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Abstract

This paper considers the effect of uncertainty on the comparative advantage of price-based
regulation over intertemporally tradable quantity regulation when policies are updated. In
particular, we examine the case where uncertainty about costs and benefits unfolds over time,
and an information asymmetry implies that information known to the firm in one period does
not influence government policy until the next period. Under this setup quantity regulation
can achieve the first-best outcome and is always preferred to a price instrument when the
government sets both policies to maximize expected net benefits. With quantity trading over
time, the firm’s intertemporal optimization implies current prices equal discounted expected
future prices. This allows the government to circumvent the information asymmetry through
policy updates that influence future expected prices and, in turn, current prices. No such
opportunity exists with price regulation. We also consider the possibility that policy updates
are driven in part by political “noise” rather than true values of costs and benefits. Here,
we find that price regulation will be preferred if the variance of shocks in the political noise
process exceeds the variance of the true shocks to marginal costs and benefits. Applied
to climate change or other applications where marginal benefits are flat, this condition for
preferring price regulation simplifies to whether noise shocks have higher variance than benefit
shocks, and cost uncertainty does not matter. All of these results sharply contrast with the
Weitzman (1974) results that the relative slopes of marginal costs and benefits determine the
comparative advantage of prices versus quantities and that benefit uncertainty by itself does
not matter.

1 Introduction

For more than forty years, economic thinking about the relative welfare advantage of alternative
price and quantity regulation under uncertainty has gone something like this: When the regulator
is uncertain about costs known to firms, the difference in expected net benefits between otherwise
equivalent price and quantity policies hinges on the difference between the slopes of the marginal
benefit and cost schedules, multiplied by the variance of the cost shock (Weitzman 1974). One
intuition is that government policy is attempting to replicate society’s expected marginal benefits
in the form of a demand schedule in the regulated market. A flat schedule (prices) works better
when marginal benefits are relatively flat (e.g., Pizer 2003); a vertical schedule (quantities) works
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better when marginal benefits are relatively steep. A corollary to the Weitzman result is that
uncertainty about marginal benefits (unless correlated with costs) does not affect comparative
advantage of the two instruments (Stavins 1996).

As we show in this paper, however, the results change significantly in a dynamic setting when
policies are updated and quantity regulation is intertemporally tradable. In contrast to the Weitz-
man result, in such a setting we find that quantity regulation is preferred regardless of the relative
slopes and that uncertainty about benefits matters for the magnitude of the preference. In re-
sponse to any new information about costs and benefits, there is now an expectation that future
policies will be updated to reflect this information. The important difference between price and
quantity regulation is no longer which instrument better mimics the marginal benefit schedule, but
which instrument better allows future price expectations to influence current prices. This strongly
favors intertemporally tradable quantity regulation. That is, with newfound expectations of a high
future price for a tradable pollution permit, current tradable permits that can be saved for future
use will have a high price now. The same is not true with newfound expectations of a high future
pollution tax; there is no simply way to arbitrage current and future obligations. Current and
expected future prices under a tax will diverge.

Figure 1: History of SO2 allowance spot market prices as 2010 updates were developed

In Figure 1, we see exactly this kind of behavior in the SO2 trading program from 2004 until
2006. During that time, future reforms to the program — a policy update in the form of the Clean
Air Interstate Rule or CAIR — were being debated. This new rule would have updated the existing
policy to reflect newer evidence of improved health benefits from lower emission levels and higher
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marginal benefits. While none of the changes to the program would have come into effect prior to
2010, the current (spot) price moved in parallel to shifting expectations of future price because of
the ability to save or “bank” current permits for future use. Higher net benefits are achieved almost
immediately as current prices adjust to reflect the improved marginal benefit estimates that will
be implemented in the future. Had an SO2 tax been in place, however, an expectation of higher
tax in 2010 would not have influenced the current tax. This creates a seemingly unambiguous
preference for quantity regulation.

Starting in 2006, however, the price fell as the EPA reconsidered the proposed rules and later
court challenges succeeded in vacating the regulation. These developments call into question
whether policy updates to a particular regulation are always driven by aggregate welfare maxi-
mization. With this in mind, our paper considers the possibility that the regulator’s objective
deviates from the true marginal benefits by some amount. This could reflect special interest pol-
itics, as environmental advocates or business interests hold too much sway over the government,
or legal or other constraints, as arguably occurred here. When such welfare deviations arise, price
regulation can again be preferred if these deviations — what we might call uncertain political
“noise” — are expected to be sufficiently large.

The SO2 program is far from unique in terms of intertemporal trading and policy updating.
The linkage over time of markets for regulated quantities through permit banking is consistent
with virtually all existing tradable permit programs.1 Meanwhile, most real-world environmental
regulations are updated over time in response to new information. The 1970 Clean Air Act
makes specific provisions for the National Ambient Air Quality Standards to be updated every
5 years in response to new information (see 42 U.S. Code §7409). More recently, the European
Union announced a package of changes in their Emissions Trading Scheme, in large part owing to
low prices and (presumably) low compliance costs.2 California is similarly contemplating revised
targets for the next phases of their program, hopefully based on improved information.3 At the
U.S. federal level, in 2010 an interagency working group estimated the social cost of carbon (SCC)4

to be $24 per metric ton in 2010. That number was revised upward to $37 based on new modeling
estimates of damages in 2013.5

There is a similar list of policy updates where one might question whether aggregate welfare
maximization is the main goal. These include New Jersey’s decision to exit the Regional Green-
house Gas Initiative (RGGI) in May 2011, Australia’s decision to terminate their carbon pricing
program in July 2014, and the U.S. Supreme Court decision to stay implementation of the Clean
Power Plan in February 2016.

In the remainder of the paper, we first review the basic Weitzman result and other relevant
literature. We then show how the Weitzman result changes if we allow policy updates. To illustrate
our main result, we first present a simple two-period model with a common shock across both
periods and no discounting. We then show how the model generalizes to multiple periods with
AR(1) error processes and discounting. Next, we introduce the possibility that updates might be
influenced by a stochastic process other than new information about costs and benefits, such as

1This includes lead phase-down program in the 1980s, the acid rain program in the 1990s and 2000s, the
European Emissions Trading Scheme, California’s cap-and-trade program, among others. Most programs allow
limited borrowing.

