Climate Change, Agricultural Production and Civil Conflict: Evidence from the Philippines

Benjamin Crost* Claire Duquennois† Joseph H. Felter‡
Daniel I. Rees§

January 2016

Abstract

Using unique data on conflict-related incidents in the Philippines, we exploit seasonal variation in the relationship between rainfall and agricultural production to learn about the mechanism through which rainfall affects civil conflict. We find that above-average rainfall in the dry season increases agricultural production and, with a one-year lag, dampens conflict intensity. In contrast, above-average rainfall in the wet season is harmful to crops and leads to more conflict the following year. Consistent with the hypothesis that rebel groups gain strength after a bad harvest, there is evidence that lagged rainfall affects the number of violent incidents initiated by insurgents but not the number of incidents initiated by government forces. These results suggest that the predicted shift towards wetter wet seasons and drier dry seasons will lead to more civil conflict even if annual rainfall totals remain stable. We conclude by noting that policies aimed at mitigating the effect of climate change on agriculture could have the added benefit of reducing civil conflict.

Keywords: Climate Change, Civil Conflict, Rainfall

JEL Classification: O13, H56, D74

*University of Illinois at Urbana-Champaign; email: bencrost@illinois.edu.
†University of California, Berkeley; email: claire.duquennois@berkeley.edu.
‡Stanford University; email: joseph.felter@stanford.edu.
§University of Colorado Denver; email: daniel.rees@ucdenver.edu.
1. Introduction

Climate change poses multiple threats to national security, global stability and human welfare (IPCC, 2014; Department of Defense, 2014; USAID, 2014). One of these threats takes the form of changes in the spatial and temporal distribution of rainfall. In fact, there is strong evidence that climate change is already leading to wetter wet seasons and drier dry seasons (Chou et al., 2013), and this trend is predicted to intensify in the near future (Chou and Lan, 2012). Experts worry that changing rainfall patterns could lead to more civil conflict, defined as intra-country violence between government forces and an organized armed group (Department of Defense, 2014; USAID, 2014). However, despite its importance, the connection between rainfall and civil conflict is not well understood (Nardulli et al., 2015; USAID, 2009, 2014).

Using unique data based on incident reports produced by Philippine military units operating in the field, the current study explores the effect of rainfall by season on agricultural production and civil conflict. Our results provide evidence that rainfall is related to civil conflict, at least in part, through its effect on agriculture as opposed to, for instance, its effect on infrastructure. Moreover, they suggest that the predicted shift towards wetter wet seasons and drier dry seasons will lead to an increase in civil conflict.

While there is strong and consistent evidence that hotter temperatures lead to increases in civil conflict (Hsiang et al., 2013), the evidence with regard to rainfall has been mixed. For instance, using data on sub-Saharan African countries, Miguel et al. (2004) and Miguel and Satyanath (2011) found that rainfall spurs economic growth, which in turn reduces the risk of civil conflict. In contrast, Hendrix and Salehyan (2012) found that abnormally wet years are associated with more civil conflict, while Burke et al. (2009) and Buhaug (2010) found no evidence of a relationship between rainfall and civil conflict in sub-Saharan Africa. Of the 60
studies reviewed by Hsiang et al. (2013), 11 considered the effect of rainfall on civil conflict. Four of these studies found that below-average rainfall was associated with increased civil conflict, 6 found a statistically insignificant relationship (at the 5% level), and one found evidence that above-average rainfall was associated with an increase in civil conflict.

Even among researchers who have found an effect of rainfall on conflict, there is disagreement as to the underlying mechanism. Some researchers have argued that rainfall is related to civil conflict through agricultural production (Miguel et al., 2004; Miguel and Satyanath, 2011; Maystadt and Ecker, 2014; Couttenier and Soubeyran, 2014). Alternatively, rainfall could have direct psychological effects on combatants, or be related to civil conflict through its impact on roads, bridges and the availability of surface water (Witsenburg and Adano, 2013; Ciucci et al., 2011; Hiltunen et al., 2012; Sarsons, 2013; Hsiang and Burke, 2014). Disentangling these mechanisms is crucial to informing policy responses to climate change (Burke et al., 2015). Even under the most optimistic scenarios, substantial changes in the spatial and temporal distribution of rainfall appear to be unavoidable (IPCC, 2014, p.189) and designing policies that can increase societal resilience to these changes will become increasingly important (World Bank, 2012; Center for Naval Analyses, 2014; USAID, 2014).

Previous studies document that, in the Philippines, above-average rainfall during the wet season (May through October) has a negative effect on agricultural production, while above-average rainfall during the dry season (November-April) has a positive effect (Lansigan et al., 2000; Gerpacio et al., 2004; Roberts et al., 2009). We hypothesize that, if agricultural production is in fact the mechanism through which rainfall affects civil conflict, then the relationship between rainfall and civil conflict should also exhibit seasonality but in the opposite direction. Using annual data on corn and rice harvests at the province level for the period 2001-2009, we begin our analysis by confirming that the effect of rainfall on agricultural production exhibits the expected seasonality. Next, we turn our attention to estimating the effect of rainfall by season on civil conflict using data based on incident reports.
produced by Philippine military units. These reports were used to plan operations and are an unusually reliable source of information on the civil conflict in the Philippines (Berman et al., 2011; Crost et al., 2014).

Lending support to the argument that rainfall is related to civil conflict through agricultural production, we show that above-average rainfall in the wet season is associated with more conflict in the following year, while above-average rainfall in the dry season is associated with less conflict in the following year. This pattern of results is not consistent with the argument that heavy rains hinder the movements of troops or supplies. It is especially pronounced in rice-producing provinces; where corn is the primary crop, and in provinces with relatively little land under cultivation, the relationship between lagged rain and conflict does not exhibit as much seasonality.

Because our conflict data are especially rich, we are able to examine the effect of rainfall on which group (the insurgents or government forces) initiated a particular incident. We find that lagged rainfall is related to the number of incidents initiated by insurgents but has essentially no effect on incidents initiated by government forces. We note that above-average rainfall during the previous rainy season could decrease the opportunity cost of joining an insurgent group and, as a result, increase insurgent strength, while above-average rainfall during the previous dry season could have the opposite effect. Finally, we find that much of the violence attributable to rainfall is directed at civilians, although violence directed at government forces is also affected.

