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Abstract

The effects of financial frictions in business cycle models depend heavily
on the underlying asset pricing theory. I examine the implications of learning-
based asset pricing in a model in which firms face credit constraints that depend
partly on their market value. Agents are learning about stock prices, but
have conditionally model-consistent expectations otherwise. The model jointly
matches key asset price and business cycle statistics, while the combination of
financial frictions and learning produces powerful feedback between asset prices
and real activity, adding substantial amplification of business cycle shocks.
Patterns of predictability in agents’ subjective forecast errors closely match
survey data.

JEL: D83, E32, E44, G12
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Financial frictions are seen as a central mechanism by which asset prices interact
with macroeconomic dynamics. Yet our understanding of this interaction remains
incomplete, in part due to the inherent difficulty of modelling asset prices. Typical
business cycle models still rely on an asset pricing theory based on rational expec-
tations, time-separable preferences and moderate degrees of risk aversion. It is well
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Figure 1: Return expectations and expected returns.
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Expected nominal returns (left) are the mean response in the Graham-Harvey survey, realized nom-
inal returns (right) and P/D ratio are from the S&P 500. Data period 2000Q32012Q4. Correlation
coefficient for return forecasts ρ = .54, for realized returns ρ = −.44.

known that such a theory is inadequate for many empirical asset price regularities.
At the same time, asset prices play a central role in macroeconomic dynamics in the
presence of financial frictions. Conclusions drawn from models with financial frictions
but without a good asset pricing theory are therefore questionable.

There is not a shortage of theories that aim to explain asset price dynamics. Most
keep the rational expectations assumption and engineer preferences that deliver highly
volatile discount factors. There are however compelling arguments for relaxing the
rational expectations assumption instead. Measurements of expectations in surveys
do not support the rational expectations hypothesis. The hypothesis implies, for
example, that investors are fully aware of return predictability in the stock market,
expecting lower returns when prices are high and vice versa. Instead, measured
expectations imply they expect higher returns. This pattern has been documented
extensively by Greenwood and Shleifer (2014) and is illustrated in Figure 1. The left
panel plots the mean 12-month return expectation of the S&P500, as measured in the
Graham-Harvey survey of American CFOs, against the value of the P/D ratio in the
month preceding the survey. The correlation is strongly positive: Return expectations
are more optimistic when stock valuations are high. This contrasts sharply with the
actual return predictability in the right panel of the figure, where the correlation is
strongly negative. Unless one rejects surveys as an unbiased measure of expectations,
such a pattern cannot be reconciled with rational expectations.

Based on such observations, Adam, Marcet and Nicolini (2015) have developed an
asset pricing theory based on learning. The interpretation of price dynamics there is
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quite different: Stock prices fluctuate not because of variations in discount factors and
expected compensation for risk, but because of variations in subjective expectations
about prices and returns. The deviation of subjective from rational expectations is a
natural measure of “price misalignments.” In an endowment economy, this approach
is able to explain the most common asset price puzzles remarkably well.

In this paper, I examine the implications of a learning-based asset pricing theory for
the business cycle. I construct a model of firm credit frictions in which agents are
learning about price growth in the stock market, as in Adam, Marcet and Nicolini
(2015). At the same time, the model has a “financial accelerator” mechanism in which
asset prices play a key role. Firms are subject to credit constraints, the tightness
of which depends on their market value. The constraints emerge from a limited
commitment problem in which defaulting firms can be restructured and resold as
opposed to being liquidated. It provides a mechanism by which high stock market
valuations translate into easier access to credit.

Deviating from the rational expectations hypothesis is not without problems. One
needs to explicitly spell out the entire belief formation process, filling many degrees
of freedom. The existing learning literature often suffers from a lack of transparency
in this respect, or abandons expected utility maximization altogether in favor of more
reduced-form equilibrium conditions. To address this problem, I develop a restriction
on expectations that I call “conditionally model-consistent expectations.” It can be
seen as a refinement of the “internal rationality” requirement developed by Adam and
Marcet (2011). Agents continue to maximize a well-defined stable objective function
with coherent and time-consistent beliefs about the variables affecting their decisions.
They can entertain arbitrary beliefs about one relative price in the economy, which
in this paper is the price of equity. But their beliefs about any other variable must be
consistent with the equilibrium conditions of the model. When agents endowed with
these expectations evaluate their forecast errors, they find that their forecasting rules
cannot be improved upon conditional on their subjective belief about stock prices.
In this sense this is a minimal departure from rational expectations. What’s more,
spelling out a belief system for stock prices and then imposing conditionally model-
consistent expectations is all that is needed to obtain a unique dynamic equilibrium.
This allows me to parsimoniously incorporate asset price learning into any forward-
looking model.

The model jointly matches key business cycle and asset price moments under learning.
By contrast, the rational expectations version of the model cannot match asset price
moments well, and also needs larger shocks to match the volatility of the business
cycle. This points to a large amount of endogenous amplification under learning, and
suggests that the relatively weak quantitative strength of the financial accelerator
effect in many standard models—as discussed in (Cordoba and Ripoll, 2004)—is in
part due to weak endogenous asset price volatility. Under learning, a positive feedback
loop emerges between asset prices and the production side of the economy. When
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beliefs of learning investors are more optimistic, their demand for stocks increases.
This raises firm valuations and relaxes credit constraints, in turn allowing firms to
move closer to their profit optimum. Firms are able to pay higher dividends to their
shareholders, raising stock prices further and propagating investor optimism.

I then compare the subjective forecasts of agents in the model with actual forecasts
in survey data. Even though agents only learn about stock prices in the model, their
expectational errors spill over into forecasts of other variables. For example, when
agents are too optimistic about asset prices, they also become too optimistic about
the tightness of credit constraints and therefore over-predict future investment. The
model-generated expectations replicate remarkably well the predictability of forecast
errors for several predictors and across a range of forecast variables.

In a series of sensitivity checks, I show that nominal rigidities greatly enhance the
amplification effects of the feedback loop under learning. This is in part due to
their ability to generate comovement in macroeconomic aggregates following shifts
in borrowing constraints. The interest rate rule followed by the monetary authority
also plays a role in the amplification mechanism. In particular, a positive response of
interest rates to stock price growth is able to greatly reduce endogenous volatility by
effectively stabilizing asset price expectations.

The remainder of the paper is structured as follows. Section 1 briefly discusses the
related literature. Section 2 presents a simplified version of the model that permits an
analytic solution. It shows that credit frictions or asset price learning alone does not
generate either amplification of shocks or interesting asset price dynamics, although
their combination does. The full model is presented in Section 3. Section 4 contains
the quantitative results. Section 5 contains sensitivity checks, including the effects of
different interest rate rules. Section 6 concludes.

1 Related literature

The early literature on financial frictions emphasized their role for amplyfing business
cycle shocks (Kiyotaki and Moore, 1997), but the quantitative importance of the
“financial accelerator” mechanism is often found to be small (Quadrini, 2011). The
more recent literature on financial frictions instead emphasizes shocks to borrowing
constraints as independent drivers of the business cycle (e.g. Jermann and Quadrini,
2012), or alternatively introduces direct shocks to asset prices. Xu, Wang and Miao
(2013) develop a model in which borrowing limits depend on stock market valuations
through a credit friction similar to that in my model. They prove the existence of
rational liquidity bubbles and introduce a shock that governs the size of this bubble.
Liu, Wang and Zha (2013) use a similar framework with land prices instead of stock
prices. This paper takes a different approach by going back to the question of financial
frictions as an amplification mechanism. Learning endogenously generates volatility

4



in asset prices, and interacts with financial frictions to form a feedback loop that
amplifies standard business cycle shocks.

Besides learning, there exist of course other asset pricing theories to address asset
pricing puzzles, including habit, long-run risk, and disaster risk. Each of them has
been shown to be compatible with standard business cycle moments in production
economies (Boldrin, Christiano and Fisher, 2001, for habit; Tallarini Jr., 2000, for
long-run risk; and Gourio, 2012, for disaster risk). But each of them also has its
problems (e.g. Lettau and Uhlig 2000; Epstein, Farhi and Strzalecki 2013), and none
of them is able to explain the disconnect between statistically predicted returns and
expectations of returns in surveys. There is currently no consensus among economists
which asset pricing theory is “best”, and the goal of this paper is not to set up a horse
race between learning and alternative asset pricing theories. Rather, the goal is to
examine in detail the interaction of learning-based asset pricing and financial frictions.

There are a number of papers that study models of financial frictions in combination
with learning (Caputo, Medina and Soto, 2010; Milani, 2011; Gelain, Lansing and
Mendicino, 2013). Their approach consists of two steps: first, derive the linearized
equilibrium conditions of the economy under rational expectations; second, replace
all terms involving expectations with parameterized forecast functions, and update
the parameters every period. Such an approach certainly produces very rich dynam-
ics, but is problematic on several grounds. First, such parameterized expectation
equations often do not correspond anymore to intertemporal optimization problems.
Second, the analysis of these models is often complex and lack transparency. Here, I
develop a more transparent and parsimonious approach. Beliefs are restricted to be
conditionally model-consistent and agents make optimal choices given a consistent set
of beliefs. This preserves much of the intuition of a rational expectations model, and
at the same time allows for “spillovers” of forecast errors on asset prices into other
forecasts. The approach also differs from that of Fuster, Hebert and Laibson (2012).
There, agents learn only about exogenous variables, and endogenous outcomes can
therefore not feed back into beliefs. In this model, agents learn about endogenous
prices, with a feedback loop between beliefs and real activity.

Finally, the paper relates to the research on survey data on expectations. It is well
known that expectations measured in surveys fail to conform to the rational expecta-
tions hypothesis because forecast errors are statistically predictable (e.g. Croushore,
1997). Coibion and Gorodnichenko (2015) interpret forecast error predictability as
evidence in favour of rational inattention models. The model in this paper produces
similar predictability statistics in a learning model.
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2 Simplified model

In this section, I construct a simplified version of the model which illustrates the
interaction between credit frictions and learning about asset prices. For the sake of
brevity, I omit a formal description of the model, which can be found in the appendix.
The key insight is that neither learning nor financial frictions alone generate sizable
amplification of business cycle shocks or asset price volatility in a production economy,
while in combination they do.

2.1 Model setup

The economy consists of a representative household and a representative firm. There
are two physical goods, labor and a consumption/investment good. The household is
risk-neutral with discount rate β. It inelastically supplies one unit of labor and also
holds the debt and equity claims on the firm. Debt claims pay a gross real interest
rate R. For the debt market to be in equilibrium, the interest rate has to equal
R = 1/β. Equity claims trade at a price Pt and pay dividends Dt. For the stock
market to be in equilibrium, the following Euler equation has to hold:

Pt = βEPt [Pt+1 +Dt+1] . (1)

Note that the expectation operator is evaluated under the probability measure P .
Agents use this measure when forming their expectations to solve their optimization
problems. Under learning, the distribution of outcomes expected under P does not
necessarily coincide with the distribution induced in equilibrium.