2See http://ec.europa.eu/clima/policies/2030/index_en.htm.
3See http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm.
4The SCC represents the marginal benefit of reducing CO2 emissions by one metric ton.
5Both figures are estimated for emissions reductions occurring in 2015 and presented in 2007 dollars. See

Interagency Working Group on Social Cost of Carbon (2010) and (2013) for details.
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shifting special interests or evolving legal or other constraints. Finally, we apply our model to
the case of global climate change, estimating that intertemporally tradable quantities provide an
expected welfare gain over price regulation of $175 million in one year absent any political noise.
If policies remain fixed for five years, the expected welfare gain would be more than $2 billion.

2 The Weitzman Result and Subsequent Work

In his seminal 1974 article, Martin Weitzman explored the difference between price and quantity
regulation in a simple linear model. Assuming costs and benefits given by

C(q, θ) = c0 + (c1 + θ)(q − q̂) + c2
2

(q − q̂)2 (1)

B(q, η) = b0 + (b1 + η)(q − q̂)− b2
2

(q − q̂)2, (2)

linear marginal costs and benefits can be written as

MC(q, θ) = c1 + θ + c2(q − q̂) (3)

MB(q, η) = b1 + η − b2(q − q̂). (4)

He then derives his main result. Namely, the welfare advantage of prices over quantities is

∆ =
σ2
θ

2c22
(c2 − b2). (5)

Here, θ represents cost uncertainty while benefit uncertainty is captured in a similar way by
η. The parameters c1 and c2 describe expected marginal costs and the slope of marginal costs
at a point q̂, and similarly so for b1 and b2 with regard to marginal benefits. Generally, c2 > 0
and b2 > 0, reflecting upward-sloping marginal costs and downward-sloping marginal benefits.
Marginal costs and benefits themselves can be positive or negative, depending on whether q is
a bad or a good (e.g., c1 ≶ 0 and b1 ≶ 0). In his framework, the linear model is viewed as an
approximation to more general functions about the point q̂ where marginal costs equal marginal
benefits on average. That is, he (and we) assume MC(q̂, 0) = MB(q̂, 0) and c1 = b1. While this
assumption is not required to derive (5), the optimal government policies simplify to q = q̂ for
quantities and p = c1 for prices.

His appealingly simple result (5) shows that direction of the welfare advantage ∆ depends only
on the relative slopes of marginal costs and marginal benefits, c2 and b2. We previously mentioned
the intuition that a price policy, filling in the otherwise absent market demand role, better matches
the marginal benefit schedule when it is relatively flat (and vice-versa for quantity policies when
the marginal benefit schedule is relatively steep). Another intuition is that price regulation offers
welfare savings because such a policy does more when costs are low and less when costs are high.
To the extent costs are convex (large c2), this improves welfare. At the same time, a price policy
introduces variability into q, which is fixed under quantity regulation. To the extent benefits
are concave (large b2), variable q reduces welfare. The net effect depends on the sign of c2 − b2.
Put simply, if marginal benefits are relatively steep compared to marginal costs, then getting the
quantity “right” is important in welfare terms, implying that quantity instruments are expected
to perform better. Otherwise, price instruments are to be preferred.

The magnitude of both the expected cost saving and benefit loss depends on variability in
costs — here, the variation in θ. Benefit uncertainty — variability in η — does not appear in the
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expression. Benefit uncertainty does lower expected welfare, but it does so equally for price and
quantity regulation.

Weitzman’s findings have been extended to many other contexts in the literature. This includes
alternative forms of uncertainty (Fishelson, 1976; Yohe, 1978; Stranlund and Ben-Haim, 2008) and
non-linear marginal costs and benefits (Yohe, 1978; Kelly, 2005). In all of these cases, the basic
result generally remains that flatter marginal benefits favor prices and steeper marginal benefits
favor quantities. Other work has considered the correlation between marginal cost and benefit
uncertainty (Yohe 1978; Stavins, 1996). Such correlation can overwhelm the basic Weitzman
intuition in theory, but it has never been demonstrated to be relevant in practice. Yet other
work has examined whether the choice of price or quantity controls affect other outcomes (e.g.,
investment in Chao and Wilson, 1993, and Zhao, 2003), but none of this latter work speaks to the
normative question of welfare impacts.

Most relevant for our paper are extensions to Weitzman that look at uncertainty and instrument
choice in a dynamic policy context. Newell and Pizer (2003), Hoel and Karp (2002), and Fell,
MacKenzie, and Pizer (2012), all extend the original Weitzman framework to multiple periods
where benefits can depend on the accumulated level of the pollutant, rather than the annual
flow. Like earlier work, they find broadly similar results: flatter marginal benefits and steeper
marginal costs favor prices, and vice-versa for quantity regulation. Importantly, none of these
papers consider the possibility that policies might be updated. They both fix the policy trajectory
once and for all in the initial period.

Kaplow and Shavell (2002) consider non-linear price policies under which the optimal price
is simply set as the marginal benefit schedule. Implicit in that study is the idea that prices or
quotas can be updated (or automatically adjust) in real time based on realizations of cost and
benefit uncertainty, something that we have not yet seen in practice. They do not consider the
implications of intertemporally tradable quantities.

Newell, Pizer, and Zhang (2005) are entirely focused on policy updating, but only in the limited
sense of whether a quantity policy could respond to cost shocks in order to to mimic a price policy
over time. The idea of benefit uncertainty and that policy updating might be focused on new
information about benefits is absent.

In an unrelated paper focused on the idea of an allowance reserve, Murray, Newell, and Pizer
(2009) argue that emissions trading with an allowance reserve could provide a higher level of
cost-effectiveness than either emission taxes or emissions trading alone. Part of their argument is
related to our idea that emissions trading has an advantage when policies are updated in response
to meaningful new information. However, they abstract from the notion of welfare and benefits,
and they instead assume there is a cumulative emission goal that is updated in the future and only
seek to minimize costs.

