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Abstract

To measure the effects of advertising, marketers must know how consumers would

behave had they not seen the ads. We develop a methodology we call ‘Ghost Ads,’

which facilitates this comparison by identifying the control-group counterparts of the

exposed consumers in a randomized experiment. We show that, relative to Public

Service Announcement (PSA) and Intent-to-Treat A/B tests, ‘Ghost Ads’ can reduce

the cost of experimentation, improve measurement precision, and work with modern ad

platforms that optimize ad delivery in real-time. We also describe a variant ‘Predicted

Ghost Ads’ methodology that is compatible with online display advertising platforms;

our implementation records more than 100 million predicted ghost ads per day. We

demonstrate the methodology with an online retailer’s display retargeting campaign,

for which a PSA test would be severely biased. We show novel evidence that retargeting

can work as the ads lifted website visits by 17% and purchases by 11%. Compared to

Intent-to-Treat or PSA experiments, advertisers can measure ad lift just as precisely

while spending at least an order of magnitude less.
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1 Introduction

Marketers need to know the effectiveness of their advertising. Digitization has advanced

this goal by giving marketers unprecedented access to data on clicks, site visits, and online

purchases by individual users who see their ads. While granular measurement is now routine

in digital advertising, the causal measurement of ad effectiveness lags far behind (Lavrakas,

2010). Randomized controlled experiments can be a simple and effective tool for causal

measurement, but current approaches limit their widespread use.

A workhorse approach for advertising effectiveness experiments is the delivery of Pub-

lic Service Announcements (PSAs) to the control group. PSAs identify baseline purchase

behavior among the subset of control users reached by the ads: the experimental ad effect

estimator compares outcomes between people who see the advertiser’s ‘treatment ad’ and

those who see the PSAs. Unfortunately, PSAs are expensive and prone to errors because

they require coordination among advertisers, publishers, and third-party charities. These

costs reduce advertiser’s incentives to learn through experimentation.

Worse, PSA experiments are rendered invalid when marketers use performance-optimizing

computer algorithms to deliver ads. These algorithms use machine learning models to max-

imize user clicks, site visits or purchases. Performance-optimized campaigns break PSA

experiments: to maximize performance of the treatment ad and PSA, the ad platform will

assign different types of users to be exposed to the PSA or treatment ad. However, an exper-

iment is predicated on the symmetry of the treatment and control groups: the experimental

groups must be the same but for the treatment ad. In this case, the PSA-exposed users are

no longer a valid holdout group for the treatment-ad-exposed users. This failure of PSAs is

central for the online display ad industry because two thirds of dollars spent there make use

of performance-optimizing technology (IAB, 2014).

We propose a new methodology for ad effectiveness field experiments: Ghost Ads. Like

PSAs, ‘ghost ads’ identify ads in the control group which would have been the focal advertis-

ers’ ads had the user been in the treatment group. Unlike PSAs, ghost ads are compatible
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with performance-optimizing technology and avoid the costs of PSAs. Instead of PSA ads,

the control group user sees whatever ads the ad platform chooses to deliver when the treat-

ment ad is absent. The Ghost Ad methodology is implemented at the ad platform level.

Normally, the ad platform runs an auction to determine which ad it will show to a user,

then logs these ads in a database. To determine when the focal ad would have been shown

to a user in the control group, the ad platform can run a second, simulated auction that

includes the focal ad in the set of potential ads. The ad platform then logs ghost ad im-

pressions—the would-be focal ad impressions in the control group—in a second database.

Ghost ads are so-named because they make the experimental ads visible to the ad platform

and experimenter but invisible to the control group users. The Ghost Ad method can be

applied across several digital media—e.g. search, online display (including video and radio),

addressable television—whenever consumers can be randomly sorted into treatment groups.

Ghost ads also deliver the relevant baseline behavior in the control group that reflects the

focal advertiser’s strategic environment. The focal advertiser competes with other advertisers

in a marketplace for the attention of consumers. When the focal advertiser exits the mar-

ketplace, many other advertisers take its place including some direct competitors—creating

an externality on the focal advertiser. For instance, advertising can play ‘defensive’ role that

blocks competitors from stealing away consumers in addition to advertising’s ‘offensive’ role

that pulls in consumers. Since PSAs are chosen to be orthogonal to the advertiser, PSA es-

timates ignore the strategic consequences of the competing ads they displace. If advertising

has a defensive role on net, PSAs will understate the total effect of the ads relative to Ghost

Ad estimates.

We propose a second, more robust methodology we call Predicted Ghost Ads to be used in

cases where the ad platform and a downstream firm jointly control ad delivery. For instance,

many online display ad platforms do not fully control ad delivery because the platform

merely suggests an ad to a downstream web publisher, which can reject the ad for many

reasons. A new approach is needed because the naive Ghost Ad approach here misses the
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unobservable cases in the control group where the platform would suggest the focal ad but

the publisher would refuse it. This slippage breaks the symmetry between the focal ads

in the treatment group and the ghost ads in the control group. The Predicted Ghost Ad

methodology preserves this symmetry by running a simulated auction across both treatment

and control group users to determine whether the platform intends to deliver an experimental

ad before determining the real winner in both cases. The ad platform then logs predicted

ghost ad impressions in a another database to flag occasions where the ad platform intends

to serve an experimental ad regardless of the user’s actual treatment assignment. Effectively,

the predicted ghost ads help construct a powerful instrumental variable in order to calculate

the Local Average Treatment Effect (LATE, see Angrist et al. 1996) among users who are

predicted to be exposed to the advertising campaign. We implement the Predicted Ghost Ad

methodology successfully with Google’s online display network, which we demonstrate using

an early application. Now, Predicted Ghosts Ads are broadly used with over 100 million

predicted impressions daily. In follow-up work, we describe the results of over 400 advertiser

field experiments averaging over 5 million users each over a four month period (Authors,

2015).

We apply our Predicted Ghost Ad methodology to show novel evidence that an online

display retargeting campaign generates incremental conversions. The effectiveness of retar-

geting ads is controversial. While consumers who see retargeted ads may have high sales,

this association may not be causal because the exposed users are a highly selected group that

may have purchased anyways. Retargeting could even reduce ad effectiveness if it provokes

reactance in consumers. While Lambrecht & Tucker (2013) and Bleier & Eisenbeiss (2015)

compare the relative performance of different retargeting creatives, we provide the first evi-

dence that retargeting works when compared with a control. We work with an online sports

and outdoors retailer to retarget users who visited product pages on its website. We find

that the retargeting campaign increases website visitors by 26.6% (t=40.38), transactions by

12.0% (t=5.42), and sales by 10.8% (t=3.45). This retargeting campaign was performance-
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optimized and incompatible with PSAs, but our Predicted Ghost Ad methodology succeeds

and demonstrates highly significant lifts.

The paper is organized as follows. Section 2 outlines the design of an ad experiment and

explains the existing PSA and Intent-to-Treat approaches. Section 3 explains the Ghost Ad

methodology and explains how Ghost Ads and PSAs perform as ad platforms have evolved.

Section 4 describes the related Predicted Ghost Ad methodology. In Section 5, we describe

our empirical application and provide evidence that a retargeting campaign can increase

sales. Section 6 outlines some challenges in implementing Ghost Ads. Section 7 concludes.

1.1 Literature review

The high cost of running ad experiments limits their use and affects the form they take. Ghost

ads are designed to eliminate an important cost of experiments—the cost of PSAs—since

this cost makes advertisers reluctant to use PSA tests and willing to sacrifice measurement

precision for smaller control groups. Of the 25 online display experiments at Yahoo! listed

by Lewis & Rao (2015), only 8 use PSAs and the average control group allocation is only

a third of users though an even split maximizes precision. In Hoban & Bucklin (2015), the

advertiser wanted less than 2% of users in the control group. PSA tests—especially those

with even treatment/control splits—often arise out of exceptional circumstances. First, the

ad platform may subsidize an experiment to learn and possibly promote its effectiveness as

in Sahni (2015) or Johnson et al. (2014). Second, advertisers may engage research firms to

design the experiment as in the brand survey studies by Goldfarb & Tucker (2011a,b) and

Bart et al. (2014). Third, Lewis (2010) and Lewis & Nguyen (2015) use natural experiments

where the ad platform randomly split the delivery of unrelated ad campaigns.

