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Abstract

I develop a new method to solve and estimate heterogeneous agent macro models. The main

challenge is that the state vector contains the distribution of microeconomic agents, which is

typically infinite-dimensional. I approximate the distribution with a flexible parametric family,

reducing the dimensionality to a finite set of parameters, and solve for the dynamics of these

parameters by perturbation. I implement the method in Dynare and find that it is accurate

and extremely effi cient. As an illustration, I use the method to estimate a heterogeneous firm

model with neutral and investment-specific productivity shocks using Bayesian techniques. The

behavior of firms at the micro level matters quantitatively for inference about the aggregate

shock processes, suggesting an important role for micro data in estimating macro models.
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1 Introduction

Heterogeneity is pervasive in microeconomic data: households vary tremendously by income, wealth,

and consumption, for example, and firms vary by productivity, investment, and hiring. Accordingly,

a rapidly growing literature has emerged in macroeconomics which asks how micro heterogeneity

matters for our understanding of aggregate business cycles.1 The models used in this literature are

computationally challenging because the aggregate state of the economy contains the distribution of

micro agents, generally an infinite-dimensional object. Most existing algorithms, following Krusell

and Smith (1998), approximate the distribution with a finite number of moments, typically just

the mean. This approximation works well if the mean accurately captures how the distribution

affects aggregate dynamics, a condition known as “approximate aggregation.” But by construc-

tion, approximate aggregation imposes sharp restrictions on how the distribution affects aggregate

dynamics, leaving many important questions unanswerable.2

In this paper, I develop a new method to solve and estimate heterogeneous agent models that

does not rely on approximate aggregation. Instead, I approximate the entire distribution with

a finite-dimensional parametric family and include the parameters of that approximation in the

state vector. A good approximation of the distribution may require a large number of parameters,

however, leaving globally accurate approximation techniques infeasible due to the curse of dimen-

sionality. Instead, I solve for the aggregate dynamics using locally accurate perturbation methods,

which are computationally effi cient even with a large state space. I show how to implement this

perturbation step in Dynare, a Matlab toolbox designed to solve and estimate representative agent

models in a user-friendly way. My website provides a example codes and a user guide for using

Dynare to solve and estimate heterogeneous agent models as well.

Although the method is applicable to a wide range of heterogeneous agent models, for concrete-

ness I demonstrate it in the context of a real business cycle model with heterogeneous firms and

fixed capital adjustment costs, as in Khan and Thomas (2008). In the recursive equilibrium of this

model, the aggregate state contains the distribution of firms over productivity and capital, which

1There are too many papers to provide a comprehensive list of citations. For recent papers on the household side,
see Auclert (2015), Berger and Vavra (2015), or Kaplan, Moll, and Violante (2015); on the firm side, see Bachmann,
Caballero, and Engel (2013), Khan and Thomas (2013), Clementi and Palazzo (2015), or Terry (2015a).

2A straightforward way to relax approximate aggregation is to extend the number of moments used to approximate
the distribution. However, this quickly becomes infeasible due to the curse of dimensionality, as each new moment
adds a new state variable.
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evolves over time in response to aggregate shocks. The dynamics must satisfy a complicated fixed

point problem: each firm’s investment decision depends on its expectations of the dynamics of the

distribution, and the dynamics of the distribution depend on firms’investment decisions. This type

of fixed point problem is at the heart of the computational challenges faced by the heterogeneous

agent literature.

My method solves this problem accurately and effi ciently; depending on the degree of approx-

imation of the distribution of firms (ranging from 5 to 20 parameters), computing a first order

approximation of the aggregate dynamics takes between 50 —140 seconds in Matlab.3 Degrees

of approximation on the high end of this range are necessary to capture the shape of the distri-

bution, which features positive skewness and excess kurtosis; however, degrees on the low end of

this range are suffi cient to capture the dynamics of aggregate variables. I also compute a second-

order approximation of the dynamics, but consistent with the results in Khan and Thomas (2008),

find quantitatively small nonlinearities in the aggregate. Finally, I consider a parameterization of

the model in which approximate aggregation fails to hold and show that as expected my method

continues to perform well in this case.

As an illustration, I then incorporate aggregate investment-specific productivity shocks in ad-

dition to the neutral shocks already in the model and estimate the parameters of the two shock

processes using Bayesian techniques. Characterizing the posterior distribution of parameters us-

ing Markov Chain Monte Carlo takes less than 24 minutes using Dynare. To understand how

micro behavior impacts this estimation of aggregate shock processes, I re-estimate the parameters

conditional on different values of the fixed capital adjustment costs, which correspond to different

patterns of firm investment behavior. For small adjustment costs, less volatile investment-specific

shocks are needed to match the data, while for large adjustment costs, more volatile shocks are

needed. Of course, the ideal estimation exercise would incorporate both micro- and macro-level

data to jointly estimate the parameters of the model; these results show that doing so is feasible

using my method, even with full-information Bayesian techniques.

The Dynare codes and user guide is designed to make solving and estimating heterogeneous

agent models as simple as possible. Broadly speaking, the user provides two files: a Matlab .m

3This runtime overstates the time the algorithm spends on solving the model in each step of the estimation,
because it includes the time spent processing the model and taking symbolic derivatives. Once these tasks are
complete, they do not need to be performed again for different parameter values.
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file that computes the stationary equilibrium of the model, and a Dynare .mod file that defines

the approximate equilibrium conditions of the model. Thanks to the structure of Dynare, these

conditions can be programmed almost as they would be written in a paper. Dynare then differen-

tiates these conditions, computes the locally accurate dynamics around the stationary equilibrium,

simulates the model, and if requested, estimates the model using either maximum likelihood or

Bayesian techniques. Hence, if a researcher can solve for the stationary equilibrium of their model,

these codes will compute the aggregate dynamics almost for free.

Related Literature My method builds heavily on two important papers in the computational

literature. The first is Algan et al. (2008), who solve the Krusell and Smith (1998) model by

parameterizing the distribution of households using the same parameterization I use in this paper.

However, Algan et al. (2008) solve for the aggregate dynamics with globally accurate methods,

which are extremely slow in their context. The second paper I build on is Reiter (2009) who,

following an idea of Campbell (1998), solves the Krusell and Smith (1998) model using a mix of

globally and locally accurate techniques. However, Reiter (2009) approximates the distribution

with a fine histogram, which requires many parameters to achieve acceptable accuracy. This limits

the approach to problems which have a low-dimensional individual state space because the size of

the histogram grows exponentially in the number of individual states. Furthermore, neither Algan

et al. (2008) or Reiter (2009) explore using their methods for formal estimation or implement their

methods in Dynare.4

Road Map The rest of this note is organized as follows. I briefly describe the benchmark

heterogeneous firm framework in Section 2. I then explain my solution method in the context of

this benchmark model in Section 3. In Section 4, I add investment-specific shocks to the model,

and estimate the parameters of the shock processes using Bayesian techniques. Section 5 concludes.

Various appendices contain additional details not contained in the main text.