The representative firm operates a constant returns to scale technology in capital
Kt−1 and labor Lt. Labor is hired at the competitive wage rate wt. The capital stock
depreciates at the rate δ and must be financed entirely with borrowed funds. The
firm faces a leverage constraint by which its debt claims cannot exceed a fraction ξ of
its total market value (equity and debt). For simplicity, all earnings are assumed to
be paid out as dividends every period and the number of shares outstanding is fixed
at unity. The firm maximizes expected dividends as follows:

EPt Dt+1 = max
Kt,Lt+1

EPt
[
Kα
t (At+1Lt+1)1−α − wt+1Lt+1 + (1− δ)Kt −RKt

]
(2)

s.t. 0 ≤ Kt ≤
ξ

1− ξPt (3)

Note that the borrowing constraint (3) relates the level of the capital stock Kt (equal
to the value of the firm’s outstanding debt) to the value of its equity. The microfoun-
dation of this constraint is discussed in the next section. For the labor market to be
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in equilibrium, the wage rate wt has to adjust such that the firm demands Lt = 1.
Define the rationally expected return on capital as:

Rk (Kt, At) = α

(
At
Kt

)1−α

Et
[
ε1−α
t+1

]
+ 1− δ. (4)

Finally, the only exogenous shock in the model is a permanent innovation to produc-
tivity, which evolves as:

logAt = logAt−1 + εt, εt ∼ iidN
(
−σ

2

2
, σ2

)
. (5)

2.2 Rational expectations equilibrium

I first describe the equilibrium under rational expectations.1 Start with the case ξ = 1.
In this limiting case, the borrowing constraint (3) can never bind. The firm invests up
to the efficient level where the expected return on capital equals the interest rate. As
a result, capital is simply proportional to productivity: Kt/At = K∗ for some fixed
value K∗.

Once we introduce financial frictions by setting ξ < 1, how much amplification do
we get? The answer is: none. For all values of ξ strictly below one, the borrowing
constraint is always binding, and the equilibrium is characterized by the following
two equations:

Pt = AtP̄ = At

(
Rk
(
K̄, 1

)
−R

)
K̄

R− 1
(6)

Kt = AtK̄ =
ξ

1− ξPt (7)

The first equation pins down the stock market value of the firm, which depends on
the capital stock through expected dividends in the enumerator. These dividends
depend on capital through the size of the firm and the rate of return on capital.
The second equation determines the capital stock that can be reached by exhausting
the borrowing constraint that depends on the stock market value. In the unique
equilibrium, the capital stock is proportional to productivity, just as was the case
when ξ = 1.

Financial frictions do not lead to any amplification or propagation of shocks in the
rational expectations equilibrium. They have a level effect on output, capital, etc.,
but the dynamics of the model are identical for any value of ξ. Similarly, the behavior
of asset prices is entirely independent of ξ. The stock price evolves simply as:

logPt = logPt−1 + εt. (8)

1In a rational expectations equilibrium, the distribution of outcomes under P coincides with the
equilibrium distribution of outcomes. In that case, one can write EP [·] = E [·].
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Intuitively, with financial frictions, a shock to productivity raises asset prices just
as much as to allow the firm to instantly adjust the capital stock proportionately.
At the same time, stock returns are not volatile and unpredictable at all horizons.
The complete irrelevance of financial frictions for the model dynamics is particular
to the assumptions placed on the model, but it illustrates nevertheless why financial
frictions often have small quantitative effects.

2.3 Learning equilibrium

I now describe the equilibrium under learning. Conceptually, the only difference to a
rational expectations equilibrium is that the measure P under which agents evaluate
expectations can differ from the actual distribution of model outcomes. Otherwise,
agents continue to make optimal choices given their expectations are such that all
markets clear—the equilibrium satisfies “internal rationality” (Adam and Marcet,
2011).

How, then, is the subjective belief system P defined? First of all, agents are not
endowed with the knowledge of the equilibrium law of motion for stock prices (8).2

Instead, under P agents believe that the stock price Pt evolves as follows:

logPt = logPt−1 + µt + ηt (9)

µt = µt−1 + νt (10)

where

(
ηt
νt

)
∼ iidN

(
−1

2

(
σ2
η

σ2
ν

)
,

(
σ2
η 0

0 σ2
ν

))
. (11)

This specification is identical to the one in Adam, Marcet and Nicolini (2015). With
an appropriate prior, Bayesian updating of this belief system amounts to a simple
Kalman filtering problem where the belief about µt is updated in the direction of the
last forecast error: When agents see stock prices rising faster than they expected,
they will also expect them to rise by more in the future.

In a forward-looking general equilibrium model such as this one, and even more so
in the full model of the next section, there are many more expectations affecting the
equilibrium other than those about Pt. Households need to forecast future dividends
in order to determine their demand for stocks in (6). Firms need to forecast future
productivity and wages in order to decide their demand for capital in (2). This leaves
many degrees of freedom to be filled. My focus in this paper is to concentrate on
the effects of stock price learning, while remaining as close as possible to rational
expectations. To this end, I impose that agents know the true distribution of the
exogenous shock εt, and that they have conditionally model-consistent expectations
with respect to the stock price Pt. To be precise, I impose the following:

2Intuitively, one can imagine that agents are unable to determine that the representative house-
hold is the only investor in the market, instead being unsure about the aggregate demand schedule
for stocks and the resulting equilibrium price process.
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Assumption. Let yt be the collection of all endogenous model variables. Let g
be the actual law of motion that recursively describes the equilibrium under
learning: yt = g (yt−1, εt), with the stock price evolving as Pt = gP (yt−1, εt).
Agents’ subjective expectations about yt under P are assumed to also follow
a subjective recursive law of motion h: yt = h (yt−1, εt, Pt), which is such that
expected and realized outcomes coincide conditional on stock prices:

EPt−1 [yt | εt, Pt] = h (yt−1, εt, gP (yt−1,, εt)) = g (yt−1, εt) = yt. (12)

This way of restricting expectation formation is new to the learning literature. It
implies that, while agents do not know the equilibrium pricing function gP , they make
the smallest possible expectational errors consistent with their subjective view about
the evolution of stock prices. The subjective law of motion h can be derived from
the equilibrium equations of the model, taking out the market clearing condition in
the stock market (and that in the final goods market, by Walras’ law) and replacing
it with the subjective law of motion (9)–(11). The solution procedure is further
discussed in Section 3.3.

In this simple model, the equilibrium under learning is easy to compute. It consists
of the following three equations:

Pt =

(
Rk (Kt, At)−R

)
Kt

R− exp
(
µ̂t + 1

2
σ2
µ

) (13)

Kt =
ξ

1− ξPt (14)

µ̂t+1 = µ̂t −
σ2
ν

2
+ g

(
log

Pt
Pt−1

− µ̂t +
σ2
η + σ2

ν

2

)
(15)

The second equation is the borrowing constraint. The third equation is the updating
equation of the Kalman filtering problem solved by an agent who believes (9)–(11),
with µ̂t = EPt−1 [µt].

3 Some comment is necessary on the first equation. It is ob-
tained by imposing equilibrium in the stock market, i.e. solving Equation (1) for Pt
under the subjective belief measure P . The expectation of future prices EPt Pt+1 is
easily substituted with the perceived law of motion (9). The expectation of future
dividends EPt Dt+1 is found by applying conditionally model-consistent expectations.
These imply that i) all agents share the same belief system, so that the household
expects dividend payments consistent with the firm’s expected optimal choice; ii) the
firm itself correctly forecasts future productivity At+1 and expects future wages wt+1

3I effectively impose that forecasts of stock prices are updated only after equilibrium prices
are determined. This “lagged belief updating” is common in the learning literature. It makes all
feedback between forecasts and prices inter- rather than intratemporal. For further discussion see
Adam, Beutel and Marcet (2014).
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Figure 2: Stock price dynamics under learning.

t

logPt − logP0

∆ logPt

µ̂t

0 1 2 3 4 5 6 7

that are consistent with labor market clearing. As a result, the one period-ahead
expectation of dividends coincides with rational expectations.4

Figure 2 depicts the dynamics of stock prices after a positive productivity innovation
ε1 > 0. The initial shock at t = 1 raises stock prices and the capital stock pro-
portionally to productivity through Equations (13) and (14), just as under rational
expectations. Learning investors observe the rise in P1 and are unsure whether it is
due to a transitive shock (η1 > 0) or a permanent increase in the growth rate of stock
prices (ν1 > 0). They therefore revise their beliefs µ̂2 upward in Equation (15). In
the next period t = 2, the more optimistic beliefs increase the demand for stocks,
and the market clearing price Equations (13) has to be higher, in turn relaxing credit
constraints and fueling investment. Beliefs continue to rise in subsequent periods as
long as observed asset price growth (dashed black line in Figure 2) is higher than the
current belief µ̂t (solid red line). The differences between observed and expected price
growth are the subjective forecast errors (dotted red lines). In the figure, the increase
in prices and beliefs ends at t = 3, when the forecast error is zero. There is no need
for a further belief revision. But in the absence of subsequent shocks, no change in
µ̂t implies no change in the price Pt, so that realized asset price growth is zero at
t = 4, at a time when agents expect strongly positive price growth. This triggers a
downward revision in beliefs and an endogenous reversal in prices. Ultimately prices
return to their steady-state level.

These learning dynamics lead to return volatility and predictability. To see this, it is
convenient to look at the forward P/D ratio:

Pt
EPt Dt+1

=
1

R− exp
(
µ̂t + 1

2
σ2
µ

) .
4However, the n-period ahead expectation EPt Dt+n for n ≥ 2 does not coincide with rational

expectations, as it depends on the expectation of Pt+n−1.
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Figure 3: Endogenous response of dividends.
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(b) Dampening.

The forward P/D ratio is directly related to the belief µ̂t, and even small changes in
this belief can have a large impact on the P/D ratio as the denominator is close to
zero. Furthermore, since the system (13)–(14) is stationary, a high P/D ratio predicts
a future decline in µ̂t and therefore falling prices and low returns.

Learning affects economic activity because it influences current stock prices and there-
fore the tightness of the borrowing constraint. But the feedback in this model is two-
sided, as real activity affects stock prices through dividend payments. The strength
of this channel depends on general equilibrium effects. Equation (13) shows that Kt

enters the expression for expected dividends twice. The multiplying factor Kt cap-
tures a partial equilibrium effect which is internalized by the firm. The internal rate
of return on capital is higher than the cost of debt and the firm therefore wants to in-
crease its capital stock until it exhausts the borrowing constraint, increasing expected
dividends. At the same time though, higher levels of capital lower its marginal return
Rk (Kt, At) because of decreasing returns to scale at the aggregate level, increasing
wages and decreasing expected dividends.

When financial frictions are severe enough (ξ is low), the partial equilibrium effect
dominates. This case is depicted in Panel (a) of Figure 3. The figure plots the stock
pricing equation (13) and the credit constraint (14). When the degree of financial
frictions is high, the credit constraint line is steep. Consider the effect of a positive
productivity shock at t = 1 as before, when the initial equilibrium is at P1 and
µ̂1. The immediate effect will be a proportionate rise in stock prices and capital,
together with a rise in beliefs from µ̂1 to µ̂2. This leads to higher stock prices at
t = 2 and allows the firm to invest more and increase its expected profits—the partial
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equilibrium effect dominates. This adds to the rise in realized stock prices, further
relaxing the borrowing constraint and increasing next period’s beliefs. Stock prices,
investment, and output all rise more than proportionally to productivity.

In Panel (b), credit constraints are not very severe (ξ is large) and the credit constraint
line is relatively flat. A relaxation of the borrowing constraint due to a rise in µ̂2 still
allows the firm to invest and produce more, but in general equilibrium wages rise by so
much that dividends fall. This response of dividends dampens rather than amplifies
the dynamics of investment and asset prices.

This dampening effect can be so strong as to eliminate the effects of learning alto-
gether. The appendix shows that in the limit of vanishing financial frictions, stock
prices become a pure random walk again:

logPt − logPt−1
ξ→1−→ εt.

As a consequence, the entire dynamics of the model become identical to those under
rational expectations. As financial frictions disappear, the general equilibrium effects
offset any dynamics from stock price learning. This shows that sizable amplifica-
tion arises neither from learning nor from credit frictions alone, but only from their
interaction.

