How Computer Automation Affects Occupations:

Technology, jobs, and skills

by James Bessen

Boston University School of Law*

5/16

Abstract: This paper investigates basic relationships between technology and occupations.
Building a general model of occupations and tasks, I look at detailed occupations since 1980
to explore whether computers are related to job losses or other sources of wage inequality.
Occupations that use computers grow faster, not slower. This is true even for highly routine
and mid-wage occupations. Estimates reject computer automation as a source of significant
net technological unemployment or job polarization. But computerized occupations
substitute for other occupations, shifting employment and requiring new skills. Because new
skills are costly to learn, computer use is associated with substantially greater within-

occupation wage inequality.

JEL codes: O33, ]24, J31

Keywords: technology, automation, human capital, job polarization, occupations, wage
inequality

*Thanks for comments from David Autor, Ernie Berndt, Tim Bresnahan, Paul David, lain
Cockburn, Alfonso Gambardella, Vivek Ghosal, Ian Hathaway, Christian Helmers, Georg
von Graevenitz, Mike Meurer, Ale Nuvolari, Bob Rowthorn, and seminar participants at the
NBER, Sant’Anna in Pisa, Stanford, and ZEW. Thanks to David Autor for making data
available.



Summary of Empirical Findings

Computer use is higher in highly paid occupations, in larger occupations, in
occupations requiring college-educated workers, and, to a lesser degree, occupations

performing routine tasks.

Employment grows significantly faster in occupations that use computers more. At
the sample mean, computer use is associated with about a 1.7% increase in
employment per year. This association is true in general and also for occupations that

perform more routine tasks and for mid-wage occupations.

Occupations that use computers substitute for other occupations. Specifically,
occupations grow more slowly the more that ozber workers in the same industry use
computers. Overall, inter-occupation substitution offsets the growth effect so that
the relationship between computer use and employment is positive but small (0.45%
per year). However, computer use is associated with growth in well-paid jobs and
decreases in low-paid jobs, hence with a substantial reallocation of jobs, requiring

workers to learn new skills to shift occupations.

Computer use is also associated with greater inequality of wages within occupations.
Greater wage dispersion can arise if new skills are costly or difficult to acquire, so
that only some workers acquire the skills. This association appears to contribute to
wage inequality, accounting for 45% of the growth in the wage gap between the 90"
and 50" percentiles of the entire workforce since 1990; it can account for 38% of the

increase in the 50/10 wage gap.

Computer use is associated with an increase in the share of an occupation’s
workforce with four or more years of college, even for occupations that do not
require a college degree. Moreover, such increases are associated with wage increases,

suggesting that they do not result from an oversupply of college graduates.



Introduction

Are new computer technologies eliminating jobs at an increasing rate, generating
technological unemployment and growing economic inequality?' One recent paper studied
occupational characteristics to conclude that computer automation will put “a substantial
share of employment, across a wide range of occupations, at risk in the near future” (Frey
and Osborne 2013). Or is technology specifically eliminating jobs in mid-wage occupations,

leading to “job polarization”?2

Or is it the case, instead, that new technology plays no major
role in growing wage inequality?’

New technologies automate work in specific occupations, but it is hard to evaluate
competing claims about their overall impact because technology can affect occupations in
different ways. Technology can reduce demand for an occupation, or increase it, or change
the skills needed to practice an occupation. This paper attempts to estimate basic
relationships between computer technology and occupations using detailed US occupational
data and a theoretical framework that encompasses different ways automation can affect
occupations. I use the theoretical framework to test whether the dominant pattern is
consistent with claims made about the effect of computers on technological unemployment,
job polarization, and wage inequality. I focus the empirical analysis on computer use because
computer technology is held to be central to changes in employment and inequality over the
last several decades and because data on computer use are available for detailed occupations.
The analysis concerns computer automation of occupations within industries. Although
computer automation is the focus of much attention, digital technology affects labor in other

ways, including organizational changes, as I discuss below.

Automating tasks and occupations

Occupations are an important unit of analysis because technologies tend to automate
tasks in specific occupations and also because a considerable portion of human capital
appears to be occupation specific (Shaw 1984, 1987, Kambourov and Manovskii 2009).

Occupations have become increasingly important in research on wage inequality.

! Brynjolfsson and McAfee (2014).

2 Autor, Katz, and Kearney (2008), Acemoglu and Autor (2011), Goos and Manning (2007), Goos, Manning,
and Salomons (2014), and Michaels, Natraj, and van Reenen (2014).

3 Card and Dinardo (2002), Mishel, Schmitt, and Shierholz (2013).



Researchers have proposed that occupational differences help explain “job polarization”
(Autor, Katz, and Kearney 2008, Goos and Manning 2007) and offshoring (Blinder 2007,
Jensen and Kletzer 2010). Acemoglu and Autor (2011) argue that occupations have
increasing explanatory power for predicting wages.

A key insight of the recent literature is that computers automate particular tasks in
specific occupations, making occupations central to analyzing the impact of computers.
Bresnahan (1999) and Autor, Levy, and Murnane (2003) provide important evidence that
computers are often used to automate routine tasks that are repetitive and follow explicit
rules. Such tasks make it feasible to program a machine to perform “methodical repetition of
an unwavering procedure.” Autor, Levy, and Murnane (2003) show a correlation between
the use of computers in an industry and an aggregate measure of the extent to which the
industry’s occupations perform routine tasks compared to non-routine tasks.

However, although occupations are seen as important, most of the theoretical
literature on wage inequality abstracts away from formal consideration of occupations per se,
speaking, instead, of skilled or unskilled workers individually. Even the model of Autor,
Levy, and Murnane is based on #asks only, rather than on occupations.” This paper presents a
model that integrates automation of tasks with a generalized treatment of occupations. The
distinction between tasks and occupations is important because conclusions about tasks do
not translate unambiguously into conclusions about occupations.

It is helpful to begin by defining terms and drawing distinctions. First, automation is
not the only way that technology affects occupations. Technology can make industries and
products obsolete, eliminating industry-specific occupations. For example, the automobile
eliminated jobs in horse-related occupations, often replacing them with new jobs (carriage
makers to auto body makers). Technology can also change the organization of work, shifting
work between occupations, between industries, or from producers to consumers. Digital
technology may lower communication costs, facilitating outsourcing and offshoring; it may
improve ease of use, facilitating self-service. For example, the airline ticket kiosk transferred
work from airline ticket agents to air travelers. However, this is not an example of
automation. Shifts such as these represent a change in who is performing the work without

necessarily changing the amount of labor required per unit output. Self-service technologies

4 See also Autor and Acemoglu (2011) and Goos, Manning, and Solomons (2014). The latter models both tasks
and occupations, but assumes that each occupation only performs one task.



might even increase the amount of labor needed. For this reason, although these changes
can be disruptive and can eliminate particular jobs, there is no particular reason to expect
them to create technological unemployment overall.

In contrast, automation might lead to technological unemployment. Automation of
an occupation happens when machines take over one or more tasks, either completely
performing those tasks or reducing the human labor time needed to perform them. That is,

automation is labor augmenting. The focus of this paper is strictly on automation.

Partial automation vs. complete automation

Critically, however, automating a task is not the same as completely automating an
occupation. This distinction appears to be a source of some confusion. Automation is
sometimes framed as a problem of machines completely replacing a human job. For
example, Frey and Osborne (2013) begin by subjectively evaluating 70 occupations to
determine which are “fully automatable” “by state of the art computer controlled-
equipment” given big data. They and a group of machine learning researchers decided in
2013 that using then current technology, 37 occupations were fully automatable, including
accountants and auditors, bank loan officers, and messengers and couriers. Based on this
analysis they project that nearly half of all jobs are susceptible to complete automation in the
near future. Significantly, however, none of these 37 occupations has been completely
automated so far.’

More generally, technology rarely automates major occupations completely. To see
this, I looked at what happened to the 271 detailed occupations used in the 1950 Census by
2010.° Many occupations were eliminated for a variety of reasons. In many cases, demand
for the occupational services declined (e.g., boardinghouse keepers); in some cases, demand
declined because of technological obsolescence (e.g., telegraph operators). This, however, is
not the same as automation. In only one case—elevator operators—can the decline and
disappearance of an occupation be largely attributed to automation. Nevertheless, this 60-

year period witnessed extensive automation, but it was almost entirely partial automation.

> This suggests that either they are wrong about which occupations are fully automatable or there are
substantial economic or technical obstacles to actually automating occupations, making their predictions
inaccurate.

¢ JPUMS has mapped these occupations to the 1990 and 2010 Census classifications (Ruggles et al. 2015).
When occupations become too small, they are combined with other occupations, so I looked at all instances
where the 1950 occupation was either renamed or combined into a broader category.



The aim of this paper is to understand how computer automation has affected jobs
in the recent past. Consequently I focus on partial automation. In the future, of course, new
artificial intelligence technologies might be capable of fully automating jobs. However, that is
not what has been happening so far nor would it seem likely to happen in more than a few
occupations in the near future (Arntz, Gregory, and Zierahn 2016).

