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Abstract

This paper shows how to incorporate judgment in a decision problem
under uncertainty, within a classical framework. The method relies on
the specification of a judgmental decision with associated confidence
level and application of hypothesis testing. The null hypothesis tests
whether marginal deviations from the judgmental decision generate
negative changes in expected utility. The resulting estimator is always
at the boundary of the confidence interval: beyond that point the
probability of decreasing the expected utility becomes greater than
the chosen confidence level. The decision maker chooses the confidence
level as a mapping from the p-value of the judgmental decision into the
unit interval. I show how the choice of priors in Bayesian estimators is
equivalent to the choice of this confidence level mapping. I illustrate
the implications of this new framework with a portfolio choice between
cash and the EuroStoxx50 index.
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1 Introduction

The workhorse for asset allocation is the mean-variance model introduced by
Markowitz (1952). Despite its success, the empirical implementation has left
much to be desired. It is well-known that plug-in estimators of the portfolio
weights produce very volatile asset allocations which usually perform very
poorly out of sample, due to estimation errors. There is a vast literature
documenting the empirical failures of the mean-variance model and suggest-
ing possible fixes (Jobson and Korkie 1981, Michaud 1998, Brandt 2007).
DeMiguel, Garlappi and Uppal (2009), however, provide convincing evidence
that none of the existing solutions consistently outperforms a simple, non-
statistically driven equal weight portfolio allocation.

DeMiguel et al. (2009) raise an important point: How to improve on a
given judgmental allocation? Investors often approach the asset allocation
problem with some default investment decision. The equal weight portfolio
is one example. Other examples could be that of an investment manager
with some benchmark against which she is evaluated, or that of a private
household who may have all her savings in a bank account (and therefore
a zero weight in the risky investment). Markowitz’s model gives general
prescriptions for asset allocation, but there is no guarantee that its practical
implementation will out-perform a given judgmental allocation. In fact, the
existing empirical evidence points to the contrary.

In this paper, I provide a theoretical framework to incorporate judgment
in Markowitz portfolio allocation problems, arriving at frequentist estimators
which are equivalent to Bayesian estimators, in the sense that they prescribe
identical allocations for any sample realization. Judgment is summarized by
a subjective allocation and a confidence level associated with it, supplied
exogenously by the decision maker. It plays a role similar to the prior in
Bayesian methods, even though the updating mechanism remains frequentist.
Manganelli (2009) constructs the test statistic given by the first derivatives of
the empirical expected utility evaluated at the judgmental allocation. If the
judgmental allocation is optimal, it maximizes the true expected utility and
its empirical first derivative should not be statistically different from zero.
The confidence level controls the probability of committing Type I errors.
Rejection of the null hypothesis implies that by moving from the judgmental
allocation towards the maximum likelihood the decision maker marginally
increases her expected utility in a statistically precise sense. This reasoning
holds until the boundary of the confidence interval is reached, as beyond this
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threshold the probability of committing Type I errors becomes greater than
the decision maker’s confidence level. The resulting estimator is a shrinkage
from the judgmental allocation to the maximum likelihood. This is the basic
insight of Manganelli (2009).

The missing element needed to establish equivalence with Bayesian es-
timators is the choice of the confidence level. Manganelli (2009) assumes
that the confidence level is set at some constant level ᾱ. The more general
set-up proposed in this paper allows for the confidence level to depend on
the evidence provided by the data, as summarized by the p-value of the test
statistic evaluated at the judgmental allocation. For instance, a very low p-
value may convince the decision maker to have little confidence in her initial
judgment. Pre-test estimators are an extreme case in point. P-values higher
than the confidence level induce the decision maker to stick to her judgment.
P-values lower than the confidence level (even infinitesimally lower) induce
the decision maker to neglect her judgment and adopt instead the maximum
likelihood estimator.

In general, the choice of the confidence level is a mapping from the p-
value of the test statistic evaluated at the judgmental allocation to the unit
interval. The resulting confidence level α determines the width of the confi-
dence interval and therefore the amount of shrinkage towards the maximum
likelihood estimator for any given judgmental allocation and associated p-
value. The shrinkage factor is zero if α = p-value and it is one if α = 1. By
moving continuously α over this interval, it is possible to generate any convex
combination between the judgmental allocation and the maximum likelihood
estimator. Therefore, any Bayesian decision shrinking from the prior to the
maximum likelihood is associated with a unique mapping from the p-value
to α in the classical framework which delivers exactly the same numerical
estimate.

The proposed method satisfies also the fundamental Bayesian principle
of conditioning decisions only on known variables. Judgmental decisions are
based on the initial judgment, the associated confidence level (which is a
function of the data) and the data itself. In particular, it does not condition
on the unknown, true mean, as typically done in frequentist approaches (see
for instance the discussion in section 2.4.1 in Geweke and Whiteman, 2006).