Intent-to-Treat A/B1 experiments also eliminate the costs of PSAs, but lack the mea-

surement precision of ghost ads or PSAs. Without PSAs, we do not observe the control

1Intent-to-Treat experiments are similar to A/B or bucket tests in that A/B testing platforms typically
use the Intent-to-Treat estimator when analyzing experiments. However, we distinguish Intent-to-Treat
experiments from classical A/B tests in order to emphasize that treatment take-up is endogenous in our
setting–not all users are treated. See Section 2.
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group users who would be exposed to an ad when the campaign’s reach is incomplete. As

we see in Section 2.1, Intent-to-Treat experiments compare all treatment and control eligible

users including unexposed users who contribute only noise to the estimator. As such, this

approach requires high advertising expenditure as treatments to detect significant effects like

in the search ad experiments by Blake et al. (2013) and Kalyanam et al. (2015). As in those

studies, Intent-to-Treat is compatible with geographic- rather than user-level randomiza-

tion when the latter is infeasible. High spend does not guarantee significant Intent-to-Treat

results though, as in the study of online display ads and retail sales by Lewis & Reiley (2014).

To avoid the cost of PSAs and the opportunity cost of not advertising to a holdout

group, many advertisers prefer to measure the relative effectiveness of ads using weight tests

that vary the quantity of ads or copy tests that vary creative content. The majority of the

split-cable TV advertising studies in Lodish et al. (1995) and Hu et al. (2007) are either

copy tests or weight tests rather than PSA tests. Simester et al. (2009) use a weight test to

measure catalog effectiveness. Copy tests compare the performance of different ad creatives

for instance to assess the effect of social cues (Bakshy et al., 2012) or native advertising (Sahni

& Nair, 2015). Nonetheless, both copy tests and PSA tests are biased when they employ

performance-optimizing technology, which researchers must avoid until now. The Ghost

Ad methodology makes ad experiments compatible with these technologies used broadly in

Internet advertising.

To date, retargeting studies use copy tests to evaluate the personalization of retargeting

creatives. Lambrecht & Tucker (2013) compare dynamic retargeting ads that include the

product with which the consumer engaged (the ‘focal product’) to generic brand creatives.

Bleier & Eisenbeiss (2015) compare retargeting ads that feature products from the focal

product’s category and/or manufacturer’s brand to randomly-selected products. Lambrecht

& Tucker (2013) find that personalized ads reduce transactions overall whereas Bleier &

Eisenbeiss (2015) find the opposite for click-through rates. Both studies agree that content

targeting is important for personalized retargeting ads whose effectiveness improves when
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the user browses content related to the focal product (Lambrecht & Tucker, 2013) or browses

shopping sites (Bleier & Eisenbeiss, 2015). Here, we instead wish to evaluate the effectiveness

retargeting against a holdout group to evaluate whether retargeting reaches consumers who

would purchase anyway or causes incremental purchases. Our application uses dynamic

retargeted advertising like in Lambrecht & Tucker (2013) and is the first retargeting study

to examine effects on sales.

The challenge of low statistical power in the ad effectiveness setting must be met with

the most precise estimation method available. As Lewis & Rao (2015) explain, the effects

of ads are so small relative to the volatility of sales data that informative experiments may

require over ten million person-week observations. Hence, more efficient measurement can

make experiments accessible to more advertisers. Lewis et al. (2015) mention the concept of

ghost ads and foreshadows its importance for large-scale experimentation. In this paper, we

explicate the Ghost Ad methodology, its implementation, and its advantages over existing

methodologies.

2 Experimental design & existing approaches

In this section, we introduce the experiment’s design and nomenclature that are the founda-

tion of our Ghost Ad methodology. We focus here on the online display advertising context,

though much of the discussion applies to other ad media. We then discuss the strengths and

limitations of existing ad experiment approaches in two subsections.

An online advertising experiment involves advertisers, users, and an ad platform. Users

are represented by a unique identifier such as a web browser cookie. The ad platform

matches advertisers to the ad opportunities or impressions that users generate when browsing

webpages.

Suppose we want to estimate the effectiveness of an online display ad campaign for

Christian Louboutin, a French manufacturer of high-end ladies shoes with distinctive red
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soles. Typical advertiser objectives include generating reach, brand favorability, clicks, and

conversions. Conversions are user interactions with the advertiser such as visits to the

advertiser’s website, sign-ups, or purchases. Suppose that Louboutin wants to maximize

visits to its website.

To assess the Louboutin campaign’s effectiveness, we use an experiment that will compare

the visits to Louboutin’s website by users in a Louboutin treatment group with visits by

users in a holdout or control group. The experiment randomly assigns each user to either

the treatment group that is eligible to see the Louboutin ad or the control group that is

ineligible. The experimental randomization ensures the two groups are equivalent, so that

we can attribute any changes in outcomes to the Louboutin ad. The ad platform’s random

assignment rule may operate on a previously selected list of eligible users. The ad platform

may instead determine eligibility and treatment assignment ‘on the fly’—meaning in real

time as users arrive at eligible websites. A user in the treatment group is treated if he is

exposed to the treatment ad.

Whether a treatment user is treated depends on both the ad platform’s ad delivery

decisions and the user’s browsing decisions. Sometimes, the platform will reserve certain

ad impressions exclusively for the experiment (e.g., see Lewis & Nguyen 2015). Often, the

platform must choose whether to display the treatment ad or another ad at each opportunity.

While a user does not explicitly choose whether to see a particular ad, the user implicitly

affects treatment take-up through her browsing: choosing when, which websites, and how

many pages to visit. That is, the user determines the number of opportunities to receive the

experimental ad. However, the user cannot decide to specifically avoid the experimental ad

sent by the ad platform.2

Figure 1 illustrates the design of an ideal ad experiment. Figure 1 categorizes users by

whether they belong to the treatment or control group and whether the users are treated

2Users may use ad blocking technology to avoid all ads, but this is orthogonal to treatment assignment.
Some companies such as Google and Facebook allow users to ‘X-out’ and avoid specific ads, though X-out
rates are negligible.
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or not. We represent consumer heterogeneity in purchasing behavior by two types of users:

those who wear striped shirts and those who wear solid shirts. Here, the advertiser is

targeting the striped shirt users who form a majority among the treated. Among control

group users, we distinguish between the counterfactual treated users who would have been

exposed to the treatment ad and those who would not. Consequently, the distribution of

types in Figure 1 across treated and untreated is identical across treatment groups, which

illustrates the experiment’s symmetry. In this ideal setting, we can evaluate the ad effect

with the Treatment on the Treated (TOT) estimator, which differences the outcomes of

the treated and counterfactual treated. However, in practice, while we can always split

the treatment groups into users who have and have not seen the Louboutin ad, we do not

observe the equivalent subgroups within the control group. Below, we discuss two dominant

approaches to this problem: Intent-to-Treat and Treatment-on-the-Treated using PSAs.

2.1 Intent-to-Treat approach

If we do not observe the counterfactual treated users, we can still evaluate the ad effect with

the Intent-to-Treat (ITT) approach. ITT is a valid experimental approach whose estimator

differences the outcomes of the entire treatment group and the entire control group. Figure 2

illustrates the logic of ITT where the counterfactual treated users from Figure 1 are no longer

distinguishable. The ITT approach does not require PSAs and is easy to implement.

The drawback of this approach is that the ITT estimator is less precise than the TOT

when the variances in outcomes are comparable between the treated and untreated. To see

this, we split the ITT estimator into two components: 1) the experimental difference among

the treated (TOT) and 2) the experimental difference among the untreated. Logically, the

latter difference should be zero, but the empirical difference contributes noise that weakens

precision.

