the others. In comparison, Spain

and Italy alternate in terms of displaying the largest realized jump exposure, with no evidence of

one being, on average, more susceptible to large idiosyncratic return shocks than the other. These

conclusions are confirmed by Table 3. Over this part of the sample, the German negative jump

variation is less correlated with those in Italy and Spain than before, and there is no longer an

asymmetry between the correlation of the positive and negative jump measures for the DAX. On

the other hand, the correlation between the MIB and IBEX remains high for both the negative

and positive jump measures. In short, the DAX displays a substantially lower degree of exposure

to both large common shocks and more idiosyncratic events in the latter part of our sample, while

there is little to separate the objective jump exposures among MIB and IBEX.11

8.2 Implications for International Jump Risk Premium

Overall, our nonparametric analysis of the jump risks across Germany, Italy and Spain reveal

strong linkages, but also a distinct shift in the relative exposures following the financial crisis. By

combining these findings for the realized negative jump variation with those for the priced negative

jump variation in Section 6.2, as depicted in Figure 7, we can make an informed assessment of the

relative negative jump risk premium across the indices. Over the first part of our sample, the risk-

neutral negative jump variation of the Spanish index is, on average, more elevated than the Italian,

German and U.S. indices and it clearly displays more abrupt fluctuations. This contrasts sharply

11The number of country-specific jumps are spread fairly evenly across the sample period, albeit slightly tilted
towards the downside. Compared to the total of 891 common jumps, the number of positive and negative country-
specific jumps in Germany, Italy and Spain are 1319, 1166 and 1213, versus 1546, 1364 and 1503, respectively.
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Mean (×102) StD (×102) Correlation

Positive Jump Variation

DAX 0.13 0.09 1 0.35 0.51

MIB 0.21 0.26 1 0.72

IBEX 0.18 0.21 1

Negative Jump Variation

DAX 0.23 0.32 1 0.80 0.91

MIB 0.32 0.41 1 0.73

IBEX 0.25 0.26 1

Table 2: Country-specific Jump Variation; 2007-2009. Summary statistics. Mean and stan-
dard deviation are reported in annualized decimal units.

Mean (×102) StD (×102) Correlation

Positive Jump Variation

DAX 0.14 0.13 1 0.54 0.42

MIB 0.25 0.22 1 0.79

IBEX 0.22 0.17 1

Negative Jump Variation

DAX 0.22 0.28 1 0.33 0.54

MIB 0.29 0.29 1 0.65

IBEX 0.26 0.24 1

Table 3: Country-specific Jump Variation; 2010-2014. Summary statistics. Mean and stan-
dard deviation are reported in annualized decimal units.

with the actual realized jump exposure that is near indistinguishable across the three European

indices over this period. We infer that the Spanish negative jump risk premium was larger and

more volatile that the corresponding premium in Germany and Italy. One may conjecture that the
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rising tensions in housing and mortgage markets, that preceded the financial crisis, were taking

a disproportionate toll on the risk attitudes towards the Spanish economy which was fueled by a

large real estate boom. In contrast, if anything, the Italian risk premium for negative jump risk

appears smaller than in Germany during the height of the financial crisis as the spike in the Italian

risk-neutral negative jump variation in Figure 7 is less elevated. This may reflect a perception of a

relatively lower vulnerability of the Italian economy to the sharp contraction in the financial sector.
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Figure 14: Option-Implied Factor Spreads in the Euro-Zone.

After 2010, the picture shifts dramatically. From Figure 7, it is evident that the Italian priced

negative jump variation grows increasingly volatile and generally exceeds the one in Germany,

especially in the wake of the second phase of the sovereign debt crisis in late 2011. As noted

previously, however, the impact on the corresponding Spanish series is even more drastic. Given

the near identical realized negative jump variation in Spain and Italy over this period, documented

in Figures 12–13 and Table 3, we conclude that the Spanish premium for negative jump risk exceeds

the Italian by a substantial margin. One likely explanation is the threat of Spain dispensing with

the euro currency and joining a set of other nations in adopting a Southern euro in its place. Such

scenarios may have been deemed less plausible in the case of Italy. For Germany, the priced negative

jump risk remained fairly close to the U.S. level, indicating a much more modest elevation in the

negative jump risk premium for the DAX during the European debt crisis.