In the example considered in this paper, I derive analytically the confi-
dence mapping associated with Bayesian estimators with Normal and Laplace
priors, with zero mean and unit variance. This exercise raises two empirical
challenges for Bayesian econometrics. First, Bayesian estimators with sim-
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ilar priors are associated with different confidence mappings. It seems an
unrealistically heavy burden for the decision maker to be able to distinguish
between a thin and a fat tail prior with identical means and variances, as
in the case of the Normal and Laplace priors used in the example. Yet, as
also confirmed by the risk analyses of Magnus (2002) and Manganelli (2009),
this choice may bring very different practical implications. Second, the con-
fidence mapping associated with the Bayesian estimators reveals that as the
judgment associated with the prior becomes worse and worse, the confidence
of the decision maker in her judgment increases. This result points to the
risk of unintended consequences in the choice of priors in a Bayesian set-up:
different priors imply different willingness to accept Type I errors in classical
hypothesis testing.

The methodology is applied to a simple asset allocation problem of an
investor who holds AC100 and has to decide how much to invest in an Ex-
change Trading Fund replicating the EuroStoxx50 index. Several estimators
are implemented and compared, using an out of sample exercise. The re-
sults confirm that it is difficult to find allocations with good out of sample
performance. The weight associated with the maximum likelihood estima-
tor is the most volatile. By the end of the sample, an investor who would
have followed this investment strategy would have lost about one quarter of
her initial wealth. The Bayesian estimators perform slightly better, as the
weights are shrunk towards zero, but would still have lost between 5% and
10%. The best performing estimators are those that recommend to stick with
the initial judgment of holding only cash, because the data is just too noisy
to suggest a significant departure from it.

The insight of this exercise, however, is not to claim the superiority of
some estimators relative to others: like investors with different risk aversion
in their utility function, investors with different statistical risk propensity -
that is with different willingness to tolerate Type I errors - choose different
allocations. A Monte Carlo exercise shows that estimators with lower statis-
tical risk propensity perform better when the initial judgment is close to the
optimal one, but perform worse otherwise. To paraphrase a famous quote by
Clive Granger, investors with good judgment do better than investors with
no judgment, who do better than investors with bad judgment.1

1The original quote is ‘a good Bayesian... is better than a non-Bayesian. And a bad
Bayesian... is worse than a non-Bayesian’ (see Phillips 1997, p. 270). A similar statement
is reported by Geweke and Whiteman (2006) as opening quote of their paper, taken from
Granger (1986).
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The paper is structured as follows. The next section introduces a min-
imalistic asset allocation problem, which will be used as working example
of the decision problem throughout the paper. Section 3 reformulates the
estimation procedure proposed by Manganelli (2009). Section 4 describes
the choice of the confidence level and introduces the concept of Statistical
Risk Propensity. Section 5 establishes the equivalence between frequentist
and Bayesian estimators with two concrete examples. Section 6 presents the
empirical evidence and section 7 concludes.

2 The Asset Allocation Problem

Consider the situation of an investor holding cash and having to decide how
much to invest in the stock market, for instance via an Exchange Trading
Fund. Denote with Y ∼ N(θ0, 1) the return of the stock market. I assume
for simplicity that stock market returns are normally distributed around an
unknown mean θ0, with known variance equal to 1. Let a denote the share
of cash to be invested in the stock market. Since the nominal return on cash
is zero, the portfolio return is Z = aY .

Assume that the investor has a mean-variance utility function (Markowitz,
1952). Her problem is to find the asset allocation a0 which maximizes her
expected utility:

max
a
E[U(a)] = max

a
{E[Z]− 0.5V [Z]}

= max
a
{aθ0 − 0.5a2} (1)

The first order condition of this decision problem is θ0 − a = 0. If θ0 is
known, the problem is solved by a0 = θ0. In practice, θ0 is unknown and
needs to be estimated.

3 Econometric Solution to the Asset Alloca-

tion Problem

I assume that the econometrician has at her disposal the following elements
to solve the problem:
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1. A single realization from the return distribution, y1;

2. A judgmental decision ã supplied by the decision maker;

3. A confidence level α ∈ [0, 1], describing the confidence of the decision
maker in the judgmental decision ã.

Building on Manganelli (2009), this section shows that the solution to the
asset allocation problem requires the construction of a test statistic and of a
suitable hypothesis test. The econometric solution is given by the boundary
of the confidence interval of the test statistic.