ITT’s precision is poor when the proportion of untreated users is high, as is often the

case in practice. Typically, the experimenter does not know which control group impressions
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could have been experimental impressions as in Figure 1. If all impressions are eligible, the

experimenter can only restrict the set of users to those who were online to see an ad during

the campaign. In this case, the proportion of treated users can be very small (e.g., 3% or

less). The problem improves if the experimenter has a pre-defined list of eligible users in

the experiment.3 However, ad platforms often determine eligibility ‘on the fly’ and therefore

cannot generate such a list of eligible users, leaving the set of all online users as the only

valid option. Given that ITT reduces precision, we would like to identify the counterfactual

treated users and estimate TOT.

2.2 PSA approach

The other dominant approach is to use Public Service Announcements (PSAs) in the control

group to identify the counterfactual treated users. The ad platform must deliver the PSAs

to the control group in the same way as it delivers the treatment ads to the treatment group.

Then, we can achieve the ideal case in Figure 1 where we can compare outcomes among

the treated between treatment and control groups. In the experimental context, PSAs are

often charity ads (see e.g. Hoban & Bucklin 2015; Yildiz & Narayanan. 2013) but they are

more generally neutral ads with an orthogonal call to action to the treatment ad. For our

purposes, the PSA approach is equivalent to showing control users an ad from an unrelated

company (see e.g. Lewis 2010; Lewis & Nguyen 2015), a blank ad (see e.g. Goldfarb &

Tucker 2011a,b; Bart et al. 2014), or a ‘house ad’ advertising the publisher (see e.g. Johnson

et al. 2014; Sahni 2015). In our example, suppose the PSA advertiser is a nonprofit sea turtle

3Some advertisers perform their own randomization of users into separate treatment and control group
targeting lists for Intent-to-Treat experiments. However, recently developed ‘similar audiences,’ ‘look-alike,’
and ‘broad match’ technologies seek to increase the number of eligible users beyond such pre-defined lists
by identifying users with similar characteristics. These technologies can lead to control-group users being
exposed to the treatment ads if the list of eligible users is increased after (or independent of) the advertiser’s
randomization. While such experiments can still be analyzed using the local average treatment effect (LATE)
estimator (Angrist et al., 1996) to deal with these ‘always-takers’ of the ad treatment, the straightforward
interpretation of the experiment’s results and their generalizability to the entire campaign are jeopardized.
In short, the ad expenditures on the always-takers in both treatment and control at best do not help or
at worst add noise to all experimental measurements for the uncontaminated compliers. That said, our
predicted ghost ads implementation described in Section 4 should be immune to this problem by performing
the randomization after all eligibility information has been considered.
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rescue organization. Hence, an experimental ad refers to either a treatment ad (Louboutin)

or control ad (sea turtle).

The main advantage of PSAs is that they increase the precision of the experimental

estimates in two ways. First, relative to ITT, PSAs allow the experimenter to prune away

users who do not see an ad and contribute only noise to the estimator. Second, PSAs allow

the experimenter to prune away outcomes prior to the first ad exposure. Since the outcome

cannot be affected before the initial ad exposure, this component of the outcome variable

also only adds noise. This approach is valid when the first experimental ad is delivered

symmetrically across treatment groups. As an example, Johnson et al. (2014) show that

PSAs can significantly improve precision: their TOT estimate is 31% more precise than

their ITT estimate, which is equivalent to a 110% increase in sample size. Post-exposure

filtering accounts for a quarter of this improvement in precision.

The first drawback of PSAs is their cost. The ad platform and the experimental advertiser

must pay for the PSA ad inventory or forgo the revenue from other advertisers that the PSAs

displace and compensate publishers. The platform and advertisers must negotiate splitting

these costs and coordinate to obtain a suitable PSA. Additionally, the ad platform must be

configured to handle the PSAs in exactly the same way as the treatment ad. Small errors

are expensive because they can invalidate the experiment by introducing selection bias or

complicate any analysis that salvages the experiment. Finally, the cost of PSAs does not fall

with scale, making PSAs an obstacle to large-scale, automated experimentation.

The second drawback of PSAs is that modern ad platforms deliver a PSA campaign and

the treatment campaign differently so that PSAs do not serve as valid control ads. This

phenomenon is depicted in Figure 3, where we see that the PSA reaches the same number

of users but reaches a different distribution of user types. Hence, any measured difference in

sales between exposed users in the treatment and control groups will conflate the causal ad

effect with the user-type selection bias. This occurs because modern ad platforms optimize ad

delivery by matching each ad to different user types. We discuss this limitation in Section 3.
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3 Ghost Ad methodology

In this section, we explain the Ghost Ad methodology as an inexpensive alternative to using

PSAs as control ads. We then describe how, as ad platforms become more sophisticated, the

Ghost Ad methodology succeeds where the PSA methodology fails.

With the Ghost Ad methodology, the ad platform delivers ads to the control group

normally, but tags ghost ad impressions where the ad platform would have served an ex-

perimental ad. We name our solution ‘ghost ads’ because the ghost ad tags are invisible to

the user as if the ghost ad ‘possesses’ the ad that is actually shown. Ghost ads avoid the

ad inventory and coordination costs of PSAs. Ghost ads also reduce the scope for error in

planning and executing experiments. By eliminating the cost of PSAs, ghost ads facilitate

widespread experimentation.

Figure 4 illustrates how the Ghost Ad methodology works. Figure 4 shows six ads

delivered to an identical user in four settings: 1) treatment group, 2) control group without

control ads, 3) control group with PSA ads, and 4) control group with ghost ads. In the first

setting, the treatment group user sees three Louboutin shoe ads and three ads from other

advertisers. In the second setting, the control group user see three ads from other advertisers

instead of three Louboutin ads. In the third setting, the PSA group user sees three sea turtle

rescue charity ads in place of three Louboutin ads. Finally, in the fourth setting, the ghost ad

user sees the same three ads as in the second setting without control ads, but the ad platform

knows which three ads are tagged by Louboutin’s ghost ads—depicted by overlaid ghosts.

In this example, the ad platform delivers identical quantity and order of experimental ads

in the treatment, PSA, and ghost ad settings.

The Ghost Ad methodology is needed to perform experiments on modern ad platforms

that match ads to users in ways that invalidate the use of PSAs for experiments. To demon-

strate the limits of the PSA and ghost ad technologies, we describe their performance as ad

platforms have evolved. Toward this, we imagine the evolution of ad platform technology as

divided into three generations:
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1. First generation: Reach-based ad platforms allocate ads according to an advertiser’s

demographic and content targeting criteria in order to deliver the agreed-upon num-

ber of impressions during the campaign period. By ignoring campaign performance

feedback, both PSAs and Ghost Ads work.

2. Second generation: Action-optimized ad platforms serve ads to maximize a given action

like a campaign’s click or conversion performance. To do so, action-optimized systems

employ aggregate feedback from the campaign’s performance across websites and ad

creatives by user characteristics. This feedback causes PSAs to fail, but Ghost Ads

still succeed.

3. Third generation: User-optimized ad platforms further optimize campaign performance

delivery to individual users based on that user’s click and conversion activity. The

user-level feedback invalidates PSAs, but Ghost Ads still identify the counterfactual

treated users because the first experimental ad delivered to each user has no user-level

feedback.

We can roughly equate the different ad platform generations to different ways an advertiser

can purchase ads. An advertiser who wants to buy a certain quantity of impressions paid for

on a cost per mille/thousand (CPM) basis only needs reach-based ad platform technology.

An advertiser who instead optimizes for clicks or conversions buys on a cost-per-click (CPC)

or cost-per-action (CPA) basis and uses the capability of an action-optimized ad platform.

An advertiser who wishes to target individual users who have interacted with the advertiser

online—called retargeting—requires a user-optimized ad platform.