This distinction between partial and complete automation might seem irrelevant
when many or most of the tasks of an occupation have been automated. However, the
economic difference between being ostly automated and being completely automated can be
critical. Complete automation implies a net loss of jobs; partial automation does not. During
the 19" century, 98% of the labor required to weave a yard of cloth was automated,
however, the number of weaving jobs actually increased (Bessen 2015). Automation drove
the price of cloth down, increasing the highly elastic demand, resulting in net job growth
despite the labor saving technology. Similar demand responses are seen with computer
automation. Consider, for example, the effect of the automated teller machine (ATM) on
bank tellers. The ATM is sometimes taken as a paradigmatic case of technology substituting
for workers; the ATM took over cash handling tasks. Yet the number of fulltime equivalent
bank tellers has grown since ATMs were widely deployed during the late 1990s and eatly
2000s (see Figure 1). Indeed, since 2000, the number of fulltime equivalent bank tellers has
increased 2.0% per annum, substantially faster than the entire labor force.” Why didn’t
employment fall? Because the ATM allowed banks to operate branch offices at lower cost;
this prompted them to open many more branches (their demand was elastic), offsetting the
erstwhile loss in teller jobs (Bessen 2015). Nor are the examples of weavers and bank tellers
exceptional.® As we shall see, employment growth has been associated with computer use

overall. The ATM may be more a representative example than an exception.

7 Data from the 1% samples of the Census and ACS survey calculating; I calculate fulltime equivalent workers
by dividing total hours worked by 2080. Total bank employment surged from the 1970s to the early 1980s,
partly due to deregulation, but fell during the savings and loan crisis through the 1990s and has since resumed
growth despite the ATM. The case study is drawn from Bessen (2015, pp. 107-9).

8 Some other examples: Barcode scanners reduced cashiers’ checkout times by 18-19% (Basker 2015), but the
number of cashiers has grown since scanners were widely deployed during the 1980s; since the late 1990s,
electronic document discovery software for legal proceedings has grown into a billion dollar business doing
work done by paralegals, but the number of paralegals has grown robustly; the manufacturing share of the
workforce grew from less than 12% in 1820 to 26% by 1920 (US Dept. of Commerce 1975) despite pervasive
labor-saving automation.



Of course, partial automation can also decrease employment in an occupation. This
can happen in two ways. First, if demand for the occupation is inelastic, automation reduces
employment. Second, automation can lead to substitution of one occupation for another.
For example, there are fewer telephone operators, but more receptionists; there are fewer
typesetters, but more graphic designers and desktop publishers. During the 1980s, desktop
publishing software automated some of the tasks of setting type for publication. Prior to
this, designers would draw a page design and send it to typesetters and compositors to
produce pasted up pages; designers would mark revisions and send them back to the
typesetters to redo. With computerized publishing, revisions could be made interactively,
making it advantageous for designers to use the software themselves to produce composed
pages. The effect was to reduce employment of typesetters and compositors and to increase
employment of graphic designers. That is, designers using computers substituted for
typesetters. A full model of occupations and automation thus needs to allow for increases
and decreases in occupational employment and to also allow for inter-occupational

substitution and complementation.

Routine tasks vs. routine jobs

The distinction between automating tasks and automating occupations is also
important for understanding which occupations tend to use computers. As noted above,
evidence suggests that computers tend to automate routine tasks. Some researchers have
suggested further that those occupations that perform a lot of routine tasks are the ones that
tend to be automated. For example, Autor, Katz, and Kearney (2008) propose that because
mid-skill occupations perform many routine tasks, computers substitute for workers
disproportionately in these occupations, leading to a relative loss of mid-wage jobs. This
tendency, they argue, gives rise to an observed pattern of “job polarization” also identified
by Goos and Manning in European data (2007).

The top panel of Figure 2 shows the pattern of job polarization in employment
growth rates for detailed occupations from 2000 through 2013.” This panel displays

smoothed average employment growth of occupations by the mean log hourly wage of the

9 The sample, categories, and variables are described in detail below. Some studies use mean occupational
education levels on the x-axis. The data from 2000 to 2013 do not show a clear pattern of polarization when
plotted against mean education levels.



occupation.'’ The horizontal dotted line shows the growth rate of the entire workforce. Mid-
wage occupations clearly grow more slowly than occupations in both the first quartile (to the
left of the first dashed vertical line) and the fourth quartile (to the right of the second vertical
dashed line).

However, it does not necessarily follow that jobs with lots of routine tasks are the
ones most likely to use computers. This is because the economic calculations that firms
make when choosing to adopt computer technology depend on more than just the feasibility
of computerization. In particular, the payoff to firms from automating a particular task
depends on the opportunity cost of the occupation that performs that task. For example,
both accountants and file clerks may perform some routine arithmetic calculations. But the
time the accountant spends on this task is more valuable. Hence, the payoff to automating
those calculations for a highly paid accountant is much greater than it would be for
automating those same calculations for a lowly paid file clerk. While the file clerk may
perform more routine tasks than the accountant, the value to automating the accountant’s
routine tasks is greater. As we shall see, factors related to opportunity cost are much more
important in predicting which occupations use computers than the routine-intensiveness of
the work.

Indeed, the lower panel of Figure 2 brings into question the simple idea that greater
adoption of computers in mid-wage occupations led to job polarization. This panel divides
the sample into the group of occupations with above-median computer use (solid line) and
those with below-median computer use (dashed line). Occupations that use computers more
heavily—including routine occupations such as bookkeepers, clerks, and bank tellers—show
no net pattern of job polarization although higher wage occupations grow faster in this
group. This pattern suggests that job polarization is more complicated than a simple matter
of “routine biased technical change,” perhaps involving more complex interactions between
occupations, globalization, and other changes.

Because a variety of factors influence which occupations use computers, I estimate
the model with a consistent set of detailed occupations from 1980 through 2013. In contrast,
most of the empirical research that considers occupation does not use detailed occupations

as the unit of analysis, but instead aggregates occupational task characteristics over industries

10T use Stata’s smoothing routine with an Epanechnikov kernel with a 0.27 bandwidth.



or local labor markets or broad occupational groups.'' For example, 2 number of studies
identify the broad grouping of administrative support and sales occupations as those that are
most routine and therefore most prone to computerization. Aggregation of this sort risks
conflating the effect of automation with other factors such as offshoring, technology-driven
changes in industry demand, organizational changes, and the effects of older technologies."
Establishing more direct relationships between computer technology and disaggregated
occupations might be critical for identifying the impact of automation. I conduct the analysis
with disaggregated occupations, but then look at differences across different groups
including occupations that perform routine tasks (Autor, Levy, Murnane 2003), low-, mid-,
and high-wage occupations, and different occupational groups. This approach allows me to
test whether computer automation is associated with unemployment overall or with job

losses specifically among mid-wage workers or workers in routine-intensive jobs.

Partial automation and skills

To the extent that tasks are partially automated, the nature of the occupation
changes. For example, Autor, Levy, and Murnane (2003) find that occupations tend to
perform fewer routine tasks over time. To the extent that the nature of work changes, we
would expect that the skills needed to perform occupations change as well.

That is, automation might lead to a sort of skill-biased technical change, but one
quite distinct from the standard account of skill-biased technical change discussed in the
literature.” In the “canonical” version, unskilled labor and skilled labor—usually meaning
college-educated labor—are substitutes in production. Computers enhance the efficiency of
college-educated labor, leading to greater relative demand for college-educated workers.
While this canonical model provides a simple explanation for the rising relative demand for
college-educated workers during the 1980s, it has been seen as unable to explain stagnant
real wages for college educated workers during recent years and disparate patterns of job
growth across different wage levels (Mishel, Schmitt, and Shierholz 2013; Acemoglu and
Autor 2011).

1 Autor, Levy, and Murnane (2003), Autor and Dorn (2013), Autor, Dorn, and Hanson (2015), Goos and
Manning (2007), Goos, Manning, and Salomons (2014), and Michaels, Natraj, and van Reenen (2014).

12 Autor, Dorn, and Hanson (2015) attempt to disentangle trade and technology effects using local labor
markets as the unit of analysis.

13 See Acemoglu (2002) for a review of this literature.



Partial automation suggests two other ways that technology might affect the demand
for worker skills. First, if skilled workers are better at performing non-routine tasks, then a
shift in the content of work will raise the demand for those workers (Autor, Levy, and
Murnane 2003; Acemoglu and Autor 2011). That is, automation may contribute to sorting
across occupations of pre-existing skills, including those associated with education (Roy
1951).

Second, automation can also require new skills that are learned on the job, for
example, the skills needed to work with new computerized systems. To the extent that such
skills are costly to learn, automation might contribute to growing wage disparities within
occupations. The intuition, which I model formally below, is that it only pays for the most
able workers to invest in new skills. I perform empirical tests, finding that computer
automation is associated with greater within-occupation wage disparity and that computer
use is associated with greater demand for educated workers.

I begin by developing a simple general model of occupations and task automation.

Models of Technology and Occupations

Production and Occupations

Suppose firms use labor delivered in the form of occupational services such as the
services of accountants, computer programmers, etc. Two features characterize occupations.
First, the services provided by any worker within the occupation are highly substitutable with
the services provided by another in the same occupation. While workers within an
occupation may differ in the quantity and quality of the services they provide, their inputs
are much more substitutable with each other than they are with services provided by workers
in other occupations. Firms seek carpenters to do a particular job, but not bakers. This
limited substitutability between occupations implicitly arises because of different occupation-
specific skills.