3.1 Test Statistic

In the first order condition, the econometrician replaces a with the default
decision ã and θ0 with the sample mean θ̂ = Y1.2 Therefore, the sample
approximation of the first order condition, incorporating the judgmental de-
cision, is the following test statistic:

Y1 − ã (2)

Its sample realization will be different from zero with probability 1. It could
be set to zero, by setting the decision a equal to y1, as done in standard plug-
in procedures. However, the interest here lies in setting to zero the first order
conditions evaluated at the true parameter θ0. Although this is unattainable
in finite samples, the econometrician can test whether by moving her decision
towards the maximum likelihood estimate y1 she is more or less likely to
generate positive changes in her expected utility.

3.2 Hypothesis Testing

Suppose without loss of generality that y1 is less than ã. This implies that
the realization of the first derivative (2) of the maximization problem (1)
evaluated at ã is negative: lower values of ã, i.e. moves towards the maximum
likelihood estimate y1, generate positive changes in the empirical expected
utility. The decision maker would like to rule out that the opposite is true
in population, because her objective, recall, is not to increase the empirical

2I denote random variables with upper case letters, Y , and their realisations with lower
case letters, y.
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expected utility, but the population expected utility. Whenever the empirical
and population expected utilities evaluated at the judgmental decision have
opposite sign, deviating from her initial judgment would make her worse off.
The null and alternative hypotheses which reflect this reasoning are:

H0 : θ0 − ã ≥ 0 H1 : θ0 − ã < 0 (3)

Under the null hypothesis, the p-value associated with y1 − ã is α̃ ≡
Φ(y1 − ã) = P (Y1 − ã ≤ y1 − ã|H0), where Φ denotes the standard normal
cdf. Denoting with α the confidence level chosen by the investor, if α̃ < α,
H0 is rejected and the decision maker can be confident that by moving from
ã towards y1 she generates positive changes in her expected utility. This
reasoning holds until the boundary of the confidence interval associated with
α is reached. Defining the lower bound of the confidence interval as â ≡
y1 − Φ−1(α), any decision a < â would not be consistent with the statistical
preferences of the decision maker, because for these values of a the probability
of rejecting the null hypothesis when true is by construction greater than
the chosen confidence level α. â is therefore the estimator incorporating
judgment.

As in any hypothesis testing procedure, the decision maker can make
two types of errors. She can wrongly reject the null hypothesis (Type I
error). This occurs with probability α. Note the economic interpretation of
this type of error: the decision maker increases the sample approximation of
the expected utility by moving from ã toward y1, but in fact decreases the
expected utility in population. Alternatively, she can fail to reject the null
hypothesis when it is false (Type II error). This happens with probability
1 − β(a0), where β(a0) is the power of the test. Economic interpretation:
the decision maker could have increased the expected utility in population,
but statistical uncertainty prevented her from doing so. The trade-off is well
known: a small α generally implies also a small power β(a0) for values of
a close to a0. Therefore, a smaller probability of Type I errors results in a
greater probability of Type II errors. It is up to the decision maker to decide
how to solve this trade-off. The reasoning is summarized in table 1.

As argued by Manganelli (2009), the optimal decision in this set up is ei-
ther the judgmental decision, in case the null hypothesis cannot be rejected,
or the boundary of the confidence interval otherwise. It is possible to general-
ize this result and claim that the optimal decision is always at the boundary
of the confidence interval. To arrive at this result, it is first necessary to
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Table 1: Hypothesis testing

Decision

H0 H1
T

ru
th

H0 Avoid decrease EU
1− α

Decrease EU
α

H1 Fail to increase EU
1− β(a0)

Increase EU
β(a0)

Note: The null hypothesis tests whether the gradient of
the expected utility in population has opposite sign with
respect to the sample gradient. The alternative hypoth-
esis is that the gradient in population has the same sign
as the sample gradient.
α and β(a0) are the size and power of the test.

discuss the choice of the confidence level associated with the hypothesis test,
which is where I turn next.

4 Choosing the Confidence Level

The confidence level is typically chosen to be a constant, low number, to
control the probability of committing Type I errors. There is nothing, how-
ever, that prevents the decision maker to condition her choice of α to the
evidence provided by the data. A data sample which is largely inconsistent
with the default decision may shatter any confidence the decision maker has
in it (this is indeed what happens with the pre-test estimator). Similarly, a
data sample consistent with the default decision may reinforce her confidence
in it.

The confidence level may generally be considered as a mapping from the
p-value of the test statistic (2) evaluated at y1 into the interval [0, 1]. Going
back to my asset allocation problem, define α̃/2 ≡ Φ(−|y1 − ã|), where Φ is
the cdf of the standard normal. α̃ is therefore the p-value associated with
the two-sided test statistic (2) evaluated at y1. I define the confidence level
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as:

α = g(α̃) : [0, 1]→ [0, 1] (4)

Note that α ≥ α̃, because any decision associated with α ≤ α̃ is equivalent
to the decision associated with α = α̃. To see why, it is enough to notice
that for any α ≤ α̃ the judgmental decision ã is never rejected, because
the p-value is greater than the chosen confidence level. In this sense, the
optimal decision discussed at the end of the previous section is always at
the boundary of the confidence interval, because the proposed definition of
confidence level includes the special case of the boundary coinciding with the
judgmental decision (this occurs when α = α̃).