In the next three subsections, we contrast the performance of PSAs and ghost ads as

control ads in each of the three generations. We show that PSAs are invalid after the first

generation, whereas ghost ads identify the counterfactual treated users throughout. Table 1

serves as a reference for the reader by outlining the performance of the two approaches across

all three generations.
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3.1 First generation: Reach-based ad platform

A reach-based ad platform delivers the treatment, PSA, and ghost ads identically, which

preserves the symmetry of ad delivery across experimental groups. A reach-based platform

encompasses everything from TV and radio ad schedules to the impression-based delivery

that emerged in Internet advertising. A sophisticated reach-based ad platform allocates ads

using rich advertiser, site, user, and time-varying inventory variables. Crucially, the reach-

based ad platform ignores feedback from the users’ interactions with the ads or subsequent

behavior like visiting the advertisers’ site. Hence, a reach-based ad platform treats a treat-

ment ad, PSA, or ghost ad symmetrically provided they are configured the same way within

the ad platform.4 Such configuration parameters include ad quantity, time period, user-type,

and webpage targeting attributes, and budget. Thus, by construction, PSAs must cost the

same as the treatment ads, whereas ghost ads are free.

Ghost ads deliver the correct baseline behavior because users see the ads that they would

have seen without the experiment. The ‘possessed’ ad impressions shown to the control group

are for many advertisers rather than concentrated on PSAs for a single charity. Further, if

the counterfactual ads include those from the advertiser’s competitors, these could capture

business from the advertiser. This is Louboutin’s relevant competitive baseline to evaluate

what happens if it does not advertise, not the artificial comparison with a sea turtle rescue

PSA.

If treatment ads affect user behavior, as intended, these treatment effects can alter sub-

sequent ad exposures, but such differences are usually small enough to ignore. For exam-

ple, a treated user may click on the Louboutin ad and leave the publisher’s site to browse

Louboutin’s online storefront. As a result, the user could have fewer opportunities to see ads

4Some ad platform require the treatment and PSA campaigns in a PSA test to be pre-configured prior
to the start and disallow any changes during the experiment. This constraint is imposed because even
two symmetric changes made simultaneously to two active campaigns through a campaign management
user interface can have large asymmetric propagation delays to each of the individual ad serving machines,
leading to asymmetric ad serving behavior until all of the ad servers recognize the change. For example,
if the advertiser changes their CPM bid or targeting criteria for the experiment, one of the two campaigns
(treatment or PSA) might fully deploy an hour earlier than the other, leading to divergent ad serving.
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than her counterpart in the control group who was not offered the opportunity to click on

(or see) the Louboutin ad. That is, user take-up of subsequent experimental ads (treatment

intensity) is endogenous. In practice, we have found these differences to be negligible. For

instance, Johnson et al. (2014) do not detect any significant difference in experimental ad

exposures between treatment groups. In any case, while this difficulty is fundamental to any

experimental methodology that seeks to identify counterfactual impressions, this treatment

effect feedback should not affect the delivery of the first experimental impression.

3.2 Second generation: Action-optimized ad platform

Action-optimized ad platforms match ads to users in order to optimize each campaign’s per-

formance. This is most commonly done by allowing advertisers to target their campaigns

by purchasing ads on a CPC or CPA basis. To implement this, online display ad platforms

run an auction for each ad impression where CPC bids are weighted by the predicted prob-

ability that the user will click on the advertiser’s ad. The click prediction is based on a

complicated combination of the advertiser’s and user’s historical click rates and those of

users with common characteristics (e.g. demographics). Such a system seeks to maximize

clicks by controlling who sees the ad, how many ads they see, and both where and when

the ad is shown. For this reason, we say that the action-optimized ad platform’s ad serving

is endogenous : a user’s behavior affects treatment intensity of those who look and behave

like her. We might imagine that the ad platform would want to change ad serving at the

individual-level based on whether the user clicks and or converts. This in-campaign individ-

ual optimization further complicates the ad platform’s operation, so we defer this discussion

to the next subsection. For now, we assume that the ad platform only optimizes using ad,

advertiser, site, user characteristics, time, and pre-campaign user-level behaviors.

The action-optimized ad platform biases ad delivery so that the PSAs are no longer

valid control ads. Consider our example Louboutin campaign with sea turtle rescue PSAs.

People who are interested in Louboutin shoes are likely quite different from those interested
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in rescuing sea turtles. The action-optimized ad platform uses machine learning to “learn”

these preferences from click behavior and deliver the ads to the types of users who click

on each creative. This creative-level optimization means that the ad delivery of any two

distinct creatives, even with the same targeting configuration, will differ. Hence, ad delivery

would be unbalanced between the Louboutin ad and PSA.5 For instance, women who visit

fashion sites will see more shoe ads, and men who visit nature sites will see more sea turtle

rescue ads. However, baseline Louboutin purchases are higher among fashion-loving women,

so comparing conversions between the Louboutin ad users and the turtle-rescue users will

be biased. By the same logic, we get biased estimates for attributing ad effects to different

websites or user demographics when using PSAs as control ads.

Figures 3 and 5 illustrate how PSA campaigns bias the delivery of experimental ads.

Recall from Section 2 that Figure 3 shows how the distribution of treated user types will vary

between the treated and the PSA treated; whereas, the Ghost Ad methodology will balance

these types as in Figure 1. Figure 5 compares the timing and quantity of ads delivered to

a user under treatment ads, ghost ads, and PSAs. While the ad serving decisions under

treatment ads are the same under ghost ads, the PSA user sees fewer experimental ads

at different times than the treatment user in the action-optimized platform. Hence, the

technique from Section 2.2—filtering out pre-exposure outcomes to improve measurement

precision—can be done symmetrically with treatment ads and ghost ads but not PSAs in a

second-generation ad platform.

5Google’s “DCM Audience Segmentation” product relies on PSAs but implements a clever trick to avoid
this pitfall of unbalanced ad serving. This system builds a single campaign with the two experimental ads:
the Louboutin and sea turtle ads. The system creates treatment and control groups by randomizing which
users exclusively see one or the other ad. Then, Google uses third-party ad serving to trick the optimization
platform into thinking that the two creatives are really the same, preventing it from treating them differently.
While this system ensures symmetric delivery, the experimental estimates it delivers would reflect the effect
of ads on users whom the ad platform believes are shoe-lovers and nature-lovers rather than just shoe-lovers.
Furthermore, this solution has all the other costs of PSAs.
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3.3 Third generation: User-optimized ad platform

Finally, we examine the user-optimized ad platform, which has all the characteristics of an

action-optimized ad platform plus the ability to customize user-level ad serving during a

campaign based on each user’s actions. Since user-optimized ad platforms build on action-

optimized platforms, we know that PSAs will not work. The capability to tailor delivery

to the user enables in-campaign retargeting: if the consumer interacts with the advertiser’s

website or advertisement, the ad platform will infer the user’s interest and alter ad serving.

Often, the ad platform will show interested users more of these ads, but the platform may

reduce the number of ads, say, after a purchase. Again, the user-optimized platform’s ad

serving is endogenous : the user’s behavior affects her treatment intensity. In-campaign

retargeting capability is valuable to ad platforms because the value of a match between the

user and the advertiser is largely governed by the user’s time-varying taste for the advertiser

(e.g., whether user is in-market), not her pre-exposure observable characteristics. As we will

see, the distinction between action-optimized and user-optimized ad platforms is that the

Ghost Ad methodology no longer mirrors the treatment group’s ad delivery after the first

impression.

The combination of endogenous ad serving and endogenous user take-up alters the ghost

ad delivery. In Section 3.1, we describe the endogenous take-up problem where users alter

their behavior in response to the treatment effect and thereby alter their opportunity to

receive subsequent impressions. While we could ignore this with the reach-based ad platform,

we cannot ignore this problem with the user-optimized ad platform. The user-optimized ad

platform mechanically magnifies the endogenous treatment problem because the incremental

users driven to action by the ads will receive dramatically different quantities of subsequent

impressions. This difference is fundamental to third-generation platforms with endogenous

delivery: any implementation of the Ghost Ad methodology cannot know which users would

have responded to the treatment ad to correspondingly ramp up ad delivery. This resembles

the impossibility of identifying the control group’s counterfactual treatment-ad clickers: we
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can never know who in the control group would have clicked on an ad without actually

showing the ad.

