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Abstract

This paper studies the causal mechanisms behind persistent poverty.
Using original data on Boran pastoralists of southern Ethiopia, we
find that heterogeneous and nonlinear wealth dynamics arise purely
in adverse states of nature. In favorable states, expected herd grow
is quasi-linear and universal. We further show that those with lower
herding ability, as reflected in past herd growth data, converge to a
unique equilibrium at a small herd size while those with higher ability
exhibit multiple stable dynamic wealth equilibria.

1 Introduction

Contemporary policy debates are rife with discussion of “poverty traps”.1

Several theoretical models combine some non-convex technology with some

market failure to explain why ‘̀the poor stay poor and the rich stay rich”. But

do poverty traps exist in the data? One prominent strand of the empirical

literature that addresses this question has mainly focused on searching for

a threshold effect associated with multiple dynamic equilibria in the growth

process, with one such equilibrium below a poverty line. The results of

such studies remain quite mixed, with some studies finding support for the

hypothesis while others, find no evidence of such a threshold (for reviews see

Barrett and Carter (2013), Kraay and McKenzie (2014), Barrett, Garg, and

McBride (forthcoming)). 2

Nonlinear dynamics may arise for any of several reasons, including shocks

that perturb key state variables (Carter and Barrett, 2006). It has been long

understood that if there exist wealth thresholds at which growth dynamics

bifurcate, then positive draws from the distribution of states of nature can

move some fortunate individuals above the threshold, while negative shocks

may generate persistent poverty if they exogenously drive others below the

1See, for example, Sachs (2005) or United Nations Millenium Project (2005).
2See also Azariadis and Stachurski (2005) or Bowles, Durlauf, and Hoff (2006) for good

reviews of the theoretical and early empirical literature on poverty traps.
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threshold. In this paper, using original data from a poor population of live-

stock herders (i.e., pastoralists) in southern Ethiopia for whom livestock,

especially cattle, are the main (often, the only) non-human asset they own,

we find that nonlinear wealth dynamics arise only under adverse weather

conditions. The powerful implication is that risk exposure is itself central to

the very existence of multiple wealth equilibria in this system.

Why might that be? One possibility is heterogeneity among herders in

their ability to manage risk. There may exist “convergence clubs” based on

intrinsic, unobservable characteristics such as skills or ability. 3 Perhaps the

talented can more easily escape poverty or perhaps the disabled are especially

unlikely to do so, regardless of initial wealth. The role unobservable ability or

skill plays in determining earnings has long been recognized in studies of the

private returns to education (Card, 1995) or in the analysis of who becomes

an entrepreneur (Evans and Jovanovic, 1989). Of particular relevance to this

paper, Schultz (1975) emphasizes the central importance of individual ability

to reallocate scarce resources optimally and quickly in response to shocks,

what he terms ‘the ability to deal with disequilibria’. We know of no previous

study that explicitly considers the role of individual heterogeneity in shaping

wealth dynamics at micro-level, especially one rooted in the Schultzian ability

to manage economic disequilibria such as arise from weather shocks.

These two explanations for heterogeneous and nonlinear wealth dynamics,

risk and ability, may be closely related. It may be that risk can be a source of

persistent poverty due to the differential ability to cope ex post with shocks

(Dercon, 1998), or to manage shocks ex ante due to risk preferences and ac-

cess to alternative risk management tools (Rosenzweig and Binswanger, 1993,

Carter, 1997). Thus, variation in returns to assets and their relation with

ability, across states of nature, may be central to understanding how both

individual-level characteristics and initial conditions affect wealth dynamics.

3Baumol (1986), DeLong (1988) and Canova (2004) define and discuss the estimation
of convergence clubs in macroeconomic growth data.
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The policy implications of the convergence club and threshold-based mul-

tiple equilibria mechanisms differ markedly. If poverty is a unique dynamic

equilibrium because of immutable individual characteristics, ongoing social

transfers may be the only available remedy for an unacceptably low standard

of living. But if poverty results from initial asset holdings insufficient to clear

a critical minimum endowment threshold and thereby follow a positive accu-

mulation path, then asset transfers, changes to the productivity of existing

assets, or financial intermediation to enable investment can yield increases

in wealth that move beneficiaries towards a higher-level equilibrium, thereby

reducing, or even eliminating, the need for ongoing transfers (Carter, 1998).

If both processes are at play within a population, then effective targeting of

appropriate interventions depends on identifying the relevant subpopulation

to which a given poor household belongs.

Sorting out the mechanisms that underpin persistent poverty is therefore

enormously important in practical terms, but also quite difficult methodolog-

ically. Barrett and Carter (2013) and Barrett, Garg, and McBride (forthcom-

ing) identify a range of confounding factors that challenge identification of

poverty trap mechanisms, several of which our unusual data let us overcome.

We study a relatively simple system in which a single, scalar-valued variable

(livestock holdings) serves as an excellent proxy for overall wealth, we have

household-level panel data that permit us to establish initial conditions and

to estimate herd management ability, and we have data on household’s ex-

pected herd growth conditional on particular states of nature. To the best

of our knowledge, these attributes are unique to these data and permit a

deeper exploration of the genesis of multiple dynamic wealth equilibria than

has been feasible previously.

We make no claim to external validity of our empirical findings beyond

the particular setting we study. Rather, the value of this exercise lies in un-

packing the structure behind a poverty trap mechanism already established

among this population in other data. Among Boran pastoralists, a poor
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population in southern Ethiopia, livestock herd evolution is characterized by

boom-and-bust cycles determined by drought and biological reproduction.

