
Willingness to Pay for Clean Air:

Evidence from Air Purifier Markets in China

Koichiro Ito

University of Chicago and NBER

Shuang Zhang∗

University of Colorado Boulder

This version: April 9, 2016

Abstract

This paper provides among the first revealed preference estimate of willingness to pay (WTP)

for clean air in developing countries. We use product-by-store level transaction data on air

purifier sales in Chinese cities and city-level air pollution data. Our empirical strategy leverages

the Huai River heating policy, which created discontinuous quasi-experimental and long-lasting

variation in air pollution between the north and south of the river. Using a spatial regression

discontinuity design, we estimate the marginal willingness to pay for removing 1 ug/m3 PM10.

Our findings provide important policy implications for optimal environmental regulation.
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1 Introduction

Air quality is remarkably worse in developing countries, and severe air pollution is imposing substan-

tial health and economic burdens on billions of people. For example, the annual average exposure

to fine particle pollution in China is more than five times higher than that in the United States

in 2013 (Brauer et al., 2016). Such high levels of air pollution cause large negative impacts on a

variety of economic outcomes, including infant mortality (Jayachandran, 2009; Arceo et al., 2012;

Greenstone and Hanna, 2014), life expectancy (Chen et al., 2013) and labor supply (Hanna and

Oliva, 2015). For this reason, policymakers and economists consider air pollution to be one of the

first-order obstacles for economic development.

However, high economic burdens of air pollution do not necessarily imply that existing environ-

mental regulations are not optimal. The optimal environmental regulation depends on the extent to

which individuals value air quality improvements—that is, willingness to pay (WTP) for clean air

(Greenstone and Jack, 2013). If WTP for clean air is low, the current level of air pollution can be

optimal because the social planner prioritizes economic growth over environmental regulation. On

the other hand, if WTP is high, the current stringency of regulation can be away from the optimum.

Therefore, WTP for clean air is a key parameter to consider tradeoffs between economic growth and

environmental regulation. Despite the importance of this question, the economics literature pro-

vides limited empirical evidence. This is primarily because obtaining a revealed preference estimate

of WTP for clean air is particularly challenging in developing countries due to limited availability

of high quality data and the lack of readily available exogenous variation in air quality that are

necessary for empirical analysis.

In this paper, we provide among the first revealed preference estimates of WTP for clean air in

developing countries. Our approach is based on the idea that demand for home-use air purifiers,

a main defensive investment for reducing indoor air pollution, provides valuable information to

estimating WTP for air quality improvements. We begin by developing a random utility model in

which consumers purchase air purifiers to reduce indoor air pollution. A key advantage of analyz-

ing air purifier markets is that one of the product attribute—high-efficiency particulate arrestance

(HEPA)—informs both consumers and econometricians the purifier’s ability to reduce indoor par-

ticulate matter. The extent to which consumers value this attribute, along with the price elasticity
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of demand, reveals their WTP for indoor air quality improvements.

We apply this framework to scanner data on market transactions in air purifier markets in Chi-

nese cities. At the retail store level, we observe product-level information on monthly sales, monthly

average price, and detailed product attributes. The product attributes include the information on

each purifier’s ability in reducing indoor air pollution. Our data cover January 2006 through De-

cember 2012. The dataset provides comprehensive transaction records of 395 air purifier products

for among the most polluted cities in the world. To our knowledge, this paper is the first study to

exploit these transaction data in the Chinese air purifier markets to examine consumers’ willingness

to pay for air quality. We also collect pollution data from air pollution monitors and micro data on

demographics from the Chinese census to compile a dataset that consists of air purifier sales and

prices, air pollution, and demographic characteristics.

The primary challenge for our empirical analysis is that two variables in the demand estima-

tion—pollution and price—are likely to be endogenous. To address the endogeneity of air pollution,

we use a spatial regression discontinuity (RD) design, which exploits discontinuous valuation in air

pollution created by a policy-induced natural experiment at the Huai River boundary. The so-

called Huai River policy provided city-wide coal-based heating for cities north to the river, which

generated substantially higher pollution levels for the northern cities (Almond et al., 2009; Chen

et al., 2013). The advantage of this spatial RD approach is twofolds. First, it allows us to exploit

plausibly exogenous policy-induced variation in air pollution. Second, the policy-induced variation

in air pollution has existed for a long time since the 1950s. Therefore, this natural experiment

provides long-run variation in air pollution, which enables us to examine how households respond

to variation in pollution that is not transitory but rather long-lasting.

To address the endogeneity of prices, we combine two approaches. First, using the fact that we

observe data from many markets (cities) in China, we include product fixed effects and city fixed

effects. With these fixed effects, we absorb product-level unobserved demand factors and city-level

demand shocks. The remaining potential concern is product-city level unobserved factors that

affect demand. We construct an instrument variable, which measures distance from each product’s

manufacturing plant (or its port if the product is imported) to each market, aiming to capture

variation in transportation cost, which is a supply-side shifter for prices.

We first present visual and statistical evidence that the level of air pollution (PM10) is discon-
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tinuously higher for cities in the north of the Huai River. A key prediction from our demand model

is that if households value clean air, the market share for HEPA purifiers—that is, purifiers that

can reduce indoor particular matter—should be higher for cities in the north of the river boundary.

Our second empirical analysis shows that there is indeed a discontinuous and substantial increase

in the market share of HEPA purifiers in the north. We estimate local linear regression for the RD

design and find that the WTP for removing the amount of PM10 generated by the Huai river policy

for five years is 53 dollars. Third, we estimate two stage least squares and present that the marginal

WTP for removing 1 ug/m3 of PM10 for five years is 1.6 dollars. We show that our RD estimates

are robust to using a range of different bandwidths as well as local quadratic estimation. Fourth,

we relax a few assumptions on standard logit demand estimation and estimate a random-coefficient

logit model. Given a set of assumptions, our random-coefficient logit model allows us to estimate

potentially heterogeneous preference parameters for pollution and price. We find substantial het-

erogeneity that can be explained by observed and unobserved factors. Our results indicate that

higher-income households have significantly higher WTP for clean air compared to lower-income

households.

This study provides three primary contributions to the literature and ongoing policy discus-

sions. The first contribution is that we develop a framework to estimate WTP for improvements

in environmental quality by estimating demand for defensive investment. Earlier studies on avoid-

ance behavior against pollution examine whether individuals take avoidance behavior in response

to pollution exposure.1 A key question in the recent literature is whether researchers can estimate

WTP for improvements in environmental quality from observing defensive investment in markets.

To our knowledge, two recent papers ask this question. Kremer et al. (2011) uses a randomized

control trial (RCT) for water pollution in Kenya. Our approach, a quasi-experimental experiment

with non-experimental data, is closer to the approach taken by Deschenes et al. (2012), in which

they use medical expenditure data in the United Sates. There is no doubt that RCT would be the

ideal empirical strategy to answer the question for many reasons. However, a large-scale RCT on

pollution is usually infeasible in most countries. Therefore, quasi-experimental approaches are im-

portant complements to address this question. We believe that our quasi-experimental framework

1For evidence in the United States, see Neidell (2009); Zivin and Neidell (2009); Zivin et al. (2011). For evidence
in China, see Mu and Zhang (2014); Zheng et al. (2015). For evidence in other developing countries, see Madajewicz
et al. (2007); Jalan and Somanathan (2008).
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based on market data can be useful for other contexts because market-level sales and price data are

most likely to exist in many countries because manufacturers or retail stores usually collect scanner

data on product sales and price.2

The second contribution is that our analysis provides empirical evidence for an important “miss-

ing piece” in the literature on air pollution in developing countries. Greenstone and Jack (2013)

describe that few studies have attempted to develop revealed preference estimates of WTP for en-

vironmental quality in developing countries despite the fact that recent pollution concentrations in

these countries are far above those ever recorded in the US. The extrapolation of WTP estimators

from studies in developed countries is unlikely to be valid because pollution and income levels are

substantially different between developed and developing countries. We fill this gap by providing a

revealed preference estimate of WTP for air quality in China. Our estimates are particularly useful

for this question because the identification comes from long-run exposure to air pollution induced

by the Huai River policy. This is particularly informative WTP in the developing world where large

part of pollution does not come as “on-and-off shocks.”

Finally, our findings provide important policy implications for ongoing discussions in energy and

environmental regulation in developing countries. Governments in developing countries recently

proposed and implemented interventions to their air pollution problems. For example, Chinese

Premier Li, Keqiang declared “War Against Pollution” to reduce emission of PM10 and PM2.5 and

proposed various reforms in energy and environmental policies (Zhu, 2014). China has also made

commitments to address global climate change, as featured by the New York Times April 2016

(Davenport, 2016). Reform policies, for example, include reforming the the Huai river heating

policy and the launch of a national cap-and-trade program on carbon emission in 2017. A key

question is whether implementing such policies enhances welfare or not. In the policy implication

section of this paper, we provide an evaluation of the recent reform of the Huai River heating policy

as an example to illustrate how estimates on the WTP for clean air can be used to examine welfare

implications of energy and environmental policies.

2There are a few more related studies. Berry et al. (2012); Miller and Mobarak (2013) use randomized controlled
trials to estimate WTP for water filters and cook stoves per se instead of WTP for improvements in environmental
quality. Consumer behavior in housing markets is usually not considered to be “avoidance behavior”, but Chay and
Greenstone (2005) is related to our study in the sense that they provide a quasi-experimental approach to estimate
WTP for clean air.
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2 Air pollution, Air Purifiers and the Huai River Policy in China

In this section, we provide background information on air pollution in Chinese cities, air purifier

markets in China, and the Huai River policy, which are key to our empirical analysis.

2.1 The Main Pollutant in Chinese Cities

Among ambient pollution measures, fine particle matter has shown most consistently an adverse

effect on human health in recent medical research (Dockery et al. 1993, Pope et al. 2009 and Correia

et al. 2013). Another fact about particle matter is that it is mostly concentrated in developing

countries. According to a global map of satellite-derived PM2.5 (particulate matter with diameter

of 2.5 micrometers or less), northern and eastern China and northern India are the most polluted

regions in the world (Van Donkelaar et al., 2010).

Particular matter is also the main air pollutant in Chinese cities. The Chinese Ministry of

Environmental Protection (MEP) releases an daily air pollution index (API) in 120 cities since 2000.