3 Full model for quantitative analysis

This section embeds the mechanism discussed so far into a quantitative New-Keynesian
model with a financial accelerator. Compared with the simple model in the previ-
ous section, I introduce a number of additional elements. First, firms are allowed to
finance capital out of retained earnings. Second, the borrowing constraint is general-
ized and microfounded by a limited commitment problem. Third, I add investment
adjustment costs and nominal rigidities. The former improve the quantitative fit,
while the latter help to attenuate the general equilibrium effects discussed above.

3.1 Model setup

The economy is closed and operates in discrete time. It is populated by two types of
households. Lending households consume final goods and supply labor. They trade
debt claims on intermediate goods producers and receive interest from them. Firm
owners only consume final goods. They trade equity claims on intermediate goods
producers and receive dividends from them.

The two households own four types of firms. Only the first type is substantial to the
model analysis: Intermediate goods producers (or simply firms) combine capital and
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differentiated labor to produce a homogeneous intermediate good. They are owned
by the firm owners, borrow funds from households, and are financially constrained.
The other three types of firms serve only to add nominal rigidities and adjustment
costs to the model. They are owned by the households. Labor agencies transform
homogeneous household labor into differentiated labor services, which they sell to
intermediate goods producers. Final good producers transform intermediate goods
into differentiated final goods. Capital goods producers produce new capital goods
from final consumption goods subject to an investment adjustment cost.

Finally, there is a fiscal authority setting tax rates to offset steady-state distortions
from monopolistic competition, and a monetary authority setting nominal interest
rates. Most elements of the model are standardand their desription is relegated to
the appendix.

3.1.1 Households

A representative household with time-separable preferences maximizes utility as fol-
lows:

max
(Ct,Lt,Bjt,Bgt )

∞
t=0

EP0
∞∑
t=0

βt log (Ct)− η
L1+φ
t

1 + φ

s.t. Ct = w̃tLt +Bg
t − (1 + it−1)

pt−1

pt
Bg
t−1 +

ˆ 1

0

(Bjt −Rjt−1Bjt−1) dj + Πt

Here, w̃t is the real wage received by the household and Lt is the amount of labor
supplied. Bg

t are real quantities of nominal one-period government bonds (in zero net
supply) that pay a nominal interest rate it and pt is the price level, defined below.
Households also lend funds Bjt to intermediate goods producers indexed by j ∈ [0, 1]
at the real interest rate Rjt. These loans are the outcome of a contracting problem
described later on. Πt represents lump-sum profits and taxes. Consumption Ct is itself
a composite CES utility flow from a variety of differentiated goods with elasticity of
substitution σ.

The first-order conditions of the household are standard. In what follows I define the
stochastic discount factor of the household as Λt+1 = βCt/Ct+1.

3.1.2 Intermediate good producers (firms)

The production of intermediate goods is carried out by a continuum of firms, indexed
j ∈ [0, 1]. Firm j enters period t with capital Kjt−1 and a stock of debt Bjt−1 which
needs to be repaid at the gross real interest rate Rjt−1. First, capital is combined
with a labor index Ljt to produce output:

Yjt = (Kjt−1)α (AtLjt)
1−α , (16)
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where At is aggregate productivity. The labor index is a CES combination of differ-
entiated labor services with elasticity of substitution σw, but the firm’s problem can
be treated as if the labor index was acquired in a competitive market at the real wage
index wt. Output is sold competitively to final good producers at price qt. During
production, the capital stock depreciates at rate δ. This depreciated capital can be
traded by the firm at the price Qt.

The firm’s net worth is the difference between the value of its assets and its outstand-
ing debt:

Njt = qtYjt − wtLjt +Qt (1− δ)Kjt−1 −Rjt−1Bjt−1. (17)

I assume that the firm exits with probability γ. This probability is exogenous and
independent across time and firms. As in Bernanke, Gertler and Gilchrist (1999), exit
prevents firms from becoming financially unconstrained. If a firm does not exit, it
needs to pay out a fraction ζ ∈ (0, 1) of its earnings as dividends (where earnings Ejt
are given by Njt−QtKjt−1 +Bjt−1). The number ζ therefore represents the dividend
payout ratio for continuing firms.5 If a firm does exit, it must pay out its entire net
worth as dividends. It is subsequently replaced by a new firm, which receives the
index j. I assume that this new firm gets endowed with a fixed number of shares,
normalized to one, and is able to raise an initial amount of net worth. This amount
equals ω (Nt − ζEt), where ω ∈ (0, 1) and Nt and Et are aggregate net worth and
earnings, respectively.6

The net worth of firm j after equity changes, entry and exit is given by

Ñjt =

{
Njt − ζEjt for continuing firms,

ω (Nt − ζEt) for new firms.

This firm then decides on the new stock of debt Bjt and the new capital stock Kjt,
maximizing the present discounted value of dividend payments using the discount
factor of its owners. Its balance sheet must satisfy:

QtKjt = Bj
t + Ñtj. (18)

3.1.3 Firm owners

Firm owners differ from households in their capacity to own intermediate firms. The
representative firm owner is risk-neutral. It can buy shares in firms indexed by j ∈

5The optimal dividend payout ratio in this model would be ζ = 0, as firms would always prefer
to build up net worth to escape the borrowing constraint over paying out dividends. However,
this would imply that aggregate dividends would be proportional to aggregate net worth, which is
rather slow-moving. The resulting dividend process would not be nearly as volatile as in the data.
Imposing ζ > 0 allows to better match the volatility of dividends and therefore obtain better asset
price properties.

6The simplified firm problem of Section 2 is nested as the caseζ = 1 and γ = 0.

14



[0, 1]. As described above, when a firm exits, it pays out its net worth Njt as dividends,
and is replaced by a new firm, which raises equity ω (Nt − ζEt). Let the set of exiting
firms in each period t be denoted by Γt ⊂ [0, 1]. Then, the firm owner’s utility
maximization problem is given by:

max
(Cft ,S

j
t )
∞
t=0

EP0
∞∑
t=0

βtCf
t

s.t. Cf
t +

ˆ 1

0

SjtPjtdj =

ˆ
j /∈Γt

Sjt−1 (Pjt +Djt) dj (19)

+

ˆ
j∈Γt

[Sjt−1Djt − ω (Nt − ζEt) + Pjt] dj (20)

Sjt ∈
[
0, S̄

]
(21)

for some S̄ > 1. Firm owners’ consumption Cf
t is the same aggregator of differentiated

final goods as for households.

The first term on the right-hand side of the budget constraint deals with continuing
firms and is standard: Each share in firm j pays dividends Djt and continues to trade,
at price Pjt. The second term deals with firm entry and exit. If the household owns a
share in the exiting firm j, it receives a terminal dividend. At the same time, a new
firm j appears that is able to raise a limited amount of equity ω (Nt − ζEt) from the
firm owner in exchange for a unit amount of shares that can be traded at price Pjt.
In addition, firm owners face upper and lower bounds on traded stock holdings.7 The
first-order conditions of the firm owner are

Sjt


= 0 if Pjt > βEPt

[
Djt+1 + Pjt+11{j /∈Γt+1}

]
∈
[
0, S̄

]
if Pjt = βEPt

[
Djt+1 + Pjt+11{j /∈Γt+1}

]
.

= S̄ if Pjt < βEPt
[
Djt+1 + Pjt+11{j /∈Γt+1}

] (22)

3.1.4 Borrowing constraint

In choosing their debt holdings, firms are subject to a borrowing constraint. The
constraint is the solution to a particular limited commitment problem in which the
outside option for the lender in the event of default depends on equity valuations.

Each period, lenders (households) and borrowers (firms) meet to decide on the lending
of funds. Pairings are anonymous. Contracts are incomplete because the repayment
of loans cannot be made contingent. Only the size Bjt and the interest rate Rjt of the

7This renders demand for stocks finite under arbitrary beliefs. In equilibrium, the bounds are
never binding.
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loan can be contracted in period t. Both the lender (a household) and the firm have
to agree on a contract (Bjt, Rjt). Moreover, there is limited commitment in the sense
that at the end of the period, but before the realization of next period’s shocks, firm
j can always choose to enter a state of default. In this case, the value of the debt
repayment must be renegotiated. If the negotiations are successful, then wealth is
effectively shifted from creditors to debtors. The outside option of this renegotiation
process is bankruptcy of the firm and seizure by the lender.

Bankruptcy carries a cost of a fraction 1−ξ of the firm’s capital being destroyed. The
lender, a household, does not have the ability to operate the firm. It can liquidate
the firm’s assets, selling the remaining capital in the next period. This results in
a recovery value of ξQt+1Kjt. With some probability x (independent across time
and firms), the lender receives the opportunity to “restructure” the firm if it wants.
Restructuring means that, similar to Chapter 11 bankruptcy proceedings, the firm
gets partial debt relief but remains operational. I assume that the lender has to
sell the firm to another firm owner, retaining a fraction ξ of the initial debt. In
equilibrium, the recovery value in this case will be ξ (Pjt +Bjt) and this will always
be higher than the recovery value after liquidation. The appendix shows that the
debt contract takes the form of a leverage constraint in which total firm value is a
weighted average of liquidation and market value:

Bjt ≤ ξ

(1− x)EPt Λt+1Qt+1ξKjt︸ ︷︷ ︸
liquidation value

+x (Pjt +Bjt)︸ ︷︷ ︸
market value

 (23)

This borrowing constraint nests the one in the simple model for x = 1.

3.1.5 Further model elements and shocks

Investment is subject to quadratic adjustment costs that move the price for capital
goods:

Qt = 1 + ψ

(
It
It−1

− 1

)
(24)

Further, the prices for final goods and wages are subject to Calvo rigidities, with price
stickiness parameter κ and wage stickiness parameter κw. The price for intermediate
goods qt equals the inverse of the gross markup of final goods producers. The mon-
etary authority setting the nominal interest rate according to a Taylor-type interest
rate rule:

it = ρiit−1 + (1− ρi)
(
β−1 + φππt + εit

)
, (25)
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where φπ is the reaction coefficient on consumer price inflation πt, ρi is the degree
of interest rate smoothing, and εit is an interest rate shock. Details of the model
structure are provided in the appendix.

Finally, the exogenous stochastic processes are productivity and the monetary policy
shock:

logAt = (1− ρ) log Ā+ ρ logAt−1 + log εAt (26)

εAt ∼ iidN
(
0, σ2

A

)
(27)

εit ∼ iidN
(
0, σ2

i

)
(28)

3.2 Rational expectations equilibrium

I first describe the equilibrium under rational expectations. An equilibrium is a set
of stochastic processes for prices and allocations, a set of strategies in the limited
commitment game, and an expectation measure P such that the following holds for
all states and time periods: Markets clear; allocations solve the optimization programs
of all agents given prices and expectations P ; the strategies in the limited commitment
game are a subgame-perfect Nash equilibrium for all lender-borrower pairs; and the
measure P satisfies rational expectations.

Under a mild restriction on the exit probability γ, there exists a rational expectations
equilibrium characterized by the following properties.

1. All firms choose the same capital-labor ratio Kjt/Ljt. This allows one to define
an aggregate production function and an internal rate of return on capital:

Yt = αKα
t−1

(
AtL̃t

)1−α
(29)

Rk
t = qtα

Yt
Kt−1

+Qt (1− δ)Kt−1 (30)

2. The expected return on capital is higher than the internal return on debt:
EtRk

t+1 > Rjt.

