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Pennsylvania;  
b Department of Industrial Engineering, University of Chile 

Abstract 

We examine whether households’ risk preferences differ for small and large stakes losses. 

We develop a structural model and estimate household loss distributions to analyze 

decisions for a continuum of risk using flood insurance data comprising 16 million policies. 

Each household makes two contract decisions: the deductible amount (ranging from $500 

to $5,000), which indicates its attitudes toward small losses; the coverage limit (the 

maximum the insurance would pay in a claim), which indicates its attitudes toward the risk 

of large losses. Testing several value functions and allowing for the possibility that 

households distort probabilities, we find that households’ risk preferences are inconsistent 

for decisions involving small versus large stakes. For example, households’ deductible and 

coverage limit decisions imply different coefficients of relative risk aversion. Both 

decisions are marked by overweighting of small probabilities and diminishing sensitivity 

to losses. However, households exhibit greater diminishing sensitivity to losses and 

overweight small probabilities more when selecting a deductible than when selecting a 

coverage limit. We conclude that despite making these low and high stakes decisions 

concurrently, households treat them as separable choices toward which they have different 

risk attitudes. 

This version: March 15, 2016  
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1 Introduction 

The predominant models of decision making under risk posit that individuals’ preferences 

are stable over a continuum of potential losses ranging from small to large. For example, 

in expected utility theory, an individual’s coefficient of relative risk aversion explains the 

precautions that she will take when driving a car to avoid both minor dents and loss of life 

from an accident. This assumption of consistent behavior across a spectrum of outcomes 

appears in Bernoulli (1738), underlies von Neumann and Morgenstern (1944), and guides 

the work of Kahneman and Tversky (1979). It is pervasive in research on risk in all fields 

of economics. But is this assumption valid? 

We analyze risk preferences across a large continuum of potential losses using data on 

insurance decisions by households in flood-prone areas of the United States who purchased 

flood coverage to protect their homes.  Homeowners’ insurance does not cover flood risk 

in the U.S.; flood insurance is provided by the federally-run National Flood Insurance 

Program (NFIP), one of the largest property insurance programs in the world, with a total 

insured value of $1.3 trillion annually. About 96 percent of residential flood insurance 

policies are purchased through this program (Dixon et al., 2006, p.19). Our data span 16 

million insurance policies and 30 years.  

These data allow for comparisons of two insurance contract decisions that households 

make concurrently regarding different aspects of the same risk: (1) the size of the 

deductible (i.e., the amount that they will pay out of pocket before insurance begins 

covering a loss) and (2) the coverage limit (i.e., the maximum agreed amount that the 

insurer will pay in the event of an insured loss). Deductible selection reflects concerns 

about more frequent small losses, while the coverage limit selection indicates concern 

about less frequent but much larger losses. We estimate households’ preferences from their 

deductible and coverage limit decisions during a seven year period in which a consistent 

menu of contract options were available to households, with deductibles ranging from $500 
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to $5,000 and coverage limits available up to $250,000.1 Households most commonly 

select a $1,000 deductible and a coverage limit that equals the cost to fully replace the 

vulnerable home (for which the median value is $96,300); however, almost a fourth of 

households select a coverage limit that is less than this cost. 

We assess whether households’ preferences are consistent across these low and high stakes 

decisions. Specifically, we assess whether households’ deductible and coverage limit 

selections indicate similar parameter values for several of the predominant models of 

decision making under risk, such as the same coefficient of relative risk aversion.  

We estimate household level loss distributions and combine them with a structural model 

of decision making that assesses households’ risk attitudes based on their contract 

decisions. We begin by examining households’ choices using a power value function. This 

function reflects an overlap with commonly used models of decision making as both 

constant relative risk aversion (CRRA) utility and cumulative prospect theory (Tversky 

and Kahneman, 1992) use power functions. We also allow for the possibility that 

households distort flood probabilities, using a polynomial expansion to estimate these 

potential distortions.2  

We conclude that households demonstrate starkly different risk preferences for low and 

high stakes. Let “low stakes preferences” describe the model parameters derived from 

households’ deductible decisions, and “high stakes preferences” those from their coverage 

limit decisions. These preferences are so inconsistent that households’ low stakes 

preferences predict that households would select a coverage limit of zero, indicating that 

effectively no household would purchase flood insurance. 

These inconsistent preferences are reflected in households’ value functions and probability 

distortions: each changes depending on whether households are selecting a deductible or 

                                                 

1 We consider protection of the home structure only, and do not examine whether households insure their 

belongings in the home. Only homes worth $250,000 or less are included in this analysis. 

2 The polynomial expansion allows for more flexibility in assessing the nature of probability distortions than 

commonly used probability distortion models (e.g., Tversky and Kahneman, 1992; Prelec, 1998). 
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coverage limit. Regarding value functions, households’ low and high stakes preferences 

both exhibit diminishing sensitivity to losses, a feature of prospect theory that is contrary 

to the predictions of expected utility theory for a risk averse household: households 

perceive the difference between a $1,000 loss and $2,000 loss as greater than that between 

a $2,000 loss and $3,000 loss. However, we find that households’ low stakes preferences 

show much greater diminishing sensitivity to losses than their high stakes preferences.3 

Taken together, these preferences would require a value function that is convex for small 

stakes losses, concave for some moderate stakes (between the deductible and coverage 

limit), and then convex again for  large stakes losses. 

Regarding probability distortions, we also find that households overweight small 

probabilities when selecting both deductibles and coverage limits, as cumulative prospect 

theory predicts, but tend to overweight probabilities more when selecting deductibles. 

Indeed, households overweight flood loss probabilities when choosing a deductible at 

roughly twice the level they do when selecting a coverage limit. When making a deductible 

decision, households act as if the median annual probability of a flood event is 15 times 

larger than what it really is.4  

We additionally test several frequently used value functions and models: CRRA utility, 

constant absolute risk aversion (CARA) utility, and a model of reference dependent 

preferences (Kőszegi and Rabin, 2006), and probability distortion models from Tversky 

and Kahneman (1992), Prelec (1998), and Gonzalez and Wu (1999). Households 

demonstrate inconsistent preferences across low and high stakes in every model that we 

have tested. We also consider two theories intended to unify households’ preferences 

across small and large stakes; neither Chetty and Szeidl’s (2007) consumption 

                                                 
3 For example, consider what change in loss when the stakes are high makes the household indifferent to 

incurring a $1,000 change in loss when the stakes are low 

𝑣($2,000) − 𝑣($1,000) = 𝑣(𝑥) − 𝑣($101,000) 

where 𝑣 is the households’ value function. Preferences derived from coverage limit decisions indicate that 

𝑥 = $113,475. Households perceive a $1,000 difference when the stakes are low as equivalent to a $12,475 

difference when the stakes are high. The corresponding value using deductible decision is $80,867 (𝑥 =
$181,867).  

4 Households treat the median annual claim rate of 1.4 percent as if it occurs with a 22 percent probability. 
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commitments nor Holt and Laury’s (2002) explanation of expo-power utility seem to 

explain households’ preference inconsistencies in our data. 

The primary contribution of this study is to show the inconsistencies of these preferences 

in a context where low and high stakes decisions are directly comparable. Households 

make these decisions as part of a single contract, choosing them at the same time and for 

the same risk with both affecting the same premium. These preference estimates reflect the 

actual purchase decisions of a large number of households from data on an unusually large 

spectrum of household losses – from a few hundred dollars to the full value of their homes. 

This study adds to the growing recognition that households’ risk attitudes do not follow the 

curvature of a single value function across all decisions (Barseghyan et al., 2011; Rabin, 

2000). 

Several constraints typically challenge studying preferences along a large continuum that 

our data overcome. First, risks are often a function of several hazards, and households’ 

exposures may differ between these hazards, constraining researchers’ ability to model the 

risk, especially for rare, consequential outcomes. For example, a household member may 

lose employment for a variety of reasons (economic downturns, personal misconduct, etc.). 

Similarly, homeowners insurance protects a policyholder’s property from multiple hazards, 

including theft, fire, hail, and wind. Our data provides detailed information on flood risk 

for each insured property (e.g., the approximate likelihood of a claim, the presence of flood 

obstructing barriers, etc.). The large amount of publicly available information on flood risk 

allows for more informed decisions by policyholders and direct comparisons across 

policyholders as we model flood risk. Second, for many risks, households may have 

difficulty assessing their maximum exposure, such as the healthcare costs associated with 

unanticipated illnesses. In our context, the potential maximum loss is limited by the value 

of the home structure, and the flood insurance program provides a specific estimate of that 

value to households during the application process. Third, compared to other forms of 

insurance, flood insurance enables one to examine revealed preferences with respect to the 
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coverage limit across a broader range of choices as it does not maintain a coinsurance 

clause.5  

The article is organized as follows. In Section 1.1 we provide a brief literature review. 

Section 2 describes the data and modeling techniques to estimate households’ preferences 

from their choices. Section 3 provides results. Section 4 considers two explanations for 

inconsistent preferences. Section 5 provides implications of our results to models of risk 

attitudes and insurance policy. 

1.1 Literature Review 

Bernoulli (1738) proposes a means for understanding risky decisions: individuals evaluate 

the expected utility of outcomes measured in terminal wealth using a concave utility 

function.6 Arrow (1965) and Pratt (1964) build on this work, suggesting a method to 

measure attitudes toward risk, “One might set out to measure concavity [of a utility 

function] as representing risk aversion” (Pratt, p. 127). This approach marries two 

potentially distinct concepts: attitudes regarding a range of outcomes (e.g., decreasing 

marginal utility of wealth) and attitudes toward stochastic outcomes (i.e., risk aversion, 

Dyer and Sarin, 1982). For example in our data, households’ revealed preferences – their 

purchase of flood insurance – demonstrate a desire to reduce risk, yet whether their 

preferences regarding a range of outcomes characterize their risky choices is unclear. 

Rabin (2000) and Rabin and Thaler (2001) challenge the idea that individuals’ aversion to 

risk are explained well by the decreasing marginal utility of wealth.7 Their arguments are 

                                                 
5 Private property insurance, such as a homeowners’ policy normally includes this clause, which requires 

that policyholders select a coverage limit of at least 80 percent of their property value in order to be fully 

reimbursed for damage above the deductible. 

6 “If the utility of each possible profit expectation is multiplied by the number of ways in which it can occur, 

and we then divide the sum of these products by the total number of possible cases, a mean utility will be 

obtained, and the profit which corresponds to this utility will equal the value of the risk in question” 

(Bernoulli, 1738, p.24). 

7 Cox and Sadiraj (2006) show that the problems identified by Rabin (2000) and Rabin and Thaler (2001) do 

not necessarily apply to von Neumann and Morgenstern’s (1944) axioms for preference ordering of stochastic 

outcomes, but do apply to models that evaluate outcomes in terminal wealth. 
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reinforced by empirical evidence that individuals demonstrate a willingness to pay for 

protection against small stakes risks such as appliance warranties (Cutler and Zekhauser, 

2004) and protection against electrical wiring problems in residential property (Cichetti 

and Dubin, 1994). For the most common expected utility models, such as CRRA, this 

behavior implies high levels of risk aversion that predict implausible choices when 

extended to higher stakes decisions.8 

Economists have proposed several compelling explanations regarding these preferences: 

households’ decisions may be guided by (1) a simpler conceptualization of complex 

problems than is found in expected utility theory value functions such as choice bracketing 

(Rabin and Thaler, 2001), (2) budget constraints such as consumption commitments (i.e., 

fixed liabilities) that make households sensitive to small value shocks (Chetty and Szeidl, 

2007), and/or (3) more mathematically complex utility functions that account for 

combinations of absolute and relative risk aversion (Holt and Laury, 2002). We return to 

these explanations for households’ preferences later and where possible, examine our data 

for evidence. For our core analyses, we follow the typical assumptions of models of 

decision making under risk, that households make decisions following a value function, 

integrating across potential outcomes by accounting for the (potentially distorted) 

probability of each. 

Several recent studies use households’ deductible selections to estimate their risk 

preferences. Sydnor (2010) assesses homeowners’ insurance deductible choices using the 

expected utility theory models of constant relative risk aversion and constant absolute risk 

aversion. While typical risk aversion calibrations predict that households would select the 

highest deductible in his data of $1,000, more than 80 percent of households chose a lower 

deductible. Using assumptions that households’ wealth is approximated by average 

lifetime earnings or the value of their homes, he finds that their deductible decisions imply 

extremely high levels of risk aversion (e.g., coefficients of relative risk aversion in the 

thousands). Only under the assumption that household wealth is around $5,000 does he 

                                                 
8 For example, if a CRRA expected utility maximizer rejects a 50/50 bet with outcomes of either losing $100 

or gaining $110, even gaining an infinite amount of money would not induce this individual to participate in 

a 50/50 bet in which she might lose $1,000. 
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find the type of single digit relative risk aversion coefficients documented in other areas of 

economics (e.g., Chetty, 2006; Gourinchas and Parker, 2006; Barro and Jin, 2011). He 

shows that cumulative prospect theory can more plausibly explain households’ deductible 

decisions. 