In each city, a number of monitors record hourly concentration measures of three air pollutants:

PM10 (particulate matter with diameter of 10 micrometers or less), SO2 and NO2. Daily API is

converted from one of these pollutants that has the highest daily average value. The API value

scales from 0 to 500, the higher the value, the greater the level of air pollution. For example,

API value in 0–50 represents excellent air, while an API value over 300 represents heavily polluted

air. When API is above 50, the MEP reported the specific type of pollutant from which API was

converted. During 2006–2012 in our sample of cities, the main pollutant was PM10 for 91%, SO2

for 8.9%, and NO2 for 0.15% of the days. The official API, based on ambient PM10 for most days,

is the only accessible pollution information for Chinese citizens during our sample period.3 Both

daily API level and the main pollutant type are reported to local residents by city weather channel,

radio and newspapers.

2.2 Air Purifiers

A key advantage of analyzing air purifier markets is that one of the product attribute—high-

efficiency particulate arrestance (HEPA)—informs both consumers and econometricians the puri-

3The Chinese government started to report PM2.5 in 2014. We focus on 2006-2012 because of the availability and
representativeness of our air purifier data in this time period.
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fier’s ability to reduce indoor particulate matter. According to the US Department of Energy, a

HEPA air purifier removes at least 99.97% of particles in 0.3 or larger micrometer in diameter

(DOE, 2005). It is more effective for larger particles such as PM2.5 and PM10. Recent clinical

studies find that the use of HEPA purifiers in various settings provides improvements in health,

including reduced asthma visits and asthma symptoms among children, and lower levels of markers

for inflammation and heart disease and reduced incidences of invasive aspergillosis among adults

(Abdul Salam et al., 2010; Allen et al., 2011; Lanphear et al., 2011). In the Chinese air purifier

markets, consistent with the standard by the US Department of Energy, air purifier manufacturers

and retail stores explicitly advertise that a HEPA purifier can remove more than 99% of particle

matter larger than 0.3 micrometers.

In Chinese cities, HEPA purifiers have about a half of the market share and non-HEPA puri-

fiers have another half of the market share. Non-HEPA purification technologies are designed to

remove other target pollutants, not particulate matter. Activated carbon absorbs volatile organic

compounds (VOCs), but it does not remove particles. A catalytic converter is effective in removing

VOCs and formaldehyde. An air ionizer generates electrically charged air or gas ions, which attach

to airborne particles that are then attracted to a charged collector plate. However, there are no

specific standards for air ionizers, and they also produce ozone and other oxidants as by-products.

A study by Health Canada finds that residential ionizer only removes 4% of indoor PM2.5 (Wallace,

2008).

2.3 The Huai River Policy and its Recent Reform

In 1958, the Chinese government decided to provide a centralized heating system. Due to budget

constraint, the government provided city-wide centralized heating only to northern cities (Almond

et al., 2009). Northern and Southern China are divided by a line formed by the Huai River and

Qinling Mountains as shown in Figure 1. The government used this line because the average

January temperature is roughly 0° Celsius along the line, and the line was not a border for other

administrative purposes (Chen et al., 2013). Cities in the north of the boundary have received

unlimited heating in winter every year until recent years. In contrast, cities in the south have not

had centralized heating supply from the government.

The centralized heating supply in the north relies on coal-fired heating systems. Two-thirds
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of heat is generated by heat-only hot water boilers for one or several buildings in an apartment

complex, and the other one-third is from combined heat and power generators for larger areas of

each city. This system is known to be inflexible and energy inefficient. Consumers have no means to

control their heat supply, and until recently there has been no measurement of heat consumption at

the consumer level. The incomplete combustion of coal in the heat generation process leads to the

release of air pollutants, especially particulate matter. Because most heat is generated by boilers

within an apartment complex, the pollution from coal-based heating largely remains local. Almond

et al. (2009) find that the Huai River policy led to higher total suspended particulates (TSP) levels

in the north. Chen et al. (2013) further find that the higher pollution levels created by the policy

led to a loss of 5.5 years of life expectancies in the north.

The heating supply to the north has been consistent since the 1950s, while the payment system

under the policy had an important reform in 2003. Prior to 2003, free heating was provided for

residents in the north, and employers or local governments were responsible to pay for household

heat bills (WorldBank, 2005). It was designed under the centrally planned economy, in which

public sector employment dominated the labor market. However, during China’s transition to a

market economy, heat billing became a practical problem. The size of private sector has increased

dramatically since the 1990s, and employers in private sector were not regulated to pay heat bills

for their employees. Further, many public sector employees have moved out of public housing and

purchased home in the private market, which made it difficult for employers to pay their heat bills

in private homes.

In July 2003, the Chinese government issued a heat reform. The reform changed the payment

system from free provision to a flat-rate billing (WorldBank, 2005). Individual households became

responsible for paying their own heat bills each season, which is a fixed charge per square meter of

floor area for the entire season regardless of actual heat usage. Whether heat subsidy is provided

by employers varies by sector. In the public sector, former in-kind transfers were changed to a

transparent payment for heat added to the wage. In contrast, private sector employers were not

explicitly required to provide heat subsidy to their employees. In the 2005 census, 21% of labor force

was in urban public sector in the 81 cities in our sample, suggesting that only a small percentage

of employees get heat subsidy after the reform.

Our analysis focuses on 2006-2012, after the 2003 reform on heat billing. We summarize the
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comparison of winter heating between the north and the south. First, the way winter heating has

been provided remains the same after the reform. The centralized city-wide heating supply in the

north remains the same, where households have little option other than the centralized coal-based

heating that generates higher pollution levels. In the south, households choose their own ways

to stay warm in winter, including using air conditioners, space heaters, heated blankets, and etc.

Second, heating cost in the north has changed since the 2003 reform. Northern households no

longer enjoy free heating and instead have to pay a substantial proportion of their heat bills from

the centralized heating, while households in the south remain to pay for heating methods of their

choice. We collected heating costs in 20 cities within 3 degrees of latitude relative to the Huai River

boundary and find that household heating costs in the north are comparable to, or could even be

higher than, those in the south.4

3 Data and Descriptive Statistics

We compile a dataset from four data sources—air purifier market data, air pollution data, manufac-

turing/importing location data for each product, and demographic information from the Chinese

census. In this section, we describe each data source and provide descriptive statistics.

3.1 Air Purifier Data

We use air purifier sales transaction data collected by a marketing firm in China from January

2006 through December 2012 for 81 cities. The company collected product-store-level scanner data

on monthly sales, monthly average price, and product attributes. The data cover a network of

major department stores and electrical appliance stores, which take up over 80% of all in-store

sales. During 2006-2012, in-store sales consist of over 95% of overall purifier sales. The marketing

firm provides us product-level data for in-store sales only. The share of online sales has started to

increase significantly since 2013. Therefore, our empirical analysis focuses on data for 2006-2012.

4For example, in Xi’an, a city within 1 degree of latitude north to the Huai River, the price of heating per square
meter per winter is 3.9USD. For an apartment of 100 square meters, the household pays 390USD. The average subsidy
in public sector is 177USD per employee, and the number of public employee per household is 0.32 in the 2005 mini
census. The average amount of subsidy per household is 57USD. Therefore, an average household’s out-of-pocket
payment is 333USD. In southern cities, space heater and heated blankets are the most common choices that could
cost 150-200USD including purchasing these devices and the electricity bill in winter for a similar size of home. If a
household choose a more expensive option, air conditioning, the electricity bill for three months in winter could be
around 240-280USD, and their entire cost depends on the price of the air conditioners that varies to a large extent.
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There are 395 products sold by 30 manufacturers in the dataset. The original sales and price data

are at the product-city-store-year-month level. In our empirical analysis, the exogenous variation

in pollution comes from cross-city variation. Therefore, we aggregate the transaction data to the

product-city level. That is, the unit of observation is a product at a city, and the main variables of

interest are the product’s total sales and average price at the city level during 2006-2012. A unique

feature of the dataset is that we observe detailed attributes for each product. The key attribute is

a High Efficiency Particulate Arrestance (HEPA) filter, which enables us to quantify the amount

of particulate matter that a product is able to remove.

Finally, to address the endogeneity of prices in our empirical analysis, we construct an instru-

ment variable, which measures distance from each product’s manufacturing plant (or its port if the

product is imported) to each market, aiming to capture variation in transportation cost, which is

a supply-side shifter for prices. For each product, we geo-coded the location of its manufacturing

plant if it is domestically produced, or the location of the importing port if it is imported. Around

16% of products are imported. We then calculate the distance (km) from the city where the product

is sold to its manufacturing plant for domestically produced products and to the importing port

for imported products.

3.2 Pollution Data

The official air pollution index (API) is the only accessible air pollution information for Chinese

citizens during the period of this study. We obtain daily API data for each city in our sample

for 2006-2012 from the Chinese Ministry of Environmental Protection (MEP). In addition to the

API level, the data source discloses the type of pollutant from which API was taken from is also

disclosed to the public in days when the air quality is not excellent (API is above 50). During the

sample period, the main pollutant was PM10 for 91% of the days.

The conversion from the concentration of each pollutant to API is based on a known non-linear

function. For days that PM10 is reported as the main pollutant, we use the official formula from

the Chinese MEP to convert daily API to daily PM10. We then calculate the average daily PM10

for winter months (December to March) and non-winter months (April to November) at the city

level. We calculate PM10 for these two seasons separately because the centralized heating in the

north of the Huai river is turned on in the late November and turned off at the end of March.
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We are cautious in using the API data because recent studies find evidence on underreporting

of API at the margin of 100 (Chen et al. 2012, Ghanem and Zhang 2014). The manipulation is

motivated by the blue-sky award, which defines a day with API below 100 as a blue sky day and

link the number of annual blue sky days to the annual performance evaluation of city governments.

For our analysis, we investigate the extent to which potential manipulation affects the average level

of API at the city level for the period from 2006 to 2012. In the online appendix, we perform

McCrary density tests (McCrary 2008) on daily API data to test potential manipulation and then

estimate the effects of the manipulation on the average level of API at the city level. In Figure A.5

in the appendix, we find that the potential manipulation changes the city-level average API for our

sample period by negligible amount. This is because the manipulation occurs only at the margin

of 100, and therefore it affects the average API for a long time period minimally.