Second, workers in each occupation perform a bundle of multiple tasks. Following
Rosen (1983), indivisibilities in learning occupation-specific skills limit the division of labor
given the size of the market for an occupation. Because of these indivisibilities, firms hire

workers to perform a bundle of interrelated tasks rather than having them specialize in a
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single task. For this reason, a model of occupations differs fundamentally from models of
tasks in Autor, Levy, and Murnane (2003) or Acemoglu and Autor (2011).

These characteristics of occupations are, of course, stylized abstractions. Workers
within an occupation might have sub-specialties that make some more substitutable with
each other than with others. Also, the division of labor sometimes changes, transferring
tasks from one occupation to another; that is, occupations can be redefined. Nevertheless,
the notion of highly substitutable labor performing a discrete bundle of tasks is essential to
what we mean by occupation.

To take the stylization one step further, I assume that the services of one worker
within an occupation are perfectly substitutable for the services of another, so that the level
of services can be measured in quality-adjusted efficiency units. That is, the total services of
occupation j used by a firm, Y, can be written as the sum of the occupational services of
individual workers, y,,

Y, = X vijs
and the firm production function can be written
1) Q=0QW.Y .., K),
where K is capital and Q) is a constant returns concave function, continuous and twice-
differentiable. Goos, Manning, and Salomons (2014) model a similar production function,
however, they assign a single task to each occupation. To gain a richer picture of the
interaction between task automation and occupational employment, I next develop a model

where occupations perform multiple tasks.

Occupations, Tasks, and Skills

Occupational services are delivered through the performance of discrete tasks;
automation reduces or eliminates the time needed to perform a task.

Economic historians typically find that technological innovations sequentially
improve discrete steps in production processes over a long period of time (Rosenberg 1979,
Hollander 1965, Nuvolari 2004). Labor is affected when technology automates discrete tasks.
Bessen (2012) studied the major inventions affecting US cotton weaving over the 19"
century. Some inventions, such as improvements in steam engines, affected capital
efficiency, but labor efficiency was improved by inventions that automated discrete tasks

such as replacing empty bobbins or fixing thread breaks. These inventions reduced the time
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it took a weaver to perform a task or reduced the frequency with which a task had to be
performed, in some cases completely automating the task. That is, automation was labor
augmenting.

Computer automation appears to play a similar role. For example, in their study of
computer technology for valve manufacture, Bartel, Ichniowski, and Shaw (2007) found that
different I'T technologies automated tasks involved in setting up production runs, reduced
the time involved in transferring work from one machine to another, and automated some
inspection tasks. Similarly, common computer applications allow workers to perform
specific tasks faster or better: word processing reduces the time needed to edit documents,
spreadsheets reduce the time needed to perform routine calculations, and search functions
speed the recovery of documents.

Following Acemoglu and Autor (2011), for each task, £, each worker 7 produces
Ay sF of task output per unit of labor time, where 4 represents the state of factor-

augmenting technology and s¥ measures the skill of the worker at task £. The skill level
reflects differences in workers’ inherent talents, education, and experience, including
occupation-specific training. I assume that these skills represent general human capital to the
occupation, that is, individual 7 would deliver the same level of services in occupation ; to any
tirm within the industry.

The time it takes worker 7 to produce a unit of task £ services is

1

= K

Lik
Assuming that a unit of occupational service / requires a unit of each task output for tasks 1,
2, ...n, the labor time worker 7 needs to produce a unit of occupational service 7 is t;; +
tip ... + tin. Equivalently, worker /’s output of occupational service / per unit of labor time is
2

1 1
oty ttpeetty,  1/Ast4+1/A,87 .+ 1/A,sT

Yij
This production function has been studied before by Arrow, Levhari and Sheshinski (1972)

and Levhari and Sheshinski (1970)."* Bessen (2012) found that this task-level production

function provides a good first order approximation to actual output in textile production

14 In operations research it is known as the solution to a queuing problem with a finite calling population.
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over a range of automating inventions. Changes in technology that automate task 4 can be
represented as increases in Ag. The case where technology completely automates task £ is
represented by A, — 00 so that t;, = 0.
For the most basic model, I assume that worker skills are the same across tasks,
s; =s; =s? =5l Then
)
_ 1
T 1/A, + 1/4, ..+ 1/4,"

Yij = 4Si, 4
In this case, an increase in Ay generates a corresponding increase aj.“’ In the Appendix I
consider the case where skills might take more than one dimension, e.g., non-routine skills

and routine skills. Assume that the values of s; are normalized so that the mean value for

workers in occupation ;is 1.

Wages and Employment

Since each worket’s output of occupational services is equivalent, the firm will pay
workers based on the services they provide. Let p; be the price paid for an efficiency unit of
service j so that each worker 7 earns p;a;s;. Then, given the normalization of s, we can

define the mean occupational wage W; = p;a; or,

I assume that the occupational wage is determined at a labor market equilibrium.

Given the prices for occupational services, the firm’s profit is

mn=P- Q(Yl,yz,...,K) _prjyj —TK,

where P is product price and ris the capital rental price. The profit maximizing condition for

the jth service is then

90

Finally, the number of workers in occupation j, is

15> And I assume that in general, « will remain finite. If 2/ of the tasks involved in an occupation were
completely automated this would not be the case. However, while computers may one day reach that level of
automation, one is hard pressed to find an example of that case today.
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First-order Effect of Automation

We can explore the first-order effect of a change in @; in a partial equilibrium setting
where wages are held constant. To the extent that this change only affects one occupation, it
will have little impact by itself on aggregate demand for labor and hence little immediate
effect on wages. In a general equilibrium model with automation of tasks across many
occupations, labor demand and wages will change, but these changes will affect all
occupations. The partial equilibrium analysis nevertheless helps analyze why employment
increases in some occupations and decreases in others in response to automation.

Looking at (4), the effect of an increase in @; is to reduce the price of the jth
occupational service in efficiency units, p. This change, in turn, affects employment levels.
Whether that price change increases or decreases employment in the jth occupation depends
on how easily the services of this occupation substitute for the services of other occupations.

The interaction can be neatly shown for the case of a constant elasticity of
substitution production function for a firm with multiple occupations:

Q= zyjp = Z(aij)P ) 950;1

Jj J

where 0 is the elasticity of substitution. Assuming that the firm maximizes profits and that
the product market is competitive with constant elasticity of demand €, then (see Appendix)

equilibrium employment in occupations j and £ change as

(52)
dInlL;
m=0—1+5j(e—a)/e,
(5b)
Mzs-(e—a)/a S-ELLj; j#*k
dlna; Iy wiL,

Factor augmentation of occupation j will increase or decrease employment in
occupations j and £ depending on the elasticity of substitution, the elasticity of demand, and
on S, the share of the wage bill going to /. These equations capture both substitution effects
and demand growth effects on occupational employment. The term, S(€ — 0)/€, captures

the tradeoff between employment gains from demand growth and losses from substitution;
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the term, 0 — 1, captures the relative gain in employment that the augmenting occupation
gets from substitution. Clearly, automation does not necessarily eliminate jobs for either the
automated occupation or for other occupations in the firm.

Equations (52) and (5b) can be combined to derive an equation that can be

estimated. The growth rate of employment in occupation ;j can be written

dlnL;
dinLj=Y ~—2dlna, = (o - DdIng +—Zsk dln a;
aln ay

where £ counts all occupations. Let dIna; = bU; where Uj is the level of computer use in
occupation j. Assuming that all firms in an industry have the same production function,
employment growth for occupation ; in industry 7 can be estimated as
©)

dinL;j = aU;j + BX; +vZ; + Wy

a=b—1), B= ble—a)fe XiEZSik-Uik.
k

where X; is a wage-weighted average of industry computer use, Z; is a vector of other factors

that might influence employment growth, and g;; is an error term.

Testing the Technological Unemployment Hypothesis

Technological unemployment from computer automation occurs when employment
declines as a result of the automation. This hypothesis implicitly assumes a strong form of
causality. It is not enough for computers to cause slower employment growth; rather, the
effect of automation must be strong enough to cause a decline in occupational employment
in spite of other factors that might otherwise increase employment. This means that in order
for the technological unemployment hypothesis to be true, computer use must be negatively
associated with employment growth regardless of other, possibly confounding factors.
Therefore, if the technological unemployment hypothesis is correct, then the first two terms
of (6), calculated at the sample mean, should be negative even if the estimation suffers from
possible omitted variable bias. This is the empirical test I employ. Similarly, I estimate
equation (6) for mid-wage jobs and routine-intensive jobs to test hypotheses about the role

of computers in job polarization.
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Occupation-specific skills and inequality

The employment changes in equation (6) can influence wage differences between
occupations. Computers might also affect wage inequality within occupations. This can
happen if workers’ decisions to invest in learning new technology vary with worker skills. If
more highly skilled workers get a greater payoff from acquiring new knowledge, they may
choose to invest while less skilled workers do not; they will then command relatively higher
wages and wage disparity will be greater. A simple model extension demonstrates this
intuition.