4Veracierto (2016) also proposes a method based on a mix of globally and locally accurate techinques that does
not rely on any direct approximation of the distribution. Instead, Veracierto (2016) approximates the history of
individual agents’decision rules, and simulates a panel of agents to compute the distribution at any point in time.
He then linearizes the system with respect to the history of approximated decision rules and uses that to compute the
evolution of the distribution. The advantage of his methodology is that it does not require any approximation of the
distribution. However, the disadvantage is that it is extremely computationally intensive, precluding the possibility
of estimation.
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2 Benchmark Real Business Cycle Model with Firm Heterogene-

ity

Although I illustrate my method using the heterogeneous firm model from Khan and Thomas

(2008), the method itself applies to a large class of heterogeneous agent models.5 In the online

codes and user guide, I use the method to solve the heterogeneous household model from Krusell

and Smith (1998), and discuss how to generalize the method to solve other models as well.

2.1 Environment

Firms There is a fixed mass of firms j ∈ [0, 1] which produce output yjt according to the produc-

tion function

yjt = ezteεjtkθjtn
ν
jt, θ + ν < 1,

where zt is an aggregate productivity shock, εjt is an idiosyncratic productivity shock, kjt is capital,

njt is labor, θ is the elasticity of output with respect to capital, and ν with respect to labor. The

aggregate shock zt is common to all firms and follows the AR(1) process

zt+1 = ρzzt + σzω
z
t+1, where ω

z
t+1 ∼ N(0, 1).

The idiosyncratic shock εjt is independently distributed across firms, but within firms follows the

AR(1) process

εjt+1 = ρεεjt + σεω
ε
t+1, where ω

ε
t+1 ∼ N(0, 1).

Each period, the firm j inherits its capital stock from previous periods’investments, observes the

two productivity shocks, hires labor from a competitive market, and produces output.

After production, the firm invests in capital for the next period. Gross investment ijt yields

kjt+1 = (1− δ) kjt + ijt units of capital next period, where δ is the depreciation rate of capital. If

ijt
kjt

/∈ [−a, a], the firm must pay a fixed adjustment cost ξjt in units of labor. The parameter a

governs a region around zero investment within which firms do not incur the fixed cost. The fixed

cost ξjt is a random variable distributed U [0, ξ], independently over firms and time.

5Since the benchmark is directly taken from Khan and Thomas (2008), I keep my exposition brief, and refer the
interested reader to their original paper for details.
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Households There is a representative household with preferences represented by the utility func-

tion

E
∞∑
t=0

βt
[
C1−σt − 1

1− σ − χN
1+α
t

1 + α

]
,

where Ct is consumption, Nt is labor supplied to the market, β is the discount factor, σ is the

coeffi cient of relative risk aversion, χ governs the disutility of labor supply, and α is the Frisch

elasticity of labor supply. The total time endowment per period is normalized to 1, so Nt ∈ [0, 1].

The household owns all the firms in the economy and markets are complete.

2.2 Firm Optimization

Following Khan and Thomas (2008), I directly incorporate the implications of household optimiza-

tion into the firm’s optimization problem by approximating the transformed value function

v̂ (ε, k; s) = λ (s) max
n

{
ezeεkθnν − w (s)n

}
(1)

+Eξ [max {va (ε, k; s)− ξλ (s)w (s) , vn (ε, k; s)}] ,

where s is the aggregate state vector (defined in Section 2.3 below), λ (s) = C (s)−σ is the marginal

utility of consumption in equilibrium, and

va (ε, k; s) = max
k′∈R
−λ (s)

(
k′ − (1− δ) k

)
+ βE

[
v̂(ε′, k′; s′

(
z′; s

)
|ε, k; s

]
(2)

vn (ε, k; s) = max
k′∈[(1−δ−a)k,(1−δ+a)k]

−λ (s)
(
k′ − (1− δ) k

)
+ βE

[
v̂(ε′, k′; s′

(
z′; s

)
|ε, k; s

]
. (3)

Denote the unconstrained capital choice from (2) by ka (ε, k; s) and the constrained choice from (3)

by kn (ε, k; s). The firm will choose to pay the fixed cost if and only if va (ε, k; s)− ξλ (s)w (s) ≥

vn (ε, k; s). Hence, there is a unique threshold which makes the firm indifferent between these two

options,

ξ̃ (ε, k; s) =
va (ε, k; s)− vn (ε, k; s)

λ (s)w (s)
. (4)

Denote ξ̂ (ε, k; s) as the threshold bounded to be within the support of ξ, i.e., ξ̂ (ε, k; s) = min{max{0,

ξ̃ (ε, k; s) , ξ}}.
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2.3 Equilibrium

In the recursive competitive equilibrium, the aggregate state s contains the current draw of the

aggregate productivity shock, z, and the distribution of firms over (ε, k)-space, µ.

Definition 1 A recursive competitive equilibrium for this model is a set v̂ (ε, k; s), n (ε, k; s),

ka (ε, k; s), kn (ε, k; s), ξ̂ (ε, k; s), λ (s), w (s), and s′ (z′; s) = (z′;µ′ (z, µ)) such that

1. (Firm optimization) Taking w (s), λ (s), and s′ (z′; s) as given, v̂ (ε, k; s), n (ε, k; s), ka (ε, k; s),

kn (ε, k; s), and ξ̂ (ε, k; s) solve the firm’s optimization problem (1) - (4).

2. (Implications of household optimization)

• λ (s) = C (s)−σ, where C (s) =
∫

[ezeεkθn (ε, k; s)ν + (1− δ) k −
(
ξ̂(ε,k;s)

ξ

)
ka (ε, k; s) −(

1− ξ̂(ε,k;s)

ξ

)
kn (ε, k; s) ] dµ (ε, k).

• w (s) satisfies
∫

(n (ε, k; s) + ξ̂(ε,k;s)2

2ξ
)dµ (ε, k) =

(
w(s)λ(s)

χ

) 1
α
.

3. (Law of motion for distribution) For all measurable sets ∆ε ×∆k,

µ′ (z, µ) (∆ε ×∆k) =

∫
p (ρεε+ σεω

ε ∈ ∆ε) dω
ε × [

(
ξ̂ (ε, k; s)

ξ

)
1{ka (ε, k; s) (5)

∈ ∆k}+

(
1− ξ̂ (ε, k; s)

ξ

)
1 {kn (ε, k; s) ∈ ∆k}]dµ (ε, k) ,

where p is the p.d.f. of idiosyncratic productivity shocks.

4. (Law of motion for aggregate shocks) z′ = ρzz + ω′z, where ω
′
z ∼ N(0, σz).

2.4 Baseline Parameterization

The baseline parameter values, reported in Table 1, are those chosen by Khan and Thomas (2008),

adjusted to reflect the fact that my model does not feature trend growth. The model period is

one year, and the utility function corresponds to indivisible labor. The firm-level adjustment costs

and idiosyncratic shock process were chosen to match features of the investment rate distribution

reported in Cooper and Haltiwanger (2006).
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Table 1: Baseline Parameterization

Parameter Description Value Parameter Description Value

β Discount factor .961 ρz Aggregate TFP AR(1) .859

σ Utility curvature 1 σz Aggregate TFP AR(1) .014

α Inverse Frisch limα→ 0 ξ Fixed cost .0083

χ Labor disutility N∗ = 1
3 a No fixed cost region .011

ν Labor share .64 ρε Idiosyncratic TFP AR(1) .859

θ Capital share .256 σε Idiosyncratic TFP AR(1) .022

δ Capital depreciation .085

Notes: Parameterization follows Khan and Thomas (2008), Table 1, adjusted for the fact that my model does not
feature trend growth.