Barseghyan et al. (2011) identify an additional challenge for standard models in explaining 

low stakes decisions: household preferences are inconsistent across domains of risk. Using 

households’ deductible choices for homeowners, auto liability, and auto comprehensive 

insurance, they find that households demonstrate greater risk aversion in home than in auto 

deductible choices. Their findings are robust across models of utility theory and prospect 

theory. 

Substantial evidence indicates that individuals’ decisions under risk are marked by 

probability distortions – misweighting and/or misperceiving the probability of an event 

(e.g., Preston and Baratta, 1948; Kahneman and Tversky, 1979; Prelec, 1998; Gonzalez 

and Wu, 1999). Barseghyan et al. (2013) analyze household deductible selections, 

assessing risk preferences and potential probability distortions. They find that both risk 

aversion and probability distortions distinctly contribute to households’ decisions. Failing 

to account for probability distortions, which result in an overweighting of small 

probabilities, leads to much higher estimates of risk aversion. 

2 Methods 

2.1 Data 

Our primary analyses consider homeowners with property coverage against flooding for 

single-family dwellings. Our data include all policies from 2001 to 2009 insured by the 

U.S. National Flood Insurance Program (NFIP) and all of its claims from 1982 to 2009, 

resulting in 16,349,345 policy observations and 635,220 claims observations for the 

households described above.  

We use these data to model flood risk for each policyholder, estimating the probability of 

a claim and the distribution of losses given a claim. With these flood risk estimates, we 
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evaluate models of decision making under risk using a subset of the data – policies with 

claims between 2002 and 2008 (𝑛 = 103,084) – as data from both our policy and claims 

databases are needed to model preferences.9 We include only a policyholders’ first claim 

so that each insured household is represented once in the analysis. During this period, 

households experienced a consistent choice of deductible options ranging from $500, 

$1,000 up to $5,000, in $1,000 increments, and could purchase property coverage limits up 

to $250,000. Because of this maximum coverage limit, we examine only homes with values 

up to $250,000 so that all individuals in the analyses could select a coverage limit to protect 

the full value of their home.10 Also, the data during this period include the necessary 

components to calculate policyholder premiums and so allow for comparisons across all 

potential policies available to a household. 

The U.S. federal government runs the NFIP through the Federal Emergency Management 

Agency (FEMA) and underwrites all insured risk. Households buy flood insurance from 

an authorized insurer or insurance agent, frequently the same agent that sells their 

homeowners coverage. In 2013, the NFIP issued 5.6 million policies for a total insured 

value about $1.3 trillion. 

The households in our primary analyses reside in areas that FEMA designates the “A zone,” 

areas with at least a 1 percent annual flood risk probability but that are not prone to coastal 

storm surge. This is by far the largest risk category in the program, accounting for 47 

percent (or 2.1 million) of all policies for single-dwelling homes in 2012. There is a distinct 

risk category for homes with at least a 1 percent annual flood probability that are vulnerable 

not only to inundation but also to wave damage (“V zone”). Under the NFIP all households 

residing in an area estimated to have at least a 1 percent annual probability of flood damage 

must purchase flood insurance if they have a federally backed mortgage. A third group of 

policyholders are those whose properties have an estimated flood risk probabilities of less 

than 1 percent (“low risk zone”). In Appendix 1, we exploit differences between our 

                                                 
9 Each database contains some distinct variables that are important to estimating preferences, primarily 

related to modeling the flood risk, which we discuss in Section 2.2.3 and the Online Appendix. 

10 Ninety-five percent of all insuring households have homes valued at or below this value. 
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primary sample in the “A zone,” and the “V zone” and low risk zone to conduct robustness 

checks of some of our key results. We compare policyholders living in zones where flood 

insurance is required against those in areas where homeowners can purchase it voluntarily, 

considering the possibility that the requirement to insure may lead households to select 

different coverage limits than if the decision were voluntary. We conclude that this 

requirement minimally influences households’ selections as the distribution of coverage 

limits relative to home values is very similar for these two groups. 

2.2 Modeling Households’ Preferences 

Our examination of households’ risk attitudes and probability distortions requires a set of 

inputs to populate a weighted value function. We assume that households’ deductible and 

coverage limit decisions are characterized by 

∫ 𝑣(𝑐, 𝑑, 𝑙, 𝑝; 𝜃)𝜔(𝜋(𝑙); 𝛃)   𝑑𝑙     (1) 

where 𝑣  represents households’ value function; 𝑐  coverage limit selected; 𝑑  deductible 

selected; 𝑙  flood losses, which occur with probability 𝜋  and are potentially distorted 

following function 𝜔. The focus of our analysis is fitting value function parameter 𝜃 and 

probability distortion parameters 𝛃  using households’ deductible and coverage limit 

decisions. 

Our data include households’ deductible and coverage limits choices and the pricing 

schedule that allows us to determine the premium for any combination of deductible and 

coverage limits. Our data also include an estimate of the home’s property value and its 

replacement cost. Replacement costs provide the amount needed to rebuild the current 

structure using similar materials and are estimated using insurance industry standards that 

account for a home’s characteristics including its building materials, size, and sales value 

(NFIP, 2006, p. 4-175). Homeowners are provided an estimate of their replacement cost 

when they select an insurance policy. A home’s property value is estimated onsite when a 

claim is made. We use this number in modeling loss probabilities; households cannot lose 

more than the property value. In Equation 1, we apply these probability distributions to a 
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households’ replacement cost (𝑙 describes flood losses in terms of a household’s cost to 

address them). The explicit assumption we make is that if a home is damaged by flood, the 

household will replace what was damaged.11 Thus, a flood that destroys 50 percent of the 

home would be expected to cost the household 0.5 times the home’s replacement cost. 

The remaining material in this section describes our approach for selecting a value 

function, estimating flood probabilities, and modeling probability distortions. 

2.2.1 Household Value Functions 

We model households’ decisions using the power value function  

𝑣(𝑥) = −𝑥𝜃                   (2) 

where 𝜃 > 0 and 𝑥 ≥ 0. In this context, 𝑥 describes a range of costs: potential flood losses, 

deductibles, and premium payments. The best possible outcome for households is 𝑥 = 0. 

For example, a household that purchased insurance for premium 𝑝 but incurred no loss 

would derive a value of 𝑣 = – 𝑝𝜃.  

Using this value function plays to the strengths of our data as it is a direct test of 

households’ attitudes across what we observe, a range of disagreeable outcomes. If 𝜃 > 1, 

households exhibit an increasing sensitivity to losses as losses increase (𝑣′ < 0, 𝑣′′ < 0); 

𝜃 < 1 indicates diminishing sensitivity to losses (𝑣′ < 0, 𝑣′′ > 0). We are specifically 

interested in whether households’ decisions regarding deductible and coverage limits imply 

similar values for 𝜃. 

This value function provides overlap with CRRA utility and cumulative prospect theory as 

both use power functions. For example, it is the cumulative prospect theory value function 

(Tversky and Kahneman, 1992) under the assumptions that (1) a household uses its wealth 

before purchasing insurance as its reference point and (2) the coefficient of loss aversion 

                                                 
11 Even in cases in which the damage is substantial, we believe this assumption is defensible as households 

would often benefit from fixing a damaged home before trying to sell the home and property. 
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is normalized to 1.12  As our data do not include observations of both gains and losses in 

this framework, we cannot estimate cumulative prospect theory’s loss aversion parameter. 

In Appendix 2, we show that decreasing marginal utility of wealth is equivalent to 

increasing sensitivity to losses for CRRA utility. Wakker (2008) reports that CRRA utility 

is “the most widely used parametric family for fitting utility functions to data” (p.1329). 

2.2.2 Insurance Decisions 

Households choose a deductible level and coverage limit, affecting the premiums they pay. 

We allow for households to treat these as separate decisions, but assume that households 

observe their coverage limit decision when selecting a deductible, and vice versa. This 

approach allows for risk attitudes to differ across deductible and coverage limit decisions, 

but in the event that households’ attitudes are consistent, it will lead to similar parameter 

values for each choice. The household deductible selection problem is thus 

max
𝑑∈{𝑑1,𝑑2,..,𝑑𝑛}

∫ 𝑉(𝑝(𝑑) + 𝑙)𝜔(𝑙)
𝑑

0

+ ∫ 𝑉(𝑝(𝑑) + 𝑑)𝜔(𝑙) + ∫ 𝑉(𝑝(𝑑) + 𝑑 + 𝑙 − 𝑐∗)𝜔(𝑙)
𝑐̅

𝑐∗
   𝑑𝑙

𝑐∗

𝑑

   (3) 

where 𝑑  is the deductible, 𝑐∗  the coverage limit the household selects, 𝑐̅  is the total 

property value, 𝑝  the premium, 𝑙  losses with 𝑙 ∈ [0, 𝑐̅] , and 𝜔(𝑙)  the household’s 

transformation of loss probabilities (e.g., overweighting of small probabilities). Equation 

3 describes outcomes across the range of potential losses. The first integrand accounts for 

flood losses less than the deductible, the second accounts for losses above the deductible 

but less than the coverage limit, and the third accounts for losses greater than the coverage 

limit selected by the household. Similarly, the households’ coverage limit decision is 

max
𝑐∈[𝑐,𝑐]̅

∫ 𝑉(𝑝(𝑐) + 𝑙)𝜔(𝑙)
𝑑∗

0

+ ∫ 𝑉(𝑝(𝑐) + 𝑑∗)𝜔(𝑙) + ∫ 𝑉(𝑝(𝑐) + 𝑑∗ + 𝑙 − 𝑐)𝜔(𝑙)
𝑐̅

𝑐

   𝑑𝑙
𝑐

𝑑∗
 

                                                 
12 Tversky and Kahneman (1992) use the function 

𝑣(𝑦) = {
𝑦𝛼                     𝑖𝑓 𝑦 ≥ 0

−𝜆(−𝑦)𝜃       𝑖𝑓 𝑦 < 0
 

where 𝑦 represents deviations from the households’ reference point. Thus, dividing both gains and losses by 

𝜆 and setting 𝑥 = −𝑦 yields Equation 2.  
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where 𝑑∗is the deductible that the household selects. 

2.2.3 Flood Risk 

We estimate households’ claim rates and loss distributions based on the characteristics of 

the home that the flood insurance program uses to set premium rates. Here, we provide an 

overview of our methodology for modeling flood risk; the Online Appendix offers a 

detailed explanation and modeling results. Flood risk loss probabilities 𝜋 comprise two 

elements, the probability of incurring a flood loss 𝜋(𝑙 > 0) and given a flood loss 𝑙, the 

probability of a specific loss 𝜋(𝑙|𝑙 > 0) such that 

𝜋(𝑙) = 𝜋(𝑙 > 0)𝜋(𝑙|𝑙 > 0). 

We model the claim rate as an approximation of the probability that a policyholder incurs 

any flood loss. Unlike many other insurance products, flood insurance premiums in this 

program are not influenced by previous claims experience. Thus, while other forms of 

insurance create a disincentive to report small flood losses due to the potential that it will 

increase future premiums (Braun et al., 2006), this flood insurance motivates those who 

suffer flood losses to report even minor damage so that a professional adjuster can 

determine if damages exceed the deductible. For example, 2.5 percent of all flood insurance 

claims in our dataset are for losses less than the minimum deductible of $500. 

We estimate claim rates using a random effects panel logit model with policies and claims 

data from 2001 to 2009. Only a policyholder’s first claim in a given year is included in the 

analysis. We use detailed information regarding the insured home and its vulnerability as 

explanatory variables. Examples include the elevation of the home, the number of floors in 

the home, the presence of obstructions, and an assessment of actions taken by the 

community to reduce flood risk.13 To account for the possibility of adverse selection, we 

also include policyholders’ deductible and coverage limit choices. 

                                                 
13 Community actions include maintaining and disseminating flood maps of the community, preventing 

building in floodplains, developing flood warning systems, improving community drainage systems, etc. 

More information can be found at FEMA (2015). 
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We also estimate loss distributions for each household in the program. Using all flood 

claims from 1982 to 2009, we model losses as a percent of the property value and estimate 

their probability at each percentile. We find that losses are distributed log-normally and 

model the two parameters of this distribution, 𝜇 and 𝜎, based on a households’ observable 

characteristics using an iterative MLE approach following Aitkin (1987) and Western and 

Bloome (2009).  

2.2.4 Probability Distortions 

We allow for distortions on the cumulative distribution following Quiggin (1982). While a 

variety of probability distortion models have been proposed (e.g., Tversky & Kahneman, 

1992; Prelec, 1998; Gonzalez & Wu, 1999), the probabilities in our data are small relative 

to the values tested in those studies. Therefore, we take a more flexible approach, assessing 

for probability distortions of households’ flood loss probabilities with a polynomial 

expansion. Following Barseghyan et al. (2013), we use Chebyshev polynomials, which are 

an orthogonal sequence of functions. For example, a third order approximation of 

distortions would lead to 

𝑇0(Π) = 1 
𝑇1(Π) = Π 
𝑇2(Π) = 2Π2 − 1 
𝑇3(Π) = 4Π3 − 3Π  

 

Ω = 𝛼0𝑇0 + 𝛼1𝑇1 + 𝛼2𝑇2 + 𝛼3𝑇3      (4) 

where Π is a vector of cumulative probabilities, Ω is the transformed probabilities, 𝑇𝑚 is 

the Chebyshev polynomial of order 𝑚 , and 𝛼𝑗  represent a set of coefficients to be 

estimated. We impose a penalty in our maximum likelihood estimations that prevents 

negative probabilities and the sum of distorted flood probabilities from exceeding 1. 