Here are some common examples of how the function g(·) in (4) is chosen:

1. Maximum likelihood:
α = 1, ∀ α̃ ∈ [0, 1]

2. Pre-test estimator with confidence level ᾱ:

α =

{
1 if α̃ < ᾱ
α̃ if α̃ ≥ ᾱ

3. Subjective classical estimator with confidence level ᾱ (Manganelli, 2009):

α =

{
ᾱ if α̃ < ᾱ
α̃ if α̃ ≥ ᾱ

4. Judgmental decision:
α = α̃, ∀ α̃ ∈ [0, 1]

These examples clarify how my framework encompasses the most common
estimators. The maximum likelihood estimator always disregards any default
decision, by setting the confidence level equal to 1.3 The pre-test estimator
maintains the confidence α̃ if the realization of the test statistic does not fall
in the rejection region, but the confidence level is increased to 1 otherwise.
The subjective classical estimator maintains the same confidence level ᾱ, if

3Note that higher values of the confidence level α actually imply lower confidence in
the judgmental decision ã.
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the null hypothesis is rejected and otherwise it is equal to α̃. The default de-
cision is a special case of an estimator which never rejects the null hypothesis,
by setting the confidence level always equal to α̃.

In general, the choice of the confidence level can be any function of the
p-value of the test statistic, as will be shown in the next section.

4.1 Statistical Risk Propensity

It may be useful to pause briefly on the economic interpretation of the choice
of the confidence level. One obvious interpretation is that the confidence
level reflects the confidence of the decision maker in her judgmental decision.
To quote from a prominent statistician, “in a true decision problem, the size
[of the test] should be chosen according to ‘subjective’ factors. This is, of
course, precisely what the Bayesian approach does ’’ (Berger 1985, p. 165).
The more confident she is in her judgment the closer α will be to α̃. In the
limit, a decision maker who is absolutely certain about her judgment will
set the distance between α and α̃ equal to 0, as shown by the judgmental
decision in the example above. At the other extreme, a decision maker who
has no confidence at all in her judgment will maximize the distance between
α and α̃ by setting α = 1, reverting to the maximum likelihood estimator.

There is a second appealing interpretation, which refers to the degree of
statistical risk propensity, which can be loosely defined as willingness to take
statistical risk. A decision maker who is very concerned about committing
Type I errors, will choose α very close to α̃, behaving like a person who is
very confident in her judgment. This may be the case of a portfolio man-
ager whose performance is evaluated by her ability to beat some benchmark
portfolio, and faces severe penalties in case of underperformance relative to
the benchmark. An example of such behavior is the portfolio manager of the
foreign reserves of a central bank. Notice that this concept of statistical risk
propensity is distinct from the standard concept of risk aversion, as summa-
rized by the weight given to the portfolio variance in the expected utility
maximization (1).

These considerations suggest the following definition of Statistical Risk
Propensity (SRP):

SRP = 2

∫ 1

0

[g(α̃)− α̃]dα̃ (5)

The minimum statistical risk propensity is reached when the decision

10



maker sticks to her default decision, disregarding any statistical evidence. In
this case, SRP = 0. The maximum statistical risk propensity is reached when
the decision maker adopts the maximum likelihood decision, disregarding her
default decision. In this case, SRP = 1.

5 Equivalence between Classical and Bayesian

Estimators

To derive the analytical expression for the estimator, let Φ denote as usual
the cdf of the standard normal distribution and suppose y1 > ã (similar
arguments go through if y1 < ã but with different signs). The p-value of
the test statistic evaluated at the judgmental decision is α̃/2 = Φ[−(y1− ã)].
The confidence level of the decision maker is α = g(α̃). As argued before,
the judgmental estimator is given by the boundary of the confidence interval,
that is −(y1 − â) = Φ−1(α/2). Define the following shrinkage factor:

h ≡ Φ−1(α/2)

Φ−1(α̃/2)
(6)

Note that h is always between 0 and 1, because α ≥ α̃. Simple manipu-
lations give y1 − â = h(y1 − ã), from which solving for â:

â = (1− h)y1 + hã (7)

This estimator is a convex combination between the original judgment
of the decision maker and the maximum likelihood estimator. The amount
of shrinkage is determined by the factor h, which is a combination of data
(as represented by y1) and judgmental information (as represented by the
judgmental decision ã and the associated confidence level α).