3 Using the Method to Solve the Benchmark Model

In this section, I show how to solve the benchmark model in three distinct steps. First, I approxi-

mate the equilibrium objects using finite-dimensional approximations. In particular, I approximate

the distribution using a flexible parametric family, so that the approximation is pinned down by the

parameters of that family, and I approximate the value function using a weighted sum of polynomi-

als, so the approximation is pinned down by the coeffi cients on those polynomials. This yields a set

of finite-dimensional approximate equilibrium conditions. Second, I compute the stationary equi-

librium of the model with no aggregate shocks. Finally, I solve for the dynamics of these variables

around their stationary values using locally accurate perturbation methods. This is completely

analogous to solving a representative agent model by perturbation, except that the endogenous

variables include the distribution parameters and polynomial coeffi cients. Throughout this sec-

tion, I focus on the new features of the method, such as the approximation of the distribution and

the perturbation for aggregate dynamics; for further details, see Appendix A.
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3.1 Step 1: Approximate Equilibrium Conditions Using Finite-Dimensional Ob-

jects

Distribution Following Algan et al. (2008), I approximate the p.d.f. of the distribution of firms,

denoted g (ε, k), by

g (ε, k) ∼= g0 exp{g11
(
ε−m1

1

)
+ g21

(
k −m2

1

)
+ (6)

ng∑
i=2

i∑
j=0

gji

[(
ε−m1

1

)i−j (
k −m2

1

)j −mj
i

]
},

where ng indexes the degree of approximation,
{
gji

}(ng ,i)
i,j=(1,0)

are parameters, and
{
mj
i

}(ng ,i)
i,j=(1,0)

are

centralized moments of the distribution. The parameters g and moments m must be consistent in

the sense that the moments are actually implied by the parameters:6

m1
1 =

∫
εg (ε, k) dεdk, (7)

m2
1 =

∫
kg (ε, k) dεdk, and

mj
i =

∫ (
ε−m1

1

)i−j (
k −m2

1

)j
g (ε, k) dεdk for i = 2, ..., ng, j = 0, ..., i.

Hence, given the vector of moments m, the parameters g are pinned down by (7). I therefore use

the momentsm as my characterization of the distribution, and approximate the infinite-dimensional

aggregate state (z, µ) with (z,m).7

To derive the law of motion for the approximate aggregate state, note that the current distrib-

ution m and decision rules pin down the p.d.f. of firms in the next period, g′ (ε′, k′; z,m), through

the identity:

g′
(
ε′, k′; z,m

)
=

∫  1 {ρεε+ σεω
′
ε = ε′} × [ ξ̂(ε,k;z,m)

ξ
1 {ka (ε, k; z,m) = k′}

+
(
1− ξ̂(ε,k;z,m)

ξ

)
1 {kn (ε, k; z,m) = k′}]

 p (ω′ε) g (ε, k;m) dω′εdεdk,

(8)

where p is the standard normal p.d.f. Because of the convolution with decision rules, the new p.d.f.

6The normalization g0 is chosen so that the total mass of the p.d.f. is 1.
7The distribution in the benchmark model is continuous, but in the online user guide, I show how to extend this

family to include mass points. Essentially, this adds one parameter specifying the location of the mass point and
another specifying the mass itself.
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g′ (ε′, k′; z,m) is not necessarily in the parametric family (6). I therefore approximate the law of

motion (8) by choosing m′ (z,m) to match the moments of the true p.d.f. g′ (ε′, k′;m):

m1′
1 =

∫
(ρεε+ ω′ε)p

(
ω′ε
)
g (ε, k;m) dω′εdεdk (9)

m2′
1 =

∫ 
ξ̂(ε,k;z,m)

ξ
ka (ε, k; z,m)

+
(

1− ξ̂(ε,k;z,m)

ξ

)
ka (ε, k; z,m)

 p (ω′ε) g (ε, k;m) dω′εdεdk

mj′
i (z,m) =

∫ 
(ρεε+ ω′ε −m1′

1 )i−j{ ξ̂(ε,k;z,m)
ξ

(
ka (ε, k; z,m)−m2′

1

)j
+
(

1− ξ̂(ε,k;z,m)

ξ

) (
ka (ε, k; z,m)−m2′

1

)j}

 p (ω′ε) g (ε, k;m) dω′εdεdk.

In practice, I compute this integral numerically using two-dimensional Gauss-Legendre quadrature,

which replaces the integral with a finite sum.

Firm’s Value Functions Given this approximation of the aggregate state, I approximate firms’

value functions by

v (ε, k; z,m) ∼=
nε∑
i=1

nk∑
j=1

θij (z,m)Ti (ε)Tj (k) ,

where nε and nk define the order of approximation, Ti (ε) and Tj(k) are Chebyshev polynomials,

and θij (z,m) are coeffi cients on those polynomials.8 I solve for the dependence of these coeffi cients

on the aggregate state using perturbation in Section 3.3.

With this particular approximation of the value function, it is natural to approximate the

Bellman equation (1) using collocation, which forces the equation to hold exactly at a set of grid

points {εi, kj}nε,nki,j=1,1:

v̂ (εi, kj ; z,m) = λ (z,m) max
n

{
ezeεikθjn

ν − w (z,m)n
}

+ λ (z,m) (1− δ) k (10)

8Technically, the Chebyshev polynomials are only defined on the interval [−1, 1], so I rescale the state variables
to this interval.
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+

(
ξ̂ (εi, kj ; z,m)

ξ

)
−λ (z,m)

(
ka (εi, kj ; z,m)− w (z,m)

ξ̂(εi,kj ;z,m)
2

)
+βEz′|z

[∫
v̂ (ρεεi + ω′ε, k

a (εi, kj ; z,m) ; z′,m′ (z,m)) p (ω′ε) dω
′
ε

]


+

(
1− ξ̂ (εi, kj ; z,m)

ξ

)
−λ (z,m) kn (εi, kj ; z,m)

+βEz′|z
[∫
v̂ (ρεεi + ω′ε, k

n (εi, kj ; z,m) ; z′,m′ (z,m)) p(ω′ε)dω
′
ε

]
 ,

where the decision rules are computed from the value function via first order conditions.9 Note

that the conditional expectation of the future value function has been broken into its component

pieces: the expectation with respect to idiosyncratic shocks is taken explicitly by integration, and

the expectation with respect to aggregate shocks implicitly through the expectation operator. I

compute the expectation with respect to idiosyncratic shocks using Gauss-Hermite quadrature, and

will compute the expectation with respect to aggregate shocks using perturbation in Section 3.3.