To streamline the exposition, I assume that workers pay for human capital; an
equivalent result can be obtained if firms pay. Suppose that the equilibrium wage for worker
/in occupation / is W;j = Z;S; where S; is the worker’s skill level. In general, the occupational
wage will be greater than the alternative wage the worker could earn by switching to another

occupation, Wy = Z4S;, Zj > Zu. This difference arises because entry into the occupation

requires human capital investments and Z; — z4 represents the return on this sunk

16

investment.” Since W;j = p;a;S;, the price for an efficiency unit of occupational service ; is

=4
pj = a
Suppose there are only two skill levels, s; and sy with s, < Sy. Suppose also that
new technology increases the efficiency of occupational service j from a® to a*, but only if a
worker invests learning cost ¢. Designate the initial efficiency price as (suppressing the ;
subscript) p® = z/a®. Assuming that workers can command some portion of rents, type H
workers will initially invest in the new technology as long as p®atsy — ¢ > p°a®sy.
Assume this condition is met and that there is a sufficient supply of type H workers; they
will continue to invest until the price falls to p* = z/a* + c¢/a’sy so that ptalsy — c =
ZSy.
But at this price, a type L worker will no longer choose to enter the occupation.
Entering and investing would earn a wage of p*als; —c = zs; —c(1 — s, /sy) < zs,. At

this wage, the worker would not recoup the human capital investment needed to enter the

16 The gap might also arise from labor market frictions as in Acemoglu and Pischke (1999).
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occupation and the worker would be better off in alternative employment.'” However, a type
I worker who had a/ready sunk a human capital investment would not necessarily leave the
occupation. As long as p*a®s; > z,5;, the worker would be better off continuing to
practice the occupation using the old technology.

In this case, the new technology is non-drastic, that is, both old and new are
practiced at the same time. A well-established literature finds that old and new vintages of
technology often coexist for long periods of time, sometimes stretching to several decades."
Non-drastic innovation appears to be the case with the use of computers within
occupations: in 1997, 77% of workers were in occupations that were only partially
computerized, with between 10% and 90% of workers using computers. My simple model is
a version of Salter’s model of technology vintages with sunk costs (1960).

Because workers of different skill levels invest differently, their efficiencies differ as
well as their wages. Initially, the high and low skill workers earn wages in proportion to their
skills,

Wy p°a’sy _SH
w, pals, s,
But after the new technology is introduced,

wy plalsy a'sy sy

w, pta’s, a%s;, " s,

This model provides a possible explanation for growing disparity of wages within
occupations. Also, only skilled workers will now enter the occupation, either as employment
expands or to replace workers exiting as part of normal turnover. Hence the occupation will
employ relatively more skilled workers. Thus the model suggests that computer use might be
associated with greater wage disparity and skill upgrading within occupations, hypotheses I
test below.

In the literature, two other factors might also influence jobs and wages within
occupations. Roy (1951) argues that when workers’ skills vary along different dimensions,
workers will choose to work in those occupations where they have comparative advantage.
Autor, Levy, and Murnane (2003) and Acemoglu and Autor (2011) apply this in models

where workers sort themselves into performing routine and non-routine tasks. A key finding

17Tt is easy to show that the worker cannot recoup her investment by using the old technology as well.
18 Griliches (1957), Salter (1960), Mansfield (1961) and Rogers (1962).
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is that automation of routine tasks tends to reallocate workers to non-routine tasks. In the
Appendix, I show how occupational sorting can be integrated into my model. A key result is
that although occupational sorting predicts changes in the relative demand for different
skills, it does not have clear predictions about relative wages within occupations in a partial
equilibrium setting."”

Second, Frank and Cook (1995) suggest that technology may increase the pay of
“superstars” in certain occupation. Following Rosen (1981), the very best participants in
certain occupations may benefit disproportionately when technology decreases costs. For
example, lower reproduction costs for films may disproportionately benefit superstar actors.
It is not clear that this phenomenon might affect anybody below the very top performers in
an occupation, but it is conceivable that if markets are sufficiently segmented, superstars
might exist in the 90" percentile.”’ To test this below, I identify a group of occupations
consisting of top-level service providers (the superstar effect requires a personal market that
seems unlikely for, say, a medical assistant) likely realizing lower costs from computer

technology.

Technology Adoption

Finally, a key factor affecting the economic impact of computers is the nature of the
occupations that adopt computers. For example, Autor, Katz, and Kearney (2008) suggest
that computers contribute to job polarization because computers automate routine tasks and
routine tasks are more important for mid-wage occupations. There is a substantial literature
on technology adoption that identifies a number of endogenous factors that might influence
differences in computer adoption across occupations (see Hall and Kahn 2003, Rosenberg
1972, Caselli and Coleman 2001).

The model provides a useful framework for thinking about these. Suppose that an
inventor or software developer can make an improvement that increases @; (a similar
scenario can be sketched for technology adoption decisions). This developer will choose to

make that improvement as long as the return from the invention exceeds the development

19 That is, occupational sorting changes the overall demand for different skills, affecting relative wages overall,
but relative changes do not change more or less in occupations that computerize, all else equal.

20 Of course, a segmented market seems at odds with the idea that new technology can greatly expand the
market.
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cost. Various occupational characteristics might influence this economic calculation and thus
affect which occupations adopt computers.

Bresnahan (1999) and Autor, Levy, and Murnane (2003) argue that computer
programs can automate routine tasks that have formal, repeatable rules. For this reason,
development costs should be less for automating routine tasks. Occupations that perform a
lot of routine tasks might have lower development costs for multiple tasks and thus higher
computer adoption, all else equal.

But this is not the only factor affecting development and adoption decisions. The
payoffs also matter. Assuming that inventor payoffs are proportional to the payoffs
technology users receive, some occupational characteristics might be important:*'skilled
employees will (temporarily) benefit more from adopting the improvement. Since the wage
for a worker with skill s is p;a;s, the worker’s benefit is p;Aa;s, which is larger with a
greater s. Since wages are also greater with skill level, occupational wages might be correlated
with computer adoption. Effectively, the payoff is greater to automating more highly paid
occupations. Also, tf the improvement is drastic, meaning all workers in the occupation
adopt the new technology, then the (temporary) payoff to firms will be proportional to the
wage bill for the occupation. All else equal, occupations with a greater wage bill might have

higher computer adoption. Below I explore the importance these factors empirically.

Data and Variables

The basic data on occupations come from the 1% public use samples of the US
Census for 1980, 1990, and 2000, and the American Community Survey for 2013 (Ruggles et
al. 2015), calculating occupational growth rates for the decades of the 1980s, 1990s, and the
long decade from 2000 through 2013. These samples are sufficiently large so that statistics
on detailed occupations do not suffer from excessive sampling error. In my sample I include
persons aged 16 through 64 who worked as wage and salary workers in the 50 US states in
civilian occupations, excluding self-employed workers, unpaid family workers and workers

living in institutions.

21 With some complication we could formally model intellectual property, but since the model assumes
competitive markets it is simpler to assume that the developer earns temporary profits as a first mover and
those profits are proportional to the payoff that technology users receive.
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Hourly wages are calculated using the reported wage and salary income for the
previous year” divided by the product of usual hour worked per week times weeks worked
last year.”” I deflate the hourly wage using the Consumer Price Index.

The analysis here requires a balanced panel of consistent occupations. The Census
has changed occupational definitions over time, new occupations arise, and old ones are
sometimes dropped. Meyer and Osborne (2005) develop a consistent set of occupational
codes that covered the Census occupations from 1960 through 2000. I use their
classification but I further combine some detailed occupations. I also drop 24 detailed
occupations that were not found in all years. These dropped occupations accounted for less
than 3% of the weighted sample in all years. My resulting panel had 317 consistent
occupations populated in each year studied. It is possible that the analysis of occupational
differences might be particularly sensitive to the narrowness of occupational definitions and,
correspondingly, to the number of occupational categories. To check the robustness of my
results both regarding the procedures used to create a balanced panel and the number of
categories used, I repeated key regressions between 2000 and 2013 using 2000 Census
occupation codes (using a crosswalk to combine some categories in 2013). This analysis used
450 occupational codes, but the results were broadly similar.

Computer use data come from supplements to the Current Population Surveys
(CPS), which asked whether adult respondents directly used a computer at work.** This
measure has some limitations. First, some workers use computers in an embedded form. For
example, what is called a cash register might actually be a computer, leading some cashiers to
underreport computer use. While this leads to some measurement error, the overall figures
on computer use are high, suggesting that most occupations do not underreport. Moreover,
many well-known examples of computer automation involve computers identified as such
(bank tellers, clerks, bookkeepers). Another limitation involves the timing of computer

automation. I assume that computers augment labor on an ongoing basis, that is, workers

221 make adjustment at the extreme upper and lower tails. I recode all values of the hourly wage less than the
wage of the first percentile to the wage of the first percentile. Topcoded incomes were replaced with mean
incomes in excess of the topcode value by state for 2000 and 2013, the median income in excess of the topcode
value in 1990, and 1.5 times the topcode value in 1980. To make sure that this procedure did not distort results,
I repeated key regressions below excluding topcoded individuals; the results were not significantly different.

23 For 2013, weeks worked is only reported in intervalled categories. I replaced these values with the mean
weeks worked for each category from the 2000 Census sample.

24 This question was asked in October of 1984, 1989, 1993, 1997, and 2003 and September of 2001.
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using computers benefit from a stream of new software and hardware improvements over
time. Some tests reject the alternative that only new computer use matters.”