A Bayesian estimator maps from the prior and the data into a deci-
sion which maximizes expected utility using the posterior. In the examples
analysed in this paper, the resulting decision is also a convex combination
between the decision associated with the prior and the one associated with
the maximum likelihood. Note that from a Bayesian perspective, the optimal
allocation solves the following problem:

max
a
{E[aY |y1]− 0.5V [aY |y1]} (8)

which gives the optimal Bayesian allocation
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âB =
E(Y |y1)

V (Y |y1)
(9)

To establish the link with Bayesian estimators it is useful to express the
judgmental estimator in terms of p-values : â = ã + [Φ−1(α/2)− Φ−1(α̃/2)].
The equivalence between the judgmental and Bayesian estimators is obtained
by setting â = âB. Solving this equation with respect to α gives:

α = 2Φ[Φ−1(α̃/2)− ã+
E(Y |y1)

V (Y |y1)
] (10)

Substituting y1 = ã−Φ−1(α̃/2) in the Bayesian estimator gives the mapping
between p-value and confidence level which makes Bayesian and judgmental
estimators equivalent.

I consider here the comparison with two special Bayesian estimators,
which have been analyzed at length by Magnus (2002) in the case ã = 0.

Bayesian estimator based on Normal prior - Assuming that the prior
over the parameter θ is Normally distributed with mean zero and variance
1/c, the mean and variance of the Bayesian predictive density are:

EN(Y |y1) = (1 + c)−1y1

V N(Y |y1) = (1 + c)−1(2 + c)

Bayesian estimator based on Laplace prior - If the prior over the
parameter θ is distributed as a Laplace with mean zero and scale parameter
c, the mean and variance of the Bayesian predictive density are:

EL(Y |y1) = E(θ|y1)

V L(Y |y1) = 1 + E(θ2|y1)− E(θ|y1)2

E(θ|y1) = y1 −
1− exp(2cy1)Φ(−y1−c)

Φ(y1−c)

1 + exp(2cy1)Φ(−y1−c)
Φ(y1−c)

· c

E(θ2|y1) = 1−
2 φ(y1−c)

Φ(y1−c) · c− [(−y1 + c)2 + exp(2cy1)Φ(−y1−c)
Φ(y1−c) (−y1 − c)2]

1 + exp(2cy1)Φ(−y1−c)
Φ(y1−c)
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where φ denotes the pdf of the standard normal distribution.
In figure 1, I compare the confidence levels associated with the estima-

tors discussed in section 4 and the two Bayesian estimators above. See also
Magnus (2002) and Manganelli (2009) for a detailed risk analysis of similar
estimators.

The judgmental decision is described by the diagonal line in the space
(α, α̃). As already discussed in section 4, any point below this diagonal line
is equivalent to its vertical projection on the diagonal.

The confidence level associated with the maximum likelihood estimator
does not depend on α̃ and is always equal to one. The confidence level of the
pre-test estimator is equal to that of the judgmental decision for relatively
large values of α̃, but jumps discontinuously to one for low values of α̃. It has
the feature that small changes in α̃ may trigger abrupt changes in confidence
over the judgmental decision.

The confidence level of the subjective classical estimator proposed by
Manganelli (2009) avoids the discontinuity of the pre-test estimator. It is
equivalent to the Burr estimator and, being kinked, it is not admissible (Mag-
nus, 2002).

The figure reports also the confidence levels associated with the two
Bayesian estimators. The plot reveals a few interesting features.

First, the figure shows that the confidence level associated with the two
Bayesian estimators converges to zero as α̃ goes to zero (an exception occurs
when the variance of the prior tends infinity, in which case the Bayesian
and maximum likelihood estimators coincide). These two specific Bayesian
estimators shrink relatively less when the initial judgment is extremely bad.
As a decision maker I would personally behave in exactly the opposite way:
When data prove my initial judgment to be extremely bad, I would revert to
the maximum likelihood estimator and assign zero weight to my judgment.

Second, the two estimators are characterized by different degrees of sta-
tistical risk propensity, despite being based on prior distributions which have
been calibrated to have both zero mean and unit variance. As already
evidenced by the risk analysis of Magnus (2002) and Manganelli (2009),
Bayesian estimators based on apparently ‘close’ priors can have very different
properties. The issue of prior robustness is well-known and acknowledged in
the literature. Berger (1985), for instance, raises similar issues by compar-
ing decisions based on normal and Cauchy priors matched to have the same
median and interquartiles (see example 2, p. 111).

Third, Bayesian econometrics requires the decision maker to express her
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judgment on the statistical parameters of the random variables, rather than
on the decision variables directly. The whole literature on prior elicitation
notwithstanding, choosing priors is often a formidable task. To stick to
the asset allocation problem discussed in this paper, we have seen how two
prior distributions with same mean and standard deviation can lead to very
different decisions. Asking whether her prior distribution of the mean has
fat or thin tails strikes me as putting an unrealistic burden on the decision
maker. If one leaves the unconditional, univariate domain, the requests in
terms of prior specification become even more challenging.