Approximate Equilibrium Conditions With all of these approximations, the recursive equi-

librium in Definition 1 becomes computable, replacing the true aggregate state (z, µ) with the

approximate aggregate state (z,m), the true Bellman equation (1) with the Chebyshev collocation

approximation (10), and the true distribution law of motion with the approximation (9). I show

in Appendix A that these approximate equilibrium conditions can be represented by a function

f : R2nεnk+ng+2 × R2nεnk+ng+2 × Rng+1 × Rng+1 → R2nεnk+ng+2+ng+1 which satisfies

Eω′z
[
f
(
y′,y,x′,x

)
= 0
]
, (11)

where y = (θ,ka,g, λ, w) are the control variables, x = (z,m) are the state variables, ψ is the

perturbation parameter, and ka denotes the target capital stock along the collocation grid. This is

exactly the canonical form in Schmitt-Grohé and Uribe (2004), who show how to solve such systems

9The choice of Chebyshev collocation is not essential, and the online user guide explains how to use other approx-
imations, such as splines.
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using perturbation methods. A solution to this system is of the form

y = g(x;ψ)

x′ = h (x;ψ) + ψ × ηω′z,

where η =
(
1,0ng×1

)′.
Perturbation methods approximate the solution g and h using Taylor expansions around the

point where ψ = 0, which corresponds to the stationary equilibrium with no aggregate shocks. For

example, a first order Taylor expansion gives:

g(x; 1) ∼= gx (x∗; 0) (x− x∗) + gψ (x∗; 0) (12)

h(x; 1) ∼= hx (x∗; 0) (x− x∗) + hψ (x∗; 0) + ηω′z.

The unknowns in this approximation are the partial derivatives gx, gψ, hx, and hψ. Schmitt-Grohé

and Uribe (2004) show how to solve for these partial derivatives from the partial derivatives of

the equilibrium conditions, fy′ , fy, fx′ , fx, and fψ, evaluated at the stationary equilibrium with

ψ = 0. Since this procedure is by now standard, I refer the interested reader to Schmitt-Grohé

and Uribe (2004) for further details. Given values for x∗ and y∗, Dynare effi ciently implements

this procedure completely automatically. Hence, to solve for the aggregate dynamics, we just need

to compute the stationary equilibrium x∗ and y∗, and plug this into Dynare to compute the Taylor

expansion (12). An analogous procedure can be used to compute higher-order approximations of

g and h, with no additional coding required.

3.2 Step 2: Compute Stationary Equilibrium with No Aggregate Shocks

In terms of Schmitt-Grohé and Uribe (2004)’s canonical form (11), the stationary equilibrium is

represented by two vectors x∗= (0,m∗) and y = (θ∗,ka∗,g∗, λ∗, w∗) such that

f (y∗,y∗,x∗,x∗) = 0.
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In principle, this is a system of nonlinear equations that can be solved numerically; in practice, this

system is large, so numerical solvers fail to converge. I instead solve this system using a stable

iterative scheme described in Appendix A, similar to the algorithm developed in Hopenhayn and

Rogerson (1993).

Figure 1 shows that a moderately high degree of approximation is necessary to capture the

shape of the invariant distribution. The figure plots various slices of this invariant distribution for

different degrees of approximation, and compares them to an “exact”histogram.10 The marginal

distribution is productivity in Panel (a) is normal, so a second degree approximation gives an

exact match due to the functional form of the family (6). However, the marginal distribution

of capital in Panel (b) features positive skewness and excess kurtosis, which requires a higher

degree approximation. Additionally, a second degree approximation implies that the conditional

distributions of capital by productivity in Panels (c) and (d) only vary in their location, while the

true distribution varies in both location and scale. A ng = 6 degree approximation captures these

complicated shapes almost exactly.

In contrast, even low degree approximations of the distribution provide a good approximation

of key aggregate variables. Table 2 computes various aggregates in the stationary equilibrium,

using different degrees of approximation, and again compares them to the values obtained using an

“exact”histogram. A second degree approximation, which fails to capture the non-normal features

of the distribution, nevertheless yields aggregates which are virtually indistinguishable from higher

degree approximations.

3.3 Step 3: Compute Aggregate Dynamics Using Perturbation

Given the values for x∗ and y∗ in the stationary equilibrium, it is straightforward to compute the

Taylor expansions of g and h dynamics using Dynare. Solving for these dynamics involves two

main steps: first, computing the derivatives of the equilibrium conditions (11), which gives a linear

system of equations for the partial derivatives of the solution g and h, and second, solving the

linear system for those partial derivatives. Dynare computes the derivatives of the equilibrium

conditions using symbolic differentiation and solves the linear system using standard linear rational

10 In particular, I use the same iterative scheme, but approximate the distribution with a histogram which simply
records the mass of firms at points along a fine grid as in Young (2010).

12



Figure 1: Invariant Distribution for Different Degrees of Distribution Approximation

(a) Marginal distribution of productivity (b) Marginal distribution of capital

(c) Conditional distributions of capital, ng = 2 (d) Conditional distributions of capital, ng = 6

Notes: Slices of invariant distribution of firms over productivity ε and capital k. "Exact" refers to nonparametric
histogram, following Young (2010). ng refers to highest order moment used in parametric family (6). Marginal
distributions computed by numerical integration of joint p.d.f. "High productivity" and "Low productivity"
correspond to roughly + / - two standard deviations of the productivity distribution.
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Table 2: Aggregates in Stationary Equilibrium, for Different Degrees of Distribution Approximation

Variable ng = 1 ng = 2 ng = 3 ng = 4 ng = 5 Exact

Output 0.522 0.500 0.499 0.499 0.499 0.499

Consumption 0.420 0.413 0.413 0.412 0.412 0.412

Investment 0.100 0.087 0.086 0.086 0.086 0.086

Capital 1.178 1.023 1.015 1.014 1.013 1.015

Wage 0.945 0.962 0.961 0.961 0.961 0.961

Marginal Utility 2.382 2.422 2.423 2.426 2.426 2.427

Notes: Aggregates in stationary equilibrium computed using various orders of approximation. "Exact" refers to
distribution approximated with fine histogram, as in Young (2008).

expectation model solvers, such as Anderson and Moore (1985) or Sims (2001); see Adjemian (2011)

for more details.11 Dynare will then, if requested, simulate the solution (if necessary, pruning

as in Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2014)), compute theoretical and/or

empirical moments of simulated variables, or estimate the model using likelihood-based methods.

First Order Approximation Computing a first-order approximation of the dynamics takes

between 50 —140 seconds on a Dell workstation, depending on the degree of approximation for the

distribution. Table 3 reports these run times and breaks them down into the fractions spent on

various tasks. For all degrees of the distribution approximation, the majority of time is spent “pre-

processing”the model, during which time Dynare reads in the model file and computes the symbolic

derivatives. This is a fixed cost that does not need to be performed again for different parameter

values. The remaining time is spent solving for the stationary equilibrium of the model (“stationary

equilibrium”) and computing the first-order approximation (“perturbation”). For higher degree

approximations of the distribution, pre-processing takes up relatively more computation time, and

the stationary equilibrium and perturbation steps less time.