Using 17-year herd history data collected by Desta (1999), Lybbert et al.

(2004) find herd dynamics that follow an S-shaped curve with two stable

dynamic equilibria (at roughly 1 and 35-40 cattle), separated by an unsta-

ble dynamic equilibrium, a threshold at 15-20 cattle. Barrett et al. (2006)

find similar herd patterns in herd dynamics data from similar communities

in northern Kenya. The authors conjecture that this threshold results from

a minimum critical herd size necessary to undertake migratory herding to

deal with spatiotemporal variability in forage and water availability. Those

with smaller herds are forced to stay near their base camps, where pasture

conditions soon get degraded, leading to a collapse of herd size towards the

low-level stable equilibrium, while those with bigger herds can migrate in

search of adequate water and pasture, enabling them to sustain far larger

herds. Toth (2015) corroborates that herd mobility is sharply increasing

in herd size in the neighborhood of the herd size thresholds Lybbert et al.

(2004) identify. Santos and Barrett (2011) likewise find informal credit ar-

rangements behave as one would predict in the presence of such thresholds.

These findings from east African pastoralist are among the strongest em-

pirical evidence Kraay and McKenzie (2014) find in support of the multiple

equilibrium poverty traps hypothesis.

For this paper, we collected new data among the same population (but

not the same households) as those studied by Desta (1999) so as to explore

the role of shocks and ability in shaping wealth dynamics. The next section

briefly explains the data. In section 3, we use data on pastoralists’ expecta-

tions of herd size one year ahead, given different values of initial herd size.

We disaggregate these dynamics as a function of respondents’ expected rain-

fall states and find a non-linear relation between initial and future wealth

that arises exclusively in adverse states of nature. Under favorable rainfall

regimes, respondents’ subjective perceptions suggest a smooth asset growth
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process. We use these data to simulate long-run equilibria that we show

correspond closely with those identified by Lybbert et al. (2004) in the his-

torical data. We also note considerably larger variation among households

in expected herd dynamics under adverse states of nature, which raises the

possibility of household or individual characteristics that might generate such

cross-sectional variation.

Section 4 then explores that possibility using stochastic growth frontier

methods to obtain household-specific estimates of technical efficiency, which

we use as proxy for herding ability. We use these estimates to explore the

hypothesis that herder’s ability conditions wealth dynamics. This appears

true in the data. Low ability herders (which we define as those in the bot-

tom quartile of the ability distribution) are expected to slide into poverty

regardless of initial wealth; we observe multiple dynamic herd size equilibria

only for herders of higher ability. In Section 5 we apply this approach to the

analysis of the expected evolution of the wealth of a sample of herders in this

region. We find evidence that ability makes a significant difference in terms

of expected wealth and inequality in this system. Section 6 concludes, stress-

ing the policy implications of these findings with respect to complex wealth

dynamics and the centrality of shocks and individual ability to understanding

the existence of multiple equilibria in this system.

2 Data

We use data from a household survey fielded among a random sample of

120 Boran pastoralist households, in the same four communities of southern

Ethiopia as those studied by Lybbert et al. (2004), although among different

households. These data were collected by the Pastoral Risk Management

(PARIMA) project every three months, March 2000-June 2002, and then

annually each September-October starting in 2003. The focus of the project,

and consequently, of the data collected, was on understanding the importance
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of shocks as a source of poverty persistence in this context, and the data

include rich detail on household composition, migration histories, changes in

herds, shocks, informal transfers of assets, etc. Barrett et al. (2004) describe

the location, survey methods and available variables. In section 4 we use

these data, briefly summarized in Table 1, to estimate herd growth frontiers,

from which we can estimate household-specific ability.

Table 1: PARIMA data: definition and descriptive statistics
Variable Definition Mean Std. Err.
herd size at t herd size at t 9.18 12.87
herd size at t-1 herd size at t-1 8.12 11.35
no cattle at t-1 =1 if owns no cattle at t-1, 0 otherwise 0.19 0.39
herd below threshold at t-1 =1 if 0 < herd size at t-1 <15, 0 otherwise 0.68 0.47
herd above threshold at t-1 =1 if herd size at t-1 > 15 0.14 0.35
labor family size at t 5.50 3.36
land land cropped in June 2000 1.12 2.25
sex =1 if male 0.64 0.48
experience years since start of herd management 20.26 14.07
migrant =1 if migrated to where currently lives 0.21 0.41
Dida Hara =1 if lives in Dida Hara 0.25 0.43
Dillo =1 if lives in Dillo 0.25 0.43
Qorate =1 if lives in Qorate 0.25 0.43
Wachille =1 if lives in Wachille 0.25 0.43

The respondents are, as a rule, male, experienced in herd management

and, to a large extent, have not migrated from where they were born. An

important fraction (close to 1 in 5 households) own no cattle, and an even

more important fraction (slightly above 2 in 3 households) own herds that

are smaller than 15 cattle, the accumulation threshold identified in Lybbert

et al. (2004). During the period for which we have data, the average herd

did grow, from an average herd size of 8.1 cattle in 2000 to 9.2 cattle in 2003

(the equivalent of a growth rate of 4.3% per year). However, this average

masks important heterogeneity in terms of growth experiences, as shown in

Table 2: focusing only on households who owned cattle, growth episodes are

almost as likely as decreases or stagnation in herd size.

