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Introduction

A very basic empirical question in industrial organization is the following: which products in a

differentiated product market are close competitors with one another. This closeness of competition

between two products is determined by the degree of consumer substitutability between them.

Thus substitution patterns are the key to many supply side questions of interest. For example,

the variation in substitution patterns among the products in a market can be used to study firm

“conduct”: if there is a high degree of substitutability between the products of rival firms, then

markups (and hence prices) should be systematically lower for these products when firms are

competing as compared to colluding (Bresnahan 1981, Bresnahan 1987). Furthermore, for any

particular hypothesis about firm conduct, substitution patterns drive the effect of counter-factual

policy changes on market outcomes, such as mergers, new product introductions, etc.

Although substitution patterns are central to empirical work in imperfectly competitive mar-

kets, identifying these substitution patterns from market price and quantity data has proven very

challenging.

The mixed-logit model of demand made famous by Berry et al. (1995) (henceforth BLP for

short) can in principle approximate very rich substitution patterns by relaxing the strong ex-ante

restrictions that the simple logit places on cross price elasticities (most notably the independence

of irrelevant alternatives, aka IIA). This is achieved by allowing consumers to have unobserved

taste heterogeneity for observed product characteristics, i.e., random coefficients in utility. While

their approach has been hugely influential in providing a framework for studying differentiated

product markets, there are very few direct applications (known to us) that have found statistically
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and/or economically significant departures from the simple logit in practice. The most prominent

applications that have successfully recovered non-trivial substitution patterns either use information

that is ”external” to the mixed logit demand structure, such as supply restrictions (see e.g., Berry

et al. (1995), Berry et al. (1999), Eizenberg (2014)), micro moments (see e.g., Petrin (2002),

Nielson (2013)), or second choice data (see e.g., Berry et al. (2004), Hastings et al. (2009)), or use

restrictive special cases of the model such as nested logit.

This basic user experience has led to a growing questioning of whether consumer heterogeneity

in mixed-logit demand systems is even identified with market level data on prices and quantities

(see e.g., Metaxoglou and Knittel (2014)). A related challenge for empirical work is that, given

the inherent non-linearity of the model, it has been difficult to pinpoint the fundamental variation

in the data that drive estimates of substitution patterns in applications. Thus policy conclusions

drawn from the model cannot be directly linked to moments in the data that are driving those

conclusions (see e.g., Angrist and Pischke (2010)). This has led some to abandon structural demand

models altogether in favor of natural experiments to study policy questions in differentiated product

markets (see e.g., Ashenfelter et al. (2009)).

In this paper we argue that a potential source for the challenges faced in applied work are weak

instruments, and we present a solution to this problem based on a new approximation of the optimal

instruments. Although the parameters that govern substitution patterns in the mixed logit demand

system are in principle identified under a conditional moment restriction between unobserved and

observed product characteristics (as formally shown recently by Berry and Haile (2014)), estimation

of these parameters in finite samples requires constructing a finite set of instruments from the

conditional moment restriction. An instruments corresponds to a product specific transformation

of the entire menu of observed product characteristics in the market. A first order problem for

empirical work is deciding how such instruments should be constructed from the data. Our first

key point is that the form of these instruments matters crucially for empirical work - picking

arbitrary transformation, or even seemingly intuitive transformations, can readily lead to a weak

IV problem which we demonstrate by way of a simple visual simulation. Weak instruments can

explain many of the aforementioned challenges in empirical work.

To avoid weak instruments we need to understand how to construct “strong” instruments.

The classic results of Amemiya (1977) and Chamberlain (1987) reveal the form of the optimal

instruments that achieve the semi-parametric efficiency bound of the model. Although the optimal

instruments themselves are infeasible to construct directly from the data, strong instruments that

perform well in finite samples will approximate these optimal instruments (as established by e.g.,

Newey (1990), Newey (1993), Donald et al. (2003)). A fundamental problem however for con-

structing such approximations from the data is that the optimal instruments are a function of all

the observed product characteristics in a market, and hence even low order approximations to the

optimal instruments (linear or quadratic) will lead to basis function that grow exponentially large
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in number with the number of products in the market. This curse of dimensionality has made it

hard if not impossible to apply basic insights from the optimal IV literature to demand estimation

in markets with more than a few products for the typical size data set.

Our main result in the paper is that we show that this curse of dimensionality can be solved

by using the implicit restrictions that the demand structure of the model places on the form of

the optimal instruments. In particular we show that the symmetry properties implicit in the

demand model imply that the optimal instruments for a given product/market observation in the

data is a vector symmetric function of the differences between a given product’s observed product

characteristics and its competitors observed product characteristics. This theoretical result has

a powerful Corollary: a finite order approximation to the optimal instrument can be expressed

through basis functions that are functions of only these characteristic differences, and importantly

the number of basis functions is invariant to the number of products in the market. It is this

latter result that breaks the curse of dimensionality in approximating the optimal instrument. The

basis functions themselves are intuitive - they capture the relative isolation of each product in

characteristic space - and have not yet been systematically exploited in empirical work. If we apply

these basis functions directly as instruments in a GMM estimation we can approximate (arbitrarily

well) the performance of the optimal instruments (following Theorem 5.2 in Donald et al. (2008)).1

Related Literature

Our IV’s are a natural complement to the large literature on price instruments in differentiated

product markets. Price endogeneity is a familiar problem in the literature with a long history, and

a variety of instruments have now been proposed to address it, i.e, BLP instruments, Haussman

instruments, Waldfogel instruments, etc.2 However, a key point in Berry and Haile (2014) is that the

identification of substitution patterns poses a distinct empirical problem from price endogeneity.3

This is because there are in fact two different sets of endogenous variables in the model - prices

and market shares - which require different sources of exogenous variation for the model to be

identified. However the literature has been virtually silent about the appropriate form of the

instruments for market share? We believe the root of the problems encountered in empirical practice

1An alternative approach to deal with weak instruments is to estimate the model using estimators that are robust
to weak identification (e.g. Stock and Wright (2000)). Conlon (2013) for instance describes the properties of an
Empirical Likelihood-based estimator applied to BLP, and demonstrates a weak identification problem associated
with commonly used instruments.

2Price endogeneity is linked directly to the classic simultaneous equations problem of prices and quantities being
simultaneously determined in market equilibrium and is common to both homogenous good and differentiated product
markets. A natural instrument for prices is to use a cost side instrument, but such cost instruments are often not
immediately available. The well known “BLP instruments” provide an alternative source for variation in prices in
differentiated product settings that is based on a first order approximation of the equilibrium pricing function. BLP
IV’s comprise of sums of product characteristics of competing products interacted with ownership structure, and are
the standard instruments used in mixed logit demand applications.

3Although they consider a non-parametric form of the model, this conclusion applies with equal force to the
standard parametric specification used in practice.
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is that there does not exist any formal discussion of how to construct such instruments, and thus

researchers have used a single set of instruments, namely price instruments - i.e., instruments

constructed on the basis of what should vary price in the model - as instruments for both prices

and markets shares. Our approximation is based on first isolating the endogeneity problem induced

by market shares, which is the key that allows us to derive the vector symmetric form of the

optimal instrument. Our approach however naturally extends to allowing for endogenous prices.

This extension combines our approximation with the Berry et al. (1999) approach to optimal IV

that was revisited recently by Reynaert and Verboven (2013), and shows that these alternative

perspectives are indeed complementary to one another in an empirically powerful way.