For ease of interpretation, we simplify the presentation of our results using the Chebyshev 

polynomials. Through substitution, we rewrite Equation 4 as 

Ω = 𝛼0 − 𝛼2 + (𝛼1 − 3𝛼3)Π + 2𝛼2Π2 + 4𝛼3Π3 

= 𝛽0 + 𝛽1Π + 𝛽2Π2 + 𝛽3Π3 
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where 𝛽0 = 𝛼0 − 𝛼2 and 𝛽1 = 𝛼1 − 3𝛼3, etc. 

2.3 Estimation 

Our estimation approach builds on those of Barseghyan et al. (2013), Camerer and Ho 

(1994), Hey and Orme (1994), and Holt and Laury (2002) who estimate risk preferences 

using random utility structural models. Barseghyan et al. (2013) provide a set of proofs 

showing that this framework allows for disentangling risk preferences from insurance 

purchase decisions and probability distortions (p. 2510). The intuition behind this 

identification strategy is that household selections across a menu of insurance contract 

options (e.g., more than two deductible options) allows for differentiation between 

curvature in the value function and probability distortions through exogenous variation in 

both the risk of loss and premiums. 

We adopt a random utility framework (McFadden, 1974) and fit model parameters using 

maximum likelihood estimation. For household 𝑖, let 

𝑢𝑖(𝑘; 𝜃, 𝛂)  ≡  𝑤𝑖(𝑘; 𝜃, 𝛂) + 𝜖𝑖𝑘 

where 𝑤 represents the household probability-weighted value function, 𝑘 ∈ 𝐾 a specific 

lottery among a set of insurance lotteries, 𝜃 a value function parameter shown in Equation 

2, 𝛂 a vector of probability distortion parameters shown in Equation 4, and 𝜖𝑖𝑘 an i.i.d. 

error component, which is assumed to be distributed type 1 extreme value. The probability 

that a household chooses lottery 𝑘 is thus 

𝑝𝑖𝑘 =
exp 𝑢𝑖(𝑘; 𝜃, 𝛂)

∑ exp 𝑢𝑖(𝑘′; 𝜃, 𝛂)𝑘′∈𝐾
 

Our estimation strategy solves problem 

argmax 
𝜃,𝛂

ℒ = ∑ ∑ 𝑦𝑖𝑘 ln 𝑝𝑖𝑘

𝐾

𝑘=1

𝑁

𝑖=1
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where ℒ is the log-likelihood function and 𝑦𝑖𝑘 = 1 if household 𝑖 chooses lottery 𝑘 and 0 

otherwise (Cameron and Trivedi, 2005).14 

We estimate this model for deductible decisions and for coverage limit decisions and 

compare the parameter values between these estimations. For example, we test the 

hypothesis that the value function parameter 𝜃 differs for deductible and coverage limit 

decisions ( 𝐻0: 𝜃𝑑 = 𝜃𝑐 ). Parameter estimates from these random utility models are 

normally distributed (Cameron and Trivedi, 2005, p. 497) and can be compared using the 

Wald test  

𝑧 =  
𝜃𝑑 − 𝜃𝑐

√𝑣𝑎𝑟(𝜃𝑑) + 𝑣𝑎𝑟(𝜃𝑐) − 𝑐𝑜𝑣(𝜃𝑑 , 𝜃𝑐)
 . 

In our models, we derive and report standard errors using a numerical approximation of 

the Fisher information matrix for each model; however, the covariance of our parameter 

estimates is unclear using this approach as we estimate the models for the deductible and 

coverage limit decisions separately.  

We estimate the variance-covariance matrix for model parameters using subsample 

bootstrapping (Politis and Romano, 1994; Politis et al., 1999). We draw 400 random 

subsamples of 5,000 households from our data, estimate our models on each subsample, 

and compare parameter estimates across these subsamples.15 The statistical values derived 

from this approach are lower bound estimates as they rely on subsamples of 5,000 

                                                 
14 Households select coverage limits between $15,000 and $250,000; options are in $1,000 increments. We 

impose a minimum coverage limit of $15,000, which ensures that the coverage limit is above household 

premiums plus the highest deductible option ($5,000) for all households, but still allows for households to 

partially insure. This condition creates consistency in the deductible and coverage limit menu across 

households. Over 99 percent of households in the data select coverage limits greater than $15,000. 

15 Bootstrapping our models with our full sample would be prohibitively computationally expensive. Instead, 

we use 400 random subsamples based on the guidance of Cameron and Trivedi (2005, p.361) that the number 

of bootstrap samples 𝐵 = 96(2 + 𝛾) where 𝛾 is the coefficient of excess kurtosis for the bootstrap estimates 

of 𝜃. The coefficient of excess kurtosis is larger for the coverage limit decision, 𝛾𝑐 = 1.35, suggesting that 

𝐵 ≥ 322. We draw the observations in each subsample without replacement. 
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households rather than the full sample of 103,084. For the number of random subsamples 

𝐵, this test uses the t-statistic 

𝑡 =  
𝜃𝑑
̅̅ ̅ − 𝜃𝑐̅

√𝑠𝜃𝑑

2 + 𝑠𝜃𝑐

2 − 𝑠𝜃𝑐,𝑑

2  
     (5) 

where 𝜃𝑑
̅̅ ̅  and 𝜃𝑐̅  are the average coefficient values for the 𝐵  subsamples and the 

bootstrapped variance of the parameter estimates for the deductible and coverage limit are 

respectively  𝑠𝜃𝑑

2 =
1

𝐵−1
Σ𝑏=1

𝐵 (𝜃𝑏,𝑑 − 𝜃𝑑
̅̅ ̅)

2
and 𝑠𝜃𝑐

2 =
1

𝐵−1
Σ𝑏=1

𝐵 (𝜃𝑏,𝑐 − 𝜃𝑐̅)
2

 and their 

covariance is 𝑠𝜃𝑐,𝑑

2 =
1

𝐵−1
Σ𝑏=1

𝐵 (𝜃𝑏,𝑑 − 𝜃𝑑
̅̅ ̅)(𝜃𝑏,𝑐 − 𝜃𝑐̅).  

2.4 Households’ Flood Probabilities and Contract Selections 

Table 1 provides summary statistics on policyholders’ risk, premiums, coverage limits, and 

replacement cost. The estimated average annual flood claim probability is 1.49 percent, 

and given a claim, the expected damage is 20.3 percent of the home’s value. These 

estimates of risk are quite similar to those of Kousky and Michel-Kerjan (2015) who report 

on the flood insurance program. Using a longer time series from 1980 to 2012, they find 

an average annual claim rate of 1.45 percent. Regarding loss distribution estimates, we 

include our corresponding estimate in brackets in the following excerpt from their paper: 

“half of claims are for less than 10 percent [9 percent] of the value of the building, roughly 

15 percent [12 percent] of claims exceed 50 percent of the building’s value, and 

approximately 7 percent [7 percent] exceed 75 percent of building value” (p.13). 
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Table 1. Policy Summary Statistics 

   Percentiles 

 Mean St. 

Dev. 

1% 10% 50% 90% 99% 

Claim rate 1.49% 0.69% 0.31% 0.68% 1.42% 2.36% 3.67% 

Expected loss given a 

claim 

20.3% 26.0% 0.4% 1.5% 9% 59% 100% 

Premium ($) 641.90 380.43 165.90 273.99  562.36 1,104.30 1,930.06 

Coverage limit ($) 110,700 63,867 10,700 35,000 100,000 210,000 250,000 

Replacement Cost ($) 107,177 57,779 13,300 41,000 96,300 195,000 250,000 

Note: “Expected loss given a claim” is described as a percent of the insured property’s value and reports the 

median expected loss for each percentile across policyholders. Replacement cost provides the amount needed 

to rebuild the current structure using similar materials. We derive these claim rate and loss estimates from 

our flood models described in Section 2.2.3. Core sample of 103,084 households. 

Policyholders choose among six deductible options between $500 and $5,000. Table 2 

provides households’ deductible selections and is consistent with previous studies finding 

that the majority of households prefer low deductibles, are willing to pay for protection 

against small stakes risks (e.g., Cutler and Zeckhauser, 2004; Sydnor, 2010). Ninety-four 

percent of households selected one of the two lowest deductible choices available.  

Figure 1 shows the coverage limits selected as a percent of the home’s replacement cost 

across all households and the effective coverage that this provides. That households select 

a coverage limit that is more than the replacement cost is perhaps surprising as they cannot 

receive a payment greater than this amount. Households whose property values are higher 

than their replacement cost are almost twice as likely to over-insure.16 These households 

may approach the insurance decision with an estimate of their property value, receive from 

their insurance agent a lower replacement cost, and buy a coverage limit above the 

replacement cost to make certain that their coverage is sufficient. Consequently, we treat 

                                                 
16 Forty three percent of households who did not over-insure have a property value that is greater than the 

replacement cost while 72 percent of over-insurers do. Replacement costs can deviate from property values 

as the costs of building materials change over time. 
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individuals that insure at or above the replacement cost of their home as intending to fully 

insure. In Appendix 1, we exclude households that over-insure and retest our models, 

finding that excluding these households does not alter our main findings. 

Table 2. Policyholder Deductible Selection 

Deductible 

Percent of 

Policyholders 

 $500  46.6 

 $1,000  47.4 

 $2,000  1.4 

 $3,000  0.5 

 $4,000  0.2 

 $5,000  3.8 
Note: Core sample of 103,084 households. 

 

 

Figure 1. Household Coverage Limit Selections 
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Note: The figure provides household coverage limit selections as a proportion of the replacement 

costs of their homes. The red line shows the coverage limit selected. The green line shows the 

maximum the contract would pay, which is the minimum between the coverage limit and 

replacement cost. Core sample of 103,084 households. 

3 Results 

This section describes our finding that households’ preferences are inconsistent across low 

and high stakes. We begin with our core model that uses the power value function 

(Equation 2). Then, we assess expected utility models CRRA and CARA and a model of 

reference dependent preferences, showing similar behavior across all models. Appendix 2 

shows functional forms for the value functions that we test. Table 3 provides an overview 

of the results to which we refer throughout this section. 

3.1 Core Results 

We find that households’ deductible and coverage limit decisions result in significantly 

different parameter values for the power value function (Equation 2). Part A of Table 3 

shows the model estimates. Parameter 𝜃  measures the curvature of households’ value 

functions.  Both deductible and coverage limit decisions are characterized by diminishing 

sensitivity to losses as losses increase (𝜃 < 1). That is, households perceive the difference 

between a $1,000 loss and $2,000 loss as greater than that between a $2,000 and $3,000 

loss. Households’ deductible decisions imply much greater diminishing sensitivity with an 

estimated parameter value of 𝜃𝑑 = 0.036, compared to that from the coverage limit of 

𝜃𝑐 = 0.413. Using our bootstrapped variance-covariance matrix, we find that estimates of 

𝜃  from the deductible and coverage limit decisions are significantly different ( 𝑡 =

−18.72, 𝑝 < 0.01) and so reject the null hypothesis that households’ preferences are 

consistent across these low and high stakes decisions. 

To illustrate the magnitude of this difference, we consider what change in loss when the 

stakes are high would make the household indifferent with incurring a $1,000 change in 

loss when the stakes are low 

𝑣($2,000) − 𝑣($1,000) = 𝑣(𝑥) − 𝑣($101,000) 
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Preferences derived from coverage limit decisions indicate that 𝑥 = $113,475; households 

perceive a $1,000 difference when the stakes are low as equivalent to a $12,475 change 

in loss when the stakes are high. Preferences from the deductible decisions indicate 𝑥 =

$181,867. In this case, households perceive a low stakes change of $1,000 as equivalent 

to an $80,867 change in loss when the stakes are high – over six times the amount found 

with preferences derived from coverage limit decisions. 

Results also show that households overweight small probabilities. Distortions are 

approximately linear in the range of probabilities that we examine 17 ; households’ 

cumulative flood loss probability distribution Π  follows Ω = 𝛽0 + 𝛽1Π . 18  Households 

overweight all probabilities that we observe by at least eight percentage points when 

households select a deductible ( 𝛽0 = 0.081) . Parameter 𝛽1  shows how transformed 

probabilities change as objective probabilities change. For example, in selecting a coverage 

limit households overweight these changes by a factor of four (𝛽1 = 4.27).  

Households overweight probabilities of a flood when choosing a deductible at roughly 

twice the level they do when selecting a coverage limit (𝑡𝛽0
= 8.69, 𝑝 < 0.01;  𝑡𝛽1

=

7.46, 𝑝 < 0.01). For example, we estimate that when making coverage limit decisions, 

households overweight the median annual claim rate of 1.4 percent by a factor of 8, acting 

as if it occurs with an 11 percent annual probability.19 When making deductible decisions, 

they act as if the median annual claim rate occurs with a 22 percent annual probability. 

Figure 2 illustrates these probability distortions. The horizontal axis shows objective 

probabilities; the vertical axis shows distorted probabilities. On the far left, household 

                                                 
17  Cumulative flood probabilities across households range from a minimum probability of 2.2e-06 to a 

maximum of 0.081. 