3.3 Demographic Data

We compile demographic data from two sources. First, we obtain city-year measures on population

and GDP per capita from City Statistical Yearbooks in 2006-2012. Second, we obtain individual-

level micro data from the 2005 population census. For each city, the dataset includes demographic

variables for a random sample of individuals. We use household-level income data to create the

empirical distribution of household annual income for each city, which we use in our empirical

analysis. We also aggregate the census data to calculate some additional city-level demographic

variables, including average years of schooling and percentage completed college.

3.4 Summary Statistics

Table 1 reports summary statistics. In Panel A, we show the summary statistics of our air purifier

data at the product level. In our dataset, there are 395 products manufactured by 30 manufactures,

including domestic and foreign companies. Out of the 395 products, 206 products have a HEPA

filter, which are 52% of all products. We report product-level summary statistics for all products in

column 1, HEPA purifiers in column 2 and non-HEPA purifiers in column 3. For each variable, we

also calculate the difference in the means between HEPA purifiers and non-HEPA purifiers and the

standard errors for the differences by clustering at the manufacturer level in column 4. Although we

observe substantial heterogeneity for each variable at the product level, the difference in the means
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between HEPA and non-HEPA purifiers is statistically insignificant for sales, market share, other

product attributes such as humidifying and room coverage, the distance to the factory or the port,

and the frequency of replacing a filter. In contrast, the difference is statistically significant for the

price of purifiers and the price of replacement filters. HEPA purifiers are 112 dollars more expensive

than non-HEPA purifiers on average, and the difference is statistically significant at the 10% level.

HEPA replacement filters are also 20 dollars more expensive than non-HEPA replacement filters,

and the difference is statistically significant at the 10% level.

Panel B and C of Table 1 report summary statistics for our two datasets at the city level—

pollution data and demographic data. The average PM10 in winter months is 115 ug/m3, while it

is 93 ug/m3 in non-winter months. Cities in our dataset have on average 2.5 million population.

The average GDP per capita is 8,277 USD. The average years of schooling is 8.36 years, and the

fraction completed college is on average 3.6%.

We also use two maps to show spatial distributions of the cities and manufacturing plants/importing

ports in our dataset. Figure 1 shows the location of the 81 cities on the China map in our analy-

sis. The line of Huai River/Qinling Mountains divides China into its North and South. Each dot

represents a city in our sample. All cities in our sample are located east to 100 degree of longitude.

The river line east to 100 degree of longitude ranges between 32.6 and 34.2 degree of latitude. In

our spatial RD approach using the Huai River policy, we define a city’s relative latitude north to

the river line. Because the river line has several different curved segments, we divide the river line

to five segments. In each segment, we measure a city’s relative latitude to the middle point of the

river latitude range. For example, Beijing locates at 39.9 degree of latitude and 116.3 degree of

longitude, and the corresponding middle point of the river latitude range is 33.4 degree. Beijing’s

relative latitude north to the river line is 6.5 (39.9-33.4) degree. Cities in our sample locate between

-12.9 and 14.8 degree north to the river line. In the appendix, we also show Figure A.1, which in-

cludes locations of manufacturing plants of domestically produced products and ports of imported

products on the map. Most manufacturing plants and ports are located on the east coast.
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4 Demand for Air Purifiers

Our goal is to obtain a revealed preference estimate of willingness to pay for clean air by an-

alyzing demand for air purifiers. Because air purifiers are differentiated products with multiple

attributes, we start with a standard random utility model for differentiated products.5 When a

consumer purchases an air purifier, the consumer considers utility from the product characteristics

and disutility from the price. For our objective, an advantage of analyzing air purifier markets

is that one of the product characteristics—high-efficiency particulate arrestance (HEPA)—informs

consumers and researchers the purifier’s ability to reduce indoor particulate matter. The intuition

behind our approach is that the extent to which consumers value this characteristic, along with

the price elasticity of demand, provides useful information for their WTP for indoor air quality

improvements.

Consider that consumer i in city c has ambient air pollution zc (particulate matter). The

consumer can purchase air purifier j in city c at price pjc to reduce indoor air pollution. Indoor air

pollution level conditional on purchasing product j in city c is zjc = zc · (1−ej). We denote purifier

j’s ability to reduce indoor particulate matters by ej ∈ [0, 1]. We observe markets for c = 1, ..., C

cities with i = 1, ..., Ic consumers. The conditional indirect utility of consumer i from purchasing

air purifier j at city c is:

uijc = β′izjc + αipjc + θj + λc + ξjc + εijc, (1)

where zjc is the indoor air pollution for consumers in city c conditional on the purchase of product

j, pjc is the price of product j in market c, θj is product fixed effects that capture utility gains

from unobserved and observed product characteristics, λc is city fixed effects, ξjc is a product-city

specific demand shock, and εijc is a mean-zero stochastic term. β′i indicates the marginal disutility

from indoor pollution, and αi indicates the marginal disutility for price. The functional form for

the utility function assumes that each variable, including the error terms, enter the utility function

linearly.

Air purifiers usually run for five years and require replacement of filters several times within

5For more detailed discussion on a randomm utility models for differentiated products and its estimation, see Berry
(1994); Berry et al. (1995); Goldberg (1995); Nevo (2001); Kremer et al. (2011); Knittel and Metaxoglou (2013).
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five years. We consider that consumer i thinks of utility gains from purifier j for five years and pjc

as a total cost including the upfront and running cost.6 This approach abstracts from interesting

possibilities that consumers may consider dynamics of product entries and make a dynamic decision.

Unfortunately, it is not possible to examine such a dynamic decision in our empirical setting. While

we have monthly sales and price data, the exogenous variation in pollution comes from purely cross-

sectional variation as opposed to time-series variation. Therefore, our empirical approach focuses on

cross-sectional variation in pollution and purchasing behavior, which has to abstract from potential

dynamic discrete choices.

We assume that the error term εijc is distributed as a Type I extreme-value function. We then

consider both of a standard logit model and a random-coefficient logit model. A standard logit

model assumes that the preference parameters do not vary by i. The attractive feature of this

approach is that the random utility model in equation (1) leads to a linear equation. The linear

equation can be estimated by linear GMM estimation, which is equivalent to two-stage least squares.

A random-coefficient logit model allows the preference parameters to vary by i through observable

and unobservable factors. This feature comes at a cost—random-coefficient logit estimation involves

nonlinear GMM estimation for a highly nonlinear objective function. We take both approaches to

estimate willingness to pay for clean air.

4.1 A Logit Model

We begin with a standard logit model. Suppose that β′i = β′ and αi = α for all consumer i and that

the error term εijc is distributed as a Type I extreme-value function. Consumer i purchases purifier

j if uijc > uikc for ∀k 6= j. Then, the market share for product j in city c can be characterized by7

sjc =
exp(β′zjc + αpjc + θj + λc + ξjc)

1 +
∑J

k=1 exp(β′zkc + αpkc + θk + λc + ξkc)
. (2)

6This approach also implicitly assumes that consumers respond to a monetary value of an upfront cost and that
of running costs in the same way when they purchase air purifiers. For example, if consumers are myopic, they can
be more responsive to an upfront cost than running costs. While we cannot rule out this possibility, recent studies
show that empirically consumers are not myopic on the running costs of durable goods (Busse et al., 2013). When
calculating the total cost of a purifier, we do not take into account future discount rates for its running cost. However,
including discount rates change the total cost for only small amount, and therefore, we find that it does not have a
significant change on our empirical findings.

7See Berry (1994) for the proof and more detailed discussions.

13



The outside option (j = 0) is not to buy any air purifier. We make a few assumptions to construct

the market share for the outside option (s0c). We assume that the number of households in city c

are potential buyers and that each household purchases one or zero air purifier during our sample

period. Then, s0c can be calculated by the difference between the number of households in city c and

the total number of sales in city c. Our second assumption is that zc0 = zc. That is, if consumers do

not buy any air purifier, they are exposed to indoor pollution that is equal to ambient air pollution.

This assumption is one of the reasons why we consider our estimate to be a lower bound estimate for

the WTP for clean air. Indoor air pollution could be equal to or lower than outside air pollution.

The difference between the two pollution levels depends on each household’s building structure,

air flow, etc., which are unknown to us. Therefore, we take a conservative assumption—indoor

pollution in the absence of air purifiers is equal to ambient air pollution. If indoor air pollution is

lower than ambient air pollution (z0 < zc), our estimate of β is underestimated.

Note that the assumptions on the outside option are not required when we include city fixed

effects for the standard logit estimation. City fixed effects absorb observable and unobservable varia-

tion at the city level. For completeness, we calculate and include the log of market share for the out-

side option (s0c ) in the equation below, but one can see that the term will be absorbed by city fixed

effects. The market share for outside options is ln s0c = β′z0−ln
(∑J

k=1 exp(β′zkc + αpkc + θk + ξkc)
)

.

The difference between log market share for product j and log market share for outside options is,

lnsjc − lns0c = β′(zjc − z0) + αpjc + θj + λc + ξjc

= β∆zjc + αpjc + θj + λc + ξjc,

(3)

where ∆zjc ≡ (z0 − zjc) is the reduction in indoor air pollution conditional on purifier j, β is the

marginal utility for clean air, and α is the marginal disutility from price. The marginal willingness

to pay (MWTP) for one unit of indoor air pollution reduction can be obtained by −β/α.

We interpret that our estimate of −β/α provides a lower bound of MWTP for one unit of

indoor pollution reductions. First, our approach assumes that indoor air pollution levels in the

absence of air purifiers equal to ambient pollution levels (zc). Recent engineering studies show

that, on average, indoor pollution levels are lower than outdoor pollution levels in China.8 One

8A study from Tsinghua University finds that, in Beijing, on average, the indoor concentration of PM2.5 is 67%
of the outdoor concentration of PM2.5. See The People’s Daily on April 23rd 2015 (Zhang, 2015).
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approach we could take is to rely on an engineering estimate of indoor-outdoor air pollution ratio,

which would produce slightly larger estimates for the MWTP. However, because we want to be

conservative as much as possible, we assume that indoor air pollution levels are equal to outdoor

pollution levels, which is likely to underestimate the MWTP. Second, households may have limited

information on the negative health effects of air pollution and therefore are likely to underestimate

the health risk. If this is the case, our MWTP estimate can be underestimated compared to the

case in which consumers are well-informed about the negative health effects of air pollution.