1 Identification of the random-coefficient model

1.1 Description of the Model

We briefly review the random coefficients utility model that is widely used as a foundation for

differentiated product demand. Our presentation of the model largely follows the setup in Berry,

Levinsohn, and Pakes (1995). The key difference is that we intentionally exclude an endogenous

price from the model in order to isolate the problem of identifying and estimating substitution

patterns. Endogenous prices do not fundamentally change the main results of our analysis, and we

discuss the case with endogenous product attributes in Section 2.2.

Consider a market t with nt + 1 differentiated products. Each product j is characterized by a

vector of observed (to the econometrician) product characteristics (xjt) ∈ RK and an unobserved

characteristic ξjt. We will refer to xt = (x1t, . . . ,xnt,t) as a summary of market structure - the

entire menu of product characteristics available to consumers in market t (i.e. nt ×K matrix).

The data-set contains a panel of shares and product characteristics, i.e.,

Data =
{
{sjt,xjt}nt

j=1

}T
t=1

. (1)

Let n =
∑T

t=1 nt denotes the sample size.

Following, Berry and Haile (2014), the product characteristics space is partitioned into two

subsets: xjt =
{
x
(1)
jt ,x

(2)
jt

}
where we refer to x

(1)
jt as the regular product characteristics, and x

(1)
jt

as the special product characteristics (these names reflecting the roles they play in the identification

argument in Berry and Haile (2014)). The regular characteristics, x
(1)
jt , are product attributes for

which consumers have homogenous preferences. In contrast, consumers have heterogenous tastes for

the special characteristics x
(2)
jt . Le K2 = dim

(
x
(2)
jt

)
be the dimension of the special characteristic.
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We assume that consumers have linear preferences for product characteristics:

uijt = δjt +

K2∑
k=1

x
(2)
jt,kvjk + εjt, (2)

where δjt = βxjt + ξjt is typically labelled the “mean utility” of product j. According to this

specification, the taste of consumer i for characteristic k is denoted by βik = βk + vik where vik is

a mean zero taste shock for characteristic k and εijt is an idiosyncratic taste for product j in the

underlying population of consumers. Given the linearity of consumer utility we can normalize the

characteristics of an outside good 0 such that x0t = 0 and ξ0t = 0.4

Consumers have heterogeneous tastes in the population. The standard approach in the literature

assumes this heterogeneity takes a mixed-logit form which is our focus here, although our analysis

below applies to a much more general class of random utility models. Thus we have that the

idiosyncratic taste is distributed εij
iid∼ T1EV (0, 1). The idiosyncratic components of random

coefficients, vi = (vi1, . . . , viK2), are IID random variables with parametric probability distribution

function f(vi; Σ). Let θ0 =
(
β0,Σ0

)
denotes the true parameters determining the distribution of

consumer tastes.

Importantly, we assume that the distribution of random-coefficients is common across markets.

We do so in order to focus on the variation generated by having different menus of product char-

acteristics across markets. In Section 2.2, we discuss how to adapt our results to the case in which

market-specific consumer characteristics are the main source of variation (e.g. Nevo (2001)).

If each consumer i chooses the product j ∈ {0, . . . , nt} that maximizes his/er utility, then we

can integrate over the distribution of consumer choices to yield a market share for each product j

that is given by

sjt = σj

(
x
(2)
t , δt; Σ

)
=

ˆ exp
(∑

k vikx
(2)
jt,k + δjt

)
1 +

∑nt
j′=1 exp

(∑
k vikx

(2)
j′t,k + δj′t

)f(vi; Σ)dvi (3)

where x
(2)
t =

(
x
(2)
1t , . . . ,x

(2)
nt,t

)
and δt = (δ1t, . . . , δnt,t), and sjt is the observed market-share of

(j, t). We rule out the possibility that observed market shares are measured with errors.

4Thus each characteristic can be interpreted in terms of differences relative to the outside good.
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1.2 Identification

An identification problem arises because for any hypothetical random-coefficient distribution there

exists a unique mean utilities for products j = 1, . . . , nt that rationalizes the market shares, i.e.,

sjt = σj

(
x
(2)
t , δt; Σ

)
j = 1, . . . , nt

⇐⇒ ξj (st,xt;θ) = σ−1j

(
st,x

(2)
t ; Σ

)
− xjtβ j = 1, . . . , nt (4)

where the inverse demand σ−1j is uniquely defined following Berry, Levinsohn, and Pakes (1995) and

Berry, Gandhi, and Haile (2013). The mapping ξj (st,xt;θ) corresponds to the structural residual

of the model. When evaluated at the true distribution parameters θ0, it is equal to true unobserved

product attributes: ξj
(
st,xt;θ

0
)

= ξjt. Observe that the additive structure of the model implies

that inverse demand σ−1j is only function of the parameters that determine the heterogeneity of

taste differences (Σ), and not of the mean valuation parameters (β). As a result we will refer to the

parameters in Σ as the non-linear parameters because they enter the residual function ξj (st,xt;θ)

in a non-linear way (through σ−1j ).

To identify the model we follow Berry, Levinsohn, and Pakes (1995), and employ a restriction

with a long history in empirical industrial organization: we assume that the unobserved quality ξjt

is independent of the market structure Xt, i.e.,

E [ξjt | xt] = 0. (CMR)

Although it has a variety of economic motivations (such as common view in the literature that

non-price product attributes are fixed in the short run and are costly to adjust), our purpose here

is not to justify the assumption, but rather to extract its empirical usefulness. If we apply the

conditional moment restriction to both sides of the identification condition:

E
[
ξj
(
st,xt;θ

0
)
| xt
]

= 0. (5)

The model is identified if θ0 is the unique parameter vector that solves the continuum of moment

restrictions (5). Berry and Haile (2014) have recently shown primitive conditions under which a

unique θ0 solves these moments and hence the model parameters are identified. In what follows we

assume that those conditions are met, and that the model is identified the CMR.

In order to use this source of identification in estimation with finite samples (such as our data

(1)), we must translate the continuum of moment restrictions into a finite set of restrictions. We

can exploit the fact that the CMR implies that ξj
(
st,xt;θ

0
)

is uncorrelated with any function of

the menu of product characteristics (see e.g., Newey (1993)). In particular, if we let Aj(xt) denote
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a vector of L instrumental Variables (IVs), then it follows that

E
[
Aj(xt)ξj

(
st,xt;θ

0
)]

= 0

which constitutes a 1× L vector of population moment conditions that we can take to estimation.

The fundamental empirical challenge is how to construct the instruments Aj(xt). In particular

for each element of the parameter vector θ we need to include at least one instrument in Aj(xt).

How should such instruments be formed from the data. In the case of the linear parameters β the

choice is natural - the vector xjt of own product characteristics are the optimal instrument for β.

However for the case of the non-linear parameters Σ the choice is far less obvious. Moreover these

are the parameters that govern consumer heterogeneity and hence substitution patterns among

product, and hence are critical from a policy perspective. As we show in Section 4, seemingly

intuitive choices for the elements of Aj(xt) can very readily lead to a weak IV problem for the

parameters Σ.

