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Abstract

Managed portfolios that take less risk when volatility is high produce large alphas
and substantially increase factor Sharpe ratios. We document this for the market,
value, momentum, profitability, return on equity, and investment factors in equities,
as well as the currency carry trade. We find that volatility timing produces large utility
gains and benefits both short- and long-horizon investors. Our strategy is contrary to
conventional wisdom because it takes less risk in recessions and crises yet still earns
high average returns. This rules out typical risk-based explanations and is a challenge
to structural models of time-varying expected returns.
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1. Introduction

We construct portfolios that scale monthly returns by the inverse of their previous month’s

realized variance, decreasing risk exposure when variance was recently high, and vice

versa. We call these volatility managed portfolios. We document that this simple trading

strategy earns large alphas across a wide range of asset pricing factors, suggesting that

investors can benefit from volatility timing. We then interpret these results from both a

portfolio choice and a general equilibrium perspective.

We motivate our analysis from the vantage point of a mean-variance investor, who

adjusts their allocation according to the attractiveness of the mean-variance trade-off,

Et[Rt+1]/Vart(Rt+1). Because variance is highly forecastable at short horizons, and vari-

ance forecasts are only weakly related to future returns at these horizons, our volatility

managed portfolios produce significant risk-adjusted returns for the market, value, mo-

mentum, profitability, return on equity, and investment factors in equities as well as for

the currency carry trade. Annualized alphas with respect to the original factors are sub-

stantial, and Sharpe ratios increase by 50% to 100% of the original factor Sharpe ratios.

Figure 1 provides intuition for our results for the market portfolio. In line with our

trading strategy, we group months by the previous month’s realized volatility and plot

average returns, volatility, and the mean-variance trade-off over the subsequent month.

There is little relation between lagged volatility and average returns but there is a strong

relationship between lagged volatility and current volatility. This means that the mean-

variance trade-off weakens in periods of high volatility. From a portfolio choice perspec-

tive, this pattern implies that a short-horizon mean-variance investor should time volatil-

ity, i.e. take more risk when the mean-variance trade-off is attractive (volatility is low),

and take less risk when the mean-variance trade-off is unattractive (volatility is high).

From a general equilibrium perspective, this pattern presents a challenge to models fo-

cused on the dynamics of risk premia. The empirical pattern in Figure 1 implies that

investor’s willingness to take stock market risk would have to be higher in periods of

high stock market volatility, which is counter to most theories. Sharpening the puzzle is

the fact that volatility is typically high during recessions, financial crises, and in the after-

math of market crashes when theory generally suggests investors should, if anything, be
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more risk averse relative to normal times.

Our volatility managed portfolios reduce risk taking during these bad times– times

when the common advice is to increase or hold risk taking constant.1 For example, in

the aftermath of the sharp price declines in the fall of 2008, it was a widely held view

that those that reduced positions in equities were missing a once-in-a-generation buying

opportunity.2 Yet our strategy cashed out almost completely and returned to the market

only as the spike in volatility receded. We show that, in fact, our simple strategy turned

out to work well throughout several crisis episodes, including the Great Depression, the

Great Recession, and 1987 stock market crash. More broadly, we show that our volatility

managed portfolios take substantially less risk during recessions.

These facts may be surprising in light of evidence showing that expected returns are

high in recessions (Fama and French, 1989) and in the aftermath of market crashes (Muir,

2013). In order to better understand the business cycle behavior of the risk-return trade-

off, we combine information about time variation in both expected returns and variance,

using predictive variables such as the price-to-earnings ratio and the yield spread be-

tween Baa and Aaa rated bonds. Using a vector autoregression (VAR) we show that

in response to a variance shock, the conditional variance initially increases by far more

than the expected return, making the risk-return trade-off initially unattractive. A mean-

variance investor would decrease his or her risk exposure by 60% after a one standard

deviation shock to the market variance. However, since volatility movements are less

persistent than movements in expected returns, our optimal portfolio strategy prescribes

a gradual increase in the exposure as the initial volatility shock fades. This difference

in persistence reconciles the evidence on countercyclical expected returns with the prof-

itability of our strategy.

We go through an extensive list of exercises to evaluate the robustness of our result.

We show that our volatility managed strategy survives transaction costs, is different from

strategies that explore low risk anomalies in the cross-section such as risk parity (Asness

1For example, in August 2015, a period of high volatility, Vanguard–a leading mutual fund company–
gave advice consistent with this view :“What to do during market volatility? Perhaps nothing.” See https:
//personal.vanguard.com/us/insights/article/market-volatility-082015

2See for example Cochrane (2008) and Buffett (2008) for this view.
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et al., 2012) and betting against beta (Frazzini and Pedersen, 2014), is less exposed to

volatility shocks than the original factors (ruling out explanations based on the variance

risk premium), and cannot be explained by downside market risk (Ang et al., 2006a; Let-

tau et al., 2014), disaster risk or jump risk. We also show that our strategy works just as

well if implemented through options, which suggests that leverage constraints are un-

likely to explain the high alphas of our volatility managed strategies. In the Appendix we

show that our strategy works across 20 OECD stock market indices, that it can be further

improved through the use of more sophisticated models of variance forecasting, that it

does not generate fatter left tails than the original factors or create option-like payoffs,

and that it outperforms not only using alpha and Sharpe ratios but also manipulation

proof measures of performance (Goetzmann et al., 2007).

To provide more economic content to these findings we start by studying their port-

folio choice implications. We first take the perspective of a short-horizon mean-variance

investor. Our findings imply that they should reduce their exposure when volatility in-

creases because future volatility will be high but expected returns won’t be. We show that

utility benefits of volatility timing are large, on the order of 50% to 90% of lifetime utility.

These are substantially larger than those coming from expected return timing. However,

the empirical evidence that there is some mean-reversion in returns, i.e. there are both

permanent and mean-reverting shocks to stock prices, implies that volatility is not the

right measure of risk for a long-horizon investor.3 Thus, investors with long horizons

might not benefit from volatility timing. Both Cochrane (2008) and Buffett (2008) articu-

lated this view in the fall of 2008 as volatility spiked to extreme levels. The idea is that an

increase in the volatility of mean-reverting shocks implies that an investor has a greater

chance of waking up poorer tomorrow, but expects to be just as rich in the long run. Thus,

we dig deeper into the portfolio problem of a long-horizon investor in order to see how

they should respond to volatility once mean-reversion is taken into account.

We find that mean-reversion can either increase or decrease the benefits of volatility

timing for a long-horizon investor. A long-horizon investor should time volatility less ag-

gressively than a short-horizon investor only if changes in volatility are associated with

3Mean-reverting shocks in stock returns are often called discount rate shocks.
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greater-than-proportional changes in the amount of mean-reversion in returns, i.e. the

share of return volatility due to mean-reverting shocks increases with volatility. Intu-

itively, an increase in the volatility of mean-reverting shocks makes stocks relatively safer

in the long run compared to the short run. Following the same logic, if changes in volatil-

ity are associated with less-than-proportional increases in the amount of mean-reversion,

the long-horizon investor should time volatility even more aggressively than the short-

horizon investor.

Empirically, there is yet no evidence on how volatility and the amount of mean-

reversion co-move. Furthermore, even in the case of extreme co-movement, when volatil-

ity variation is completely driven by variation in the volatility of mean-reverting shocks,

we show that long-horizon investors still find it optimal to time volatility. The key for this

result is that in the data mean reversion takes many years, making even mean-reverting

shocks risky for realistic investment horizons.4 Overall, our analysis conclusively shows

that long-horizon investors should also time volatility.

Lastly, we study the general equilibrium implications of our results. In equilibrium,

it is useful to think of “effective risk aversion” as γt = Et[Rt+1]/Vart[Rt+1]. Our results

imply that γt is negatively related to volatility. For example, in Figure 1 we find that

effective risk aversion declines by nearly an order of magnitude as we go from low to

high volatility quintiles, despite the fact that volatility is strongly related to the business

cycle. Equilibrium asset pricing theories all feature the opposite prediction, namely that

the correlation between effective risk aversion, γt, and variance is weakly positive. This

is because in bad times when volatility increases, effective risk aversion in these models

also increases, driving up the compensation for risk. This is a typical feature of standard

rational, behavioral, and intermediary models of asset pricing alike. We argue that this

correlation is important for these models. Ultimately, the goal of these theories is to gen-

erate a large and volatile equity premium, and the co-movement in the price and quantity

of risk plays a key role in achieving this result.

The general equilibrium results also highlight how our approach differs from other

4Sharpe ratios for stocks increase only slowly with investment horizon (Poterba and Summers, 1988),
and valuation ratios that predict returns are highly persistent with auto-correlation close to one (Campbell
and Shiller, 1988).
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asset allocation papers which use volatility because our results can speak to the evolution

of the aggregate risk return tradeoff. For example, Fleming et al. (2001) and Fleming et al.

(2003) study daily asset allocation across stocks, bonds, and gold based on estimating the

conditional covariance matrix which performs cross-sectional asset allocation. Barroso

and Santa-Clara (2015) and Daniel and Moskowitz (2015) study volatility timing related

to momentum crashes.5 Instead, our approach focuses on the time-series of many aggre-

gate priced factors allowing us to give economic content to the returns on the volatility

managed strategies.

This paper proceeds as follows. Section 2 documents our main empirical results. Sec-

tion 3 explains the profitability of our strategy in more detail and provides various robust-

ness checks. Section 4 explores portfolio choice implications for short- and long-horizon

investors. Section 5 discusses implications for structural asset-pricing models. Section 6

concludes.

2. Main Empirical Results

2.1 Data Description

We use both daily and monthly factors from Ken French’s website on Mkt, SMB, HML,

Mom, RMW, and CMA. The first three factors are the original Fama-French 3 factors

(Fama and French (1996)), while the last two are a profitability and an investment factor

that they use in their 5 factor model (Fama and French (2015), Novy-Marx (2013)). Mom

represents the momentum factor which goes long past winners and short past losers. We

also include daily and monthly data from Hou et al. (2014) which includes an investment

factor, IA, and a return on equity factor, ROE. We also use data on currency returns from

Lustig et al. (2011) provided by Adrien Verdelhan. We use the monthly high minus low

carry factor formed on the interest rate differential, or forward discount, of various cur-

rencies. We have monthly data on returns and use daily data on exchange rate changes

for the high and low portfolios to construct our volatility measure. We refer to this factor

5Daniel et al. (2015) also look at a related strategy to ours for currencies.
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as “Carry” or “FX” to save on notation and to emphasize that it is a carry factor formed

in foreign exchange markets.

We compute realized volatility (RV) for a given month t for a given factor f by taking

the square root of the variance of the past daily returns in the month. This information

is known at the end of month t and we use this as conditioning information in forming

portfolios for the next month t + 1. Our approach is simple and uses only return data.

Figure 2 displays our monthly estimates for realized volatility for each factor.

2.2 Portfolio construction

We construct managed portfolios by scaling each factor by the inverse of its realized vari-

ance. That is, each month we increase or decrease our risk exposure to the factors by

looking at the realized variance over the past month. The managed portfolio is then

c
RV2

t
ft+1 (1)

The constant c controls average risk exposure of the strategy. For ease of interpretation,

we choose c so that the managed factor has the same unconditional standard deviation as

the non-managed factor.6

The idea is that if variance does not forecast returns, the risk-return trade-off will

deteriorate when variance increases. In fact, this strategy is exactly what a mean-variance

optimizing agent should do if volatility doesn’t forecast returns. In our main results, we

keep the managed portfolios very simple by only scaling by past realized variance instead

of the optimal expected variance computed using a forecasting model. An appealing

feature of this approach is that can be easily implemented by an investor in real time.

Appendix A.1 considers the use of more sophisticated forecasting models.

6Importantly c has no effect on our strategy’s Sharpe ratio, thus the fact that we use the full sample to
compute c does not impact our results.

6



2.3 Main results

Table 1 reports the results from running a regression of the volatility managed portfo-

lios on the original factors. A positive intercept in this time-series regression implies that

the volatility managed portfolios expand the unconditional mean-variance frontier and

therefore that an investor could increase his or her Sharpe ratio relative to a buy-and-

hold strategy. In a world where the trade-off between risk and return is constant, this

time-series alpha should be approximately zero (see Section 3.1). Intuitively, this is be-

cause when the risk return trade off is strong there is no scope for volatility timing. Con-

versely, if there is no relationship between risk and return in the time-series, the volatility

managed portfolios should earn large positive alphas. Intuitively, the managed portfolio

takes advantage of the more attractive compensation for risk during low volatility times

and avoids the poor risk-return trade-off during high volatility times.

We see positive, statistically significant constants (α’s) in most cases in Table 1. The

managed market portfolio on its own deserves special attention because this strategy

would have been easily available to the average investor in real time; moreover the results

in this case directly relate to a long literature on market timing that we discuss later.7 The

scaled market factor has an annualized alpha of 4.86% and a beta of only 0.6. While most

alphas are strongly positive, the largest is for the momentum factor.8

In all tables reporting α’s we also include the root mean squared error, which allows

us to construct the managed factor excess Sharpe ratio (or “appraisal ratio”) given by
α
σε

, thus giving us a measure of how much dynamic trading expands the slope of the

MVE frontier spanned by the original factors. More specifically, the Sharpe ratio will

increase by precisely

√
SR2

old +
(

α
σε

)2
− SRold where SRold is the Sharpe ratio given by

the original non-scaled factor. For example, in Table 1, scaled momentum has an α of

12.5 and a root mean square error around 50 which means that its annualized appraisal

ratio is
√

1212.5
50 = 0.875. The scaled markets’ annualized appraisal ratio is 0.34.9 Other

7The typical investor will likely find it difficult to trade the momentum factor, for example.
8This is consistent with Barroso and Santa-Clara (2015) who find that strategies which avoid large mo-

mentum crashes by timing momentum volatility perform exceptionally well.
9We need to multiply the monthly appraisal ratio by

√
12 to arrive at annual numbers. We multiplied

all factor returns by 12 to annualize them but that also multiplies volatilities by 12, so the Sharpe ratio will
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notable appraisal ratios across factors are: HML (0.20), Profitability (0.41), Carry (0.44),

ROE (0.80), and Investment (0.32).

Figure 3 plots the cumulative nominal returns to the volatility managed market factor

compared to a buy-and-hold strategy from 1926-2015. We invest $1 in 1926 and plot the

cumulative returns to each strategy on a log scale. From this figure, we can see relatively

steady gains from the volatility managed factor, which cumulates to around $20,000 at

the end of the sample vs. about $4,000 for the buy-and-hold strategy. The lower panels

of Figure 3 plot the drawdown and annual returns of the strategy relative to the market,

which helps us understand when our strategy loses money relative to the buy-and-hold

strategy. Our strategy takes relatively more risk when volatility is low (e.g., the 1960’s)

hence its losses are not surprisingly concentrated in these times. In contrast, large mar-

ket losses tend to happen when volatility is high (e.g., the depression or recent financial

crisis) and our strategy avoids these episodes. Because of this, the worst time periods

for our strategy do not overlap much with the worst market crashes. This illustrates that

our strategy works by shifting when it takes market risk and not by loading on extreme

market realizations as profitable option strategies typically do.