An advantage of studying air purifier markets is that ej (purifier j’s ability to reduce indoor

particulate matters) is well-known for consumers. As we explained in Section 2.2, if a purifier has

an attribute, High Efficiency Particulate Arrestance (HEPA), it reduces 99% of indoor particular

matter. On the other hand, if a purifier does not have HEPA, it does not reduce indoor particular

matter. In advertisements and product descriptions of air purifier products in the Chinese markets,

consumers are well-informed about the difference between HEPA purifiers and non-HEPA purifiers.

Therefore, we define the pollution reduction by ∆zjc = zc ·HEPAj , which equals zc if HEPAj = 1

and equals 0 if HEPAj = 0. It implies that conditional on the purchase of a HEPA purifier,

consumers can reduce indoor air pollution by zc. Otherwise, the reduction in indoor air pollution

is zero. Note that non-HEPA purifiers do not provide reductions in particular matter but provide

other utility gains, including reductions in VOCs and odors. These utility gains are captured by

the product fixed effects. Using ∆zjc = zc ·HEPAj , our random utility model finally leads to an

estimation equation:

lnsjc − lns0c = βzc ·HEPAj + αpjc + θj + λc + ξjc. (4)

As we explained above, the log market share of the outside option (ln s0c) will be absorbed by city

fixed effects (λc). From this equation, we can calculate a lower bound of the marginal willingness

to pay by −β/α if we can obtain consistent estimates of β and α. The empirical challenge is that

pollution and price are likely to be endogenous even if we include product fixed effects and city fixed

effects. In our empirical strategy section, we explain how we address these endogeneity problems

by using instrumental variables.
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4.2 A Random-Coefficient Logit Model

In this section, we describe a random-coefficient model, which relaxes some assumptions in the

standard logit model. Because general discussions about random-coefficient models are provided

extensively in previous studies (Berry et al., 1995; Nevo, 2001; Knittel and Metaxoglou, 2013), we

provide a brief description, focusing on key parts for our empirical analysis.

We begin with the same random utility model described in equation (1) but relax the assump-

tions on β′i and αi by allowing the two parameters to vary by consumer i through observable and

unobservable factors. We model the two parameters by β′i = β′0 +β′1Di+ui and α = α0 +α1Di+ei,

where Di is the log of household-level income from the census data, ui ∼ N(0, σβ), and ei ∼

N(0, σα). That is, each parameter depends on the mean coefficient, log of household-level income,

and a normally distributed random error. Denote the part of the utility function that does not

depend on i (the mean utility level) by δjc = β′0zjc+α0pjc+θj +λc+ξjc, and the part that depends

on i by µjci = (β1Di + ui)zjc + (α1Di + ei)pjc. Then, the market share for product j in city c can

be evaluated using Monte Carlo integration assuming a number nc of individuals for city c by:9

sjc =
1

nc

nc∑
i=1

sjci =
1

nc

nc∑
i=1

exp(δjc + µjci)

1 +
∑J

k=1 exp(δkc + µjki)
. (5)

The important difference between equations (2) and (5) is that equation (5) now includes elements

that depend on i. Therefore, the market share and δjc has to be calculated numerically by the fixed

point iterations: δh+1
.c = δh.c + lnS.c − ln s.c for h = 0, ...,H, in which s.c is the predicted market

share by equation (5) and S.c is the observed market share from the data. Once δ is obtained, ξjc

can be written by ξjc = δjc − (β′0zjc + α0pjc + θj + λc) ≡ ωjc.

The idea behind the estimation is that if there is a set of instrumental variables that are

orthogonal to ωjc, the parameters can be estimated by nonlinear GMM using the orthogonality

conditions of the instruments and ωjc. Denote the vector of the parameters by θ, and a set of

instruments by Zjc. Then, the GMM estimate is

θ̂ = argmin ωjc(θ)
′(Zjc)Φ

−1(Z ′jc)ωjc(θ), (6)

9See Nevo (2001) for more detailed discussions.
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in which Φ−1 is the weight matrix for the GMM estimation. As one can see, the GMM objective

function is nonlinear in parameters and does not have a closed form solution. Therefore, the

objective function has to be evaluated numerically, and nonlinear-search algorithms are required to

find the optimum. In the empirical strategy section below, we describe details about the estimation.

5 Empirical Analysis and Results

In this section, we provide empirical analysis based on the estimating equations derived in the

previous section. Our primary goal is to obtain consistent estimates of the preference parameters

for pollution (β′) and price (α) to calculate the willingness to pay for clean air. We begin with logit

estimation in section 5.1 followed by random-coefficient logit estimation in section 5.2.

5.1 Logit Estimation

Our primary empirical challenge is that two variables in our demand estimation—pollution and

price—are likely to be endogenous. In an ideal controlled experiment, one would expose different

consumers to randomly assigned pollution levels and purifier prices to estimate demand for air

purifiers in relation to variation in air pollution. In reality, these two variables are unlikely to

be randomly assigned. Air pollution is determined by both observable and unobservable factors.

Therefore, we cannot think of observed pollution levels across different cities as exogenous variation

because of potential omitted variables. Air purifier prices are also unlikely to be determined exoge-

nously because unobserved factors in demand estimation is believed to be correlated with prices.

For example, suppose that some demand factors are unobserved to econometricians but observable

to firms, who have the ability to set prices because of imperfect competition. Then, we expect that

firms set prices in response to the unobserved demand factors, which creates correlation between

prices and the error term in our demand estimation.

To address the endogeneity of air pollution, we exploit a regression discontinuity in air pollution

at the spatial border of the Huai river as described in section 2.3. This approach provides us a

nearly ideal research environment to answer our research questions for two reasons. First, it allows

us to exploit plausibly exogenous variation in air pollution created by the natural experiment.

If people value air quality, our demand model in section 4 predicts that the market shares for
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HEPA purifiers are discontinuously higher in the cities in the north of Huai river. Second, the

discontinuous difference in air pollution created by the Huai River policy has existed for a long

time since the 1950s. Therefore, the experiment provides long-run variation in air pollution, which

enables us to examine how households respond to variation in pollution that is not transitory but

rather long-lasting.

To address the endogeneity of prices, we combine two approaches. First, using the fact that

we observe data from many markets (cities) in China, we include product fixed effects and city

fixed effects. With these fixed effects, we can absorb product-level unobserved demand factors and

city-level demand shocks. Then, the remaining potential concern is product-city level unobserved

factors that might affect demand. We construct an instrument variable by measuring distance from

each product’s manufacturing plant (or its port if the product is imported) to each market, aiming

to capture variation in transportation cost, which is a supply-side shifter for prices.

5.1.1 Empirical Strategy

First Stage on Air Pollution: We estimate the first stage on air pollution using a regression

discontinuity design in air pollution (PM10) at the border of the Huai river. We denote air pollution

(PM10) for city c by zc, the latitude relative to the Huai River boundary by Lc, a dummy variable

for cities north of the Huai River by Northc = 1 {Lc > 0}, and demographic control variables by

Xc. For regression discontinuity designs, recent studies suggest that a local linear regression or

quadratic polynomials that use observations close to the cutoff provide more robust results than

those obtained by high order global polynomial controls for observations far from the cutoff (Imbens

and Lemieux, 2008; Gelman and Imbens, 2014). Therefore, we estimate a local linear regression

and a local quadratic regression for observations near the cutoff of Northc = 1. Our local linear

regression is,

zc = γNorthc + γ1Lc + γ2Lc ·Northc + γ3Xc + εc. (7)

The identification assumption is that the conditional expectation of the outcome variable (zc)

is smooth at the cutoff. One way to examine the validity of the RD design is to investigate

observed variables on either side of the Huai River. In the appendix, we show that there are no

significant discrete changes in population, GDP per capita, average years of schooling and fraction
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completed college at the cutoff (Figure A.3). Nevertheless, we test the robustness of our estimate

by including these city demographics as covariates in Xc. Our coefficient of interest, γ, measures

the discontinuous increase in zc just north of the Huai river.

When estimating a regression discontinuity design, one needs to decide the bandwidth of sample

that is included in a local linear regression. General consensus in the recent literature is that

researchers should report results with several sets of bandwidth choices to examine the robustness,

although recent studies provide a few methods to calculate the optimal bandwidth. We estimate

the optimal bandwidth for our sample by using methods proposed by Ludwig and Miller (2007),

Imbens and Kalyanaraman (2012), and Calonico et al. (2014). A range of bandwidths between 4

and 8 latitude degrees are suggested by these methods. Therefore, we use 6 latitude degrees for our

main results and also report all results using bandwidths from 4 to 8 latitude degrees.

Finally, one needs to decide if the regression is ran with kernel weights that assign larger weight

on observations near the cutoff. For our main specification, we use a triangular kernel, which is most

commonly used in recent studies (Imbens and Kalyanaraman, 2012; Calonico et al., 2014). We also

estimate our regressions without weights (or equivalently with rectangular weights for observations

within the bandwidth). Because we limit our sample to observation near the cutoff, we find that

including or excluding weights does not make substantial changes in the estimation results.

Reduced Form on Log Market Share: Suppose that our first stage on PM10 provides

evidence on a discontinuous increase in PM10 at the river boundary. Then, our demand model

predicts that the market share for HEPA purifiers should be higher for cities in the north of the

river if households value clean air. Our reduced form tests if there is a discontinuous change in

the market share for HEPA purifiers at the river boundary. We use our city-product level data to

estimate a reduced form equation,

lnsjc = ρNorthc ·HEPAj + αpjc + (ρ1Lc + ρ2Lc ·Northc) ·HEPAj + θj + λc + εjc, (8)

where θj is product fixed effects and λc is city fixed effects. Because we include city fixed effects, the

log market share for outside options (ln s0c) is dropped from the left hand side variable and Northc

is also absorbed by λc. We allow the control function for the running variable (latitude) to differ
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between HEPA purifiers and non-HEPA purifiers by including (ρ1Lc + ρ2Lc ·Northc) ·HEPAj .