3. At any time t, the stock market valuation Pjt of a firm j is proportional to its
net worth after entry and exit Ñjt. This permits one to write an aggregate stock
market index as

Pt =

ˆ 1

0

Pjt = βEt
[
Dt+1 +

1− γ
1− γ + γω

Pt+1

]
. (31)

4. Borrowers never default on the equilibrium path and borrow at the risk-free
rate

Rjt = Rt =
1

EtΛt+1

. (32)
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The lender only accepts debt payments up to the limit given by (23), which
is proportional to the firm’s net worth Ñjt, and the firm always exhausts this
limit.

5. As a consequence of the previous properties of the equilibrium, all firms can be
aggregated. Aggregate debt, capital, and net worth are sufficient to describe
the intermediate goods sector:

Nt = Rk
tKt−1 −Rt−1Bt−1 (33)

QtKt = (1− γ + γω) ((1− ζ)Nt + ζ (Bt−1 −QtKt−1)) +Bt (34)

Bt = xEtΛt+1Qt+1ξKt + (1− x) ξ (Pt +Bt) . (35)

Proofs are relegated to the appendix.

3.3 Learning equilibrium

I introduce learning about stock prices as in the simple model of Section 2. Under the
subjective belief measure P , agents are assumed to retain the belief that the value of
an individual firm is proportional to its net worth, as under rational expectations:

Pjt =
Njt

Nt

PtP-almost surely. (36)

But while investors have the correct belief of the cross-section of prices given the
aggregate market value, they are uncertain about the evolution of the aggregate
value Pt itself. I construct the belief system as in the simplified model: Under P , i)
agents have the correct belief about the exogenous shocks, ii) agents believe that the
stock price Pt evolves according to Equations (9)-(11), iii) agents have conditionally
model-consistent expectations with respect to stock prices, as defined in Section 2.3.

In practice, I solve the model using a two-stage procedure. The first stage is to solve
for the policy functions and beliefs under P . The Kalman filtering equations that
describe beliefs about stock prices are as follows:

logPt = logPt−1 + µ̂t−1 −
σ2
ν + σ2

η

2
+ zt (37)

µ̂t = µ̂t−1 −
σ2
ν

2
+ gzt, (38)

where µ̂t is the mean belief about the trend in stock price growth, and zt is the forecast
error. Under the subjective beliefs P , zt is normally distributed white noise. I impose
that beliefs about any other endogenous variable are consistent with model outcomes
conditional on the evolution of stock prices, and so beliefs and policy functions can be
calculated using the belief equations about stock prices and the remaining equilibrium
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equations, taking zt as an exogenous shock process. The market clearing condition for
stocks and consumption goods, however, do not enter this first stage of the problem.
Adding either one would effectively impose that beliefs about stock prices, too, be
consistent with equilibrium outcomes, thereby falling back to rational expectations.
Now, if yt is the set of model variables and ut the set of exogenous shocks, solving
this first stage leads to the subjective policy function yt = h (yt−1, ut, zt) satisfying
conditionally model-consistent expectations.

The second stage of the model consists in finding the value for zt which leads to
market clearing in the stock market and thereby establishes equilibrium. This results
in a mapping from the state variables and exogenous shocks to the perceived forecast
error r : (yt−1, ut) 7→ zt. The resulting process for zt is clearly not an iid disturbance,
and in this respect agents’ subjective beliefs are misspecified. The final solution of
the model is given by the policy function yt = g (yt−1, ut) = h (yt−1, ut, r (yt−1, ut)). I
approximate the policy functions using a second-order perturbation method.

4 Results

I now present the quantitative results of this paper. First, I discuss the choice of
parameters. Then, I review standard business cycle statistics. Learning and asset
price volatility account for a third of the volatility of output, pointing to the strength
of the endogenous amplification mechanism. I then look at asset pricing moments
and find that the model with learning closely matches the volatility of stock prices
(which is targeted by the estimation), but also the predictability of stock returns,
skewness and kurtosis. Next, I present impulse response functions, confirming the
strong amplification mechanism. The main channel is the endogenous volatility of
asset prices induced by learning. But I also show that this is not the only channel
through which learning affects the economy: Expectations about asset prices also
cause procyclical movements in aggregate demand, leading to additional amplification
in the presence of nominal rigidities. Finally, I compare forecast errors made by agents
in the model with those observed in survey data. The patterns of predictability are
remarkably similar, lending credibility to the assumed expectation formation process.

4.1 Choice of parameters

I partition the set of parameters into two groups. The first set of parameters is cali-
brated to first-order moments, and the second set is estimated by simulated method
of moments (SMM) on second-order moments of US quarterly data.
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4.1.1 Calibration

The capital share in production is set to α = 0.33, implying a labor share in output
of two thirds. The depreciation rate δ = 0.025 corresponds to 10 percent annual
depreciation. The persistence of the temporary component of productivity is set to
0.95.

The discount factor is set such that the steady-state interest rate matches the average
annual real return on Treasury bills of 2.5 percent, implying a discount factor β =
0.9938. The elasticity of substitution between varieties of the final consumption good,
as well as that among varieties of labor used in production, is set to σ = σw = 4. The
Frisch elasticity of labor supply is set to 3, implying φ = 0.33.

The strength of monetary policy reaction to inflation is set to φπ = 1.5, and the
degree of nominal rate smoothing is set to ρi = 0.85.

Four parameters describe the structure of financial constraints: x, the probability
of restructuring after default; ξ, the tightness of the borrowing constraint; ω, the
equity received by new firms relative to average equity; and γ, the rate of firm exit
and entry. I calibrate the restructuring rate to x = 0.093. This is the fraction of
US business bankruptcy filings in 2006 that filed for Chapter 11 instead of Chapter
7, and that subsequently emerged from bankruptcy with an approved restructuring
plan (a sensitivity check is included in Section 5.2).8 The remaining three parameters
are chosen such that the non-stochastic steady state of the model jointly matches the
US average investment share in output of 20 percent, average debt-to-equity ratio of
1:1 (as recorded in the Fed flow of funds), and average quarterly P/D ratio of 139
(taken from the S&P500). The parameter values thus are γ = 0.0165, ξ = 0.4152,
and ω = 0.018.

4.1.2 Estimation

The remaining parameters are the standard deviations of the technology and mone-
tary shocks (σA, σi), the degree of nominal price and wage rigidities (κ, κw), the size
of investment adjustment costs (ψ), the fraction of dividends paid out as earnings
by continuing firms (ζ), and the learning gain (g). I estimate these six parameters
to minimize the distance to a set of eight moments pertaining to both business cycle
and asset price statistics: The standard deviation of output; the standard deviations
of consumption, investment hours worked, and stock prices relative to output; and
the standard deviations of inflation, the nominal interest rate, and stock returns (see

82006 is the only year for which this number can be constructed from publicly available
data. Data on bankruptcies by chapter are available at http://www.uscourts.gov/Statistics/

BankruptcyStatistics.aspx. Data on Chapter 11 outcomes are analyzed in various samples by
Flynn and Crewson (2009), Warren and Westbrook (2009), Lawton (2012), and Altman (2014).
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Table 1: Estimated parameters.

param. σa σi κ κw ψ ζ g

learning .00884 .000423 .546 .932 13.7 .632 .00563

(.000967) (.00195) (.089) (.132) (3.85) (.0935) (.000334)

RE .0114 .000895 .691 .572 .618 .0490 -

(.00212) (.00173) (.168) (2.73) (10.7) (11.3)

fric.less .0116 .00121 .671 .847 .558 - -

(.00716) (.000701) (.261) (.398) (.124)
Parameters as estimated by simulated method of moments. Asymptotic standard errors in paren-
theses.

also Table 2). The set of estimated parameters θ solves

min
ϑ∈A

(m (θ)− m̂)′W (m (θ)− m̂)′ ,

where m (θ) are moments obtained from model simulation paths with 50,000 periods,
m̂ are the estimated moments in the data, and W is a weighting matrix.9 I also impose
that θ has to lie in a subset A of the parameter space which rules out deterministic
oscillations of stock prices.10 Such oscillations are not observed in the data, but can
be consistent with equilibrium when asset price volatility is high and subjective beliefs
are far away from rational expectations. In a sense, this restriction constrains the
degree of departure of subjective beliefs from rational expectations.

Table 1 summarizes the SMM estimates for both the learning and rational expecta-
tions version of the model, as well as for a comparison (rational expectations) model
in which all financial frictions are eliminated. The first row presents the results un-
der learning. Exogenous shocks come mainly from productivity shocks, since σi is
estimated to be relatively small. The Calvo price adjustment parameter is set to
κ = 0.546, implying retailers adjust their prices every two quarters. The SMM pro-
cedure selects a high degree of nominal wage rigidities κw and of adjustment costs ψ.
The estimates are substantially larger than what is commonly found in the literature.
The fraction of earnings paid out as dividends is fitted to ζ = 0.632, which is in line
with the historical average for the S&P500 at about 50 percent. Finally, the learning
gain g = 0.00563 implies that agents believe the degree of predictability in the stock
market to be very small.

The second row contains the parameters estimated under rational expectations. The
fit of the asset price moments is worse and the asymptotic standard errors are large,

9I choose W = diag
(

Σ̂
)−1

where Σ̂ is the covariance matrix of the data moments, estimated

using a Newey-West kernel with optimal lag order. This choice of W leads to a consistent estimator
that places more weight on moments which are more precisely estimated in the data.

10θ /∈ A iff there exists an impulse response of stock prices with positive peak value also having a
negative value of more than 20% of the peak value.
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implying that the distance of the moments to the data at the point estimate is rel-
atively flat. Nevertheless, at the point estimate, the size of the shocks σa and σi
is substantially larger under learning. This implies that learning about stock prices
leads to substantial amplification of shocks: The increased endogenous volatility of
asset prices greatly magnifies the financial accelerator effect, just as in the simple
model of Section 2. The degree of wage rigidities and investment adjustment costs
required to fit the data is smaller than under learning.

The third row contains parameter estimates under rational expectations when addi-
tionally, financial frictions are completely shut off. Since the financial structure is
eliminated from that model, the dividend payout ratio ζ is not present. The size
of the shocks is larger than under the rational expectations model with the financial
accelerator present. This points to moderate amplification effects of financial frictions
under rational expectations.

4.2 Business cycle and asset price moments

To get a better understanding of the quantitative properties of the model, I review
key moments in the data and across model specifications. Table 2 starts with business
cycle statistics. The moments in the data are shown in Column (1). Moments for
the estimated learning model are shown in Column (2), while Columns (3) and (4)
contain the corresponding moments for the model under rational expectations and
the frictionless benchmark. Here, the parameters are held constant at the estimated
values as for the learning model. By nature of the estimation, the learning model
has the best fit across Columns (2) to (4). The comparison serves to single out the
contribution of learning and financial frictions to the fit. Column (5) presents the
moments under rational expectations when the parameters are re-estimated to fit the
data.

The first row reports the standard deviation of detrended output. By construction,
this is matched well by the learning model in Column (2). When learning is shut off
in Column (2), the standard deviation drops one-third. This shows the great degree
of amplification that learning adds to the model. Of course, it is possible to match
output volatility with rational expectations, using larger shock sizes, as in Column
(5). But the comparison between Columns (2) and (3) singles out the contribution
of learning to the internal amplification mechanism. The standard (rational expec-
tations) financial accelerator mechanism is present in the model as well, since the
volatility of output drops further in Column (4) when financial frictions are shut off.

The next three rows report the standard deviation of consumption, investment, and
hours worked relative to output. Moving from Column (2) to (3), it can be seen
that the removal of learning leads to a sharp drop in the relative volatility of both
investment and hours worked. This is because the estimated learning model features
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Table 2: Business cycle statistics in the data and across model specifications.