This paper can be viewed as extending and clarifying the notion in Newell, Pizer, and Zhang
(2005) and Murray, Newell, and Pizer (2009) that updating seems to provide some sort of advantage
for quantity controls. In contrast to both of these papers, benefits and benefit uncertainty is
explicitly considered. This allows us to show that quantity controls are, in fact, unambiguously
preferred with truthful updating in response to learning about uncertainty. This then raises the
question of whether policy updating is, in fact, based on true information or political “noise.”
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3 Policy Updating

We now expand the earlier Weitzman model to two periods with the same, but uncertain, costs and
benefits in both periods. We consider the possibility that policies are updated between periods.
That is, we imagine a regulator who sets a policy for an initial period prior to learning about
costs and benefit uncertainty, θ and η in (1) and (2). As in the original Weitzman model, we
assume an information asymmetry whereby the regulated firm learns about θ and η before taking
action. In our two-period model, the government learns about θ and η alongside the firm, but is
unable to act quickly enough to change the first-period policy directly. The government is able
to change second-period policy and does so according to a pre-announced rule. Meanwhile, the
firm can deduce the government’s second-period policy before taking action in the first period,
through knowledge of θ and η and the government’s updating rule.6 The information structure
and decisions over time are pictured in Figure 2.

Figure 2: Timeline of events with updating

In addition to the assumed information structure and decision sequence, we make the further
assumption that the quantity instrument can be traded between the two periods. As we have
noted, this is consistent with virtually all observed tradable permit systems that allow current
period permits to banked for use in the future and many that allow some volume of future period
permits to be used early or borrowed.

We now characterize firm behavior, the government’s welfare-maximizing price and quantity
policies, and the relative advantage of prices versus quantities, for both fixed and updated policies.

3.1 Firm behavior

In the traditional Weitzman framework, firm behavior under a generic quantity policy q̃ was to
trivially set q = q̃. Here, it is not so simple in the first period as the firm has the option to use the
assigned quantities q̃1 or to deviate, creating a “bank” B = q̃1 − q1.7 This bank can be in surplus

6In this case, we are assuming the government is a Stackelberg leader and the firm does not attempt to strate-
gically influence the government’s second-period behavior. This is consistent with the idea of the regulated “firm”
representing an aggregation of multiple firms in a competitive market.

7Here, we adopt the convention that q is a “bad,” and therefore a positive value for B defined this way is helpful
in the second period. Were q assumed to be a good, we could instead define B = q1− q̃1 in order for positive values
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or deficit B ≷ 0 to be made up in the second period. For that reason, we work backwards: In the
second period, there is no option except q2 = q̃2 + B. Then, in the first period we can write the
firm’s problem as:

min
B
C(q̃1 −B, θ) + C(q̃2 +B, θ).

We ignore discounting for the moment. We also take advantage of the fact that there is no
uncertainty from the perspective of the firm. It knows the cost and benefit shocks before it makes
any decisions, and it can deduce the government’s optimal second-period policy based on θ and
η. This leads to an arbitrage condition for the firm: MC(q1, θ) = MC(q2, θ). That is, equalize
marginal costs across periods. Given the same cost function in both periods, we have a simple
solution:

q1 = q2 =
q̃1 + q̃2

2
. (6)

This is true regardless of what kind of quantity policy (fixed or updating) is used to define q̃2.
Firm behavior under a price policy is the same as derived by Weitzman. Facing prices p̃t in

either period for output qt, firms will choose qt to maximize profits. That is,

max
qt

p̃tqt − C(qt, θ).

This leads to a simple rule for the firm: MC(qt, θ) = p̃t. That is, set marginal costs each period to
the regulated price (noting marginal costs will be negative for a “bad”). This yields Weitzman’s
response function,

h(p̃t, θ) = q̂ +
p̃t − c1 − θ

c2
.

3.2 Optimal Price and Quantity Policies

For comparison, we first consider what happens when the government chooses its policies to max-
imize expected net benefits over both periods without knowing the values of η and θ. Absent
updating, this replicates the traditional Weitzman result over two periods, which we denote with
superscript W . In the case of quantities, it is clear from equation (6) that — with our assumption
of banking / borrowing between periods — only the total quantity volume q̃ = q̃1 + q̃2 matters as
a policy choice variable. Following the Weitzman approach that costs and benefits are approxi-
mated around q̂ where b1 = c1, it is trivial to show that expected net benefits are maximized when
q̃W = 2q̂. The allocation between periods does not matter.

In the case of prices, the symmetry of the problem leads to the original Weitzman solution
p̃Wt = c1 = b1, resulting in equilibrium quantities of q̂ − θ

c2
in each period.

With updating, the government has the ability to pick q̃2 and p̃2 after observing θ and η. In
the case of prices, this is relatively straightforward because there is no behavioral link between
periods and the government faces two distinct optimizations. In period one, p̃U1 = c1 as before,
where superscript U indicates the government’s welfare maximizing solution to the updating policy
problem. In period two, we have a first-order condition for the optimal updating policy p̃U2 :(

MB
(
h(p̃U2 , θ

)
, η)−MC

(
h(p̃U2 , θ

)
, θ)
)
hp(p̃

U
2 , θ) = 0.

Substituting and rearranging, we have

c2(θ − η) + (b2 + c2)(p̃
U
2 − c1 − θ) = 0,

for B to imply greater flexibility in period 2.
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or

p̃U2 = c1 +
b2θ + c2η

b2 + c2
.

This is the expression for the optimal, updated price in the second period. Note that in the second
period, the regulator is able to achieve the first-best outcome as there is no longer an information
asymmetry.

Optimal quantities are also straightforward. Let q̃ = q̃1 + q̃2. From the previous discussion, we
know that the firm chooses q1 = q2 = q̃/2. This is true regardless of how the government divides
q̃ between periods one and two. Therefore, the government’s problem amounts to figuring out the
cumulative, two-period quantity policy q̃U to maximize net benefits:

max
q̃

[2B(q̃/2, η)− 2C(q̃/2, θ)] ,

where we let q̃U be this optimized policy. Note that by determining the cumulative quantity target
in the second period, once it observes the uncertain outcomes, the government circumvents the
information asymmetry!

Working through the first-order condition

2(b1 + η − b2(q̃U/2− q̂)− c1 − θ − c2(q̃U/2− q̂)) = 0,

or, rearranging,

q̃U/2 = q̂ +
η − θ
b2 + c2

.

Without loss of generality, we can set q̃U1 = q̂ and q̃U2 = q̂+2 η−θ
b2+c2

as the optimal, updated quantity
policy. Moreover, this is achieves the first-best outcome in both periods (in contrast to the price
policy, which only achieves the first-best outcome in the second period). That is, knowing the firm
will equalize marginal costs and divide the cumulative allocation across both periods, the regulator
adjusts the quantity policy in the second period to accommodate the first-best outcome in both
periods.