To avoid using weak IV’s, we can look to the optimal instruments for the non-linear parameters

Σ. The optimal instruments for the non-linear parameters correspond to the best-predictor of the

Jacobian of σ−1j

(
st,x

(2)
t ; Σ

)
with respect to Σ (see Jorgensen and Laffont (1974), Amemiya (1977),

and Chamberlain (1987)):

Dj,k(xt) = E

∂σ−1j
(
st,x

(2)
t |Σ0

)
∂Σk

∣∣∣∣∣xt
 , ∀k = 1, . . . ,dim (Σ) . (6)

We will refer to Dj,k(xt) as the reduced-form of the model implied by the CMR (i.e. the “opti-

mal” fist-stage regression). Strong instruments Aj(xt) will be closely correlated to these optimal

instruments. On the other hand if Aj(xt) is only weakly correlated with the slope of the residual

function, standard asymptotic theoretical results break down, and θ̂gmm is not consistent and has

a non-standard asymptotic distribution (see Stock and Wright (2000)).

There are two basic problems with applying the insight of optimal IV to the practical construc-

tion of instruments. The first is that the optimal instrument depends on the true value Σ0 which

is unknown. Although one can plug consistent estimates of Σ0 into the formula, obtaining these

consistent estimates requires a choice of instruments and weak instruments in the first stage will

not lead to good performance of the resulting approximation. This problem has been solved in

the optimal IV literature following Newey (1990), and Donald et al. (2003). In particular if the

collection of L instruments Aj(xt) can arbitrarily well approximate any function a (xt), i.e.,

a (xt) ≈ Aj(xt)
′γL

where the error of the approximation grows small as L → ∞, then using Aj(xt) as instruments
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(and letting L grow large with sample size) will replicate the asymptotic performance of the optimal

instruments. This insight directly suggests the use of the basis functions from a low order polynomial

approximations to Dj,k(xt) as instruments.

Unfortunately even with this basic result in hand, approaching the optimal instrument is still

very challenging in this environment. This is because the reduced-form of the model is a product-

specific function of the entire menu of product characteristics in the market. Without further

restrictions, non-parametrically estimating equation (6) is feasible only when the number of prod-

ucts is small, relative to the number of markets.5 As a result any basis approximation to the function

(6) suffers from a curse of dimensionality: the number of polynomial basis terms to approximate

Dj,k(xt) in any fixed order approximation grows exponentially with the number of products per

market. To see this, note that for each product j, the non-parametric regression tracks the variation

in its relative market across different market structures xt, which can be a very high dimensional

vector. Even for moderately small markets with ten products and five characteristics, the number

of independent markets required is several times larger than what is conceivably available to re-

searchers. When the number of products grows with the number of markets, the reduced-form of

the model is not identified. Intuitively, changes in market structure, from xt to xt′ , affect each prod-

ucts differentially due to market segmentation. Therefore the expectation of the inverse-demand is

a product-specific function.

Our main result shows how the structure of the demand model allows us to solve this curse

of dimensionality problem and hence apply the insights of the optimal IV literature to the es-

timation of Σ. When preferences can be described by a linear function of characteristics and

random-coefficients, the reduced-form of the model takes an analytically simplified form that can

be identified within a single cross section of products, or a small of panel of markets. The key

feature of the characteristics model that we exploit is the existence of fully exchangeable aggregate

demand function, for which the product index j itself is not informative once we condition on the

product’s characteristic xjt. We discuss this result in the next section.

2 Structure of Optimal Instruments

Let us define djt,k = xjt − xkt to be the vector of characteristic differences between product

j and product k in market t, and let djt = (djt,0, . . . ,djt,j−1,djt,j+1, . . . ,djt,J) be the matrix

of differences relative to product j. Similarly, d
(2)
jt is a matrix of non-linear characteristic dif-

ferences. Let us define an ordered pair ωjt,k =
(
skt,d

(2)
jt,k

)
associated with each product k =

0, . . . , nt in the market (including the outside good) for a given inside product j > 0, and let

5This problem is relevant in practice, since many important applications use fairly large nt and small T . For
example in the case of the original automobile data (which we will analyze later) we have roughly 100 products in
a market with 5 product characteristics, making xt a 500 dimensional object. Estimating a non-parametric function
of 500 variables would require an inordinate number of markets - in the BLP context there are only 20 markets
(corresponding to 20 different years) and thus not even as many observations as variables.
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ωjt = (ωjt,0, . . . ,ωjt,j−1,ωjt,j+1, . . . ,ωjt,J). We now have the following result which is proven in

the Appendix.

Proposition 1. Under the linear in characteristics random utility model the inverse-demand

σ−1j

(
st,x

(2)
t ; Σ

)
= f (ωjt; Σ) + Ct, j = 1, . . . , nt (7)

where ct is a market-specific constant and f is a symmetric function of ωjt.

The proof of this proposition can be sketched as follows. We first recognize that the identity

of products or the level of product attributes is irrelevant to predict consumers’ discrete choice.

Therefore, we can abstract from the identity of products by expressing the same demand function in

terms of characteristics differences relative to product j. Furthermore, rather than normalizing the

quality index of the outside good to zero, we rescale the quality index to be between zero and one:

τj = exp(δj)/
(

1 +
∑

j′ exp(δj′
)

for all j = 0, . . . , nt. This new normalization has the advantage

of treating the outside option symmetrically with respect to the other options, and explains the

presence of a market-specific intercept in equation (7). These two normalizations imply that the

demand function for product j is a fully exchangeable function of the structure of the market relative

to product j: mjt =
{

(d
(2)
jt,0, τ0t), . . . , (d

(2)
jt,j−1, τj−1,t), (d

(2)
jt,j+1, τj+1,t), . . . , (d

(2)
jt,nt

, τnt,t)
}

. The inverse

mapping associated with this demand representation maintains the same symmetry and anonymity

properties.

There are two key implications of Proposition 1. The first is that the inverse-demand function

σ−1j

(
st,x

(2)
t ; Σ

)
can be expressed in a fashion where it is no longer product j specific, once we

condition on a vector of state variables ωjt of the products competing with j in a market.6 The

second key implication is that product invariant f is a symmetric function of the states of the

competing products. Both of these features allow us to re-write the reduced-form equation as a

symmetric function of market-structure.

To obtain this result, we need to make one more assumption.

Assumption 1. The joint distribution of the unobserved quality of products is exchangeable in the

identity of products:

Pr(ξj,t < c|ξ1,t, . . . , ξj−1,t, ξj,t, . . . , ξnt,t) = Pr(ξj,t < c|ξρ(−j),t)

for any ordering function ρ().

In economics terms, this assumption implies that the identity of rival products is not important

to predict the distribution of unobservable attributes. This does not necessarily rule out the possi-

bility that brands, for instance, are relevant for consumers’ decisions. As long as brand or product

6Observe that the state ,ωjt,k of a rival k 6= j does not contain its own product characteristic ,xkt but rather the
difference ,xjt−,xkt relative to j.
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fixed-effects enter the model linearly (shift the mean attribute), they can be concentrated out of

the residual quality. This assumption is not novel in the literature. It is implicit in much of the

prior empirical work, and is discussed explicitly in Berry et al. (1995) (section 5.1).

The following proposition constitutes our main theoretical result, and state that the optimal

instruments can be written as symmetric functions of the vector of characteristic differences.

Proposition 2. If the distribution of {ξ1t, . . . , ξnt,t} is exchangeable, the conditional expectation of

the derivative of the quality-assignment function is a symmetric function of the matrix of charac-

teristic differences:

Dj,k(xt) = E

∂σ−1j
(
st,x

(2)
t |Σ0

)
∂Σk

∣∣∣∣∣xt
 = gk (djt) + ct,k, ∀k = 1, . . . , dim(Σ)

where ct,k is a market/parameter specific constant.