The resulting dynamics of key aggregate variables are well in line with what Khan and Thomas

(2008) and Terry (2015b) have reported using different algorithms to solve this model. Figure 2

11Moving to higher order approximations requires solving additional equations, but as described in Schmitt-Grohé
and Uribe (2004) these additional systems are linear, and thus simple to solve.
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Table 3: Computing Time for First Order Approximation

Task ng = 2 ng = 3 ng = 4 ng = 5

Total time (in seconds) 53.04 72.89 101.14 136.01

Pre-processor 39% 48% 55% 58%

Stationary equilibrium 24% 19% 16% 15%

Perturbation 37% 33% 29% 27%

Notes: Computing time for computing a first order approximation of aggregate dynamics in seconds.
"Pre-processor" refers to Dynare file processing, which parses the model file and symbolically differentiates the
equilibrium conditions. "Stationary equilibrium" refers to computing the stationary equilibrium of the model with
no aggregate shocks, as in Section 3.2. "Perturbation" refers to Dynare evaluating derivatives at the stationary
equilibrium, and solving the linear system.

Figure 2: Impulse Responses of Aggregates, First Order Approximation

(a) Output (b) Consumption (c) Investment
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Notes: Impulse respones of aggregate variables, for different degrees of approximation of the distribution. ng refers
to highest order moment used in parametric family (6).
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Table 4: Business Cycle Statistics of Aggregates in First Order Approximation

SD (rel. to output) ng = 2 ng = 5 Corr. with Output ng = 2 ng = 5

Output (2.13%) (2.14%) × × ×

Consumption 0.4695 0.4672 Consumption 0.9028 0.9013

Investment 3.8733 3.8925 Investment 0.9689 0.9687

Hours 0.6133 0.6121 Hours 0.9441 0.9444

Real wage 0.4695 0.4672 Real wage 0.9028 0.9013

Real interest rate 0.0845 0.0841 Real interest rate 0.7966 0.7978

Notes: Standard deviation of aggregate variables. All variables are HP-filtered with smoothing parameter λ = 100
and, with the exception of the real interest rate, have been logged. Standard deviations for variables other than
output are expressed relative to that of output.

plots impulse response functions to an aggregate TFP shock, which completely characterize the

dynamics in a first order approximation. An increase in aggregate TFP directly increases output,

but also increases investment and labor demand, which further increases output but also factor

prices. The resulting business cycle statistics are reported in Table 4. As usual in a real business

cycle model, consumption is roughly half as volatile as output, investment is nearly four times as

volatile, and labor is slightly less volatile. All variables are highly correlated with output because

aggregate TFP is the only shock driving fluctuations in the model.

The aggregate dynamics are largely unaffected by the degree of approximation of the distribu-

tion. Visually, increasing the degree of approximation from ng = 2 to ng = 5 barely changes the

impulse responses in Figure 2. Quantitatively, the business cycle statistics reported in Table 4

barely change as well. Hence, including high-degree approximation of the distribution would not

significantly improve the accuracy of the algorithm for studying these aggregate dynamics.

Second Order Approximation In principle, the first order approximation of the model consid-

ered above could hide important nonlinearities in the aggregate dynamics. In a nonlinear model,

impulse response functions depend on the size and sign of the shock, as well as the history of

previous shocks. These nonlinearities could significantly alter the dynamics of the model. To in-

vestigate this possibility, in Appendix B I compute a second order approximation of the aggregate
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dynamics, which amounts to changing a Dynare option from order=1 to order=2.12 Quantita-

tively, the dynamics of the second order approximation closely resemble those of the first order

approximation. This is consistent with Khan and Thomas (2008), who find little evidence of such

nonlinearities using an alternative solution method.

Method Does Not Require Approximate Aggregation In this benchmark model, Khan

and Thomas (2008) show that “approximate aggregation”holds, in the sense that the aggregate

capital stock almost completely characterizes how the distribution influences aggregate dynamics.

Following Krusell and Smith (1998), they solve the model by approximating the distribution with

the aggregate capital stock, and find that their solution is extremely accurate. Hence, for this

particular model, my method and the Krusell and Smith (1998) method are both viable. However,

my method is significantly more effi cient; in a comparison project, Terry (2015b) shows that my

method solves and simulates the model in 0.098% the time of the Krusell and Smith (1998) method.

This speed gain makes the full-information Bayesian estimation in Section 4 feasible.

Furthermore, because my method directly approximates the entire distribution, it can be applied

to other models in which approximate aggregation fails. Appendix C makes this case concrete by

adding investment-specific shocks to the model, and showing that for suffi ciently volatile shocks

the aggregate capital stock does not accurately approximate how the distribution affects dynamics.

Extending Krusell and Smith (1998)’s algorithm would therefore require adding more moments to

the forecasting rule. This quickly becomes infeasible, as each additional moment adds another

state variable in a globally accurate solution method.

Hence, my method is not only significantly faster for models in which approximate aggregation

holds, it applies equally well to models in which it fails.

4 Estimating Aggregate Shock Processes with Heterogeneous Firms

The goals of this section are to show that full-information Bayesian estimation of heterogeneous

agent models is feasible using my method, and to illustrate how micro-level behavior can quan-
12 In the interest of speed, for the second order approximation I use a slightly lower-order approximation of individual

decision rules. As explained in the online user guide, this is because Dynare would otherwise run into issues with
the size of the Matlab workspace. This can be overcome by instructing Dynare to instead use compiled C++ code
to compute the derivatives, which is relatively slow but still feasible. The slow C++ compilation is during the
“pre-processing”phase, which only must be performed once.
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titatively impact estimation results. To do this, I extend the benchmark model to include ag-

gregate investment-specific productivity shocks in addition to the neutral shocks and estimate the

parameters of these two shock processes. As will become clear below, I include the additional

investment-specific shock because this process is most directly shaped by micro-level investment

behavior. The investment-specific shock only affects the capital accumulation equation, which

becomes kjt+1 = (1− δ) kjt + eqtijt. The two aggregate shocks follow the joint process

zt = ρzzt−1 + σzω
z
t (13)

qt = ρqqt−1 + σqω
q
t + σqzω

z
t ,

where ωzt and ω
q
t are i.i.d. standard normal random variables. I include a loading on neutral

productivity innovations, σqz, to capture comovement between the two shocks. Without this

loading factor, the investment-specific shocks would induce a counterfactual negative comovement

between consumption and investment. Abusing notation introduced in Section 3, denote the vector

of parameter values θ =
(
ρz, σz, ρq, σq, ρqz

)
.

I estimate the shock process parameters θ conditional on four different parameterizations of

the remaining parameters. The only parameters to vary across these parameterizations are ξ, the

upper bound on fixed cost draws, and σε, the standard deviations of the innovations to idiosyncratic

productivity. I vary the fixed costs from ξ = 0, in which case the model exactly aggregates to a

representative firm, to ξ = 1; in the last case, I increase σε from 0.02 to 0.04, because otherwise there

would be little capital adjustment. These parameters vary the extent of micro-level adjustment

frictions, and therefore micro-level investment behavior, from frictionless to extreme frictions. The

remaining parameters are fixed at standard values, adjusting the model frequency to one quarter

in order to match the frequency of the data. Table 5 collects all these parameter values.