3.3 Comparative advantage

Without updating, the comparative advantage of prices versus quantities, ∆W , is simply the Weitz-
man result over two periods, or

∆W = 2∆ =
σ2
θ

c22
(c2 − b2).

With updating, both policies achieve the first-best outcome in the second period. The comparative
advantage stems from differences in the first-period outcome, namely the loss associated with the
standard price instrument,

∆U = E
[(
B(h(p̃U1 , θ), η)− C(h(p̃U1 , θ), θ)

)
−
(
B(q̃U/2, η)− C(q̃U/2, θ)

)]
=
−(σ2

η + (b2/c2)
2σ2

θ)

2(b2 + c2)
. (7)

We provide an algebraic proof of (7) in the appendix, but a simple graphical proof is as follows.
In the first period, the updating price policy is simply the standard price policy, p̃U1 = c1 and leads
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Figure 3: Illustration of deadweight loss from price policy

to the outcome at point b in Figure 3. Meanwhile the updating quantity policy obtains the first
best q = q̃U/2 = q̂ + η−θ

b2+c2
at point c.

We can see from the figure that the price policy leads to the shaded deadweight loss, DWL.
This is a triangle where the “height” in the quantity dimension is θ

c2
+ η−θ

b2+c2
= η+(b2/c2)θ

b2+c2
. The

“base” along the price dimension equals the height times b2 + c2. The area is then one-half base

times height, or (η+(b2/c2)θ)2

2(b2+c2)
. Taking expectations of this area yields the expressed loss in (7)

3.4 Discussion

It is clear that the price policy is never preferred with updating. The quantity policy is first best in
both periods while the price policy is generally only first best in the second period. In the special
case where marginal benefits are flat (b2 = 0) and there is no benefit uncertainty (σ2

η = 0), the
relative advantage is zero. In such a case, prices achieve the first best. But otherwise, quantities
with updating is superior to prices. Quantities always achieves the first-best outcome and the
welfare loss from price policies depends on both cost and benefit uncertainty.

This is quite different from the Weitzman result, without updating, where the difference between
the marginal benefit and cost slopes determines an otherwise ambiguous preference between price
and quantity controls. Moreover, both price and quantity controls are second best in the Weitzman
framework due to the information asymmetry faced by the government. Benefit uncertainty does
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not appear in the comparative advantage expression (5) because it equally affects the expected
welfare loss from both prices and quantities.

Three assumptions underpin these different results vis-a-vis Weitzman. First, we need to
assume the quantity policy gives the firm the flexibility to arbitrage its regulatory obligation
between periods while the price policy does not. For example, through intertemporal trading of
a quantity control, overcompliance in one period creates a permit bank and reduces the obligated
action in the subsequent period. While the price policy does allow the firm to vary its quantity
choice, doing more in one period does not change the incentives or obligations in the other. Second,
we need an information and decision structure that has the regulator setting policy in two periods,
with new information revealed about first-period costs and benefits (a) after the first-period policy
is fixed but (b) before the firm chooses its first-period action and the regulator sets second-period
policy. Finally, we assume that (uncertain) costs and benefits are the same in both periods and
there is no discounting, so the firm seeks to exactly equalize marginal costs and this is also the
first-best optimum. How reasonable are these assumptions?

The first assumption is generally consistent with observed policies. That is, most quantity-
based policies allow intertemporal flexibility. Even where there are restrictions, these restrictions
are typically not binding. For example, most programs have some limits on borrowing — yet in
virtually all of these programs large banks exist so the borrowing limit is non-binding.

The second assumption is the standard information asymmetry assumed in the traditional
Weitzman framework — firms are able to act on better information than the government. Some-
times, this is framed as the idea that government simply does not have the same quality of infor-
mation, particularly cost information, as the firm. A more relevant reason for this assumption is
that policies are typically established well before compliance obligations begin. This gives firms a
certain amount of lead time to plan their compliance — but also means government policies are
always based on lagged information relative to what is available when policies are binding.

Either way, new information is available to the firm by the time compliance is required. The
information is either simultaneously or subsequently revealed to the government and the firm can
anticipate the government will eventually update the regulation in response to this information. As
we noted in the introduction, such policy updating is a common phenomena and to be expected.
It is less clear whether updating is always optimal in practice, which is a question that we consider
in the next section.

The third assumption implies that the first-best price is the same in both periods. With
non-zero discounting and additional uncertain shocks in the future, the firm will instead equate
marginal cost today with expected discounted marginal cost in the future. However, it is relatively
straightforward to extend the simple two-period model to a more general multi-period model. If
we allow the government to specify trading ratios as they periodically update policies in the future,
our main result continues to hold as we now demonstrate.

4 Extensions

The preceding discussion focused on expanding the Weitzman model to two periods with policy
updating and intertemporally tradable quantities, and then showing how his original result regard-
ing the relative advantage of prices over quantities changes. Namely, the relative advantage is no
longer ambiguous; quantity regulation is always preferred.

In this section we extend the model further. We first consider multiple periods with discounting
where uncertainty follows an arbitrary AR(1) process. Government policy is based on an announced
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rule for setting policy in each period t that uses period t − 1 information. Meanwhile, firms are
able to use period t information when they choose there action in period t. This maintains the
information asymmetry assumed in the previous section. We then consider the possibility that
policy updating is not set to maximize net benefits but is distorted by some amount of political
noise, such as special interests or uncertain legal or other constraints.

Under the assumption that the regulator can also set trading ratios between periods in addition
to setting allocations, the first extension does not change our main result: Quantity regulation still
achieves the first-best outcome and is always preferred on the basis of expected net benefits. Adding
noise that has a constant variance each period does not change the unambiguous preference for
quantity controls, but it is no longer first best. If noise variance is increasing, however, and the
increase is greater than the error associated with price regulation, price regulation will instead be
preferred.

4.1 Multiple periods

In order to extend the model to multiple periods, we assume that η and θ now follow an AR(1)
process up to some final period T rather than taking on a single, permanent value across two
periods. That is,

ηt = ρηηt−1 + µt

θt = ρθθt−1 + νt.