For each decade, I calculate computer use for each detailed occupation as the
weighted average of the two observations per decade, adjusted for change in the overall size
of the labor force between those years.”* To estimate equation (6), I use the 317 occupations
across the 243 detailed industry categories used in the 1990 Census. To calculate wage-
weighted industry mean computer use, X, I obtain computer use for occupation-industry
cells from the CPS, I average them across available years, I use crosswalks to convert the
cells to Census categories, and then weight them using hour-weighted mean wages for each
occupation-industry cell in the Census data.”’

The construction of this variable introduces a possible bias when the dependent
variable is the growth in occupational employment as in Tables 2 and 3. This is because
occupational employment appears in the denominator of the computer use variable, which is
calculated as computer users divided by total employment in the occupation. When this
variable is calculated after the beginning of the period, it will be correlated with the error
term, introducing a downward bias.* To test for this measurement error, I conduct an
instrumental variables estimation in Table 2 and find no significant bias.

Autor, Levy, and Murnane (2003) developed measures of occupational task
characteristics based on the Dictionary of Occupational Titles (US Dept. of Labor 1991). 1
use their measures of the importance of routine tasks to an occupation and the importance
of abstract tasks.” Additional data fields come from the Labor Department’s Occupational

Information Network (O*NET).

25 To test this assumption, I regressed the rate of occupational employment growth against the rate of growth
of computer use rather than the level of computer use as in Table 2. The coefficient was not significant.

26 For the decade from 2000 to 2013, I use only the computer use data from 2001 because 2003 used a different
occupational classification. I ran regressions incorporating 2003 data using a crosswalk and obtained similar
results.

27 For a significant number of occupation-industry cells, there are no observations of computer use in the CPS
data. In these cases, I impute computer use by using the average of mean computer use for the occupation and
mean computer use for the industry. I also tested the robustness of the data by imputing cells with small
numbers of observations in the CPS. I also ran the regressions excluding imputed data. These trials produced
very similar estimates.

28 An exogenous increase in employment will make the computer use variable smaller when the denominator
uses end-of-period employment. It is straightforward to show that this will introduce a downward bias in the
estimated coefficient.

2 Their measures are based on five rankings from the Dictionary of Occupational Titles which they normalize
to a scale from zero to ten based on the rankings of occupations in 1960, with 5 being the 1960 median.
Routine task importance is the average of the ranking for requirements for Finger Dexterity and working with
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Empirical Findings

Which Occupations Use Computers?

The effect of computers on occupations will significantly depend on which
occupations adopt computers. Much of the literature focuses on the role of routine tasks
following Autor, Levy, and Murnane who find a positive correlation between computer use
in industries and the routine-intensiveness of work across industries. However, as Table 1
shows, the correlation is less evident across occupations. This table regresses the computer use
of 383 occupations against various occupational characteristics including the importance of
routine tasks, using the same data on occupational characteristics as Autor, Levy, and
Murnane and the same measures of computer use from the CPS.”

The first two columns show that the importance of routine tasks is not a statistically
significant predictor of occupational computer use by itself. Column 3 adds the index of the
importance of abstract tasks. These are statistically important and, with their addition, the
coefficients for routine-intensiveness become statistically significant at least during the early
years. These trends can be seen in Figure 3. Panel 3a shows computer use for occupations
grouped by above- and below-median rankings for the importance of abstract tasks (using
the 1960 distribution). Abstract tasks are a more important factor related to computer use
and that importance has increased over time. Panel 3b shows mean computer use over time
for occupations with above median importance of routine tasks and below median. The gap
between the two groups is small and disappears in 1997.”' Perhaps the first wave of
computer automation targeted “low hanging fruit” in routine-intensive occupations but
subsequent innovations may have targeted more valuable opportunities in occupations that
perform more abstract tasks.

Abstract tasks may be important because they reflect the opportunity cost of routine

tasks and the payoff to adopting computers. Column 4 replaces the abstract task variable

Set Limits, Tolerances, and Standards; abstract task importance is the average of rankings for Direction,
Control, and Planning activities and GED-Math; Eye Hand and Foot coordination is an additional non-routine
task is also included in some of the analyses. See Autor, Levy, and Murnane for more details. Thanks to David
Autor for making these data available (http://economics.mit.edu/faculty/dautor/data/autlevmurn03).
Descriptions of these task rankings can be found in US Dept. of Labor (1991).

30 Regressions include year dummies and are weighted by CPS sample weights.

31 Running the regression in column 2 just for 1997, the coefficient for routine tasks is small and no longer
statistically significant.
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with more direct measures of opportunity cost and payoff, namely, the mean log wage for
the occupation in 1980, log employment in the occupation, and the share of jobs in the
occupation that require a college diploma (from O*NET).” These variables are all
statistically and economically significant and the routine-intensiveness of the occupation is
only significant during the 1980s. The importance of the economic payoff to automation
seems to be a much more important driver of endogenous adoption decisions and the payoff

appears to be greater in well-paid occupations.

Computer Use and Employment Growth

Do computers replace workers?

Much public discussion of computer automation is based on a simple view that
computer automation eliminates jobs, either generally, so as to cause technological
unemployment, or for specific groups such as mid-wage workers or workers doing routine
work, so as to cause job polarization. These views implicitly ignore inter-occupation
substitution and demand elasticity, effectively assuming that 0 = € = 0. Imposing this
constraint, (6) becomes
@) dinL; =yU; +6 +¢;

Table 2 estimates variations on this equation using the growth rate of detailed
occupations over three decades as the dependent variable. Column 1 shows that computer
use is associated with faster growth in the labor of an occupation, not a decrease. The
coefficient of computer use is positive, statistically significant, and substantial. In the total
sample, 42% of the workers in an occupation use computers. At this mean, computer use is
associated with an increase in employment growth of 1.06% per year. This is quite
substantial considering that the mean rate of employment growth is 1.2% per year.

One concern is that computer automation might be correlated with other
organizational changes. In particular, observers have suggested that occupations that are

prone to automation are also prone to being offshored.” Column 2 adds a measure of

32 The sum of log employment and log wage gives the log of the wage bill, so that is implicitly included in this
specification.

3 Autor, Levy, and Murnane (2003) argue that occupations performing routine tasks are more likely to be
automated; Jensen and Kletzer (2006) suggest that occupations performing routine tasks are more likely to be
offshored.
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offshorability to the right hand side, Jensen and Kletzer’s (2010) index of tradability.
Offshorability is strongly associated with decreases in occupational employment. Also, the
coefficient on computer use is substantially higher than in column 1, suggesting that there is
a correlation between automation and offshorability. With this additional control, computer
use at the mean contributes 1.7% to employment growth per year.

One concern is that the computer use variable might be correlated with the error
term. This could be because of the way it is measured, as discussed above, or because the
payoff to computer adoption might be greater in rapidly growing occupations. Column 3
tests for endogeneity of the independent variables by instrumenting computer use with an
index of how much time workers in each occupation spend sitting and dummies variables
for each decade. While seated occupations are more likely to be feasible for computer
automation, time spent sitting is plausibly independent of occupational employment growth.
The estimates in Column 3 are similar to those in Column 2 and the null assumption that the
regressors are exogenous cannot be rejected (P = .464).

Columns 4 repeats the OLS regression but breaks out computer use by each decade.
The coefficient of computer use is larger during the 1980s but remains economically and
statistically significant subsequently.

Opverall, computer use is associated with employment growth that is over 1 percent
per annum faster at the sample mean. Clearly, this is at odds with the hypothesis that
computers are causing technological unemployment. These regressions, however, only
measure the direct effect of computer use, ignoring the effect that computer use in one
occupation might have on employment in another. The unconstrained model allows us to

evaluate substitution effects.

Full Model Estimates

Table 3 provides estimates of the unconstrained model allowing substitution
between occupations. The dependent variable is the annual growth rate from 1980 to 2013
of hours worked in each occupation-industry cell. In order to reduce sampling variance—
many occupation-industry cells are quite small and many have no observations—I average
the computer use variables over the three decades and I estimate the regressions using

sampling weights. I cluster standard errors by major industry group (the 14 categories used

in the CPS).
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The first column shows the basic regression. The coefficient on computer use is
smaller than the corresponding estimate in Table 2 and is highly significant, but now
coefficient f§ also captures a sizeable inter-occupation substitution effect. The estimate of a
implies that the elasticity of substitution between occupations is statistically greater than one.
Evaluated at the sample mean, the joint contribution of both computer use terms is positive,
but it is neither economically nor statistically significant.

The second column adds the offshorability index. The coefficient magnitudes are
larger and now the contribution of computer use to employment growth is positive,
statistically significant, and economically meaningtul, although not large. Column 3
introduces dummy variables for major industry groups, possibly capturing industry-related
omitted variables. Now the key estimates are rather similar to those in Column 1.

This estimation raises a number of econometric concerns. First, the sample is limited
to occupation-industry cells where the Census reports hours worked in both 1980 and 2013.
Sample selection issues might bias the estimates. I performed a Heckman sample selection
analysis using computer use as the independent variable in the sample selection equation and
repeating the regression in Column 2. Again, the estimates were similar and a Wald test
could not reject the null hypothesis that the equations are independent.™

Multicollinearity is another concern. The two key variable, U and X, are correlated
(coefficient .67), possibly making the parameter estimates unreliable. However, the variance
inflation factors are not high, suggesting that there is sufficient independent variation to
produce stable estimates.” I also tested for the influence of outliers by eliminating the one
percent tails, but, again, the estimates were quite close to those in Table 3.%

The basic finding that computer use within an industry does not appear to have a net
negative impact on jobs thus seems robust. There is no empirical support for the general

hypothesis that computer automation is causing technological unemployment.