The Bayesian approach combines a prior distribution of parameters, p (θ), with the likelihood

function, L (Y|θ) where Y is the observed time series of data, to form the posterior distribution

of parameters, p (θ|Y). The posterior is proportional to p (θ)L (Y|θ), which is the object I

characterize numerically. The data I use is Y =
(

log Ŷ1:T , log Î1:T

)
, where log Ŷ1:T is the time

series of log-linearly detrended real output and log Î1:T is log-linearly detrended real investment;

for details, see Appendix D. I choose relatively standard prior distributions to form p (θ), also
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Table 5: Parameterizations Considered in Estimation Exercises

Fixed Parameters Value Fixed Parameters Value

β (discount factor) .99 a (no fixed cost) .011

σ (utility curvature) 1 ρε (idioynscratic TFP) .85

α (inverse Frisch) limα→ 0 ν (capital share) .21

χ (labor disutility) N∗ = 1
3 Changing Parameters Value 1 Value 2 Value 3 Value 4

θ (labor share) .64 σε (idiosyncratic TFP) .02 .02 .02 .04

δ (depreciation) .025 ξ 0 .01 .1 1

Notes: Calibrated parameters in the estimation exercises. "Fixed parameters" refer to those which are the same
across the different estimations. "Changing parameters" are those which vary across estimations.

contained in Appendix D. I sample from p (θ)L (Y|θ) using the Metropolis-Hastings algorithm;

since this procedure is now standard (see, for example, Fernández-Villaverde, Rubio-Ramírez, and

Schorfheide (2015)), I omit further details. Dynare computes 10,000 draws from the posterior in

23 minutes, 57 seconds.13

Table 6 shows that as the upper bound of the fixed costs increases from ξ = 0 to ξ = 1, the

estimated variance of investment-specific shocks significantly increases from 0.0058 to 0.0088. In-

tuitively, matching the aggregate investment data with large frictions requires more volatile shocks

than with small frictions. Additionally, the factor loading of neutral shocks on investment-specific

shocks shrinks, because larger frictions reduce the negative comovement of consumption and invest-

ment. The remaining parameters are broadly constant over the different specifications, indicating

that micro-level adjustment frictions matter mainly for the inference of the investment-specific

shock process.

Of course, the ideal estimation exercise would jointly estimate the adjustment frictions and

shock processes using both micro and macro level data; these results show that, using my method,

such exercises are now feasible. These exercises provide a potentially important step forward for

formal inference in macroeconomics, which currently falls into two broad categories. The first is

estimation of models with meaningful general equilibrium forces, as in the DSGE literature. To

13A key reason that this estimation is so effi cient is that the parameters of the shock processes do not affect the
stationary equilibrium of the model. Hence, the stationary equilibrium does not need to be recomputed at each
point in the estimation process. Estimating parameters which affect the steady state would take longer, but is still
feasible in Dynare.
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Table 6: Posterior Distribution of Parameters, for Different Micro-Level Calibrations

Micro-Level TFP ρz TFP σz ISP ρq ISP σq ISP Loading ρzq

ξ = 0, σε = .02 0.9811 0.0078 0.9718 0.0058 -0.00446

[90% HPD] [0.9694, 0.9940] [0.0072, 0.0083] [0.954, 0.9912] [0.0045, 0.0071] [-0.0060, -0.0031]

ξ = .01, σε = .02 0.9808 0.0078 0.9747 0.0071 -0.0043

[0.9687, 0.9924] [0.0072, 0.0084] [0.9591, 0.9901] [0.0056, 0.0088] [-0.0059, -0.0026]

ξ = .1, σε = .02 0.9796 0.0078 0.9732 0.0075 -0.0040

[0.9670, 0.9922] [0.0073, 0.0084] [0.9581, 0.9902] [0.0059, 0.0094] [-0.0056, -0.0025]

ξ = 1, σε = .04 0.9786 0.0079 0.9730 0.0088 -0.0037

[0.9659, 0.9913] [0.0073, 0.0085] [0.9549, 0.9924] [0.0066,0.0111] [-0.0054, -0.0020]

Notes: Posterior means and highest posterior density sets of parameters, conditional on micro-level
parameterizations.

maintain tractability, these exercises generally rely upon (nearly) representative agent assumptions

and ignore micro heterogeneity. The second category is estimation of models which focus on

micro heterogeneity, but ignore meaningful general equilibrium, as in labor economics or industrial

organization. Some recent work (such as Vavra (2014) or Bloom et al. (2014)) bridges this gap

by estimating models with both micro heterogeneity and meaningful general equilibrium forces.

Because of severe computational burden, these exercises use partial information, moment-based

econometrics. My new solution method, and its Dynare implementation, instead bridges these

two literatures in a tractable fashion, overcoming the extreme runtimes and restriction to partial

information procedures in previous work.

5 Conclusion

In this note, I developed a general-purpose method for solving and estimating heterogeneous agent

macro models. In contrast to most existing work, my method does not rely on the dynamics of

the distribution being well-approximated by a small number of moments, substantially expanding

the class of models which can be feasibly computed. Nevertheless, my method is straightforward

to implement. I have provided codes and a user guide for solving a general class of models using

Dynare, with the hope that it will help bring heterogeneous agent models into the fold of standard
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macroeconomic analysis. A particularly promising avenue for future research is incorporating micro

data into the estimation of DSGE models. As I showed in Section 4, micro-level behavior places

important restrictions on model parameters. In the current DSGE literature, such restrictions are

either absent or imposed through ad-hoc prior beliefs; my method instead allows for the micro data

to formally place these restrictions itself.
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A Details of the Method

This appendix provides additional details of the method referenced in Section 3 in the main text.

A.1 Approximate Equilibrium Conditions

I first show that the approximate equilibrium conditions can be written as a system of 2nεnk+ng+

2 + ng + 1 equations, of the form (11). To that end, let {τ gi , (εi, ki)}
mg
i=1 denote the weights and

nodes of the two-dimensional Gauss-Legendre quadrature used to approximate the integrals with

respect to the distribution, and let {τ εi , ωεi}
mε
i=1 denote the weights and nodes of the one-dimensional

Gauss-Hermite quadrature used to approximate the integrals with respect to the idiosyncratic shock

innovations. In my numerical implementation, I use the degree of approximation for value functions

nε = 3 and nk = 5, for the Gauss-Legendre quadrature mg = 64 (from the tensor product of two

8th order, one dimensional Gauss-Legendre quadrature nodes and weights), and mε = 3 for the

degree of the Gauss-Hermite quadrature.