The basic results outlined above have several important implications for policymakers interested in anticipating and bolstering societal resilience to climate change. First, they provide evidence, heretofore lacking, that the predicted shift towards wetter wet seasons and drier dry seasons will lead to more civil conflict even if annual rainfall totals remain stable. Analyses that do not account for changes in the seasonal distribution of rainfall are, therefore,
likely to underestimate the true effect of climate change on civil conflict. Second, they sug-
gest that policies aimed at mitigating the effect of climate change on agricultural production
could have the added benefit of reducing civil conflict. Finally, our results provide evidence
for a link between rainfall and civil conflict using data from the densely populated region of
Southeast Asia in a literature that has, thus far, focused almost exclusively on sub-Saharan
Africa.\footnote{While a handful of studies have examined the effect of rainfall and temperature on other forms of violence
in Asia such as ethnic riots (Bohilen and Sergenti, 2010; Sarsons, 2013) and historical peasant revolts (Jia,
2014), all four studies reviewed by Hsiang et al. (2013) that found a statistically significant effect of rainfall
on civil conflict, defined as intra-country conflict between government forces and an armed organization,
analyzed data from sub-Saharan Africa. After the publication of Hsiang et al. (2013), Fetzer (2014) found a
negative relationship between monsoon rainfall and civil conflict in India.}

2. Background

2.1. Climate change, rainfall and conflict

Research on the relationship between rainfall and civil conflict has generally focused on
Africa (Miguel et al., 2004; Burke et al., 2009; Buhaug, 2010; Miguel and Satyanath, 2011;
Hendrix and Salehyan, 2012; O’Loughlin et al., 2012; Theisen, 2012). However, observers
have argued that climate change is likely to intensify several on-going conflicts, and lead to
new conflicts, in Southeast Asia (Smith, 2007; Jasparro and Taylor, 2008; Gerstl and Helmke,

Indeed, as climate change progresses, many parts of Southeast Asia are likely to receive more
precipitation in the rainy season and less precipitation in the dry season (Christensen et al.,
rice with resistance to heat and water stress are developed (or other technological solutions

\footnote{While a handful of studies have examined the effect of rainfall and temperature on other forms of violence
in Asia such as ethnic riots (Bohilen and Sergenti, 2010; Sarsons, 2013) and historical peasant revolts (Jia,
2014), all four studies reviewed by Hsiang et al. (2013) that found a statistically significant effect of rainfall
on civil conflict, defined as intra-country conflict between government forces and an armed organization,
analyzed data from sub-Saharan Africa. After the publication of Hsiang et al. (2013), Fetzer (2014) found a
negative relationship between monsoon rainfall and civil conflict in India.}
are adopted), rice yields in Southeast Asia will decline substantially (Lansigan et al., 2000; Fischer et al., 2005; Lansigan, 2005; Asian Development Bank, 2009; Ahmed and Suphachalasai, 2014). It is an open question whether this decline in rice yields will lead to more civil conflict.

Only two previous studies have examined the relationship between rainfall and civil conflict in Asia. Using data from India for the period 2000-2006, Fetzer (2014) found a negative relationship between monsoon rainfall and civil conflict. Using data from 26 Asian countries for the period 1951-2008, Wischnath and Buhaug (2014) found little evidence that civil conflict is sparked by lack of rain, perhaps because Asian economies and/or farmers are less reliant on traditional agricultural practices than their African counterparts. Although Wischnath and Buhaug (2014) concluded that the onset of civil conflict in Asia is unrelated to rainfall and drought, they noted that climate “may shape the severity, duration, and geographic spread of hostilities” (p. 719).

There are several reasons why abnormal rainfall events could affect the duration or intensity of ongoing civil conflicts. While agricultural production is perhaps the most frequently cited mechanism in the literature, other explanations have been suggested. It is, for example, possible that heavy rainfall makes roads and bridges impassable, thereby increasing the cost of carrying out long-distance attacks or impeding state security efforts (Sarsons, 2013; Hsiang and Burke, 2014; Fearon and Laitin, 2003). In addition, above-average rainfall could increase the density of vegetation, allowing combatants to conceal their activities (Witsenburg and Adano, 2013). The mechanism through which rainfall affects civil conflict has important implications for the optimal policy responses to climate change. If agriculture is the mechanism, then policies aimed at reducing the impact of rainfall shocks on crop yields are likely to increase societal resilience to civil conflict in the face of climate change. These policies include investments in irrigation, crop diversification and breeding programs for increased resistance to water stress. If, on the other hand, infrastructure and/or vegetation density
explain the relationship between rainfall and civil conflict, then such policies will have little impact on societal resilience.

Consistent with the argument that agricultural production links rainfall and civil conflict, Harari and La Ferrara (2014) found that weather shocks (such as above-average temperatures or below-average rainfall) during the growing season had a larger impact on conflict-related incidents in Africa than weather shocks outside of the growing season.\(^2\) In an effort to explore the link between rainfall and Hindu-Muslim riots in India, Sarsons (2013) exploited the fact that agricultural production downstream from dams is more likely to depend on irrigation as compared to upstream production. She hypothesized that the effect of rainfall on Hindu-Muslim riots should, therefore, be less pronounced in downstream districts, but found little evidence for this hypothesis. In fact, the relationship was strongest in downstream districts, suggesting that rainfall is related to Hindu-Muslim riots through a mechanism other than agricultural production.

Our empirical strategy is inspired by Harari and La Ferrara (2014) and Sarsons (2013). We hypothesize that if rainfall were related to conflict through infrastructure (by, for instance, increasing the cost of travel), then its effect should be immediate, negative and more pronounced during the wet, as opposed to the dry, season. While our results provide some evidence of a contemporaneous relationship between wet-season rainfall and conflict, the main effect of rainfall occurs with a one-year lag and follows a seasonal pattern consistent with an agricultural mechanism. Specifically, above-average rainfall in the wet season is associated with an increase in civil conflict one year later, while above average-rainfall in the dry season is associated with a decrease in civil conflict one year later. This pattern of results is difficult to reconcile with the infrastructure hypothesis, but easily explained by

\(^2\)Burke et al. (2009), however, concluded that rainfall during the growing season had a weaker relationship with civil conflict in Africa than simple annual averages of rainfall. Similarly, Bollfrass and Shaver (2015) found that the global relationship between temperature and conflict was as strong in non-agricultural as in agricultural regions and interpreted this pattern of results as evidence of a psychological mechanism.
the well-documented seasonality (Lansigan et al., 2000; Gerpacio et al., 2004; Roberts et al., 2009) in the relationship between rainfall and Philippine agricultural production.