The proof can be sketched as follows. First, Proposition 1 implies that we can write the

inverse-demand as a symmetric function by re-defining the state of the industry relative to product

j. Recall that the expectation operator in equation 6 is over the market-shares vector (i.e. demand

function). Since the demand for each product is symmetric, the density of shares can be re-written

as a function of the entire vector of characteristics differences and the joint density of unobservable

quality ξjt. This involves re-ordering the vector of characteristic differences to predict the marginal

distribution of each product’s market share, and does not require knowing the identity of each

individual products (under Assumption 1). This establishes that the expectation of the inverse-

demand, E

[
σ−1j

(
st,x

(2)
t |Σ0

) ∣∣∣∣∣xt
]

, is a symmetric function of the matrix djt, because the joint

distribution of market shares and the integrand itself are symmetric functions of characteristic

differences. Finally, since equation (6) is simply the derivative of this conditional expectation, the

optimal instruments exhibit the same properties.

To understand the usefulness Proposition 2, consider a special case of the model with a single

attribute, xjt. In this case, the first order polynomial approximation of the optimal IV can written

as follows:

g(djt) ≈
∑
j′ 6=j

aj′djt,j′

= a ·

∑
j′ 6=j

djt,j′


The second line follows directly from the symmetry of the reduced-form function. Since we can

re-order the products without changing the inverse-demand (i.e. g(djt,−j) = g(djt,ρ(−j))), the
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coefficients of the polynomial function must be equal across products. The second order polynomial

approximation takes a similar form:

g(djt) ≈
∑
j′ 6=j

∑
k 6=j

aj′,kdjt,kdjt,j′

= a1 ·

∑
j′ 6=j

djt,j′

+ a2 ·

∑
j′ 6=j

d2jt,j′

+ a3 ·

∑
j′ 6=j

djt,j′

2

The main implication of Proposition 2 is therefore that one can approximate the reduced-form

of the model using a small number of basis function for which the number does not grow with the

number of products available, thereby breaking the curse of dimensionality.

Note that Propositions 1 and 2 are related to the partial-exchangeability result obtained in Pakes

(1994). In particular, Pakes argues that in markets with differentiated products, a firm’s demand

and profit functions are partially exchangeable in its own and rivals’ vector of characteristics:

σj(xjt, x−j,t) = σj(xjt, xρ(−j),t) for any ordering ρ(). While this result certainly alleviates the curse

of dimensionality discussed above, it is silent in terms how xjt and x−j,t should be interacted when

constructing the basis function. In contrast, by expressing the market structure as a matrix of

differences, we obtain a fully exchangeable function.

2.1 Differentiation IVs

In order to construct relevant instruments, we look for functions of the market-structure menu that

can be used to approximate the reduced-form of the model. This is analogous to the suggestion

of Berry et al. (1995) to use basis functions directly as instruments, rather than computing the

conditional expectation of the gradients as in Newey (1990). Since the optimal instruments are

symmetric functions, we can use directly the basis functions suggested by the theory of symmetric

polynomials to construct relevant instruments. We now illustrate this point using three examples

of what we label Differentiation IVs.

A direct interpretation of Proposition 2 is that we can construct instrumental variables using

the leading terms of the basis function of a second-order symmetric polynomial (focussing only on

the binary interaction terms):

A1
j (xt) =

∑
j′ 6=j

d1jt,j′ × dljt,j′ , . . . ,
∑
j′ 6=j

dKjt,j′ × dljt,j′


l=1,...,K

(8)

where dkjt,j′ = xj′t,k − xjt,k measures the difference between product j and j′ along dimension k. If

the number of characteristics K = 3, this formulation includes 9 instrumental variables. The sum of

square of characteristic differences can be interpreted as continuous measures of distance between
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products, while the interaction terms capture the covariance between the various dimensions of

differentiation.

An alternative interpretation of Proposition 2 is that the reduced-form of the model is func-

tion of the empirical distribution characteristics differences relative to each product. Since this

distribution is observed in the data, it can be summarized using a finite number of moments. This

interpretation is especially useful when the number of products of per market is relatively large.

For instance, consider discretizing the distribution of characteristic differences along each dimension

using L equally spaced grid points. The following basis functions summarize the joint distribution

of characteristics differences:

A2
j (xt) =

∑
j′ 6=j

1
(
dkjt,j′ < ck1

)
xj′t, . . . ,

∑
j′ 6=j

1
(
dkjt,j′ < ckL

)
xj′t,


k=1,...,K

. (9)

The element (k, l) in this instrument vector summarizes the characteristics of rivals located to the

left of the lth grid point along dimension k. If the number of characteristics K = 3 and L = 5, this

formulation includes 5× 9 instrumental variables.

Finally, a special case of the previous formulation consists of considering only the characteristics

of “close” rivals when summarizing the market structure facing each product. In most models

of product differentiation (e.g. quality-ladder, hotellling, nested-logit etc), the demand for each

product is most heavily influenced by a small number of alternatives with similar characteristics.

For instance in a “mixed-logit quality-ladder” model, as the variance of the logit shock goes to zero,

the inverse demand of product j is only function of the characteristics of products located to the

right and left in the quality ranking. This feature suggests the following instrument vector:

A3
j (xt) =

∑
j′ 6=j

1
(
|d1jt,j′ | < κ1

)
xj′t, . . . ,

∑
j′ 6=j

1
(
|dKjt,j′ | < κK

)
xj′t,

 , (10)

where κk is a proximity threshold (e.g. standard-deviation of xjt,k across all markets). When

characteristics are discrete, the indicator variables can be replaced by 1(dkjt,j′ = 0).

Importantly, this third formulation is robust to variation in the number of products per market.

In particular the first two formulations imply that the within market variance in the instruments

goes to zero when the number of products per market goes to infinity. This is similar to the weak IV

problem pointed out by Armstrong (2015), concerning the so-called “BLP-IV” used to instrument

for prices. As long as the product space expands when the number of products per market increases,

“local” measures of product differentiation will exhibit variation asymptotically, and will be strong

instruments even in large markets.

How does this differ from the existing literature? Interestingly, the basis function for the first-

order polynomial formulation corresponds to the suggestion in Berry et al. (1995) of using the sum
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of product characteristics as instruments. However, the first-order basis is collinear with market

fixed-effects and the products’ own characteristics. It therefore contains relatively little information

to predict the Jacobian function. As we will illustrate in the Monte-Carlo sections below, this leads

to a weak identification problem of the random-coefficient parameters. In contrast, the higher-order

functions discussed above vary both within and across markets, since they summarize the position

of each product relative to others available in the market. Therefore, the proposed instruments can

be thought of as measures of product differentiation along the exogenous dimensions of the model.

Of course the logic of differentiation IVs has been used in some applications. However, the

relevance of exogenous measures of differentiation is most often justified by their ability of predict

prices, rather than to identify the non-linear parameters. There exists two important exceptions:

the nested-logit model (e.g. Berry (1994), Bresnahan et al. (1997)), and models of spatial differ-

entiation (e.g. Pinkse et al. (2002), Davis (2006), Thomadsen (2007), and Houde (2012)). In both

literatures, the standard instruments correspond to different versions of the proximity measures

described in equation 10. From this perspective, the main contribution of this section is to for-

mally show that the intuition developed in these two literatures remains valid in the more general

random-coefficient model.