Figure 5 illustrates the divergence of the Ghost Ad methodology in third-generation ad

platforms. Midway through the campaign, the Louboutin ads cause the user to visit the

Louboutin website when she is in the treatment group. The site visit is causal because she

would not have visited the Louboutin site under ghost ads or PSAs. After the Louboutin

site visit, Figure 5 shows that the third generation platform serves more impressions when

she is in the treatment group. The Ghost Ad approach performs identically until the causal

visit but then diverges afterwards by delivering fewer ads. Of course, ad delivery under

PSAs in Figure 5 diverges from the treatment group throughout the campaign as in the

action-optimized case.

The Ghost Ad methodology no longer exactly replicates the treatment group’s ad delivery

but still delivers unbiased treatment effect estimates. Most importantly, the Ghost Ad

methodology performs exactly as the treatment group until the ads cause the behavior

of the treatment group user to diverge because the third-generation platform’s user-level

information set is equivalent across the treatment and control group initially. Hence, each

user’s first experimental ad will be identical regardless of treatment or control assignment

because the ad server has not yet treated or withheld any treatment based on that user’s

assignment. The first ad suffices to unbiasedly estimate the experimental differences in

advertiser outcomes by identifying the counterfactual treated users in the control group.

The identical timing allows us to ignore pre-treatment outcomes in the treatment and control

groups which improves the precision of the TOT estimator. However, since the distribution

of experimental ad impressions will differ between the treatment and control groups, a simple

comparison of treatment users with control users having the same frequency of experimental

ads will be biased.
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4 Predicted Ghost Ad methodology

In theory, the Ghost Ad approach is a fitting solution for ad effectiveness experiments. In

practice, the technology is difficult to implement with current Internet ad platforms, because

they were not built with ghost ads in mind. Instead, we propose a Predicted Ghost Ad

methodology as a more robust alternative. The Predicted Ghost Ad methodology predicts

rather than determines whether the platform will serve an experimental ad. We use the

Predicted Ghost Ad methodology to compute the Local Average Treatment Effect of the

ads among predicted–exposed users. Below, we describe the challenges in implementing the

Ghost Ad methodology in the case of online display ad platforms and outline the Predicted

Ghost Ad alternative.

The challenge of implementing the Ghost Ad approach centers on the fact that display

ad platforms do not control the full ad delivery process. Display ad platforms are not just

a marketplace where advertisers and publishers meet, but rather a network of interlocking

demand- and supply-side platforms with imperfect information and incomplete integration

(see e.g., Evans 2009 and Johnson 2013). Above all, ad platforms must allocate each ad

impression while the webpage loads within a tenth of a second from receiving the ad request.

When an ad platform sends an impression to a publisher, the impression can be rejected for

a host of reasons. The publisher may have a secret reserve price that the advertiser’s bid

does not beat. The publisher may also have hidden exclusions that block certain advertisers.

The ad may be technologically incompatible with the publisher or the user’s browser, say,

because their system rejects Flash ads. In these cases, the ad platform will backfill the

impression with another ad. If an ad platform does not control the full ad delivery process,

then the platform cannot tag all the counterfactual impressions symmetrically. Perhaps a

display ad platform built with the Ghost Ad methodology from the ground up could resolve

this challenge, but existing display ad platforms require an alternative approach.

We propose the Predicted Ghost Ad methodology that can work with existing ad plat-

forms. Since a display ad platform does not control which ads ultimately render, Predicted

19



Ghost Ads try to predict whether an experimental ad renders using a two-stage auction.

The Predicted Ghost Ad innovation lies in the first-round simulated auction6 in which the

treatment ad participates for both treatment and control users to generate a symmetric

prediction of experimental ad exposure.7 A predicted ghost ad impression then is an ad op-

portunity where the treatment ad wins the simulated auction, regardless of the user’s actual

treatment assignment. The second-round real auction then selects ads for the treatment

and control users to be sent to the publisher, excluding the treatment ad from the control

group’s auction. Thus, whereas ghost ads only tag control users, predicted ghost ads tag

both treatment and control users. Figure 6 illustrates how the Predicted Ghost Ad method-

ology treats control and treatment users in both the simulated and real auctions. Using

predicted ghost ads, we compute the Local Average Treatment Estimate (LATE) for the ad

lift among users who were predicted to see at least one experimental ad. Denoting indicator

variables for Treatment as T , predicted ghost ad exposure as PGA and actual exposure to

the experimental ad as X, we write our PGA LATE estimator for outcome y as

PGA LATE =
E [y|PGA = 1, T = 1]− E [y|PGA = 1, T = 0]

Pr [X = 1|PGA = 1, T = 1]
(1)

In words, the PGA LATE estimator rescales the experimental difference among predicted

exposed users by the probability a user receives a treatment ad conditional on predicted

exposure.8 In our empirical application (Section 5), this probability is 99.9%, which means

the simulator rarely over-predicts treatment.

The interpretation of PGA LATE hinges on whether the Predicted Ghost Ad methodol-

6Ideally, the Predicted Ghost Ad methodology simulates using the ad server’s real auction or ad selection
algorithm in order to improve the accuracy of the simulation. However, the requirement is simply that the
simulator has sufficient predictive power.

7A frequent misconception is to compare the exposed users in the treatment group to the predicted exposed
users in the control group. If our Predicted Ghost Ad implementation is imperfect in its predictions, such a
comparison would introduce selection bias. For example, if we over-predict ad exposure by 10% of users in a
balanced experiment, we could end up comparing 1,000 treatment users to 1,100 control users, a difference
that immediately raises doubts in the analysis of the experiment.

8While our implementation uses a binary prediction PGA = {0, 1}, PGA could instead employ continuous
probability estimates with PGA ∈ [0, 1] and estimate the LATE with an instrumental variable regression.
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ogy can under -predict the experimental ad exposures. That is, whether a treatment ad can

ever win the real auction but lose the simulated auction. If no underprediction occurs, then

the PGA LATE estimator captures the effect of the ads on all exposed users and provides

an unbiased estimate of the average effect of treatment on the treated (TOT). If however

underprediction occurs, then there exist users who are exposed to the experimental ad but

not predicted to be exposed. In our empirical application, underprediction is small: only

3.2% of users are treated but not predicted to be treated. These underpredicted users see

an average of 1.5 ads whereas predicted-exposed users see an average of 20.2 ads. Since we

predict 96.8% of exposed users and predicted-exposed users see 99.8% of the campaign’s ads,

we expect our PGA-LATE estimate to well approximate TOT.9

In our beta implementation of the Predicted Ghost Ad methodology, we have seen this

under-prediction problem crop up due to overlapping predicted ghost ad campaigns. For

instance, if users are in overlapping ghost ad experiments for Christian Louboutin and IKEA,

then IKEA could win the simulated auction so that an IKEA predicted ghost ad is logged but

not one for Louboutin. However, if the user is in the IKEA control group and the Louboutin

treatment group, the actual auction excludes IKEA and the Louboutin ad could win. Thus,

our Predicted Ghost Ad system under-predicts the Louboutin ad.

Our solution here is to either augment the simulated auction with the ‘auction isolation’

approach or to re-analyze the experiment with more general ‘ghost events.’ To implement the

auction isolation approach, we run a separate simulated auction in the first stage for each

overlapping Predicted Ghost Ad campaigns to eliminate the cross-campaign externalities.

Auction isolation works well because it maintains the full statistical power of PGA LATE.

Absent this, we can fall back on expanding our notion to a ghost event which track the users’

counterfactual exposure to the ad changes. A ghost event is like ‘exposure logging’ in Bakshy

9The under-prediction problem can cause situations where users are exposed to a treatment ad before
their first predicted ghost ad. This, in turn, can create feedback through the platform, which causes the
endogenous take-up and ad serving problems discussed in Section 3. Though a treatment ad exposure may
distort subsequent predicted ghost ad impressions, the underprediction problem so small here that we do
not expect or detect an impact on outcomes prior to predicted treatment.
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et al. (2014) in that ghost events log activities that are necessary (but perhaps not sufficient)

conditions for experimental exposure. For instance, ‘all predicted ghost ads’ is a ghost event

we can use to compare treatment groups among the users who get a predicted ghost ad for any

experiment in the system. This solution avoids the cross-experiment externality problem and

maintains symmetry between treatment groups, though the corresponding ‘All-PGA LATE’

estimator is less powerful because it includes more unexposed users. Other examples of ghost

events include ghost bids, when the advertiser bids in any of the user’s auctions, and ghost

cookied, all users for whom the advertiser has a cookie.