In 2004 we also collected new data on households’ subjective expectations
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Table 2: PARIMA data: heterogeneity in growth, 2000-2003

Growth no cattle herd below herd above
threshold threshold

negative – 47 11
0 57 66 14

positive 9 128 25
N 66 241 50

of herd dynamics. The use of elicited expectations to study decision-making

has now been applied extensively for testing economic hypotheses in both

developed and developing countries (for reviews, see Manski, 2004, Hurd,

2009, Delavande, 2014, Delavande, Gine, and McKenzie, 2011). That said,

it is worth explaining in some detail how we elicited these data.

We started by randomly selecting four hypothetical initial herd sizes for

each respondent, one from each of the intervals defined by the equilibria iden-

tified by Lybbert et al. (2004). 4 Respondents were then asked to characterize

their expectations of rainfall during the coming year, choosing between good,

normal or bad. 5. Because the data were collected well into the rainy season,

these answers should not be interpreted as uninformed priors, that could

merely reflect differences in optimism. 6 Respondents were also asked to as-

4The intervals are [1,5), [5, 15), [15, 40) and [40, 60] tropical livestock units (TLU)
where 1 TLU = 1 cattle = 0.7 camels = 10 goats or sheep. The TLU measure allows
aggregation across species on the basis of animals’ average adult metabolic weight. Among
the Boran we study, the overwhelming majority of TLU are held in the form of cattle.

5This sort of trinomial rainfall characterization is familiar to respondents, as it corre-
sponds to published rainfall forecasts such as those disseminated by the regional Drought
Monitoring Centre and government and nongovernmental organization extension officers.
See the analysis in (Luseno et al., 2003, Lybbert et al., 2007), who previously studied
pastoralists’ rainfall expectations

6The geographical concentration of pastoralists’ expectations regarding rainfall further
reinforces this interpretation: in two sites, over 90% of the respondents expected bad
rainfall, while in the other two sites, expectations were equally divided between ‘bad
rainfall’ and ‘good rainfall’.
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sume a herd of standard composition for the region (in terms of age and sex

of the animals). In one site, and in a second separate interview, we addition-

ally asked respondents to consider what would happen to their herd (with an

identical randomly allocated initial herd size), in the case of more extreme

weather conditions, namely severe drought and a very good year. 7

After thus framing the problem, we asked each respondent to define the

maximum and the minimum herd size they would expect to have one year

later if they themselves started the year with the randomly assigned initial

herd size. These bounds provide a natural anchor for the next step, in which

we asked respondents to distribute, on a board, 20 stones among herd sizes

between the minimum and the maximum previously elicited, thereby describ-

ing their subjective herd size distribution one year ahead conditional on the

randomly assigned initial herd size and the statement about rainfall. Finally,

each respondent was asked if s/he had ever managed a herd approximately

equal in size to the initial value provided as the random seed. The elicitation

of the probability distribution function is an appropriate technique under

these circumstances (Morgan and Henrion, 1990) and allows us to compute

conditional distributions and their moments. In addition, and because hypo-

thetical initial wealth was randomly assigned to the respondent, it eliminates

the prospective endogeneity of initial herd size in determining the estimated

herd dynamics (Heckman, 1991).

In total, we have 460 observations, collected among 115 respondents for

rainfall conditions labeled as good/normal or bad. Of these, 19 do not include

a herd size prediction, usually because respondents were unable to distribute

the stones across the board, a problem that occurred mainly for bigger initial

herd sizes, when the difference between the maximum and the minimum was

sometimes quite large. Of the remaining 441 observations, the respondents

had prior personal experience managing a herd of comparable size in 288

7In particular, we asked respondents to consider herd evolution “as if” in 1999, the last
major drought, or “as if” in a very good year, which we asked them to define based on
their own experience.
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cases (65.3%). In addition, we have 61 similar observations for very good

and very bad years.

We finish this brief description of the data we use by presenting, in fig-

ure 1, the scatter plot and kernel regression relating expected herd size one

year ahead and initial herd size, conditional on ever having had a herd with a

similar size but unconditional on weather conditions. 8 Several points emerge

from comparing pastoralists’ subjective expectations of one year-ahead herd

dynamics (figure 1) with the dynamics revealed by Desta/Lybbert et al.’s

herd history data (in particular, the dashed line in Lybbert et al. (2004, p.

771, figure 4), which reflects one year ahead dynamics).

Figure 1: Unconditional subjective expected herd dynamics

8We estimate Nadaraya-Watson nonparametric regressions with the Epanechnikov ker-
nel and bandwidth of 4.545. The value of bandwidth was selected using Silverman (1986)
rule of thumb, as determined by the “bounds for Stata” package (Beresteanu and Manski,
2000).
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First, both these data and the prior studies exhibit multiple dynamic

equilibria consistent with the notion of a poverty trap. Second, however,

the equilibria identified by pastoralists appear to differ markedly from those

apparent in herd history data, both with respect to their location and sta-

bility. Notably, herd accumulation occurs for a wider range of initial herd

sizes, while herd losses seem a relatively marginal occurrence, contradicting

detailed studies of this system (Coppock, 1994) and the dynamics suggested

by herd history data.

These casual comparisons invite more disaggregated analysis. Our data

on herders’ subjective expectations of herd dynamics (Figure 1) represent

only one-year-ahead expectations under necessarily limited variability in rain-

fall regimes. By contrast, the pattern exhibited in the actual herd history

data used by Desta/Lybbert et al. are the result of a mixture of environmen-

tal conditions over a period of 17 years.9 These differences are made clear in

table 3, which summarizes the data on expected herd size one year ahead,

conditional on state of nature and on having had a herd with a similar size,

and its representation in figures 2 and 3, where we present the scatter plot

and kernel regression relating expected herd size one year ahead and initial

herd size for bad and normal/good years. 10

These plots, and the summary statistics in table 3 suggest two insights.