9 Conclusion

This paper applies the option pricing approach of Andersen et al. (2015a) to a number of interna-

tional equity indices, including the US and various European derivatives markets. For all indices,

there is a clean separation between a left tail factor, with predictive power for the future equity,

variance and jump tail risk premiums, and a spot variance factor which is a potent predictor of the
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actual future return variation. Standard approaches exploiting only volatility factors miss the eq-

uity risk premium information in the option surface insofar as the volatility factors do not span the

“pure tail factor,” which is the one embedding the predictive content for the equity risk premium.

For all major indices, the evolution and pricing of the financial market risks appear consistent.

Nonetheless, important deviations appear around the sovereign debt crises in Europe, when the

option surface associated with the indices denominated in the euro currency show a varying degree

of elevated volatility and downside tail risk. Germany displays only a temporary degree of risk

elevation, while the Italian and Spanish indices are dramatically affected. And even for these

two countries, we observe significant variation, as the elevation in the Italian left tail factor is

more muted and reflects mostly the increasingly volatile financial market conditions experienced

following the onset of the sovereign debt crisis. In contrast, the Spanish tail factor is exceedingly

elevated and only returns to more normal levels years after the crises. As such, the Spanish risk

pricing is clearly unique within the set of indices explored.

Given our specific findings regarding the relative risk pricing in Italy and Spain, it will be of

interest, in future work, to associate the inferred downside tail risk premium in these countries

with the actual sequence of economic events affecting them during this period. Corresponding

studies relating the relative risk pricing across equity indices denominated in different currencies

will require explicit consideration of currency risk in the analysis. More generally, it will be useful

to integrate the pricing of currency risk with our international stock market analysis.
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10 Appendix

10.1 Options Data

Index Name Country Exchange OptionMetrics Trading Hours Tick Size Multiplier

North America

SP USA CBOE SPX 8:30 am - 3:15 pm 0.05 100 $

Europe

ESTOXX Europe EUREX SX5E 8:50 am - 5:30 pm 0.1 10 e

DAX Germany EUREX DAX 8:50 am - 5:30 pm 0.1 5 e

SMI Switzerland EUREX SMI 8:50 am - 5:20 pm 0.1 10 CHF

FTSE UK EURONEXT UKX 8:00 am - 4:30 pm 0.5 10 £

MIB Italy IDEM MIB 9:00 am - 5:40 pm 1.0 1 e

IBEX Spain MEFF IBEX 9:00 am - 5:35 pm 1.0 2.5 e

Table 4: Option Contract Specifications. For each option contract we report the underlying
index, the corresponding country, the name of the exchange, the symbol in the OptionMetrics
database, and finally the trading hours, the tick size and the multiplier (as of December 2014).

Each exchange provides detailed information about the trading specifications of each option

contract:

• SPX: http://www.cboe.com/products/indexopts/spx_spec.aspx,

• EURO STOXX 500: http://www.eurexchange.com/exchange-en/products/idx/stx/blc/

EURO-STOXX-50--Index-Options/19066,

• DAX: http://www.eurexchange.com/exchange-en/products/idx/dax/DAX--Options/17252,

• SMI: http://www.eurexchange.com/exchange-en/products/idx/smi/SMI--Options/19508,

• FTSE 100: https://www.theice.com/products/38716770/FTSE-100-Index-Option,

• FTSE MIB: http://www.borsaitaliana.it/derivati/specifichecontrattuali/ftsemiboptions.