With this notation, and the notation defined in the main text, the approximate Bellman equation

(10) can be written as

0 = E[

nε∑
k=1

nk∑
l=1

θijTk (εi)Tl (kj)− λ
(
ezeεikθjn (εi, kj)

ν − wn (εi, kj)
)
− λ (1− δ) kj (14)
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−
(
ξ̂ (εi, kj)

ξ

)
−λ
(
ka (εi, kj)− w ξ̂(εi,kj)

2

)
+β
∑mε

o=1 τ
ε
o

∑nε
k=1

∑nk
l=1 θ

′
ijTk (ρεεi + σεω

ε
o)Tl (k

a (εi, kj))



−
(

1− ξ̂ (εi, kj)

ξ

)
−λkn (εi, kj)

+β
∑mε

o=1 τ
ε
o

∑nε
k=1

∑nk
l=1 θ

′
ijTk (ρεεi + σεω

ε
o)Tl (k

n (εi, kj))

],

for the nεnk collocation nodes i = 1, ..., nε and j = 1, ...nk. The optimal labor choice is defined

through the first order condition

n (εi, kj) =

(
νezeεikθj

w

) 1
1−ν

.

The policy functions ka (εi, kj), kn (εi, kj), and ξ̂ (εi, kj) are derived directly from the approximate

value function θ as follows. First, the adjust capital decision rule ka (εi, kj) must satisfy the first

order condition

0 = E

[
λ− β

mε∑
o=1

τ εo

nε∑
k=1

nk∑
l=1

θ′ijTk (ρεεi + σεω
ε
o)T

′
l (ka (εi, kj))

]
. (15)

Conditional on this choice, the constrained capital decision is

kn (εi, kj) =



(1− δ + a) kj if ka (εi, kj) > (1− δ + a) kj

ka (εi, kj) if ka (εi, kj) ∈ [(1− δ − a) kj , (1− δ + a) kj ]

(1− δ − a) kj if ka (εi, kj) < (1− δ − a) kj


.

Finally, the capital adjustment threshold ξ̃ (εi, kj) is defined as

ξ̃ (εi, kj) =
1

wλ


−λ (ka (εi, kj)− kn (εi, kj))

+β
∑mε

o=1 τ
ε
o

∑nε
k=1

∑nk
l=1 θ

′
ijTk (ρεεi + σεω

ε
o) (Tl (k

a (εi, kj))− Tl (kn (εi, kj)))

 ,
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and the bounded threshold is given by ξ̂ (εi, kj) = min{max{0, ξ̃ (εi, kj) , ξ}}. To evaluate the deci-

sion rules off the grid, I interpolate the adjust capital decision rule ka using Chebyshev polynomials,

and derive kn and ξ̂ from the above formulae.

Given the firm decision rules, the implications of household optimization can be written as

0 = λ−


mg∑
i=1

τ gi


ezeεikθi n (εi, ki) + (1− δ) ki

− ξ̂(εi,ki)

ξ
ka (εi, ki)−

(
1− ξ̂(εi,ki)

ξ

)
kn (εi, ki)

 g (εi, ki|m)


−σ

(16)

0 =

(
wλ

χ

) 1
α

−
mg∑
i=1

τ gi

(
n (εi, ki) +

ξ̂ (εi, ki)
2

2ξ

)
g (εi, ki|m) , (17)

where

g (εl, kl|m) = g0 exp{g11
(
εl −m1

1

)
+ g21

(
kl −m2

1

)
+

ng∑
i=2

i∏
j=0

gji

[(
εl −m1

1

)i−j (
kl −m2

1

)j −mj
i

]
}.

The approximate law of motion for the distribution (9) can be written

0 = m1′
1 −

mg∑
l=1

τ gl

mε∑
k=1

τ εk (ρεεl + σεω
ε
k) g (εl, kl|m) (18)

0 = m2′
1 −

mg∑
l=1

τ gl

mε∑
k=1

τ εk

[
ξ̂ (εl, kl)

ξ

(
ka (εl, kl)−m2′

1

)
+

(
1− ξ̂ (εl, kl)

ξ

)(
ka (εl, kl)−m2′

1

)]
g (εl, kl|m)

0 = mj′
i −

mg∑
l=1

τ gl

mε∑
k=1

τ εk


ξ̂(εl,kl)

ξ

(
(ρεεl + ωεk −m1′

1 )i−j
(
ka (εl, kl)−m2′

1

)j)
+
(

1− ξ̂(εl,kl)

ξ

)((
ρεεl + ωεk −m1′

1

)i−j (
ka (εl, kl)−m2′

1

)j)
 g (εl, kl|m) .
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Consistency between the moments m and parameters g requires

m1
1 =

mg∑
l=1

τ gl εlg (εl, kl|m) , (19)

m2
1 =

mg∑
l=1

τ gl klg (εl, kl|m) , and

mj
i =

mg∑
l=1

τ gl

[(
εl −m1

1

)i−j (
kl −m2

1

)j −mj
i

]
g (εl, kl|m) for i = 2, ..., ng, j = 0, ..., i.

Finally, the law of motion for the aggregate productivity shock is

0 = E
[
z′ − ρzz

]
(20)

With all these expressions, we can define f (y′,y,x′,x;ψ) which outputs (14), (15), (16), (17),

(18), (19), and (20).

A.2 Solving for Stationary Equilibrium

Following Hopenhayn and Rogerson (1993), I solve for the stationary equilibrium by iterating on

the wage w∗:

1. Guess a value for the wage w∗

2. Given w∗, compute the firm’s value function θ∗ by iterating on the Bellman equation (10).

Note that λ∗ does not enter the stationary Bellman equation because it is a multiplicative

constant.

3. Using the firm’s decision rules, compute the invariant distribution m∗ by iterating on the law

of motion (9).

4. Compute aggregate labor demand using this invariant distribution, and compute aggregate

labor supply using the household’s first order condition.

5. Update the guess of w∗ appropriately.14

14Although I describe this as an iteration, it is actually more effi cient numerically to view this as a root-finding
problem, solving for the wage which sets excess labor demand to 0.
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Table 7: Business Cycle Statistics, First vs. Second Order Approximation

SD (rel. to output) Order 1 Order 2 Corr. with Output Order 1 Order 2

Output (2.11%) (2.11%) × × ×

Consumption 0.4739 0.4739 Consumption 0.9078 0.9078

Investment 3.7299 3.7299 Investment 0.9698 0.9698

Hours 0.6066 0.6066 Hours 0.9445 0.9445

Real wage 0.4739 0.4739 Real wage 0.9078 0.9078

Real interest rate 0.0806 0.0806 Real interest rate 0.7864 0.7864

Notes: All variables are HP-filtered with smoothing parameter λ = 100 and, with the exception of the real interest
rate, have been logged. Standard deviations for variables other than output are expressed relative to that of output.

For the “exact”histogram comparisons in the main text, I follow these steps, except I approx-

imate the distribution with a histogram recording the mass of firms along a fine grid following

Young (2010).

B Second Order Approximation of Aggregate Dynamics

In this appendix, I document properties of the second order approximation of aggregate dynamics

referenced in Section 3.3 of the main text. Figure 3 plots the impulse response to a positive, one

standard deviation aggregate TFP shock starting from the stationary equilibrium, in a first order

and a second order approximation of the model. The two responses are nearly indistinguishable.

In fact, the resulting business cycle statistics reported in Table 7 are quantitatively identical up to

four decimal places.

To further investigate the potential for nonlinearities, the top row of Figure 4 plots the response

to a positive vs. a negative shock in the second order expansion, and finds that the absolute

responses are almost the same. The bottom row of Figure 4 plots the response to a one standard

deviation positive shock, starting from a "recession" (negative one standard deviation shocks in

the previous two periods) compared to an "expansion" (positive shocks in the previous periods).