Finally, a successful approach to construct strong instruments is the optimal IV approximation

proposed by Berry et al. (1999). Rather than constructing the conditional expectation in equation

(6) via regressions methods, Berry et al. propose to evalute the Jacobian of the model residual at

the unconditional mean of residual (i.e. ξjt = 0), using preliminary estimates of the parameters

(see also Goeree (2008)). Reynaert and Verboven (2013) show that this heuristic method tends to

work well in practice, by creating the “right” kind of cross-sectional variation in the instruments.

However, it relies on having a consistent initial estimate of the model parameters, which can be

problematic when the initial instrument vector is weak. Therefore, understanding what constitutes

relevant instruments remains crucial even under this approach.

2.2 Extensions

Demographic variation In many applications, the number and characteristics of products avail-

able in each market is fixed, but the distribution of consumer characteristics vary across markets

(e.g. Nevo 2001). While this might at first imply that a different of instruments must be use, we

show that under fairly general conditions, it is feasible to transform the model so that Differen-

tiation IVs analogous to the one defined above can be used to identify the non-linear preference

parameters.

Consider the following indirect utility function:

uijt = δjt +

K2∑
k=1

vit,kx
(2)
j,k + εijt (11)
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where vit = (vit,1, . . . , vit,K2) is distributed in the population according to a market-specific distri-

bution function. If the heterogeneity across markets is such that it is possible to “standardize” the

distributions such that vit,k = µt,k+σt,kνik, where vi ∼ Fν , then we can write the predicted market

shares as homogenous functions of market-structure:

σj

(
X̃t, δt;Fν

)
=

ˆ
exp (

∑
k νikx̃jt,k + δjt)

1 +
∑nt

j′=1 exp
(∑

k νikx̃j′t,k + δj′t
)dFv(νi) (12)

where x̃jt,k = σt,kxj is the standardized characteristic of product product j, and δjt = xjtβ +∑
k µt,kxj,k+ξjt. Notice that with this transformation, the standardized characteristics vary across

markets, and we can construct Differentiation IVs as described above.

Endogeneous prices Incorporating endogenous prices into the model does not fundamentally

change the identification problem of θ, but adds an additional simultaneity problem: in equilibrium

prices are correlated with the unobserved quality of products (Berry et al. 1995).

Two sources of variation have been exploited in the literature to construct valid price IVs: (i)

ownership structure (e.g. Berry et al. (1995)), and (ii) cost-shifters (e.g. Nevo (2001)). Both cases

are valid, since they are independent of the inverse-demand, and correlated with price. We can

therefore measure the strength of Differentiation IVs by estimating γ via 2SLS instead of OLS. Let

wjt denotes a vector of relevant and valid price instruments.

To incorporate these price instruments into our framework, we need to compute exogenous

measures of differentiation using a reduced-form pricing equation, rather than observed price levels.

This is important since many models used in the literature incorporate a random coefficient on prices

to measure for instance income effects.

In this context, our results show that it is important to measure the degree of differentiation

along the price dimension in order to predict the inverse-demand function. This can be done in

two stages. First, estimate a reduced form pricing equation using observed characteristics, i.e.

p̂j = E(pj |xj , wj) . Second, compute L moments of the joint distribution of product characteristic

differences by replacing observed prices with p̂, i.e. dpjk = p̂j − p̂k. This approach is similar to the

one proposed by Reynaert and Verboven (2013) to construct their Optimal IV approximation with

endogenous prices.

Natural experiments An often expressed criticism of the main identifying assumption, is that

firms endogenously choose characteristics (observed and unobserved) in response to changes in the

structure of the market. This can violate the CMR either because of a selection problem, or because

of the existence of a contemporaneous correlation between ξjt and the attributes of rival products.

When such correlation exists, it is typically very difficult to construct valid instruments for every

product attributes.

An alternative approach is to look for natural experiments that exogenous change the menu
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of product characteristics available in markets. Such experiments can be induced directly by re-

searchers (e.g. Conlon and Mortimer (2015)), caused by exogenous technology changes that gen-

erate the shakeout of an industry (e.g. Houde (2012)), or by government regulations that generate

suboptimal product offering (e.g. zoning).

To see how this kind of exogenous variation can be introduced in the model, consider the

following stylized example. Assume that M markets are observed before and after the “exogenous”

exit of a product with characteristic vector x∗ present in every markets. Let m ∈ {0, 1} indexes the

pre and post treatment of an observation, and assume that surviving products have time-invariant

characteristics.

The Differentiation IVs described in Section 2.1 suggest that the optimal instruments should

describe the distribution of characteristic differences relative to all products available in the market,

both before and after the exit of product x∗. However, if characteristics are endogenous, these

instruments are no longer valid. To get around this, we can construct instrumental variables that

measure the distance of each product relative to x∗, together with rich fixed-effects, to construct

the non-linear analog of a Difference-in-Difference (DiD) regression. For instance, let zjm,k =

1(|xjm,k − x∗k| < κk) denotes an indicator variable identifying the products that are most likely

impacted by the experiment, and Dt = 1(t = 1) denotes an indicator variable equal to one post-

experiment. The “first-stage” of the non-linear model can be written as a DiD regression:

Jjmt,k
(
θ0
)

= µjm + τDt + (zjm ×Dt)π + ujmt, (13)

where Jjmt,k(θ
0) =

∂σ−1
j

(
st,x

(2)
t |Σ0

)
∂Σk

is the “endogenous variable” of the model, µjm is a prod-

uct/market fixed-effect, and τ is a post-experiment fixed-effect. The linear parameters π measure

the impart of the product exit on the slope of the inverse-demand of similar products. This DiD

regression can obviously not be run exactly unless we knew the true non-linear parameter. However,

since GMM is implicitly linearizing the problem, by using an instrument vector composed of the

treatment variable (zjm ×Dt), along with product/market and time fixed effects, the structural

parameters are identified solely by the variation generated associated with this DiD regression. Of

course, in practice, other continuous functions of the distance to product x∗ can be used as excluded

instruments to better capture the exogenous variation created by the natural experiment.

3 Detecting Weak Instruments and Practical Considerations

Detecting the presence of weak IVs in non-linear settings is an area of active research in economet-

rics. In this subsection, we propose two approaches that are easy to implement. Our objective is

to propose a “best-practice” for applied work, and discuss the problem of instruments selection.

Our first approach is perform a series of ex-post weak IV tests that rely on a linear approximation

of the structural model. An important insight from the non-linear IV literature, is that relevant
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instruments must be highly correlated with the slope of the residual function with respect to the

non-linear parameters Σ. To see this, recall that any non-linear GMM problem can be re-expressed

as a sequence of linear IV regressions by taking a first-order approximation of the residual function

around the true value of the parameters:

ξjt (st,xt;θ) =
∑
k

(θk − θ0k)
∂ξjt

(
st,xt;θ

0
)

∂θk
+ ξjt + Error

= J jt
(
θ0
)
b+ ejt (14)

where bk = (θk − θ0k).
Equation (14) is known as a Gauss-Newton Regression (or GNR). It can be used to construct

a Gauss-Newton algorithm to estimate θ. In particular, starting in a neighborhood of θ0, the

algorithm repeatedly estimates (14) to construct the Gauss-Newton updating step (see Davidson

and MacKinnon (2001)):

θi+1 = θi +
[
J(θi)

TZWZTJ(θi)
]−1

J(θi)
TZWZT ξ(θi) = θi + b̂

iv
.

where W is a weighting matrix, and biv is the linear IV estimate of equation (14) using the

instrument vector Aj(xt).
7 The GMM estimate, θ̂

gmm
, is implicitly defined locally as the solution

to b̂
iv

= 0. Similarly, the non-linear least-square estimate of θ can be obtained repeatedly estimating

equation 14 by OLS. This leads to biased estimates, because of the correlation between ∂σ−1j /∂Σ

and ξjt (i.e. the Jacobian is function of market shares). We investigate the sign and size of this

bias in Appendix A.