18 We examined higher order polynomial expansions of the probability distortions; however, model selection 

based on the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) motivates 

using a linear structure for coverage limit selections and a quadratic for deductible selections. The 

contributions of the quadratic term are small and so for ease of comparisons we use the linear model in Table 

3. We provide an example that shows the effects of higher order polynomials on parameter estimates in 

Section 3.2 (see Table 4). 

19 For example, for the coverage limit and the median claim rate, 𝛺 = 𝛽0 + 𝛽1𝛱 = 0.052 + 4.75 × 0.0142 

= 0.1195. The ratio of the transformed probability to the objective probability is 𝛺/𝛱 = 0.1195/0.0142 =
8.412. 
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distortions begin at the median likelihood of a full loss of the home from flood, which 

occurs with an annual probability of 0.07 percent. On the far right, we show distortions up 

to the median likelihood of any flood event, which is 1.4 percent. 

We use an approximation of the test that we employ to compare parameter estimates across 

deductible and coverage limit decisions as we extend our analyses to other value functions. 

In our bootstrap, the Pearson correlation between parameter estimates of 𝜃𝑑 and 𝜃𝑐 is not 

statistically different than zero ( 𝑟 = 0.02, 𝑝 = 0.75) . If we treat these estimates as 

uncorrelated, i.e., set 𝑠𝜃𝑐.𝑑

2 = 0 in Equation 5, the effect on 𝑡 is small and results in a more 

conservative statistic, 𝑡 = −18.65 (compared to 𝑡 = −18.72). Thus, we use 

𝑧𝑎 =
𝜃𝑑 − 𝜃𝑐

√𝑠𝑒𝑑
2 + 𝑠𝑒𝑐

2
 

which relies on standard errors 𝑠𝑒𝑑 and 𝑠𝑒𝑐 derived from a numerical estimate of the Fisher 

information matrix using our full sample.20 

Appendix 1 discusses robustness tests and sensitivity analyses of our results, examining 

(1) whether household coverage limit selections are influenced by certain flood insurance 

program requirements, which might interfere with deriving household preferences from 

their insurance contracts; (2) household preferences in an area with higher annual flood 

probabilities than those of our core sample; (3) our probability distortion estimates derived 

with Chebyshev polynomials to those in which we fit commonly used probability distortion 

models (e.g., Tversky and Kahneman, 1992); and (4) our estimates when we exclude 

households that purchased coverage limits greater than their replacement cost. While we 

find that our parameter estimates somewhat differ across contexts, they remain consistent 

                                                 
20 This test is an approximation because it ignores the potential covariance of the parameter estimates. It 

allows us to compare more models than would be possible using our computationally expensive 

bootstrapping approach and is facilitated by the type of large effect sizes we reported in our core results. 

While we caution against relying on this test for inference when 𝑧𝑎 is close to critical values, we tend to find 

values that are several orders of magnitude larger than critical cutoffs when assessing our parameters of 

interest. 
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with the pattern of results presented here and our main finding of preference inconsistency 

across deductible and coverage limit decisions. 

 

Table 3. Parameter Estimates Derived from Deductible and Coverage Limit Selections 

 

Value Function 

Parameter(s) 

Probability Distortion 

Parameters  

Part A: Core Results 

  𝜃 𝛽0 𝛽1 

Log- 

likelihood 

      

Deductible  0.036 0.081 10.07 -138,413 

  (0.005) (0.001) (0.059)  

Coverage limit  0.413 0.052 4.27 -525,600 

  (0.006) (0.001) (0.282)  

      

Part B: Other Value Functions 

  𝜌 𝛽0 𝛽1 

Log- 

likelihood 

CRRA Utility      

Deductible  -24.04 0.031 7.29 -143,191 

  (0.289) (0.001) (0.068)  

Coverage limit  -3.65 0.019 3.18 -526,909 

  (0.07) (0.0003) (0.085)  

      

CARA Utility  𝜂    

Deductible  -4.61E-04 0.059 11.44 -140,523 

  (7.18E-06) (0.002) (0.167)  

Coverage limit  -1.90E-05 0.013 2.06 -529,056 

  (8.05E-06) (0.0002) (0.120)  

 

Reference Dependent Preferences  

 𝛿 𝜃    

Deductible 0.60 0.315 0.075 10.05 -138,300 

 (0.002) (0.002) (0.0005) (0.005)  

Coverage limit 0.58 0.454 0.078 7.83 -525,763 

 (0.009) (0.004) (0.001) (0.245)  

Note: Table compares MLE of model parameters derived from household deductible and coverage 

limit decisions across behavioral models. Standard errors in parentheses. For the core results (which 

use a power function, shown in Equation 2) and the reference dependent preferences model, values 
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for 𝜃 of less than 1 indicate diminishing sensitivity to losses. For the utility theory value functions, 

negative values for the coefficient of relative risk aversion 𝜌 and the coefficient of absolute risk 

aversion 𝜂 also indicate diminishing sensitivity to losses (i.e., risk seeking). Parameters 𝛃 show 

probability distortions Ω = 𝛽0 + 𝛽1Π where Π is the cumulative objective probability. For CRRA 

utility, we assume that a household’s wealth is its home’s replacement cost plus $1. The reference 

dependent preferences model treats insurance premiums and flood outcomes as additively separable 

and weights flood outcomes by 𝛿  (Kőszegi and Rabin, 2006, 2007). Appendix 2 provides 

functional forms for CRRA, CARA, and the reference dependent preferences that we use.  

Number of observations: 103,084. 

 

Figure 2 Estimated Probability Distortions 

Note: Figure compares households’ probability distortions derived from their deductible and 

coverage limit decisions. The horizontal axis shows objective probabilities; the vertical axis shows 

distorted probabilities. Lines showing the distortions extend from the median likelihood of a full 

loss of the home from flood, which occurs with an annual probability of 0.07 percent, up to the 

median likelihood of any flood event, which is 1.4 percent. The 45 degree line identifies the points 

at which the transformed probabilities equal the objective probabilities. We model probability 

distortions using a polynomial expansion with Chebyshev polynomials. The figure shows linear 

probability distortions Ω = 𝛽0 + 𝛽1Π  where Π  is the cumulative objective probability. Model 

parameters 𝛃 are fit using MLE and the power value function in Equation 2. 
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3.2 Expected Utility Theory 

We estimate utility models assuming first that households do not distort objective 

probabilities. We assume that household wealth is their home’s replacement cost plus $1 

for CRRA utility.21  

We derive a coefficient of relative risk aversion 𝜌 = 136  from household deductible 

selection. This extremely high level is consistent with the insights of Rabin (2000) and 

Rabin and Thaler (2001): households’ preferences for low deductibles do not conform well 

to the assumption that the diminishing marginal utility of wealth explains their risk 

attitudes. Our results are also similar to the unrealistically high levels of risk aversion found 

by Sydnor (2010) on insurance deductibles. He estimates a lower bound of 𝜌 = 353 for 

households choosing a $500 deductible (the smallest deductible in our data) using the 

assumption that wealth equals the value of their home. 

Our estimate from coverage limit decisions is much lower, 𝜌 = 2.07, and more consistent 

with estimates found in other domains. For example, Barro and Jin (2011) estimate 𝜌 = 3 

in their analyses of equity premiums. Chetty (2006) estimates a coefficient of relative risk 

aversion of about 1 from labor supply, and Gourinchas and Parker (2002) find a similar 

coefficient based on consumer spending data. 

Table 4 shows these results compared to rank dependent utility models (Quiggin, 1982), 

which allow for probability distortions. Rank dependent utility leads to negative values of 

𝜌, typically described as “risk seeking.” Part A provides the results for the deductible, and 

Part B shows them for the coverage limit. Here, probability distortions Ω = 𝛽0 + 𝛽1Π +

𝛽2Π2 + 𝛽3Π3 where Π is the objective probability. The table shows distortion models with 

increasingly higher polynomial expansions. For Row 1, the case in which we assume that 

households do not distort probabilities, we set 𝛽0, 𝛽2, 𝛽3 = 0 and 𝛽1 = 1 and use MLE to 

fit 𝜌. For Row 2, we set 𝛽0, 𝛽2, 𝛽3 = 0, and use MLE to fit 𝜌 and 𝛽1, etc. 

                                                 
21 Other commonly used assumptions about wealth (e.g., using average lifetime income) do not change our 

finding of preference inconsistency across deductible and coverage limit decisions. 
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As we note from the work of Dyer and Sarin (1982) in Section 2.3, the term “risk seeking” 

is perhaps misleading here as the households we analyze purchased an insurance product 

that reduces their risk of financial loss by transferring part of their exposure to the flood 

insurance program, and so we continue to describe the results in terms of diminishing 

sensitivity to losses. In this context, the behavior of insuring households is explained by 

their overweighting small probabilities. These probability distortions lead to a greater 

perceived value of the insurance contract than if it were evaluated using objective 

probabilities. 

Our estimates of 𝜌  for each model are quite stable across higher order polynomial 

expansions of probability distortions, as shown in Table 4. Most probability distortion 

models assume that probabilities pass through the origin (𝛽0  = 0). We find that this 

assumption changes our estimates of risk aversion very little relative to the other distortion 

models (compare Row 2 in Parts A and B to higher number rows), but our model fit is 

notably improved by allowing for an intercept. The best fitting models, those that minimize 

the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) values, 

are shown in bold type. 

Part B of Table 3 shows results using the CRRA and CARA values functions from expected 

utility theory and shows a pattern consistent with our core results. Households demonstrate 

diminishing sensitivity to losses (𝜌 < 0 and coefficient of absolute risk aversion 𝜂 < 0) 

and overweighting of small probabilities. Each model shows that households demonstrate 

greater diminishing sensitivity to losses and overweight small probabilities more for 

deductible than coverage limit decisions. For example, the differences in the coefficients 

of relative risk aversion for deductible and coverage limit decisions result in 𝑧𝑎,𝜌 =

−68.57, 𝑝 < 0.01; for coefficients of absolute risk aversion, 𝑧𝑎,𝜂 = −40.97; 𝑝 < 0.01. 
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Table 4. Estimates of CRRA Across Probability Distortion Approximations 

 Part A: Deductible Selection 

 
𝜌 𝛽0 𝛽1 𝛽2 𝛽3 

Log- 

likelihood BIC AIC 

(1) 136     -173,414 346,840 346,830 

(2) -23.20  10.40   -143,791 287,605 287,586 

(3) -24.04 0.031 7.29   -143,191 286,417 286,388 

(4) -23.81 0.032 6.65 49.24  -143,184 286,413 286,375 

(5) -23.81 0.032 6.60 52.68 -1.06 -143,184 286,426 286,378 

         

 Part B: Coverage Limit Selection 

 

𝜌 𝛽0 𝛽1 𝛽2 𝛽3 

Log- 

likelihood BIC AIC 

(1) 2.07     -544,919 1,089,849 1,089,839 

(2) -3.68  11.00   -537,072 1,074,168 1,074,149 

(3) -3.65 0.019 3.18   -526,909 1,053,853 1,053,824 

(4) -3.65 0.020 3.29 -20.98  -526,904 1,053,855 1,053,817 

(5) -3.68 0.019 3.33 -20.99 -2.01 -526,904 1,053,867 1,053,819 

Note: Table compares MLE of model parameters derived from household deductible and coverage 

limit decisions using a CRRA utility model where 𝜌 is the coefficient of relative risk aversion. The 

best fitting models, those that minimize the Bayesian Information Criterion (BIC) and Akaike 

Information Criterion (AIC) values, are shown in bold type. Parameters 𝛃  show probability 

distortions Ω = 𝛽0 + 𝛽1Π + 𝛽2Π2 + 𝛽3Π3 where Π is the objective probability. We assume that a 

household’s wealth is the value of its home plus $1. Parameters in the table left blank are omitted 

from the MLE. When 𝛽0, 𝛽2, and 𝛽3 are omitted, they are assumed to equal 0; when 𝛽1 is omitted, 

it is assumed to equal 1. 

3.3 Reference Dependent Preferences: Separating Certain and Uncertain 

Outcomes 

We also test a model of “reference dependent preferences” (Kőszegi and Rabin, 2006, 

2007). This model asserts that individuals segregate known and uncertain costs and weight 

them differently. 22  Barberis (2013) places particular emphasis on this model as an 

advancement in field research in behavioral economics as it offers a consistent strategy for 

integrating prospect theory style reference points. Among the utility theory and prospect 

                                                 
22 Kőszegi and Rabin (2006) provide the example of shoe shopping in which the consumer expects to pay a 

certain amount but is surprised by higher prices. The consumer treats the unanticipated additional cost as a 

loss, weighting it with a loss aversion parameter in the spirit of Kahneman and Tversky (1979). 
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theory models tested by Sydnor (2010), reference dependent preferences explains 

homeowners’ deductible decisions best. 

Following this approach, we segregate premiums 𝑝 from uncertain flood outcomes 𝑦 , 

which are deductible payments and losses in excess of coverage limits, and weight flood 

outcomes with parameter 𝛿 

𝑣 = −𝑝𝜃 − 𝛿 ∫ 𝑦𝜃 𝜔(𝑦)  𝑑𝑦. 