5 Empirical application

Our empirical application features an advertising experiment for an online retailer of apparel

and sporting goods. A confidentially agreement prevents us from naming the advertiser

which we will call ‘Sportsing Inc.’ for the sake of exposition. Sportsing ran a retargeting

campaign optimized on consumer transactions that uses the modern third-generation ad

platform’s capabilities. This setting is thus apt for ghost ads as we have seen that PSAs would

deliver invalid ad effectiveness estimates. We demonstrate that our Predicted Ghost Ad

implementation delivers the predicted treatment impressions symmetrically across treatment

groups. Additionally, we show original and strong evidence that a retargeting campaign lifts

both website visits and purchases at Sportsing.

5.1 Experimental design

Sportsing ran a retargeting display advertising campaign in winter 2014.10 The experiment

assigned 70% of users to the treatment group. The campaign delivered 9 million ad im-

pressions to desktop platforms during the two-week experiment. In contrast to previous

research, the campaign ran continuously before and after our two-week experiment, and our

10Sportsing was the primary research and development partner through the development of Predicted
Ghost Ads. This was the first well-powered experiment among the two early clients to running tests.
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Predicted Ghost Ad implementation enabled us to turn on the experiment by splitting users

into treatment groups at our convenience. Sportsing ran the retargeting campaign on the

Google Display Network of over 2 million websites, including Google AdSense publishers

(Google, 2015). By retargeting campaign, we mean that Sportsing targeted users who vis-

ited its website within the past 30 days—updated on a rolling basis. In particular, eligible

users must have either browsed a product page, left a product in the online shopping cart

without purchasing, or left a product on their online wish list. The 30-day rolling window

means that users (re-)enter or exit treatment eligibility when they newly visit Sportsing’s

website or reach the 30-day limit without visiting. In addition, users who purchase from

Sportsing during the campaign are no longer eligible to see the experimental ads. Sportsing

optimized the campaign on a cost per conversion basis, where Sportsing fixed the conversion

to be a purchase among users who clicked on the ad. While Sportsing also values purchases

by users who do not click, this setup is used in industry to attribute a purchase to the last

clicked ad impression. To evaluate the campaign’s effectiveness, we obtained data on both

purchases and website visits at Sportsing using conversion and remarketing pixels.

For the campaign, Sportsing employed dynamic retargeting display ads which feature

the products that the individual user had viewed on the advertiser’s site. Figure 7 shows a

similar Google Dynamic Remarketing creative example. Sportsing’s ad features its own logo

as well as two product photos against a neutral background. The flash ad rotates through

featured products every few seconds. The user could click on the ad to go to Sportsing’s

website or to the featured product’s page. The user could also click on arrows in the ad next

to the product pictures to scroll backward or forward through the product photos. When

the user moused over a product photo, that product’s brand name would appear below the

product photo. The campaign also delivered smaller Google AdWords creatives similar to

search ads—a hyperlink at the top followed by short lines of text—but with a small picture

of a single product on the left. In all cases, the ads do not promote a sale.
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5.2 Experimental validation

Experiments must demonstrate the validity of the randomization by showing that the treat-

ment groups are equivalent before they receive the treatment. To do so, we test for differences

in the subjects’ characteristics and pre-treatment outcomes. These checks are crucial here

because they also validate that our Predicted Ghost Ad implementation performs as desired.

To further validate our implementation, we also test for differences in the delivery of the first

predicted impression across treatment groups. Table 2 lists p-values which show that the

experiment passes all the tests with respect to user characteristics, first impression delivery,

and pre-experimental outcomes.

To begin, we verify that the user characteristics are equivalent in the treatment and

control groups conditional on predicted ghost ad exposure. The study includes 566,377

predicted exposed users of which 396,793 were in the treatment group and 169,584 were in

the control group, implying a 70.06% treatment-group share of exposed users relative to the

expected 70% share (p=0.34, two-sided binomial test). We know little about users who are

browsing sites across the Google Display Network, but we can infer the user’s location from

their IP address. In Table 2, we compare the distribution of two categorical variables that

indicate the user’s location: country and city. Chi-squared tests fail to reject (p=0.85 and

p=0.50).

Next in Table 2, we test the predicted ad exposure variables for users’ first predicted im-

pression. As we discuss in Section 3, a retargeting campaign will only replicate the delivery

of the first predicted ad across the treatment and control groups. Hence, the characteristics

of all users’ first predicted ghost ads should be equal because the system has equivalent infor-

mation before each user’s first ad impression, regardless of treatment assignment. Here, the

first treatment and control predicted ghost ads are delivered symmetrically across treatment

groups for the 539 most common websites in the campaign (p=0.49). Moreover, both groups

see the same distribution of the first ad’s creative format: flash or text formats as well as

different ad shapes and sizes (p=0.68). We also find no significant differences for t-statistic
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tests of equality of means for the first predicted ad’s cost per click (p=0.38), predicted con-

version probability (p=0.10), predicted click probability (p=0.47), and predicted cost per

impression (p=0.10). The ad platform calculates these variables for each impression as they

affect the platform’s delivery decisions. In summary, we see no significant differences in the

characteristics of the first predicted impression.

Finally, we test the Predicted Ghost Ad system’s delivery with respect to pre-campaign

outcomes. In Table 2, we see no differences in site visits (p=0.92), transactions (p=0.76),

and sales (p=0.75) across groups during the 30 days before the campaign. We also test

for pre-exposure differences in outcomes between the start of the campaign and the first

predicted exposure since we want to filter out this data to increase the precision of our

estimates. Again, Table 2 shows no significant differences (p=0.33, 0.21, and 0.11), instilling

confidence that our experimental estimates represent the ad lift and not a failure of our

Predicted Ghost Ad implementation.

While the first predicted ghost ad should be symmetric across the treatment and control

groups, subsequent impressions should not. As discussed in Section 3, the subsequent pre-

dicted ghost ad exposures are distorted by feedback from exposed users responding to the

ads which, in turn, alters the ads they receive. For instance, users in the experiment are

dropped from the ad campaign once they purchase. This means that the incremental users

in the treatment group—whom the ads cause to purchase—will receive fewer predicted ads

than their (unidentifiable) counterparts in the control group. As expected, Table 2 reveals

significant differences across treatment groups in variables that average over all predicted

impressions per user. Indeed, a lack of difference between subsequent treatment and control

impressions might be symptomatic of an ineffective (retargeting) campaign—one which fails

to produce the mechanical feedback of a user-optimized ad platform.
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5.3 Results

Now we apply our Predicted Ghost Ad methodology to measure the effect of Sportsing’s

retargeting ads on sales and site visits. Recall from Section 4 that the Predicted Ghost

Ad methodology runs a first-stage simulated auction for both treatment- and control-group

users to predict whether Sportsing is expected to win the second-stage real auction when

participating (in the treatment group). We use the Predicted Ghost Ad system to estimate

the Local Average Treatment Effect (LATE) from equation (1) on the predicted exposed

users. Table 3 lists both the Predicted Ghost Ad system’s LATE estimates as well as the

Intent-to-Treat (ITT) estimates that make no use of the Ghost Ad system.

Our Predicted Ghost Ad system’s LATE estimates yield highly significant evidence that

Sportsing’s ads increase both site visits and sales. Following Johnson et al. (2014), we

only include sales following the first-predicted exposure, rather than from the start of the

experiment, to increase the precision of our LATE estimates. Table 3 shows that the ads

increase site visits by 62,756 or 17.2% and sales by $109,693 or 10.8%. The corresponding

t-statistics and p-values are 13.29 (p < 10−15) for site visits and 3.45 (p < 10−3) for sales.

We also examine how the ads affect the extensive margin in terms of the number of site

visitors, transactors, and transactions. In Table 3, we see the ads cause 19,061 incremental

visitors (26.6%), 1,016 incremental transactors (12.1%), and 1,132 incremental transactions

(12.0%). These results are even more significant than their intensive-margin counterparts

with t-statistics of 40.38 (p < 10−15) for visitors, 5.91 (p < 10−8) for transactors, and 5.42

(p < 10−7) for transactions.