2.2. Agriculture and rainfall in the Philippines

Agriculture is an important part of Philippine economy, employing 35 percent of workers and generating 13 percent of GDP in 2009 (World Bank, 2015). The most important crop is rice, which is the main source of income and employment for 11.5 million farming households (Sebastian et al., 2000). Rice supplies 35 percent of caloric intake for the average household, and 60-65 percent of caloric intake for households in the lowest income quartile (David and Balisacan, 1995). In 2002, 42 percent of land under cultivation was planted in rice. The second most important grain crop in the Philippines is corn, which accounted for 25 percent of the land under cultivation. Unlike rice, which is almost exclusively grown as a food crop, corn is mostly used as feed for livestock (Gerpacio et al., 2004).

There are two distinct growing seasons for cereal crops in most of the Philippines – a wet season lasting from May to October, and a dry season lasting from April to November (Lansigan et al., 2000). In the wet season, peak planting months are May through July and peak harvesting months are September through November. In the dry season, peak planting months are December and January and peak harvesting months are March and April. The greatest risk to crops in the wet season is flooding and extreme weather events such as typhoons; as a consequence, above-average rainfall in this season is associated with lower agricultural production (Lansigan et al., 2000; Gerpacio et al., 2004; Roberts et al., 2009). In the dry season, the greatest risk to crops is drought; above-average rainfall in this season is associated with higher agricultural production (Roberts et al., 2009). Below, using

\[\text{Several provinces have three growing seasons. Others have no pronounced dry season and strong rainfall from November to January. In Section 5, we conduct a series of robustness tests excluding these provinces from the analysis.} \]
annual data on corn and rice harvests at the province level from the Philippine Bureau of Agricultural Statistics, we confirm that the relationship between rainfall and agricultural production exhibits the expected seasonality.

2.3. Civil conflict in the Philippines

The Philippines is involved in two distinct on-going civil conflicts during the period examined by this study, which together have caused more than 120,000 deaths (Schiavo-Campo and Judd, 2005). The most geographically widespread of these conflicts involves the New People’s Army (NPA), a Maoist guerrilla group founded in 1969 that seeks to overthrow the Philippine government and replace it with a communist system. In 2005, the mid-point of this study, the NPA was estimated to have 7,100 fighters (Felter, 2005). The NPA operates primarily in rural areas and relies on support from the rural poor, who supply most of its labor and logistics.

The second on-going conflict involves the Moro Islamic Liberation Front (MILF), a separatist movement fighting for an independent state in the predominantly Muslim areas of Mindanao Island and the Sulu archipelago. The MILF was formed in 1984, when the group’s founders defected from the Moro National Liberation Front (MNLF). After this split, the MILF pursued a strategy of armed conflict against the government, while the MNLF signed a peace agreement in 1996 that created the Autonomous Region of Muslim Mindanao (ARRM). The MILF enjoys broad-based support among Muslims in the Philippines (Kreuzer and Werning, 2007). With an estimated 10,500 fighters, the MILF is larger than the NPA, but has a much narrower geographic reach.

In addition to the NPA and MILF, the Armed Forces of the Philippine (AFP) must also contend with the Abu Sayyaf Group (ASG) and so-called “Lawless Elements”. The ASG is
a high-profile Philippine terrorist organization with suspected links to al-Qaeda that mostly operates on Basilan Island and in the remote Sulu Archipelago in the far southwest of the country. While ASG receives considerable media attention, it has a far smaller number of fighters than either NPA or MILF and is responsible for only a small fraction of the violence recorded in our dataset. The term “Lawless Elements” refers to small, loosely-allied bands of guerrilla and criminal groups operating across the Philippines. Some of these groups are led by former NPA, MILF or ASG commanders who broke away from the main organization. Many of them employ guerrilla-like tactics but use violence primarily as part of criminal activities such as extortion or kidnapping for ransom rather than to pursue political objectives.

3. Data

Our analysis is at the province-year level. Province boundaries are from 2001, when the Philippines was divided into seventy-nine provinces, each administered by a separate governor and legislative assembly. Three provinces, all located in the remote Sulu Archipelago (Basilan, Sulu and Tawi-Tawi), were not included in the analysis. The climate of the Sulu Archipelago differs markedly from the rest of the country and does not feature pronounced rainfall seasonality. Another province, Batanes, was excluded from the analysis because of missing information on agricultural production, most likely due to its small size and remote location. Of the remaining 75 provinces, 73 contributed 9 years of data (2001-2009) to the analysis; two provinces (Zamboanga Sibugay and Compostela Valley) contributed 8 years of data because of missing information on agricultural production in 2001.

Data on agricultural production come from the Philippine Bureau of Agricultural Statistics.
and are publicly available through the CountryStat database.4 The rainfall measurements for each province were constructed using the Tropical Rainfall Measuring Mission’s 3B43 algorithm, which produces estimates of monthly precipitation using a weighted combination of various microwave satellite estimates and rain gauge estimates.5 The TRMM dataset was selected for its high degree of spatial resolution. Monthly precipitation averages are estimated for a 0.25x0.25 degree latitude and longitude grid, providing a higher spatial resolution than most global precipitation data sets. Each province’s precipitation value was constructed by overlaying province boundaries on the 0.25x0.25 degree grid and calculating a weighted mean of precipitation by area.

Our measures of conflict intensity are based on incident reports from Philippine military units operating in the field during the period 2001-2009. These reports were originally collected by Felter (2005) and have been updated through 2009. They were used by Berman et al. (2011) and Crost et al. (2014) to study the determinants of conflict in the Philippines. Because the reports were used by the armed forces to plan operations and were not originally intended for public release, they are an unusually reliable source of information on the civil conflict (Berman et al., 2011; Crost et al., 2014). They include information on which group (the government or the insurgents) initiated the incident, the number combatants killed, and the number of civilians killed.

We calculated two measures of conflict intensity from these data. The first is equal to the number of casualties by province and year. The second is equal to the number of violent incidents, defined as incidents resulting in at least one casualty. Regressions using this latter measure are less likely to be influenced by outliers because they give less weight to single incidents with above-average casualty counts.