From the vantage point of a sophisticated investor, a natural question that emerges

from our findings is whether our volatility managed portfolios are capturing risk premia

captured by well-known asset pricing factors. This question is relevant if the investor

is already invested across multiple factors; in that case it is important to know if our

volatility managed portfolios expand the unconditional mean-variance frontier relative

to a particular investment opportunity set. We approach this question by considering al-

ternative MVE portfolios formed using a different set of factors. Specifically, we compute

the mean-variance efficient portfolio formed using static weights on a set of factors and

then construct a volatility managed version of this portfolio using the realized variance of

the portfolio in a given month. Thus, our volatility managed portfolios only shifts the con-

ditional beta on the static MVE portfolio, but does not change the relative weights across

individual factors. Given an investor’s investment opportunity set, it is well known that

the investor will want to choose the mean-variance efficient portfolio and then decide

still be a monthly number.
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between this portfolio and the risk free asset. Therefore, this is precisely the portfolio

the investor will want to volatility time. In Table 2, we show that the volatility timed

mean-variance efficient portfolios have positive alpha with respect to the original MVE

portfolio for all combinations of factors we consider including the Fama French three and

five factors, or the Hou, Xue, and Zhang factors. This finding is robust to including the

momentum factor as well. Appraisal ratios are all economically large and range from 0.33

to 0.91.

We also analyze these mean-variance portfolios across three 30-year sub-samples (1926-

1955, 1956-1985, 1986-2015) in Panel B. The results generally show the earlier and later

periods as having stronger, more significant alphas, with the results being weaker in the

1956-1985 period, though we note that point estimates are positive for all portfolios and

for all subsamples. This should not be surprising as our results rely on a large degree of

variation in volatility to work. For example, if volatility were constant over a particular

period, our strategy would be identical to the buy-and-hold strategy and alphas would

be zero. Thus, alphas tend to be larger over subsamples where volatility varies the most.

Volatility varied far less in the 1956-1986 period, consistent with lower alphas during this

time.

Overall, our volatility managed portfolios substantially expand the mean-variance

frontier. This is true in a univariate sense, when one considers each factor in isolation,

but also in a multi-factor sense because the volatility managed mean-variance efficient

portfolios have substantial appraisal ratios.10

3. Understanding the profitability of volatility timing

In this section we investigate why our strategy works. Section 3.1 shows how the prof-

itability of volatility timing is related to the risk-return trade-off. Section 3.2 investigates

potential explanations for our strategy’s high risk-adjusted returns. We first focus on

risk-based explanations and then address explanations based on leverage constraints,

10Static MVE Sharpe ratios are likely to be overstated relative to their true population moments, since
the weights are constructed in sample. Thus, the increase in Sharpe ratios we document are likely to be
understated. We thank Tuomo Vuolteenaho for this point.
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borrowing frictions, and transaction costs. We conclude this section by discussing sev-

eral additional robustness exercises which are left to Appendix A.

We conclude that there is no obvious explanation for our findings. A reader interested

in the portfolio choice implications of our main finding is free to skip to Section 4.

3.1 Volatility timing and the risk-return trade-off

We start by showing theoretically that the unconditional alpha of our strategy is tightly

linked to the strength of the risk-return trade-off in the time-series.

We find it most useful to discuss our results in terms of conditional vs. unconditional

models (see, e.g., Jagannathan and Wang (1996)). In particular, all conditional alphas are

zero in our setting because our strategies are managed versions of the factors themselves.

More specifically, our strategies are of the form ztRt+1 which, by definition, must have

zero conditional alpha with respect to Rt+1. Thus, it follows that Et[ztRt+1] = βtµt, where

βt = zt and µt = Et[Rt+1]. Taking unconditional expectations, letting β be the uncondi-

tional beta, and βµ be the expected return implied by an unconditional model, we have11

α = E[ztRt+1]− βµ = (E[βt]− β) µ + cov(βt, µt) (2)

This decomposes the unconditional alpha into a component that captures the ability of

our strategy to time volatility, E[βt]− β, and a component that captures the co-movement

of our strategy with expected returns, cov(βt, µt). If the strategy can time volatility and

takes risk when conditional variance is low then the strategy’s unconditional beta will be

lower than its average beta and this first term will be positive.12 Importantly, this volatil-

ity timing only generates alpha when volatility is weakly related to expected returns, so

that the second term does not off-set the reduction in unconditional risk.

It is worth considering two cases. First, when there is no time-series relation be-

tween expected returns and variance so that cov(βt, µt) ≈ 0, our strategy alpha becomes

11Note that if zt is uncorrelated with the moments of returns, the unconditional alpha is zero.
12See Boguth et al. (2011) for how this effect can cause a bias when the goal is to test a conditional factor

model. In our setting the conditional model works perfectly and we show that the unconditional alpha of
our strategy measures how beneficial is volatility timing.

10



α = µ (E[βt]− β), which is increasing in our ability to forecast volatility. Second, when

the relationship between variance and expected returns is strong13, so that µt = γσ2
t , the

unconditional alpha is approximately zero because reducing risk exposure when volatil-

ity is high also sacrifices high expected returns rather than just avoiding high volatility.

That is, if the risk-return tradeoff is strong there is no gain to volatility timing. Appendix

B shows this in more detail.

In summary equation (2) makes it transparent that our strategy produces alpha if

volatility is predictable and the relationship between volatility and expected returns is

weak, not necessarily zero. Empirically, however, we find that for the volatility managed

market portfolio, µ (E[βt]− β) = 4.8%, while the actual alpha of our strategy is 4.86%.

This confirms that indeed the term cov(βt, µt) is near zero, consistent with no risk-return

tradeoff in the data.

3.1.1 The strength of the risk return trade-off

We have shown that our strategy alpha is quantitatively consistent with no time-series

relation between expected returns and risk. We now study this relationship directly and

show that indeed our alpha results are consistent with alternative ways of measuring the

risk return trade-off.

We start by showing that realized volatility for each factor strongly predicts future

volatility (Table 3), but doesn’t predict the factor’s future returns (Table 4). We run monthly

regressions of future 1 month returns on monthly realized volatility for each factor. Using

log realized volatility or using realized variance does not change these results. We can see

that coefficients across factors range from positive to negative but are, generally speaking,

not significant. Therefore, we don’t see any clear relationship between a factors’ volatility

and its future expected return. Mechanically, this is one reason why our strategy works. If

a factors realized volatility is persistent and does not predict a large increase in expected

returns, then an increase in volatility signifies a worse risk return tradeoff. These results

complement a longer literature on the risk return tradeoff, which generally finds weak

13As would be the case in a general equilibrium model with a representative agent with risk aversion γ
that holds the market.
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forecasting power of variance for future returns (Glosten et al. (1993), Whitelaw (1994),

Lundblad (2007), Lettau and Ludvigson (2003)).14

To see that the relationship between risk and return is indeed weak, we approach

this question with a less parametric approach. We sort the time-series of market returns

into five buckets based on the current month’s realized volatility. We then look at the

behavior of realized returns over the following month. Figure 1 plots the average realized

return, volatility of returns, and the risk return tradeoff across these five buckets. The

basic pattern is clear: high volatility this month forecasts high return volatility next month

but not higher average returns. This means Sharpe ratios are lower after high volatility

months. Even more dramatically, the relevant quantity Et(Rt+1)/Vart(Rt+1) is strongly

decreasing in volatility, which again shows that a mean-variance investor would want to

time volatility.

The question in this paper is also different from the standard risk return tradeoff lit-

erature. In this paper we show that not only the sign, but the strength of this relation-

ship has qualitative implications for portfolio choice. Even if this relationship is positive,

volatility timing can still be beneficial if expected returns do not rise by enough compared

to increases in volatility. Our paper takes a portfolio strategy approach to the risk re-

turn tradeoff by showing portfolios can be formed in real time that take advantage of the

risk-return regressions and produce very large risk-adjusted returns. This not only takes

advantage of the weak risk return tradeoff but also the large variation in volatility.15 The

large alphas, dramatic increase in Sharpe ratios, and large implied utility benefits from

our volatility managed portfolios help quantify the failure of the risk return tradeoff in

economic terms.

3.1.2 The dynamics of the risk return trade-off

Next, we frame our results in light of the return predictability literature. To better un-

derstand the co-movement between expected returns and conditional variance in the

data, we estimate a VAR for expected returns and variances of the market portfolio. We

14See also related work by Bollerslev et al. (2016) and Tang and Whitelaw (2011).
15For example, even if the risk return tradeoff were indeed violated, if volatility didn’t vary dramatically

there wouldn’t be a large benefit to volatility timing.
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then trace out the portfolio choice implications of a volatility shock for a myopic mean-

variance investor. We set risk aversion just above 2 so that the investor holds the market

on average when using the unconditional value for variance and the equity premium

(i.e., in the absence of movements in expected returns and volatility, the portfolio weight

is w = 1). This provides a natural benchmark to compare to.

We first estimate the conditional mean and conditional variance of the market return

using monthly data on realized variance, monthly market returns, the monthly (log) price

to earnings ratio, and the BaaAaa default spread. The expected return is formed by using

the fitted value from a regression of next month’s stock returns on the price to earnings ra-

tio, default spread, and realized variance (adding additional lags of each does not change

the results). Expected variance is formed using a log normal model for volatility and

including three lags for the market realized volatility.

We then take the estimated conditional expected return and variance and run a VAR

with three lags of each variable. We use an Impulse Response Function to trace out the

effects of a variance shock where we choose the ordering of the variables so that the

variance shock can affect contemporaneous expected returns as well.

The results are in Figure 4. We see that a variance shock raises future variance sharply

and immediately. Expected returns, however, do not move much on impact but rise

slowly as time goes on. The impulse response for the variance dies out fairly quickly,

consistent with variance being strongly mean reverting. Given the increase in variance

but only slow increase in expected return, the lower panel shows that it is optimal for

the investor to reduce his portfolio exposure from 1 to 0.6 on impact because of an unfa-

vorable risk return tradeoff. This is because expected returns have not risen fast enough

relative to volatility. The portfolio share is consistently below 1 for roughly 18 months

after the shock.

It is well known that movements in both stock-market variance and expected returns

are counter-cyclical (French et al., 1987; Lustig and Verdelhan, 2012), that is, both risk and

expected returns tend to be high in recessions and low in booms. Here, we show that

the much lower persistence of volatility shocks implies the risk-return trade-off initially

deteriorates but gradually improves as volatility recedes through the recession. Thus, our
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volatility timing results are not in conflict with expected return timing results. Instead,

after a large market crash such as October 2008, our strategy gets out of the market imme-

diately to avoid an unfavorable risk return tradeoff, but captures much of the expected

return increase by buying back in when the volatility shock subsides.

These results square our findings with the portfolio choice literature on return pre-

dictability. They say that in the face of volatility spikes expected returns do not react

immediately and at the same frequency. This suggests reducing risk exposures by sub-

stantial amounts at first. However, the investor should re-lever her positions once the

volatility shock has died out to capture the low frequency movements in expected returns

in bad times.

3.2 Economic explanations for the profitability of volatility timing

3.2.1 Business cycle risk

In Figure 3, we can see that the volatility managed factor has a lower standard devia-

tion through recession episodes like the Great Recession where volatility was high. Table

5 makes this point more clearly across our factors. Specifically, we run regressions of

each of our volatility managed factors on the original factors but also add an interaction

term that includes an NBER recession dummy. The coefficient on this term represents

the conditional beta of our strategy on the original factor during recession periods rela-

tive to non-recession periods. The results in the table show that, across the board for all

factors, our strategies take less risk during recessions and thus have lower betas during

recessions. For example, the non-recession market beta of the volatility managed market

factor is 0.83 but the recession beta coefficient is -0.51, making the beta of our volatility

managed portfolio conditional on a recession equal to 0.32. Finally, by looking at Figure 2

which plots the time-series realized volatility of each factor, we can clearly see that volatil-

ity for all factors tends to rise in recessions. Thus, our strategies decrease risk exposure

in NBER recessions. This makes it difficult for a business cycle risk story to explain our

facts. However, we still review several specific risk based stories below.
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3.2.2 Other risk based explanations

Variance risk premia: Because our strategy aggressively times volatility a reasonable

concern is that our strategy’s high Sharpe ratio is due to a large exposure to variance

shocks which would require a high risk premium (Ang et al., 2006b; Carr and Wu, 2009).

However, it turns out that our strategy is much less exposed to volatility shocks than

the buy-and-hold strategy. This follows from the fact that volatility of volatility is higher

when volatility is high. Because our strategy takes less risk when volatility is high, it also

less sensitive to volatility shocks.

Downside risk: In unreported results, we find that the downside betas of our strategy

following the methodology in Lettau et al. (2014) are always substantially lower than

unconditional betas. For example, for the volatility managed market return, the downside

beta we estimate is 0.11 and isn’t significantly different from zero. Thus, alphas would be

even larger if we evaluated them relative to the downside risk CAPM (Ang et al. (2006a)

and Lettau et al. (2014)). Intuitively, periods of very low market returns are typically

preceded by periods of high volatility when our strategy has a low risk exposure.

Disaster risk: For disaster risk to explain our findings, our volatility managed port-

folio would have to be more exposed to disaster risk than the static portfolio. Because

empirically, macro-economic disasters unfold over many periods (Nakamura et al., 2010)

and feature above average financial market volatility (Manela and Moreira, 2013), the

volatility timing strategy tends to perform better during disaster events than the static

counterpart. This is further supported by the fact that our strategy takes less risk in the

Great Depression and recent financial crisis (see Figure 5), the two largest consumption

declines in our sample.

Jump risk: Jump risk is the exposure to sudden market crashes. To the extent that

crashes after low volatility periods happen frequently, our strategy should exhibit much

fatter tails than the static strategy, yet we do not see this when analyzing the uncon-

ditional distribution of the volatility managed portfolios. Overall, crashes during low

volatility times are just not frequent enough (relative to high volatility times) to make

our volatility managed portfolio more exposed to jump risk than the static buy-and-hold.

If anything, jumps seem to be much more likely when volatility is high (Bollerslev and
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Todorov, 2011), suggesting that our strategy is less exposed to jump risk than the buy-

and-hold portfolio.

3.2.3 Contrasting with cross-sectional low-risk anomalies

It is useful to contrast our analysis with strategies that explore a weak risk return trade-off

in the cross-section of stocks.

The first strategy, popular among practitioners, is risk parity. Risk parity is mostly

about cross-sectional allocation. Specifically, risk parity ignores information about ex-

pected returns and co-variances and allocates to different asset classes or factors in a way

that makes the total volatility contribution of each asset the same (see for example Asness

et al. (2012)). This implies that, if the volatility of one factor spikes relative to other fac-

tors, the strategy will rebalance from the high volatility factor to the low volatility factor.