Using this model, we also find diminishing sensitivity to losses and overweighting of small 

probabilities, and that preferences are inconsistent across deductible and coverage limit 

decisions (see Part B of Table 3). The parameter 𝜃 has the same interpretation as in our 

power function (Equation 2). Compared to our core results, the estimates for 𝜃 in this 

model (𝜃 = 0.315 for deductible choices and 𝜃 = 0.454 for coverage limits) are notably 

closer across low and high stakes decisions, though they are still significantly different 

(𝑧𝑎 = −31.1, 𝑝 < 0.01). 

Both coverage limit and deductible decisions imply 𝛿 < 1 , that households discount 

uncertain flood losses relative to paying premiums. While Kőszegi and Rabin (2006, 2007) 

develop their research in settings where 𝛿 assesses aversion to unexpected losses, in our 

context it may also account for other preferences such as inter-temporal ones since 

premiums are paid before coverage for flooding begins.23,24 

                                                 

23  This observation brings up the point that our data are not well equipped to test certain behavioral 

phenomenon that prospect theory intends to explain; it is therefore perhaps not surprising that our parameters 

differ from those derived in other settings. For example, Tversky and Kahneman (1992) find diminishing 

sensitivity to losses, 𝜃 = 0.88, in their lab research.  

24 The reference dependent preferences model was in part introduced because prospect theory struggles to 

explain certain behaviors (e.g., buying insurance) and so we compare it to our core results (Part A of Table 

3), which can be understood as the prospect theory value function under the assumptions that (1) a household 

uses its wealth before purchasing insurance as its reference point and (2) the coefficient of loss aversion is 

normalized to 1. We conduct a Vuong (1989) test for non-nested models and find that the reference dependent 

preferences model provides a better fit of deductible decisions at the 1 percent significance level: separating 

certain and uncertain outcomes helps explain preferences when comparing premiums to small-value 

deductibles. For coverage limit decisions, the reference dependent preferences estimates of 𝜃 are much closer 
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4 Inconsistent Preferences: Implications and Explanations 

For all of the tested models and value functions, we find that not only do households 

demonstrate inconsistent preferences across low and high stakes for a given type of risk, 

but that these preferences cannot be universally convex in losses. Because low stakes 

preferences demonstrate a greater diminishing sensitivity to losses than high stakes 

preferences, any line connecting the two must be at some point concave. Figure 3 illustrates 

this point for the median value property (which is $96,300) using the reference dependent 

preferences model. We use the reference dependent preferences model because its 

parameter estimates for deductible and coverage limit decisions appear closest among the 

value functions we test. The solid green line provides the shape of the value function 

derived from the deductible decision in the range of potential losses related to the 

deductible (losses up to $5,000). Similarly, the solid blue line provides the shape of the 

value function derived from the coverage limit decision in the range of potential losses 

related to selecting a low coverage limit (set at losses greater than 20 percent of the property 

value for this example). The dotted lines help illustrate the magnitude of this difference. 

They show how these preferences would extend toward more severe losses for the 

deductible and less severe ones for the coverage limit. 

These differences in preferences are substantial and motivate caution with respect to 

extrapolating households’ preferences from their decisions when the range of outcomes is 

narrow. For example, we take the MLE parameters for risk preferences and probability 

distortions derived from household deductible decisions with the reference dependent 

preferences model and use them to predict what coverage limits households would select. 

We allow for any coverage limit value between $0 (i.e., the outside option) and $250,000 

in $1,000 increments. That is, we consider the possibility that household preferences follow 

the dotted green line in Figure 3. We find that these low stakes preferences lead to a 

                                                 
to the traditional prospect theory value function (𝜃 = 0.45 versus 0.41). The traditional function provides a 

better fit than the reference dependent preferences model when the stakes are high. 
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prediction that 99.9 percent of households would select a coverage limit of zero: effectively 

no one in our data would insure.25  

 

Figure 3 Risk Preferences from Deductible and Coverage Limit Selections 

Note: Figure shows the reference dependent preferences model with the MLE of model parameters 

fitted to deductible and coverage limit selections. The solid green line provides the shape of the 

value function derived from the deductible selection in the range of potential losses related to the 

deductible (losses up to $5,000). Similarly, the solid blue line provides the shape of the value 

function derived from the coverage limit selection in the range of potential losses related to 

selecting a low coverage limit (set at losses greater than 20 percent of the property value for this 

example). The dotted lines show how these preferences would extend toward more severe losses 

for the deductible and less severe ones for the coverage limit. 

Several compelling explanations to Rabin (2000) and Rabin and Thaler (2001) have 

emerged regarding why households’ preferences differ so substantially across low and high 

                                                 
25 Using CRRA, 75 percent would not insure; using CARA 78 percent would not insure; and using our main 

model with the power function, no one would insure. 
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stakes. We consider two for which our present study can provide some empirical evidence: 

Are households’ preferences due to consumption commitments (Chetty and Szeidl, 2007)? 

And do households’ preferences follow more mathematically complex value functions 

such as expo-power utility (Holt and Laury, 2002)? 

4.1 Consumption Commitments 

Households’ preferences may be due to budget or liquidity constraints.  For example, 

Chetty and Szeidl’s (2007) theory of consumption commitments posits that households’ 

budgets comprise fixed liabilities (e.g., rent or a mortgage for housing) and discretionary 

consumption (e.g., food, entertainment) and the two categories are treated as additively 

separable sources of utility. They find that fixed liabilities account for over 50 percent of 

the average household’s budget. Large shocks lead to adjustments in fixed liabilities; 

however, such adjustments can be costly so small shocks are fully born by discretionary 

consumption. These conditions lead to a kinked value function in which households 

demonstrate higher levels of risk aversion when the stakes are small than when they are 

large. 

We exploit variation in property values in our data to assess for empirical evidence that 

households’ preferences for low deductibles are explained by consumption commitments. 

While Chetty and Szeidl’s (2007) describe consumption commitments as a percent of 

income, all households in our data face the same deductible menu. As a household’s 

income grows, the utility loss of paying an insurance deductible (of say $500) would be 

expected to decrease because it represents a smaller proportion of the household’s 

discretionary consumption. This argument predicts that (risk averse) households with 

higher incomes would select higher deductibles in this program. Using property value as a 

proxy for income, we find no consistent relationship between households’ deductible 

choices and their property values (shown in Figure 4). Households with high and low 

property values prefer low deductibles – 94 percent of households choose either the $500 

or $1,000 deductible.26 We conclude that such commitments may influence households’ 

                                                 
26 We also estimate an ordinal logit model using the deductible choice and property value (in $10,000) for 

household 𝑖: 𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒𝑖 = 𝛼𝑗 + 𝛽 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑉𝑎𝑙𝑢𝑒𝑖 + 𝜀𝑖 where 𝛼𝑗 are 𝐶𝑜𝑢𝑛𝑡𝑦 ×  𝑌𝑒𝑎𝑟 fixed effects. We 

find a statistically significant negative (but perhaps not economically meaningful) relationship between 
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decisions in our data, but our results do not seem to be explained by consumption 

commitments.  

 

Figure 4 Boxplot and Jitter Plot of Households' Deductible Choices and Property Values 

Note: The left figure provides a boxplot of household deductible choices and property values. The 

solid line in the center of each box shows the median property value, the upper and lower edges of 

the box provide 25th and 75th percentiles, and the solid lines extend to 1.5 times the interquartile 

range, the distance between the 25th and 75th percentiles. Dots outside of these lines identify 

individual outliers. The right figure shows individual observations of deductible choices and 

property values. 

 

4.2 Expo-Power Utility 

Holt and Laury (2002) suggest that households’ seemingly inconsistent preferences across 

low and high stakes might be explained by a value function that accounts for both absolute 

and relative risk aversion. They examine risk aversion in the lab using payoffs ranging 

from several dollars to several hundred dollars. They use an “expo-power” utility function 

(Saha, 1993), which can accommodate a variety of combinations of relative and absolute 

risk aversion. Participants in their study exhibit a combination of increasing relative risk 

aversion, which helps explain decisions related to low stakes payoffs, and decreasing 

absolute risk aversion, which helps explain decisions related to larger lab payoffs. 

                                                 
property values and deductible choices, an odds ratio of 𝛽 = 0.986 (𝑠. 𝑒. = 0.0013, 𝑧 = −10.22, 𝑝 <
0.01). A $10,000 increase in property value increases the log odds of selecting a lower deductible by 0.014. 
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We test Saha’s (1993) expo-power utility 

𝑢(𝑤) = − exp(−𝜏𝑤𝜓)          (6) 

with parameter restrictions 𝜏, 𝜓 ≠ 0 and 𝜏𝜓 > 0. This model requires an assumption that 

economic agents are risk averse and that certain combinations of absolute and relative risk 

aversion are infeasible (e.g., a household cannot demonstrate both constant absolute risk 

aversion and constant relative risk aversion, Saha, 1993). Parameter 𝜏 = 1  describes 

constant absolute risk aversion, 𝜏 < 1  decreasing absolute risk aversion, and 𝜏 >

1 increasing relative risk aversion. Parameter 𝜓 < 0  indicates decreasing relative risk 

aversion and 𝜓 > 0 increasing relative risk aversion. 

We estimate this model without allowing for probability distortions. The only models for 

which households demonstrate positive CARA and CRRA coefficients in our data are those 

in which we assume that households make decisions based on objective probabilities. 

Neither Saha (1993) nor Holt and Laury (2002) allow for probability distortions in their 

analyses. 

This more complex value function does not explain the preference inconsistency we find 

in our data, either. Similar to Holt and Laury (2002), we find that households demonstrate 

increasing relative risk aversion and decreasing absolute risk aversion for both deductible 

and coverage limit decisions (see Table 5); however, while they find that this model leads 

to consistent preferences across low and high stakes in the lab, we conclude that 

households’ preferences are inconsistent based on the large difference in the parameter 

related to relative risk aversion 𝜓 , resulting in 𝑧𝑎,𝜓 = 268.9, 𝑝 < 0.01 . Households’ 

deductible and coverage limit selections lead to a difference in the parameter capturing 

absolute risk aversion 𝜏 of 𝑧𝑎,𝜏 = 2.26, 𝑝 = 0.02.27 

                                                 
27 Given the limitations of our test statistic (described in Section 2.3), this value of 𝑧𝑎,𝜏 is sufficiently close 

to the critical value of 1.96 that we would want to conduct additional analyses before making definitive 

conclusions about whether 𝜏 differs for deductible and coverage limit decisions. The large differences in 𝜓 

are sufficient to reject the null hypothesis that households’ preferences are consistent under expo-power 

utility and so we do not pursue these additional tests. 
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Table 5 Parameters Estimates for Expo-Power Utility Function 

 𝜏 𝜓 Log-likelihood 

Deductible 1.30E-05  1.32  -166,520 

 (2.33E-06) (0.0005)  

Coverage limit 7.74E-06  1.11  -540,780 

 (7.10E-09) (0.0006)  

Note: Table compares MLE of model parameters derived from household deductible and coverage 

limit decisions for expo-power utility. Standard errors in parentheses. Saha (1993) proposes an 

expo-power utility function that allows for a combination of absolute and relative risk aversion, 

shown in Equation 6. Number of observations: 103,084. 

5 Conclusion 

We estimate households’ risk preferences based on their flood insurance contract 

selections. Deductible selections provide an indication of households’ preferences 

regarding small stakes losses; coverage limit selections indicate preferences regarding 

large stakes losses. We find that both value functions and probability distortions help 

explain households’ decisions under risk. Their behavior follows two of the tenants of 

prospect theory: households demonstrate diminishing sensitivity to losses and overweight 

small probabilities. However, for all value functions and probability distortion functions 

that we test, including those from cumulative prospect theory, households’ preferences are 

inconsistent across their deductible and coverage limit decisions. Households’ deductible 

selections demonstrate much greater diminishing sensitivity to losses and overweighting 

of small probabilities when compared to their coverage limit choices. These findings 

suggest that estimates of household preferences are a function of the range of outcomes in 

which they are measured and so motivate caution when extrapolating from research 

findings on low stakes to high stakes outcomes, or vice versa.  

Our results follow both previous findings that households exhibit a strong desire to protect 

against small stakes risks (Cutler and Zeckhauser, 2004; Kunreuther, Pauly and 

McMorrow, 2013; Sydnor, 2010) and findings that households’ attitudes toward large 

stakes risks result in single digit coefficients of relative risk aversion in the expected utility 

of wealth model (Weber, 1970; Friend and Blume, 1975; Szpiro, 1986; Chetty, 2006; 
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Gourinchas and Parker, 2006; Barro and Jin, 2011). Our context stands out as one that 

facilitates making low and high stakes choices in concert as they are part of a single contract 

covering a continuum of losses, yet households seem to treat them as separable decisions 

toward which they have differing attitudes.  