Fourth, this paper shows that imposing priors on parameters is equiva-
lent to imposing statistical risk preferences on the decision maker. Consider
the case in which the decision maker is a central banker who has to decide
the level of interest rates. The Bayesian approach requires central bankers
to express their priors for the parameters of the macro-econometric model of
the economy. Even though there is by now a rich literature on Bayesian esti-
mation of Dynamic Stochastic General Equilibrium models (see for instance
Smets and Wouters 2007 and subsequent applications), it is my impression
that the decision making body of a central bank has little clue about the
construction of these models, let alone the multivariate priors of the under-
lying parameters. It is usually the expert who imposes priors to arrive at
some reasonable estimate of the model. Econometricians and decision mak-
ers should be aware that this is not an innocuous exercise and that it has
direct implications on the willingness of the central banker to tolerate Type
I errors.

In the framework proposed in this paper, instead, the decision maker
provides just a judgmental decision and a confidence level with which this
decision is statistically evaluated. The econometrician then tests whether
the decision is supported or rejected by the data. The judgmental decision
and the statistical risk that the decision maker is willing to bear should be
relatively easier to supply than priors on unknown statistical parameters. For
instance, a household who has to decide whether to invest in the stock market
could test whether holding only the risk-free asset is an optimal decision. In
the case of a portfolio manager whose performance is assessed against a
benchmark, the judgmental decision could be the benchmark itself. And a
central banker who has to decide on interest rates could choose not to change
them (or increase, or decrease them), unless the macro-econometric model
suggests otherwise.

One final comment is in order to address a fundamental criticism that is
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leveled against non-Bayesian methods. Geweke and Whiteman (2006), for
instance, write that all non-Bayesian methods violate the principle of rele-
vant conditioning, which states that forecasts should always be conditional
on observed relevant events. The standard classical approach to portfolio se-
lection solves the problem maxaE[U(a)]|{y1, θ

0 = y1}. It does in fact violate
this principle, because to determine the optimal allocation it conditions on
knowing the true parameter θ0. The method proposed in this paper, instead,
solves the problem maxaE[U(a)] |{y1, ã, α}. It does not violate this prin-
ciple, because it does not assume that θ0 is known to arrive at a decision,
but instead uses the parameters {ã, α} and the data y1 to test whether the
judgmental decision ã can be improved upon.

6 Empirical evidence

The previous section highlighted the statistical differences among the esti-
mators. An equally important question is whether the estimators produce
portfolio allocations with significant economic differences. I address this is-
sue by bringing the estimators to the data. I take a monthly series of closing
prices for the EuroStoxx50 index, from January 1999 until December 2015.
EuroStoxx50 covers the 50 leading Blue-chip stocks for the Eurozone. The
data is taken from Bloomberg. The closing prices are converted into period
log returns. Table 2 reports summary statistics.

Table 2: Summary statistics
Obs Mean Std. Dev. Median Min Max Jarque Bera

206 -0.06% 5.57% 0.66% -20.62% 13.70% 0.0032

Note: Summary statistics of the monthly returns of the EuroStoxx50 index from
January 1999 to December 2015. The Jarque Bera statistic is the p-value of the
null hypothesis that the time series is normally distributed.

The exercise consists of forecasting the next period optimal investment
in the Eurostoxx50 index of a person who holds AC100 cash. I take the first 7
years of data as pre-sample observations, to estimate the optimal investment
for January 2006. The estimation window then expands by one observation
at a time, the new allocation is estimated, and the whole exercise is repeated
until the end of the sample.
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To directly apply the estimators discussed in the previous sections, which
assume the variance to be known, I transform the data as follows. I first
divide the return series of each window by the full sample standard deviation,
and next multiply them by the square root of the number of observations in
the estimation sample. Denoting by {ỹt}Tt=1 the original time series of log
returns, let σ be the full sample standard deviation and T1 < T the size of
the first estimation sample. Then, for each T1 + s, s = 0, 1, 2, ..., T − T1 − 1,
define:

{yt}T1+s
t=1 = {

√
(T1 + s)ỹt/σ}T1+s

t=1 and ȳT1+s = (T1 + s)−1

T1+s∑
t=1

yt (11)