Differences across occupational groups
However, because this result arises from two counterpoised forces—occupations

that use computers tend to have faster employment growth and also to substitute for other

34 The estimates were, respectively, 2.38(.23) and -.91(.47); the probability value of the Wald test was .558.
35 The vatiance inflation factors for @ and f are, respectively, 2.39 and 1.82.
36 The estimates excluding the 1% tails are 2.37 and -.91.
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occupations—the net effects likely vary significantly across different occupations. This is
because the adoption of computers is uneven as shown in Table 1. Inevitably some
occupations use computers more and are likely to experience net growth while others use
computers less and may have work transferred to other occupations. An example of this
would be if word processing software reduced the number of typists, but increased the
amount of labor middle managers devote to typing themselves. Also, this analysis assumes
that the key parameters, 0 and €, are constant across different groups of occupations.

Table 4 explores possible variation in computer use and model parameters by
estimating (6) and (7) over specific groups of occupations. Panel A corresponds to Column 2
of Table 2; Panel B corresponds to Column 2 of Table 3. The first column covers
occupations that ranked above the median value in 1960 on the importance of routine tasks
(Autor, Levy, and Murnane 2003). Routine occupations use computers at about an average
level and computer use is not associated with job losses for this group.

The next three columns show occupations grouped by mean wage quartile (first,
middle two, and fourth) for 1980 wages. Computer use rises sharply with wage (from 17% to
70%) and so does the impact on occupational employment growth. In the full model (Panel
B), computer use is associated with job losses for the low wage group (-.43%), but with
positive employment growth in mid- and high-wage occupations. This pattern suggests that
computer automation is not responsible for job polarization; although high-wage
occupations grow faster with computer use, few low-wage workers use computers and
industry computer use is associated with a net decrease in employment for these
occupations. Interestingly, for high-wage workers, workers in occupations that require
college degrees, and managerial/professional occupations, the [ estimate is positive and
significant, suggesting that industry computer use tends to complement these occupations.

Acemoglu and Autor (2011) identify the group of administrative support and sales
occupations as occupations with routine cognitive tasks. These occupations are assumed to
be prone to computer automation and job losses (e.g., Jaimovich and Siu 2012). Column 7
paints a somewhat different story. These occupations tend to grow more slowly with
computer use but they also appear to by more affected by offshoring. Again, computer
automation does not seem to be associated with job polarization; it is possible that
technology contributes to employment losses in this group of occupations not by

automation, but by facilitating offshoring and outsourcing. For instance, information
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technology might facilitate firm decentralization involving transfers of work away from
administrative support occupations. The last column shows production occupations, which
seem to reflect the overall pattern of employment growth.

These findings suggest that while computer use has little effect on the total number
of jobs, the substitution effect is associated with a substantial transfer of work from low-
paying occupations that do not use computers much to higher paying occupations that do.
That is, computers contribute to significant job displacement. Computer use does not
contribute to economic inequality by causing technological unemployment. But computers
might contribute to economic inequality if it is costly or difficult for workers to acquire new

skills in order to transition into growing occupations.

Computer Use and the Demand for Skills Within Occupations

The model suggests that if the new skills are costly to acquire, then the dispersion of
wages within occupations will increase and occupations will seek to hire more highly skilled
workers. Table 5 shows regressions on the difference in log hourly pay between the 90" and
50" percentiles of an occupation (top panel) and between the 50" and 10™ percentiles
(bottom panel). On the right hand side, these regressions include the share of workers using
computers in the occupation and two variables to capture the dispersion of education levels
within the occupation, the mean years of education of the top wage quartile and of the
second wage quartile. I include these latter variables because occupations with greater
variation in education levels might tend to show greater growth in wage gaps just because of
growing educational premiums. That is, because the wages of college educated workers have
grown faster than the wages of high school educated workers, the variation in wages within
an occupation will tend to rise if the composition of the workforce does not change. Of
course, a rising college wage premium might cause employers to hire fewer college educated
workers for that occupation. Nevertheless, I include these variables in order to make sure
that there is no such mechanical effect on the dependent variables.”

The first column shows that both wage gaps have tended to increase with computer
use. The second column repeats the exercise, using interactions to separate the effect over

decades. Autor, Katz, and Kearney (2008) find that the upper wage gap (90/50) increased

37 The results are quite similar if these variables are dropped. The top panel also excludes 7 occupations where
some topcoded wage observations fall below the 90th percentile.
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relatively more since 1990 while the lower wage gap (50/10) increased relatively more duting
the 1980s. Interestingly, the coefficients on computer use show a parallel shift, suggesting
that computers might be at least partially responsible for the change. The association of
computer use with growth in the upper wage gap is initially negative during the 1980s and
becomes positive; the association with the lower wage gap is strong during the 1980s and
then diminishes.

In any case, the association between computer use and wage dispersion is substantial
and statistically significant. The importance of this association between wage gaps and
computer use is illustrated by the following counterfactual calculation. We can project how
much of the general dispersion in wages can be explained by the regression results. From
1990 through 2013, the wages of the 90 percentile of the entire workforce grew 0.59%
faster than the wages of the 50" percentile annually; the wages of the 50" percentile grew
0.28% faster than the wages of the 10" percentile. If we subtract out the increase that can be
attributed to the effect implied by the regressions in column 2, the 90" percentile wage grew
only 0.33% faster than the median wage and the median wage grew 0.18% faster than the
10™ percentile wage.” This means that computer use can account for about 45% of the rise
in the 90/50 wage gap (1 —.33/.59) and about 38% of the rise in the 50/10 wage gap
(1 —.18/.28) in the entire workforce from 1990 to 2013.

This growing intra-occupation dispersion could reflect greater demand for
occupational specific skills that are costly to acquire. Alternatively, the rise in the 90/50 pay
gap might reflect greater demand for “superstars.” To test the latter hypothesis, columns 3
and 4 add two different dummy variables if the occupation is more likely to experience
superstar effects.”” These are occupations that tend to be at the top of job hierarchies and
also conceivably benefit from lower costs of communication or information. The dummy
variable used in column 3 includes managers, engineers and scientists, top level health
providers, lawyers, writers, artists, entertainers, and athletes. These groups comprise 21% of

the workforce. However, the coefficient on this variable is negative, counter to the superstar

381 calculated the counterfactual wage gaps by scaling wages within occupations using the coefficients in

column 2. Let the regression coefficient be f3, let » be the worket’s log wage, and let U, be the level of

computer use in the occupation. For workers earning more than the median log wage in their occupation, vg§°,

B-Uocc

Tvggc). I used correspondmg

the counterfactual wage is calculated as v* = v + (v — vZ§°) (1 -
V9o

calculation for workers earning less than the median occupational wage.
% These tests are similar to those performed by Meyer (2008).
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hypothesis. Column 4 uses a narrower definition of superstar occupations, accounting for
only 8% of the workforce.* This dummy variable produces a positive coefficient, but it is
small and not statistically significant. These findings suggest that at most the superstar effect
only affects a relatively small number of occupations or only the very top performers within
each occupation. In any case, wages are becoming more unequal over a wide range of
occupations, not just those that might plausibly be winner-take-all-markets.

The model of costly learning also suggests that occupations adopting new technology
might employ relatively more workers with better pre-existing skills. Occupational sorting
might also increase the relative employment of skilled workers. Table 6 explores changes in
the share of workers within an occupation who have four years or more of post-secondary
education (a college or graduate degree). Column 1 shows a significant association between
computer use and growing share college educated workers. Column 2 interacts computer
use with decade dummies, showing that the relationship is persistent over the entire sample
period.

Moreover, this association holds not just for occupations that involve a high level of
cognitive tasks or for occupations that require college degrees. Column 3 shows the
regression for occupations where the abstract task rating is less than 5 (the 1960 median).
Column 4 shows the regression for occupations where fewer than 10% of the jobs require
college degrees or higher." Both columns show a significant positive association between
computer use and growth in the college share of workers.

In both the costly learning model and the occupational sorting model, firms hire
more college educated workers not because a college education is needed to perform the
tasks of the occupation, but because a college education might be correlated with higher
skills or a better ability to learn new skills. But another factor could contribute to the rising
college share. Beaudry, Green and Sand (2013) argue that there is a growing oversupply of

college educated workers so that they are taking lower skilled jobs and displacing less

40 This group includes chief executives and public administrators, financial managers, managers and specialists
in marketing, advertising, and public relations, management analysts, architects, computer systems analysts and
computer scientists, operations and systems researchers and analysts, actuaries, physicians, dentists,
veterinarians, optometrists, podiatrists, lawyers, writers and authors, technical writers, designers, musician or
composer, actors, directors, producers, art makers: painters, sculptors, craft-artists, and print-makers,
photogtraphers, dancers, art/entertainment petformers and related, editors and reporters, announcers, and
athletes, sports instructors, and officials.

41 This variable are from the Occupational Information Network (O*NET) database and are based on
assessments of individual occupations by panels of experts.
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educated workers. Since occupations that use computers tend to grow faster, perhaps more
of these downgrading college graduates are taking jobs in these occupations. Indeed, the
mean real wage of workers with four years of college declined between 2000 and 2013.* On
the other hand, the real wage of workers with only a high school diploma declined even
more," so relative wages of college workers have continued to grow.