The reduce form estimation itself provides policy relevant parameters. If we obtain consistent

estimates for ρ and α, we can calculate the willingness to pay for removing the amount of pollution

generated by the Huai River policy (γ in equation (7)) by −ρ/α. The reminding identification

problem is that prices are endogenous in the equation. We construct an instrument variable by

measuring distance from each product’s manufacturing plant (or its port if the product is imported)

to each market, aiming to capture variation in transportation cost, which is a supply-side shifter

for prices. This instrument provides variation at the city-product level because manufacturing

locations or importing ports are different between products. The identification assumption for the

IV is that unobserved demand shocks are uncorrelated with the instrument given the fixed effects

and control variables in the equation.

Second Stage on Log Market Share: For the second stage regression, we estimate two-stage

least squares,

lnsjc = βzc ·HEPAj + αpjc + (φ1Lc + φ2Lc ·Northc) ·HEPAj + θj + λc + εjc, (9)

by using Northc ·HEPAj as the instrument for zc ·HEPAj , and distance as the instrument for

pjc. The identification assumption is that the two instruments are uncorrelated with the error term

given the control function and fixed effects. The 2SLS provides the marginal willingness to pay for

removing 1 unit of PM10 by −β/α.

5.1.2 Graphical Analysis

Huai River policy generates a natural experiment in air pollution in winter months because the

policy-induced pollution comes from centralized heating facilities operating in winter. In Figure 2a,

we show the average PM10 in winter months (December-March) during 2006-2012 by the running

variable, which is the latitudes of cities (Lt). Because very few cities locate in the farthest north

and the farthest south, the figure includes cities located within 10 degrees of the latitude from the

Huai river boundary. Each plot in the figure shows the average PM10 by 1.5 degree of latitude. The

vertical line at Lc = 0 indicates the location of the Huai river. Consistent with findings in previous
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studies (Almond et al. (2009), Chen et al. (2013)), the figure suggests a discontinuous increase

in PM10 just north of the Huai River. This evidence suggests that the coal-based heating policy

generated higher pollution levels for cities in the north of the river boundary. We also investigate

if a similar discontinuity in air pollution can be found for non-winter months, when the heating

facilities do not operate. Figure A.2 in the appendix shows that there is no discontinuous change in

PM10 levels at the boundary in non-winter months (April-November). This finding provides further

support that the discontinuous increase in pollution presented in Figure 2a is likely generated by

the Huai river policy.

In Figure 2b, we show an analogous RD figure for our outcome variable. That is, Figure 2b

presents graphical analysis for the reduced form regression. We calculate the market share of

HEPA purifiers by 1.5 degree of latitude. In the south, the market share of HEPA purifiers are

below 60%. The figure indicates that there is a sharp increase in the market share of HEPA at

the river boundary and that the share is over 70% in cities just north of the river. In addition,

the figure shows that there does not exist strong trend in the outcome variable in latitude. The

relatively flat relationship between the outcome variable and the running variable suggests that the

choice of functional form for the running variable is unlikely to have substantial impacts on the

reduced form estimation.

5.1.3 Estimation Results

Table 2 shows the results of the first stage estimation. We report the first stage estimation for

PM10 in Panel A. The first two columns show results without demographic controls, and the last

two columns show results with demographic controls. We report our estimates from local linear

regression and local quadratic regression. Without demographic controls, our estimates imply

that there is a discontinuous increase in PM10 by 32 to 33 units at the Huai river boundary.

The magnitudes of these estimates are consistent with the visual evidence from Figure 2a. With

demographic controls, the magnitude becomes slightly larger, but the estimates with and without

demographic controls are statistically indifferent. Note that the mean PM10 for cities just south of

the Huai river is about 115, and it jumped by about 30% just north of the river.

In Panel B of Table 2b, we report the first stage estimation for prices. We include product

fixed effects in all columns. Results in columns 1 and 2 imply that one kilometer increase in the
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distance to the manufacturing plant or importing port is associated with an increase in price by

around $0.03 dollars. Note that the 10th, 25th, 50th, 75th, and 90th percentiles of the distance

variable in our data are 230 km, 550 km, 1000 km, 1400 km, and 1700 km and that the average

price of air purifiers is $400. Therefore, the first stage estimates imply that a considerable amount

of variation in prices can be explained by transportation costs to markets. In columns 3 and 4,

we include city fixed effects to control for potentially confounding factors at the city level. For

example, firms possibly set higher prices for cities with higher average income. The results imply

that the relationship between distance and prices is robust to the inclusion of city fixed effects. The

standard errors are clustered at the product level.

Table 3 shows the reduced form results in Panel A, and the 2SLS results in Panel B. We

include product fixed effects and city fixed effects. Consistent with Figure 2b, the reduced form

results provide evidence that there is an economically and statistically significant increase in the

market share of HEPA purifiers in the north of the river. from both specifications. We calculate

the measure of WTP by −ρ/α and calculate its standard error by the delta method. Using local

linear regression, the estimates in column 1 imply that the WTP for reducing the amount of air

pollution generated by the Huai river policy is $53 for five years per household. With local quadratic

regression in column 2, the magnitudes of the estimates change slightly, but the estimates from the

two estimation methods are statistically indifferent.

Finally, we report the 2SLS results in Panel B of Table 3. Similar to the calculation of the WTP

for the reduced form, we use the delta method to calculate the standard error for −β/α, which tells

us the marginal WTP for reducing one unit of PM10. The results for the local linear regression

indicate that the MWTP is about $1.6 for five years per household.10

10Figure A.2 in the online appendix shows that we do not find a discontinuous change in PM10 at the river
boundary for non-winter months (April-November). This is consistent with the fact that the Huai River policy affects
only winter months through its centralized heating. Nevertheless, we consider the possibility that consumers could
purchase air purifiers in non-winter months as a response to higher pollution levels in winter months because air
purifiers are durable goods. In the online appendix, we test this possibility in Table A.5. The point estimates in the
table suggest that demand for HEPA purifiers in non-winter months has a moderate response to differences in winter
PM10, but the response is much lower than that in winter months, and most estimates are statistically insignificant.
Therefore, our analysis focuses on winter months, which provides variation in pollution from the natural experiment.
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5.1.4 Robustness of the Estimates

We first test the robustness of our main results to bandwidth selection. For the second stage

estimation in Table 4, we use a range of bandwidths between 4 and 8 latitude degrees. We report

results using local linear regression in Panel A and local quadratic regression in Panel B. We use

triangular kernel for both functional forms. The results imply that our estimates are stable to a

choice of different bandwidths. We also report in Table A.2 and Table A.3 in the appendix that

estimates of the first stage and reduced form are also robust, consistent with the visual evidence in

Figure 2a and 2b.

One potential concern for our findings is that if high-income or better-educated households prefer

HEPA purifiers over non-HEPA purifiers for reasons unrelated to air pollution, the interaction term

of income and HEPA or that of education and HEPA can be omitted variables. In Table A.1 in the

online appendix, we include the interaction of GDP per capita and HEPA and the interaction of

average schooling and HEPA. We find that the results are similar to our main estimates in Table 3.

In terms of the standard errors, we also cluster the standard errors at the city level in 2SLS

regressions. Table A.4 in the appendix reports that standard errors clustered at the city level are

very similar to those clustered at the model level in the main results.

5.1.5 Potential Confounding Factors to the Estimation

In this section, we consider potential confounders that could bias our results. First, the RD design

requires that the conditional expectation of potential outcomes for are smooth in the running

variable across the river boundary. While potential outcomes are unobservable, we can examine

whether observable variables do not have discontinuities at the river boundary. In Figure A.3 in

the online appendix, we show that there are no discontinuous changes in demographic variables

across the Huai River boundary.

The second possible concern is sorting of households because of air pollution—households in

the north may migrate to the south to seek cleaner air. This sorting, if exists, could bias our

estimates. In our case, however, sorting is unlikely to significantly affect our estimates because of

strict migration policies enforced by the Chinese government. Internal migration in China is strictly

constrained by the Hukou system. The hukou, obtained at one’s city of birth, is crucial for getting
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local social benefits and education opportunities, which makes migration a more costly decision

than that in countries without mobility restriction. Indeed, in the 2005 Census micro-data, only 1

percent of the population within 1.5 latitude degrees north of the Huai river migrated to the south.

Therefore, in our case, migration is unlikely to have significant impacts on our estimation.

Third, if there are other policies that use the Huai River boundary, there can be differential

impacts of such policies on households in the north and south of the river boundary. However, as

described in Chen et al. (2013), this line was used to divide the country for heating policy because

the average January temperature is roughly 0° Celsius along the line, and it has not been used for

administrative purposes.

Fourth, we are concerned that the Huai River policy may affect purifier purchases for reasons

unrelated to air pollution. For example, if we consider that the heating supply to the north has

been a public welfare entitlement and subsidized heating cost of northern households, northern

households might have higher income because of the heating subsidy. We cannot fully rule out this

possibility, but our empirical strategy mitigates this concern for three reasons. First, our estimation

includes city fixed effects. Therefore, if the subsidy for heating increases household wealth, which

may increase demand for purifiers overall (i.e. both HEPA and non-HEPA purifiers), it does not

bias our results. Second, in Table A.1, we find that including the interaction of GDP per capita

and HEPA does not change our main estimate. Third, as we discussed in Section 2.3, the heat

reform in 2003 changed the payment system from free provision to a flat-rate billing. Of critical

importance is the change that northern households have to pay a substantial proportion of their

heat bills from the centralized heating since 2003. Therefore, in our analysis during 2006–2012,

heating subsidy has minimal effect on household, although we cannot fully exclude the possibility

that the subsidy before 2003 may have long-run effects on households during 2006–2012.

A final note is on the availability of HEPA purifier products between the north and south of the

river. If HEPA purifiers are more available in the north because appliance stores supply more of

them relative to Non-HEPA purifiers, what we observe in Figure 2b might reflect the difference in

supply. To directly test this concern, in Figure A.4, we plot the fraction of HEPA purifier products

(out of all available purifier products on the market) by 1.5 degree of latitude relative to the Huai

River. We do not observe a discontinuous jump on the supply of HEPA purifiers just north to the

river boundary.
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5.2 Random-Coefficient Logit Estimation

The advantage of the standard logit estimation presented in the previous section is that it can be

estimated by conventional two-stage least squares. It does not involve nonlinear estimation. On

the other hand, a key assumption in the standard logit model is that the preference parameters are

homogeneous across individuals. That is, we implicitly assume that the preference for clean air (β)

and price (α) are homogeneous, and hence, the marginal willingness to pay for clean air (−β
α) is

homogeneous across i.