I ‘help’ the estimators by providing the full sample standard deviation,
so that the only parameter to be estimated is the mean return. Under the
assumption that the full sample standard deviation is the population value,
by the central limit theorem ȳT1+s is normally distributed with variance equal
to one and unknown mean. We can therefore implement the estimators
discussed in the preceding sections of the paper, using the single observation
ȳT1+s for each period T1+s. The results of this exercise are reported in figures
2 and 3. Figure 2 plots the optimal weights obtained from the different
estimators. A few things are worth noticing. First, the weight associated
with the maximum likelihood estimator is the most volatile, as is the one
that suffers the most from estimation error. The Bayesian estimators are
shrunk towards zero, the one based on a normal prior being shrunk less than
the one based on Laplace prior. Pre-test and subjective estimators predict
an optimal weight equal to zero, as they almost never reject the judgmental
decision ã = 0: the data is just too noisy to suggest a significant departure
from the default decision. One needs to increase the confidence level to
40% to arrive at some rejection of the null hypothesis. That is the spike
observed in February 2009 for the pre-test estimator, which for that month
coincides with the maximum likelihood estimator (remember that when the
pre-test estimator rejects the null hypothesis it reverts back to the maximum
likelihood estimator). The weight associated with the subjective estimator
with 40% confidence level exhibits just a small blip, as in case of rejection it
goes to the boundary of the confidence interval.

Figure 3 report the portfolio values associated with the strategy of an
investor who would re-optimize each month and decide how much to allocate
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in the EuroStoxx50 index on the basis of the estimators. Suppose the starting
value of the portfolio in January is AC100. By the end of the sample, after 10
years, an investor using the maximum likelihood estimator would have lost
one quarter of the value of her portfolio. The situation is slightly better with
the Bayesian estimators, as they imply a loss of between 5% and 10%. The
pre-test estimator with confidence level of 40% would have lost little less than
5%. Note that the entire loss comes from shorting the position and following
the predictions of the maximum likelihood estimator in February 2009. In
all the other months there is no investment in the stock market. The other
three estimators – the pre-test with 1% and the subjective estimators with
confidence levels at 1% and 40% – do not lose anything because they never
predict deviating from the judgmental allocation of holding all the money in
cash. In fact, the subjective estimator with confidence level of 40% does lose
something, as like the pre-test estimator it rejects the judgmental allocation
in February 2009. However, unlike the pre-test estimator which reverts to the
maximum likelihood estimator, the subjective estimator only moves to the
boundary of the confidence interval, so that the overall losses are contained
to less than 1% and barely visible from the chart.

The point of this discussion is not to evaluate whether one estimator is
better than the other. After all, the choice of the statistical risk propensity
is a personal choice, as much as the choice of the utility function. The pur-
pose is rather to illustrate the implications of choosing different statistical
risk propensities. By choosing the maximum likelihood estimator, one has
no control on the statistical risk she is going to bear. With the subjective
estimator, the investor chooses a constant probability of underperforming the
judgmental allocation: she can be sure that the resulting asset allocation is
not worse than the judgmental allocation with the chosen probability. The
two Bayesians estimators analyzed here represent an intermediate case. The
case of the EuroStoxx50 represents only one possible draw, which turned out
to be particularly adverse to the maximum likelihood and Bayesian estima-
tors. Had the resulting allocation implied positive returns by the end of the
sample, maximum likelihood and Bayesian estimators would have outper-
formed the subjective estimators. There is no free lunch: estimators with
lower statistical risk propensity produce allocations with greater protection
to underperformance relative to the judgmental allocation, but also have
lower upside potential.

I illustrate this intuition with a simple simulation exercise. I generate
several sets of 500 random samples of 206 observations using the empirical
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distribution of the EuroStoxx50 time series from January 1999 until Decem-
ber 2015. Each set is generated by adding different means to the empirical
distribution, starting from zero (which would be the equivalent of replicat-
ing EuroStoxx50 500 times, after subtracting its empirical mean) and then
progressively increasing it, so that the zero judgmental allocation becomes
less and less accurate. I then replicate the same estimation strategy used to
produce the results in figures 2 and 3, i.e. I use the first 85 observations (the
equivalent of 7 years of data) to estimate the optimal allocation and increase
the sample one observation at a time to estimate the next period allocation.
This exercise is repeated for all random samples, 500 of them, and for each
of the different means. The results are reported in figures 4 and 5.

Figure 4 plots the average expected utility associated with each estimator
against the different means simulated in the exercise. Remember that the
judgmental decision implies zero allocation in the risky asset, which would be
the correct allocation when the mean is equal to zero. As we move to the right
of the horizontal axis, we are therefore considering data generating processes
which are less and less in line with the judgmental allocation. Since I know
the data generating process, I can compute the population expected utility.
For values of the mean close to zero, the subjective estimators dominate all
the others, the one with 1% confidence level being better than the one with
10% confidence level for smaller values of the mean. As the population mean
increases beyond 0.2% the Bayesian estimators start to perform better than
the subjective estimators. It is only when the population mean exceeds 0.5%
that the maximum likelihood estimators starts to dominate the others. Not
surprisingly, decisions based on higher statistical risk propensity generate
relatively higher expected utility only when the judgmental allocation is far
from the optimal one, as can be seen by the normal Bayesian estimator
dominating the Laplace Bayesian one for values of the mean greater than
0.2%.