Though our Predicted Ghost Ad implementation passes all the tests in Section 5.2, we also

compare our Predicted Ghost Ad estimates to the ITT estimates for robustness. Table 3

confirms that the ITT and LATE estimates are close and that a Hausman test for each

outcome does not reject the LATE estimator.11 Together with the validation checks in

11The reader can see that for site visitors, the ITT estimate’s 95% confidence interval does not contain
the LATE estimate. For both site visitors and transactors, the ITT estimates should be compared to the
ghost ad estimates for outcomes during the campaign rather than after the first impression. The visits,
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Table 2, we are confident that our Predicted Ghost Ad implementation delivers valid ad

effectiveness estimates.

Our results not only demonstrate for the first time that retargeting can be effective,

but do so with greater statistical significance than most experiments in the ad effectiveness

literature. The result is important because retargeting is fraught with an endogeneity prob-

lem that makes its true effectiveness controversial: retargeted users are likely to purchase

without any ads because they are a self-selected group that has demonstrated interest in pur-

chasing. In fact, retargeted ads could even reduce sales if the ad’s overt tracking provokes

reactance in users. By comparing retargeted users to a valid holdout group, we can show

this retargeting campaign creates a large increase in both site visits and sales. This baseline

comparison with a control group differentiates our results from the retargeting studies by

Lambrecht & Tucker (2013) and Bleier & Eisenbeiss (2015). These studies instead compare

retargeting campaigns that feature more or less personalized information regarding the focal

product. The studies only agree that content matters for personalization, which improves

ad effectiveness when the user browses product-related content (Lambrecht & Tucker, 2013)

or shopping sites (Bleier & Eisenbeiss, 2015). Finally, ours is the only study to examine the

impact on sales revenues among these studies.

The Ghost Ad methodology changes the economics of acquiring ad effectiveness informa-

tion for advertisers. In our study, a mid-size online retailer obtains highly significant results

in spite of a budget of only $30,500. If Sportsing had to pay for PSAs for the 30% control

group, the experiment’s cost would rise by 43%. Beyond the cost reductions, the Ghost Ads

methodology changes the kind of experiments advertisers would want to run. For instance,

Sportsing can obtain the same statistical power with a 30/70 treatment-control design rather

than the current 70/30 design and save 58% of its ad budget. This means advertisers can run

transactions, and sales variables are additively separable before and after the first predicted impression,
whereas the visitor and transaction indicator variables are not. Thus, the expected treatment effects for the
number of unique visitors and transactors differ by the time period of the outcome. For a proper comparison,
the visitor and transactor Hausman tests compare the ITT estimates to the predicted ghost ad estimates
using during-campaign outcomes: the estimated treatment effects are 13,106 (s.e. 575) for visitors and 998
(s.e. 174) for transactors.
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experiments that treat a small proportion of eligible users, then roll out successful campaigns

to the whole group. Additionally, Sportsing can learn more with less money by running a

concentrated test that increases average spend per user while decreasing the proportion of

treated users. Sportsing can obtain the same statistical power as the original test by running

a concentrated test that doubles the per user ad spend while shrinking the treatment group

to a 6/94 design, if the ad effect is proportional to ad spend.12 Now, costs fall 83% to only

$5,000—almost an order of magnitude lower than the $45,000 cost of a PSA test. Con-

centrated tests are like ‘accelerated failure tests’ in that they enable advertisers to discover

successful ad campaigns at low cost, which again can be rolled out more broadly.

Hence, the Ghost Ads methodology improves upon the pessimistic outlook on measuring

the returns to advertising in Lewis & Rao (2015). Lewis & Rao (2015) use a meta-study

to argue that the setting’s statistical power problem is so severe that experiments require

many millions of user-week observations to draw conclusions. The problem is caused by

the fact that the effects of advertising can be orders of magnitude less than the noise in the

data. Here, we obtain strong results because the Predicted Ghost Ad approach decreases the

variance in the estimates relative to ITT. The ratio of these estimates’ variances in Table 3

range from 5.9 to 16.4, which indicates that experiments using only ITT estimates would

need to be an order of magnitude larger to reach comparable statistical confidence.13

Some technological limitations will attenuate our ad effectiveness estimates. For instance,

consumers refresh their cookies from time to time. Once a cookie is deleted, the user’s

subsequent activity will be missing. This attenuates our estimates because we miss the

incremental consumers who transact after seeing an ad but change their cookies in the

12Denote the average experimental difference by δ and the number of users by N . Assume the vari-
ance of the outcome σ2 is equal across treatment groups. For the t-statistic = δ/SE (δ) to be the same
when the treatment effect doubles, we find that the proportion of users in the treatment group p = 5.6%
solves 2δ/ σ√

Np(1−p)
= δ/ σ√

N∗0.3∗0.7
. While we are assuming no ad wear-out (i.e., diminishing returns) from

doubling the ad spend, this is consistent with the findings of Lewis (2010) and Johnson et al. (2014).
13The experiment also enjoyed better statistical power from a larger (30%) control group, concentrated

average ad frequency (19 impressions per user), and directly-linkable online-only purchase channel. However,
this retailer typifies those in Lewis & Rao (2015) with a similar coefficient of variation on sales of σ

µ
= 10.1

during this two-week campaign.
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interim. Moreover, a cookie-switching consumer that re-enters the experiment could switch

treatment groups, further attenuating the measured ad lift. The median cookie age in our

data is about 3.5 months, so this problem does not affect the majority of users in our sample.

Similarly, each computer, browser, tablet, or mobile device has its own unique anonymous

cookie that is independently randomized. Hence, if a user’s ad exposures are linked to one

cookie but her purchases are linked to another, our estimates will be further attenuated. That

said, Sportsing’s online retail and advertising strategies were largely desktop-centric during

the experiment. Given the attenuation biases induced by these technological limitations, we

interpret the absolute ad lift estimates as lower bounds.

6 Implementation challenges

The idea of Predicted Ghost Ads seems simple, but we have spent three years building the

implementation at Google which now records more than 100 million predicted ghost ads

each day, and the work is ongoing. In this section, we discuss some of the challenges, lessons

learned, and possible extensions for the methodology in the online display ad setting.

The engineering challenge with the Predicted Ghost Ad methodology is that its imple-

mentation must be perfectly symmetric between treatment groups or else the experimental

comparison could be biased. Perfection is elusive because ad platforms—at least in the online

display advertising setting—are complex and ever evolving. This means that our Predicted

Ghost Ad implementation and its associated experimental analysis pipeline must be moni-

tored and updated as new versions of the ad platform code are deployed. In Section 4, we

explain that we abandoned the pure Ghost Ad approach and embraced the Predicted Ghost

Ad methodology to address the ad platform’s inability to control ad delivery. Section 4

also raises the problem of externalities across multiple ghost ad campaigns. We use ‘auction

isolation’ to eliminate these externalities and scale the Predicted Ghost Ad methodology.

Many implementation challenges arise from the combinatorial nature of the ad-allocation
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auctions employed by ad platforms. For example, a single display ad slot on Google can

either be won by a single display ad or by multiple separate AdWords text ads. Thus,

the Predicted Ghost Ad system must record one or multiple winners. Some ad platforms

also enable advertisers to purchase multiple impressions on a page at the same time or to

ensure that their ad appears only once on a page. Ad platforms frequently use combinatorial

auctions to implement these features (Candela et al., 2014). This allows ads—including

ghost ads—to form coalitions that can alter the number of experimental ads on a page and

complicate the prediction process. Though ‘auction isolation’ avoids collisions between ghost

ads here, the predicted ghost ad system needs to be implemented over all impressions on a

page to work.