First, the relation between expected and initial herd size is nonlinear only in

the case of bad rainfall conditions. Under good or normal climatic conditions

(and perhaps unsurprisingly), almost all herders expect herd growth no mat-

ter the initial herd size. This disaggregation implies that adverse weather

9For example, Kamara, Swallow, and Kirk (2004) identify three major droughts
(1984/85, 1991/92 and 1995/96) and two periods of excessive rains (1980/81 and 1997/98)
in this region over the period covered by the Desta/Lybbert et al. data. To these natural
disasters, one may add the generalized ethnic clashes between the Boran and the Gabra
in 1992, following the fall of the Derg regime. Barrett and Santos (2014) explore how
changing rainfall distributions might impact observed herd dynamics.

10To conserve space, we omit figures reflecting the data and nonparametric regressions
under extreme weather conditions, which show that during severe drought everyone expect
to lose cattle.
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Figure 2: Expected herd dynamics under bad rainfall conditions

Figure 3: Expected herd dynamics under good or normal rainfall conditions
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shocks drive the nonlinear dynamics revealed by the analysis of herd history

data.

Second, the dispersion around the expected herd growth values is much

bigger under conditions of bad rainfall than in a normal/good year. Herders

exhibit far more heterogeneous beliefs about their ability to deal with adverse

states of nature than with favorable ones. If, following Schultz (1975), one

interprets this variation as at least partly reflecting pastoralist herding ability

– assuming each pastoralist accurately perceives his or her own herd dynamics

given his or her individual aptitude for herding – then perhaps ‘the ability

to deal with disequilibria’ plays a significant role in wealth dynamics.

3 Expected herd dynamics in a stochastic en-

vironment

In order to generate herders’ subjective expectations of herd dynamics under

a mixture of states of nature we need to integrate data on herd growth

expectations conditional on rainfall (the elicited expectations data previously

described) with historical rainfall data (in practice, monthly rainfall data for

the four sites over the period 1991-2001). 11 With this information we can

then simulate herd evolution over longer periods than just one year ahead.

Since we must predict out-of-sample in simulating herd evolution for large

values of initial herd size, we estimate the parametric relation between initial

and expected herd sizes (hereafter, herd1 and herd0, respectively) conditional

11Average rainfall was 490 mm/year, with a standard deviation of 152 mm/year. Given
the skewness and the kurtosis of this distribution, we cannot reject the null hypothesis
that rainfall follows a normal distribution. The minimum annual rainfall over the period
was registered in 1999 (259 mm) and the maximum in 1997 (765 mm). The probability of
such events is 0.064 and 0.035. Given these results, we assumed, for simulation purposes, a
symmetric distribution, with a probability of extreme events (drought; or very good year)
equal to 0.10. In a separate analysis (Barrett and Santos, 2014) we show that the results
are relatively sensitive to changes in the rainfall distribution, reflecting the dependency of
this system on rainfall and its vulnerability to climate change
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on each of the four rainfall scenarios (drought (very bad), bad, normal/good

, and very good). We estimate this relation with a respondent fixed effect

specification, αi, taking advantage of having repeated observations, r, across

different herd size intervals on each individual, i. We thus estimate

herd1 ir = f(herd0 ir) + αi + εir (1)

where f(herd0 ir) is a polynomial function of initial herd size.12 Table 4

presents the estimates, which reflect the same results displayed visually in

figures 2 and 3, and suggested in table 3: unambiguous, effectively linear

expected growth under normal/good/very good rainfall conditions, and a

nonlinear relation between herd1 and herd0 under conditions of poor rainfall

and drought, and with considerable dispersion so that the precision of those

estimates (as measured by the R2) is far less than under favorable rainfall

regimes.

We then use these estimates to simulate the expected evolution of herd

sizes 13 Figure 4 presents the basic structure of the simulation procedure

we used, while figure 5 presents the mean of 10-year ahead herd size for 500

replicates of this simulation with initial herd sizes between 1 and 60.

The results are remarkably similar to the dynamics revealed by the herd

12Besides the assumptions on the functional form of f(•), we also assumed that
εir ∼ N(0,σ2). Other specifications, that replace the fixed effect with other regressors
that could affect subjective expectations, such as gender, age, experience and migrant sta-
tus, were considered, but none of those variables proved statistically significant, so we omit
these results. We omit higher order polynomial terms in the very good and good/normal
year specifications because they added nothing given the good fit already achieved with a
simple linear specification with fixed effects.

13We calibrate these estimates to impose basic biological rules for livestock. More pre-
cisely, we do not allow for negative herds and impose that biological growth under good
rainfall conditions is delayed in 2 years, i.e., enough for cows to reproduce in accordance
with basic gestational patterns. We also constrain the predicted values for initial herd
sizes above 52 (poor rainfall) and 45 (drought) to be linear, with a slope of 0.033 and
0.009, respectively, preventing unbelievable predictions due to the parameter estimates at
the boundaries of our sample.
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Table 4: Estimates of Expected Herd Dynamics Conditional on Rainfall

Variable Very Good Good Bad Very bad
herd0 1.293 1.477 0.528 0.246

(0.000) (0.019) (0.224) (0.246)
herd2

0 0.026 0.009
(0.010) (0.010)

herd3
0 -0.00039 -.00017

(0.0001) (0.0001)
constant 0.897 0.179 0.513 -0.575

(0.448) (0.416) (1.185) (1.083)
N 61 96 192 61
R2 0.986 0.994 0.792 0.589
Note: Values within parenthesis are robust standard errors

t-1 t t+1
predict herdt → rainfall draw
(herd0 given) ↓

call ht+1=f(ht | rainfall )
↓

predict ht+1 → repeat as in t

Figure 4: Simulation procedure
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Figure 5: Simulated expected herd dynamics

history data (the solid line in Lybbert et al. (2004, p. 771, figure 4)), both in

the general shape of the curve and in the location of the different equilibria.