4http://countrystat.bas.gov.ph/. This website was last accessed in February of 2015. 5Details are available at http://mirador.gsfc.nasa.gov/collections/TRMM_3B43__007.shtml. Site last accessed February 2015.
4. Empirical strategy

Our empirical strategy exploits the seasonal pattern of rainfall in the Philippines. Our baseline estimating equation for agricultural production is:

$$Y_{it} = \alpha_0 + \alpha_1 R_{it} + X_{it}\beta + \nu_i + \lambda_i t + \varepsilon_{it},$$ \quad (1)

where Y_{it} denotes the natural logarithm of rice or corn production in province i and year t. R_{it} denotes annual rainfall levels in 10s of centimeters and X_{it} is a vector of controls for average annual temperature and typhoon activity. Specifically, X_{it} includes a set of indicators for 1-degree Celsius bins fully interacted with indicators for the country’s four major geographic zones (Luzon, Visayas, Mindanao, and ARMM). The vector X_{it} also includes an indicator for whether the province was hit by a typhoon in year t.\(^6\)

Next, we allow rainfall to have different effects depending on the season by estimating the following equation:

$$Y_{it} = \alpha_0 + \alpha_1 R_{it}^{dry} + \alpha_2 R_{it}^{wet} + X_{it}\beta + \nu_i + \lambda_i t + \varepsilon_{it},$$ \quad (2)

where R_{it}^{dry} and R_{it}^{wet} measure rainfall dry season and wet season rainfall levels in 10s of centimeters, respectively. To estimate the effect of rainfall on conflict, we use a distributed

\(^6\)To generate this variable, we use data from the EM-DAT database on natural disasters, which contains information on the paths of 71 typhoons that struck the Philippines during the period of observation 2001-2009 (Guha-Sapir et al., 2015). Controlling for which provinces were affected by typhoons has almost no impact on the estimates presented below.
lag model following Burke et al. (2015):

\[C_{it} = \gamma_0 + \gamma_1 R_{it}^{\text{dry}} + \gamma_2 R_{it}^{\text{wet}} + \gamma_3 R_{it-1}^{\text{dry}} + \gamma_4 R_{it-1}^{\text{wet}} + X_{it}\beta_1 + X_{it-1}\beta_2 + \nu_i + \lambda_i t + \varepsilon_{it}, \]

(3)

where \(C_{it} \) denotes the conflict outcome of interest, which is either the number of casualties or the number of violent incidents (defined as incidents with at least one casualty) in province \(i \) and year \(t \). Including lagged rainfall accounts for the possibility that the effect of rainfall is not realized until after the next harvest due to storage and savings (Burke et al., 2015).

As explained in Section 2, we define the wet season as May through October and the remaining months as the dry season. We follow standard practice by using total rainfall received in province \(i \) over the course of a season (e.g. Deschenes and Greenstone, 2007; Lobell and Burke, 2008; Schlenker and Roberts, 2009; Schlenker and Lobell, 2010). This aggregation allows us to capture seasonal variation in the effect of rainfall while reducing the influence of measurement error typically observed in monthly rainfall estimates.\(^7\)

To control for unobservables potentially correlated with rainfall, our estimating equations include province fixed effects (\(\nu_i \)) and province-specific linear time trends (\(\lambda_i t \)). Following standard practice in this literature, we do not include year fixed effects in our estimating equation (Miguel et al., 2004; Burke et al., 2009; Schlenker and Lobell, 2010; Hsiang et al., 2011). While year fixed effects would allow us to more flexibly control for time-varying unobservables at the country level, they have two significant disadvantages in this context (Fisher et al., 2012; Aufhammer et al., 2013). First, year fixed effects can severely exacerbate the problem of measurement error in the rainfall variable. Rainfall is always measured with error, especially when it comes from large-scale gridded datasets like the TRMM, and year fixed effects remove a substantial part of the actual variation in rainfall, which can severely

\(^7\)Precipitation is typically measured with substantial error in global gridded datasets and temporal aggregation reduces attenuation bias by canceling out some fraction of the individual errors (Lobell, 2013).
increase the ratio of noise to signal and lead to attenuation bias (Fisher et al., 2012). Second, year fixed effects can introduce bias in the presence of spillovers from trade, migration, or movements of insurgents across province boundaries. To avoid these issues, our regressions exclude year fixed effects and rely on the assumption that variation in rainfall is random across years and therefore uncorrelated with time-varying common shocks that affected the country as a whole. To account for possible serial correlation of conflict, we cluster the standard errors at the province level.\(^8\)

5. Results

Table 1 provides descriptive statistics for rainfall (by season), agricultural production, conflict-related incidents and casualties. It is apparent from these statistics that rainfall exhibits strong seasonality. During the dry season, the provinces in our sample received an average of 98.6 centimeters of rainfall; during the wet season, they received an average of 159.3 centimeters of rainfall, a difference of approximately 60 percent. The optimal seasonal rainfall for rice production in Asia is between 100 and 150 centimeters (Samui, 1999; IRRI, 2015b), consistent with evidence from the Philippines that above-average rainfall in the dry season increases yields while above-average rainfall in the wet season has the opposite effect (Lansigan et al., 2000; Gerpacio et al., 2004; Roberts et al., 2009).

On average, provinces experienced 6.6 conflict-related incidents per year, resulting in 14.1 casualties. Approximately 45 percent of total casualties were suffered by government forces; 30 percent were suffered by insurgents, with civilians making up the remainder. Sixty-two percent of casualty-producing incidents were initiated by insurgents, and insurgent-initiated

\(^8\) We also estimated the spatial autocorrelation robust standard errors described by Conley (2008) and previously implemented by Hsiang (2010). Appendix Tables A.1 and A.2 show that the Conley standard errors are smaller than clustered standard errors and insensitive to the choice of spatial bandwidth, which suggests that spatial correlation does not lead to a downward bias in our standard error estimates.
incidents accounted for 55 percent of total casualties. Government-initiated incidents accounted for 44 percent of total casualties.

Disaggregation by insurgent group shows that the largest share of incidents (61 percent) involved the New People’s Army (NPA). Incidents involving the NPA accounted for 58 percent of total casualties. The Moro Islamic Liberation Front (MILF) was involved in 10 percent of reported violent incidents, although these incidents accounted for 18 percent of casualties. Lawless Elements (LE) were responsible for 22 percent of incidents and 20 percent of total casualties. Finally, the Abu Sayyaf Group (ASG) was involved in less than 1 percent of violent incidents, accounting for less than 2 percent of casualties.\(^9\)

5.1. Rainfall and agricultural production

Table 2 provides estimates of the relationship between rainfall and agricultural production. In column (1), the estimated coefficient of \(R_{it}\) is small and statistically insignificant at conventional levels, suggesting that total rainfall received over the course of the year has little effect on rice production. In column (3), the relationship between annual rainfall and corn production is negative and significant: a 10-centimeter increase in annual rainfall is associated with a decrease in corn production of 0.59 percent.