(1) (2) (3) (4) (5)

moment data learning RE fric.less RE re-estimated

output

volatility

σhp (Yt) 1.43%

(0.14%)

1.56%* 1.00 .79 1.51%*

volatility rel.

to output

σhp (Ct) /σhp (Yt) .60

(.035)

.60* .94 1.34 .58*

σhp (It) /σhp (Yt) 2.90

(.12)

2.78* .48 .31 2.79*

σhp (Lt) /σhp (Yt) 1.13

(.061)

1.18* .84 .40 1.10*

correlation

with output

ρhp (Ct, Yt) .94

(.0087)

.59 .86 1.00 .84

ρhp (It, Yt) .95

(.0087)

.87 .89 .25 .90

ρhp (Lt, Yt) .85

(.035)

.88 .65 .24 .76

inflation σhp (πt) .27%

(.047%)

.34%* .28% .28% .25%*

nominal rate σhp (it) .37%

(.046%)

.11%* .11% .12% .07%*

Quarterly U.S. data 1962Q1–2012Q4. Standard errors in parentheses. πt is quarterly CPI inflation.
it is the federal funds rate. Lt is total non-farm payroll employment. Consumption Ct consists of
services and non-durable private consumption. Investment It consists of private non-residential fixed
investment and durable consumption. Output Yt is the sum of consumption and investment. σhp (·)
is the standard deviation and ρhp (·, ·) is the correlation coefficient of HP-filtered data (smoothing
coefficient 1600). Moments used in the SMM estimation are marked with an asterisk.

a high level of investment adjustment costs to match investment volatility. Without
large asset price fluctuations generated by learning, investment becomes too smooth,
as does the marginal product of capital and hence labor demand. The next rows
report the volatility of inflation and the nominal interest rate. Inflation volatility is
roughly in line with the data, but the nominal interest rate is less volatile across all
model specifications. This might be due to the fact that the data sample includes the
volatile ’70s and the following Volcker disinflation period.

Next, I present asset price statistics in Table 3. The statistics correspond to some
well-known asset price puzzles. The learning model fits them remarkably well, de-
spite being solved only with a second-order perturbation method. Starting with
excess volatility in Column (2), the model with learning produces standard devia-
tions of prices, P/D ratio, and returns that are close to the data. By contrast, the
model with rational expectations in Column (5) cannot produce a similar amount of
volatility, despite the fact that price and return volatility are explicitly targeted by
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Table 3: Asset price statistics in the data and across model specifications.

(1) (2) (3) (5)

moment data learning RE RE re-estimated

excess

volatility

σhp (Pt) /σhp (Yt) 7.86

(.61)

8.96* .26 .16*

σ
(
Pt
Dt

)
41.08%

(6.11%)

22.62% 4.12% 3.59%

σ
(
Ret,t+1

)
8.14%

(.61%)

7.12%* .19% .19%*

return

predictability

ρ
(
Pt
Dt
, Ret,t+4

)
-.297

(.092)

-.376 -.040 -.035

ρ
(
Pt
Dt
, Ret,t+20

)
-.585

(.132)

-.732 -.006 0.011

ρ
(
Pt
Dt
, Pt+4

Dt+4

)
.904

(.056)

.637 .303 .564

negative

skewness

skew
(
Ret,t+1

)
-.897

(.154)

-.404 .022 .005

heavy tails kurt
(
Ret,t+1

)
1.57

(.62)

.92 .04 -.03

Quarterly U.S. data 1962Q1–2012Q4. Standard errors in parentheses. Dividends Dt are four-quarter
moving averages of S&P 500 dividends. The stock price index Pt is the S&P 500. Excess returns
Re

t are annualized quarterly excess returns of theS&P 500 over 3-month Treasury yields. σ (·) is
the standard deviation; σhp (·) is the standard deviation of HP-filtered data (smoothing coefficient
1600); ρ (·, ·) is the correlation coefficient; skew (·) is skewness;kurt (·) is excess kurtosis. Moments
used in the SMM estimation are marked with an asterisk.

the estimation.

Stock returns also exhibit considerable predictability by the P/D ratio at business-
cycle frequency. The same is true in the model with learning. Predictability is not
targeted by the estimation, and in fact it is somewhat stronger than in the data,
reflected in a persistence of the P/D ratio somewhat lower than in the data. Again,
the rational expectations model is not able to produce sizable return predictability.

Finally, the learning model also produces a distribution of returns that is negatively
skewed and heavy-tailed to a similar degree as in the data. This points to the impor-
tance of non-linearities in the asset price dynamics under learning.

4.3 Impulse response functions

Impulse response functions reveal the amplification mechanism at play. Figure 4 plots
the impulse responses to a persistent productivity shock. Red solid lines represent
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Figure 4: Impulse responses to a persistent productivity shock.
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the learning equilibrium, blue dashed lines represent the rational expectations ver-
sion, and black thin lines represent the comparison model without financial frictions.
The impulse responses are averaged across states and therefore mask the tail dynam-
ics present under learning, but they are nevertheless instructive. Looking at the first
row of impulse responses, output rises persistently after the shock due to both the in-
creased productivity and the relaxation of credit constraints from higher asset prices.
The increase in output is larger under rational expectations than under the friction-
less comparison; this is the standard financial accelerator effect. When learning is
introduced, the response to the shock is amplified further. This also translates into
amplification of the responses of investment, consumption, and employment. The
amplification is due to two channels: First, learning leads to higher stock prices. The
increase in firms’ market value allows them to borrow more and invest and produce
more. Second, agents under learning are not aware of the mean reversion in stock
prices and predict the stock price boom to last for a long time. Consequently, they
overestimate the availability of credit and therefore production in the future, leading
to an aggregate demand effect that increases output today (see also 4.4). The rise in
stock prices in the second row of Figure 4 is large under learning and accompanied
by an initial spike in dividend payments, although dividends subsequently fall below
their counterpart under rational expectations. The nominal interest rate falls less un-
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Figure 5: Impulse responses to a monetary shock.
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Impulse responses to a innovation in εmt, averaged over 5,000 random shock paths with a burn-in of
1,000 periods. The size of the innovation is chosen to produce a 10 basis point fall in the equilibrium
nominal rate. Stock prices, dividends, output, investment, consumption and employment are in
100*log deviations. Stock returns and the nominal interest rate are in percentage point deviations.

der learning as the monetary authority reacts to the inflationary pressures stemming
from the relaxation in credit constraints.

Figure 5 plots the response to a temporary reduction in the nominal interest rate.
Again, all macroeconomic aggregates rise substantially more under learning than
under both rational expectations and the frictionless benchmark. The monetary
stimulus increases stock prices and thus relaxes credit constraints. The consequent
increase in aggregate demand raises inflationary pressure, so that the systematic
reaction of the interest rate rule raises the interest rate sharply again after the shock.

4.4 Does learning matter?

The discussion so far has mainly focused on how large swings in asset prices lead to
large swings in real activity through their effect on credit constraints. But is learning
necessary for this story at all? Maybe all that matters for amplification is that asset
price volatility has to be increased, by some mechanism or other. In this section, I
show that learning has an effect on amplification over and above its effect on asset
prices.
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Figure 6: Does learning matter?
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Solid red line: Impulse response to a one standard deviation positive productivity shock under
learning. Black dash dotted line: Impulse response to a hypothetical rational expectations model
with stock price dynamics identical to those under learning (see text). The impulse responses in the
figure are produced using a first-order approximation to the model equations.

I replace the stock market value Pt in the borrowing constraint (35) with an exogenous
process Vt that has the same law of motion as the stock price under learning. More
precisely, I fit an ARMA(10,5) process for Vt such that its impulse responses are as
close as possible to those of Pt under learning (the exogenous shock in the ARMA
process are the productivity and monetary shocks). I then solve this model, but
with rational expectations. If learning only matters because it affects stock price
dynamics, then this hypothetical model should have exactly identical dynamics to
the model under learning.11

Figure 6 shows that this is not the case. The ARMA process fits stock prices well:
The impulse response of Pt under learning and Vt in the counterfactual experiment are
indistinguishable. But after a positive productivity shock, output, investment, and
consumption rise more under learning, even though the counterfactual model has the
same stock price dynamics by construction. The reason is that expectations of future
asset prices matter beyond their direct impact on current prices. Under learning,
agents do not fully internalize mean reversion in stock prices and therefore predict that
credit constraints are loose for longer than they turn out to be. This leads to a wealth
effect on households that increases their consumption, raising aggregate demand, and

11For this exercise I only compute a first-order approximation to the model equations.
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Figure 7: Return expectations and expected returns in a model simulation.
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Expected and realized nominal returns along a simulated path of model with learning. Simulation
length 200 periods. Theoretical correlation coefficient for subjective expected returns ρ = .47, for
future realized returns ρ = −.38.

it leads to higher future expected prices of capital goods EtQt+1, which enters the
liquidation value of firms and hence relaxes borrowing constraints, even if stock prices
are the same as under rational expectations. These effects are powerful enough to
create significant endogenous amplification through the departure of subjective beliefs
from rational expectations.

4.5 Relation to survey evidence on expectations

The rational expectations hypothesis asserts that “outcomes do not differ systemat-
ically [...] from what people expect them to be” (Sargent, 2008). Put differently, a
forecast error should not be systematically predictable by information available at
the time of the forecast. The absence of predictability is almost always rejected in
the data.

Similarly, agents in the model under learning also make systematic, predictable fore-
cast errors. This holds not only for stock prices but also other endogenous model
variables, despite the fact that, conditional on stock prices, agents’ beliefs are model-
consistent. A systematic mistake in predicting stock prices will still spill over into
a corresponding mistake in predicting the tightness of credit constraints, and hence
investment, output, and so forth. Owing to the internal consistency of beliefs, I can
compute well-defined forecast errors made by agents in the model at any horizon and
for any model variable.

Figure 7 repeats the scatter plot of the introduction, contrasting expected and realized
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Table 4: Forecast errors under learning and in the data.

(1) (2) (3) (4) (5) (6)

logPDt ∆ logPDt forecast revision

forecast variable data model data model data model

Rstockt,t+4 -.44 -.38 .06 .30 - -.30

(-3.42) (.41)

Yt,t+3 -.21 -.16 .22 .16 .29 .28

(-1.78) (2.42) (3.83)

It,t+3 -.20 -.37 .25 .27 .31 .35

(-1.74) (2.88) (3.79)

Ct,t+3 -.19 -.04 .21 .01 .23 .02

(-1.85) (2.37) (2.67)

ut,t+3 .05 .20 -.27 -.20 .43 .32

(.12) (-3.07) (6.07)

Correlation coefficients for mean forecast errors on one year-ahead nominal stock returns (Graham-
Harvey survey) and three quarters-ahead real output growth, investment growth, consumption
growth and the unemployment rate (SPF). t-statistics in parentheses. Regressors: Column (1)
is the S&P 500 P/D ratio and Column (2) is its first difference. Column (3) is the forecast revision,
as in Coibion and Gorodnichenko (2015). Data from Graham-Harvey covers 2000Q3–2012Q4. Data
for the SPF covers 1981Q1–2012Q4. For the model, correlations are computed using a simulation
of length 50,000, where subjective forecasts are computed using a second-order approximation to
the subjective belief system on a path in which no more future shocks occur, starting at the current
state in each period. Unemployment in the model is taken to be ut = 1− Lt. Stock returns in the
model Rstock

t,t+4 are quarterly nominal aggregate market returns.

one year-ahead returns in a model simulation. The same pattern as in the data
emerges: When the P/D ratio is high, return expectations are most optimistic. In
the learning model, this has a causal interpretation: High return expectations drive
up stock prices. At the same time, realized future returns are, on average, low when
the P/D ratio is high. This is because the P/D ratio is mean-reverting (which agents
do not realize, instead extrapolating past price growth into the future): At the peak
of investor optimism, realized price growth is already reversing and expectations are
due to be revised downward, pushing down prices toward their long-run mean.