The causes of these preference inconsistencies require clarification through additional 

research. Households’ value functions and probability distortion parameters may be 

context-specific. Alternatively, other salient factors may differ when households make low 

and high stakes decisions with decision rules that are not considered in the models that we 

test. For example, a substantial literature describes the methods by which individuals 

simplify complex problems such as elimination by aspects (Tversky, 1972), 

lexicographical models (Fishburn, 1974), and conjunctive screening rules (Payne, 1976) 

that may be relevant here. In this spirit, Rabin and Thaler (2001) attribute households’ 

decisions, at least in part, to choice bracketing (Read, Loewenstein, and Rabin, 1999) in 

which households treat decisions in isolation rather than jointly, often overlooking 

tradeoffs between decisions. Coverage limit and deductible selections represent a tradeoff 

in premium dollars. About one fifth of the households in our data select a low deductible 

and partially insure their homes.28 For the same premium, they could increase both their 

deductible and their coverage limit, reducing their financial exposure to the most severe 

events. Whether public policies would be effective that make this tradeoff more explicit 

during the contract selection process depends on the on the cause of these inconsistencies. 

Similarly, the causes of households’ probability distortions determine the effectiveness of 

policies to reduce these distortions such as increasing information on the likelihood of 

certain types of floods. We are unable to differentiate between distortions caused by 

overweighting versus those from misperceiving of small probabilities. Previous research 

suggests that individuals both overweight and overestimate small probabilities. Individuals 

                                                 
28 About one-fourth of households in our data only partially insure their homes but continue to choose low 

deductibles: 91 percent select either the $500 or $1,000 deductible (compared to 94 percent for the entire 

sample).  
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who are given objective probabilities tend to overweight outcomes with small probabilities 

when making decisions (e.g., Tversky and Kahneman, 1992). Also, recent evidence from 

surveys of New York City households who are vulnerable to flood shows that households 

misperceive small probabilities, overestimating the likelihood of a flood event but 

underestimating the expected damage caused by flood (Botzen, Kunreuther, and Michel-

Kerjan, 2015). 

Finally, we highlight two limitations of our analyses. First, showing inconsistency requires 

assuming some household value function and so we cannot rule out the possibility that 

households may maximize some unconsidered function. We have instead shown 

inconsistency focusing on the most frequently used value functions. Second, while a 

notable portion of U.S. households participates in the flood insurance program (which 

insures more than 5 million policies a year), our sample consists of households residing in 

areas vulnerable to flood who insure against this hazard. Understanding individuals’ risk 

attitudes when confronted with low-probability, high-consequence events is a relevant area 

for research but the extent to which the findings from this study generalize to the many 

decisions households make regarding a variety of risks they face needs to be validated 

empirically. These points motivate additional research in other contexts regarding the 

consistency of household preferences across small and large stakes. 

6 Appendices  

6.1 Appendix 1: Testing modeling assumptions and sensitivity 

Recent papers that use insurance data to assess risk preferences such as Sydnor (2010) and 

Barseghyan et al. (2011, 2013) consider several alternative explanations for their results. 

For example, Barseghyan et al. (2013) first test a structural model similar to ours and as a 

robustness test use Markov Chain Monte Carlo simulation, which allows them to assess 

heterogeneity in preferences across households. They find that both approaches lead to 

similar conclusions. Sydnor discusses a variety of alternatives to the assumption that 

insurance contract decisions are guided by households’ risk preferences including 

borrowing constraints, the influence of sales agents, and menu effects. He provides a 
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rationale or evidence that each alternative does not negate the ability to assess preferences 

through insurance contract choices.  

In this section, we focus on assessing the sensitivity of our results to aspects of our data 

that have not been discussed in previous literature. First, we consider whether household 

coverage limit selections are influenced by certain flood insurance program requirements, 

which might interfere with deriving household preferences from their insurance contracts. 

Second, we examine household preference consistency in a FEMA-defined flood zone with 

higher annual flood probabilities than those for our core sample. Third, we compare our 

probability distortion estimates derived with Chebyshev polynomials to those in which we 

fit commonly used probability distortion models (e.g., Tversky and Kahneman, 1992). 

Fourth, we exclude households that purchased coverage limits greater than replacement 

cost and re-estimate our core results. 

6.1.1 Coverage Limit Selection 

Households are required to insure against flood if they have a federally backed mortgage 

and live in a zone in which FEMA estimates of annual flood risk probabilities exceed one 

percent. While this mortgage requirement is not consistently enforced (Dixon et al., 2006), 

contracts would not reflect household preferences if, say, lenders determined coverage 

limits (e.g., required that households fully insure their homes). 

We compare coverage limit selections for our core sample, which are subject to the federal 

requirement to insure, with households that participate in the program but live in a zone 

not subject to the federal requirement. Figure 5 compares the distribution of coverage limits 

for our core sample (labeled “Federal Requirement”) and the less vulnerable group (labeled 

“No Requirement”). Their coverage limit selections are remarkably similar, and so would 

seem to support the assumption that contract coverage limits reflect household preferences. 
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Figure 5 Coverage Limits Selected in Zones Where Insurance is Required vs. Voluntary 

Note: The figure compares coverage limit selections for households that live in a zone in which the 

federal government requires that households with federally backed mortgages insure with a zone 

in which households are not required to insure. 

6.1.2 Assessing Preferences in a Higher Risk Area 

We also test our main results in an area with a higher probability of flooding. Since a great 

deal of research regarding decision making under risk, especially lab research, considers 

events with likelihoods greater than the average annual claim rate of 1.4 percent in our 

data, we want to guard against the possibility that our results are a byproduct of examining 

relatively rare events. 

Our data also include a population that is vulnerable to inundation as well as wave damage 

(dwellings located in FEMA-defined V zones) and their average annual claim rate is 4.7 

percent, over three times higher than that of our core sample. This claim rate is similar to 
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Sydnor (2010) and Barseghyan et al. (2011) who test homeowners insurance purchase 

decisions. 

We find that households in the higher risk zone also demonstrate inconsistent preferences 

(shown in Table 6, Part A). Using the power function, deductible decisions reveal much 

greater diminishing sensitivity than those derived from the coverage limit, 𝜃 = 3.8E-07 and 

𝜃 = 0.30 (𝑧𝑎 = −32.89, 𝑝 < 0.01). Both estimates are smaller compared to households’ 

decision in the lower-risk zone, indicating greater diminishing sensitivity to losses.  

While households in this sample also overestimate small probabilities, we observe a 

different pattern in probability distortions compared to our main results. Compared to our 

main sample, these models show a larger intercept 𝛽0  and a smaller scalar 𝛽1 , which 

indicate that households more greatly overweight all probabilities in this range of outcomes 

but are less sensitive to changes in the objective probabilities. For example, for our main 

sample, the model of household deductible decisions using the power value function yields 

estimates 𝛽0 = 0.08  and 𝛽1 = 10.07  whereas in this sample they are 0.144  and 3.51 . 

Taken together, this pattern is suggestive of the S-shaped probability distortions frequently 

found in laboratory settings (e.g., Gonzalez and Wu, 1999): at smaller probabilities, we 

find a steep slope that flattens as probabilities grow. Part B of Table 6 provides the results 

for the other value functions that we discuss in Section 3 and leads to similar conclusions 

as the discussed results from Part A. 
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Table 6. Parameter Estimates Across Models for High Risk Zone 

 

Value Function 

Parameter(s) 

Probability Distortion 

Parameters  

Part A: Core Results 

  𝜃 𝛽0 𝛽1 

Log- 

likelihood 

      

Deductible  5.18E-07 0.145 3.49 -7,982 

  (4.74E-08) (0.0043) (0.092)  

Coverage limit  0.296 0.178 2.51 -26,986 

  (0.009) (0.0045) (0.349)  

      

Part B: Other Value Functions 

  𝜌 𝛽0 𝛽1 

Log- 

likelihood 

CRRA Utility      

Deductible  -23.37 0.102 3.44 -8,149 

  (1.36) (0.005) (0.121)  

Coverage limit  -4.12 0.099 2.53 -27,139 

  (0.178) (0.0036) (0.227)  

      

CARA Utility  𝜂    

Deductible  -4.4E-04 0.221 3.76 -8,032 

  (9.47E-06) (1.54E-05) (2.63E-04)  

Coverage limit  -1.6E-05 0.059 0.99 -27,276 

  (5.09E-07) (0.0014)   (0.174)  

      

Reference Dependent Preferences 

 𝛿 𝜃    

Deductible 0.54 0.34 0.151 3.28 -7,933 

 (0.007)  (0.011)  (0.003)  (0.0713)  

Coverage limit 0.79 0.41 0.178 2.05 -27,016 

 (0.025) (0.011) (0.006) (0.570)  

Note: Table compares MLE of model parameters derived from deductible and coverage limit 

decisions across value functions for households vulnerable to both inundation and wave damage 

(the V zone). For core results (which use a power function, shown in Equation 2) and the reference 

dependent preferences model, values for 𝜃 of less than 1 indicate diminishing sensitivity to losses. 

For the utility theory value functions, negative values for the coefficient of relative risk aversion 𝜌 

and the coefficient of absolute risk aversion 𝜂 also indicate diminishing sensitivity to losses (i.e., 

risk seeking). Parameters 𝛃 show probability distortions 𝛺 = 𝛽0 + 𝛽1𝛱 where 𝜋 is the objective 

probability. For CRRA utility, we assume that a household’s wealth is the home’s replacement cost 

plus $1. The reference dependent preferences model treats insurance premiums and flood 

outcomes as additively separable and weights flood outcomes by 𝛿 (Kőszegi and Rabin, 2006, 
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2007). Section 2.2 provides specific functional forms for the power function. Appendix 2 provides 

functional forms for CRRA, CARA, and the reference dependent preferences model that we 

use.  Number of observations: 5,397. 

6.1.3 Comparisons to Commonly Used Probability Distortion Models 

We also test our probability distortion estimates by comparing them to probability 

distortion models proposed by Tversky and Kahneman (1992), Prelec (1998), and 

Gonzalez and Wu (1999). We use MLE to fit our power function and these probability 

distortion models. Appendix 2 provides functional forms for each model. Each model 

assumes an intercept at the origin and so it is unclear how closely they will align with our 

results since we consistently find a positive intercept (𝛽0 > 0 in Table 3) in the range of 

outcomes that we observe. 

Figure 6 compares the estimated distortions for these models. Probability distortions 

estimated from coverage limit decisions are shown using solid lines; distortions related to 

deductible selections are shown in dotted lines. The lines designated “Polynomial” use our 

estimates from the Chebyshev polynomials (a quadratic model for deductible decisions; 

and a linear model for coverage limit decisions). 

Regarding deductible selection, the MLE parameters for the Prelec and Gonzalez-Wu 

models closely align with the probability distortions we estimate using the Chebyshev 

polynomials. For objective probabilities in the range of 0.003 to 0.01, these lines are 

particularly close. Differences in the distortions that these models estimate are about 0.01 

in magnitude. For coverage limits, these models are also similar to our polynomial 

estimates in the tail of the distribution (the far left in the figure), but diverge somewhat as 

probabilities increase. This left tail signifies the largest losses, which are most relevant for 

coverage limit decisions. Tversky-Kahneman probability distortions do not tend to fit the 

deductible or coverage limit decisions as well as the other distortion models tested. For 

example, for deductible selection, the Tversky-Kahneman distortions are about half as 

large as those of the other models for objective probabilities around 0.01. This poorer fit is 

likely due to degrees of freedom: The Tversky-Kahneman probability distortion model 

includes a single parameter while Prelec and Gonzalez-Wu models include two parameters. 
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Figure 6 Comparisons of Probability Distortion Models 

Note: Figure compares several probability distortion models for household deductible and coverage 

limit decisions. Model parameters are fit using MLE and the power value function in Equation 2. 

The lines marked “Polynomial” estimate probability distortions using Chebyshev polynomials. The 

others use probability distortion models proposed by Tversky and Kahneman (1992), Prelec (1998), 

and Gonzalez and Wu (1999). 

6.1.4 Assessing Preferences of Households Who Do Not Over-Insure 

We also test the possibility that our finding of inconsistency is due to the behavior of 

households who purchase a coverage limit greater than their home’s replacement cost. We 

believe that these households intended to cover their home’s replacement cost and 

purchased higher coverage limit in case their replacement cost estimate was too low. 



Risk Preference Inconsistencies 

 
43 

Perhaps instead they misunderstood the contract and if so, it would not be valid to derive 

these households’ risk preferences from the purchase. 

We exclude these over-insurers and re-estimate our core results, shown in Table 7. Our 

findings are unchanged: in both decisions households demonstrate diminishing sensitivity 

to losses and overweight small probabilities; their deductible decisions indicate greater 

diminishing sensitivity to losses and overweighting of small probabilities than those from 

the coverage limit (𝑧𝑎,𝜃 = −59.01, 𝑝 < 0.01; 𝑧𝑎,𝛽0
= 31.82; 𝑝 < 0.01; 𝑧𝑎,𝛽1

= 65.19,

𝑝 < 0.01). Excluding over-insurers has very little effect on our parameter estimates for the 

deductible decision (e.g., 𝜃 = 0.041 here versus 𝜃 = 0.036 for the full sample). 

Differences are greater for our parameter estimates derived from the coverage limit, as 

might be expected since we are excluding a set of households based on their coverage 

limits. In these data, households demonstrate less diminishing sensitivity to losses (e.g., 

𝜃 = 0.585 here versus 𝜃 = 0.413 for the full sample). Returning to our example of change 

in a high stakes loss makes the household indifferent with incurring a $1,000 change in 

loss when the stakes are low 

𝑣($2,000) − 𝑣($1,000) = 𝑣(𝑥) − 𝑣($101,000), 

here, we find 𝑥 = $106,782 (compared to $113,475 for the full sample). 