When \(R_{it}\) is replaced by \(R_{it}^\text{wet}\) and \(R_{it}^\text{dry}\), the expected seasonal pattern emerges, at least with regard to the rice harvest. Specifically, a 10-centimeter increase in dry-season rainfall is associated with a 0.28 percent increase in rice production.\(^10\) In contrast, a 10-centimeter

\(^9\)These percentages do not add up to 100 because information on which group was involved is missing for approximately 4 percent of the incidents in our data.

\(^10\)Ten centimeters represents 15.3 percent of a standard deviation in dry-season rainfall (Table 1). Therefore, a one-standard deviation increase in dry-season rainfall is associated with a 1.83 percent increase in rice production, which is similar in magnitude to previous estimates of the relationship between rainfall and rice production. Using farm-level data from 7 tropical and subtropical Asian countries, Welch et al. (2010) found that a one-standard deviation increase in rainfall during the ripening phase was associated with a
increase in wet-season rainfall is associated with a decrease in rice production of 0.56 percent. Both estimates are statistically significant at conventional levels.

A slightly different seasonal pattern emerges for corn. The estimated relationship between dry-season rainfall and corn production is positive, but not statistically significant. A 10-centimeter increase in wet-season rainfall is associated with a decrease in corn production of approximately 1.5 percent. This latter estimate is significant at the 1 percent level, and the difference between the wet- and dry-season estimates is also significant at the 1 percent level. The results in Table 2 are generally consistent with what we know about the physiology of rice versus corn (Rathore et al., 1997; Zaidi et al., 2004; Nishiuchi et al., 2012). Rice is a wetland plant and, as a consequence, more tolerant to waterlogging. Corn is better adapted to drier conditions, but more susceptible to flooding and submersion in water.

5.2. Rainfall and civil conflict

We report estimates of equation (3) in Table 3. Consistent with the infrastructure hypothesis, wet-season rainfall appears to have a contemporaneous, but relatively modest, impact on conflict intensity. Specifically, a 10-centimeter increase in wet-season rainfall is associated with 0.12 fewer conflict-related incidents. The estimated relationship between contemporaneous wet-season rainfall and total casualties is also negative, but not significant at the 10 percent level. Consistent with the hypothesis that rainfall affects conflict intensity, at least in part, through agricultural production, we find that a 10-centimeter increase in dry-season rainfall is associated with 0.55 fewer casualties and 0.24 fewer conflict-related incidents the following year.

1.4 percent increase in rice production. Using farm-level data from India, Bhattacharya and Panda (2013) found that a one-standard deviation increase in rainfall was associated with a 1.9 percent increase in yield. It should also be kept in mind that, because rainfall is measured with error, the estimates in Table 2 can be thought of as lower bounds.
A 10-centimeter increase in wet-season rainfall is associated with 0.25 additional conflict-related incidents the following year. The estimated relationship between lagged wet-season rainfall and casualties, while positive, is not significant at the 10 percent level.

As noted above, several provinces in the Philippines have three (as opposed to two) growing seasons, while others (located along the country’s east coast) lack a pronounced dry season and typically receive heavy rainfall from November through January (IRRI, 2015a; Kintanar, 1984).11 As a robustness check, we experimented with excluding these provinces from the analysis. The results, reported in Tables 4 and 5, are generally consistent with those reported in Tables 2 and 3. In fact, when provinces without a dry season are excluded, the relationship between rainfall and conflict appears more pronounced.

5.3. The Importance of Agricultural Area

Next, we allow the effect of rainfall on conflict to differ according to a measure of land use at the province level, \(\frac{\text{HectaresUnderCultivation}_i}{\text{TotalHectares}_i} \), where the number of hectares under cultivation comes from the CountryStat database (published by the Philippine Bureau of Agricultural Statistics) and the total area of province \(i \) comes from the 2000 Census of the Philippines. Specifically, we estimate equation (2) separately for provinces with \(\frac{\text{HectaresUnderCultivation}_i}{\text{TotalHectares}_i} \) greater than the median observed in our data, and for provinces with \(\frac{\text{HectaresUnderCultivation}_i}{\text{TotalHectares}_i} \) less than the median observed in our data. The results of this exercise are reported in Table 6 and suggest an important role for agriculture: the estimated effects of lagged rainfall on conflict intensity are, without exception, much larger in provinces with a greater-than-median proportion of total area devoted to agriculture as compared to provinces with a

11According to IRRI (2015a), the following provinces have three growing seasons: Bukidnon, Davao del Sur, Davao Oriental, Ilocos Norte, Iloilo, North Cotabato, South Cotabato. The provinces that lack a pronounced dry season are: Agusan del Norte, Agusan del Sur, Camarines Norte, Catanduanes, Compostela Valley, Davao Oriental, Eastern Samar, Leyte, Northern Samar, Samar, Southern Leyte, Surigao del Norte, Surigao del Sur.
less-than-median proportion of total area devoted to agriculture.

5.4. Disaggregation by initiator and victim

In this section, we investigate the effect of rainfall on conflict intensity by casualty type. The results, which are reported in Table 7, suggest that rainfall shocks can shift the balance of power between insurgents and government forces. The estimated effects of rainfall on insurgent casualties and on incidents resulting in at least one insurgent casualty are generally small and, without exception, statistically insignificant. Rainfall does, however, appear to have an impact on casualties suffered by civilians and government forces. For instance, a 10-centimeter increase in lagged dry-season rainfall is associated with 0.27 fewer civilian casualties and 0.28 fewer casualties suffered by government forces; a 10-centimeter increase in lagged wet-season rainfall is associated with 0.30 additional civilian casualties and 0.17 additional incidents resulting in at least one civilian casualty. These results are broadly consistent with those of van den Eynde (2011), who found that low rainfall is associated with an increase in insurgent-on-civilian violence in India.