Here we assume µt and νt are i.i.d. random errors. We modify our intertemporal trading to allow
for a non-uniform trading ratios over time. That is,

Bt = R̃tBt−1 + q̃t − qt,

where Bt is the bank at the end of period t, q̃t is the allocation in period t, and the trading ratio
R̃t converts a one unit deficit or surplus of period t−1 quantities into those available period t. We
assume the problem ends in period T with µT = νT = BT = 0 (after which there is no uncertainty
and no need for banking). We show in the appendix that, if the government follows the allocation
rule

q̃t = q̂ +
ρηηt−1 − ρθθt−1

b2 + c2
+ R̃t

µt−1 − νt−1

b2 + c2
,

and sets the trading ratio R̃t according to the rule

R̃t =
p∗t−1

βE[p∗t |t− 1]
,

then the first-best outcome q∗t = q̂ + ηt−θt
b2+c2

continues to be achieved each period, based on the
assumption that the firm chooses to maximize profit each period. Here, β is the discount rate used
by the firm and (as before) p∗t = c1 + b2θt+c2ηt

b2+c2
is the first-best price outcome. Note that both q̃t

and R̃t only depend on t− 1 information, and therefore meet the information asymmetry that we
assume.

The idea of trading ratios is not as theoretical as it might seem. Such an approach has been
proposed, though to our knowledge never implemented, several times. For example, the American
Clean Energy and Security Act in the 111th Congress (H.R. 2454, a.k.a. the “Waxman-Markey
Bill”) proposed to exchange allowances in existing state programs for new federal allowances at
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a ratio that preserved the original value of the state allowances when they were first issued.8

Similarly, the Clean Air Interstate Rule increased the stringency of the original Acid Rain Trading
Program by effectively applying a trading ratio of 0.5 from 2009 to 2010 and 1/1.43 from 2014 to
2015.9

Given that the quantity policy continues to deliver the first-best outcome, the comparative
advantage of prices each period is the welfare loss from prices that are set with lagged information:

∆U =
−(σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)
. (8)

Expression (8) closely resembles expression (7), with the variances of η and θ replaced with those
of the innovation terms µt and νt. That is, the error in the price policy each period is determined
by the innovation terms µt and νt rather than ηt and θt. A short proof is provided in the appendix.

Note that we can rewrite the allocation rule as q̃t = E[q∗t |t− 1] + R̃t(q
∗
t−1−E[q∗t−1|t− 2]). That

is, the allocation in period t equals the expected first-best quantity level for period t as viewed
in period t − 1, plus a “top up” that offsets the (now observed) error in the earlier period t − 1
allocation. It should not be too surprising that the simple two-period model can be extended
to multiple periods. This follows the underlying intuition in Newell, Pizer, and Zhang (2005),
where the government constantly updates a quantity policy to mimic a price policy. In both cases,
firms anticipate the correction and, thanks to the arbitrage condition, choose the current quantity
accordingly.

4.2 Policy Updating with Noise

While expectations of improved cost-benefit information in future policy decisions can improve
current-period regulatory outcomes under intertemporally tradable quantity controls, what if we
expect something other than aggregate costs and benefits to influence future policy? It is easy to
imagine policy decisions being driven in part by special interests and more narrowly defined benefits
rather than aggregate, societal costs and benefits. If we expect such changes to an intertemporally
tradable quantity target in the future, we should be worried that these changes will be transmitted
back to the present.

In particular, suppose that the government acts as if marginal benefits in (3) are subject to
an additive disturbance ε reflecting uncertain special-interest political pressure rather than true
information about societal benefits. One could also interpret this term as the Lagrangian multiplier
on uncertain legal, political, or other constraints that bound the policy choice. The government
now makes use of a “noisy” marginal benefit function given by

MBnoisy(qt, ηt, εt) = MB(qt, ηt) + εt = b1 + ηt − b2(q − q̂t) + εt (9)

that it wishes to equate with marginal costs in order to set policy. The function MB without
any subscript continues to refer to true, societal marginal benefits, while MBnoisy is the divergent,
special-interest or constrained version of marginal benefits used to make policy. We assume the
noise is not static, and instead εt follows a random walk εt = εt−1 + ωt.

In adding this notion of political noise, we make the same asymmetric information assumption
about noise as we do about the true shocks to costs and benefits. Namely, the firm has more
up-to-date information about political noise when the firm acts in period t than is reflected in the

8See Title VII, Subtitle B, Section 790.
9See 70 Fed. Reg. 91 (May 12, 2005), page 25291.
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period t policy that was set some time before. Moreover, this new period t information is used o
update policies that come into effect in period t + 1. More specifically, the firm chooses qt with
knowledge of θt, ηt, and now εt, while the government policy p̃t (under a price policy) or q̃t and R̃t

(under a quantity policy) is set when only θt−1 and ηt−1 are known, and when εt−1 describes the
effect of political noise. Looking ahead, an updated policy will take effect in period t+ 1 based on
period t information. This process repeats until an arbitrary terminal period T .

Returning for a moment to our SO2 trading program example, firms were well aware of evolv-
ing information, political forces, and legal opinions that were shaping the regulatory environment
for 2010 and beyond. This awareness influenced pollution behavior and permit prices beginning
as early as 2004. From 2004 to 2006, these were arguably driven by better information about
welfare-improving, societal marginal benefits reflected in the initially proposed CAIR, which sug-
gested such benefits were well in excess of $1600 per ton (U.S. EPA 2005). During 2006-2009, the
influences were arguably non-welfare-improving political forces and legal decisions, as the market
price diverged from marginal benefits. In our model terminology, consider the period 2004-2009
(and earlier years going back to 1995) as an elongated period t. This policy was established under
the 1990 Clean Air Act Amendments, which we would call period t− 1. During 2004-2009, firms
expected the policy to be updated based on this period t information for 2010 and beyond, which
we would call period t+ 1.

Solving for the optimal price policy is relatively straightforward because the choices each period
are not linked by the firm. Choosing p̃t such that E[MBnoisy(h(p̃t, θt), ηt, εt−1)−MC(h(p̃t, θt), θt)|t−
1] = 0, we have the government’s “optimal” price policy when period t− 1 information is available
and period t policy is being set. Note that in setting period t policy when available information
and political noise are given by t− 1 indexed variables (e.g., we are actually in period t− 1 when t
policy is set), the government is seeking to take expectations of θt and ηt but not εt. The value εt−1

enters directly as the government’s current period t−1 special interests or current legal constraints
are what matter for setting policy. As shown in the appendix, this leads to

p̃t = E[p∗t |t− 1] + (c2/(b2 + c2))εt−1.