en.htm,

• IBEX 35: http://www.meff.es/aspx/Comun/Pagina.aspx?l1=Financiero&f=OpcionesIBEX35&

id=ing.
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10.2 Equity-Index Futures Data

Index Name Country Exchange TickData Daily Trading Hours Tick Size Multiplier

North America

SP USA CME ES 8:30 a.m. - 3:15 p.m. 0.25 50 $

Europe

ESTOXX Europe EUREX XX 8:00 a.m. -10:00 p.m. 1.0 10 e

DAX Germany EUREX DA 8:00 a.m. -10:00 p.m. 0.5 25 e

SMI Switzerland EUREX SW 8:00 a.m. -10:00 p.m. 1.0 10 CHF

FTSE UK EURONEXT FT 8:00 a.m. - 9:00 p.m. 0.5 10 £

MIB Italy IDEM II 9:00 a.m. - 5:40 p.m. 0.5 10 £

IBEX Spain MEFF IB 9:00 a.m. - 8:00 p.m. 0.5 10 £

Table 5: Futures Contract Specifications. For each index futures contract we report the
country, the option exchange, the TickData symbol for the contract, the daily trading hours, the
tick size, and the multiplier (as of December 2014).
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10.3 Construction of High-Frequency Measures

The high-frequency futures data is obtained from TickData via the TickWrite software. We select

Time Based Bars interval with one-minute granularity holding the last value in case there is no

price change over the one-minute interval. We use the front maturity futures contract and we use

the Auto Roll method provided by the software to roll-over to the next maturity when the front-

maturity contract is near to expiration. We only consider the daily trading hours, combining pit

and electronic trading. We apply the following filters to clean the raw data:

• We keep only observations between Monday and Friday.

• We remove days with no price changes and days corresponding to US holidays.

• We remove days with number of observations less than the average number of daily observa-

tions in the sample. This filter removes half-trading days such as the day before Thanksgiving

or the day before Christmas for the US market.

The cleaned futures data is aggregated to five-minute frequency. For the construction of the high-

frequency measures we introduce the following auxiliary notation. A generic series observed at

high-frequency is denoted with Z (log futures price in our case). For ease of exposition, we ignore

the overnight periods and assume that we have equidistant observations on the grid 0, 1
n ,

2
n , ..... We

denote ∆n = 1
n and ∆n

i Z = Z i
n
−Z i−1

n
. With this notation, the construction of the high-frequency

measures is done following these steps:

1. Realized Variation:

RVt,t+h =

bn(t+h)c∑
i=bntc+1

(∆n
i Z)2,

and if the interval [t, t+h] includes an overnight period, the squared overnight return is added

to the summation.

2. Bipower Variation:

BVt,t+h =
π

2

bn(t+h)c∑
i=bntc+2

|∆n
i Z||∆n

i−1Z|.

3. Jumps Detection:

• For each series, we compute, the so-called Time-of-Day (TOD) function as defined in

Bollerslev and Todorov (2011). We recompute the TOD function each time the exchange

changed the trading hours.
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• At each point in time, starting from the second day in the sample, we compute the

threshold level:

θi =
3√
h

√
RVt−h,t ∧BVt−h,t ×∆0.49

n × TODi−bi/nc,

where h stands for 24 hours that exclude the overnight period.

• The increment ∆n
i Z is flagged as one with jump if |∆n

i Z| >.

4. Truncated Variation and Jump Variation:

TVt,t+h =

bn(t+h)c∑
i=bntc+1

(∆n
i Z)21{|∆n

i Z|≤θi}, JVt,t+h =

bn(t+h)c∑
i=bntc+1

(∆n
i Z)21{|∆n

i Z|>θi}.

5. For the computation of the local continuous variation, V̂ n
t , used to penalize the option-based

volatility estimate in the objective function in (4), we take into account the following:

• V̂ n
t = 1

hTVt,t+h, where h is equal to 3 hours.