In Table 8, we report estimates of the effect of rainfall on conflict intensity by who (that is, which group) initiated the violence. The results provide further evidence that rainfall can shift the power balance between insurgents and government forces. Specifically, we find that the estimated effects of lagged rainfall on violent incidents initiated by insurgents are roughly similar in size to those reported in Table 3. In contrast, the estimated effects on government-initiated incidents are closer to zero and not statistically significant.\footnote{Table 8 also provides evidence that contemporaneous dry-season rainfall is positively related to incidents initiated by government forces, but negatively related to incidents initiated by insurgents. These estimates, however, are only significant at the 10 percent level.} This pattern of results suggests that rainfall shocks that are detrimental to agricultural production strengthen insurgent groups, enabling them to inflict casualties on government forces and
civilians who do not comply with their demands.13

\section*{5.5. Disaggregation by insurgent group and region}

The Philippine military categorizes incidents based upon which insurgent group was involved. According to the military, the three main active insurgent groups operating in the Philippines are the communist New People’s Army (NPA), the Muslim-separatist Moro-Islamic Liberation Front (MILF), and the Islamist Abu Sayyaf Group (ASG). In addition to these armed insurgent groups, the military also reports conflict episodes involving armed criminal groups, or so-called “Lawless Elements”, as recorded in military field reports. Lawless Elements (LE) are composed of apolitical criminal organizations and groups led by renegade former insurgent commanders. Detailed descriptions of these four groups can be found in Section 2. In this section, we estimate the effect of rainfall on conflict intensity by region and by which armed group was involved. Our definition of region is based on where the MILF operates. MILF (and ASG) operations are confined to the southwest of the island of Mindanao and the Sulu Sea, while the incidents involving the NPA and Lawless Elements are reported throughout the country.14

The results of this exercise are reported in Table 9. They suggest that outside the provinces in which the MILF operates, lagged dry-season rainfall is negatively related to the number of violent incidents involving the NPA and lawless elements. In regions with MILF/ASG activity, lagged rainfall appears to have different effects depending on which insurgent group

13It has been suggested that an increase in insurgent-on-civilian violence could be the result of decreased insurgent strength, leading to the use of violence to control the population and punish informants (Kalyvas, 2006; Wood, 2010). However, this mechanism is not consistent with the estimates reported in Table 7 showing that lagged dry-season rainfall is negatively related to government casualties but essentially unrelated to insurgent casualties.

14Out of the 17 administrative regions of the Philippines, only 5 recorded MILF activity during the period of observation. These 5 administrative regions are divided into a total of 18 provinces. There was no MILF or ASG activity in the other 12 administrative regions of the Philippines.
was involved. For example, lagged wet-season rainfall is associated with more incidents involving lawless elements but fewer incidents involving the MILF. A possible explanation is that negative shocks to agricultural production increase the likelihood of factional splits within the MILF. Because the Philippine military classifies smaller armed groups led by renegade MILF commanders as LE, factional splits could result in an increase in incidents attributed to lawless elements and a corresponding decrease in incidents attributed to the MILF. This explanation is consistent with theoretical and empirical results that suggest that poor economic conditions and low state capacity lead to increased factionalization among rebel groups (Bueno de Mesquita, 2008; Fjelde and Nilsson, 2012).15 A related explanation is that rainfall shocks affect how military units attribute incidents to the four group categories, even if there is little change in actual insurgent activity. The leadership of NPA and MILF often publicly denounce violence in regions affected by humanitarian crises such as drought or flood. Regardless of their actual affiliation, groups committing violence in these regions may therefore be more likely to be labeled as lawless elements because their actions contradict the public statements of the NPA and MILF leadership.

6. Conclusion

In the Philippines and other parts of Southeast Asia, above-average rainfall can be an unexpected boon for farmers or it can ruin crops, depending on when it occurs (Lansigan et al., 2000; Gerpacio et al., 2004; Roberts et al., 2009). During the dry season, rice (and to a lesser extent corn) is susceptible to drought and above-average rainfall typically leads to an increase in agricultural production. During the wet season, above-average rainfall can lead to flooding and/or waterlogging and, as a consequence, poor harvests.

15Our results are also consistent with evidence that rebel factionalization is often accompanied by increased violence against the state and civilians (Cunningham, 2013).
Using detailed data on conflict-related incidents collected by the Philippine military for its own internal purposes, we estimate the effect of rainfall by season on agricultural production and civil conflict in the Philippines. Our results suggest that the predicted shift towards wetter wet seasons and drier dry seasons will be harmful to agriculture and lead to an increase in civil conflict. Moreover, they suggest that rainfall is related to civil conflict, at least in part, through its effect on agriculture.

Three pieces of evidence are most salient. First, we find that lagged rainfall is a robust predictor of conflict intensity. Because the effect of rainfall on agricultural production is realized at harvest, we would expect there to be a lag between rainfall and conflict, which we would not expect if rainfall worked exclusively through infrastructure or if rainfall had a direct influence on the psychology of combatants. Second, the relationship between rainfall and conflict-related incidents exhibits seasonality, but in the opposite direction as observed for agricultural production. That is, above-average rainfall received during the dry season leads to an increase in rice production, but is associated with fewer conflict-related incidents and causalities one year later. In contrast, above-average rainfall received during the wet season leads to a decrease in rice production, but is associated with more conflict-related incidents one year later. Third and finally, the effect of rainfall on conflict appears to be more pronounced in provinces with a greater-than-median proportion of total area devoted to the production of rice. Taken together, these results lend strong support to the argument that agricultural production is at least one of the channels through which rainfall impacts civil conflict.

Although climate change is not expected to have a major impact on total rainfall in Philippines or other Southeast Asian countries (Christensen et al., 2007; Asian Development Bank, 2009; Lyon and Camargo, 2009), it is expected to amplify the already pronounced seasonal variation in rainfall. Our findings suggest that this amplification will exacerbate ongoing civil conflict in the Philippines and perhaps spark new conflict in other Southeast Asian
countries, especially those heavily dependent on rice for subsistence.

Understanding the mechanisms through which climate change affects civil conflict is crucial to informing policy responses to climate change (Burke et al., 2015). Even under the most optimistic scenarios, substantial climate change appears to be unavoidable (IPCC, 2014, p.189), and designing policies that can increase societal resilience against civil conflict in the face of a changing climate will become increasingly important (World Bank, 2012; Center for Naval Analyses, 2014; USAID, 2014). Our results suggest that policies aimed at mitigating the effect of climate change on agricultural production could have the added benefit of reducing civil conflict.

References

Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magaa Rueda, L. Mearns, C.G. Men-

Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014.

Kintanar, Roman Lucero, Climate of the Philippines, Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), Quezon City, 1984.