In contrast, when we time combinations of factors, as in Table 2, we keep the relative

weights of all factors constant and only increase or decrease overall risk exposure based

on total volatility. Thus, our volatility timing is conceptually quite different from risk

parity. To assess this difference empirically, we follow Asness et al. (2012) and construct a

risk parity factor that we then use in Table 6 as a control in our time-series regression. The

alphas are basically unchanged. We thus find that controlling for the risk parity portfolios

constructed following Asness et al. (2012) has no effect on our results, suggesting that we

are picking up a different empirical phenomenon.

The second strategy is the betting against beta factor (BAB) of Frazzini and Pedersen

(2014). They show that a strategy that goes long low beta stocks and shorts high beta

stocks can earn large alphas relative to the CAPM and the Fama-French three factor model

that includes a Momentum factor. Conceptually, our strategy is quite different. While

the high risk-adjusted return of the BAB factor reflects the fact that differences in average

returns are not explained by differences in CAPM betas in the cross-section, our strategy is

based on the fact that across time periods, differences in average returns are not explained

by differences in stock market variance. Our strategy is measuring different phenomena

in the data. In the last column of Table 6 we show further that a volatility managed version

of the BAB portfolio also earns large alphas relative to the buy-and-hold BAB portfolio.

16



Therefore, one can volatility time the cross-sectional anomaly. In addition to this, we

also find that our alphas are not impacted if we add the BAB factor as a control. These

details are relegated to the Appendix. Thus, our time-series volatility managed portfolios

are distinct from the low beta anomaly documented in the cross-section.

In addition our results are different from Ang et al. (2006b) who study the link be-

tween idiosyncratic risk and the cross-section of returns. By focusing on systematic risk

factors, we are able to say something about the evolution of the aggregate price of risk

over time. Volatility timing on an individual stock will not tell us about risk compensa-

tion over time because the majority of the stock’s volatility is idiosyncratic.

3.2.4 Leverage constraints

Black (1972), Jensen et al. (1972) and more recently Frazzini and Pedersen (2014) show that

leverage constraints can distort the risk-return trade-off in the cross-section. Empirically,

high beta assets have an abnormally low average return relative to that predicted by the

CAPM. The idea is that the embedded leverage of high beta assets make them attractive

to investors that are leverage constrained.

Applying this idea to the time-series, one could argue that low volatility periods are

analogous to low beta assets, and as such have expected returns that are too high relative

to the baseline model. Intuitively, leverage constrained investors cannot leverage their

position during low volatility periods explaining why average returns are too high in

these periods.

On a conceptual level, this explanation has potential. However we see two challenges

for it to explain our findings. First, in order for leverage constraints to explain our find-

ings, the constraint would need to be tighter during periods of low volatility. This would

be inconsistent with both theory and empirical evidence that it is easier to take on lever-

age in periods of low volatility (Brunnermeier and Pedersen (2009), Adrian et al. (2014)).

Next, we consider the role of leverage constraints empirically. We start by consider-

ing a simple strategy that only updates the portfolio when volatility is above its mean

value. This portfolio avoids the use of leverage in low volatility episodes where the risk

weight would normally rise substantially (see next section where we discuss these results
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in the context of transaction costs). We also construct a volatility managed strategy for

an investor whose portfolio weight on the market is on average 50% and who can’t use

leverage. We find that both strategies have large alphas and substantial gains in Sharpe

ratios.

For investors whose risk-aversion is low enough, our baseline strategy uses leverage.

For an investor that wants to be 100% in stocks on average, the volatility timing mechan-

ically requires leverage about half of the time, when volatility is below its average. To

address the issue that leverage might be costly, we implement our strategy using options

in the S&P 500. Specifically we use the option portfolios from Constantinides et al. (2013).

We focus on in-the-money call options with maturities of 60 and 90 days and whose mar-

ket beta is around 7. Whenever the strategy prescribes leverage, we can instead use the

option portfolios to achieve our desired risk exposure. In Table 7, we compare the strat-

egy implemented with options with the one implemented with leverage. The alphas are

very similar showing that our results are not due to leverage constraints.

In light of recent work by Frazzini and Pedersen (2012), the fact that our strategy can

be implemented through options should not be surprising. Frazzini and Pedersen (2012)

show that, for option strategies on the S&P 500 index with embedded leverage up to 10,

there is no difference in average returns relative to strategies that leverage the cash index.

This implies that our strategy can easily be implemented using options for relatively high

levels of leverage.

In the end, the potential for the leverage story to explain our findings depends on how

leveraged an investor wants to be on average. As desired average leverage increases be-

yond 10, the benefits of timing the weak risk-return trade-off in the time-series is increas-

ingly offset by the weak risk return trade-off in the cross-section. However, the average

investor is an investor who holds the market, and this investor can substantially benefit

from our strategy without explicitly needing to use leverage.

3.2.5 Transaction costs

We show that our strategies survive transaction costs. These results are given in Table 8.

Specifically, we evaluate our volatility timing strategy for the market portfolio when in-
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cluding empirically realistic transaction costs. We consider various strategies that capture

volatility timing but reduce trading activity, including using standard deviation instead

of variance, using expected rather than realized variance, and only trading when variance

is above the long run average (a strategy that does not use any leverage). Each of these re-

duces trading and hence reduces transaction costs. We report the average absolute change

in monthly weights, expected return, and alpha of each strategy before transaction costs.

Then we report the alpha when including various transaction cost assumptions. The 1bp

cost comes from Fleming et al. (2003); the 10bps comes from Frazzini et al. (2015) which

assumes the investor is trading about 1% of daily volume; and the last column adds an

additional 4bps to account for transaction costs increasing in high volatility episodes.

Specifically, we use the slope coefficient in a regression of transaction costs on VIX from

Frazzini et al. (2015) to evaluate the impact of a move in VIX from 20% to 40% which rep-

resents the 98th percentile of VIX. Finally, the last column backs out the implied trading

costs in basis points needed to drive our alphas to zero in each of the cases. The results in-

dicate that the strategy survives transactions costs, even in high volatility episodes where

such costs likely rise (indeed we take the extreme case where VIX is at its 98th percentile).

Alternative strategies that reduce trading costs are much less sensitive to these costs.

Overall, we show that the annualized alpha of the volatility managed strategy de-

creases somewhat for the market portfolio, but is still very large. We do not report results

for all factors, since again this is not explicitly the goal of our paper, but we point out that

realized volatility for the market varies by much more than for the other factors, implying

more volatile weights and more trading. Hence, the trading costs for other factors is likely

to be lower. Note, however, that we do not study trading costs of the original factors.

These results on transaction costs and the results dealing with leverage constraints

together suggest that our strategy can be realistically implemented in real time.

3.3 Additional robustness checks

We conduct a number of additional robustness checks of our main result but leave the

details to Appendix A. We show that our strategy works across 20 OECD stock market

indices, that it can be further improved through the use of more sophisticated models of
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variance forecasting, that it does not generate fatter left tails than the original factors or

create option-like payoffs, and that it outperforms not only using alpha and Sharpe ratios

but also manipulation proof measures of performance (Goetzmann et al., 2007).

4. Portfolio choice implications

In this section, we focus on understanding the implications of our empirical findings

for portfolio choice. We start by computing the utility gains from volatility timing for a

mean-variance investor, and find that these gains are substantially larger than the utility

gains arising from standard expected return timing strategies. We then study the portfolio

problem of a long-horizon investor.

We focus on the portfolio problem of an investor that trades a risky portfolio and

a risk-free bond, and calibrate the parameters in our analysis to be consistent with the

market portfolio. Our results for the mean-variance investor in Section 4.1 extend directly

to the other portfolios considered in Section 2; specifically, they carry over for the different

ex-post MVE portfolios we study in Table 2 . Our results for a long-horizon investor

in Section 4.2 rely on the vast literature on return predictability which focuses on the

aggregate market.

4.1 Volatility timing for a mean-variance investor

We now use simple mean-variance preferences to measure the benefits of volatility tim-

ing. The mean variance investor wants to set his risk exposure as Et[Rt+1]/Vart(Rt+1).

A natural question is whether this investor is better of learning about the conditional

mean or conditional variance. This comparison provides a useful benchmark to evaluate

the benefits of volatility timing as the benefits of expected return timing are well studied

in the long literature on return predictability and portfolio choice (e.g., Barberis (2000)).

Specifically, we extend the analysis in Campbell and Thompson (2008) to allow for time-

variation in volatility, and use it to compare the benefits of timing volatility and expected

returns for the market portfolio.16

16See also Breen et al. (1989) and Busse (1999) on volatility timing.
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4.1.1 Expected return timing

Consider the following excess return process,

rt+1 = µ + xt +
√

Ytet+1, (3)

where E[xt] = E[et] = 0 and xt, et+1 are conditionally independent. We begin by studying

an investor who follows an unconditional strategy and an expected return timing strategy.

Later, we study an investor who times volatility rather than expected returns. For a mean-

variance investor his portfolio choice can be written as follows,

w =
1
γ

µ

E[Yt] + σ2
x

, (4)

w(xt) =
1
γ

µ + xt

E[Yt]
, (5)

where the portfolio policy in Equation (4) uses no conditional information, and the port-

folio policy in Equation (5) uses information about the conditional mean but ignores fluc-

tuations in volatility. We now compare expected returns across the two conditioning sets,

which also measures the investor’s expected utility. We multiply factor returns by the

portfolio weight before taking unconditional expectations:

E[wrt+1] =
1
γ

µ2

σ2
x + E[Yt]

=
1
γ

S2 (6)

E[w(xt)rt+1] =
1
γ

µ + σ2
x

E[Yt]
=

1
γ

(S2 + R2
r )

1− R2
r

, (7)

where S is the unconditional Sharpe ratio of the factor S = µ√
E[Yt]+σ2

x
and R2

r is the share

of the return variation captured by the forecasting signal x (e.g., it is the R-square in a

predictive return regression). The proportional increase in expected returns (and utility)

is 1+S2

S2
R2

r
1−R2

r
, which is increasing in the degree of return predictability.

This essentially assumes that there is no risk-return trade-off in the time-series. With

such an assumption Campbell and Thompson (2008) show that a mean-variance investor

can experience a proportional increase in expected returns and utility of roughly 35% by
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using conditional variables known to predict returns such as the price-earnings ratio. For

example if an investor had risk-aversion that implied an expected excess return on his

portfolio of 5%, the dynamic strategy implies average excess returns of 6.75%.

4.1.2 Volatility timing

To evaluate the value added by volatility timing we extend these computations by first

adding only a volatility signal. Following the analysis in Campbell and Thompson (2008)

and consistent with our empirical findings this exercise assumes there is no risk-return

trade-off in the time-series.17

We assume the variance process is log-normal Yt = eyt , with yt = ŷt + ut, where ŷt is

the forecastable component of stock market variance.

This produces optimal portfolio weights and expected returns given by

w(yt) =
1
γ

µ

e2(ŷt+σ2
u)

; (8)

E[w(yt)rt+1] =
1
γ

S2eVar(ŷt), (9)

where equation (9) can be written as a function of the R-squared of the forecasting regres-

sion of future realized variance on the signal ŷ, E[w(yt)rt+1] =
1
γ S2eR2

yVar(yt). The pro-

portional expected return gain of such a strategy is simply eR2
yVar(yt). The total monthly

variance of log realized variance is 1.06 in the full sample (1926-2015), and a simple model

that uses lagged variance as the forecast of future variance achieves a R2
y = 38%, imply-

ing a proportional expected return increase of 50%. A slightly less naive model that takes

into account mean-reversion and uses the lagged realized variance to form an OLS fore-

cast (i.e., an AR(1) model for variance) achieves R2
y = 53%. This amount of predictability

implies a proportional increase in expected returns of 75%. A sophisticated model that

uses additional lags of realized variance can reach even higher values. Using more recent

option market data one can construct forecasts that reach as much as 60% R-squared, im-

plying an expected return increase of 90%. These estimates do not depend on whether

the R-squared is measured in or out of sample as this relationship is stable over time.

17We relax this assumption in Appendix C.
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It is worth noting that all of these methods provide larger increases in expected re-

turns than forecasts based on the conditional mean. A simple calculation shows that

the forecasting power for the market portfolio would need to have an out of sample R-

squared above 1% per month to outperform our volatility timing method, which is sub-

stantially higher than is documented in the literature on return predictability. Moreover,

even if some variables are able to predict conditional expected returns above this thresh-

old, it is not clear if an investor would have knowledge of and access to these variables

in real time. In contrast, data on volatility is much more available. Even a naive investor

who simply assumes volatility next month is equal to realized volatility last month will

outperform a expected return timing strategy in terms of utility gain.

Importantly, volatility timing can be implemented for the several additional factors

studied in Section 2, with similar degrees of success. The degree of predictability we find

for the conditional variance of different factors is fairly similar, with simple AR(1) models

generally producing R-squared values around 50-60% at the monthly horizon. In contrast,

the same variables that help forecast mean returns on the aggregate market portfolio do

not necessarily apply to the other factors. Thus, we would need to come up with addi-

tional return forecasting variables for each of the different factors. Volatility timing, on

the other hand, is easy to replicate across factors because lags of the factors’ own variance

are a reliable and stable way to estimate conditional expected variance across factors.

Because our focus in on volatility timing, in the main text we abstract from strategies

that time both expected returns and volatility. In Appendix C we study the general case

where investors time volatility and expected returns simultaneously. We show gains as

high as 200%. The main reason this number is so large is because the estimated risk return

trade-off in the data is very weak, meaning that the combination of information provides

large timing gains.

4.2 Volatility timing for a long-horizon investor

We now study the problem of a long-horizon investor and investigate how much they

should adjust their portfolio to changes in volatility. This analysis is critically important

to interpret our findings because a fraction of returns mean-revert (Campbell and Shiller,
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1988; Poterba and Summers, 1988), i.e. low returns today are at least partially compen-

sated by an increase in expected returns going forward. This empirical fact implies that

short-term stock market volatility is not the the relevant measure of risk for a long-horizon

investor.

Following the terminology in Merton (1973), the optimal portfolio demand for a long-

horizon investor can be written as the sum of a myopic demand, the demand of a short-

horizon investor, and a hedging demand, which emerges when returns are correlated

with changes in the investment opportunity set. Specifically, the hedging demand will

lead a long-horizon investor to choose more volatile portfolios than a short-horizon in-

vestor when returns feature some mean-reversion. Intuitively, a long-horizon investor

likes mean-reversion because the associated increase in expected returns works as a par-

tial hedge for the bad return realization, making stocks less volatile in the long run.

This hedging effect means that the implications of our empirical findings for a long-

horizon investor are not immediate. An increase in volatility might generate an increase

in the hedging demand that is enough to completely offset the reduction in exposure

due to the myopic demand– i.e. it might be that long-horizon investors should just ignore

time-variation in volatility, in line with the advice of Cochrane (2008) and Buffett (2008).18

We therefore need to dig deeper into the long-horizon investor portfolio problem in order

to see how the investor will behave once the hedging demand is taken into account.