This strongly suggests that the mismatch observed earlier between the one

year ahead transitions predicted by the two data sets (figure 1 and the dashed

line in Lybbert et al. (2004, p. 771, figure 4)) arose because of differences

in the underlying distribution of the states of nature; once we account for

historical rainfall patterns and simulate the longer-term herd dynamics, it

appears that Boran pastoralists’ subjective expectations reflect a remarkably

accurate understanding of the nature of how their herds have evolved over

the past generation. In particular, they expect that someone with a herd

below approximately 15 cattle will eventually lose almost all of his wealth,
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collapsing into a destitute equilibrium with just 1 cow.

Can we be sure that multiple equilibria exist? Given the small sample

size, the answer is “no”; the lower confidence band crosses the equilibrium

line only once, from above, at the lower level equilibrium (1 animal). But as

we show below, this merely reflects our current assumption that all herders

follow the same growth path. When we disaggregate by herder ability, the

precision of our estimates improves significantly.

Concentrating on our average estimates, do these nonlinearities lead to

a poverty trap? The answer depends, in part, on what one means by a

“poverty trap”. In Table 5 we quantify the probability of moving between

equilibria over a 10 year period given the stochastic nature of these shocks.

There is a positive probability that a herder starting with a herd between 1

and 4 cattle will, 10 years later, have grown his herd. Indeed, there is even a

very small (< 1 percent) probability that he finishes above the accumulation

threshold. Hence, under the strictest interpretation of a poverty trap – that

initial conditions totally determine future wealth and the system is non-

ergodic, thus the probability of growing to a higher equilibrium is zero –

finds no support in our data. However, the probability of moving out of

poverty is quite low (less than 12%), suggesting that, in this context, the

idea of a poverty trap is most usefully conceptualized as a high probability

that agents will remain at lower levels of welfare, a weaker but perhaps more

realistic interpretation of the concept in stochastic environments (Azariadis

and Stachurski, 2005).

Summarizing the results so far, we find that Boran pastoralists accurately

perceive long-term herd dynamics characterized by multiple wealth equilibria

consistent with the notion of a poverty trap: shocks almost totally prevent

wealth accumulation that would allow herders at a low initial wealth level

from escaping poverty. However, these dynamics seem entirely the result of

an asymmetry in growth rates under different rainfall conditions. Growth is

universally expected in good years while S-shaped dynamics seem to result
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Table 5: Estimated herd size ten year transition matrix

herdt+10 0-4 5-14 15-39 >40
herdt

1-4 0.879 0.113 0.009 0.000
5-14 0.575 0.262 0.133 0.030
15-39 0.204 0.280 0.255 0.261
>40 0.136 0.230 0.291 0.342

from wealth-differentiated capacity to deal with bad rainfall conditions. 14

Our data also show that, even in bad years, not all herders expect their

herds to shrink. The considerable dispersion of beliefs about herd dynamics

under adverse states of nature suggests that herder-specific characteristics,

which we summarize as ability, may likewise play a central role in condi-

tioning wealth dynamics among these Ethiopian herders. The next section

investigates this hypothesis.

4 Ability and expected herd dynamics

Herding in semi-arid environments is a difficult livelihood. One must know

how to treat livestock diseases and injuries, protect cattle against predators,

manage their nutrition, navigate to distant grazing and watering sites, assist

in difficult calving episodes, etc. Not everyone learns and practices these

diverse skills equally well. One would naturally expect herders with greater

animal husbandry skills to enjoy faster herd growth and to be less subject

to adverse shocks to herd size than less skilled herders. Put differently, the

herd dynamics explored in the historical data and in the previous section

may ignore salient differences in herder ability.

14This could explain why, for example, Mogues (2011) studying livestock accumulation
in other regions of Ethiopia in the period 2000-03, with no major shocks in between, does
not find evidence of such nonlinearities, and why Barrett et al. (2006) find evidence of an
S-shaped curve for asset dynamics in the northern Kenya PARIMA sample, which included
a major drought ending in 2001.
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We explore the impact of differences in herding ability upon herd dynam-

ics by using the PARIMA panel data on pastoralist households, described

in section 2, to estimate herder ability using stochastic parametric frontier

estimation methods for panel data (Kumbhakar and Lovell, 2000). More

precisely, we estimate the herd growth frontier that explains herder i’s herd

size at the beginning of period t, hit, conditional on a vector of household

attributes, Xit−1,and herd size at the beginning of the prior period using a

composed error term that includes a symmetric random component reflecting

standard sampling and measurement error, ψ, and a one-sided term reflecting

observation-specific but time-invariant inefficiency, φi ≥0, which we assume

follows a truncated normal distribution, N+(µ, σ2):

hit = f(hit−1) + βXit−1 − φi + ψit (2)

We use an exogenous switching regressions specification for f(hit−1) so as

to incorporate the possibility of two different growth paths, depending on

whether the herder is above or below the 15 cattle threshold identified by

Lybbert et al. (2004).