Therefore, at the GMM estimate θ̂
gmm

, the “first-stage” of the structural model corresponds

to:

Jjt,k

(
θ̂
gmm

)
= xjtπ

(1)
k +Aj(xt)π

(2)
k + ujt,k, ∀k = 1, ..., |Σ|. (15)

At the true parameter value, standard weak IV tests available for linear models can be used

to test the joint hypothesis that π
(2)
k = 0 for all k, which is valid test of the model being locally

identified. Wright (2003) shows that this logic remains valid at the estimated value of the non-

linear parameters. In particular, Wright showed that the rank-test proposed by Cragg and Donald

(1993) for linear IV problems is a conservative test of the null hypothesis of under-identification.

For models with one non-linear parameter (i.e. |Σ| = 1), this test corresponds to the familiar F-test

of π(2) = 0.8

Importantly, this discussion suggests that standard weak IV tests available for linear models can

7If W = I, this algorithm corresponds to the non-linear two-stage least-square estimator proposed by Amemiya
(1974).

8This test evaluates wether or not the model is locally identified. Since non-linear models can exhibit multiple
local solution (especially with weak instruments), it remains essential to ensure that the tests are implemented at the
global minimum of the GMM problem.
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be used to judge of the strength of instruments in non-linear models. These tests are therefore easy

to implement and interpret. For instance, the structural parameters of the model can be estimated

using Matlab or other non-linear optimization software. At the solution of the GMM problem, the

exogenous and endogenous variables can be exported to a statistical software, and weak IV tests

can easily be constructed by estimating the linear GMM problem described in equations (14) and

(15).9

Our second approach is an ex-ante specification test aimed at evaluating the ability of the

instruments to reject the wrong model. Recall, that the model parameters are weakly identified by

Aj(xt) if the moment conditions are nearly satisfied at the wrong parameters (?):

E [Aj(xt)ξjt (st,xt;θ)]

= 0 If θ = θ0,

≈ 0 For some θ 6= θ0.
(16)

Although this condition is usually not testable, it is feasible in the context of the mixed-logit

model to test the validity of a particular “wrong” model: the multinomial logit model. In particular,

if εij
iid∼ T1EV (0, 1), the inverse-demand function under the null hypothesis Σ = 0 takes a linear

form:

σ−1j

(
st,x

(2)
t ; Σ = 0

)
= ln sjt/s0t = xjtβ + ξjt.

If the true parameters are such that Σ0 6= 0, equation (16) implies that an instrument vector

is weak if it is unable to reject the null hypothesis of IIA preferences. Hausman and McFadden

(1984) proposed a simple specification test of the IIA hypothesis with micro-data: estimate the

model by including characteristics of rival products in the indirect utility of consumers, and test

the exclusion restriction implied by the multinomial logit model. This insight can be used in our

context by testing the restriction that the Differentiation IVs, which measure the characteristics of

rival products, are excluded from the model:

ln sjt/s0t = xjtβ +Aj(xt)γ + ξjt. (17)

If the CMR is valid, the IIA hypothesis corresponds to the null hypothesis that γ̂ = 0. This

specification test is easy to implement, and has an important economic interpretation: failing to find

a vector Aj(xt) that rejects the null hypothesis that γ = 0 implies that the data is consistent with

the IIA hypothesis (i.e. Σ0 = 0). This test can be constructed using standard linear regressions

techniques (i.e. avoiding any non-linear optimization), which makes it very attractive to perform

an initial IV selection analysis.

There exists a close connection between the IIA null hypothesis, and the ideal weak IV test (i.e.

9For instance the GMM package ivreg2 in STATA can be used to estimate (14). This involves regressing

ξjt
(
st,xt; θ̂

gmm
)

on Jjt(θ̂
gmm

) using the same instrument vector used to estimate the mode.
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projecting the “true” Jacobian vector on instruments). To see this, note that the predicted value

of the second term in equation (17) measures the ability of the instruments to explain deviations

in the data from IIA preferences:

Aj(xt)γ = L(∆ξjt|Aj(xt))

where L(·) is the linear projection operator, and ∆ξjt = σ−1j

(
st,x

(2)
t ; Σ = 0

)
−σ−1j

(
st,x

(2)
t ; Σ0

)
. If

γ is close to zero, the instrument vector is uncorrelated with the finite difference between the inverse-

demand obtained under logit and the true unobserved quality. In contrast, the instrument vector

is weak if it is uncorrelated with the partial derivative of the inverse-demand at the true parameter.

The strength of the correlation between the instruments and the finite difference (proportional to

|γ̂|) is thus indicative of the strength of the correlation between the instruments and the unknown

jacobian function. Therefore the smaller is the p-value associated with the null hypothesis H0 :

γ = 0, the stronger are going to be the differentiation IVs at identifying Σ0.

Of course failing to reject the null hypothesis that γ = 0 is consistent with two interpretations:

(i) the instruments are weak, and (ii) the true model exhibits IIA preferences. Either way, the

non-linear model should not be estimated with the candidate instrument vector. Conversely, the

IIA hypothesis can be rejected if the CMR are not valid, which is not necessarily an indication of

weakness.

Therefore, passing the IIA test is a necessary but not sufficient condition to conclude that the

instruments are weak (or that the model is different from logit). Because of this, the IIA test

should be presented together with a formal specification test of the validity of the instruments. If

the model is correctly specified, the instrument vector should be able to detect deviations from

the IIA property (i.e. reject γ̂ = 0), and fail to reject the over-identification restrictions at the

estimated parameter values (i.e “J-test”). If the chosen instruments do not meet one of these two

criteria, the results should be interpreted with caution (just like with any IV problem).

4 Monte-Carlo Simulations

In this section we conduct a series of Monte-Carlo simulations to document the weak IV problems

associated with commonly used instruments, and demonstrate the ability of Differentiation IVs

to solve these problems. We start with a simple environment with one dimension of consumer

heterogeneity and exogenous characteristics. We use this framework to illustrate graphically the

simultaneity problem presents in random-coefficient models, and the consequences of using weak

instruments. We then generalize this environment to settings with multiple dimensions of hetero-

geneity. We focus in particular on the precision and numerical stability improvements associated

with using strong instruments. Finally, we introduce a second simultaneity problem into the model

(i.e. endogenous prices), and illustrate the construction and performance of Differentiation IVs in
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this important case.

4.1 Single dimension model

We start with the simplest environment: exogenous characteristics and one random-coefficient.

Consider a balanced panel with n products and T markets. Consumers’ indirect utility is given by:

uijt = β0 + β1xjt,1 + β2xjt,2 + σxηixjt,2 + ξjt + εijt = δjt + σxηixjt,2 + εijt,

where εij
iid∼ T1EV (0, 1) and ηi ∼ N(0, 1). This leads to the following mixed-logit demand function:

σjt(δt,x
(2)
t ;σx) =

ˆ
exp(δjt + σxηixjt,2)

1 +
∑n

j′=1 exp(δj′t + σxηixj′t,2)
φ(ηi)dηi

≈
I∑
i

exp(δjt + σxηixjt,2)

1 +
∑n

j′=1 exp(δj′t + σxηixj′t,2)
ωi

= sjt

where x
(2)
t = {x1t,2, . . . , xnt,2}, {ηi, ωi}i=1,...,K are quadrature weights, and sjt is the observed

market share of product j.