Table 4 describes tests using the Federal Reserve’s Survey of Professional Forecasters
(SPF) as well as the CFO survey data and compares the statistics to those obtained
from simulated model data. Each entry corresponds to a correlation of the error of
the mean survey forecast with a variable that is observable by respondents at the
time of the survey. Under the null of rational expectations, all entries should be zero.

Column (1) shows that the P/D ratio negatively predicts forecast errors. When stock
prices are high, people systematically under-predict economic outcomes. This holds
in particular for stock returns, as was already shown in the scatter plot above. But
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it also holds true for macroeconomic aggregates, albeit at lower levels of significance.
The same holds true in Column (2), which shows the correlation coefficients obtained
from simulated model data.

Column (3) repeats the exercise for the growth rate of the P/D ratio. This mea-
sure positively predicts forecast errors, suggesting that agents’ expectations are too
cautious and under-predict an expansion in its beginning but then overshoot and over-
predict it when it is about to end. In the model (Column 4), this pattern also emerges
because expectations about asset prices (and hence lending conditions) adjust only
slowly. The similarity of the correlations in the data and in the model is striking, with
the exception of aggregate consumption. The reason is that consumption forecasts in
the model are only biased at longer horizons: A relaxation of borrowing constraints
first leads to an increase in investment and only later to an increase in consumption.
Agents are aware of this relationship, so that their three-quarter forecasts, as in Ta-
ble 4 do not become much more optimistic when the P/D ratio increases. At longer
forecast horizons, one would observe more predictability for consumption as well.

Column (5) reports the results of a particular test of rational expectations devised
by Coibion and Gorodnichenko (2015). Since for any variable xt, the SPF asks for
forecasts at one- through four-quarter horizons, it is possible to construct a measure of
agents’ revision of the change in xt as Êt [xt+3 − xt]− Êt−1 [xt+3 − xt]. Forecast errors
are positively predicted by this revision measure. Coibion and Gorodnichenko take
this as evidence for sticky information models in which information sets are gradually
updated over time. But it is also consistent with the learning model: The correlation
coefficients in Column (6) are very similar to those in the data.12

5 Sensitivity checks

5.1 Nominal rigidities

The quantitative model includes price- and wage-setting frictions that complicate
the model dynamics. They are nevertheless important for the quantitative fit of the
model, as I will argue here. Recall that in the simple model of Section 2, the amplify-
ing effect of asset price learning depended crucially on the behavior of the real wage.
After a positive shock, as credit constraints relax and investment picks up, wages rise
which work to diminish firms’ profits and expected dividend payments. This drives
down stock prices and dampens the learning dynamics. The same mechanism is at

12The model predicts a negative correlation of forecast errors on stock returns with their forecast
revisions. The CFO survey does not allow for the construction of the corresponding statistic in the
data, but it is an interesting implication since a negative correlation cannot be produced by rigid
information models as in Coibion and Gorodnichenko.
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play in the quantitative model. Introducing nominal rigidities greatly helps to obtain
amplification.

Specifically, expected dividends in this model are given by:

EPt Dt+1 = (γ + (1− γ) ζ)

(
αq

1
α
t EPt

(
(1− α)

At+1

wt+1

) 1−α
α

+ (1− δ)EPt Qt+1 −Rt
Bt

Kt

)
Kt

− (1− γ) ζ

(
1− Bt

Kt

)
Kt. (39)

There are four relative prices that enter this equation: The price of intermediates qt,
the real wage wt+1, the price of capital goods Qt+1, and the borrowing rate Rt. Sup-
pose now that asset prices rise because of optimistic investor beliefs, relaxing credit
constraints. This directly leads to an increase in the capital stock Kt and also allows
for higher leverage Bt/Kt. The rise in investment is expected to persist in the fu-
ture, so that next period’s expected price of capital goods Qt+1 increases. This raises
expected dividends, helping amplification through higher stock prices. Likewise, in-
creased aggregate demand can raise qt if prices are sticky. But the increased labor
demand, together with a positive wealth effect that households expect from the re-
laxation of credit constraints, will drive up the real wage wt. This will tend to reduce
Dt+1 and dampen the dynamics. Also, to the extent that higher investment comes at
the expense of lower consumption in the economy, real borrowing rates Rt will rise,
also dampening the dynamics. This latter effect is stronger the more leverage there
is in the economy.

Nominal rigidities have effects on real wages, the price of intermediates, and real
rates. Wage rigidities will counteract the dampening effects of real wage responses
to shocks, allowing for greater dividend, and therefore asset price, volatility. They
also lead to amplification in the response of employment to movements in financial
market sentiment. Price rigidities, together with a relatively loose monetary policy
rule, imply that the prices of intermediates qt are pro-cyclical, and lead to smaller real
interest rates movements in response to changes in investor sentiment, also helping
amplification. The mirror image of this result, through the consumption Euler equa-
tion, is that consumption is not pushed down as much by increases in investment, so
its response, too, is amplified.

In sum, nominal price and wage rigidities allow for comovement of all macroeco-
nomic aggregates in response to changes in subjective beliefs. This co-movement
property obtains more generally and has been documented in the context of news
shocks (Kobayashi and Nutahara, 2010) and financial shocks Ajello (2016).

To illustrate this point, I re-compute impulse responses of the model with learning, but
without nominal rigidities (setting κ = κw = 0). I also reduce the size of investment
adjustment costs to ψ = 0.125. With the high degree of adjustment costs in the
baseline version, the model would include an explosive two-period oscillation and
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Figure 8: Role of nominal rigidities.
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Solid red line: Impulse response to a one-standard deviation positive productivity shock for the
model with learning and price and wage rigidities (“nominal” baseline). Black dash-dotted line:
Impulse response to a productivity shock for the model with learning but without nominal rigidities,
re-estimated as in Section 4.1.2 to fit the data (“real” comparison). The size of the shock shown is
the same as in the nominal model.

reducing ψ ensures stability. The low costs of adjusting investment also gives the
real version a better chance at delivering strong impulse responses. Even then, the
nominal version delivers far greater amplification. Figure 8 plots impulse responses
to a positive productivity shock for both the nominal and real version of the model.
Owing to lower adjustment costs, the initial response of investment is expectedly
stronger in the real version. However, the real wage wt rises by much more, and also
the price of intermediates qt is fixed, so dividends do not rise as much after the shock.
This considerably dampens the learning dynamics and mutes the response of stock
prices. By consequence, the response of output, investment, consumption and hours
worked (not shown) is overall weaker than in the baseline version of the model.

5.2 Borrowing constraint parameters

I turn to discuss the sensitivity to the two main parameters affecting the borrowing
constraint (35): The probability x that a firm can be sold as a going concern after
filing for bankruptcy, governing the dependency of the constraint on stock prices; and
the fraction of assets ξ preserved in bankruptcy, governing the overall tightness of
the constraint. Figure 9 plots the standard deviation of output and stock prices as a
function of these two parameters, respectively.
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Figure 9: Sensitivity to borrowing constraint parameters.
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Panel (a) shows the role of the x parameter, which crucially affects the amplifica-
tion mechanism. The value x = 0 is a special case. At this point, stock prices do
not enter the borrowing constraint and serve no role for allocations in the economy.
Allocations under learning and rational expectations coincide perfectly, even though
stock price dynamics are still amplified under learning. As x increases, the higher
volatility of stock prices under learning translates into higher volatility in real activity
as well. Since swings in real activity feed back into asset prices through their effect
on dividends, the amplification becomes very strong for high values of x until the
dynamics become explosive. Beyond a value of x of about 0.26, no stable learning
equilibrium exists. By contrast, the rational expectations equilibrium barely depends
on the parameter x.

Panel (b) shows the role of the ξ parameter. Amplification is hump-shaped with re-
spect to ξ. At ξ = 0, no collateral is pledgeable and firms have to finance their capital
stock entirely out of equity. In this case, fluctuations in stock prices again do not im-
pact the economy and allocations coincide under learning and rational expectations;
there is no amplification from learning. However, as pledgeability increases to its
maximum value (beyond which a steady state with permanently binding borrowing
constraint does not exist), amplification also disappears. This mirrors the analysis of
the simplified model.

5.3 Monetary policy rule

Finally, I discuss the sensitivity of the results with respect to the interest rate rule
followed by the monetary authority. Consider extending the interest rate rule (25) as
follows:
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it = ρiit−1 + (1− ρi) (1/β + φππt + φY ∆ log Yt + φP∆ logPt) (40)

In addition to raising interest rates when inflation is above its target level (taken to
be zero), the monetary authority can raise interest rates φ∆Y percentage points when
real GDP growth increases one percentage point and φ∆P percentage points when
stock price growth increases one percentage point.13 I consider several values for
the parameters φπ, φ∆Y , φ∆P . Table 5 summarizes how they affect the model under
learning. In addition to the standard deviations of output, stock prices, inflation
and nominal interest rates, the table also reports a measure of amplification by the
learning dynamics and a measure of the welfare cost of business cycles.14

Column (1) shows the baseline calibration under learning. Learning amplifies output
fluctuations by 33 percent and has a welfare cost of business cycles of 0.0346 percent
of average consumption. In Column (2), the coefficient on inflation φπ is doubled.
This rule achieves a marked reduction in the volatility of inflation, but at the cost of
higher output volatility. The amount of amplification from learning is smaller than
in the baseline but still strong at 22 percent. Column (3) augments the baseline rule
by a reaction to output growth. This rule reduces the volatility of output and stock
prices, while keeping the volatility of inflation unchanged. Again, the amplification
effect from learning is dampened but output is still 25 percent more volatile than
under rational expectations. Column (4) considers a reaction of interest rates to
stock price growth. Such a reaction is highly effective in stabilizing the economy under
learning. The volatility of output and stock prices drops markedly. The amplification
mechanism is completely eliminated—output volatility under learning is 10 percent
lower than under rational expectations, and the welfare cost of business cycles is
lower than in Columns (1)–(3). Intuitively, raising rates when asset prices are rising
(and vice-versa) acts to stabilize expectations in financial markets. In the model, this

13I deliberately exclude levels or gap measures of output or asset prices from the interest rate
rule. Doing so would imply that the monetary authority has more knowledge than the private sector
under learning, as the perceived equilibrium level of asset prices and the output gap depends on
agents’ subjective beliefs, and at the same time communicates that knowledge through the rule.

14The amplification measure is the ratio of the standard deviation of output under learning over
that under rational expectations at the same parameter values. The welfare cost of business cycles χ
is defined as the fraction of steady-state consumption the household would need to give up in order
to have its period utility at the same level as the average stochastic period utility, in a steady state
in which consumption and labor are constant and equal to their average stochastic level, and price
and wage dispersion is nil:

u
(

(1− χ)E
[
C̃t

]
,E
[
L̃t

])
= E [u (Ct, Lt)] .

I simulate a model time series for (Ct, Lt, πt, π
w
t ) of 10,000 periods using the second-order approx-

imation method above, and I compute series for C̃t and L̃t using the exact formulae given in the
appendix. I then evaluate period utility using its exact formula as well to calculate the welfare loss.
The expectation is then computed using averages over time.
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Table 5: Alternative monetary policy rules.