Since these households were surveyed repeatedly from 2000-2003, we can

take advantage of multiple observations for each herder to compute consistent

herder-specific mean efficiency measures, i.e., each pastoralist’s proximity to

the herd frontier. The inefficiency parameter φi captures any time-invariant –

and period-average time-varying – unobservables associated with systematic

deviation from the herd growth frontier. This parameter can clearly capture

factors beyond the herder’s period-average unobserved ability/skill, such as

location-specific unobservables. But φi is almost surely strongly correlated

with skill. Moreover, it is an open question whether it matters for targeting

and programming if the features that cause systematic underperformance are

intrinsic, immutable individual skill or community-level or slow-changing in-

dividual characteristics. The key is that there exist distinct groups of house-

holds who routinely out-perform or under-perform their neighbors, however
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we understand the structural genesis of those relative performance differ-

ences.

The interpretation of these estimates as proxies for ability can still be

contested on at least two grounds. First, the lagged values of herd size are

clearly related to lagged (and current) ability, hence our estimates of inef-

ficiency are likely inconsistent. This would matter if we were interested in

cardinal measures of inefficiency. But we focus only on the ordinal measures,

grouping households into low and high ability cohorts. So long as the corre-

lation between lagged wealth and ability does not affect the ordering of each

observation within the inefficiency distribution, the possible bias in point

estimates will be of no consequence for present purposes.

Second, we estimate inefficiency by imposing a specific functional form, a

specific distribution for the inefficiency parameter, and a specific accumula-

tion threshold that, from the existing literature (in particular Lybbert et al.

(2004)), seems valid for the average herder in this setting. These assump-

tions can introduce misspecification error that may be easily conflated with

inefficiency. As with the prior concern about inconsistent parameter esti-

mates, our reliance purely on the ordering of the estimates sharply limits

the relevance of such concerns. Nonetheless, an alternative approach is to

use more flexible, nonparametric efficiency estimation methods, in particu-

lar Data Envelopment Analysis, that can easily allow for variable returns

to scale without imposing a specific functional or distributional forms (see

Coelli et al., 2005). Our analysis is robust to this alternative way of esti-

mating inefficiency (results available from the lead author by request), so we

maintain that the ordinal inefficiency estimates we estimate provide a rea-

sonable proxy for relative herder ability/skill and thus serve present purposes

well.15

Table 6 presents estimates of the herd growth frontier based on 2000-1,

15The DEA estimates were obtained using the -dea- command in Stata (Ji and Lee,
2010). The results are available from the lead author by request.
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2001-2 and 2002-3 annual observations for the 113 households for which we

have complete data on each of the covariates.16 The results indicate statis-

tically significant (p-value = 0.053) differences in the asset dynamics above

and below the threshold, with expected herd growth (collapse) above (below)

the threshold. The estimated frontier is piecewise quadratic in herdt-herdt−1

space, as higher order polynomial terms of lagged herd size have no statisti-

cally significant effect.17 Household labor and land endowments have no effect

at the margin on expected herd growth, signaling that these are not limit-

ing in this environment for most households. Male-headed households enjoy

significantly higher herd growth rates, which may partly capture household

composition effects (with male-headed households having more men avail-

able to herd, especially on treks away from base camp lasting days or weeks,

holding labor availability constant). There exist statistically significant, al-

beit diminishing, marginal returns to herding experience. And there are

marginally significant fixed effects associated with location and year (in par-

ticular, for 2001-2, the year of recovery after the severe 1999-2000 drought),

the latter result reinforcing our earlier finding about state-dependent growth.

The estimated distribution of the inefficiency estimates (with cattle as the

units of measure) is presented in figure 6,18 allowing a visual analysis of the

within-sample variation.

16Because one of the households is the successor of an initial household, we only have
data for the last two years. Hence, we’re using an unbalanced panel, with 338 observations.

17Table 1 defines these variables and presents the descriptive statistics. We also esti-
mated this regression using cubic and quartic terms, but none of the higher-order polyno-
mials were statistically significantly different from zero and one could not reject the null
hypothesis that the higher-order terms jointly have no effect on next period’s herd size,
once one allows for the threshold effect. The variable “no cattle at t-1” is included to
control for the fact that herd growth is different when one has no cattle – growth can
then only occur through purchases or gifts, both of which are very infrequent (Lybbert
et al., 2004) – than when one has a positive herd size. Although the point estimate on
this variable is not statistically significantly different from zero, when we do not control
for this effect, the estimated coefficients on lagged herd size and its various interactions
become far more imprecise.

18Estimated using the Epanechnikov kernel, with a bandwidth of 0.24697.
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Table 6: Stochastic parametric herd growth frontier estimates

variable coefficient std. err. p-value
herd size at t-1*above threshold 1.022 0.093 0.000
herd size at t-1 squared * above threshold 0.000 0.001 0.689
herd size at t-1* below threshold 0.890 0.307 0.004
herd size at t-1 squared * below threshold -0.009 0.022 0.681
no cattle at t-1 -1.126 1.245 0.366
labor * above threshold -0.089 0.174 0.611
labor * below threshold 0.099 0.125 0.427
land 0.022 0.152 0.885
sex 1.333 0.702 0.057
experience 0.137 0.071 0.052
experience squared -0.002 0.001 0.174
migrant -0.605 0.998 0.544
2000-01 -0.740 0.531 0.164
2001-02 1.553 0.525 0.003
Dida Hara 1.870 1.110 0.092
Qorate 0.026 1.229 0.983
Wachille 0.827 1.131 0.465
constant 13.012 195.554 0.947
µ 14.671 195.551 0.940