In any case, if demand for greater skills were driving the increase in the college share
of workers, then we would expect occupational wages to increase; if, on the other hand, the
college share consists of downgrading grads who cannot find work in higher skilled
occupations, then occupational wages should not increase. Column 5 repeats the regression
of column 4 but adds two independent variables, the rate of growth of the mean wage for
the occupation and the interaction term, computer use x wage growth. The growth in the college
share is strongly associated with wage growth in occupations that use computers, suggesting

that an oversupply of college graduates is not a major factor.

Discussion

Generally, the estimates underline the importance of the effect of automation on
occupational demand. Computer automation of an occupation tends to increase demand for
that occupation, partly by substituting for the inputs of other occupations. On average, the
direct demand effect is largely offset by the substitution effect. The net result is that
computer use is associated with a small increase in total employment.

This finding is inconsistent with the technological unemployment hypothesis. As
discussed above, my result is not causal—computer use might cause a decline in
employment that is offset by other factors boosting demand for computer-using
occupations. Two studies do evaluate causality and find patterns consistent with my results.
Gaggl and Wright (2014) do a causal analysis based on a natural economic experiment in the
UK for small firms. They find that ICT complements non-routine cognitive-intensive work
and substitutes for routine cognitive jobs, although this latter effect is smaller. This is

consistent with a pattern where ICT decreases employment in lower-wage non-manual jobs

42 The mean log wage, deflated by the Consumer Price Index, declined 5.5%. Data are from the 2000 Census
and 2013 ACS, weighted by hours worked.
43 The deflated mean log wage for workers with a high school diploma or GED fell 9.9%.
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and increases employment in higher-wage non-manual jobs.”* Akerman, Gaarder, and
Mogstad (2015) find a similar pattern in response to the roll out of broadband Internet in
Norway.

Nor is computer automation associated with job polarization, although information
technology might contribute to polarization in other ways. Table 4 shows that computer use
is not associated with a loss of jobs in routine occupations, in mid-wage occupations, or in
sales and administrative support occupations. Of all the groups studied, only low-wage
occupations experience a drop in employment associated with computer use, contrary to the
job polarization hypothesis. To the extent that technology facilitates organizational changes
such as outsourcing, technology might very well contribute to the loss of mid-wage jobs,
especially in sales and administrative support occupations. However, it does not appear that
computer automation is involved with these changes and, for this reason, it is not clear that
technology is reducing the total number of jobs. Outsourcing and offshoring may transfer
work to other groups of workers—managers now do more of their own typing; some clerical
work is now done in India—but this does not imply a net reduction in worldwide
employment.

My findings also imply that computer-driven technological unemployment does not
appear to provide an explanation for rising wage inequality.” But computers might
contribute to rising wage inequality in another way: computer use is associated with greater
wage disparities within occupations. A substantial portion of the growth in the 90/50 and
50/10 wage gaps can be accounted for by computer use. This greater disparity appeats to
arise from a growing demand for skills, particularly occupation-specific skills that might be
costly to acquire. Fujita (2015) finds additional evidence of the importance of occupation-
specific skills in explaining the secular decline in employee turnover. Furthermore,
computer-using occupations substitute for other occupations. This means that workers need
to transition to new occupations. To the extent that occupational skills are costly to acquire,
this labor displacement will also tend to increase wage inequality. Of course, others factors

affect wage inequality including, possibly, slack demand, the minimum wage, and more.

# The Autor, Levy, Murnane (2003) index of cognitive-intensive work (abstract tasks) increase monotonically
from 1.48 to 3.34 to 5.70 for low, mid, and high wage groups respectively. The ratings for routine task-
intensiveness vary less, 3.73, 3.91, and 3.45 respectively. Thus more higher wage jobs will tend to be
complemented by ICT.

4 A point argued in a somewhat different way by Mishel, Schmitt, and Shierholz (2013).
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However, my analysis suggests that computers do have a significant impact, although not via

technological unemployment.

Conclusion

It is easy to identify specific occupations where jobs have been lost to automation
such as telephone operators or typesetters. Many people suppose that if technology
automates tasks, as it did in these cases, then it must eliminate jobs generally, creating
technological unemployment. But this view fundamentally misunderstands what has been
happening. Overall, jobs have been growing faster in occupations that use computers. The
analysis shows that computers have not been replacing workers on net; instead, workers
using computers are substituting for other workers. There are fewer telephone operators, but
more receptionists. There are fewer typesetters, but more graphic designers and desktop
publishers. Computer use is associated with more job creation than substitution. Of course,
if labor markets were not flexible, than the implied job transitions might indeed create
unemployment. But that is not what appears to be happening in the US at least.

This inter-occupation substitution is similar to the substitution of skilled workers for
unskilled in the canonical accounts of skill-biased technical change. But the canonical
account only considers pre-existing skills, mainly college education. My results suggest that
computer use is associated with growing employment even in occupations where most
workers do not have college degrees, suggesting a much richer pattern of change.

Indeed, large-scale substitution between occupations implies considerable
organizational change. Workers need to learn new jobs and new ways of working. For
example, graphic designers had to learn entirely new skills in order to use desktop publishing
technology. The nature of work also changes within occupations.*” A substantial literature
finds evidence that computer adoption involves organizational change and investments in

new skills, often learned on the job."” The evidence associating computer use with wage

4 Autor, Levy, and Murnane (2003) find that the nature of tasks performed within occupations changes with
computer use.

47 Bresnahan and Greenstein (1996) find substantial investments in knowledge by firms adopting computers.
Some of the learning involves not the technology itself, but new organizational procedures (Bresnahan 1999).
Brynjolfsson, Hitt, and Yang (2002) find large investments in organizational capital with computer adoption.
Juhn et al. (1993) find that much of the growth in income inequality is not explained by education or other
observed worker characteristics. More generally, Abowd et al. (2002) find that education and observed
characteristics account for only a small part of human capital. Growth models considering the role of
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dispersion reinforces the idea that computers require new skills that are difficult to acquire.
Thus although computers do not cause major technological unemployment, the
development of new skills is nevertheless a major challenge to the workforce.

Of course, automation has been affecting occupations for a long time without
apparently generating sustained unemployment. Economists sometimes explain this paradox
by arguing that other sectors compensate for the job losses, for example, manufacturing
grew to compensate for the loss of jobs in agriculture.

This paper makes a different argument: automation zse/f sometimes brings growing
employment to occupations and that is what is happening now. However, there is no
guarantee that future computer technology will increase labor demand. If history is a guide,
computers may eventually tend to reduce the number of jobs as more marginal computer
applications are exploited that do not produce as much job growth. For example,
automation in 19" century textile weaving was associated with growing employment of
weavers through the 1920s because demand for cloth was highly elastic (Bessen 2015).
Eventually, however, demand became more saturated and further technical improvements
were accompanied by stable employment and then decline. Today, improvements in older
manufacturing technologies contribute significantly to job losses.

Generally, this paper emphasizes the importance of occupation for understanding
the impact of technology on jobs and wage inequality. Previous research has shown that a
substantial part of human capital is occupation-specific (Shaw 1984, 1987, Kambourov and
Manovskii 2009). The evidence here suggests that new technologies are also significantly
occupation-specific and often require new skills that are difficult to acquire. Another line of
literature finds that a substantial portion of the growth in wage inequality is accounted for by
differences between firms or establishments.” This research does not contradict the
importance of occupation and, in fact, a number of papers find that much of the dispersion
of wages across establishments is explained by differences in technology and organization."
More research is needed to understand how differences in technology adoption across firms

and establishments change the demand for occupations and occupation-specific skills.

technology specific human capital or learning by doing include Lucas (1988), Chari and Hopenhayn (1990),
Parente (1994) and Jovanovic and Lach, 1989). Bessen (2015) reviews historical evidence.

8 See, for example, Abowd, Kramarz, and Margolis (1999); Dunne et al. (2004); Song et al. (2015).

# See, for example, Abowd et al. (2007); Doms, Dunne, and Troske (1997); Dunne et al. (2004).
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Appendix

Derivation of equation (5)
The production function over occupations 7 = 1,...,N is a standard CES production

function where the only inputs are labor in the N occupations, L;,

(AD)

L

Q= (Z(aiLi)p>1/p

The elasticity of substitution is 0 = ﬁ. Let the demand for output be Q = AP™€, where P

is the product price. Firm profits are then

J

where wj is the exogenously determined wage for occupation /. The firm hires labor in the

various occupations to maximize profits. The first order maximizing condition is
om  0Q = 0
d1L; d1L; J
With some manipulation, this solves to

(A2)

~ 1 e—1 p
lnLj(Q,ap...):l_p[ln( . A1/6>—lnwj]+—lnaj+<1

1-p >an

__
e(1-p)

A useful expression for occupation /s share of the wage bill can be obtained using

this:
(A3)
p
Wl (aL))
T Riwl Xi(aL)P
Differentiating (A2),
(A4)
dinl; 90lnL; dlnl; dlnQ _ dlnk; 1 dInQ
dlna, dlna, dInQ dlna, dlna, < 6(1—p)> d1na,

Note that using (A1) and (A3)
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dnQ  0lnQ  (alLy)?
dna, *oa, Tialyr *

Then, (A4) generates equation 5:

din;, _p +<1 1 ) Si=(@—-1+(E—0)5;/
= — D = (0 — E—O0) /€
dlnag; 1-p e(l—-p)) 7 J
dinl; ¢
dnan,, (€—0)-Si/e

Oceupational sorting

It is straightforward to extend equation (2) to the case where some tasks are routine,
others are non-routine, and workers have heterogeneous skills at each. Suppose there are 7
routine tasks and # non-routine tasks and worker 7 has skills s¥ and s} at routine and non-

routine tasks, respectively. Then

1 1
Yi= 1 1~ 1 1
et ot +
Ay sk Ayst Apems!  afisf o al'sl

with the appropriately defined a]R and aJI-V .