Although there is a slight history dependence in the response of investment, it is quantitatively

small.
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Figure 3: Aggregate Impulse Responses, First vs. Second Order Approximation

(a) Output (b) Consumption (c) Investment
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(d) Hours (d) Real Wage Real Interest Rate

5 10 15 20 25 30 35 40
­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40
­0.1

­0.05

0

0.05

0.1

0.15

Notes: Impulse respones of aggregate variables, for different orders of approximation. "First order" refers to linear
impulse response. "Second order" refers to nonlinear generalized impulse response function, as in Koop et al. (1996).
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Figure 4: Sign and Size Dependence in Impulse Responses, Second Order Approximation

(a) Sign dependence, output (b) Sign dependence, investment
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(c) State dependence, output (d) State dependence, investment
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Notes: Nonlinear features of the impulse responses of aggregate output (left column) and investment (right column).
"Sign dependence" refers to the impulse response to a one standard deviation positive vs. negative shock. "State
dependence" refers to the impulse response after positive one standard deviation shocks vs. negative one standard
deviation shocks in the previous two years. All impulse responses computed nonlinearing as in Koop et al. (1996).
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Table 8: Standard Deviation of Aggregates in First Order Approximation

Forecasting Equation R2 RMSE

Marginal Utility 0.998185 0.00145

Future capital 0.999855 0.00061

Notes: Results from running forecasting regressions (21) on data simulated from first order model solution.

C Method Does Not Require Approximate Aggregation

In this appendix, I show that my method continues to perform well even when approximate ag-

gregation fails to hold. To do this, I modify the benchmark model, because as Khan and Thomas

(2008) show approximate aggregation holds in this case. In the benchmark model, the distrib-

ution impacts firms’decisions through two channels: first, by determining the marginal utility of

consumption λ (z, µ), and second, by determining the law of motion of the distribution, µ′ (z, µ).15

Table 8 shows that the aggregate capital stock Kt captures both of these channels very well, by

estimating the forecasting equations

log λt = α0 + α1zt + α2 logKt (21)

logKt+1 = γ0 + γ1zt + γ2 logKt

on data simulated using my solution. The R2 of these forecasting equations are high, and the root

mean-squared error low, indicating that a Krusell and Smith (1998) algorithm using the aggregate

capital stock performs well in this environment.

To break this approximate aggregation result, I add an investment-specific productivity shock

qt to the benchmark model. In this case, the capital accumulation equation becomes kjt+1 =

(1− δ) kjt + eqtijt, but the remaining equations are unchanged. I assume the investment-specific

shock follows the AR(1) process qt = ρqqt−1 + σqω
q
t , where ω

q
t ∼ N(0, 1), independently of the

aggregate TFP shock.

Figure 5 shows that approximate aggregation becomes weaker as the investment-specific pro-

15Given the linear disuility of labor supply, the wage is purely a function of the marginal utility of consumption.
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Figure 5: Forecasting Power of Aggregate Capital, as a Function of Investment-Specific Shock
Variance

(a) R2 of forecasting regs (b) DH statistic, capital (c) DH statistic, mar. utility
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Notes: Results from running forecasting regressions (22) on data simulated from first order model solution. "DH
statistic" refers to Den Haan (2010)’s suggestion of iterating on forecasting equations without updating Kt from
simulated data.

ductivity shock becomes more important. Panel (a) plots the R2s from the forecasting equations

log λt = α0 + α1zt + α2qt + α3 logKt (22)

logKt+1 = γ0 + γ1zt + γ2qt + γ3 logKt

as a function of the shock volatility σq, keeping ρq = 0.859 throughout. However, as Den Haan

(2010) notes, the R2 is a loose error metric for two reasons: first, it only measures one period ahead

forecasts, whereas agents must forecast into the infinite future; and second, it only measures average

deviations, which potentially hide occasionally large errors. To address these concerns, Den Haan

(2010) proposes iterating on the forecasting equations (22) without updating the capital stock, and

computing both average and maximum deviations of these forecasts from the actual values in a

simulation. Panels (b) and (c) of Figure 5 shows that these more stringent metrics grow even

more sharply as a function of the volatility σq. Hence, Krusell and Smith (1998) algorithms which

approximate the distribution with only the aggregate capital stock will fail in these cases.

Because my method directly approximates the distribution, rather than relying on these low-

dimensional forecasting rules, it continues to perform well as investment-specific shocks become

more important. Figure 6 plots the impulse responses of key aggregate variables to an investment-

specific shock for σq = 0.02, a value for which approximate aggregation fails. As with neutral
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Figure 6: Aggregate Impulse Responses to Investment-Specific Productivity Shock

(a) Output (b) Consumption (c) Investment
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Notes: Impulse respones of aggregate variables, for different orders of approximation of the distribution. ng refers to
highest order moment used in parametric family (6).
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Table 9: Prior Distributions of Parameters

Parameter Role Prior Distribution

ρz TFP autocorrelation Beta (0.9, 0.07)

σz TFP innovation sd Inverse Gamma (0.01, 1)

ρq ISP autocorrelation Beta (0.9, 0.07)

σq ISP innovation sd Inverse Gamma (0.01, 1)

σqz ISP loading on TFP innovation Uniform (-0.05, 0.05)

Notes: Prior distributions for estimated parameters.

productivity shocks in Figure 2, even relatively low degree approximations of the distribution are

suffi cient to capture the dynamics of these variables. However, there is a slightly greater difference

between ng = 2 and ng = 3 degree approximations, indicating that the shape of the distribution

varies more in response to the investment-specific shocks.

D Estimation Details

In this appendix, I provide additional details of the estimation exercise described in Section 4 of

the main text. The particular data sets I use are (1) Real Gross Private Domestic Investment, 3

Decimal (series ID: GPDIC96), quarterly 1954-01-01 to 2015-07-01, and (2) Real Personal Consump-

tion Expenditures: Nondurable Goods (chain-type quantity index) (series ID: DNDGRA3Q086SBEA),

seasonally adjusted, quarterly 1954-01-01 to 2015-07-01. I log-linearly detrend both series and

match them to log-deviations from stationary equilibrium in the model. The prior distributions

of parameters are independent of each other, and given in Table 9. To sample from the posterior

distribution, I use Markov Chain Monte Carlo with 10,000 draws, and drop the first 5,000 draws

as burn-in. Figure 7 plots the prior and estimated posterior distributions of parameters under two

micro-level calibrations. Increasing the capital adjustment frictions from Panel (a) to Panel (b),

the posterior distribution of σq is shifted rightward and is slightly more dispersed.
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Figure 7: Estimated Distribution of Investment-Specific Shock Variance

(a) Representative Firm (ξ = 0, σε = 0.02)
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(b) High Frictions (ξ = 1, σε = 0.04)
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Notes: Estimation results for different micro-level parameterizations. Grey lines are the prior distribution of
parameters. Dashed greens lines are the posterior mode. Black lines are the posterior distribution.
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