Figure 5 qualifies the results of figure 4. It reports the percentage of
times (out of the 500 replications) that the various estimators underperform
the zero judgmental allocation. When the population mean is equal to zero,
subjective and pre-test estimators underperform the same number of times.
The underperformance rate does not coincide with the confidence levels of
1% and 10%, because for each simulated sample an out of sample exercise
is conducted for the period January 2006 - December 2015. If one were to
replicate this exercise only for one out of sample period, one would obtain an
underperformance rate equal to the confidence level. As soon as one moves

18



away from the zero mean, the underperformance rate of the pre-test esti-
mator deteriorates because it reverts to the maximum likelihood estimator.
It is only for values of the population mean sufficiently far away from zero,
that the underperformance rate starts to decline. The subjective estimator,
instead, does not suffer from this drawback. Finally, the maximum likelihood
and Bayesian estimators all start from an underperformance rate of 100%:
when the judgmental allocation coincides with population mean, allocation
based on these estimators will underperform the judgmental allocation with
probability one.

7 Conclusion

This paper has developed a framework to incorporate a judgmental allocation
in a statistical decision making problem of portfolio choice. A judgmental
allocation can be any private information about a desired asset allocation
that the decision maker brings to the decision problem. Examples could be
an allocation consisting of only risk free assets, an equal weight portfolio, or
some benchmark portfolio against which the performance is measured. To-
gether with the judgmental allocation, the decision maker needs to provide a
confidence level, reflecting the probability of tolerating a deviation from the
judgmental allocation which results in a worse (in expected utility terms)
allocation. The theory is based on testing whether the empirical first or-
der conditions of the expected utility evaluated at the judgmental allocation
are statistically different from zero, for the given confidence level. If they
are, the judgmental allocation can be improved upon by moving towards the
maximum likelihood estimator, until the boundary of the confidence inter-
val is reached. Beyond this boundary, the probability of generating negative
changes in the expected utility in population becomes greater than the cho-
sen confidence level. In choosing the confidence level, the decision maker
chooses a mapping from the p-value of the first order conditions evaluated
at the judgmental decision onto the interval [0, 1]. I show how well-known
estimators such as maximum likelihood, pre-test and Bayesian estimators
based on normal and Laplace priors, map into this framework. An empiri-
cal application to the EuroStoxx50 index and a simulation study illustrate
the properties of the estimators associated with different choices of the confi-
dence level mapping. The framework can be applied to other decision making
problems and is not specific to the asset allocation example.
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Figure 1 – Relationship between p-values and confidence levels 
 

 

Note: The horizontal axis reports the p-value of the test statistic evaluated at the judgmental decision. The 
vertical axis is the chosen confidence level α. The figure plots the mapping corresponding to six alternative 
estimators. Pre-test and subjective classical estimators are based on 10% confidence levels. The normal and 
Laplace Bayesian estimators are based on priors with zero mean and unit variance. 
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Figure 2 – Optimal portfolio weights 
 

 
 
Note: Optimal weights according to the different estimators of an investor choosing between cash and the 
monthly EuroStoxx50 index. Weights are re-estimated each month by expanding the estimation window by one 
data point. The first 7 years – from January 1999 until December 2005 – are used to produce the first estimate in 
January 2006. 
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Figure 3 – Evolution of portfolio values 
 

 
 
Note: Time evolution of the value of a portfolio invested in cash and the EuroStoxx50 index following the 
investment recommendations of the different estimators.  
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Figure 4 – Average Expected Utilities under alternative Data Generating Processes 
 

 
Note: Average Expected Utility generated by the different estimators under alternative specifications for the 
mean (reported on the horizontal axis). For each mean, I generate 500 samples of 206 observations and replicate 
the same estimation as for the EuroStoxx50. The observations are drawn from the empirical distribution of the 
EuroStoxx50 time series. I then add different means to the sample, to simulate situations in which the 
judgmental decision of holding zero risky assets becomes less and less accurate. Expected utilities are out-of-
sample averages over the 500 samples for each mean. 
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Figure 5 – Percentage of times the Expected Utility is negative under alternative Data 
Generating Processes 
 

 
 
Note: Occurrence of negative Expected Utility generated by the different estimators under alternative 
specifications for the mean (reported on the horizontal axis). The simulated data are the same as in Figure 4. 
Negative Expected Utility implies that the estimated portfolio allocation performs worse than the judgmental 
allocation. Underperformance occurs more often when the judgmental allocation is close to the population 
mean.  
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