The expressions p∗t and q∗t continue to represent the first-best outcome in terms of true aggregate
net benefits, but the government’s objective now deviates from the goal of maximizing expected,
aggregate net benefits. Turning to optimal quantity policies, we show in the appendix that choosing

q̃t = E[q∗t |t− 1] + (εt−1/(b2 + c2)) + R̃t

(
q∗t−1 − E[q∗t−1|t− 2] +

εt−1 − εt−2

b2 + c2

)
and

R̃t =
p∗t−1 + (c2/(b2 + c2))εt−1

β(E[p∗t |t− 1] + (c2/(b2 + c2))εt−1)

as the quantity policy yields qt = q∗t + εt
b2+c2

each period. More precisely, the government acting
in period t, with knowledge of θt and ηt and influenced by political noise εt, will exactly achieve
MBnoisy(qt, ηt, εt) −MC(qt, θt) = 0 by setting period t + 1 policy. In each successive period, the
government achieves its “first-best” outcome by setting policy for the next period based on its
own noisy view of marginal benefits MBnoisy. But this outcome is clearly not first best from a
aggregate welfare perspective.

What happens to our comparative advantage expression? As we show in the appendix, the
noisy price policy obtains qt = q∗t + (εt−1− (µt + (b2/c2)νt)/(b2 + c2) and the noisy quantity policy
obtains qt = q∗ + εt/(b2 + c2). Both deviate from the first-best q∗t , and the comparative welfare
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advantage of a noisy price policy compared to a noisy quantity policy simply compares the relative
losses arising from these two deviations,

∆N =
1

2(b2 + c2)

(
σ2
ω − (σ2

µ + (b2/c2)
2σ2

ν)
)
.

Here, ∆N will be positive only if the variance from the added noise distortion, ωt = εt−εt−1, under a
quantity policy is larger than the variance from not getting the optimal price right p∗t −E[p∗t |t− 1]
under a price policy. Rewriting εt = εt−1 + ωt, we note that εt−1 contributes equally to the
quantity deviation in both periods and, therefore, does not appear in the comparative advantage
expression as it equally disadvantages both policies. This is analogous to the disappearance of
benefit uncertainty in the comparison of price and quantity outcomes in the traditional Weitzman
framework.

5 Application to climate change policy

Climate change policy has been lurking in the background as an important application of this
paper and has motivated examples of stylized facts and assumptions. But what happens when we
put quantitative estimates of climate change mitigation costs and benefits, and their associated
uncertainties, into our expressions for comparative advantage?

Ignoring political noise, our expression for ∆U depends on the variance of cost and benefit
shocks, as well as the slopes of marginal costs and benefits. A standard approximation in the
climate change literature is that marginal benefits are flat and b2 = 0 (e.g., Newell and Pizer,
2008). With that assumption, both b2 and σ2

ν vanish from the expression and we only need
estimates σ2

µ and c2. Newell and Pizer (2003) provide an estimate of c2 = 1.6 × 10−7$/ton2.
We use the recent update to the U.S. Government’s Social Cost of Carbon (Interagency 2013) to
calibrate the error in marginal benefits. Namely, the central estimate changed from $24/ton to
$37/ton, or by $13/ton, in 3 years. Assuming η follows a random walk, that gives 3-year variance
of 169 ($/ton)2 or σ2

µ = 56 ($/ton)2 for the 1-year variation. We then have

∆U =
−(σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)

=
−σ2

µ

2c2
(assuming b2 = 0)

=
−56 ($/ton)2

2(1.6× 10−7$/ton2)

= − $175 million.

That is, if policy is set for each year t based on year t−1 information (e.g., the policy is set one year
in advance), the global loss from price policies is $175 million. Of course, policies are not set every
year. The recent Paris agreement suggests policies might be set every five years. In the first year,
the loss would be $175 million, but over five years, the loss would be $2.6 billion.10 Were policies
updated every twenty years, which seems more in line with U.S. policy adjustments (e.g., the 1990

10Because we assume benefits follow a random walk, the variance in the second year will be twice the variance in
the first year; the variance in the third year will be three times the variance in the first year (and so on). The sum
over t years is therefore t(t + 1)/2 times the value in a single year.
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Clean Air Amendments followed 20 years after the 1970 Clean Air Act; the 2010 adjustments to
the SO2 regulations came 20 years after 1990 amendments), the loss would be $36.8 billion.

A tougher question is to estimate the variance of the political noise innovation ω for the expres-
sion ∆N that allows for such noise. The 2015 Paris Agreement calls for limiting climate change to
2◦, or possibly 1.5◦, which would imply considerably higher views about marginal benefits. Mean-
while, the position of many climate skeptics would be that marginal benefits are close to zero (if
not negative).

Rather than attempt to quantify how this may affect policy over time, we make the observation
that when marginal benefits are flat, the condition for price regulation to be preferred simplifies to
σ2
ω > σ2

µ. That is, prices are preferred if changes driven by political noise are larger than changes
driven by true changes in estimated marginal benefits. Though a subjective judgment, it certainly
seems plausible that this condition would be satisfied.

6 Conclusion

After governments set their policies, new information often arises (or is revealed) about the benefits
and costs of those policies. Much of the previous work comparing price and quantity regulation has
focused on the importance of this information asymmetry in a one-period world or when policy
remains fixed indefinitely. In this framework, Weitzman (1974) demonstrated that price-based
regulation is preferred when marginal benefits are relatively flat compared to marginal costs and
that the magnitude of the preference also depends on the variance of cost uncertainty.

Our paper argues that governments eventually, if not regularly, update key regulatory policies.
In this paper, we have shown that when such policy updates seek to maximize welfare, and quan-
tity regulation is tradable over time, this updating policy framework unequivocally favors quantity
regulation. Trading over time creates an arbitrage condition whereby expected future price changes
will change prices today. This can be used by the regulator to overcome the information asymme-
try. Such direct anticipatory influences cannot arise under price-based regulation, which will only
change prices at the moment the policy update comes into force or through indirect means (such
as changes in long-term investments that also link costs over time).