We solve the portfolio problem of an infinitely lived investor in a stochastic environ-

ment that allows for (i) variation in volatility; (ii) mean-reversion in returns (i.e. time-

variation in expected returns); (iii) weak time-series relation between expected returns

and volatility and (iv) variation in the amount of mean-reversion in returns, i.e. variation

in the share of return volatility due to mean-reverting shocks. Together, these ingredi-

ents are novel and essential to interpret our findings.19 Ingredients (i) and (iii) allow us

18Cochrane (2008) articulates the argument nicely:“And what about volatility?(...) if you were happy
with a 50/50 portfolio with an expected return of 7% and 15% volatility , 50% volatility means you should
hold only 4.5% of your portfolio in stocks! (...) expected returns would need to rise from 7% per year to 78%
per year to justify a 50/50 allocation with 50% volatility. (...) The answer to this paradox is that the standard
formula is wrong. (...) Stocks act a lot like long-term bonds – (...)If bond prices go down more, bond yields
and long-run returns will rise just enough that you face no long-run risk.(...)the same logic explains why
you can ignore ”short-run” volatility in stock markets.”

19Earlier work on portfolio choice has studied expected return variation, volatility variation, or volatility

24



to fit our main findings. Ingredient (ii) allow us to investigate whether the presence of

mean-reversion changes the portfolio choice implication for a long-horizon investor.

Ingredient (iv) allows us to consider the possibility that an increase in volatility is

associated with a greater-than-proportional increase in the amount of mean-reversion in

stock returns. This turns out to be essential to capture the intuition behind Cochrane

(2008) and Buffett (2008) argument. As we will show, the investment horizon will only

impact how an investor should respond to changes in volatility if the amount of mean-

reversion in stock returns does not vary proportionally with volatility, i.e. if the share

return volatility due to mean-reverting shocks co-moves with volatility .

We now discuss the portfolio choice framework and analyze the solution with a focus

on the optimal investment response to changes in volatility. Details are in Appendix D.

4.2.1 Investment opportunity set and preferences

We assume there is a riskless bond that pays a constant interest rate rdt, and a risky asset

St, with dynamics given by

dSt

St
= (r + xt)dt +

√
ytDdBt + FdZt, (10)

where St is the value of a portfolio fully invested in the asset and that reinvests all divi-

dends, xt is a scalar that drives the risky asset expected excess return, and yt is a scalar

that drives return volatility. The shocks dBt and dZt are independent three dimensional

Brownian motions, where each row captures shocks to realized returns, expected returns,

and volatility. We need two different Brownian motions dBt and dZt to allow for no-

proportional variation in the volatility of mean-reverting shocks. Formally the risky asset

variance is σ2(y) ≡ yD′D + F′F and the state variables evolve as follows,

dxt = κx(µx − xt)dt +
√

ytGdBt + HdZt (11)

dyt = κy(µy − yt)dt +
√

ytLdBt. (12)

variation with a constant risk-return trade-off. Examples of work that study volatility timing in a dynamic
environment are Chacko and Viceira (2005) and Liu (2007).
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The vector of return exposures D and F are chosen so that there are two different

types of shocks impacting returns that we label permanent and mean-reverting. Perma-

nent shocks are shocks to returns that are uncorrelated to shocks to expected returns.

On the other hand, mean-reverting shocks are shocks to returns that are correlated with

changes in expected returns in a way that the long run expected value of the asset St

does not change. That is, these shocks lower returns today but raise expected returns by

enough so that their long run effects are neutral. Permanent and mean-reverting shocks

are also often referred in the literature as cash-flow and discount-rate shocks (Campbell

and Vuolteenaho, 2004).

Investors have CRRA preferences, Et

[∫ ∞
t e−ρs C1−γ

s
1−γ ds

]
, where ρ is the rate of time pref-

erence and γ the coefficient of relative risk aversion. In Appendix D we also consider

more general Epstein and Zin (1989) preferences. The investor maximizes utility subject

to his intertemporal budget constraint (Equation 13 below ) and the evolution of state

variables.

Let Wt denote the investor wealth and wt the allocation to the risky asset, then the

budget constraint can be written as,

dWt

Wt
=

[
wtxt + r− Ct

Wt

]
dt + wt

√
ytDdBt + wtFdZt. (13)

4.2.2 Solution

The optimization problem has three state variables: the investor’s wealth plus the two

drivers (expected return x and volatility y) of the investment opportunity set.

To get intuition about the results that follow, let the value function of the agent be

given by J(W, x, y) = W1−γ

1−γ eV(x,y). Then, in the case where realized returns are unrelated

to innovations in volatility, L′D = 0, the optimal portfolio policy can be written as

wt =
xt

γσ2(yt)︸ ︷︷ ︸
myopic demand

− κxVx

γ
θ(yt)︸ ︷︷ ︸

hedging demand

, (14)

where θ(y) = G′Dyt+F′H
κxσ2(y) is the share of return volatility driven by mean-reverting shocks.
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The first term is the myopic demand, which reflects the portfolio choice of a short-

horizon investor. The second term is the Mertonian hedging demand.20 The fact that

expected returns increase after low return realizations makes investment in the risky as-

set a natural investment opportunity set hedge. Thus, the hedging demand leads the

long-horizon investor to have a higher average position in the risky asset (Vx is typically

negative).

Our analysis emphasizes how the strength of this hedging demand depends on the

composition of changes in volatility. If the volatility of mean-reverting shocks varies pro-

portionally to total volatility, θ(yt) is constant and this hedging demand does not fluc-

tuate with volatility, thus the long-horizon investor responds to volatility changes just

like the short-horizon investor.21 Thus, mean-reversion will always increase the average

position of the long-horizon investor relative to the short-horizon investor, but the pres-

ence of mean-reversion alone does not imply that a long-horizon investor should ignore

variation in volatility.

From Equation 14 we see that only if the volatility of mean-reverting shocks increases

more than proportionally with volatility (θ′(yt) > 0), the hedging demand will call for

an increase in risk exposure. This effect counteracts the myopic demand, which calls

for a reduction in risk exposure. Thus, the advice that a long-horizon investor should

ignore variation in volatility can be right only if the increase in the hedging demand is

sufficiently large. Intuitively, if an increase in volatility is associated with a greater-than-

proportional increase in the amount of mean-reversion in stock returns, then, since a long-

horizon investor likes mean-reversion, he will want to increase exposure, counteracting

the myopic demand. Figure 6 provides a graphical illustration of this mechanism in the

stark case where there are only mean-reverting shocks.

The opposite effect can also occur – if increases in volatility are associated with a

reduction in the share of mean-reverting shocks (θ′(y) < 0) then a long-horizon investor

20Earlier work on portfolio choice featuring time-varying volatility has focused on the hedging demand
that arises when L′D 6= 0 , which can be important to the extent that volatility innovations are strongly
correlated with returns. Chacko and Viceira (2005) shows that for parameters consistent with the data, this
term turns out not to be quantitatively important. Here we assume L′D = 0 just for illustration purposes,
though this has little effect on results as we show in Appendix D.

21Formally, changes in volatility could impact hedging demands through Vx, but this effect is small.
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will want to volatility time more than a short horizon investor.

Investment horizon plays a role in shaping the strength of the hedging demand through

Vx, the sensitivity of the investor value function with respect to the expected return state

variable. A long-horizon implies the investor can benefit more from the variation in ex-

pected returns, increasing hedging demands accordingly.

We solve for V numerically and study how the portfolio choice implied by equation

(14) varies with volatility.

4.2.3 Calibration

Our focus is to evaluate how much a long-run investor will choose to time volatility for

an empirically realistic process for returns and volatility. Our strategy is to match all

moments that can be directly measured in the data. Because we are not aware of any

work that measures how the amount of mean-reversion in returns co-moves with volatil-

ity, we consider alternative calibrations that embed different assumptions about this co-

movement.

Table 9 reports the moments used in our calibration. In calibrations (a), (b), and

(c), increases in volatility are associated with either greater-than-proportional (a), less-

than-proportional (b), or proportional (c) increases in the amount of mean-reversion.

Calibration (c) is a natural benchmark commonly assumed in papers that try to empiri-

cally identify mean-reverting and permanent shocks in stock returns (e.g. Campbell and

Vuolteenaho, 2004).

We calibrate the stochastic processes to be consistent with the following moments: av-

erage volatility, the R-squared of a predictability regression of year-ahead returns on the

price-dividend ratio, the auto-correlation coefficient of the logarithm of realized variance,

the standard deviation of the logarithm of realized variance, and the auto-correlation of

the price-dividend ratio (expected return state variable x).22

The persistence and volatility of volatility determine how much predictable varia-

22In the main text we focus on the effects of volatility variation and abstract from subtle hedging demand
effects arising from any contemporaneous correlation between return and volatility shocks and assume zero
correlation between volatility and expected return shocks L[3] = 0. In Appendix D.4 we study this case
and show that it does not impact our results.
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tion in volatility there is. The R-squared of the return predictability regression controls

the average amount of mean-reversion. The auto-correlation of the expected return state

variable controls how long mean-reversion takes. This auto-correlation plays a key role

in determining how long an investment horizon an investor must have in order to be

completely hedged with respect to shocks that mean-revert.

4.2.4 Analysis

In the main text we discuss results for an investor with CRRA preferences (with coefficient

of relative risk aversion of 10).23 Following the analysis in Blanchard (1985) and Gârleanu

and Panageas (2015), we use the preference parameter ρ to vary the investor horizon. We

choose ρ so that the half-life of utility weights ranges from 5 year to 30 years.24

To focus on the effect of volatility we fit the following linear relation on the optimal

policy evaluated at the unconditional equity premium25

w∗(y) ≈ a + b× µx
γσ2(y)

. (15)

The policies of a short-horizon investor fit this linear relation exactly with a = 0 and

b = 1. In short, the short-horizon investor puts zero weight on the buy-and-hold portfolio

and weight 1 on the volatility managed portfolio. In Figure 7 we report b as a function of

investment horizon. The reported coefficients have the direct interpretation of how much

weight the investor places on the volatility managed portfolio. A coefficient lower than

one implies the long-horizon investor times volatility less aggressively than the short-

horizon investor.

The flat line shows case (c) where the amount of mean-reversion increases propor-

tionally with volatility. Coefficients are equal to 1 and the long-horizon investor responds

to volatility changes exactly as a short-horizon investor. Thus, the presence of mean-

reversion in returns alone does not imply that a long-horizon investor responds differ-

23See Appendix D.4 for Epstein and Zin preferences and several values of risk aversion.

24Specifically, for a given horizon Tj, we solve for ρj such that
∫ Tj

0 e−ρj×tdt∫ ∞
0 e−ρj×tdt

= 1
2

25In Appendix D.4 we show that his linear approximation fits the optimal policy extremely well.
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ently to volatility changes than a short-horizon investor. Mean-reversion increases the

average position a long-horizon investor has in stocks, but because in case (c) the increase

in volatility is proportional, the risky asset becomes equally riskier as volatility increases.

In other words, the hedging demand is unconditionally large but doesn’t vary as a func-

tion of volatility.

For the intuition in Figure 6 to be qualitatively right, the amount of mean-reversion

must increase more than proportionally with volatility (case (a)). In this case, long-

horizon investors respond less than short-horizon investors to increases in volatility be-

cause the risky asset becomes relatively safer as a greater share of the volatility is due

to less risky mean-reverting shocks. While qualitatively the intuition in Figure 6 is right,

quantitatively the effect due to the hedging demand is not strong enough to fully counter-

act the myopic demand even in this extreme case. The loading on the volatility managed

portfolio is still quite high. For example, during the fall of 2008 volatility spiked from

20% to 60%. This would induce the mean-variance investor to shrink his risk exposure

by 90%, while an investor with a utility half-life of 30 years and coefficient of relative

risk-aversion 10 would shrink his risk exposure by 45% (0.5*90%). Even long-horizon

investors perceive mean-reverting shocks as somewhat risky because in the data mean-

reversion in returns is slow. Thus, an investor needs a very long horizon in order to fully

benefit from mean-reversion.

When the amount of mean-reversion increases less than proportionally with volatility,

the long-horizon investor responds more than the short-horizon to changes in volatility.

The risky asset becomes even riskier for a long-horizon investor as a smaller share of

volatility is due to less risky mean-reverting shocks. The same mechanism that makes

long-horizon investors less responsive to changes in volatility driven by mean-reverting

shocks makes them more responsive to changes in volatility driven by permanent shocks.

Thus, the magnitude of the response of the long-horizon investor is highly dependent on

the co-movement between volatility and the share of volatility due to mean-reverting

shocks. But, quantitatively, it is clear from Figure 7 that for reasonable investment hori-

zons, an investor always find it optimal to time volatility.

Both Cochrane (2008) and Buffett (2008) argued that investors with a long horizon
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should ignore the massive increase in volatility in the fall of 2008, and if anything the

large drop in equity prices provided investors with a unique buying opportunity. Their

intuition is qualitatively correct if the increase in volatility in the fall of 2008 was mostly

about mean-reverting shocks. Quantitatively their intuition does not quite work. The

change in the hedging demand is not large enough to offset the large reduction coming

from the myopic demand. Even in the extreme case where all the increases in volatility

is due to an increase in the volatility of mean-reverting shocks, long-horizon investors

still benefit from volatility timing. The key for this result is that the high persistence of

the price-dividend ratio in the data implies that mean-reversion takes a long-time. As

a result, investors must have very long horizons in order to safely “ignore” volatility

coming from mean-reverting shocks.

Importantly, there is yet no empirical evidence on how mean-reversion changes with

volatility. In the natural case where the amount of mean-reversion is constant the long-

run invests exactly as the short-horizon investor. Thus, our analysis shows that long-run

investors should ignore volatility at their own peril.

5. Discussion and implications for economic theory

An obvious caveat to our results is that not all investors can engage in volatility timing

in equilibrium – market clearing means the average investor has to hold the market port-

folio. Suppose instead that security prices are such that investors are happy with not

volatility timing. What, then, can we say about those investors?

First, it is worth sketching the implications of our empirical results for equilibrium

theories of time-varying risk-premia (e.g. Campbell and Cochrane, 1999; Barberis et al.,

2001; Bansal and Yaron, 2004; He and Krishnamurthy, 2012; Wachter, 2013). Our results

speak to these theories because their aim is to explain the level and variation in risk-

premia through a combination of time-variation in the quantity and the price of risk. Our

empirical work allows us to study whether the joint dynamics these models rely on is

consistent with the data.

Specifically, Figure 1 shows that in the data compensation per unit of risk must be
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lower when volatility is high, i.e. the market effective risk aversion, Et[Rt+1]/σ2
R,t, is

lower in periods of high volatility.26 In the leading calibrations of the aforementioned

models this relation is either positive or flat, so that effective risk aversion either roughly

doesn’t change with stock market volatility or actually rises in bad times when volatility

is also high.