N 338
R2 0.230
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Figure 6: Empirical density function of herd growth inefficiency estimates

Using the predicted value of each herder’s estimated inefficiency, we then

divide our sample into two sub-samples: lower ability (those in the 4th quar-

tile of the inefficiency estimates, with φi > 15.38) and a complementary

category of higher ability herders.The observations are concentrated around

just a few points ranges of inefficiency estimates, suggesting that there may

be little value to further subdivision of the sample. 19 For each of these

two classes we re-estimate equation 1, obtaining estimates of the parametric

models that relate expected and initial herd size for each sub-sample, after

which we performed the same simulation as above.20 Figure 7 shows the

19We also experimented with splitting the higher ability herders into two categories,
those of highest ability (the 1st quartile of the inefficiency distribution) and a residual
medium ability class (the 2nd and 3rd quartiles). The qualitative results are similar, so
we present the simpler approach here. Results of the most disaggregated analysis are
available from the lead author by request.

20These 8 parametric models (4 states of nature x 2 ability classes) are qualitatively
similar to the ones presented in Table 4. To conserve space, we omit them here but make
them available from the lead author by request.
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Figure 7: Simulated expected herd dynamics – the effect of ability

nonparametric conditional expectation function (and 95 percent confidence

intervals) of 10-year-ahead herd size obtained for 500 replicates with initial

herd sizes between 1 and 60 cattle for each ability class. The results are

easily summarized.

Although those in the lowest ability quartile exhibit S-shaped expected

herd dynamics, these lie everywhere beneath the dynamic equilibrium line

(the solid 45◦ line in figure 7). Thus, low ability herders are expected to

converge towards the low level dynamic asset equilibrium of 1-2 head of

cattle over time. Recall that all herders expect to grow their herds during

good and normal rainfall years. So this expected long-run herd size collapse

arises entirely from low ability herders difficulty in managing and recovering
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from adverse weather shocks.

Higher ability herders likewise exhibit S-shaped expected herd dynamics.

However, they face multiple dynamic equilibria, with a threshold (i.e., unsta-

ble dynamic equilibrium) at 11-17 cattle, similar to the threshold estimated

by Lybbert et al. (2004) from the herd history data. Notice also that, when

we allow for different growth paths conditional on ability, we get much more

precise estimates of the herd dynamics within this system. In particular,

both confidence bands for the higher ability herders cross the dynamic equi-

librium line in three points, two of which represent stable dynamic equilibria,

at 1-2 and 29-35 cattle, respectively. The implication, reflected in figure 7, is

that S-shaped herd dynamics characteristic of a multiple equilibrium poverty

trap are not followed by all herders. Low ability herders face a unique dy-

namic equilibrium at lower levels of welfare, giving rise to a different sort

of poverty trap than that faced by herders with higher ability, who expect

to accumulate wealth so long as they maintain an herd size above the 12-17

cattle threshold. These results clearly raise important practical questions

with respect to any asset redistribution or transfer policy, as ability is not

easily and quickly identified in conventional survey methods, at least not

by outsiders such as the governmental and nongovernmental agencies that

typically provide transfers and public safety net programs.

5 Expected growth and inequality among the

Boran

We now apply this simulation approach to analyze the expected evolution

of wealth and inequality in our sample of respondents. We use the same

approach as above on the subsample of 97 households that owned cattle

in 2003.21 Table 7 presents the results for expected average herd size 10

21From our sample of 120 respondents, 5 were not interviewed in 2003 and 18 had no
cattle. Given that we did not elicit the expectations about herd evolution for stockless
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years ahead and for expected inequality, based on 500 runs of our simulation

procedure, first when we disregard the effect of herder ability (column b),

then when we incorporate it (column c).

Table 7: Expected evolution of wealth and inequality among the Boran
t=0 t=10 t=10

(disregarding ability) (considering ability)
(a) (b) (c)

Average herd size 12.76 9.61 15.85
(1.49) (3.34) (8.89)

Gini coefficient on herd size 0.46 0.66 0.71
(0.05) (0.04) (0.07)

The results are simple to interpret. When we take into consideration the

role individual heterogeneity plays in shaping wealth dynamics (column c),

we should expect both an increase in average herd size and a large increase

in inequality over time, as low ability herders collapse into destitution and

higher ability herders steadily grow their livestock holdings. If we simu-

late the evolution of the wealth of this population with a simpler approach

that neglects such differences (column b), then we still expect an increase

in inequality (although somewhat smaller), but with a decrease in average

wealth.

Finally, we explore the effectiveness of herd restocking in this system, as

this is perhaps the most common form of post-drought assistance provided to

pastoralists by donors and governments in the region. We simulate the effect

of three different scenarios, under the maintained assumption that growth

does depend on ability (as represented in figure 7).