In this section, we relax this assumption and estimate heterogeneity in β and α. We model

these parameters by β′i = β′0 +β1Di +ui and α = α0 +α1Di + ei, where Di is the log of household-

level income, ui ∼ N(0, σβ), and ei ∼ N(0, σα). That is, we model that the preference parameters

for consumer i depends on the mean coefficient, log of household-level income, and a normally

distributed random error.

5.2.1 Nonlinear optimization methods and initial values

Random-coefficient demand estimation requires nonlinear GMM estimation for a nonlinear objective

function that does not have a closed form solution. Because its nonlinear objective function most

likely have multiple local optima, the estimation has to be based on a nonlinear-search algorithm

with a set of starting values and stopping rules for termination. Recent studies show challenges and

cautions regarding such numerical optimization and provide some guidelines for researchers to assess

robustness of their estimation results. For example, Knittel and Metaxoglou (2013) show that it is

important to estimate a random-coefficient demand model with different sets of 1) nonlinear-search

algorithms and 2) starting values, with conservative stopping values (i.e. conservative tolerance

levels for nonlinear searches) to investigate if the estimated local optimum is indeed the global

optimum of the GMM objective function.

We follow the approach taken by Knittel and Metaxoglou (2013), in which they estimate a

model with different sets of search algorithms, starting values, and tolerance levels. For nonlinear-

search algorithms, we use three derivative-based algorithms (SOLVOPT, quasi-Newton 1, and quasi-

Newton 2) and a deterministic direct search algorithms (Simplex). For starting values for coefficients

on nonlinear parts of our equation, we use 100 sets of draws from a standard normal distribution for
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each nonlinear-search algorithms. That is, for each algorithm, we run the estimation with 100 sets

of starting values and make sure that we find the same optimum from different search algorithms.

Recent studies show that the tolerance level should be set to a particularly conservative level for

the nested fixed-point iterations that calculate market shares. We set the tolerance level for the

nested fixed-point iterations to 1E−09, and the tolerance level for changes in the parameter vector

and objective function to 1E−03.

5.2.2 Estimation results

We find that three search algorithms (SOLVOPT, quasi-Newton 2, and Simplex) lead to the same

minimum value of the objective function. With our datasets, the Newton 1 search algorithm

is sensitive to a set of initial values, and its minimum value of the objective function is larger

than those obtained by the other three algorithms. This is consistent with the finding by Knittel

and Metaxoglou (2013), in which they use the automobile datasets used by Berry et al. (1995),

and ready-to-eat cereal datasets used by Nevo (2001). We report estimation results by using the

minimum value of the objective function obtained by these three algorithms.

Table 5 shows the results. Same as our standard logit estimation, we use two sets of controls

for latitude for our regression discontinuity design. Model 1 uses linear and linear interacted with

the indicator variable for cities in the north side of the Huai river, and model 2 uses quadratic

controls for the latitude. The results provide several key findings for heterogeneity in preference

parameters. First, the mean marginal willingness to pay is $1.6, similar to the estimate of the

standard logit model in Table 3. Second, the standard deviations for marginal utility of clean air

and price imply that there is unobserved heterogeneity among households. Third, we find that

the interaction with log household-level income is positive for both parameters. It implies that

higher-income households have larger valuation for clean air, and they are less price-elastic than

lower-income households.

Figure 3 shows the distribution of estimated marginal willingness to pay for clean air based on

the estimation results by Model 1. Note that we have household-level income data for a random

sample of households in each city. We use each household’s income Di, two random errors from

two standard normal distributions: ui ∼ N(0, σ̂β) and ei ∼ N(0, σ̂α), and coefficients from the

estimation to calculate the estimated household-level marginal willingness to pay. Note that the
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estimated marginal willingness to pay is based on a set of assumptions we make in the estimation,

including the functional form of the utility function. With this caveat in mind, the histogram

provides useful information for our estimates. First, the mean of the distribution is close to the

mean of the marginal willingness to pay obtained by the estimates for β′0 and α0. Second, the

distribution indicates that there is wide dispersion of marginal willingness to pay, and in particular,

the distribution has a long tail to the right. That is, our estimates imply that there are a small set

of households who have substantially larger marginal willingness to pay for clean air in China.

Figure 4 shows how the estimated marginal willingness to pay is related to log of household-level

income. The income distribution is based on household-level income data from the 2005 Census.

There is a long right tail in the distribution with small number of households whose income is larger

than $20,000. Our estimation is based on data including these households. In the figure, we drop

data for income larger than $20,000 to make it easy to visualize the majority of the distribution.

The line shows a fitted line of our MWTP estimate by income levels. The figure indicates that the

marginal willingness to pay is increasing in income, ranging from about $1 to $5 for the range of

income between $0 to $20,000.

Overall, the results of the random-coefficient model provides a few key implications, given the

assumptions required for the nonlinear GMM estimation. In our case, the results from the standard

logit is not far from the ones obtained by the random-coefficient estimation if our focus is only on

the mean of the marginal willingness to pay. However, the random-coefficient estimation highlights

heterogeneity in the marginal willingness to pay. In particular, the results indicate that higher-

income and lower-income households have significantly different levels of the marginal willingness

to pay for clean air.

6 Policy Implications

Our findings provide important policy implications for ongoing discussions in energy and environ-

mental regulation in developing countries. Governments in developing countries recently proposed

and implemented a variety of interventions to their air pollution problems. For example, Chinese

Premier Li, Keqiang declared “War Against Pollution” to reduce emission of PM10 and PM2.5

(Zhu, 2014) and proposed various reforms in energy and environmental policies. A key question is
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whether implementing such policies enhances welfare or not.

For example, in 2005, the Chinese government and the World Bank started a pilot reform to

improve the Huai river policy in seven northern cities. The primary goal of the reform is to save

energy usage and reduce air pollution by introducing household metering and consumption-based

billing, under which consumers pay for actual heat consumption and are able to control how much

heat they consume.11 Ten years after the start of the pilot reform, there is still ongoing debate

about the reform—whether such a reform would improve welfare, and whether similar reforms

should be implemented in other northern cities in China. The main challenge is that costs of

installing individual meters and adopting consumption-based billing are high,12 while benefits of

the reform have not yet been systematically examined.

In this section, we provide an evaluation of this reform as an example to illustrate how our

estimate on the WTP for clean air can be used to examine a welfare implication of an environmental

policy. While we want to emphasize that our analysis is based on back-of-envelop calculation with

a set of assumptions, this analysis can help shed light on the importance of WTP for clean air for

policy discussion of optimal environmental regulation.

The WTP estimate in the previous sections informs us how much a household is willing to pay if

the reform produces a reduction in particle matter. Our estimate implies that a northern household

is willing to pay 53 dollars if the pollution generated by the Huai river policy can be removed. We

use this estimate to provide a cost-benefit analysis of the heat reform. First, WorldBank (2014)

estimates that the pilot heat reform in seven cities can generate a total reduction in coal usage by

51 million tons over a 20-year period at the total abatement cost of $18 million. Thus, over 20

years, the reduction in coal usage per city is 0.36 million tons per year at the abatement cost of

$0.13 million per city per year. Second, the China Daily reports that all northern cities use over

700 million tons of coal at their centralized heating facilities alone per year (ChinaDaily, 2015),

suggesting that an average northern city uses 5.3 million tons of coal for their centralized heating

11As we describe in Section 2.3, the 2003 reform in all northern cities replaced free heating provision with a flat-rate
billing. Households pay a fixed charge per square meter for heating of the entire winter, which does not depend on
the actual amount of usage. The flat-rate billing provides no incentives for households to respond to market-based
energy costs.

12The People’s Daily reported on October 23rd 2009 (People’sDaily, 2009) that, the vice minister of the Ministry
of Housing and Urban-Rural Development summarized three obstacles of implementing the heat reform: 1) many
new construction projects refuse to install household meters because they are expensive; 2) it is costly to remodel
old buildings to accommodate the installation of household meters; 3) it is costly to build a new consumption-based
billing system.
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per year. If we consider the percentage of coal reductions from the pilot heat reform, it is 7%

(= 0.36/5.3) per city. Third, our WTP estimate suggests that a northern households is willing to

pay $53 for cleaning up the air from heating-induced pollution for for a period of five years. That

is, the annualized willingness to pay is $11 (= 53/5) per year.

We make a simplifying assumption on the relationship between reductions in coal usage and re-

ductions in PM10. We assume that a certain percent reduction in coal usage for heating leads to the

same percent reduction in PM10. This assumption can overestimate or underestimate it, depending

on the actual relationship between the two variables. With this simple one-to-one assumption, we

obtain that a household is willing to pay $0.77 (= 11 · 0.07) per year for a 7% reduction in PM10.

Because the average number of households in a northern city is 0.63 million, the total willingness to

pay is $0.49 (= 0.77 · 0.63) million per city per year. This estimate, the total benefits of the reform

for households, is larger than the abatement cost, which is $0.13 million per city per year. Note

that this benefit estimate is a lower bound estimate because our WTP estimate is a lower bound.

Therefore, our analysis suggests that even if we consider the lower bound estimate of the benefits,

the heat reform is likely to be cost-effective. Our analysis suggests that the expansion of the heat

reform to other northern cities could enhance household welfare.

More broadly, our WTP estimate is useful for evaluating a series of new energy policies and

environmental regulations that were recently announced. For example, as featured by the New York

Times, $1.65 billion a year is offered to reward cities and regions that make “significant progress”

in air pollution control (Wong, 2014a), tougher fines are enforced for polluters (Wong, 2014b),

and coal-fired power plants will be upgraded to cut pollution from power plants by 60 percent by

2020 (Wong, 2015). More prominently, as the the world’s largest greenhouse gas polluter, China

recently made commitments to address global climate change by launching a national cap-and-trade

program in 2017, when the government will set a cap on total carbon emissions and firms can buy

and sell emission permits (Davenport and Hirschfeld, 2015). For these policies, policymakers could

compare the abatement costs to our WTP estimate to assess welfare implications of the policy.
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7 Conclusion

In this paper, we provide among the first revealed preference estimate of willingness to pay (WTP)

for clean air in developing countries. We examine the demand for home-use air purifiers, a main

defensive investment for reducing indoor air pollution, which provides valuable information for

estimating a lower bound of WTP for air quality improvements. Our empirical strategy leverages the

Huai River heating policy, which created discontinuous quasi-experimental and long-run variation

in air pollution between the north and south of the river. Using a spatial regression discontinuity

design, we estimate that the willingness to pay for removing the amount of pollution generated

by the Huai River policy is 53 dollars, and the marginal willingness to pay for removing 1 ug/m3

PM10 is 1.6 dollars.