The challenge is the following. Suppose Rt+1 is the excess return on the asset with

highest conditional Sharpe ratio (e.g. the market portfolio), then it immediately follows

that the equity risk premium is given by

Et[Rt+1] ≈ σm,tσR,t, (16)

where σm,t is the volatility of the pricing kernel or stochastic discount factor (sdf). These

models achieve variation in the equity premium by inducing time-variation in the sdf

volatility. From (16) we see that the degree of co-variation between σm,t and σR,t is criti-

cally important for the level and the amount of variation in the equity premium the model

can explain.27

Variation in the stock market volatility σR,t is derived in equilibrium as a result of

either variation in fundamental risk (e.g. Bansal and Yaron, 2004; Wachter, 2013) or risk-

aversion (e.g. Campbell and Cochrane, 1999; Barberis et al., 2001; He and Krishnamurthy,

2012), but all the leading calibrations predict a strong co-movement between σm,t and

σR,t. Variation in stock market risk acts as an amplifier of variation in the sdf volatility,

which helps generate a large and volatile equity premium. In time-varying risk aversion

models this amplification is so strong that the market effective risk aversion goes up with

volatility. In standard calibrations of fundamental risk models, stock market risk moves

roughly proportionally with the volatility of the sdf implying a constant effective risk-

26For a formal connection between our strategy alpha and the fact that effective risk aversion is decreas-
ing in volatility see Appendix E. Appendix E.1 also shows that the data allow us formally reject that this
relationship is greater or equal to zero.

27It is immediate from Equation 16 that E[Rt+1] = cov(σm,t, σR,t)+ E[σm,t]E[σR,t]. Therefore the uncondi-
tional equity premium is increasing in this co-variance. For the volatility of the conditional equity premium
it should be intuitive from the multiplicative functional form that the variance of the product of volatility is
increasing in the co-variance between them. In the case the volatility processes are log-normally distributed
this can be shown analytically.
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aversion. Neither case is consistent with our findings.

What, then, could explain our results? A definitive answer to this question is beyond

the scope of this paper and left for future work. Nevertheless, we speculate a few possi-

bilities.

First, our findings in the portfolio choice section suggests a model where most of the

variation in volatility is driven by discount rate volatility (e.g. Campbell and Cochrane,

1999; He and Krishnamurthy, 2012) could work if the level of discount rates were not as

tightly related to it’s volatility as in these models. When most variation in volatility is

driven by discount rate volatility, long-horizon investors find volatility timing somewhat

less beneficial. However, in the leading asset pricing models, discount rate volatility is

high when discount rates themselves are also high, leading to the tight relationship be-

tween volatility and expected returns. Second, the literature on parameter uncertainty

(e.g Veronesi, 2000) can generate a negative relation between expected returns and volatil-

ity under certain parameters. A third possibility is that investors have incorrect beliefs

about risk and return. For example, agents might not update their beliefs about volatility

quickly enough. This would explain why a sharp increase in realized volatility doesn’t

immediately illicit a response to sell even if expected returns do not rise quickly. This is

potentially consistent with our impulse responses where expected returns rise slowly but

the true expected volatility process rises quickly in response to a variance shock. How-

ever, we acknowledge that these or other explanations need to be considered in much

more detail and be analyzed quantitatively before we can evaluate their success.

6. Conclusion

Volatility managed portfolios offer superior risk adjusted returns and are easy to imple-

ment in real time. These portfolios lower risk exposure when volatility is high and in-

crease risk exposure when volatility is low. Contrary to standard intuition, our portfolio

choice rule would tell investors to sell during crises like the Great Depression or 2008

when volatility spiked dramatically. Thus, investors following our strategy would seem

to behave in a “panicked” manner, and nevertheless earn superior risk-adjusted returns
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than investors that muster the will to follow the conventional buy-and-hold advice. We

analyze both portfolio choice and general equilibrium implications of our findings. We

find that both short and long-horizon investors can benefit from our volatility timing

strategy. Furthermore, we show that our strategy performance is informative about the

dynamics of effective risk-aversion, a key object for theories of time-varying risk premia.
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7. Tables and Figures

Table 1: Volatility managed factor alphas. We run time-series regressions of each volatil-
ity managed factor on the non-managed factor f σ

t = α + β ft + εt. The managed factor,
f σ, scales by the factors inverse realized variance in the preceding month f σ

t = c
RV2

t−1
ft.

The data is monthly and the sample is 1926-2015, except for the factors RMW and CMA
which start in 1963, and the FX Carry factor which starts in 1983. Standard errors are in
parentheses and adjust for heteroscedasticity. All factors are annualized in percent per
year by multiplying monthly factors by 12.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Mktσ SMBσ HMLσ Momσ RMWσ CMAσ FXσ ROEσ IAσ

MktRF 0.61
(0.05)

SMB 0.62
(0.08)

HML 0.57
(0.07)

Mom 0.47
(0.07)

RMW 0.62
(0.08)

CMA 0.68
(0.05)

Carry 0.71
(0.08)

ROE 0.63
(0.07)

IA 0.68
(0.05)

Alpha (α) 4.86 -0.58 1.97 12.51 2.44 0.38 2.78 5.48 1.55
(1.56) (0.91) (1.02) (1.71) (0.83) (0.67) (1.49) (0.97) (0.67)

N 1,065 1,065 1,065 1,060 621 621 360 575 575
R2 0.37 0.38 0.32 0.22 0.38 0.46 0.33 0.40 0.47
rmse 51.39 30.44 34.92 50.37 20.16 17.55 25.34 23.69 16.58
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Table 2: Mean-variance efficient factors. We form unconditional mean-variance efficient
(MVE) portfolios using various combinations of factors. These underlying factors can be
thought of as the relevant information set for a given investor (e.g., an investor who only
has the market available, or a sophisticated investor who also has value and momentum
available). We then volatility time each of these mean-variance efficient portfolios and
report alphas of regressing the volatility managed portfolio on the original MVE portfolio.
The volatility managed portfolio simply scales the portfolio by the inverse of realized
variance in the previous month, reducing exposure when variance is high and vice versa.
We also report the annualized Sharpe ratio of the original MVE portfolio and the appraisal
ratio of the volatility timed MVE portfolio, which tells us directly how much the volatility
managed portfolio increases the investors Sharpe ratio relative to no volatility timing.
The factors considered are the Fama-French three and five factor models, the momentum
factor, and the Hou, Xue, and Zhang (2015) four factors (HXZ). Panel B reports the alphas
of these mean-variance efficient combinations in subsamples where we split the data into
three thirty year periods. Note some factors are not available in the early sample.

Panel A: Mean Variance Efficient Portfolios (Full Sample)
(1) (2) (3) (4) (5) (6) (7)

Mkt FF3 FF3 Mom FF5 FF5 Mom HXZ HXZ Mom

Alpha (α) 4.86 4.99 4.04 1.34 2.01 2.32 2.51
(1.56) (1.00) (0.57) (0.32) (0.39) (0.38) (0.44)

Observations 1,065 1,065 1,060 621 621 575 575
R-squared 0.37 0.22 0.25 0.42 0.40 0.46 0.43
rmse 51.39 34.50 20.27 8.28 9.11 8.80 9.55

Original Sharpe 0.42 0.69 1.09 1.20 1.42 1.69 1.73
Appraisal Ratio 0.33 0.50 0.69 0.56 0.77 0.91 0.91

Panel B: Subsample Analysis
(1) (2) (3) (4) (5) (6) (7)

Mkt FF3 FF3 Mom FF5 FF5 Mom HXZ HXZ Mom

α: 1926-1955 8.11 1.94 2.45
(3.09) (0.92) (0.74)

α: 1956-1985 2.06 0.99 2.54 0.13 0.71 0.77 1.00
(2.82) (1.43) (1.16) (0.43) (0.67) (0.39) (0.51)

α: 1986-2015 4.22 5.66 4.98 1.88 2.65 3.03 3.24
(1.66) (1.74) (0.95) (0.41) (0.47) (0.50) (0.57)
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Table 3: Persistence of volatility. We show that volatility is persistent for each individual
factor by running a regression of realized volatility on lagged realized volatility. Realized
volatility is computed monthly by using daily observations for the given month. The data
is monthly and the sample is 1926-2015, except for the FX Carry factor which starts in
1983. MVE is the unconditional mean-variance efficient portfolio formed using the Fama-
French three factors plus momentum. Standard errors are in parentheses and adjust for
heteroscedasticity.

(1) (2) (3) (4) (5) (6) (7) (8)
Variables ln RVMkt

t ln RVSMB
t ln RVHML

t ln RVMom
t ln RVRMW

t ln RVCMA
t ln RVMVE

t ln RVFX
t

ln RVMkt
t−1 0.72

(0.02)
ln RVSMB

t−1 0.78
(0.02)

ln RVHML
t−1 0.78

(0.02)
ln RVMom

t−1 0.76
(0.02)

ln RVRMW
t−1 0.78

(0.03)
ln RVCMA

t−1 0.74
(0.03)

ln RVMVE
t−1 0.69

(0.02)
ln RVFX

t−1 0.52
(0.05)

Constant 0.69 0.40 0.40 0.47 0.30 0.39 0.55 0.93
(0.05) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.10)

Observations 1,064 1,064 1,064 1,060 620 620 1,060 372
R-squared 0.52 0.61 0.60 0.58 0.61 0.54 0.48 0.27
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Table 4: Risk return tradeoff for each factor. We regress returns at time t+ 1 for each fac-
tor on the realized volatility of the factor at time t. The regressions give us a sense for the
risk return relation across factors by asking whether increased volatility forecasts higher
future returns. The data is monthly and the sample is 1926-2015, except for the factors
RMW and CMA which start in 1963, and the FX Carry factor which starts in 1983. MVE is
the unconditional mean variance efficient portfolio formed using the Fama-French three
factors plus momentum. Standard errors are in parentheses and adjust for heteroscedas-
ticity.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
RMkt

t+1 RSMB
t+1 RHML

t+1 RMom
t+1 RRMW

t+1 RCMA
t+1 RMVE

t+1 RFX
t+1 RROE

t+1 RIA
t+1

RVMkt
t -0.04

(0.44)
RVSMB

t 0.38
(0.38)

RVHML
t 0.70

(0.58)
RVMom

t -1.10
(0.59)

RVRMW
t 0.87

(0.83)
RVCMA

t 1.19
(0.62)

RVMVE
t -0.02

(0.35)
RVFX

t -0.10
(0.67)

RVROE
t -0.90

(0.76)
RV IA

t 0.87
(0.75)

N 1,065 1,065 1,065 1,060 621 621 1,060 360 575 575
R2 0.00 0.00 0.01 0.02 0.01 0.02 0.00 0.00 0.01 0.01
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Table 5: Recession betas by factor. We regress each scaled factor on the original factor
and we include recession dummies 1rec,t using NBER recessions which we interact with
the original factors; f σ

t = α0 + α11rec,t + β0 ft + β11rec,t× ft + εt. This gives the relative beta
of the scaled factor conditional on recessions compared to the unconditional estimate.
Standard errors are in parentheses and adjust for heteroscedasticity. We find that β1 < 0
so that betas for each factor are relatively lower in recessions.

(1) (2) (3) (4) (5) (6) (7) (8)
Mktσ HMLσ Momσ RMWσ CMAσ FXσ ROEσ IAσ

MktRF 0.83
(0.08)

MktRF ×1rec -0.51
(0.10)

HML 0.73
(0.06)

HML ×1rec -0.43
(0.11)

Mom 0.74
(0.06)

Mom ×1rec -0.53
(0.08)

RMW 0.63
(0.10)

RMW ×1rec -0.08
(0.13)

CMA 0.77
(0.06)

CMA ×1rec -0.41
(0.07)

Carry 0.73
(0.09)

Carry ×1rec -0.26
(0.15)

ROE 0.74
(0.08)

ROE ×1rec -0.42
(0.11)

IA 0.77
(0.07)

IA ×1rec -0.39
(0.08)

Observations 1,065 1,065 1,060 621 621 362 575 575
R-squared 0.43 0.37 0.29 0.38 0.49 0.51 0.43 0.4943



Table 6: Time-series alphas controlling for risk parity factors. We run time-series regres-
sions of each managed factor on the non-managed factor plus a risk parity factor based on

Asness et al. (2012). The risk parity factor is given by RPt+1 = b′t ft+1 where bi,t =
1/RVi

t
∑i 1/RVi

t
and f is a vector of pricing factors. Volatility is measured on a rolling three year basis
following Asness et al. (2012). We construct this risk parity portfolio for various combina-
tions of factors. We then regress our volatility managed MVE portfolios from Table 2 on
both the static MVE portfolio and the risk parity portfolio formed using the same factors,
f , that make up the MVE portfolio. We find our alphas are unchanged from those found
in the main text. In the last column, we show the alpha for the volatility managed betting
against beta (BAB) portfolio to highlight that our time-series volatility timing is different
from cross-sectional low risk anomalies. Standard errors are in parentheses and adjust for
heteroscedasticity. All factors are annualized in percent per year by multiplying monthly
factors by 12.

(1) (2) (3) (4) (5) (6) (7) (8)
Mkt FF3 FF3 Mom FF5 FF5 Mom HXZ HXZ Mom BABσ

Alpha (α) 4.86 5.00 4.09 1.32 1.97 2.03 2.38 5.67
(1.56) (1.00) (0.57) (0.31) (0.40) (0.32) (0.44) (0.98)

Observations 1,065 1,065 1,060 621 621 575 575 996
R-squared 0.37 0.23 0.26 0.42 0.40 0.50 0.44 0.33
rmse 51.39 34.30 20.25 8.279 9.108 8.497 9.455 29.73
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Table 7: Leverage constraints and volatility timing. We study whether leverage is nec-
essary to implement our volatility managed portfolios. We consider strategies that use
embedded leverage in place of actual leverage for the market portfolio. Specifically, we
look at investing in a portfolio of options on the S&P500 index. The portfolio is an equal-
weighted average of 6 in the money call options with maturities of 60 and 90 days and
moneyness of 90, 92.5, and 95. The beta of this portfolio is about 7. Thus, any time
our strategy prescribes leverage to achieve high beta, we invest in this option portfolio
to achieve our desired beta rather than using actual leverage. We then compare the no
leverage volatility timed portfolio to the standard volatility managed portfolio studied in
the main text in terms of Sharpe ratio, alpha, and appraisal ratio. Finally, we consider
another option strategy that also sells in the money puts as well as buys calls to again
achieve our desired beta. The puts we use mirror the moneyness of the calls and again
have 60 and 90 day maturities. We take an equal weighted average across these 12 port-
folios. The sample used for all numbers in the table is April, 1986 to January 2012 based
on data availability and we only study the volatility timing of the market portfolio. Our
option data comes from Constantinides et al. (2013).

Volatility Timing and Leverage Constraints
Alternative volatility managed strategies

Buy and hold With leverage No leverage (calls) No leverage (calls + puts)
Sharpe Ratio 0.39 0.59 0.54 0.60
α – 4.03 5.90 6.67
s.e.(α) – (1.81) (3.01) (2.86)
β – 0.53 0.59 0.59
Appraisal Ratio – 0.44 0.39 0.46
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Table 8: Transaction costs of volatility timing. We evaluate our volatility timing strat-
egy for the market portfolio when including transaction costs. We consider alternative
strategies that still capture the idea of volatility timing but significantly reduce trading
activity implied by our strategy. Specifically, we consider using inverse volatility instead
of inverse variance, using expected rather than realized variance, and only trading when
variance is above its long run average. For expected variance, we run an AR(1) for log
variance to form our forecast. We report the average absolute change in monthly weights
(| ∆w |), expected return, and alpha of each of these alternative strategies. Then we report
the alpha when including various trading costs. The 1bps cost comes from Fleming et al.
(2003), the 10bps comes from Frazzini et al. (2015) when trading about 1% of daily volume,
and the last column adds an additional 4bps to account for transaction costs increasing
in high volatility episodes. Specifically, we use the slope coefficient of transactions costs
on VIX from Frazzini et al. (2015) and evaluate this impact on a move in VIX from 20%
to 40% which represents the 98th percentile of VIX. Finally, the last column backs out the
implied trading costs in basis points needed to drive our alphas to zero in each of the
cases.