(1) (2) (3) (4) (5) (6)

baseline alternative rules optimized rules

φπ 1.50 3.00 1.50 1.50 1.37 1.20

φY 0.50 .61 .95

φP 0.50 .12

σ (Y ) 3.27% 3.86% 2.77% 2.13% 2.77% 2.04%

σ (P ) 22.8% 26.3% 16.6% 9.39% 15.6% 9.35%

σ (π) 0.35% 0.19% 0.35% 0.33% 0.38% 0.35%

σ (i) 0.17% 0.17% 0.14% 0.16% 0.17% 0.12%

σ (Y ) /σ (YRE) 1.33 1.22 1.25 0.90 1.32 1.07

welfare cost χ 0.0346% 0.0415% 0.0282% 0.0276% .0275% .0218%

Standard deviations of output, stock prices, inflation, and interest rates (unfiltered) under learning
in percent. The standard deviation of output under rational expectations σ (YRE) is calculated at
the same parameter values as the learning solution. See Footnote 14 for the definition of the welfare
cost χ. The interest rate smoothing coefficient is kept at ρi = 0.85 for all rules considered.

stabilization works mainly through changes in firms’ borrowing costs and dividend
payouts, offsetting the self-amplifying learning dynamics in the stock market.

I also compute the coefficient values that minimize the welfare cost of business cy-
cles.15 Column (5) displays optimized coefficients φπ and φY without a reaction to
stock prices, φ∆P = 0. The coefficients turn out to be quite close to the Taylor-type
rule in Column (3). The resulting rule reduces welfare costs to 0.0275 percent, but
the amplification through learning dynamics is still strong. Column (6) additionally
allows for a reaction to stock prices prices as well. The welfare cost is reduced further
to 0.0218 percent, and the amplification effect of learning drops to seven percent.16

This suggests that a positive interest rate reaction to stock price growth in this model
provides stabilizing effects that cannot be achieved by reacting to output and infla-
tion alone. This stands in contrast to what is usually found in the existing literature
that uses rational expectations (e.g. Gali, 2014). In line with those findings, the
optimization of the rule coefficients in this model under rational expectations (not
reported) does not deliver additional stabilization when a reaction to stock prices is
included.

15Note that this criterion is paternalistic because it minimizes the welfare cost of business cycles
over time, rather than the private sector’s subjectively expected welfare cost.

16It is worth noting that despite the reaction stock prices in Columns (4) and (6), the volatility
of the nominal interest rate is lower than in the baseline version. The reaction reduces endogenous
asset price volatility so that equilibrium rates do not end being excessively volatile.
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6 Conclusion

In this paper, I have analyzed the implications of a learning-based asset pricing theory
in a business cycle model with financial frictions. When firms’ borrowing constraints
depend on their market value, learning in the stock market interacts with credit fric-
tions to form a two-sided feedback loop between stock prices and firm profits that
amplifies the learning dynamics encountered in Adam, Beutel and Marcet (2014). At
the same time, it makes the financial accelerator mechanism more powerful, ampli-
fying both supply and demand shocks. The model jointly matches standard business
cycle and asset pricing moments.

Despite the fact that beliefs are close to rational expectations, agents’ forecast errors
on stock prices still spill over into their other forecasts. The resulting forecast error
predictability was found to closely match survey data on expectations on a range of
variables.

An important innovation in developing the model was to introduce a belief system
that combines learning about stock prices with a high degree of rationality and inter-
nal consistency. Beliefs are restricted in a way such that forecast errors conditional
on future prices and fundamentals are zero. This differs from most of the existing
adaptive learning literature where every forward-looking equation is parametrized
eparately, resulting in a large number of degrees of freedom. The method can be
widely applied in other models of the business cycle.

An examination of the sensitivity of the amplification mechanism to the monetary
policy rule revealed that a reaction of interest rates to stock price growth is highly
beneficial under learning. This is because such a reaction effectively stabilizes expec-
tations in financial markets. The same is generally not true in a rational expectations
framework, illustrating that the choice of an asset price theory can have important
normative implications. Further research could examine in detail the policy implica-
tions of learning-based asset pricing and establish whether a policy of “leaning against
the wind” is also desirable in more general settings when agents have to learn about
asset prices.
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Online Appendix

A Details on the simplified model

A.1 Formal model description

In the simplified model, the household is risk-neutral and inelastically supplies one
unit of labor. Its utility maximization program is as follows:

max
(Ct,St,Bt)

∞
t=0

EP
∞∑
t=0

βtCt

s.t. Ct + StPt +Bt = wt + St−1 (Pt +Dt) +Rt−1Bt−1

St ∈
[
0, S̄

]
, S−1, B−1

Ct is the amount of nondurable consumption goods purchased by the household in
period t. The consumption good serves as the numéraire. wt is the real wage rate.
Moreover, the household can trade two financial assets: one-period bonds, denoted
by Bt and paying gross real interest Rt in the next period; and stocks, St, which trade
at price Pt and entitle their holder to dividend payments Dt. The household cannot
short-sell stocks and his maximum stock holdings are capped at some S̄ > 1. The
constraint on St is necessary to guarantee existence of the learning equilibrium, but
never binds along the equilibrium path. All markets are competitive.

The household maximizes the expectation of discounted future consumption under
the probability measure P . This measure is the subjective belief system held by
agents in the model economy and might differ from rational expectations.

The firm engages in the production of the consumption good, which can also be used
for investment. It is produced using capital Kt−1, owned by the firm and depreciating
at the rate δ, and labor Lt according to the constant returns to scale technology

Yt = Kα
t−1 (AtLt)

1−α ,

where At is its productivity. There are two financial claims on the firm: shares and
noncontingent bonds. The firm’s period budget constraint reads as follows:

Yt + (1− δ)Kt−1 +Bt + StPt = wtLt +Kt + St−1 (Pt +Dt) +RBt−1 (41)

I impose constraints on the issuance of financial instruments. On the equity side, the
firm is not allowed to change the quantity of shares outstanding, fixed at St = 1.

39



Further, it is not allowed to use retained earnings to finance investment. Instead, all
earnings have to be paid out to shareholders:

Dt = Yt − wtLt − δKt−1 − (R− 1)Bt−1.

These assumptions imply that the firm’s capital stock must be entirely debt-financed:
Dividends are paid out until Kt = Bt at the end of every period.17 The firm’s level of
debt is limited to a fraction ξ ∈ [0, 1] of its total market value (i.e., the sum of debt
and equity):

Bt ≤ ξ (Bt + Pt)

⇔ Kt ≤
ξ

1− ξPt (42)

The firm maximizes the presented discounted sum of future dividends, using the
household discount factor:

max
(Kt,Lt,Dt)

∞
t=0

EP
∞∑
t=0

βtDt s.t. (41), (42), K−1

In particular, it makes its decisions under the same belief system P as the household—
expectations are homogenous.

The model is closed by specifying market clearing conditions for the goods, labor and
equity markets:

Yt +Kt = C + (1− δ)Kt−1

Lt = 1

St = 1.

An equilibrium for an arbitrary subjective probability measure P is defined as a
mapping from realizations of the exogenous variable (At)

∞
t=0 and initial conditions

(B−1, K−1, R−1) to the endogenous variables (Bt, Kt, Lt, Dt, Pt, Rt, wt, Ct, St)
∞
t=0 such

that markets clear and agents’ choices solve their optimization problem under the
probability measure P .

A.2 Limiting case ξ → 1

In the simplified model, the model dynamics under learning approach those under
rational expectations in the limiting case ξ → 1. To see this, combine Equation (13)

17For very low realizations of the productivity shock, the dividend payment will be negative, which
is allowed. The value of the firm will be determined by expected dividends, which are always positive.
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and (14) to obtain:

1− ξ
ξ

Kt =

(
Rk (Kt, At)−R

)
Kt

R− exp
(
µ̂t + 1

2
σ2
µ

)
⇔ 1− ξ

ξ

(
R− exp

(
µ̂t +

1

2
σ2
µ

))
= α

(
At
Kt

)1−α

Et
[
ε1−α
t+1

]
+ 1− δ −R.

It follows that:

∆ logPt = ∆ logKt

= ∆ logAt −
1

1− α∆ log

(
1− ξ
ξ

(
R− exp

(
µ̂t +

1

2
σ2
µ

))
− 1 + δ +R

)
ξ→1−→ ∆ logAt = εt.

B Details on the full model

B.1 Setup of adjustment costs and nominal rigidities

In the full model, final good producers (indexed by i ∈ [0, 1]) transform a homoge-
neous intermediate good into differentiated final consumption goods using a one-for-
one technology. The intermediate good trades in a competitive market at the real
price qt (expressed in units of the composite final good). Each retailer enjoys mar-
ket power in her output market, and sets a nominal price pit for its production. A
standard price adjustment friction à la Calvo means that a retailer cannot adjust her
price with probability κ. Hence, the retailer solves the following optimization:

max
Pit

∞∑
s=0

(
s∏

τ=1

κΛt+τ

)
((1 + τ) pit − qt+spt+s)Yit+s

s.t. Yit+s =

(
pit
pt+s

)−σ
Ỹt+s,

where Ỹt is aggregate demand for the composite final good. Since all retailers that can
re-optimize at t are identical, they all choose the same price pit = p∗t . The derivation
of the non-linear aggregate law of motion for the retail sector is standard and the
final equations are:

p∗t
pt

=
1

1 + τ

σ

σ − 1

Γ1t

Γ2t

Γ1t = qt + κEPt Λt+1
Ỹt+1

Ỹt
πσt+1

Γ2t = 1 + κEPt Λt+1
Ỹt+1

Ỹt
πσ−1
t+1
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I assume that the government sets subsidies such that τ = 1/(σ − 1) so that the
steady-state markup over marginal cost is zero. Inflation πt = pt/pt−1 and the reset
price are linked through the price aggregation equation which can be written as

1 = (1− κ)

(
p∗t
pt

)1−σ

+ κπσ−1
t

and the Tak-Yun distortion term is

∆t = (1− κ)

(
Γ1t

Γ2t

)−σ
+ κπσt ∆t−1.

This term ∆t ≥ 1 is the wedge due to price distortions between the amount of inter-
mediate goods produced and the amount of the final good consumed. The amount
of final goods available for consumption and investment is Ỹt = Yt/∆t. Similarly, one
can define C̃t = Ct/∆t as the level of consumption the household could obtain if price
distortions were zero.

Similarly to retailers, labor agencies transform the homogeneous household labor
input into differentiated labor goods at the nominal price w̃tpt and sell them to inter-
mediate firms at the price wht, which cannot be adjusted with probability κw. Labor
agency h solves the following optimization:

max
wht

EPt
∞∑
s=0

(
s∏

τ=1

κwΛt+τ

)
((1 + τw)wht − w̃t+spt+s)Lht+s

s.t. Lht =

(
wht
w̃t

)−σw
L̃t

Since all labor agencies that can re-optimize at t are identical, they all choose the
same price wht = w∗t . The first-order conditions are analogous to those for retailers.
Again, I assume that the government sets taxes such that τ = 1/(σw − 1) so that the
steady-state markup over marginal cost is zero. Wage inflation πwt and the Tak-Yun
distortion ∆wt are defined analogously to final good producers.

Capital good producers operate competitively in input and output markets, produc-
ing new capital goods using old final consumption goods. For the latter, they have
a CES aggregator just like households. Their maximization program is entirely in-
tratemporal:

max
It

QtIt −
(
It +

ψ

2

(
It
It−1

− 1

)2
)

In particular, they take past investment levels It−1 as given when choosing current
investment output. Their first-order condition defines the price for capital goods.

All of the profits made by the firms described above accrue to households. Similarly,
all subsidies by the government are financed by lump-sum taxes on households. The
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market clearing conditions are summarized below. Supply stands on the left-hand
side, demand on the right-hand side.