In Scenario 1, all herds below five cattle (a customary, Boran-defined

poverty line) are given animals to boost their herd to five head, irrespective

of the recipient herder’s ability. In aggregate, that corresponds to a transfer

herders and that, to the best of our knowledge, there are no reliable estimates of the rate
of re-entry into pastoralism for herders who lost all their cattle, we dropped them from
the simulation. Among those with no cattle in 2003, 5 households (or 27%) were classified
as of being of low ability.
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of 36 cattle to 17 beneficiaries in our 2003 sample of 97 households, a “bud-

get” that we maintain in the next two scenarios. In Scenario 2, we simulate

the effects of a transfer targeted so as to maximize the number of “viable”

herders, that is, those that have a herd that is larger than the estimated min-

imum accumulation threshold of 11 cattle. Although we assume that growth

depends on ability, we also assume that there exists no effective mechanism

to elicit herder ability. Then in Scenario 3, we assume one can accurately

identify herder by ability group and, as with Scenario 2, again target trans-

fers so as to maximize asset growth. Scenario 3 involves transfers of 37 cattle

to 16 higher ability herders. The main difference between these scenarios is

evident in Figure 8, where we draw the expected herd growth associated with

the transfer of one cattle, conditional on herder ability.

Figure 8: Expected gains from the transfer of one cattle

Given expected herd dynamics over the decade following the hypothesized

transfer, the transfer is expected to generate herd growth, net of the one cattle

transfer (i.e., expected gains> 1), only for higher ability recipients with ex
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ante herd size between 9 and 22 head. Herders of low ability or, if of higher

ability, with the smallest (or largest) herds are expected to lose some of their

post-transfer herd over the ensuing decade, signaling negative medium-to-

long term growth returns on livestock transfers to the poorest (or wealthiest)

herders of higher ability. The expected herd gain is maximized for a transfer

to a higher ability herder with an ex ante herd size of 15 cattle, a significantly

larger herd than is typical of restocking program participants, since such

interventions are typically targeted following some poverty reduction criteria,

like Scenario 1.

Table 8 presents the results of a comparison among these three differ-

ent scenarios for targeting herd restocking transfers which reflect both this

discussion and, implicitly, the distribution of low and high ability types as

function of pre-transfer wealth, as represented in figure 9

Figure 9: Distribution of high and low ability types as a function of initial
wealth

As one would expect based on the growth dynamics of this system, re-
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stocking targeted to lower wealth households (specifically, those fewer than

five cattle) fails to promote growth among the poor. After 10 years, benefi-

ciaries enjoy an expected gain of 0.86 cattle, but from an average transfer of

2.12 cattle. This implies a -4.4% compound annual return on investment in

transfer resources, reflecting expected herd losses below the critical herd size

threshold. The growth-promoting impacts of herd restocking become more

satisfactory in the other two scenarios, that target those who can reach the

herd accumulation threshold through transfers rather than the ex ante poor-

est households. Under scenario 2, the average net returns to this policy after

10 years are 43% (3.6% annually). These returns significantly increase to

70% (5.4% annually), under scenario 3, showing that the payoff to the design

of a reliable mechanism for identifying herding ability is potentially consid-

erable, given that ability seems to matter a great deal to wealth dynamics

in this system. But targeting the accumulation threshold is the main factor

that drives achieving a positive long-run rate of return on transfer resources.

This payoff naturally depends on the distribution of ability types. As

shown in figure 9 there is, in this system at least, a correlation between ex ante

wealth and ability that reflects the joint operation of the dynamics described

in this paper – with low ability types expected to fall into and remain

in poverty regardless of initial wealth – and the insufficiency of informal

insurance, particularly among the poor (Santos and Barrett, 2011). Roughly

half of the herders with less than five cattle are classified as low ability (which,

recall, we defined as being in the lower quartile of the distribution of our

estimates of technical efficiency). The frequency of low ability herders then

diminishes with wealth: 22% of the beneficiaries of transfers under Scenario 2

(with herds between 9-11 cattle) are classified as of low ability, and only little

more than 10% of the herders with wealth above the accumulation threshold

are classified as such. The challenge intrinsic to restocking projects targeted

at those with small herds is that it implicitly favors those with the least

ability to manage the livestock they receive. This finding lends support to
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recent policy initiatives in the east African drylands that focus more on cash

transfers than livestock transfers to support the poorest community members.

6 Conclusions

Using unique data on subjective herd growth expectations conditional on

expected rainfall, we find that southern Ethiopian pastoralists appear to un-

derstand the nonstationary herd dynamics that long-term herd history data

suggest characterize their system, corroborating Lybbert et al. (2004) and

related results using different data and methods. Moreover, pastoralists’

responses reveals that multiple dynamic equilibria arise purely due to ad-

verse shocks associated with low rainfall years and only among pastoralists

of higher herding ability. Lower ability herders appear to converge towards a

unique, low-level equilibrium herd size. When adverse weather events strike,

they lose livestock and, in expectation, cannot recover quickly enough before

the next drought hits. Thus, the data suggest that even among a seemingly

homogeneous population in an ethnically uniform region offering effectively

only one livelihood option – livestock herding – there exist complex wealth

dynamics characterized by distinct convergence clubs defined by individual

ability, with multiple dynamic equilibria existing for only a subset of those

clubs and a unique stable dynamic equilibrium for the other clubs.

These findings carry two very general policy implications. First, the need

for interventions to lift people out of – or to prevent their collapse into –

poverty traps, seems to depend on the nature of the adverse shocks, in partic-

ular whether their severity and frequency is such that growth under favorable

states of nature is often and sharply reversed, making accumulation below a

critical threshold unlikely (albeit not impossible). Risk mitigation or transfer

methods to limit the frequency or magnitude of shocks may be as or more

valuable than transfers to facilitate growth among the poorest. Second, the

appropriate design and targeting of social protection in this stochastic envi-
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ronment depend very much on individual characteristics, perhaps including

difficult-to-observe characteristics such as ability. Identifying ability may be

operationally difficult, but failure to take such characteristics into account

may lead to ill-conceived efforts and wasted scarce resources.
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