Weak IV problem

To illustrate graphically the weak IV problem, we simulate a data-set with 20 products and 10

markets. To simplify the illustration, we consider only one characteristic (i.e. β1 = 0).10 From this

simulated data-set, we construct two instruments:

Market IV: Amjt(xt) =
∑
j′ 6=j

xj′,t

Differentiation IV: Adjt(xt) =
∑
j′ 6=j

1
(
|dxjt,j′ | < sd(x)

)
We label the first instrument Market IV because it summarizes the characteristics of all rivals,

irrespectively of their position relative to j. The second instrument, Differentiation IV, is a count

of the number of competitors located within one standard-deviation of product j. Both instruments

are valid since the data has been constructed with exogenous product attributes.

Recall that an instrument is relevant if it is able to reject the “wrong” model. We submit both

instruments to this test by regressing the quality assignment obtained under the multinomial logit

model (i.e. σx = 0) on an each product’s own characteristic and each instrument. This corresponds

to the IIA-test discussed earlier. To represent the test graphically we perform this regression in

10The other simulation parameters are: ξjt ∼ N(0, 1) and xjt ∼ N(0, 1).
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two steps: (i) project σ−1jt (σx = 0) and zjt on an intercept and xjt, (ii) graph both residuals against

the instruments.

Figures 1a to 1d illustrate the difference between weak and strong identification. Figures 1a

and 1c confirm that the CMR holds in the simulated data: the two instruments are uncorrelated

with the residual quality assignment at the true parameters (i.e. σx = 2). Figure 1b shows that

there also exists no apparent correlation between the sum of rival characteristics and the residual

quality assignment evaluated at the σx = 0 (i.e. lnsjt/s0t).

In contrast, the number of “close rivals” is negatively correlated with the IIA quality assignment,

and explains 11% of the variance in market-shares. The sign of the correlation is very intuitive.

Because consumers have heterogeneous tastes for xjt, products with similar characteristics are

closer substitutes. Therefore, products that are relatively isolated in the product space have higher

market shares on average, than products that face a large number of similar rivals. The multinomial

Logit model explains this correlation between shares and market-structure by assigning higher

unobserved quality to differentiated products, and low quality to un-differentiated products. This

is what explains the negative correlation observed in Figure 1d.

Figure 1b clearly shows that the Market IV cannot explain this feature of the market-share

data. In particular, since the sum of rival characteristics is uncorrelated the degree of product

differentiation, it fails to explain the difference in the distribution of unobserved quality under IIA

and non-IIA preferences. Therefore, the Market IV is unable to distinguish the model in Figures

1a and 1b, and the random-coefficient parameter is not identified by this moment restriction (or

weakly identified).

The two previous examples explain the logic of behind the (lack of) identification of σx. To

see the consequence of weak identification on the distribution of the GMM estimates, we perform

a large-scale Monte-Carlo simulations that repeatedly estimate σx using the three estimators.

Figure 2 plots the density of three estimates: (i) non-linear least square (long-dash), (ii) GMM

with Market IV (histogram), and (iii) GMM with Differentiation IV (solid). All three densities are

constructed using our baseline specification: n = 100, T = 15, sd(ξ) = 1 and β0 = −4. The density

of the least-square estimates reflect the simultaneity bias of approximately −40% discussed in

Appendix A. In contrast, the density of the GMM estimates obtained with our Differentiation IVs

is centered around the truth (σ0x = 2), and has a bell shape consistent with a normal distribution.

Notice, that the dispersion of the GMM estimates is slightly larger than the least-square, suggesting

that the Differentiation IVs produce very precise estimates.

The histogram in 2 confirms that “market-level” instruments produce inconsistent estimates of

the random-coefficient parameter. We find that the distribution of θ̂gmm is highly non-standard,

and produces very imprecise estimates. As the figure suggest, nearly 15% of the simulated samples

produce estimates equal to zero. When we estimate the log of σx, to take into account the corner

solution, the average simulated bias is around −200% and the median is −20%; consistent with the
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Figure 1: Graphical illustration of the IIA test with exogenous characteristics
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(b) Logit Quality and Market IV
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(c) True Quality and Differentiation IV
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(d) Logit Quality and Differentiation IV
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Figure 2: Simulated distribution of the random-coefficient parameter for three estimating methods
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presence of a large number of outliers. In that sense, the NLLS estimates are much more reliable

on average than the GMM estimates with weak instruments.

4.2 Multiple dimension model

Next we consider a richer environment with multiple random-coefficients. We use this framework

explore the connection between weak identification and difficulties in obtaining reliable and precise

estimates. For instance, Reynaert and Verboven (2013) report finding very imprecise results in

Monte-Carlo simulations involving four or more random coefficients. Also, Metaxoglou and Knittel

(2014) carefully documents a series of numerical problems associated with the estimation of the

mixed-logit model (including convergence failure and multiple local minima). In this section, we

use the exogenous-characteristic model as a laboratory to reproduce some of these problems, and

argue that using “strong” instruments can eliminate most of these problems.

We consider a linear characteristic model with K2 random-coefficients:

uijt = β0 + xjtβ +

K2∑
k=1

vikx
(2)
jt,k + ξjt + εijt = δjt +

K2∑
k=1

vikx
(2)
jt,k + εijt,

where εij
iid∼ T1EV (0, 1) and vi ∼ N(0,Σ). The number of observed product characteristics if

given by K = K2 + 1.
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This leads to the following mixed-logit demand function:

σjt(δt,x
(2)
t ;σx) =

ˆ exp
(
δjt +

∑K2
k=1 vikx

(2)
jt,k

)
1 +

∑n
j′=1 exp

(
δj′t +

∑K2
k=1 vikx

(2)
j′t,k

)f(vi)dvi

≈
I∑
i

exp
(
δjt +

∑K2
k=1 vikx

(2)
jt,k

)
1 +

∑n
j′=1 exp

(
δj′t +

∑K2
k=1 vikx

(2)
j′t,k

)ωi
= sjt

where {ηi, ωi}i=1,...,K are integration weights, and sjt is the observed market share of product j.

We integrate the random-coefficients using a three-points grid along each dimension, located at the

three uniform percentiles of the marginal distribution of vik (i.e. 0.25, 0.5 and 0.75). This allows

us to perform relatively quickly large-scale simulations for models with up to six dimensions (i.e.

I = 729 with 6 dimensions).11

We first consider the case of IID random-coefficients. For this example, we contrast two sets of

instrumental variables:

Market IV: Amjt(xt) =

∑
j′ 6=j

xj′t,1, . . . ,
∑
j′ 6=j

xj′t,K


Diff. IV: Adjt(xt) =


n∑

j′=0

(
d1jt,j′

)2
, . . . ,

n∑
j′=0

(
dKjt,j′

)2
where dkjt,j′ = xj′t,k − xjt,k. Both vectors contain K instruments, leading to over-identified models

(i.e. df=1). The Differentiation IVs are constructed using the sum of square of characteristic

differences. Similar results can be obtained by using the number of close-by rivals.