While we find higher amount of WTP for environmental quality compared to previous studies

in developing countries (Kremer et al., 2011), our estimate is still low if we compare it to similar

estimates in the United States (Chay and Greenstone, 2005; Deschenes et al., 2012). An impor-

tant direction for future research is to understand the reasons for this difference. For example, if

households fully understand the negative effects of air pollution on health and labor supply, do they

have higher willingness-to-pay for clean air? Can policies be designed to provide information to the

public on the pollution-health relationship to affect household responses to pollution? Answers to

these questions are expected to advance the economics literature on environmental regulation and

improve policy design to address pollution problems in many countries.
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Figure 1: Huai River Boundary and City Locations

Notes: The line in the middle of the map is the Huai River-Qinling boundary. Each dot represents 1 city.
There are 81 cities in our sample.
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Figure 2: Regression Discontinuity Design at the Huai River Boundary
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(b) Market Share of HEPA Purifiers in Winter
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Notes: Figure 2a plots the average PM10 during winter (December-March) in 2006-2012 by 1.5 degrees of
latitude north to the Huai River boundary. The vertical line at 0 indicates the location of the river. Each
dot represents cities in 1.5 degrees of latitude and corresponds to the middle point of the range on the x-axis.
For example, the dot at 0.75 on the x-axis represents cities between 0 and 1.5 degrees of latitude north to
the river line. The y-axis indicates the average PM10 level of cities within 1.5 degrees of latitude. Figure 2b
shows the market share of HEPA purifiers in winter by 1.5 degrees of latitude north to the Huai River line.
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Figure 3: The Distribution of Estimated Marginal Willingness to Pay for Clean Air
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Note: The histogram is based on the estimates of the random coefficient logit model in Table 5 and household-
level income from the census.
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Figure 4: Estimated Marginal Willingness to Pay for Clean Air over Household Income
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Note: This figures plots the estimated marginal willingness to pay over household income based on the
estimates of the random coefficient logit model in Table 5 and household-level income from the census.
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Table 1: Summary Statistics

(1) (2) (3) (4)
Whole sample HEPA Non-HEPA Difference

purifiers purifiers in means

Panel A: Air purifier data (product level)

Percentage of HEPA purifiers 0.52
(0.50)

Number of sales 495.96 570.18 415.07 155.11
(1285.791) (1525.62) (956.14) [259.27]

Market share 0.0025 0.0029 0.0021 0.0008
(0.0066) (0.0078) (0.0049) [0.0013]

Price of a purifier (USD) 411.12 464.54 352.56 111.65*
(350.28) (358.89) (331.90) [54.70]

Humidifing 0.134 0.136 0.132 0.004
(0.341) (0.344) (0.340) [0.069]

Room coverage (square meter) 41.87 44.00 38.89 5.11
(22.77) (24.12) (20.50) [4.88]

Distance to factory or port (km) 901.21 898.66 903.99 -5.34
(358.29) (321.28) (395.56) [68.62]

Price of a replacement filter (USD) 45.46 54.72 35.04 19.68*
(48.08) (59.78) (26.43) [9.65]

Replacement frequency (in months) 9.04 10.02 8.02 2.01
(6.05) (6.71) (5.08) [1.47]

Panel B: Pollution data (city level)

PM10 in Winter (ug/m3) 114.85
(24.63)

PM10 in Non-winter (ug/m3) 92.97
(14.93)

Panel C: Demographics data (city level)

Population (1,000) 2497.70
(2719.96)

GDP per capita (USD) 8276.97
(3405.99)

Annual household income in 2005 (USD) 2253.5
(1212.4)

Years of schooling in 2005 8.36
(0.89)

Fraction completed college in 2005 0.036
(0.027)

Notes: The product-level sample has 395 products of 30 brands. 206 products are HEPA purifiers and 189
are Non-HEPA purifiers. In column (1)-(3), standard deviations are reported in parentheses. In column (4),
standard errors clustered at the brand level are reported in brackets. * significant at 10% level; ** significant
at 5% level; *** significant at 1% level.
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Table 2: First Stage Estimation for PM10 and Prices

(a) First Stage Estimation for PM10

PM10

(1) (2) (3) (4)

North 33.36*** 31.81*** 36.75*** 36.58***
(9.43) (9.02) (9.18) (9.29)

Observations 50 50 50 50
R2 0.24 0.24 0.51 0.51

Functional form Linear*North Quadratic Linear*North Quadratic
Demographic controls Y Y

(b) First Stage Estimation for Air Purifier Prices

Price

(1) (2) (3) (4)

Distance (to factory or port) 0.029*** 0.030*** 0.034*** 0.034***
(0.006) (0.006) (0.007) (0.007)

Observations 3,343 3,343 3,343 3,343
R2 0.96 0.96 0.96 0.96

Functional form Linear*North Quadratic Linear*North Quadratic
Product FE Y Y Y Y
City FE Y Y

Notes: In Table 2a, each observation represents a city. In Table 2b, each observation presents a product-
city. City-level demographic controls include population and GDP per capita from City Statistical Yearbook
(2006-2012), and average years of schooling and fraction completed college from the 2005 Census microdata.
In Table 2b, standard errors in parentheses are clustered at the model level. * significant at 10% level; **
significant at 5% level; *** significant at 1% level.
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Table 3: Reduced Form and 2SLS Estimation Results

ln(market share)

(1) (2)

Panel A: Reduced form

North*HEPA 0.717*** 0.640**
(0.268) (0.258)

Price -0.013*** -0.013***
(0.004) (0.004)

WTP 53.344** 47.575**
(24.458) (23.324)

Observations 3,343 3,343
First-Stage F-Stat 22.68 22.72

Panel B: 2SLS

PM10*HEPA 0.022** 0.020**
(0.009) (0.008)

Price -0.014*** -0.014***
(0.004) (0.004)

MWTP 1.587** 1.435**
(0.713) (0.688)

Observations 3,343 3,343
First-Stage F-Stat 11.46 11.54

Functional form Linear*North Quadratic
Product FE Y Y
City FE Y Y

Notes: Each observation represents a product-city. Panel A presents reduced-form estimates, where price
is instrumented with distance to factory/port. Panel B presents 2SLS results, where PM10*HEPA is in-
strumented with North*HEPA and price is instrumented with distance to factory/port. Standard errors
in parentheses are clustered at the model level. * significant at 10% level; ** significant at 5% level; ***
significant at 1% level. Stock-Yogo weak identification test critical value for for one endogenous variable
(10% maximal IV size) is 16.38 and for two endogenous variables (10% maximal IV size) is 7.03.

41



Table 4: Robustness Checks of 2SLS

ln(market share)

(1) 4-degree (2) 5-degree (3) 6-degree (4) 7-degree (5) 8-degree

Panel A: Linear*North

PM10*HEPA 0.016** 0.018** 0.022** 0.028*** 0.032***
(0.008) (0.007) (0.009) (0.011) (0.012)

Price -0.011*** -0.012*** -0.014*** -0.017*** -0.019***
(0.004) (0.004) (0.004) (0.004) (0.005)

MWTP 1.475* 1.544** 1.587** 1.679** 1.670**
(0.869) (0.780) (0.713) (0.707) (0.697)

Observations 2,413 3,046 3,343 3,865 4,057
First-Stage F-Stat 8.45 9.45 11.46 11.79 11.69

Panel B: Quadratic

PM10*HEPA 0.017** 0.017** 0.020** 0.026** 0.030**
(0.008) (0.007) (0.008) (0.010) (0.012)

Price -0.011*** -0.012*** -0.014*** -0.017*** -0.019***
(0.004) (0.004) (0.004) (0.004) (0.005)

MWTP 1.511* 1.460* 1.435** 1.519** 1.539**
(0.858) (0.746) (0.688) (0.683) (0.679)

Observations 2,413 3,046 3,343 3,865 4,057
First-Stage F-Stat 8.39 9.47 11.54 11.89 11.80

Product FE Y Y Y Y Y
City FE Y Y Y Y Y

Notes: Each observation represents a product-city. This table presents 2SLS results, where PM10*HEPA is
instrumented with North*HEPA and price is instrumented with distance to factory/port. Standard errors
in parentheses are clustered at the model level. * significant at 10% level; ** significant at 5% level; ***
significant at 1% level. Stock-Yogo weak identification test critical value for two endogenous variables (10%
maximal IV size): 7.03.
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Table 5: Random-Coefficient Logit Estimation Results

Model 1 Model 2

Standard Interaction Standard Interaction
Mean deviation w. Log Income Mean Deviation w. Log Income

PM10 · HEPA 0.034 0.029 0.082 0.032 0.028 0.087
(0.011) (0.015) (0.029) (0.010) (0.013) (0.030)

Price -0.021 0.015 0.041 -0.021 0.016 0.043
(0.008) (0.009) (0.020) (0.008) (0.009) (0.017)

Mean MWTP 1.619 1.524

Observations 3,343 3,343

Notes: This table shows the results of the random coefficient logit estimation in equation (6). Model 1 uses
a linear control for the latitude interacted with the North dummy variable, and Model 2 uses a quadratic
control for the latitude. Asymptotically robust standard errors are given in parentheses.
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Online Appendices Not For Publication