When we consider the possibility of noisy policymaking, where something other than welfare
maximization drives the policy updates, a trade-off between price and quantity regulation re-
emerges. Quantity controls allow both new information about true costs and benefits and new
noise to enter the arbitrage condition. The relative advantage expression now depends on the
difference between these variances. When marginal benefits are flat (as in the case of carbon
dioxide emissions and global climate change), the expression simplifies to depend only on the
difference between the added noise variance and the added marginal benefit variance. This is quite
different from the original Weitzman result and most of the existing literature.

The important lesson here is that dynamics matter, as does the policymaking process. The
traditional (economic) debate over price versus quantity regulation has emphasized relative slopes.
When we consider the reality of policymaking over time and intertemporally flexible policy, how-
ever, the emphasis is whether policymaking is noisy or not. Quantity-based regulation is arguably
the best policy when regulation is set and updated truthfully over time. But if the policy process
is noisy, price-based policies may be preferred. Our specific discussion of climate change suggests
that the latter could be the case, as do a number of events over the past decade highlighting
sources of political noise. Such events include the collapse of SO2 markets in the wake of legal
challenges to the Clean Air Interstate Rule, the exit of New Jersey from the Regional Greenhouse
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Gas Initiative, debate over changes to the European Union Emissions Trading Scheme, and the
repeal of Australia’s carbon price scheme, among others. In many of these situations, the swing
in prices (frequently to zero) would seem to exceed plausible changes to the true optimal price,
recommending prices.

Another perspective on this result is simply that expectations matter in markets with intertem-
poral trading. That can be a good thing when the policy process is rational and well-behaved, but
it can be a bad thing when the policy process is noisy and subject to significant swings in policy
objectives. If policymaking is expected to be noisy and erratic, so too will be allowance markets.
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Appendix

Comparative Advantage in Two Periods

In the body we showed that the firm’s reaction function is h(p̃t, θ) = q̂+ p̃t−c1−θ
c2

. The government’s

optimal policy in the first period is to tax at p̃1 = c1, meaning h(p̃1, θ) = q̂ − θ
c2

. We also showed

that under a quantity instrument, the firm produces q̃U/2 = q̂ + η−θ
b2+c2

.

Now define ∆U , the difference between the expected net benefits under a price versus a quantity
instrument. If ∆U < 0, quantity regulation is preferred. Since there is no more uncertainty in the
second period, the net benefits in that period are the same across instruments, meaning we need
only consider the difference in period 1. We now derive our primary result.

∆U = E
[(
B(h(p̃U1 , θ), η)− C(h(p̃U1 , θ), θ)

)
−
(
B(q̃U/2, η)− C(q̃U/2, θ)

)]
= E

[
(b1 − c1 + η − θ)(h(p̃U1 , θ)− q̃U/2)− b2 + c2

2
((h(p̃U2 , θ)− q̂)2 − (q̃U/2− q̂)2)

]
= E

[
(η − θ)

(
−θ
c2
− η − θ
b2 + c2

)
− b2 + c2

2

((
−θ
c2

)2

−
(
η − θ
b2 + c2

)2
)]

= −E

[
(η − θ)

(
θ

c2
+

η − θ
b2 + c2

)
+
b2 + c2

2

((
−θ
c2

)2

−
(
η − θ
b2 + c2

)2
)]

= −E

[(
b2
c2
θη − b2

c2
θ2 + η2 − ηθ

(b2 + c2)

)
+

(b2 + c2)
2θ2 − c22(η − θ)2

2c22(b2 + c2)

]

= −E

[(
b2
c2
θη − b2

c2
θ2 + η2 − ηθ

(b2 + c2)

)
+

(( b2
c2

)2 + 2 b2
c2

)θ2 − η2 + 2ηθ

2(b2 + c2)

]

= −E

[
2 b2
c2
θη − 2 b2

c2
θ2 + 2η2 − 2ηθ + (( b2

c2
)2 + 2 b2

c2
)θ2 − η2 + 2ηθ

2(b2 + c2)

]

= −E

[
η2 + ( b2

c2
)2θ2 + 2 b2

c2
θη

2(b2 + c2)

]

=
−(σ2

η + (b2/c2)
2σ2

θ)

2(b2 + c2)
.

QED.
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Multiple Periods

We first define the general auto-regressive error structure:

ηt = ρηηt−1 + µt

θt = ρθθt−1 + νt,

with η0 = θ0 = 0 and µt = νt = 0 for t ≥ T . The banking constraint with a dynamic trading ratio
is given by

Bt = R̃tBt−1 + q̃t − qt,

with B0 = 0 and Bt = 0 for t ≥ T . That is, we assume the problem effectively ends at period T ,
beyond which there is no uncertainty. The government can set the optimal policy and there is no
need for banking.

Equilibrium

Our strategy here is to guess the government’s rule for setting the allocation and dynamic trading
ratio each period. We then show that, with these rules, the first-best quantity level is both feasible
for the firm and satisfies the firm’s first order conditions for profit maximization.
Our proposed allocation rule in every period is given by:

q̃t = q̂ +
ρηηt−1 − ρθθt−1

b2 + c2
+ R̃t

µt−1 − νt−1

b2 + c2
.

The proposed dynamic trading ratio is given by

R̃t =
p∗t−1

βE[p∗t |t− 1]

=
c1 + b2θt−1+c2ηt−1

b2+c2

β
(
c1 + b2ρθθt−1+c2ρηηt−1

b2+c2

)
for t > 1 where p∗t is the first-best optimal price corresponding to q∗t . R̃1 = 0.

First we show that the first-best optimal quantity level q∗t = q̂ + ηt−θt
b2+c2

is feasible for the firm.
That is, it meets the terminal banking condition BT = 0. Note that choosing this quantity level
leads to a banking rule

Bt = R̃tBt−1 + q̃t − q∗t = R̃t

(
Bt−1 +

µt−1 − νt−1

b2 + c2

)
− µt − νt
b2 + c2

,

where we have substituted the rule q̃t. With B0 = µ0 = ν0 = 0, we have B1 = −µ1−ν1
b2+c2

, B2 = −µ2−ν2
b2+c2

,

... BT−1 = −µT−1−νT−1

b2+c2
, BT = −µT−νT

b2+c2
. With µT = ηT = 0, we then have BT = 0. Therefore, a

choice of qt = q∗t is feasible for the firm.
We now show that picking qt = q∗t satisfies the first-order condition for the firm. Namely, each

period the firm faces:

Vt(Bt−1, θt−1, ηt−1, νt, µt) = max
Bt
−C(R̃tBt−1 + q̃t −Bt, θt) + βE[Vt+1(Bt, θt, ηt, νt+1, µt+1)|t],
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where we have replaced qt with Bt as the choice variable to simplify taking derivatives. The
first-order condition is then

MC(qt, θt) = −βE
[
∂Vt+1(Bt, θt, ηt, νt+1, µt+1)

∂Bt

|t
]
.