Kreuzer, Peter and Rainer Werning, Voices from Moro Land: Perspective from Stakeholders and Observers on the Conflict in the Southern Philippines, Petaling Jaya: Strategic Information and Research Development Centre, 2007.

Table 1. Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall in wet season (100 mm)</td>
<td>15.93</td>
<td>4.67</td>
</tr>
<tr>
<td>Rainfall in dry season (100 mm)</td>
<td>9.86</td>
<td>6.52</td>
</tr>
<tr>
<td>Rice production (1000 metric tonnes)</td>
<td>197.5</td>
<td>223.0</td>
</tr>
<tr>
<td>Corn production (1000 metric tonnes)</td>
<td>75.2</td>
<td>140.0</td>
</tr>
<tr>
<td>Casualties</td>
<td>14.1</td>
<td>22.7</td>
</tr>
<tr>
<td>Government casualties</td>
<td>6.4</td>
<td>10.6</td>
</tr>
<tr>
<td>Insurgent casualties</td>
<td>4.3</td>
<td>10.1</td>
</tr>
<tr>
<td>Civilian casualties</td>
<td>3.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Casualties in government-initiated incidents</td>
<td>6.2</td>
<td>13.3</td>
</tr>
<tr>
<td>Casualties in insurgent-initiated incidents</td>
<td>7.8</td>
<td>12.3</td>
</tr>
<tr>
<td>Casualties in incidents with the NPA</td>
<td>8.2</td>
<td>12.3</td>
</tr>
<tr>
<td>Casualties in incidents with the MILF</td>
<td>2.5</td>
<td>16.4</td>
</tr>
<tr>
<td>Casualties in incidents with the ASG</td>
<td>0.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Casualties in incidents with LE</td>
<td>2.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Violent incidents</td>
<td>6.6</td>
<td>8.2</td>
</tr>
<tr>
<td>Incidents with at least one government casualty</td>
<td>3.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Incidents with at least one insurgent casualty</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Incidents with at least one civilian casualty</td>
<td>1.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Government-initiated violent incidents</td>
<td>2.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Insurgent-initiated violent incidents</td>
<td>4.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Violent incidents involving the NPA</td>
<td>4.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Violent incidents involving the MILF</td>
<td>0.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Violent incidents involving the ASG</td>
<td>0.06</td>
<td>0.44</td>
</tr>
<tr>
<td>Violent incidents involving LE</td>
<td>1.5</td>
<td>3.5</td>
</tr>
<tr>
<td>No. of provinces</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>No. of observations</td>
<td>673</td>
<td>673</td>
</tr>
</tbody>
</table>

The unit of observation is the province-year.
Table 2. Seasonal Rainfall and Agricultural Production in the Philippines

<table>
<thead>
<tr>
<th></th>
<th>Log of Rice Production</th>
<th>Log of Corn Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Annual rainfall</td>
<td>–0.0009</td>
<td>–0.0059**</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0029)</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0028**</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>(0.0013)</td>
<td>(0.0043)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>–0.0056***</td>
<td>–0.0153***</td>
</tr>
<tr>
<td></td>
<td>(0.0015)</td>
<td>(0.0049)</td>
</tr>
<tr>
<td>No. of provinces</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>No. of observations</td>
<td>673</td>
<td>673</td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 3. Seasonal Rainfall and Civil Conflict in the Philippines

<table>
<thead>
<tr>
<th></th>
<th>Total Casualties</th>
<th>Violent Incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Annual rainfall</td>
<td>-0.046</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>(0.194)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>0.189</td>
<td>-0.010</td>
</tr>
<tr>
<td></td>
<td>(0.284)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.269</td>
<td>-0.124*</td>
</tr>
<tr>
<td></td>
<td>(0.208)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Lag of annual rainfall</td>
<td>-0.254</td>
<td>-0.078*</td>
</tr>
<tr>
<td></td>
<td>(0.194)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.548***</td>
<td>-0.236***</td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>0.432</td>
<td>0.254***</td>
</tr>
<tr>
<td></td>
<td>(0.390)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>No. of provinces</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>No. of observations</td>
<td>598</td>
<td>598</td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 4. Rainfall and Agricultural Production: Excluding Provinces with Unusual Seasons

<table>
<thead>
<tr>
<th></th>
<th>Provinces with 3 seasons excluded</th>
<th>Provinces without dry season excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rice</td>
<td>Corn</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>0.0030***</td>
<td>0.0021</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.0056***</td>
<td>-0.0165***</td>
</tr>
<tr>
<td>No. of provinces</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>No. of observations</td>
<td>610</td>
<td>610</td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 5. Effect of Rainfall on Conflict: Excluding Provinces with Unusual Seasons

<table>
<thead>
<tr>
<th></th>
<th>Provinces with 3 seasons excluded</th>
<th>Provinces without dry season excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Casualties</td>
<td>Incidents</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>0.175</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(0.287)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.242</td>
<td>-0.103</td>
</tr>
<tr>
<td></td>
<td>(0.217)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.491**</td>
<td>-0.236***</td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>0.470</td>
<td>0.245**</td>
</tr>
<tr>
<td></td>
<td>(0.411)</td>
<td>(0.099)</td>
</tr>
</tbody>
</table>

| No. of provinces | 68 | 68 | 63 | 63 |
| No. of observations | 542 | 542 | 503 | 503 |

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 6. Importance of Agricultural Land Area

<table>
<thead>
<tr>
<th></th>
<th>Total Casualties</th>
<th>Violent Incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rice Area</td>
<td>Corn Area</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>0.271</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>(0.548)</td>
<td>(0.274)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.230</td>
<td>-0.414</td>
</tr>
<tr>
<td></td>
<td>(0.290)</td>
<td>(0.290)</td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.866**</td>
<td>-0.268</td>
</tr>
<tr>
<td></td>
<td>(0.345)</td>
<td>(0.206)</td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>0.529</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td>(0.619)</td>
<td>(0.370)</td>
</tr>
</tbody>
</table>

No. of provinces 38 37 38 37 38 37 38 37
No. of observations 303 295 302 296 303 295 302 296

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. The variables and denote the mean fraction of the province’s land area that is planted to rice and corn during the period of observation, 2001-2009. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 7. Who Suffers the Casualties?