Some problems arise when an advertiser runs other campaigns that compete with its

ghost ad experiment. When this happens, a concurrent campaign can drive up the cost per

impression of the treatment campaign. Worse, the delivery of the concurrent campaign could

also differ by treatment group. This can happen if the ad platform substitutes the ‘withheld’

treatment ads for the concurrent campaign’s ads in the control group or if the ad platform

learns from the treatment campaign’s performance, which informs the concurrent campaign’s

delivery.14 Thus, the experiment would not hold fixed the advertiser’s other ads, and the

PGA LATE estimates for the treatment campaign would need to account for the concurrent

campaign’s interference. This problem can also arise when the advertiser runs a concurrent

campaign through an intermediary that purchases from the ad platform. In this case, the ad

platform may by unable to ascertain the problem because the intermediary may not share

its advertiser’s identity. Cross-campaign interference is a fundamental problem that can be

avoided by running one campaign at a time or targeting each campaign to distinct groups of

users. For instance, the Predicted Ghost Ad approach can compare the effectiveness of two

campaigns (a copy test) by creating three randomly assigned groups of users: campaign A

14Some users will be exposed anyways to the concurrent campaign, so they are in a sense what Angrist
et al. (1996) call the ‘always-takers’ in LATE. The difference here is that the intensity of treatment in the
experiment could vary so that that the always-takers in the control group will see fewer ads on average than
their counterparts in the treatment group.
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treatment, campaign B treatment, and a single control reused twice as a control group with

ghost ads for each campaign.15

We can also modify the Predicted Ghost Ad methodology to record information on ad

viewability. A viewable impression is an ad that appears in the user’s field of view for

a certain length of time and is designed to discount ads that appear below the fold or

for a split-second. Marketers may wish to measure the impact of viewable ads since non-

viewable ads logically have little or no effect. However, the ad platform only has viewability

information for the ads it serves and not those served by another intermediary. Thus, while

the ad platform has viewability information for the treatment ads, the viewability data is

incomplete for ads shown to the control group. We can solve this problem by identifying

the predicted displaced ad, the ad that is predicted to be served to the treatment group in

the absence of the treatment ad. To operationalize this, we can run simulated auctions

both with and without the treatment ad for all users and record the predicted ghost ad and

predicted displaced ad. In this way, we can split the predicted displaced ads (conditional on

predicted ghost ad exposure) by whether they record viewability and do so symmetrically

across treatment groups.

7 Conclusion

Our Ghost Ad and Predicted Ghost Ad methodologies promise to revolutionize ad effective-

ness measurement by changing the economics of experimentation. In eliminating the costs

of PSAs, ghost ads make experimentation accessible to advertisers at the mere press of a

button. This should encourage more advertisers not only to start experimenting and but

15An ad platform’s endogenous ad serving can bias the direct comparison of different ad copy in the
same way as the comparison with a PSA. Pre-experiment randomization checks of the outcomes can help
detect such bias. Copy tests can mitigate this problems for instance by using CPM pricing, but to an
unknown extent without a control group. With predicted ghost ads, we can reuse the same control group
for alternative ad copy groups which increases power over splitting the sample into separate control groups
per copy or using Intent-to-Treat. This also improves generalizability of a copy test’s results by allowing the
ad system to optimize the performance of each creative by delivering each to its respective most responsive
audience.
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also to make experimentation routine. We foresee that three kinds of experimental tests will

emerge. First, advertisers will use monitoring tests with small control groups to routinely

account for both the short- and long-term effects of advertising. Second, advertisers will use

concentrated tests with high spending on small treatment groups to optimize a campaign’s

return on investment. Third, advertisers or even ad platforms will use explore-exploit tests,

in which advertisers explore the effects of different campaigns on small groups of users be-

fore exploiting the best campaigns on the rest. Hundreds of advertisers have used Google’s

implementation of the system, which delivers millions of experimental ad impressions daily.

Ghost ads reduce the cost of running experiments, and wide-spread experimentation

enables not only marketers to better allocate their ad budgets but also academics to refine

their ad models. In particular, meta-studies of ghost ad experiments will shine new light on

ad attribution and ad stock models. In the future, we expect the Ghost Ad methodology

to evolve further. For instance, ghost ads can be combined with ad viewability technology

to better measure the effect of a viewed impression by ignoring ads that appear only for a

split-second or remain off-screen ‘below the fold.’

The Ghost Ad methodology keeps pace with modern ad platforms’ performance-optimizing

features that now account for two-thirds of online display ad spending (IAB, 2014). What is

more, the Ghost Ad methodology can be applied to other forms of advertising beyond online

display ads. Search ads are a natural candidate since they are sold using similar digital in-

frastructure. Other media could follow since programmatic ad buying and ad measurement

is spreading to media like television and radio. In the future, we predict new advertising me-

dia experiments will employ the Ghost Ad methodology to improve the theory and practice

of marketing.
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Figures & Tables

Figure 1: The Ideal Experimental Design

Figure 2: Intent-to-Treat Experimental Design
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Figure 3: Biased PSA Experimental Design

Figure 4: Ghost Ads in Action
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Figure 5: Ghost Ads in Three Generations of Ad Platforms

Figure 6: Predicted Ghost Ad Flow Diagram
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Figure 7: Retargeting Creative Resembling Those in Experiment

Table 1: Comparison of Experimental Approaches as Ad Platforms Evolve
Does experimental approach work?

Generation Ad Platform Campaign Capability PSA Ghost Ad

1 Reach-based CPM
√ √

2 Action-optimized CPC, CPA
√

3 User-optimized Retargeting
√

(First Ad)
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Table 2: Experimental Validation for Predicted Ghost Ad Exposed Users
Treatment/Control Test of Equality Test

p-values throughout

Demographics Treated Users
Country 0.85 Chi2

City 0.50 Chi2

Predicted Ghost Ads First Impression* Average Impression†

Creative Shown 0.68 - Chi2

Publisher Website 0.49 - Chi2

Predicted Click-Through Rate 0.47 0.00 t-test
Predicted Conversion Rate 0.10 0.00 t-test
Predicted Cost per Impression 0.10 0.00 t-test
Cost per Click 0.38 0.00 t-test

30 days prior During experiment
Pre-Treatment Outcomes to experiment prior to exposure
Site Visits 0.92 0.33 t-test
Transactions 0.76 0.21 t-test
Sales 0.75 0.11 t-test
Notes: Tests are between 396,793 predicted exposed users in the treatment group and 169,584 predicted exposed

users in the control group. ∗First predicted ghost ad impression following the start of the experiment. For ongoing

campaigns, users may have already seen impressions prior to the start of the experiment. †Not expected to be

equivalent between treatment and control. Averages taken across impressions at the user level.
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Table 3: Ad Effectiveness Results for Dynamic Remarketing Campaign
(1) (2) (3) (4) (5)

Site Visitors Site Visits Transactors Transactions Sales
Predicted Ghost Ad LATE Estimates

Post-first predicted impression outcomes

Treatment 90,841 426,984 9,409 10,606 $1,124,140
Control∗ 71,780 364,228 8,393 9,474 $1,014,447
Difference 19,061 62,756 1,016 1,132 $109,693

(472) (4,722) (172) (209) (31,799)
t-statistic 40.38 13.29 5.91 5.42 3.45
% Lift 26.6% 17.2% 12.1% 12.0% 10.8%
Difference/Exposed 0.048 0.158 0.0026 0.0029 $0.28

Intent-to-Treat Estimates

During campaign outcomes

Difference 12,238 69,821 1,274 1,861 $265,165
(1,800) (13,751) (419) (617) (131,540)

t-statistic 6.80 5.08 3.04 3.02 2.02

Hausman Test (p) 0.611† 0.584 0.468† 0.209 0.223
Rel. Variance of ITT 14.5 8.5 5.9 8.7 17.1
Notes: Results employ experimental difference estimator. Standard errors are in parentheses; ITT standard errors

use a conservative Poisson estimator for V ar(Σx) ≈ Σx2 as the population size is unknown due to the experiment’s

‘on the fly’ randomization. ∗Control group total outcomes rescaled by 7/3 to match treatment groups in 70%/30%

treatment split. †Hausman test compares consistent ITT estimates with efficient Predicted Ghost Ad LATE using

during-campaign outcomes for a proper comparison (see footnote 11).
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