Our estimates of probability distortions derived from the coverage limit decision using 

these data also differ from those using the full sample. Our distortion model of households’ 

cumulative flood loss probability distribution Π follows Ω = 𝛽0 + 𝛽1Π. In the full sample 

we find that households overweight these changes in objective probabilities by a factor of 

four (𝛽1 = 4.27); however, in this subsample our estimates suggest that households are 

less sensitive to these change: transformed probabilities change at the same rate as 

objective ones ( 𝛽1 = 0.978  which is not statistically different from 1). The positive 

intercept of 𝛽0 = 0.031  in this sample results in households overweighting the small 

probabilities studied here. These probability distortions applied to the median annual claim 

rate of 1.4 percent indicate a transformed probability of 4.47 percent, over three times the 

actual rate. 
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Table 7 Parameter Estimates for Households Who Do Not Over-Insure 

 

Value Function 

Parameter(s) 

Probability Distortion 

Parameters  

 

  𝜃 𝛽0 𝛽1 

Log- 

likelihood 

      

Deductible  0.041 0.076 10.63 -90,707 

  (0.006) (0.001) (0.063)  

Coverage limit  0.585 0.031 0.98 
-342,242 

  (0.007) (0.001) (0.134)  

Note: Table compares MLE of model parameters derived from household deductible and coverage 

limit decisions across behavioral models. Standard errors in parentheses. The value function is a 

power function shown in Equation 2. Parameters 𝛃 show probability distortions Ω = 𝛽0 + 𝛽1Π 

where Π is the cumulative objective probability. Number of observations: 66,732. 

6.2 Appendix 2: Value Functions and Probability Distortion Models 

This appendix provides the functional forms for the value functions and probability 

distortion models used in the analyses. 

6.2.1 Value Functions 

Constant Relative Risk Aversion. CRRA utility takes the form 

𝑢(𝑤) = {

1

1 − 𝜌
𝑤1−𝜌       𝜌 ≠ 1

ln(𝑤)                  𝜌 = 1

 

𝑠. 𝑡. , 𝑤 > 0 

where 𝜌  is the Arrow-Pratt coefficient of relative risk aversion. This model subtracts 

losses, insurance premiums, etc., from wealth for insurance problems (Mas-Colell et al., 

1995). Individuals are said to be “risk averse” if 𝜌 > 0 and “risk seeking” if 𝜌 < 0. 

Here, we show that risk aversion is synonymous with an increasing sensitivity to losses 

and risk seeking with a diminishing sensitivity to losses. Let the value 𝑤 represent some 
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initial wealth 𝑤0 minus losses, 𝑤 = 𝑤0 − 𝑙, The first and second derivative with respect to 

𝑙 are 

𝜕𝑢

𝜕𝑙
= −(𝑤0 − 𝑙)−𝜌 

𝜕2𝑢

𝜕𝑙2
=  −𝜌(𝑤0 − 𝑙 )−(1+𝜌) 

The first derivative is negative: individuals dislike larger losses. The second derivative is 

positive if 𝜌 < 0 and negative if 𝜌 > 0.  

Constant Absolute Risk Aversion. CARA takes the form 

𝑢(𝑤) = −𝑒−𝜂𝑤  

where 𝜂  is the constant absolute coefficient of risk aversion and 𝜂 > 0 is called “risk 

aversion” and 𝜂 < 0 is called “risk seeking.” 

Reference-Dependent Preferences. Kőszegi and Rabin (2006, 2007) distinguish between 

the cost of a purchase that households expect to make and an uncertain cost, treating them 

as additively separable with only the latter subject to loss aversion. That is, let 𝑝 represent 

insurance premiums and 𝑦  represent probabilistic costs such as flood losses and 

deductibles. These lead to the value function 

𝑣 = −𝑝𝜃 − ∫ 𝛿𝑦𝜃 𝜔(𝑦)  𝑑𝑦 

= −𝑝𝜃 − 𝛿 (∫ 𝑙𝜃 𝜔(𝑙)
𝑑

0

+ ∫ 𝑑𝜃 𝜔(𝑙) + ∫ (𝑑 + 𝑙 − 𝑐)𝜃 𝜔(𝑙)
𝑐̅

𝑐

𝑐

𝑑

)     𝑑𝑙 

where 𝛿  represents the differential weighting of uncertain outcomes relative to certain 

ones, 𝜃 describes the curvature of the value function, 𝜔 is a probability weighting function, 

𝑑 the deductible, 𝑐 the coverage limit, and 𝑙 flood losses. The first row in this equation 

shows this value function generally with the second row applying it to the specific 

outcomes of our insurance problem. 

Expo-power Utility. Saha (1993) proposes a mode of expo-power utility 
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𝑢(𝑤) = − exp(−𝜏𝑤𝜓) 

where 𝜏, 𝜓 ≠ 0 and 𝜏𝜓 > 0. Saha notes that this model requires an assumption of risk 

averse households, and that certain combinations of absolute and relative risk aversion are 

infeasible (e.g., a household cannot demonstrate both constant absolute risk aversion and 

constant relative risk aversion). Parameter 𝜏 = 1 describes constant absolute risk aversion, 

𝜏 < 1  indicates decreasing absolute risk aversion, and 𝜏 > 1 increasing relative risk 

aversion. Parameter 𝜓 < 0 indicates decreasing relative risk aversion, 𝜓 > 0 increasing 

relative risk aversion. 

6.2.2 Probability Distortion Models 

We provide the specific functional forms for commonly used probability distortion models 

tested in Section 4.3. Each of these models transforms cumulative probabilities in the 

manner described by Quiggin (1982). 

Tversky-Kahneman Probability Distortions. Tversky and Kahenman (1992) propose a 

single parameter probability distortion model. Rather than transforming individual 

probabilities as proposed in Kahneman and Tversky (1979), it transforms the cumulative 

distribution, which addresses problems related to indirect violations of stochastic 

dominance as described by (Quiggin, 1982). Their proposed probability distortion function 

is 

𝜔(𝜋) =
𝜋𝛾

(𝜋𝛾 + (1 − 𝜋)𝛾)1/𝛾
 

where 𝛾 is a model parameter, and 𝜋 objective probabilities. 

Prelec Probability Distortions. Prelec (1998) proposes a two parameter model to explain 

individuals’ behavior related to the common-ratio effect (Allais, 1953). The common-ratio 

effect notes that when comparing two gambles, one with a lower probability but higher 

payout than the other, individuals perceive the attractiveness of the riskier gamble to 

increase as the odds decrease in equal proportion. Expected utility theory using objective 
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probabilities cannot explain this behavior. Prelec proposes a model of probability 

distortions as an explanation 

𝜔(𝜋) = 𝑒−𝜈(− ln(π))γ
 

where 𝛾 and 𝛿 are model parameters. 

Gonzalez-Wu Probability Distortions. Gonzalez and Wu (1999) propose a model that 

accounts for two potential features of probability distortions: one is how individuals 

discriminate probabilities 𝛾, a second the attractiveness of gambling 𝜈. They test their 

model in lab settings in the domain of gains. Their proposed probability distortion function 

is 

𝜔(𝜋) =  
𝜈𝜋𝛾

𝜈𝜋𝛾 + (1 − 𝜋)𝛾
. 

Karmakar’s (1978) probability distortion model represents a special case in which 𝜈 = 1. 

6.3 Online Appendix: Estimating Policyholder Risk 

This appendix describes our approach to modeling the claim rates and loss distributions of 

policyholders. 

6.3.1 Claim Rates 

We assume that policyholders rely on the same information as the flood insurance program 

in estimating their flood risk. The included observables are those used in determining flood 

insurance premiums, which Table 8 lists and defines. 

The flood insurance program considers whether a home was built before its flood insurance 

rate maps (FIRM) were developed. Zoning regulations and building codes intend to reduce 

vulnerability in designated flood hazard areas and so flood claims and losses may 

substantially differ depending on whether a home was built pre- or post-FIRM. We model 

flood risk separately for pre- and post-FIRM dwellings.  
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Table 9 provides the results of the panel logit model of household claim rates. These results 

are consistent with previous research. For example, Kousky and Michel-Kerjan (2015) find 

in their assessment of NFIP claims that a community’s Community Rating System score, 

the number of floors in a home, its elevation, and whether it has a basement all statistically 

significantly influence flood claims and in qualitatively similar ways to our findings. 

Table 8. Explanatory Variables Used in Regressions 

Explanatory 

variables 

Description 

Deductible Menu options include $500, $1,000, $2,000, $3,000, $4,000, and $5,000. 

Coverage Value of the property coverage limit in $100s. Maximum coverage limit: 

$250,000 

CRS class The community’s score on the Community Rating System (CRS). The CRS is a 

voluntary program that rewards communities for taking actions to mitigate flood 

risk beyond minimum NFIP requirements. Community actions reduce 

policyholder premiums by up to 45%. CRS class is the associated premium 

reduction, ranging from 0 to 45. 

Basement Binary, based on whether the property has a basement 

Obstruction 

binary 

Binary, indicates whether an elevated building has an enclosed area and/or 

machinery attached to the building below the lowest floor.  

Obstruction 

information 

The type of obstruction. Values range from 0 to 100. Low values indicate no 

obstruction; high values indicate a permanent obstruction. For example, a high 

value would be earned for an obstruction with non-breakaway walls and 

machinery attached to the building. 

Elevation 

binary 

Binary, indicates that elevation data are available and provided by the NFIP. If 

an elevation estimate is unavailable or if the policyholder has an elevation 

certificate from a contracted engineer, this variable takes a value of zero.  

Elevation 

certificate 

binary 

Binary, indicates that elevation estimates were collected by a contracted 

engineer.  

Elevation 

information 

An estimate of the elevation in feet of a policyholder’s home relative to the 100 

year floodplain. In its premium, calculations the NFIP caps the low and high 

elevation at -2 and 5 feet, respectively, and we do so here. 

Permanent Binary, takes a value of 0 if the structure is a manufactured or mobile home, 1 

otherwise. 

Floors Number of floors in the home, taking three possible values: 1, 2, or 3+ 

Note: More information can be found on these variables from NFIP (2006). 
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Table 9. Claim Rate Regressions 

 Zone A, Pre-FIRM Zone A, Post-FIRM 

Constant -3.978*** 

(0.022) 

-5.121*** 

(0.045) 

Deductible (reference group: $500)   

$1,000 -0.261*** 

(0.007) 

-0.315*** 

(0.011) 

$2,000 -0.582*** 

(0.017) 

-0.321*** 

(0.037) 

$3,000 -0.602*** 

(0.031) 

-0.350*** 

(0.067) 

$4,000 -0.797*** 

(0.053) 

-0.657*** 

(0.145) 

$5,000 -1.148*** 

(0.013) 

-0.954*** 

(0.029) 

Coverage -2.06E-04*** 

(3.88E-06) 

-3.42E-04*** 

(5.99E-06) 

CRS Class -0.026*** 

(3.88E-04) 

-0.056*** 

(0.001) 

Basement -0.020** 

(0.009) 

-0.371*** 

(0.018) 

Obstruction binary 0.245*** 

(0.006) 

0.396*** 

(0.009) 

Obstruction information: Obstruction binary 0.235*** 

(0.010) 

0.169*** 

(0.015) 

Elevation binary 0.303*** 

(0.009) 

1.373*** 

(0.036) 

Elevation information: Elevation binary -0.302*** 

(0.004) 

-0.201*** 

(0.003) 

Elevation certificate binary 0.293*** 

(0.009) 

0.100* 

(0.052) 

Elevation information: Elevation certificate 

binary 

-0.804*** 

(0.014) 

-0.644*** 

(0.052) 

Permanent 0.039* 

(0.022) 

0.216*** 

(0.029) 

Permanent: Floors 0.164*** 

(0.006) 

0.079*** 

(0.008) 

Log likelihood - 888,194                    - 380,030                    

Observations 9,108,133 6,171,368 

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Logit panel regression model with random effects.  Standard errors 

in parentheses.  
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6.3.2 Loss Distributions 

We model household losses beginning with an examination of the loss distribution, 

examining losses for all households in the same flood risk category concurrently. From this 

approach, we find that our flood loss distributions are approximately log-normal. Finally, 

we fit the parameters of the log-normal distribution for each household based on its 

observables. 

6.3.2.1 Parametric distributions 

This section compares parametric specifications for modeling flood losses. Throughout, 

we use A zone, pre-FIRM as an example. 

Given a claim event, the distribution of potential property losses is influenced by the type 

of event that occurs: events that affect many policyholders result in larger expected losses 

for each policyholder. We model observations as a mixture of two loss generating 

processes: (1) isolated loss events, floods affecting an individual or small group of 

policyholders (e.g., due to unusually heavy, localized rain), or (2) correlated loss events, 

losses due to a storm, hurricane, etc., affecting many policyholders. We define a correlated 

loss event as an observation of at least 30 claims with a date of loss on the same day in the 

same state. That event continues for each consecutive day with at least 30 claims in the 

same state. The 30 claims threshold is located at the 95th percentile of the distribution of 

claims by date of loss by state. In other words, for any date on which a flood loss occurs, 

95 percent of the time the number of claims is less than 30. These criteria create 1,319 

correlated loss events out of a total of 635,220 flood insurance claims occurring between 

1982 and 2009. All observations that are not associated with a correlated loss event are 

considered an isolated loss event. 