• If we encounter more than 4 consecutive zero returns (this could happen in case of

market closure or ”lunch break”) then we extend the window until we reach 36 returns

containing less than 4 consecutive zero returns.
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10.4 Equity-Index Return Correlations

SP ESTOXX DAX SMI FTSE MIB IBEX

SP 1.00 0.80 0.79 0.70 0.78 0.69 0.67

ESTOXX 1.00 0.91 0.77 0.83 0.84 0.83

DAX 1.00 0.76 0.80 0.77 0.75

SMI 1.00 0.74 0.66 0.64

FTSE 1.00 0.71 0.69

MIB 1.00 0.76

IBEX 1.00

Table 6: Equity-Index Returns Correlations. The correlations are computed from contem-
poraneous five-minutes returns for the different indices. There is an overlap in trading hours of
approximately 9 hours per day, as we exploit the electronic trading in the E-mini contract from
3:15 p.m. to 8:30 a.m. Chicago Time, excluding the 15 minutes trading break between 3:15 p.m.
and 3:30 p.m. on Monday-Friday and 4 p.m. to 5 p.m. on Monday-Thursday.
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10.5 Parameter Estimates

10.5.1 S&P500

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −0.963 0.024 c+
0 4.933 0.064

v 0.026 0.000 λ− 18.266 0.245

κ 8.344 0.135 λ+ 63.193 0.400

σ 0.664 0.018 µv 35.125 0.685

κu 0.521 0.050 µu 60.399 9.101

Panel B: Summary Statistics

RMSE 2.124

Mean negative jump intensity 1.281

Mean negative jump size −0.055

Mean positive jump size 0.016

Mean diffusive variance 0.042

Mean negative jump variance 0.008

Mean positive jump variance 0.002

Table 7: Estimation Results for the Parametric Model defined by Equation (1)for SP
Options. Panel A reports the parameter estimates obtained using weekly observations on Wednes-
day, or the closed business day in case of a market closure on Wednesday. Panel B reports summary
statisticsfor the daily series of model-implied jump and variance estimates. Variances and jump
intensity are given in annualized decimal units.
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10.5.2 ESTOXX

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −0.953 0.011 c+
0 5.077 0.250

v 0.033 0.000 λ− 14.240 0.282

κ 6.689 0.151 λ+ 44.896 0.790

σ 0.689 0.009 µv 10.086 0.263

κu 1.586 0.078 µu 146.338 12.278

Panel B: Summary Statistics

RMSE 1.897

Mean negative jump intensity 1.729

Mean negative jump size −0.070

Mean positive jump size 0.022

Mean diffusive variance 0.055

Mean negative jump variance 0.017

Mean positive jump variance 0.005

Table 8: Estimation Results for the Parametric Model defined by Equation (1)for ES-
TOXX Options. Panel A reports the parameter estimates obtained using weekly observations on
Wednesday, or the closed business day in case of a market closure on Wednesday. Panel B reports
summary statisticsfor the daily series of model-implied jump and variance estimates. Variances
and jump intensity are given in annualized decimal units.
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10.5.3 DAX

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −0.942 0.031 c+
0 10.291 0.218

v 0.031 0.000 λ− 16.015 0.394

κ 7.050 0.128 λ+ 67.561 0.556

σ 0.659 0.024 µv 17.309 0.514

κu 1.131 0.085 µu 64.924 12.206

Panel B: Summary Statistics

RMSE 1.859

Mean negative jump intensity 1.464

Mean negative jump size −0.062

Mean positive jump size 0.015

Mean diffusive variance 0.051

Mean negative jump variance 0.011

Mean positive jump variance 0.005

Table 9: Estimation Results for the Parametric Model defined by Equation (1)for DAX
Options. Panel A reports the parameter estimates obtained using weekly observations on Wednes-
day, or the closed business day in case of a market closure on Wednesday. Panel B reports summary
statisticsfor the daily series of model-implied jump and variance estimates. Variances and jump
intensity are given in annualized decimal units.
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10.5.4 SMI