Yt =

ˆ 1

0

Yjtdj =

ˆ 1

0

Yitdi

Ỹt =
Yt
∆t

= Ct + It +−ψ
2

(
It
It−1

− 1

)2

+ Ce
t

Lt =

ˆ 1

0

Lhtdh

L̃t =
Lt

∆wt

=

ˆ 1

0

Ljtdj

Kt =

ˆ 1

0

Kjtdj = (1− δ)Kt−1 + It

1 = Sjt, j ∈ [0, 1]

0 = Bg
t

B.2 Properties of the rational expectations equilibrium

The rational expectations equilibrium considered here has the following properties
that need to be verified. All statements are local in the sense that for each of them,
there exists a neighborhood of the non-stochastic steady-state in which the statement
holds.

1. All firms choose the same capital-labor ratio Kjt/Ljt .

2. The expected return on capital is higher than the internal return on debt:
EtRk

t+1 > Rt.

3. At any time t, the stock market valuation Pjt of a firm j is proportional to its
net worth after entry and exit Ñjt with a slope that is strictly greater than one.

4. Borrowers never default on the equilibrium path and borrow at the risk-free
rate, and the lender only accepts debt payments up to a certain limit.

5. If the firm defaults and the lender seizes the firm, it always prefers restructuring
to liquidation.

6. The firm always exhausts the borrowing limit.

7. All firms can be aggregated. Aggregate debt, capital and net worth are sufficient
to describe the intermediate goods sector.
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I take the following steps to prove the existence of this equilibrium. After setting
up the firm value functions, Property 1 just follows from constant returns to scale.
I then take Properties 2 and 3 as given and prove 4 to 6. I verify that 3 holds.
The aggregation property 7 is then easily verified. I conclude by establishing the
parameter restrictions for which 2 holds.

Value functions

An operating firm j enters period t with a predetermined stock of capital and debt.
It is convenient to decompose its value function into two stages. The first stage is
given by:

Υ1 (K,B) = max
N,L,D

γN + (1− γ) (D + Υ2 (N −D))

s.t. N = qY − wL+ (1− δ)QK −RB
Y = Kα (AL)1−α

D = ζ (N −QK +B)

I suppress the time and firm indices for the sake of notation. After production, the
firm exits with probability γ and pays out all net worth as dividends. The second
stage of the value function consists in choosing debt and capital levels as well as a
strategy in the default game:

Υ2

(
Ñ
)

= max
K′,B′,strategy in default game

βE [Υ1 (K ′, B′) , no default]

+ βE [Υ1 (K ′, B∗) , debt renegotiated]

+ βE [0, lender seizes firm]

s.t. K ′ = N +B′

A firm that only enters in the current period starts directly with an exogenous net
worth endowment and the value function Υ2.

Characterizing the first stage

The first order conditions for the first stage with respect to L equalizes the wage with
the marginal revenue: w = q (1− α) (K/L)αA1−α. Since there is no firm heterogene-
ity apart from capital K and debt B, this already implies Property 1 that all firms
choose the same capital-labor ratio. Hence the internal rate of return on capital is
common across firms:

Rk = αq

(
(1− α)

qA

w

) 1−α
α

+ (1− δ)Q (43)
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Taking Property 3 as given for now, Υ2 is a linear function with slope strictly greater
than one. Then the following holds for the first-stage value function Υ1:

Υ1 (K,B) = N + (1− γ) (D −N + Υ2 (N −D))

= N + (1− γ) (Υ ′2 − 1) ((1− ζ)N + ζ (QK −B))

> N

= RkK −RB (44)

This property will be used repeatedly in the next step of the proof.

Characterizing the second stage

The second stage involves solving for the subgame-perfect equilibrium of the default
game between borrower and lender. Pairings are anonymous, so repeated interactions
are ruled out. Also, only the size B and the interest rate R̃ of the loan can be
contracted (in equilibrium R̃ = R but this is to be established first). The game is
played sequentially:

1. The firm (F) proposes a borrowing contract
(
B, R̃

)
.

2. The lender (L) can accept or reject the contract.

• A rejection corresponds to setting the contract
(
B, R̃

)
= (0, 0).

Payoff for L: 0. Payoff for F: βE
[
Υ1

(
Ñ , 0

)]
.

3. F acquires capital and can then choose to default or not.

• If F does not default, it has to repay in the next period.

Payoff for L: EQt,t+1R̃B −B. Payoff for F: βE
[
Υ1

(
K, R̃

R
B
)]

.

4. If F defaults, the debt needs to be renegotiated. F makes an offer for a new
debt level B∗.18

5. L can accept or reject the offer.

• If L accepts, the new debt level replaces the old one.

Payoff for L: EΛR̃B∗ −B. Payoff for F: βE
[
Υ1

(
K, R̃

R
B∗
)]

.

6. If L rejects, then she seizes the firm. A fraction 1−ξ of the firm’s capital is lost in
the process. Nature decides randomly whether the firm can be “restructured.”

18That the interest rate on the repayment is fixed is without loss of generality.
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• If the firm cannot be restructured, or it can but the lender chooses not to
do so, then the lender has to liquidate the firm.
Payoff for L: EΛξQK −B. Payoff for F: 0.

• If the firm can be restructured and the lender chooses to do so, she retains
a debt claim of present value ξB and sells the residual equity claim in the
firm to another investor.
Payoff for L: ξB + βE [Υ1 (ξK, ξB)]−B. Payoff for F: 0.

Backward induction leads to the (unique) subgame-perfect equilibrium of this game.
Start with the possibility of restructuring. L prefers this to liquidation if

ξB + βE [Υ1 (ξK, ξB)] ≥ EΛξQK. (45)

This holds true at the steady state because Rk > R (Property 2), Q = 1, β̃ = Λ and

ξB + βE [Υ1 (ξK, ξB)] > ξB + βE
[
RkξK −RξB

]
= βE

[
RkξK

]
> ξK (46)

Since the inequality is strict, the statement holds in a neighborhood around the
steady-state as well. This establishes Property 5.

Next, L will accept an offer B∗ if it gives her a better expected payoff (assuming that
lenders can diversify among borrowers so that their discount factor is invariant to the
outcome of the game). The probability of restructuring is given by x. The condition
for accepting B∗ is therefore that

EΛR̃B∗ ≥ x (ξB + βE [Υ1 (ξK, ξB)]) + (1− x)EΛξQK. (47)

Now turn to the firm F. Among the set of offers B∗ that are accepted by L, the firm
will prefer the lowest one—i.e., that which satisfies (47) with equality. This follows
from Υ1 being a decreasing function of debt. This lowest offer will be made if it leads

to a higher payoff than expropriation: βE
[
Υ1

(
K, R̃

R
B∗
)]
≥ 0. Otherwise, F offers

zero and L seizes the firm.

Going one more step backwards, F has to decide whether to declare default or not.
It is preferable to do so if the B∗ that L will just accept is strictly smaller than B or

if expropriation is better than repaying, βE
[
Υ1

(
K, R̃

R
B
)]
≥ 0.

What is then the set of contracts that L accepts in the first place? From the perspec-
tive of L, there are two types of contracts: those that will not be defaulted on and
those that will. If F does not default (B∗ ≥ B), L will accept the contract simply
if it pays at least the risk-free rate, R̃ ≥ R. If F does default (B∗ < B), then L
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accepts if the expected discounted recovery value exceeds the size of the loan—i.e.,
EΛR̃B∗ ≥ B.

Finally, let us consider the contract offer. F can offer a contract on which it will not
default. In this case, it is optimal to offer just the risk-free rate R̃ = R. Also note
that the payoff from this strategy is strictly positive since

β̃E [Υ1 (K,B)] > βE
[
RkK −RB

]
= βE

[
RkÑ +

(
Rk −R

)
B
]

> 0. (48)

The payoff is also increasing in the size of the loan B. So conditional on not defaulting,
it is optimal for F to take out the maximum loan size B = B∗, and this is preferable
to default with expropriation. However, it might also be possible for F to offer a
contract that only leads to a default with debt renegotiation. The optimal contract
of this type is the solution to the following problem:

max
R̃,B,B∗

βE

[
Υ1

(
Ñ +B,

R̃

R
B∗

)]

s.t. EΛR̃B∗ ≥ B

EΛR̃B∗ = x
(
ξB + β̃E

[
Υ1

(
ξ
(
Ñ +B

)
, ξB

)])
+ (1− x)EΛQξ

(
Ñ +B

)
The first thing to note is that only the product R̃B∗ appears, so the choice of the
interest rate R̃ is redundant. Further, B = B∗ and R̃ = R solve this problem, and this
amounts to the same as not declaring default. This choice solves the maximization
problem above if the following condition is satisfied at the steady state:

ξ

R

(
1− x+ xR + xΥ ′1

[
Rk

R
− 1

])
< 1 (49)

For the degree of stock price dependence x sufficiently small, this condition is satisfied.
This establishes Properties 4 and 6.

Linearity of firm value

Since firms do not default and exhaust the borrowing limit B∗, the second-stage firm
value can be written as follows:

Υ2

(
Ñ
)

= βE
[
Υ1

(
Ñ +B,B

)]
(50)

where B = x
(
ξB + βE

[
Υ1

(
ξ
(
Ñ +B

)
, ξB

)])
+ (1− x)Qξ

(
Ñ +B

)
(51)

47



We already know that if Υ2 is a linear function, then Υ1 is also linear. The converse
also holds: The constraint above, together with linearity of Υ1 imply that B is linear
in Ñ , and thus Υ2 is linear, too.

To establish Property 3, it remains to show that the slope of Υ2 is greater than one.
This is easy to see in steady state:

Υ ′2 = β
Υ1 (K,B)

Ñ

= β
γ
(
RkK −RB

)
+ (1− γ)Υ2

(
RkK −RB

)
Ñ

= β (γ + (1− γ)Υ ′2)

(
RkK

Ñ
−RB

Ñ

)
= (γ + (1− γ)Υ ′2)

Rk +
(
Rk −R

)
B
Ñ

R︸ ︷︷ ︸
=:c0>1

=
γc0

1− (1− γ) c0

> 1 (52)

Finally, the aggregated law of motion for capital and net worth needs to be established
(Property 7). Denoting again by Γt ⊂ [0, 1] the indices of firms that exit and are
replaced in period t, we have

Kt =

ˆ 1

0

Kjtdj =

ˆ
j /∈Γt

(Njt − ζEjt +Bjt) dj +

ˆ
j∈Γt

(ω (Nt − ζEt) +Bjt) dj

= (1− γ + γω) (Nt − ζEt) +Bt (53)

Nt =

ˆ 1

0

Njtdj = Rk
tKt−1 −Rt−1Bt−1 (54)

Bt =

ˆ 1

0

Bjtdj = xξ (Bt + Pt) + (1− x) ξEtΛt+1Qt+1Kt (55)

So far, then, all model properties are established except Rk > R.

Return on capital

It can now be shown under which conditions the internal rate of return is indeed
greater than the return on debt. From the steady-state versions of equations (53)
and (54), and the definition of earnings E = N −K +B, it follows that

Rk = R +

(
1− ζ (1− γ + γω)

(1− ζ) (1− γ + γω)
−R

)(
1− B

K

)
. (56)
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Further, it is straightforward to show that for any combination of parameters, the
steady state of the model has B/K < 1. A necessary and sufficient condition for
Rk > R is therefore that the first term in parentheses above is strictly positive, or
equivalently:

γ >
ζ (1− β)

1− ζ (1− β)

1

1− ω . (57)
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