α After Trading Costs
w Description | ∆w | E[R] α 1bps 10bps 14bps Break Even

1
RV2

t
Realized Variance 0.73 9.47% 4.86% 4.77% 3.98% 3.63% 56bps

1
RVt

Realized Vol 0.38 9.84% 3.85% 3.80% 3.39% 3.21% 84bps

1
Et [RV2

t+1]
Expected Variance 0.37 9.47% 3.30% 3.26% 2.86% 2.68% 74bps

1
max(E[RV2

t ],RV2
t )

RV Above Mean 0.10 9.10% 2.20% 2.19% 2.08% 2.03% 183bps
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Table 9: Calibration for portfolio choice exercise. This Table shows targeted moments
in the data and in the three alternative models analyzed in Figure 7. Model based quanti-
ties are found by simulating monthly data for 100 different 100 year histories. We report
the median of each moment across these 100 histories. RVt represents realized standard
deviation and time is given in months. The seven reported moments capture: average
volatility, pe-year-ahead predictability of stock returns, auto-correlation of log variance
at the monthly frequency, one-year ahead predictability of returns using realized vari-
ance, the volatility of log variance, the correlation between returns and the innovation in
variance, and the persistence of the price-dividend ratio.

Moment Data (a) (b) (c)
E[RVt+1]

√
12 0.160 0.180 0.235 0.164

corr(pdt, Rt→t+12)
2 0.060 0.041 0.020 0.068

corr(log(RVt+1), log(RVt))2 0.500 0.397 0.027 0.506
corr(Rt→t+12, RV2

t ))
2 0.000 0.008 -0.005 0.001

stdev(log(RV2
t )) 1.050 0.665 0.369 0.922

corr(Rt, RVt − RVt−1) -0.240 0.001 0.001 0.003
corr(pdt+12, pdt) 0.90 0.897 0.892 0.890

47



Figure 1: Sorts on previous month’s volatility. We use the monthly time-series of real-
ized volatility to sort the following month’s returns into five buckets. The lowest, “low
vol,” looks at the properties of returns over the month following the lowest 20% of realized
volatility months. We show the average return over the next month, the standard devi-
ation over the next month, and the average return divided by variance. Average return
per unit of variance represents the optimal risk exposure of a mean variance investor in
partial equilibrium, and also represents “effective risk aversion” from a general equilib-
rium perspective (i.e., the implied risk aversion, γt, of a representative agent needed to
satisfy Et[Rt+1] = γtσ

2
t ). The last panel shows the probability of a recession across volatil-

ity buckets by computing the average of an NBER recession dummy. Our sorts should
be viewed analagous to standard cross-sectional sorts (i.e., book-to-market sorts) but are
instead done in the time-series using the past months realized volatility.
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Figure 2: Time-series of volatility by factor. This figures plots the time-series of the
monthly volatility of each individual factor. We emphasize the common co-movement in
volatility across factors and that volatility generally increases for all factors in recessions.
Light shaded bars indicate recessions and show a clear business cycle pattern in volatility.

0
20

40
60

80

1920 1940 1960 1980 2000 2020
date

(sd) MktRF (sd) HML
(sd) SMB (sd) Mom
(sd) RMW (sd) CMA
(sd) Carry

49



Figure 3: Cumulative returns to volatility timing for the market return. The top panel
plots the cumulative returns to a buy-and-hold strategy vs. a volatility timing strategy for
the market portfolio from 1926-2015. The y-axis is on a log scale and both strategies have
the same unconditional monthly standard deviation. The lower left panel plots rolling
one year returns from each strategy and the lower right panel shows the drawdown of
each strategy.
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Figure 4: Dynamics of the risk return tradeoff. The figure plots the impulse response of
the expected return and variance of the market portfolio for a shock to the variance. The
x-axis is months. The last panel gives the portfolio choice implications for the differential
movements in expected returns and variance to a variance shock at different horizons
and are computed for a mean variance optimizing agent who holds the market portfolio
on average and whose demand is proportional to Et[Rt+1]/vart[Rt+1]. Expected returns
are formed using a forecasting regression of future 1 month returns on Shiller’s CAPE
measure, the BaaAaa default spread, and forecasted volatility. Variance is the expected
variance formed from our forecasting model described in the text which uses 3 lags of
log variance. We compute impulse responses using a VAR with 3 monthly lags of each
variable.
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Figure 5: Volatility timing performance during large market downturns. The figure
plots the performance of our volatility timing strategy compared to a buy-and-hold strat-
egy for the market return during specific episodes of market turmoil where there was also
a large stock market drop.
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Figure 6: Intuition for why changes in the volatility of mean-reverting shocks matters
less for long horizon investors. The figure gives a stylized description of an increase in
the volatility of a mean-reverting shock. For illustration, we consider a shock to returns
that is fully mean-reverting the next period. Thus, a negative return next period is per-
fectly offset by a positive return of equal magnitude the following period, and vice versa.
Regardless of the volatility of this mean-reverting shock, an investor with a two-period
horizon does not view stocks as risky. However, an investor with a one-period horizon
will view the increase in volatility as an increase in risk.
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Figure 7: Optimal volatility timing by investor horizon. The Figure show the coefficient
b of a linear approximations to the optimal portfolio policy for calibrations (a)-(c) in Table
9. Specifically, we estimate Equation 15 by running regressions (in data from numerical
simulations) of the true optimal policy evaluated at the unconditional expected return,
w(µx, σ2

t ), on µx
γσ2

t
as we vary volatility σ2

t = D′Dyt + F′F. A short-horizon mean-variance
investor will have a coefficient of b = 1 so b measures the relative extent of volatility tim-
ing compared to a short-horizon mean-variance investor. In the blue line (calibration (a))
all variation in volatility is driven by mean-reverting shocks, in the red line (calibration
(b)) it is driven only by permanent shocks, and the yellow line (calibration (c)) is the case
where the share of permanent and mean-reverting shocks is constant.
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. Appendix: Not intended for publication

A. Additional empirical results

This subsection performs various robustness checks of our main result. A reader who is
less concerned with the robustness of our main fact can skip this subsection.

A.1 Using expected variance in place of realized variance

Table 10 shows the results when, instead of scaling by past realized variance, we scale
by the expected variance from our forecasting regressions where we use three lags of
realized log variance to form our forecast. This offers more precision but comes at the cost
of assuming that an investor could forecast volatility using the forecasting relationship in
real time. As expected, the increased precision generally increases significance of alphas
and increases appraisal ratios. We favor using the realized variance approach because
it does not require a first stage estimation and has a clear appeal from the perspective
of practical implementation. Other variance forecasting methods behave similarly, e.g.,
Andersen and Bollerslev (1998).

A.2 International data

As an additional robustness check, we show that our results hold for the stock market
indices of 20 OECD countries. On average, the managed volatility version of the index
has an annualized Sharpe ratio that is 0.15 higher than a passive buy and hold strategy.
The volatility managed index has a higher Sharpe ratio than the passive strategy in 80%
of cases. These results are detailed in Figure 8 of our Appendix. Note that this is a strong
condition – a portfolio can have positive alpha even when its Sharpe ratio is below that
of the non-managed factor.

A.3 Betting against beta controls

Table 11 gives the alphas of our volatility managed factors when we include the BAB
factor of Frazzini and Pedersen. As we can see from the Table, the results are identical to
those in the main text. Moreover, the BAB factor does not appear significant – meaning
it is not strongly correlated with our volatility managed portfolios. This again highlights
that our strategy is quite different from this cross-sectional low risk anomaly.

A.4 Multivariate analysis

In this section we study whether some of the single-factor volatility timing strategies are
priced by other aggregate factors. Consistent with Table 2, Tables 12 and 13 show that
the scaled factors expand the mean variance frontier of the existing factors because the
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appraisal ratio of HML, RMW, Mom are positive and large when including all factors.
Notably, the alpha for the scaled market portfolio is reduced when including all other
factors. Thus, the other asset pricing factors, specifically momentum, contain some of
the pricing information of the scaled market portfolio. For an investor who only has the
market portfolio available, the univariate results are the appropriate benchmark; in this
case, the volatility managed market portfolio does have large alpha. For the multivariate
results (i.e., for an investor who has access to all factors) the relevant benchmark is the
MVE portfolio, or “tangency portfolio”, since this is the portfolio investors with access to
these factors will hold (within the set of static portfolios). We find that the volatility man-
aged version of each of the different mean variance efficient portfolios has a substantially
higher Sharpe ratio and large positive alpha with respect to the static factors.

A.5 An alternative performance measure and simulation exercises

So far, we have focused on time-series alphas, Sharpe ratios, and appraisal ratios as our
benchmark for performance evaluation. This section considers alternative measures and
discusses some statistical concerns. We also conduct simulations to better evaluate our
results.

In our simulations, we consider a world where the price of risk is constant Et[Rt+1] =
γVart[Rt+1] and choose parameters to match the average equity premium, average mar-
ket standard deviation, and the volatility of the market standard deviation. We model
volatility as lognormal and returns as conditionally lognormal. Using these simulations
we can ask, if the null were true that the risk return tradeoff is strong, what is the probabil-
ity we would see the empirical patterns we document in the data (alphas, Sharpe ratios,
etc.).

First, we study the manipulation proof measure of performance (henceforth MPPM)
from Goetzmann et al. (2007). This measure is useful because, unlike alphas and Sharpe
ratios, it can’t be manipulated to produce artificially high performance. This manipula-
tion could be done intentionally by a manager, say by decreasing risk exposure if they had
experienced a string of lucky returns, or through a type of strategy that uses highly non-
linear payoffs. Essentially, the measure is based on the certainty equivalent for a power
utility agent with risk aversion ranging from 2 to 4 and evaluates their utility directly.
We choose risk aversion of 3, although our results aren’t sensitive to this value. We find
the market MPPM to be 2.48% and the volatility managed market portfolio MPPM to be
4.33%, so that the difference between the two is 1.85% per year. This demonstrates that
even under this alternative test which overcomes many of the potential shortcomings of
traditional performance measure, we find our volatility managed strategy beats the buy
and hold portfolio.

It is useful to consider the likelihood of this finding in relation to the null hypothesis
that the price of risk is constant. In our simulations, we can compute the MPPM measure
of the scaled market portfolio and compare it to the market portfolio MPPM. We find that
the volatility managed MPPM beats the market MPPM measure only 0.2% of the time.
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Hence, if the price of risk isn’t moving with volatility it is highly unlikely that the MPPM
measure would favor the volatility managed portfolio. Using these simulations, we can
also ask the likelihood we would observe an alpha as high as we see in the data. The
median alpha in our simulations with a constant price of risk is about 10 bps and the
chance of seeing an alpha as high as we see empirically (4.86%) is essentially zero.

A.6 Are volatility managed portfolios option like?

At least since Black and Scholes (1973), it is well known that under some conditions option
payoffs can be replicated by dynamically trading the reference asset. Since our strategy
is dynamic, a plausible concern is that our strategy might be replicating option payoffs.
A large literature discusses potential issues with evaluating strategies that have a strong
option like return profile.

We discuss each of the potential concerns and explain why it does not apply to our
volatility managed portfolios. First, a linear asset pricing factor model where a return is a
factor implies a stochastic discount factor that can be negative for sufficiently high factor
return realizations (Dybvig and Ingersoll Jr, 1982). Thus, there are states with a negative
state price, which implies an arbitrage opportunity. A concern is that our strategy may be
generating alpha by implicitly selling these negative state-price states. However, empir-
ically this cannot be the source of our strategy alpha, as the implied stochastic discount
factor is always positive in our sample.28

Second, the non-linearity of option like payoffs can make the estimation of our strat-
egy’s beta challenging. Because some events only happen with very low probability,
sample moments are potentially very different from population moments. This concern
is much more important for short samples. For example, most option and hedge fund
strategies for which such biases are shown to be important have no more than 20 years
of data; on the other hand we have 90 years of data for the market portfolio. In Figure
9 we also look at kernel estimates of the buy-and-hold and volatility managed factor re-
turn distributions. No clear pattern emerges; if anything, the volatility managed portfolio
appears to have less mass on the left tail for some portfolios.

Third, another concern is that our strategy loads on high price of risk states; for exam-
ple, strategies that implicitly or explicitly sell deep out of the money puts can capture the
expected return resulting from the strong smirk in the implied volatility curve. Note that
our strategy reduces risk exposure after a volatility spike, which is typically associated
with low return realizations, while one would need to increase exposure following a low
return realization to replicate the sale of a put option. Mechanically our strategy does
exactly the opposite of what a put selling strategy would call for. This also implies that
our strategy will typically have less severe drawdowns than the static portfolio, which

28For example, for the market factor the implied SDF can be written as ≈ 1/R f
t − b(Rm

t+1 − R f
t ), where

empirically b = E[Rm
t+1 − R f

t ]/Var(Re
t) ≈ 2. In our sample the highest return realization is 38% so that the

SDF is never negative.
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accords with our Figure 3.
Another more general way of addressing the concern that our strategy’s alpha is

due to its option-like returns is to use the manipulation proof measure of performance
(MPPM) proposed in Goetzmann et al. (2007). We find that the volatility managed MPPM
is 75% higher than the market MPPM. Using simulations we show that a volatility man-
aged portfolio would beat the market (as measured by MPPM) only 0.2% of the time if
the risk-return trade-off was constant. This is again another piece of evidence that our
strategy increases Sharpe ratios by simply avoiding high risk times and does not load on
other unwanted risks.

Overall, there is no evidence that our volatility managed portfolios generate option-
like returns.

B. Unconditional alpha as a measure of the weakness of
the risk return trade-off

We start by considering the possibility that there is a strong relation between risk and
return in the time series, so that µt = γσ2

t . This means increases in variance are compen-
sated proportionally by an increase in expected returns as would happen naturally in a
general equilibrium model with a representative agent with risk aversion γ. Notice in
this case a mean-variance investor would not want to time volatility, but would simply
keep a constant weight in the risky asset. In this case, our strategy which sets zt = 1/σ2

t
will tradeoff two aspects. On one hand E[βt] > β, making the first term positive. This
captures the reduction in unconditional risk due to volatility timing. This comes from the
fact that our strategy increases βt when variance is low and decreases βt when variance
is high, making the average conditional beta much higher than the unconditional beta.
However, in a world where the risk-return trade-off is constant, the reduction in risk
comes at the expense of lower expected returns, because cov(βt, µt) = cov(1/σ2

t , µt) =
γcov(1/σ2

t , σ2
t ) =< 0. Volatility timing in this case reduces risk exposure exactly when

expected returns are greatest. This lowers our unconditional alpha. We find that when
the risk-return trade-off is constant, the unconditional alpha totals to around 10 basis
points per annum as the two effects essentially offset each other. More specifically, one
can show that the unconditional alpha is µ

(
var(R)/E[σ2

t ]− 1
)
. This residual term arises

because the unconditional model uses unconditional variance rather than expected condi-
tional variance, but this difference turns out to be empirically tiny. Thus, if the risk-return
tradeoff is strong, our strategy would not produce significant risk adjusted returns.