A Additional Figures

Figure A.1: Huai River Boundary and City Locations

Notes: The line in the middle of the map is the Huai River-Qinling boundary. Each dot represents 1 city.
Each triangle represents a factory location or a port location.
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Figure A.2: Huai River: PM10 in non-winter months (April-November)
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Notes: This figure plots the average PM10 during non-winter months (April-November) in 2006-2012 by 1.5
degrees of latitude north to the Huai River boundary. The vertical line at 0 indicates the location of the
river. Each dot represents cities in 1.5 degrees of latitude and corresponds to the middle point of the range
on the x-axis. For example, the dot at 0.75 on the x-axis represents cities between 0 and 1.5 degrees of
latitude north to the river line. The y-axis indicates the average PM10 level of cities within 1.5 degrees of
latitude.
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Figure A.3: Huai River and Demographics
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Notes: These figures plot the mean of each demographic variable by 1.5 degrees of latitude north to the Huai
River boundary. The vertical line at 0 indicates the location of the river. Each dot represents cities in 1.5
degrees of latitude and corresponds to the middle point of the range on the x-axis. For example, the dot at
0.75 on the x-axis represents cities between 0 and 1.5 degrees of latitude north to the river line. The y-axis
indicates the mean level of each variable in cities within 1.5 degrees of latitude.
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Figure A.4: Fraction of available HEPA purifier products
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Notes: This figure plots the fraction of available HEPA purifier products out of all purifier products by 1.5
degrees of latitude north to the Huai River boundary. The vertical line at 0 indicates the location of the
river. Each dot represents cities in 1.5 degrees of latitude and corresponds to the middle point of the range on
the x-axis. For example, the dot at 0.75 on the x-axis represents cities between 0 and 1.5 degrees of latitude
north to the river line. The y-axis indicates the mean level of each variable in cities within 1.5 degrees of
latitude.
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Figure A.5: API distribution

(a) McCrary density test (75% of sample)
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(b) McCrary density test (25% of sample)
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(c) Original distributions of the 25% sample
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(d) Counterfactual distribution of the 25% sample
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Notes: To investigate potential manipulation in our sample, we perform McCrary density tests (McCrary
2008) on daily API data for each city during 2006–2012. We report the results in the online appendix. In
75% of city-year observations, we find no statistically significant bunching in the density of daily API at
100 in Figure A.5a. There is a statistically significant bunching at 100 in 25% of city-year observations
in Figure A.5b. To examine to what extent the bunching in the 25% of city-year observations changes the
average API, we use the distribution of API in the 75% non-manipulation city-year observations to estimate a
counterfactual distribution for the 25% manipulation subsample. Figure A.5c shows the original distribution
of API in the 25% subsample, where the mean of API is 147.90. Figure A.5d shows the the counterfactual
distributions of API in the same 25% subsample, where the mean of API is 147.95. That is, the potential
manipulation changes the city-level average API for our sample period by negligible amount. This is because
the manipulation occurs only at the margin of 100, and therefore it affects the average API for a long time
period minimally.
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B Additional Tables

Table A.1: Controlling for GDP*HEPA and Schooling*HEPA

ln(market share)

(1) (2)

Panel A: Reduced form

North*HEPA 0.702*** 0.606**
(0.264) (0.251)

Price -0.013*** -0.013***
(0.003) (0.003)

WTP 52.173** 45.012**
(22.932) (21.544)

Observations 3,343 3,343

Panel B: 2SLS

PM10*HEPA 0.026** 0.021**
(0.010) (0.009)

Price -0.014*** -0.014***
(0.004) (0.004)

MWTP 1.835** 1.490**
(0.806) (0.707)

Observations 3,343 3,343
First-Stage F-Stat 11.38 11.48

Functional form Linear*North Quadratic
Product FE Y Y
City FE Y Y
GDP*HEPA and Schooling*HEPA Y Y

Notes: Each observation represents a product-city. Panel A presents reduced-form estimates, where price
is instrumented with distance to factory/port. Panel B presents 2SLS results, where PM10*HEPA is in-
strumented with North*HEPA and price is instrumented with distance to factory/port. Standard errors
in parentheses are clustered at the model level. * significant at 10% level; ** significant at 5% level; ***
significant at 1% level. Stock-Yogo weak identification test critical value for for one endogenous variable
(10% maximal IV size) is 16.38 and for two endogenous variables (10% maximal IV size) is 7.03.
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Table A.2: Robustness Checks of First Stage

PM10

(1) 4-degree (2) 5-degree (3) 6-degree (4) 7-degree (5) 8-degree

Panel A: Linear*North

North 41.22*** 39.49*** 36.75*** 33.80*** 30.24***
(10.50) (9.35) (9.18) (9.13) (8.69)

Observations 38 45 50 54 59
R2 0.59 0.53 0.51 0.49 0.47

Panel B: Quadratic

North 41.94*** 39.84*** 36.58*** 33.29*** 29.33***
(10.85) (9.61) (9.29) (9.01) (8.49)

Observations 38 45 50 54 59
R2 0.59 0.53 0.51 0.49 0.47

Demographic controls Y Y Y Y Y

Notes: Each observation represents a city. City-level demographic controls include population and GDP per
capita from City Statistical Yearbook (2006-2012), and average years of schooling and fraction completed
college from the 2005 Census microdata. * significant at 10% level; ** significant at 5% level; *** significant
at 1% level.
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Table A.3: Robustness Checks of Reduced-form

ln(market share)

(1) 4-degree (2) 5-degree (3) 6-degree (4) 7-degree (5) 8-degree

Panel A: Linear*North

North*HEPA 0.683** 0.748** 0.717*** 0.760*** 0.768***
(0.332) (0.303) (0.268) (0.267) (0.267)

Price -0.011*** -0.011*** -0.013*** -0.016*** -0.018***
(0.003) (0.003) (0.004) (0.004) (0.004)

WTP 64.796* 67.069* 53.344** 47.356** 42.185**
(39.190) (34.705) (24.458) (20.289) (17.842)

Observations 2,413 3,046 3,343 3,865 4,057
First-Stage F-Stat 16.57 18.66 22.68 23.35 23.20

Panel B: Quadratic

North*HEPA 0.659** 0.693** 0.640** 0.681*** 0.697***
(0.309) (0.287) (0.258) (0.257) (0.257)

Price -0.011*** -0.011*** -0.013*** -0.016*** -0.018***
(0.003) (0.003) (0.004) (0.004) (0.004)

WTP 62.778* 62.224* 47.575** 42.402** 38.221**
(36.595) (32.583) (23.324) (19.448) (17.150)

Observations 2,413 3,046 3,343 3,865 4,057
First-Stage F-Stat 16.57 18.73 22.72 23.33 23.14

Product FE Y Y Y Y Y
City FE Y Y Y Y Y

Notes: Each observation represents a product-city. This table presents reduced-form estimates, where price
is instrumented with distance to factory/port. Standard errors in parentheses are clustered at the model
level. * significant at 10% level; ** significant at 5% level; *** significant at 1% level. Stock-Yogo weak
identification test critical value for one endogenous variable (10% maximal IV size): 16.38.
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Table A.4: 2SLS: Standard Errors Clustered at the City Level

ln(market share)

(1) 4-degree (2) 5-degree (3) 6-degree (4) 7-degree (5) 8-degree

Panel A: Linear*North

PM10*HEPA 0.016*** 0.018*** 0.022** 0.028* 0.032*
(0.006) (0.007) (0.010) (0.015) (0.019)

Price -0.011*** -0.012*** -0.014*** -0.017*** -0.019***
(0.004) (0.004) (0.003) (0.004) (0.004)

MWTP 1.475* 1.544** 1.587** 1.679* 1.670*
(0.692) (0.631) (0.715) (0.858) (0.930)

Observations 2,413 3,046 3,343 3,865 4,057
First-Stage F-Stat 13.90 13.56 15.22 12.75 9.91

Panel B: Quadratic

PM10*HEPA 0.017** 0.017*** 0.020** 0.026* 0.030*
(0.007) (0.006) (0.009) (0.013) (0.017)

Price -0.011*** -0.012*** -0.014*** -0.017*** -0.019***
(0.004) (0.004) (0.003) (0.004) (0.004)

MWTP 1.511** 1.460** 1.435** 1.519** 1.539*
(0.717) (0.604) (0.660) (0.771) (0.842)

Observations 2,413 3,046 3,343 3,865 4,057
First-Stage F-Stat 13.91 13.59 15.34 12.89 10.03

Product FE Y Y Y Y Y
City FE Y Y Y Y Y

Notes: Each observation represents a product-city. This table presents 2SLS results, where PM10*HEPA is
instrumented with North*HEPA and price is instrumented with distance to factory/port. Standard errors in
parentheses are clustered at the city level. * significant at 10% level; ** significant at 5% level; *** significant
at 1% level. Stock-Yogo weak identification test critical value for two endogenous variables (10% maximal
IV size): 7.03.
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Table A.5: 2SLS in non-winter months (April-November)

ln(market share)

(1) 4-degree (2) 5-degree (3) 6-degree (4) 7-degree (5) 8-degree

Panel A: Linear*North

PM10*HEPA 0.016∗ 0.015∗ 0.012 0.015 0.018
(0.009) (0.008) (0.009) (0.011) (0.013)

Price -0.017∗∗∗ -0.019∗∗∗ -0.020∗∗∗ -0.024∗∗∗ -0.027∗∗∗

(0.006) (0.006) (0.005) (0.006) (0.006)

MWTP 0.949 0.787 0.588 0.623 0.672
(0.589) (0.497) (0.481) (0.493) (0.500)

Observations 2,803 3,489 3,851 4,402 4,627
First-Stage F-Stat 8.45 9.29 11.28 11.07 10.81

Panel B: Quadratic

PM10*HEPA 0.014 0.012 0.010 0.013 0.016
(0.009) (0.008) (0.009) (0.011) (0.013)

Price -0.017∗∗∗ -0.018∗∗∗ -0.020∗∗∗ -0.024∗∗∗ -0.027∗∗∗

(0.006) (0.005) (0.005) (0.006) (0.006)

MWTP 0.844 0.678 0.490 0.532 0.590
(0.590) (0.489) (0.478) (0.488) (0.498)

Observations 2,803 3,489 3,851 4,402 4,627
First-Stage F-Stat 8.58 9.38 11.36 11.13 10.87

Product FE Y Y Y Y Y
City FE Y Y Y Y Y

Notes: Each observation represents a product-city. This table presents 2SLS results, where PM10*HEPA is
instrumented with North*HEPA and price is instrumented with distance to factory/port. Standard errors in
parentheses are clustered at the city level. * significant at 10% level; ** significant at 5% level; *** significant
at 1% level. Stock-Yogo weak identification test critical value for two endogenous variables (10% maximal
IV size): 7.03.
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