Observations from isolated loss events are weighted by 

𝜙ℎ =   
𝜋ℎ̅̅ ̅

𝑛ℎ
 



Risk Preference Inconsistencies 

 
51 

where 𝜋ℎ̅̅ ̅ describes the average across years of the percent of claims generated by isolated 

loss events and 𝑛ℎ indicates the total number of claims generated by isolated loss events 

(𝑛ℎ = 85,075). On average, 22 percent of claims are generated by correlated loss events. 

Observations for correlated loss events are weighted by 

𝜙𝑚,𝑗 =
(1 − 𝜋ℎ̅̅ ̅ ) 

𝑛𝑚 ∗  𝑛𝑚,𝑗  
 

where 𝑛𝑚 indicates the total number of correlated loss events and 𝑛𝑚,𝑗 indicates the total 

number of claims generated by correlated loss event j. 

These weights provide empirical loss distributions for the isolated and correlated loss 

events. No time trends are present in the means and variances of the empirical loss 

distributions across years: regressing respectively the mean and variance of losses as a 

percent of the property value by year on time results in non-significant F-statistics of 0.89 

and 0.60. 

Using the weighted empirical loss distribution, we compare parametric models. We fit 

parametric distributions using maximum likelihood estimation (MLE) and compare models 

using the Anderson-Darling test, Kolmogorov-Smirnov test, and the Akaike Information 

Criterion (AIC). Comparisons consistently indicate that the log-normal is the best fitting 

parametric model; this result is consistent across flood zones. Table 10 provides the results 

for the A zone, Pre-FIRM, correlated loss events distribution for a subset of the tested 

parametric distributions.  
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Table 10. Fit Comparisons Across Parametric Distributions 

 
A-D K-S AIC 

Log-normal 53.41 0.060 -14949.5 

Pareto III 65.61 0.064 -14286.2 

Pareto IV 68.79 0.066 -14364.4 

Pareto II 72.06 0.071 -14322.7 

Generalized Extreme Value 85.10 0.063 -14175.4 

Gamma 143.86 0.100 -13966.1 

Note: The results are for the A zone, Pre-FIRM, correlated loss event data. The Anderson-Darling 

(A-D) and Kolmogorov-Smirnov (K-S) tests and the Akaike Information Criterion suggest that the 

log-normal is the parametric distribution that best fit the loss data.  

 

As a sensitivity test, we generate several alternative distributions: (1) defining correlated 

loss events using a minimum of 10 claims (rather than 30) with the same date of loss in a 

state, (2) using a minimum of 100 claims, (3) treating all claims as independent and equally 

weighted. Deciles from the cumulatives for these distributions are provided in Table 11, 

Columns 1 through 5. Excluding the case in which all losses are equally weighted, the 

distributions are quite similar across approaches. The log-normal results in a slightly 

thicker right tail than the empirical. The equally weighted approach results in the greatest 

probability of large losses due to severe events.  
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Table 11. Cumulative Distributions for A Zone, pre-FIRM 

 

Homogeneous Hetero-

geneous 

 (1) (2) (3) (4) (5) (6) 

Loss 

 (%) 

Log-normal Empirical  

(30 claims) 

Empirical  

(10 claims) 

Empirical  

(100 claims) 

Equally  

weighted 

Log-normal  

10 53.1 55.3 58.0 51.9 40.6 50.6 

20 73.8 71.7 73.9 68.5 55.4 69.0 

30 83.3 80.3 82.1 77.6 64.5 78.0 

40 88.4 86.5 87.9 84.3 71.8 83.5 

50 91.6 90.8 91.6 89.0 77.6 87.1 

60 93.6 93.5 94.0 92.2 81.9 89.6 

70 95.0 95.4 95.7 94.3 85.3 91.5 

80 96.0 96.7 97.0 96.0 88.2 92.8 

90 96.8 97.9 98.0 97.4 91.2 93.9 

Note: Alternative specifications of the cumulative distribution for losses. Losses are measured as a 

percent of the structure’s value. These distributions use the correlated loss event definition of 30 

claims. Columns 1 through 5 report deciles assuming a homogeneous loss distribution across all 

policyholders in the A zone, pre-FIRM. Column 1 reports deciles for the log-normal distribution. 

Columns 2 through 4 report for the weighted non-parametric distribution for which weights are 

based on definitions of the correlated loss events. Columns 2, 3, and 4 respectively use definitions 

of a correlated loss event as a minimum of 30, 10, and 100 claims in the same state on the same 

day. Column 5 reports deciles for the non-parametric distribution using equal weights for all 

observations. Column 6 reports deciles for the median across the log-normal distributions fit for 

each household based on observables. 

6.3.2.2 Household-level loss distributions 

We develop loss distribution estimates for each policyholder using the log-normal 

distribution and our assumption that the loss generating process is a mixture of isolated and 

correlated loss events. Our approach is similar that of Aitkin (1987) and Western and 

Bloome (2009). Aitkin proposes modeling variance heterogeneity as a means to address 

heteroscedasticity. Western and Bloome note that the estimations of these variance models 

may themselves be of interest for research related to within-group differences and so adapt 

Aitkin’s approach as a means to study income inequality. They propose an iterative MLE. 

We use this approach to fit parameters 𝜇 and 𝜎 of the log-normal distribution. Consider the 

two-equation model 
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E[log 𝑙𝑖] =  𝒙𝒊
′𝜷 

log 𝜎𝑖
2 = 𝒙𝒊

′𝝀 

where 𝑙𝑖 ∈ (0,1] is the flood loss as a percent of the home value for policyholder 𝑖, 𝒙𝒊 is a 

vector of policyholder observables, and 𝜎𝑖
2 is the estimated variance in losses for each 

policyholder. We fit the model using an iterative MLE approach: 

1. Estimate 𝜷̂ using a Tobit model, which is right censored at 0, as log 𝑙𝑖 ∈ (−∞, 0]. 

Save the residuals, 𝑒𝑖 = log 𝑙𝑖 − 𝒙𝒊
′𝜷̂    

2. Estimate 𝝀̂ with a gamma regression of the squared residuals 𝑒2, using a log link 

function. Save the fitted values, 𝜎2̂ = exp(𝒙𝒊
′𝝀̂). 

3. Estimate 𝜷̂ using a Tobit model with weights 1/𝜎̂2 and update the residuals. 

4. Repeat steps 2 and 3 until the log-likelihood converges. 

This iterative approach (1) addresses heteroscedasticity in the mean model by weighting 

observations based on the fitted variance, and (2) corrects the standard errors in the 

variance model by increasing the precision of the coefficient estimates from the mean 

model (Western and Bloome, 2009). 

Fixed effects in these regressions account for correlated loss events. We order correlated 

loss events by the number of claims for each event and bin the events every 5 percentiles, 

creating twenty fixed effects across the distribution of correlated loss events (i.e., 

vigintiles). For example, a fixed effect is included for all correlated loss events for which 

the number of claims is below the fifth percentile, another one for events with claims from 

the fifth and to tenth percentiles, etc. 

Table 12 shows the output of the mean and variance models for our core sample (the A 

zone). Its results are also qualitatively consistent with the findings of Kousky and Michel-

Kerjan (2015) with respect to explanatory variables such as elevation, whether the home 

has a basement, and whether the home is permanent or a mobile home.  

Loss observations are associated with a specific event; however, we are attempting to 

estimate each policyholder’s loss distribution across all possible events. That is, for each 

household, we would like the expected loss given the explanatory variables and the 

occurrence of a loss event E[𝑙𝑖|𝑙𝑖 > 0 ∩ 𝒙𝒊]  but the fixed effects model provides an 
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observation given specific event 𝑚𝑗 , E[𝑙𝑖|𝑙𝑖 > 0 ∩ 𝒙𝒊 ∩ 𝑚𝑗] . To address this in our 

probability estimates, we weight each event by its probability in these data. For example, 

the model of log losses can be written as  

log 𝑙𝑖 = 𝛼 + 𝒙𝒊
′𝜷 + 𝑭𝑬′𝜸 + 𝜖𝒊    

where 𝜸 is the vector of coefficients on the fixed effects 𝑭𝑬. The probability from this 

equation can then be written as  

E[log 𝑙𝑖|𝑙𝑖 > 0 ∩ 𝒙𝒊] = 𝜋ℎ̅̅ ̅𝛼 + (1 − 𝜋ℎ̅̅ ̅)(𝛼 + 𝜸)′𝝅𝑭𝑬 + 𝒙𝒊
′𝜷   

where 𝜋ℎ̅̅ ̅ is the probability that an observed loss is generated from an isolated loss event 

(rather than a correlated loss event), and 𝝅𝑭𝑬 are the probabilities for each fixed effect 

event. In this case, each quantile has a 5 percent probability, given that a correlated loss 

event occurs. The term 𝜋ℎ̅̅ ̅𝛼 + (1 − 𝜋ℎ̅̅ ̅)(𝛼 + 𝜸)′𝝅𝑭𝑬  is a constant and provides the 

intercept for the predictive model and so can be used to estimate fitted values for each 

household. The same approach is taken for the variance model. The mean and variance 

estimates for each household are then used to fit parameters of the log-normal distribution.  

Table 11 provides the cumulative loss distribution for the median policyholder at each 

decile following this approach in Column 6. The median of these loss distributions results 

in a slightly higher probability of a total loss than the group-level log-normal (Column 1) 

and the weighted non-parametric distributions (Columns 2–4) but a lower probability than 

the distribution in which all observations are equally weighted (Column 5). 
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Table 12. Models of Flood Loss as a Percent of Home Value 

 A Zone, pre-FIRM A Zone, post-FIRM 

 

Mean Model 

(Tobit) 

Variance Model 

(Gamma, log link) 

Mean Model 

(Tobit) 

Variance Model 

(Gamma, log link) 

Constant -2.102*** 0.772*** -2.188*** 0.818*** 

 (0.028) (0.040) (0.059) (0.059) 

Deductible 

(ref. group: $500) 
    

$1,000 0.361*** 0.038*** 0.171*** -0.137*** 

 (0.007) (0.011) (0.026) (0.025) 

$2,000 0.252*** 0.030 0.124 -0.144* 

 (0.025) (0.038) (0.085) (0.083) 

$3,0000 0.211*** 0.098 0.242* -0.143 

 (0.041) (0.060) (0.145) (0.141) 

$4,000 0.293*** 0.042 -0.074 -0.254 

 (0.068) (0.104) (0.288) (0.299) 

$5,0000 0.323*** 0.150*** 0.032 0.091 

 (0.020) (0.029) (0.070) (0.062) 

Coverage -1.72E-04*** 1.80E-05** -2.10E-04*** -7.00E-05*** 

 (-6.00E-06) (-8.00E-06) (-1.40E-05) (-1.20E-05) 

Elevation binary -0.074*** 0.527*** 0.792*** -0.104*** 

 (0.014) (0.017) (0.020) (0.019) 

Elevation: Elev. binary -0.089*** -0.014* -0.166*** 0.069*** 

 (0.007) (0.008) (0.007) (0.006) 

Basement -0.104*** -0.102*** -0.097*** -0.073*** 

 (0.010) (0.016) (0.029) (0.027) 

Permanent -0.132*** 0.039 -0.555*** 0.382*** 

 (0.028) (0.041) (0.059) (0.059) 

Permanent: Floors -0.288*** -0.079*** -0.356*** -0.022 

 (0.006) (0.009) (0.017) (0.015) 

Log (scale) 0.386***  0.586***  

 (0.002)  (0.004)  

Quantile Fixed Effects Yes Yes Yes Yes 

Log Likelihood -357963.4 -606644.5 -84230.3 -235387.2 

Deviance 452116.2 1124624.9 138670.4 326626.6 

Num. obs. 409179 409179 126014 126014 

Uncensored 391467  117060  

Right-censored 17712  8954  

Wald Test 35366.3  11702.2  

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, Standard errors in parentheses. Models predict the mean and 

variance of flood loss for A zone, pre-FIRM and A zone, post-FIRM. We model flood losses between 1982 

and 2009. Losses as a percent of home value are mean and variance stationary. The mean and variance models 

are fit using an iterative maximum likelihood approach proposed by Aitkin (1987). The mean model is a 

Tobit with a dependent variable of log(loss) where loss is measured as a percent of the structure’s value. 
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They are right censored at 1. The variance model uses the squared residuals of the mean model as a dependent 

variable. In turn, the inverse of the predicted value of the variance model is used to weight observations in 

the mean model. The models provide parameters 𝜇 and 𝜎 for the log-normal distribution and so allow for 

fitting a loss distribution for each policyholder based on observables. Quantile fixed effects describe a set of 

dummies we include to account for major storms. We consider correlated loss events those that affect at least 

30 policyholders in the same state in the same day. Ordering correlated loss events by the number of claims 

that create, we group the correlated loss events in five percentage point intervals (i.e., vigintiles) and include 

a dummy for each group. 
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