<table>
<thead>
<tr>
<th></th>
<th>Number of Casualties by Group</th>
<th></th>
<th>Number of Violent Incidents by Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Government</td>
<td>Insurgent</td>
<td>Civilian</td>
<td>Government</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>0.128</td>
<td>0.142</td>
<td>-0.081</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.140)</td>
<td>(0.091)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.130</td>
<td>-0.029</td>
<td>-0.110</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td>(0.089)</td>
<td>(0.077)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.278***</td>
<td>0.001</td>
<td>-0.271***</td>
<td>-0.126***</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.099)</td>
<td>(0.086)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>-0.003</td>
<td>0.132</td>
<td>0.303*</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>(0.160)</td>
<td>(0.206)</td>
<td>(0.168)</td>
<td>(0.062)</td>
</tr>
</tbody>
</table>

No. of provinces | 75 | 75 | 75 | 75 | 75 | 75
No. of observations | 598 | 598 | 598 | 598 | 598 | 598

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 8. Who Initiates the Violence?

<table>
<thead>
<tr>
<th></th>
<th>Casualties</th>
<th>Violent incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Government-initiated</td>
<td>Insurgent-initiated</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>0.325 (0.197)</td>
<td>-0.136 (0.167)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.139 (0.121)</td>
<td>-0.129 (0.137)</td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.016 (0.122)</td>
<td>-0.520*** (0.131)</td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>0.192 (0.254)</td>
<td>0.225 (0.201)</td>
</tr>
<tr>
<td>No. of provinces</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>No. of observations</td>
<td>598</td>
<td>598</td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table 9. Effects by Region and Insurgent Group

<table>
<thead>
<tr>
<th></th>
<th>Dependent Variable: Number of Violent Incidents</th>
<th>non-MILF Regions</th>
<th>MILF Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total NPA LE</td>
<td>Total NPA LE</td>
<td>MILF ASG</td>
</tr>
<tr>
<td>Dry season rainfall</td>
<td>-0.025 0.033 -0.052 -0.072 -0.164 -0.453**</td>
<td>0.520 0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.073) (0.074) (0.034) (0.630) (0.364) (0.187)</td>
<td>(0.512) (0.075)</td>
<td></td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.120* -0.100* -0.019 -0.140 0.029 -0.508 0.313 0.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.064) (0.057) (0.022) (0.487) (0.162) (0.366) (0.251) (0.064)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.197*** -0.112* -0.067** -0.713** 0.114 -0.794** 0.054 -0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.070) (0.067) (0.028) (0.315) (0.130) (0.334) (0.149) (0.085)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>0.194** 0.150 0.033 0.560 -0.141 1.335*** -0.865** 0.166</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.090) (0.091) (0.038) (0.341) (0.253) (0.417) (0.359) (0.134)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of provinces</td>
<td>61 61 61 14 14 14 14 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>488 488 488 110 110 110 110 110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors, clustered at the province level, are in parenthesis. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively. Columns (1)-(3) report results for regions without MILF activity, columns (4)-(8) report results for regions with MILF activity. The abbreviations NPA, MILF, LE and ASG refer to the four most common insurgent affiliations reported by the AFP: New People’s Army (Communist Terrorist Movement), Moro-Islamic Liberation Front, Lawless Elements, and Abu-Sayyaf Group, respectively.
Appendix: Robustness to Conley standard errors
Table A.1. Seasonal Rainfall and Agricultural Production: Conley Standard Errors

<table>
<thead>
<tr>
<th></th>
<th>Log of Rice Production</th>
<th>Log of Corn Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry season rainfall</td>
<td>0.0028*** (0.0007)</td>
<td>0.0028*** (0.0007)</td>
</tr>
<tr>
<td></td>
<td>0.0028*** (0.0007)</td>
<td>0.0028*** (0.0007)</td>
</tr>
<tr>
<td></td>
<td>0.0017 (0.0048)</td>
<td>0.0017 (0.0049)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.0056*** (0.0016)</td>
<td>-0.0056*** (0.0015)</td>
</tr>
<tr>
<td></td>
<td>-0.0056*** (0.0015)</td>
<td>-0.0056*** (0.0015)</td>
</tr>
<tr>
<td></td>
<td>-0.0153*** (0.0016)</td>
<td>-0.0153*** (0.0017)</td>
</tr>
<tr>
<td></td>
<td>-0.0153*** (0.0019)</td>
<td></td>
</tr>
<tr>
<td>Spatial Bandwidth (km)</td>
<td>1000 5000 5000 1000 5000 5000</td>
<td></td>
</tr>
<tr>
<td>Autocorrelation Cutoff (years)</td>
<td>5 25 25 5 25 25</td>
<td></td>
</tr>
<tr>
<td>No. of provinces</td>
<td>75 75 75 75 75 75</td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>673 673 673 673 673 673</td>
<td></td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors are robust to spatial and temporal autocorrelation, as described by Conley (2008) and implemented by Hsiang (2010). ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.
Table A.2. Seasonal Rainfall and Civil Conflict: Conley Standard Errors

<table>
<thead>
<tr>
<th></th>
<th>Total Casualties</th>
<th>Violent Incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry season rainfall</td>
<td>0.189 (0.294)</td>
<td>0.189 (0.289)</td>
</tr>
<tr>
<td></td>
<td>(0.189)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>Wet season rainfall</td>
<td>-0.269* (0.157)</td>
<td>-0.269* (0.154)</td>
</tr>
<tr>
<td></td>
<td>(0.269)</td>
<td>(0.269)</td>
</tr>
<tr>
<td>Lag of dry season rainfall</td>
<td>-0.548** (0.237)</td>
<td>-0.548** (0.242)</td>
</tr>
<tr>
<td></td>
<td>(0.548)</td>
<td>(0.548)</td>
</tr>
<tr>
<td>Lag of wet season rainfall</td>
<td>0.432 (0.314)</td>
<td>0.432 (0.323)</td>
</tr>
<tr>
<td></td>
<td>(0.432)</td>
<td>(0.432)</td>
</tr>
<tr>
<td>Spatial Bandwidth (km)</td>
<td>1000</td>
<td>5000</td>
</tr>
<tr>
<td>Autocorrelation Cutoff (years)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>No. of provinces</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>No. of observations</td>
<td>598</td>
<td>598</td>
</tr>
</tbody>
</table>

All regressions include province fixed effects, province-specific linear time trends and the temperature and typhoon controls described in Section 4. Standard errors are robust to spatial and temporal autocorrelation, as described by Conley (2008) and implemented by Hsiang (2010). ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels, respectively.