In the second case we consider there is no relation between risk and return in the time-
series. In particular, suppose there is no risk return tradeoff so that cov(1/σ2

t , µt) ≈ 0 and
variance is roughly uncorrelated with expected returns. Then the alpha becomes α =
µ (E[βt]− β). In other words, the unconditional alpha stems completely from volatility
timing – it increases risk exposure when volatility is low and the risk return tradeoff
is favorable and vice versa. For our strategy, we find E[βt] − β = 0.6. This spread in
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average conditional betas and the unconditional betas captures how well our strategy
can volatility time. The more volatility our proxy for expected volatility can predict, the
larger this spread. With the sample mean of the market excess returns µ = 0.08 and our
strategy beta profile for the market portfolio, this formula gives an α = 4.8%.

Our empirical estimate for the volatility managed market α is identical to this num-
ber at 4.86%. Thus our result is consistent with a lack of risk return tradeoff. Our strategy
would not have produced a large positive alpha if the risk return tradeoff were indeed
strong. This is also confirmed in simulations we run where we build in a strong relation
between risk and return. In these cases, the unconditional alpha is always near zero and
the chances of seeing an alpha as large as we see in the data are very small, occurring
about 0.1% of the time. Importantly equation (2) makes it transparent that what is re-
quired for our strategy to produced alpha is that the relationship between risk and return
is weak enough, not necessarily zero.

C. Portfolio choice for a mean-variance investor

We expand on the analysis in Section 4.1 and now include both sources of time-variation
in the investment opportunity set and allow for arbitrary co-variation between these in-
vestment signals. In this case we have,

w(Yt, xt) =
1
γ

µ + xt

Yt
; (C.0.17)

E[w(Yt, xt)rt+1] =
1
γ

(
S2 + R2

r
1− R2

r
E[Yt]E[Y−1

t ] + 2µcov(xt, Y−1
t ) + cov(x2

t , Y−1
t )

)
,

In the first term we have the total effect if both signals were completely unrelated –
that is, if there was no risk-return trade-off at all in the data. Under this assumption and
using the R2

x = 0.43% from the CT study for the expected return signal and the more
conservative R2

y = 53% for the variance signal, one would obtain a 236% increase in
expected returns. But if there is some risk-return trade-off one needs to consider the other
terms as well.

The second term we can construct directly from our estimates in Table 4, using that
cov(xt, Y−1

t ) = −βVar(Y−1
t ). The third term is trickier but likely very small. One possi-

bility is to explicitly construct expected return forecasts, square them, and compute the
co-variance with realized variance. Here we take a more conservative approach and only
characterize a lower bound

cov(x2
t , Y−1

t ) ≥ −1σ(x2
t )σ(Y

−1
t ) = −1

√
2σ2

xσ(Y−1
t ), (C.0.18)

where we assume that x is normally distributed. Substituting back in equation we
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obtain,

E[w(Yt, xt)rt+1] ≥
1
γ

(
S2 + R2

r
1− R2

r
E[Yt]E[Y−1

t ]− 2βµσ2(Y−1
t )−

√
2σ2

xσ(Y−1
t )

)
.

(C.0.19)

Plugging numbers for σx consistent with a monthly R2
r of 0.43%, and σ(Y−1

t ) and β
as implied by the variance model that uses only a lag of realized variance (R2

y = 53%),
we obtain an estimate of −0.16 for the second and last terms. This implies a minimum
increase in expected return of 220% relative to the baseline case of no timing. The main
reason this number remains large is because the estimated risk return trade-off in the data
is fairly weak. Thus, while the conditional mean and conditional variance are not inde-
pendent, they are not close to perfectly correlated either, meaning that the combination of
information provides additional gains.

D. Portfolio choice for a long-horizon investor

In this section we describe in detail the portfolio problem of a long-lived investor.

D.1 Investment opportunity set

The investment opportunity set is described by Equations (10), (11), and (12). The volatil-
ity process follows a CIR process as in Heston (1993), so it is bounded below by zero.
We impose the appropriate conditions to guarantee that the zero boundary is reflexive
(2κyµy > L′L). Vectors D, F, G, H, L are three by one constant vectors, κx, κy are positive
scalars that control the rate of mean-reversion of shocks to expected returns and volatility,
and µx, µy are the unconditional averages of expected returns and volatility.

The vectors G and H have the the first two rows equal to zero. So only the third shock
of each Brownian moves discount rates. The fact that shocks to expected returns only
have a transitory effect on asset prices implies G[3] = −D[3]κx = and H[3] = −F[3]κx.
The initial drop (increase) in prices is exactly compensated with an increase (decrease) in
future expected returns. In this precise sense these shocks are mean-reverting shocks. The
vector L has the first entry equal to zero. The second entry captures pure volatility shocks
that are contemporaneously unrelated to mean-reverting shocks (i.e. shocks to expected
returns x), and the third entry captures the fact that volatility and expected returns might
go up at the same time. The vectors D and F have in the first two entries permanent
shocks to prices. In the first entry we have the exposure to shocks unrelated to volatility
or expected returns, and in the second entry shocks related to volatility. In the third entry
we have the shocks to mean-reverting shocks. Shocks that by construction mean-revert
in the long run.
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D.2 Investor preferences and optimization

Investors preferences are described by Epstein and Zin (1989) utility. We adopt the Duffie
and Epstein (1992) continuous time implementation:

J = Et

[∫ ∞

t
f (Cs, Js)ds

]
(D.2.20)

f (C, J) = ρ
1− γ

1− ψ−1 J ×

( C

((1− γ)J)
1

1−γ

)1−ψ−1

− 1

 (D.2.21)

where ρ is rate of time preference, γ the coefficient of relative risk aversion, and ψ is
the elasticity of intertemporal substitution. CRRA preferences considered in the main text
arise in the knife edge case where γ = ψ−1. In the limit ψ → 1, the aggregator f (C, J)
converges to

f (C, J) = ρ(1− γ)J ×
[

log(C)− log((1− γ)J)
1− γ

]
. (D.2.22)

The investor maximizes D.2.20 subject to his intertemporal budget constraint 13 and
the evolution of state variables xt and yt.

D.3 Solution

The optimization problem has three state variable. The investor wealth plus the two
drivers (expected return x and volatility y) of the investment opportunity set. The Bell-
man equation for this problem is

0 = supw,C f (Ct, Jt) + [wtxtWt + rWt − Ct]JW + 1
2 w2

t W2
t JWW (ytD′D + F′F)

+ κy(µy − yt)Jy +
1
2Yt JyyL′L + κx(µx − xt)Jx +

1
2 Jxx(ytG′G + H′H)

+ yt JxyG′L + wtWt JxW(G′Dyt + F′H) + wtWt JyW L′DYt (D.3.23)

This problem can be simplified to two state variable by exploring homogeneity of the
problem with respect to wealth. In particular, a function of the form J(W, x, Y) = W1−γ

1−γ eV(x,y)

satisfies the above equation. We use collocation methods to solve this problem numeri-
cally.

To get intuition about the results that follow it is useful to stare at the optimal portfolio
policy,

wt =
xt

γ (D′Dyt + F′F)
+ Vx

G′Dyt + F′H
γ (D′Dyt + F′F)

+ Vy
L′Dyt

γ (D′Dyt + F′F)
. (D.3.24)

The first term is the myopic demand, which reflects the portfolio choice of a short-horizon
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investor. The two additional terms are the Mertonian hedging demands. Past studies of
volatility timing have focused on the third term, which is important to the extent that
volatility innovations are strongly correlated with returns. Chacko and Viceira (2005)
shows that for parameters consistent with the data, this term turn out not to be quanti-
tatively important. The return predictability literature has emphasized the second term.
The fact that expected returns tend to increase after low returns, make investment in the
risky asset a natural investment opportunity set hedge. This effects leads to a higher av-
erage position in the the risky asset (Vx is typically negative). Our analysis emphasizes
how the strength of this hedging demand fluctuates with volatility.

D.4 Analysis

We study CRRA preferences with risk aversion of 5 and 10, and Esptein and Zin utility
with with risk aversion of 5 and 10, and IES of 0.5, 1 and 1.5. Following the analysis in
Blanchard (1985) and Gârleanu and Panageas (2015), we use the preference parameter
ρ as a proxy for investor horizon. We choose ρ so that the half-life29 of utility weights
ranges from 5 year to 30 years.

To focus on the effects of volatility variation we initially abstract from subtle hedg-
ing demand effects arising from any contemporaneous correlation between return and
volatility shocks and set D[2] = 0, and assume zero correlation between volatility and
expected return shocks L[3] = 0. Chacko and Viceira (2005) studies the effect of such
hedging demands and show that the effects are small for plausible levels of risk-aversion.
We will later revisit these assumptions.

We are interested in understanding how much a long-horizon investor deviate from
the optimal mean-variance portfolio. To focus on the effect of volatility we fit the fol-
lowing linear relation on the optimal policy evaluated at the unconditional equity premia
w∗(µx, yt) = a + b × 1

D′Dyt+F′F . The policies of a mean-variance investor fit this linear

relation perfectly with a = 0 and b =
µx
γ . In short, the mean-variance investor puts zero

weight on the buy-and-hold portfolio and weight 1 on the volatility managed portfolio. In
Tables 16 (a-c) we report b× γ

µx
, so the reported coefficients have the direct interpretation

of how much weight the investor places on the volatility managed portfolio. A coefficient
lower than one implies the long-horizon investor trades volatility less aggressively than
the mean-variance investor. In the last column we give the minimum R-squared across
specifications in a given row where the row denotes investor horizon. Overall, we see
that the linear relation fits the optimal policy extremely well.

Table 16(a) shows the case where all time-variation in volatility is due to mean-reverting
shocks, i.e. increases in volatility are associated with greater-than-proportional increases
in the amount of mean-reversion. The linear policy is an almost perfect description of

29Specifically we map horizon into ρ as follows: For a given horizon Tj, look for ρj such that
∫ Tj

0 e−ρj×tdt∫ ∞
0 e−ρj×tdt

=

1
2
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the optimal policy (the R-squared is close to one). The long-horizon investors respond
less aggressively than a short-horizon investor to changes in volatility (weight on the
volatility managed portfolio is less than one). Nevertheless they still trade quite a bit.
Coefficients are always quite high, implying that the dynamic investor invests quite a bit
on the volatility managed portfolio. Even though shocks eventually mean-revert, they
take a long time. The long time mean-reversion takes make mean-reverting shocks still
somewhat risky to investors with fairly long (but not extreme) investment horizons.

Table 16(b) shows the case where all time-variation in volatility is driven by per-
manent shocks and increases in volatility are associated with less-than-proportional in-
creases in the amount of mean-reversion. The long-horizon investor responds more ag-
gressively than the mean-variance investor (weight on the volatility managed portfolio is
higher than one). Intuitively, when volatility increases, the proportion of mean-reverting
shocks shocks decreases, making stocks relatively riskier for a long-horizon investor.
Thus, the long-horizon investor responds by reducing his portfolio allocation more than
proportionally with the increase in variance.

Table 16(c) shows the case where the proportion of mean-reverting shocks is constant.
This is a natural benchmark which is typically assumed in the literature (Campbell and
Vuolteenaho, 2004). Furthermore, we are not aware of any work that measures how the
amount of mean-reversion co-moves with volatility. Again coefficients are basically equal
to 1. The mean-variance policy is still a good description of how the long-horizon investor
should change his portfolio. Note that the presence of mean-reverting shocks will induce
the long-horizon investor to perceive less risk and hold more stocks on average, but his
response to changes in volatility is approximately equal to the short-horizon investor be-
havior.

In Tables 17 (d) and (e) we study the effect of introducing contemporaneous corre-
lation between return realizations and volatility innovations. Chacko and Viceira (2005)
studies the hedging demands that result from this correlation. Here our focus is not in
level effects on the investor allocation, but whether these correlations change how an in-
vestor should respond to volatility shocks. We start from calibration (c) and introduce
a correlation between realized returns and volatility shocks. In Table 17 (d) is the case
where the correlation between returns and volatility is entirely due to the mean-reverting
component. That is volatility and expected returns shock are positively related in this
case. Table 17 (e) analyzes the other extreme where the correlation between returns and
volatility is due to the permanent component. In both cases we see that the introduc-
tion of this correlation did not meaningfully change how investors respond to changes
in volatility. As it is was the case for calibration (c) the long-horizon investor responds
roughly in the same fashion as the short-horizon investors
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E. The dynamics of the price of risk

We now show that that the fact that our volatility managed portfolios generate risk-
adjusted returns relative to original factors, implies that the price of risk, bt = µt/σ2

t ,
has a negative co-variance with volatility. That is, risk premia increases less than propor-
tionally with stock market variance. Formally this can be seen in the following result

Proposition 1 (Alpha and the dynamics of the price of risk). Let µt be the factor expected
excess return, σ2

t the factor conditional variance, α be the intercept of a time-series regression
of the volatility managed portfolio returns on the buy-and-hold returns, βt = 1

σ2
t ζt

the strategy

conditional beta, where ζt is measurement error with E[ζt] = 1, and β the unconditional strategy
beta, then the co-variance between the price of risk bt = µt/σ2

t and factor variance σ2
t is

cov(bt, σ2
t ) = −

(
α− E[µt](E[βt]− β)

E[βt]
+

E[bt]

E[1/σ2
t ]

(
E[σ2

t ]E[1/σ2
t ]− 1

))
, (E.0.25)

and it follows that the co-variance between the price and quantity of risk cov(bt, σ2
t ) is de-

creasing in the volatility managed portfolio alpha.

Proof. This follows immediately from the definition of unconditional alpha,

α = E[βtµt]− βE[µt]. (E.0.26)

Using that E[βtµt] = cov(bt, µt) + E[βt]E[µt], µt = btσ
2
t , and some manipulation we

obtain

cov(bt, σ2
t ) = −

α− E[µt](E[βt]− β)

E[βt]
− E[βt]E[bt]E[σ2

t ]− E[βtbtσ
2
t ]

E[βt]
. (E.0.27)

We now use that βt =
1

σ2
t ζt

and measurement error ζt is independent of σ2
t , bt , and µt

to obtain the result.

Note that E[σ2]E[1/σ2
t ]− 1 ≥ 0, and will typically be greater than zero if variance is

time-varying. For the market, the term α− E[µt](E[βt]− β) is roughly zero. This means
that the increase in average beta is completely reflected in alpha.