To simplify the exposition, suppose that there are just two sorts of workers who
differ in their skills on non-routine tasks: low skill workers who have non-routine skills s,¥
and high skill workers who have non-routine skills sy > si'; both have skills s® on routine
tasks. Suppose also that at the labor market equilibrium high skill and low skill workers earn
wy and wy, respectively, wy > wy. A necessary condition for labor market equilibrium is
that wy /s) > wy/sj} (otherwise, skilled workers would not have an advantage in any
occupation).

Given their skills, high skill and low skill workers will offer their services in

occupation ; at respective prices for efficiency units

i = Wp Wy n Wy and p; = w, W n Wy,
Hj — ~ _R<R N N Lj — ~ _R.R N.N"

Low skill workers will have comparative advantage in those occupations where p;j < pyj or

where
N R
a; S w, Wy
af " wy—w [sf TSy
j H L I°oL H
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Low skill workers will have the comparative advantage in occupations where the

efficiency of labor at routine tasks is relatively low compared to the efficiency at non-routine
tasks. If the effect of computer automation is to increase a]R but not a, then automation

will cause some occupations to upgrade from low skill workers to high skill workers. Thus
assuming that automation only affects routine tasks, labor will be reallocated. While this
model of occupational sorting implies a pattern of skill upgrading associated with
computerization, it does not offer unambiguous implications about changes in the dispersion
of wages within occupations in this partial equilibrium setting.”” And to the extent that
computerization decreases the price for efficiency units of occupational services,
employment will change depending on model parameters as above. That is, automating a

routine task can increase or decrease employment in the occupation.

50 If technology only automates routine tasks, then the relative demand for workers with non-routine skills will
increase. In a general equilibrium model, this will increase wages for workers with high non-routine skills. But
this increase will occur across all occupations, not just those undergoing automation. The empirical analysis
below explores the link between intra-occupational wage dispersion and computer use. The occupational
sorting model does not imply any particular link.
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Tables and Figures

Table 1. Share of Workers Using Computers in Occupations

Occupation characteristics 1 2 3 4
Routine tasks .002 (.005)

x 1984 .013 (.009) 026 (.007)** .032 (.009)**

x 1989 .013 (.014) .030 (.012)* .033 (.014)*

x 1993 .009 (.014) .028 (.012)* .026 (.014)

x 1997 .000 (.014) .020 (.012) .017 (.013)

x 2001 -.012 (.013) .008 (.010) .006 (.011)

x 2003 -.010 (.013) .007 (.012) .007 (.012)
Abstract tasks

x 1984 .055 (.006)**

x 1989 .071 (.008)**

x 1993 .082 (.007)**

x 1997 .084 (.008)**

x 2001 .085 (.007)**

x 2003 .083 (.007)**
Log wage (1980) 218 (.028)**
Log employment .016 (.007)*
College diploma required 453 (.031)**
Adjusted R-squared 11 12 46 .53
N 2,179 2,179 2,179 1,830

Note: By occupation-year, least squares regressions weighted by sample weights. Computer use data are
from the Current Population Survey Supplements question about computer use at work. Regressions
include year dummies. Robust standard errors are in parentheses. * = significant at the 5% level,
**=gsignificant at the 1% level.
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Table 2. Employment Growth of Occupations over Decades, 1980-2013
Dependent variable: Annual growth rate (percent) of hours worked by decade

1 2 3 4
OLS OLS v OLS
Computer use (@) 2.55 (.55)** 4.27 (.67)** 3.54 (1.12)**
Computer use x 1980s 6.64 (.99)**
Computer use x 1990s 3.63 (1.22)**
Computer use x 2000s 3.49 (.68)**
Offshorability index -1.85 ((32)** -1.63 (43)** -1.93 (.32)**
Adjusted R-squared .06 .09 .09 .10
N 946 900 900 900
Contribution of computer 1.06 (.23)** 1.74 (27)* 1.4 (46)+*

use to growth rate
Note: Dependent variable is annual percentage growth in hours worked for each decade. The offshorability index
was developed by Jensen and Kletzer (2010). In regression 3, computer use was instrumented using decade
dummies and an index for the amount of time workers spent sitting. Robust standard errors are in parentheses. * =
significant at the 5% level, **=significant at the 1% level. Decade dummies not shown.

Table 3. Employment Growth of Occupation-Industry Cells, Full Model Estimates, 1980-2013
Dependent variable: Annual growth rate (percent) of hours worked

1 2 3
a (own use) 1.19 (.23)** 2.39 (.23)** 1.64 ((13)**
p (industry use) -.80 (.60) -91 (47) -1.18 (.60)
Offshorability index -1.33 (27)** =75 (31)*
Industry dummies v
R-squared .01 .06 .16
N 17,491 16,663 16,663
Contribution of computer 11 (21) 45 (17)** 13 (.20)

use to growth rate

Note: Dependent variable is annual percentage growth in hours worked for detailed occupation-industry cell. The
sample includes cells where computer use variables are imputed based on occupation and industry averages.
Weighted by occupation hours worked. Standard errors are in parentheses and are clustered by industry group. * =
significant at the 5% level, **=significant at the 1% level.
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Table 5. Change in Within-Occupation Wage Gaps

Panel A. Change Between 90™ and 50™ Percentiles

1 2 3 4

1980-2013 1980-2013 1990-2013 1990-2013
Computer use 29 (.08)** 49 (.09)** 46 (.09)**
Computer use x 1980s =41 ((13)**
Computer use x 1990s A48 (.09)**
Computer use x 2000s 39 (L10)**
Education, 2" wage quartile -.05 (.04) -.06 (.04) -.09 (.05)* -.07 (.04)
Education, 4™ wage quartile .04 (.04) .05 (.03) .08 (.05) .05 (.04)
Superstar [ -.09 (.06)
Superstar 11 .18 (.09)
R-squared .057 .100 .077 .079
N 925 925 615 615

Panel B. Change Between 50" and 10" Percentiles

1 2
Computer use 34 (.09)**
Computer use x 1980s 1.12(.16)**
Computer use x 1990s 33 (L 12)**
Computer use x 2000s -.05(.12)
Education, 2" wage quartile -.01(.05) .01(.05)
Education, 4™ wage quartile -.01(.04) -.01(.04)
R-squared 193 228
N 946 946

Note: Weighted least squares regressions of detailed occupation data by decade. Dependent variable is
annual percentage change in the difference in log wages between the 90™ (50™) and 50™ (10[h) percentiles in
the upper (lower) panel. Top panel excludes 7 occupations where some topcoded wage observations fall
below the 90™ percentile. Decade dummy variables included, but not shown. Weighted by occupation hours
worked with standard errors reported in parentheses. * = significant at the 5% level, **=significant at the

1% level.
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Table 6. Annual Percentage Change in Share of Workforce with College Education

1 2 3 4 5
Few abstract College not College not

Sample: All All tasks required required
Computer use A5(.04)** A44(.04)** A41(.03)** 39(.03)**
Computer use x 1980s 49 (.09)**
Computer use x 1990s .36 (.06)**
Computer use x 2000s .52 (.06)**
Computer use x wage growth 3.17(.45)**
Wage growth -.05(.20)
R-squared .163 .166 198 332 458
N 946 946 725 510 510

Note: Weighted least squares regressions of detailed occupation data. Dependent variable is the annual

change in the share of hours worked by workers with four or more years of postsecondary education from

1980 to 2013. Observations are occupation by decade. Decade dummies not shown. Weighted by

occupation hours worked with standard errors reported in parentheses. * = significant at the 5% level,

**=gignificant at the 1% level.
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Figure 1. Bank Tellers and Automated Teller Machines
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Note: Teller data from Census and ACS 1% samples. Fulltime equivalent workers calculated assuming
2080 hours per work year. Data on number of ATMs installed from the Bank for International Settlements.
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Figure 2. Job Polarization: Employment Growth of Occupations by Computer Use
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Note: Shows smoothed weighted average of percentage growth in hours worked for 317 detailed
occupations. Smoothing done with an Epanechnikov kernel with .3 bandwidth. Bottom panel shows
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Mean Log Wage of Occupation (2000)

occupations with above-median and below-median computer use separately. Dashed vertical lines are at the

25™ and 75" percentiles in the occupational wage. Horizontal dotted line is total hours growth.
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Figure 3. Share of Workers Using Computers by Characteristics of Occupational Tasks

Abstract Routine

Share of Workers using Computers

T T T T

T T T T T T
1985 1990 1995 2000 2005 1985 1990 1995 2000 2005

Above median  -=----- Below median

Note: The first panel shows computer use for occupations with above-median and below-median rated
importance rating of abstract tasks; the second panel shows above-median and below-median rated
occupations on the importance of routine tasks.
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