We also have:
∂Vt(Bt−1, θt−1, ηt−1, νt, µt)

∂Bt−1

= −R̃tMC(qt, θt).

Thus, the first order condition is that MC(qt, θt) = βE[R̃t+1MC(qt+1, θt+1)|t]. Given Rt+1 only
depends on information at t, we can further simplify to

MC(qt, θt) = βR̃t+1E[MC(qt+1, θt+1)|t].

This is simply the no arbitrage condition with discounting, trading ratios, and uncertainty about
future shocks. Namely, today’s marginal cost must equal the discounted, trading-ratio-adjusted,
expected marginal cost next period. Given the definition of R̃t+1 = p∗t/βE[p∗t+1|t], this condition
is satisfied when qt = q∗t . QED.

Comparative Advantage

As shown above, the quantity policy achieves the first best outcome in every period. Therefore,
the comparative advantage is simply the deadweight loss associated with the price instrument.
Under a price instrument, the government sets a price in order to maximize welfare conditional on
t− 1 information, namely,

E[MC(h(p̃t, θt), θt)|t− 1] = E[MB(h(p̃t, θt), ηt)|t− 1]],

where h(p̃t, θt) is the previously-defined reaction function,

h(p̃t, θt) = q̂ +
p̃t − c1 − θt

c2
.

Substituting (and canceling b1 = c1), we have

ρθθt−1 + c2

(
p̃t − c1 − ρθθt−1

c2

)
= ρηηt−1 − b2

(
p̃t − c1 − ρθθt−1

c2

)
,

or, rearranging,

p̃t = c1 +
b2ρθθt−1 + c2ρηηt−1

b2 + c2
.

Using the same reaction function, this results in quantity,

h(p̃t, θt) = q̂ +
ρηηt−1 + (b2/c2)ρθθt−1

b2 + c2
− θt
c2
.

The optimal quantity is

q∗t = q̂ +
ηt − θt
b2 + c2

.
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The difference between the quantities is

q∗t − h(p̃t, θt) =
ηt − ρηηt−1

b2 + c2
+
θt
c2
− θt + (b2/c2)ρθθt−1

b2 + c2

=
µt + (b2/c2)νt

b2 + c2
.

This is analogous to the figure in section 3.3, where the quantity deviation was η+(b2/c2)θ
c2+b2

, with η
and θ replaced by their innovations. Following a similar graphical proof, equation (7) becomes

∆U =
−(σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)
.

QED.

Noise

Prices

Given the condition

E[MBnoisy(h(p̃t, θt), ηt, εt−1)−MC(h(p̃t, θt), θt)|t− 1] = 0

using the reaction function above, the definitions of noisy marginal benefits (9) and marginal costs
(4), and canceling b1 = c1 we have

ρηηt−1 − b2
(
p̃t − c1 − ρθθt−1

c2

)
+ εt−1 = ρθθt−1 + c2

(
p̃t − c1 − ρθθt−1

c2

)
.

Re-arranging, we have

p̃ = c1 +
c2(ρηηt−1 + εt−1) + b2ρθθt−1

b2 + c2
= E[p∗t |t− 1] +

c2εt−1

b2 + c2
.

Quantity Equilibrium

We now have a new policy rule

q̃t = E[q∗t |t− 1] + (εt−1/(b2 + c2)) + R̃t

(
q∗t−1 − E[q∗t−1|t− 2] +

εt−1 − εt−2

b2 + c2

)
and

R̃t =
p∗t−1 + (c2/(b2 + c2))εt−1

β(E[p∗t |t− 1] + (c2/(b2 + c2))εt−1)
.

As before, we show that the firm’s choice qt = q∗t +εt/(b2+c2) (implying pt = p∗t+(c2/(b2+c2))εt)
is both feasible given the terminal banking condition BT = 0 and satisfies the firm’s first-order
condition for profit maximization (the arbitrage condition pt = βR̃tE[pt+1|t]).

To see feasibility note that this choice of qt yields B1 = −(q∗1 −E[q∗1|0] + ε1/(b2 + c2)) assuming
ε0 = θ0 = η0 = 0 and more generally

Bt = −
(
q∗t − E[q∗t |t− 1] +

εt − εt−1

b2 + c2

)
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for t < T . Assuming ωT = µT = νT = 0, we have BT = 0. Thus, qt = q∗t + εt/(b2 + c2) is feasible
for the firm.

As before, the no arbitrage condition will imply pt = MC(qt, θt) = βR̃t+1E[MC(qt+1, θt+1)|t] =
βR̃t+1E[pt+1|t]. Assuming R̃t = (p∗t−1 + (c2/(b2 + c2))εt−1)/(β(E[p∗t |t− 1] + (c2/(b2 + c2))εt−1)), this
is satisfied. QED.

Comparative Advantage

In the previous comparative advantage derivation we showed that a quantity deviation of −(µt +
(b2/c2)νt)/(b2 + c2) from the first-best q∗t , which corresponds to a price deviation of −(b2νt +
c2µt)/(b2 + c2) each period from p∗t , lead to a deadweight loss of

∆U =
−(σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)

each period.
We now have a deviation of −(b2νt+c2(µt+εt−1))/(b2+c2) from p∗t under the noisy price policy

and c2εt/(b2+c2) under the noisy quantity policy each period. These correspond to deviations from
q∗t of (εt−1− (µt + (b2/c2)νt))/(b2 + c2) for price regulation and εt/(b2 + c2) for quantity regulation.
Comparing to the previous result, we can compute welfare changes relative to the first best as

−(σ2
εt−1

+ σ2
µ + (b2/c2)

2σ2
ν)

2(b2 + c2)

for the price policy and
−σ2

εt

2(b2 + c2)

for the quantity policy each period. We can take the difference to find the comparative advantage
of noisy prices compared to noisy quantities,

∆N =
σ2
ω − (σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)
,

where σ2
ω = σ2

εt − σ
2
εt−1

under the assumption εt = εt−1 + ωt. QED.
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