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −0.930 0.018 c+
0 4.117 0.079

v 0.022 0.000 λ− 18.609 0.394

κ 4.915 0.131 λ+ 48.492 0.302

σ 0.468 0.010 µv 10.722 0.288

κu 1.947 0.109 µu 102.066 23.691

Panel B: Summary Statistics

RMSE 1.618

Mean negative jump intensity 1.963

Mean negative jump size −0.054

Mean positive jump size 0.021

Mean diffusive variance 0.029

Mean negative jump variance 0.011

Mean positive jump variance 0.004

Table 10: Estimation Results for the Parametric Model defined by Equation (1)for
SMI Options. Panel A reports the parameter estimates obtained using weekly observations on
Wednesday, or the closed business day in case of a market closure on Wednesday. Panel B reports
summary statisticsfor the daily series of model-implied jump and variance estimates. Variances
and jump intensity are given in annualized decimal units.
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10.5.5 FTSE

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −0.999 0.016 c+
0 1.647 0.144

v 0.021 0.000 λ− 15.624 0.401

κ 6.352 0.163 λ+ 37.875 1.401

σ 0.522 0.010 µv 28.621 1.218

κu 0.911 0.081 µu 51.694 16.721

Panel B: Summary Statistics

RMSE 2.018

Mean negative jump intensity 1.040

Mean negative jump size −0.064

Mean positive jump size 0.026

Mean diffusive variance 0.042

Mean negative jump variance 0.009

Mean positive jump variance 0.002

Table 11: Estimation Results for the Parametric Model defined by Equation (1)for
FTSE Options. Panel A reports the parameter estimates obtained using weekly observations on
Wednesday, or the closed business day in case of a market closure on Wednesday. Panel B reports
summary statisticsfor the daily series of model-implied jump and variance estimates. Variances
and jump intensity are given in annualized decimal units.
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10.5.6 MIB

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −0.969 0.033 c+
0 3.112 0.072

v 0.031 0.000 λ− 10.059 0.274

κ 4.491 0.139 λ+ 30.659 0.294

σ 0.463 0.015 µv 20.840 0.827

κu 1.427 0.105 µu 5.007 7.572

Panel B: Summary Statistics

RMSE 2.786

Mean negative jump intensity 0.701

Mean negative jump size −0.099

Mean positive jump size 0.033

Mean diffusive variance 0.064

Mean negative jump variance 0.014

Mean positive jump variance 0.007

Table 12: Estimation Results for the Parametric Model defined by Equation (1)for
MIB Options. Panel A reports the parameter estimates obtained using weekly observations on
Wednesday, or the closed business day in case of a market closure on Wednesday. Panel B reports
summary statisticsfor the daily series of model-implied jump and variance estimates. Variances
and jump intensity are given in annualized decimal units.
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10.5.7 IBEX

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std.

ρ −1.000 0.047 c+
0 6.382 2.349

v 0.040 0.001 λ− 13.603 0.614

κ 3.514 0.121 λ+ 40.044 5.797

σ 0.529 0.027 µv 4.397 0.620

κu 1.285 0.146 µu 55.010 20.512

Panel B: Summary Statistics

RMSE 2.101

Mean negative jump intensity 2.093

Mean negative jump size −0.074

Mean positive jump size 0.025

Mean diffusive variance 0.058

Mean negative jump variance 0.023

Mean positive jump variance 0.008

Table 13: Estimation Results for the Parametric Model defined by Equation (1)for
IBEX Options. Panel A reports the parameter estimates obtained using weekly observations on
Wednesday, or the closed business day in case of a market closure on Wednesday. Panel B reports
summary statisticsfor the daily series of model-implied jump and variance estimates. Variances
and jump intensity are given in annualized decimal units.
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