E.1 The covariance between the price of risk and variance is negative

Table 14 present estimates for the co-variance between the price of risk and variance
cov(bt, σ2

t ) using the relationship in Equation (E.0.25). We compute standard errors and
confidence intervals using bootstrap. The point estimate for the covariance is negative
for all factors besides SMB. Again, this is to a large extent the result of the large positive
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alphas of our volatility timing strategy. In most cases the 95% confidence intervals do not
include 0, with the exception of SMB and CMA. Therefore, for most factors the data easily
rejects a value of the covariance above 0, and imply negative point estimate in almost all
cases.

These results show that volatility timing works because expected returns do not in-
crease nearly as much as required to keep the price of risk constant. The negative relation
between volatility and the slope of the mean-variance frontier implies an strategy that
takes more risk when volatility is low will typically produce higher a Sharpe ratio.
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Figure 8: Increase in volatility managed Sharpe ratios by country. The figure plots the
change in Sharpe ratio for managed vs non-managed portfolios across 20 OECD coun-
tries. The change is computed as the Sharpe ratio of the volatility managed country index
minus the Sharpe ratio of the buy and hold country index. All indices are from Global Fi-
nancial Data. For many series, the index only contains daily price data and not dividend
data, thus our results are not intended to accurately capture the level of Sharpe ratios
but should still capture their difference well to the extent that most of the fluctuations in
monthly volatility is driven by daily price changes. All indices are converted to USD and
are taken over the US risk-free rate from Ken French. The average change in Sharpe ratio
is 0.15 and the value is positive in 80% of cases.
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Figure 9: Distribution of volatility managed factors. The figure plots the full distribution
of scaled factors (S) vs non-scaled factors estimated using kernel density estimation. The
scaled factor, f σ, scales by the factors inverse realized variance in the preceding month
f σ
t = c

RV2
t−1

ft. In particular, for each panel we plot the distribution of ft (solid line) along

with the distribution of c
RV2

t−1
ft (dashed line).
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B. Additional Tables

Table 10: Alphas when using expected rather than realized variance. We run time-
series regressions of each managed factor on the non-managed factor. Here our managed
portfolios make use of the full forecasting regression for log variances rather than simply
scaling by lagged realized variances. The managed factor, f σ, scales by the factors inverse
realized variance in the preceding month f σ

t+1 = c
Et−1[RV2

t ]
ft. The data is monthly and the

sample is 1926-2015, except for the factors RMW and CMA which start in 1963, and the
FX Carry factor which starts in 1983. Standard errors are in parentheses and adjust for
heteroscedasticity. All factors are annualized in percent per year by multiplying monthly
factors by 12.

(1) (2) (3) (4) (5) (6) (7) (8)
Mktσ SMBσ HMLσ Momσ RMWσ CMAσ MVEσ FXσ

MktRF 0.73
(0.06)

SMB 0.71
(0.09)

HML 0.65
(0.08)

Mom 0.59
(0.08)

RMW 0.70
(0.08)

CMA 0.78
(0.05)

MVE 0.74
(0.03)

Carry 0.89
(0.05)

Constant 3.85 -0.60 2.09 12.54 1.95 0.41 3.83 1.77
(1.36) (0.78) (0.92) (1.67) (0.75) (0.57) (0.67) (0.90)

Observations 1,063 1,063 1,063 1,059 619 619 1,059 358
R-squared 0.53 0.51 0.43 0.35 0.49 0.61 0.54 0.81
rmse 44.33 27.02 32.06 46.01 18.31 14.96 20.97 13.66
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Table 11: Time-series alphas controlling for betting against beta factor. We run time-
series regressions of each managed factor on the non-managed factor plus the betting
against beta (BAB) factor from Frazzini and Pedersen (2014). The managed factor, f σ,
scales by the factors inverse realized variance in the preceding month f σ

t = c
RV2

t−1
ft. The

data is monthly and the sample is 1929-2012 based on availability of the BAB factor. Stan-
dard errors are in parentheses and adjust for heteroscedasticity. All factors are annualized
in percent per year by multiplying monthly factors by 12.

(1) (2) (3) (4) (5) (6) (7)
Mktσ SMBσ HMLσ Momσ RMWσ CMAσ MVEσ

MktRF 0.60
(0.05)

BAB 0.09 0.01 0.02 -0.07 -0.13 -0.06 0.04
(0.06) (0.05) (0.05) (0.04) (0.02) (0.02) (0.02)

SMB 0.61
(0.09)

HML 0.56
(0.07)

Mom 0.47
(0.06)

RMW 0.65
(0.08)

CMA 0.69
(0.04)

MVE 0.57
(0.04)

Constant 3.83 -0.77 2.05 13.52 3.97 0.94 4.10
(1.80) (1.10) (1.15) (1.86) (0.89) (0.71) (0.85)

Observations 996 996 996 996 584 584 996
R-squared 0.37 0.37 0.31 0.21 0.40 0.46 0.33
rmse 52.03 31.36 35.92 51.73 19.95 17.69 26.01
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Table 12: Alphas of volatility managed factors when controlling for other risk factors.
We run time-series regressions of each managed factor on the 4 Fama-French Carhart
factors. The managed factor, f σ, scales by the factors inverse realized variance in the
preceding month f σ

t = c
RV2

t−1
ft. The data is monthly and the sample is 1926-2015. Standard

errors are in parentheses and adjust for heteroscedasticity. All factors are annualized in
percent per year by multiplying monthly factors by 12.

(1) (2) (3) (4) (5)
Mktσ SMBσ HMLσ Momσ MVEσ

MktRF 0.70 -0.02 -0.10 0.16 0.23
(0.05) (0.01) (0.02) (0.03) (0.02)

HML -0.03 -0.02 0.63 0.09 0.08
(0.05) (0.04) (0.05) (0.05) (0.02)

SMB -0.05 0.63 -0.00 -0.10 -0.15
(0.06) (0.08) (0.05) (0.04) (0.02)

Mom 0.25 0.01 0.06 0.54 0.30
(0.03) (0.03) (0.04) (0.05) (0.02)

Constant 2.43 -0.42 1.96 10.52 4.47
(1.60) (0.94) (1.06) (1.60) (0.77)

Observations 1,060 1,060 1,060 1,060 1,060
R-squared 0.42 0.38 0.35 0.25 0.35
rmse 49.56 30.50 34.21 49.41 25.13
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Table 13: Alphas of volatility managed factors when controlling for other risk factors.
We run time-series regressions of each managed factor on the 6 Fama-French Carhart
factors. The managed factor, f σ, scales by the factors inverse realized variance in the
preceding month f σ

t = c
RV2

t−1
ft. The data is monthly and the sample is 1963-2015. Standard

errors are in parentheses and adjust for heteroscedasticity. All factors are annualized in
percent per year by multiplying monthly factors by 12.

(1) (2) (3) (4) (5) (6) (7) (8)
Mktσ SMBσ HMLσ Momσ RMWσ CMAσ MVEσ MVE2σ

MktRF 0.79 0.03 -0.06 0.12 0.02 0.02 0.26 0.23
(0.05) (0.03) (0.03) (0.04) (0.02) (0.01) (0.03) (0.02)

HML 0.11 0.09 1.03 0.15 -0.21 0.03 0.16 0.05
(0.09) (0.06) (0.08) (0.09) (0.04) (0.03) (0.04) (0.03)

SMB 0.02 0.75 -0.05 -0.12 -0.02 -0.03 -0.15 -0.09
(0.05) (0.05) (0.04) (0.07) (0.03) (0.02) (0.03) (0.02)

Mom 0.15 -0.01 0.05 0.64 -0.00 -0.02 0.32 0.23
(0.03) (0.03) (0.03) (0.08) (0.02) (0.02) (0.03) (0.02)

RMW 0.15 0.23 -0.56 -0.04 0.64 -0.18 0.01 0.04
(0.06) (0.07) (0.08) (0.08) (0.06) (0.04) (0.04) (0.03)

CMA 0.04 0.00 -0.28 -0.25 -0.00 0.63 -0.04 0.14
(0.12) (0.07) (0.10) (0.11) (0.06) (0.05) (0.06) (0.04)

Constant 0.18 -1.68 4.16 12.91 3.21 1.07 4.00 3.03
(1.87) (1.25) (1.44) (2.17) (0.81) (0.72) (1.02) (0.77)

Observations 622 622 622 622 621 621 622 621
R-squared 0.47 0.49 0.51 0.31 0.46 0.50 0.40 0.43
rmse 42.70 26.82 32.82 48.10 18.85 17.01 23.26 16.96
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Table 14: Covariance between price and quantity of risk. We estimate the covariance
between the price and quantity of risk for each factor and for the mean variance efficient
portfolio (MVE). The data is monthly and the sample is 1926-2015, except for the factors
RMW and CMA which start in 1963, and the FX Carry factor which starts in 1983. MVE2
computes the tangency portfolio for the later sample including RMW and CMA. Standard
errors are in parentheses along with 95% confidence intervals (CI). Both are computed by
bootstrap using Equation (E.0.25) the Appendix. The covariances are given in percent-
ages.

cov(bt, σ2
t )

Mean Std Err 95% CI

MktRF -0.50 0.17 [-0.84, -0.17]

SMB 0.03 0.12 [-0.21, 0.28]

HML -0.27 0.13 [-0.52, -0.01]

Mom -1.51 0.19 [-1.89, -1.12]

MVE -0.62 0.09 [-0.80, -0.45]

RMW -0.20 0.08 [-0.36, -0.05]

CMA -0.06 0.07 [-0.19, 0.07]

MVE2 -0.29 0.06 [-0.41, -0.17]

Carry -0.20 0.07 [-0.33, -0.06]
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Table 15: Calibration for portfolio choice exercise. This Table shows targeted moments
in the data and in the three alternative models analyzed in Tables 16 and 17. Model based
quantities are found by simulating monthly data for 100 different 100 year histories. We
report the median of each moment across these 100 histories. RVt represents realized
standard deviation and time is given in months. The seven reported moments capture:
average volatility, pe-year-ahead predictability of stock returns, auto-correlation of log
variance at the monthly frequency, one-year ahead predictability of returns using realized
variance, the volatility of log variance, the correlation between returns and the innovation
in variance, and the persistence of the price dividend ratio.

Moment Data (a) (b) (c) (d) (e)
E[RVt+1]

√
12 0.160 0.180 0.235 0.164 0.163 0.163

corr(pdt, Rt→t+12)
2 0.060 0.041 0.020 0.068 0.060 0.059

corr(log(RVt+1), log(RVt))2 0.500 0.397 0.027 0.506 0.445 0.501
corr(Rt→t+12, RV2

t ))
2 0.000 0.008 -0.005 0.001 0.025 -0.030

stdev(log(RV2
t )) 1.050 0.665 0.369 0.922 0.750 0.922

corr(Rt, RVt − RVt−1) -0.240 0.001 0.001 0.003 -0.196 -0.175
corr(pdt+12, pdt) 0.90 0.897 0.892 0.890 0.886 0.889
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Table 16: Optimal volatility timing by investor horizon. Panels (a)-(c) show linear ap-
proximations to the optimal portfolio policy for calibrations (a)-(c). In calibration (a) all
variation in volatility is driven by the volatility of mean-reverting shocks, in calibration
(b) it is driven only by the volatility of permanent shocks, and calibration (c) is the case
where the share of permanent and mean-reverting shocks is constant. Specifically, we
run regressions of the true optimal policy evaluated at the unconditional expected return,
w(x̄, σ2

t ), on µx
γσ2

t
in numerical simulations as we vary volatility σ2

t = D′Dyt + F′F. A
mean variance investor will have a coefficient of b = 1 so b measures the relative extent of
volatility timing compared to a myopic investor. The last column reports the minimum
R-squares across these regressions in a given row, and thus measures how closely the ap-
proximation matches the true optimal policy. See text for more details. The calibrations
are in Table 9.

(a) Mean-reverting shocks
Horizon Power utility (γ) Epstein and Zin (γ, ψ) R2

(5) (10) (5,0.5) (10,0.5) (5,1) (10,1) (5,1.5) (10,1.5)
30 0.73 0.52 0.64 0.43 0.44 0.34 0.33 0.27 1.00
20 0.73 0.52 0.65 0.46 0.49 0.39 0.36 0.33 1.00
10 0.74 0.54 0.69 0.52 0.58 0.50 0.48 0.47 1.00
5 0.76 0.56 0.74 0.61 0.69 0.63 0.63 0.63 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

(b) Permanent shocks
Horizon Power utility (γ) Epstein and Zin (γ, ψ) R2

(5) (10) (5,0.5) (10,0.5) (5,1) (10,1) (5,1.5) (10,1.5)
30 1.69 2.20 1.86 2.28 2.15 2.36 2.34 2.44 1.00
20 1.67 2.18 1.79 2.18 2.01 2.21 2.19 2.24 1.00
10 1.60 2.12 1.63 1.96 1.73 1.86 1.83 1.82 1.00
5 1.51 2.01 1.45 1.67 1.43 1.50 1.44 1.41 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

(c) Constant share of permanent and mean-reverting shocks
Horizon Power utility (γ) Epstein and Zin (γ, ψ) R2

(5) (10) (5,0.5) (10,0.5) (5,1) (10,1) (5,1.5) (10,1.5)
30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
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Table 17: Optimal volatility timing by investor horizon. Panels (d) and (e) show linear
approximations to the optimal portfolio policy in the cases of a constant share of per-
manent and mean-reverting shocks. Panel (d) introduces a positive correlation between
mean-reverting shocks and volatility shocks and Panel (e) introduces a correlation be-
tween permanent shocks and volatility shocks. Specifically, we run regressions of the
true optimal policy evaluated at the unconditional expected return, w(x̄, σ2

t ), on µx
γσ2

t
in

numerical simulations as we vary volatility σ2
t = D′Dyt + F′F. A mean variance investor

will have a coefficient of b = 1 so b measures the relative extent of volatility timing com-
pared to a myopic investor. The last column reports the minimum R-squares across these
regressions in a given row, and thus measures how closely the approximation matches
the true optimal policy. See text for more details. The calibrations are in Table 9.

(d)Volatility shocks positively correlated to mean-reverting shock
Horizon Power utility (γ) Epstein and Zin (γ, ψ) R2

(5) (10) (5,0.5) (10,0.5) (5,1) (10,1) (5,1.5) (10,1.5)
30 0.84 0.62 0.72 0.57 0.93 0.94 0.98 0.96 0.99
20 0.84 0.63 0.73 0.58 0.93 0.93 0.98 0.96 0.99
10 0.84 0.63 0.75 0.61 0.92 0.92 0.98 0.96 1.00
5 0.85 0.64 0.78 0.71 0.93 0.93 0.99 0.97 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

(e)Volatility shocks negatively correlated to permanent shock
Horizon Power utility (γ) Epstein and Zin (γ, ψ) R2

(5) (10) (5,0.5) (10,0.5) (5,1) (10,1) (5,1.5) (10,1.5)
30 0.94 0.95 0.94 0.74 0.95 0.95 0.93 0.92 1.00
20 0.94 0.95 0.94 0.74 0.95 0.96 0.93 0.94 1.00
10 0.94 0.95 0.94 0.76 0.96 0.96 0.94 0.96 1.00
5 0.94 0.95 0.94 0.79 0.95 0.98 0.95 0.98 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
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