For each model specification, we simulated 1, 000 balanced panels with 15 products and 100

markets. The same parameters were used to simulate all specifications: xjt,k ∼ N(0, 1), ξjt ∼
N(0, 1), β0 = −5, βk = 1 for all k = 1, . . . ,K, and σk = 2 for all k = 1, . . . ,K2. The parameters

were estimated using a nested-fixed point algorithm with Simplex and Gauss-Newton optimization

routines, and the algorithms were initiated at the true value of the parameters.12

11We chose to perform our simulation this way rather than using Monte-Carlo integration, because we noticed that
having a non-symmetric realized distribution of consumer types tend to create multiple local minimum in the GMM
problem. Using symmetric discretization of the distribution solved this problem almost entirely (at least with strong
IVs).

12The inner-loop convergence criteria for the market-share fixed-point was set to 10−14. To speed up the con-
vergence, we used a Quasi-Newton algorithm with analytical derivatives to solve the fixed-point. All numerical
calculations were performed using Ox (Doornik 2001).
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Precision and consistency

Tables 1a and 1b summarize the results for the two sets of instruments. The top rows summarize

the average parameter estimates (top) and the root-mean-square-error or RMSE (parenthesis).

Overall the results match the ones obtained with the one-dimension model above. The speci-

fications estimated with the Market IVs are imprecise and sometimes biased, while the estimates

obtained with the Differentiation IVs are virtually equal to the truth on average and have small

RMSE. Interestingly, the RMSE’s do not increase when we add more random-coefficients. Instead,

the average bias and precision remains fairly constant. This suggests that the difficulty reported by

the prior literature in estimating models with rich unobserved heterogeneity were not necessarily

caused by a lack of data, but instead likely caused by weak instruments. Across all specifications,

we estimate that the Differentiation IVs lead to efficiency gains of an order between 10 and 20.

The bottom two rows summarize the convergence properties of each estimator. The first point

to note is that the Market IVs specifications were significantly more difficult to estimate than the

Differentiation IVs ones. Almost systematically, the Gauss-Newton algorithm initiated at the true

parameter values failed to converge, and we therefore had to use a Simplex algorithm to perform

the estimation. This is a clear indication of weak instruments. An important consequence of weak

instruments is that the GMM objective function is poorly approximated by a quadratic function,

which cause convergence problems for Newton-type algorithms. Consequently this convergence

problem does not occur when we use strong instruments. For all 1,000 simulated samples, the

Gauss-Newton algorithm initiated at the true parameter value quickly converged to the minimum

(often in less than 5 iterations). Even with six random-coefficients, the optimization algorithm

converged in 20 seconds on average.

A related problem with the Market IV specification is the difficulty in calculating asymptotic

standard errors. The last row of Table 1a indicates that in about 80% of the samples, the rank of

the covariance matrix between the instruments and the Jacobian vector is less than the number of

parameters (i.e. ZTJ(θ̂)), which is another indication of weak instruments.

Optimization problems

To investigate further the link between weak instruments and optimization problems, we repeat

the previous Monte-Carlo simulations by initializing the optimization algorithm at 10 randomly

selected parameter values. This allows us to investigate the presence of multiple local minima.

The first four rows report the parameter estimates and RMSE, measured using the solution with

the lowest objective function. Notice that the statistics for the Differentiation IV specifications are

identical in Tables 2 and 1b (col. 4), suggesting that the starting values are largely irrelevant when

using strong instruments (i.e. most functions exhibit a unique global minimum).

This is not the case with weak instruments. The average Market IV estimates reported in

Table 2 are more biased less precise than in column (4) of Table 1a. We interpret the results in
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Table 1: Monte-Carlo results for the IID model

VARIABLES Dimensions of consumer heterogeneity
1 2 3 4

σ1 2.012 1.931 1.919 2.055
(1.3) (1.423) (1.383) (1.467)

σ2 1.978 1.934 2.055
(1.302) (1.313) (1.412)

σ3 1.992 2.088
(1.353) (1.564)

σ4 2.106
(1.494)

Number of consumer types 3 9 27 81
Algorithm simplex simplex simplex simplex
CPU time (sec) 0.617 4.563 6.891 26.785
Full rank 0.89 0.83 0.78 0.78

(a) Weak instruments: Market IVs

VARIABLES Dimensions of consumer heterogeneity
1 2 3 4 6

σ1 2.002 1.998 1.994 1.994 1.991
(.107) (.109) (.105) (.111) (.115)

σ2 1.995 1.996 1.992 1.993
(.108) (.105) (.111) (.115)

σ3 1.995 1.994 1.991
(.109) (.113) (.116)

σ4 1.995 1.990
(.11) (.115)

σ5 1.997
(.118)

σ6 1.993
(.118)

Number of consumer types 3 9 27 81 729
Algorithm newton newton newton newton newton
CPU time (sec) 0.083 0.117 0.173 0.395 20.130
Full rank 1 1 1 1 1

(b) Strong instruments: Differentiation IVs

Each entry measures the average estimates, and the root-mean-square-error (parenthesis). The true value of each
parameter is σ = 2. Each specification is estimated over 1,000 monte-carlo replications. The distribution of the
random coefficients is approximated using a three-points grid in each dimension (i.e. 0.25, 0.5 and 0.75 percentiles).
The estimation is initiated at the true value of the parameters. Panel structure: 15 products x 100 markets.
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Table 2: Global versus local solutions with 4 IID random-coefficients

Differentiation IV Market IV
Est. RMSE Est. RMSE

σ1 1.994 0.111 2.107 1.536
σ2 1.992 0.111 2.053 1.477
σ3 1.994 0.113 2.088 1.618
σ4 1.995 0.110 2.131 1.640

Algorithm Simplex Simplex
CPU time (sec) 0.718 33
Local optima (fraction) 0.002 0.53
Global min/Local min 46.6 53
Coef. variation (local optima) 1.6 11

The true value of each parameter is σ = 2. Each specification is estimated over 1,000 monte-carlo replications.
The distribution of the random coefficients is approximated using a three-points grid in each dimension (i.e. 0.25,
0.5 and 0.75 percentiles). Local optimal are identified by starting the Simplex algorithm at 10 randomly selected
starting values. The global/local ratio and coefficient of variation are calculated in the selected samples exhibiting
multiple local optimal. Panel structure: 15 products x 100 markets.

Table 1a as reflecting the “global minimum” solutions, since we initiated the algorithm at the true

parameter values. Therefore, identifying the global minimum in the presence of weak instruments

would require a very large number of initial starting values (i.e. more than 10), or necessitate the

use a global optimization algorithm such as MCMC or Simulated Annealing.

The bottom three rows of Table 2 confirm the importance of multiple local solutions in the weak

IV specification. With the Market IVs, the Simplex algorithm identified at least two solutions in

53% of the simulated samples. In contrast, we identified multiple solutions in only 2 simulated

samples (out of 1,000) with the Differentiation IVs. Importantly, these local minima are very

different on average. The ratio of the maximum solution over the minimum is equal to 53 on

average, and the average coefficient of variation across the estimates is 11. This is consistent with

the results documented in Metaxoglou and Knittel (2014).

Finally, even when we use a Simplex algorithm for both IV specifications, the computation time

is significantly reduced by the use of stronger instruments. On average, each problem took less

than 1 second to converge with Differentiation IVs, compared to 33 seconds with Market IVs.

Correlated random-coefficients

Next we consider a model with correlated random-coefficients:

vi ∼ N(0,Σ).
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Rather than estimating the variance-covariance matrix directly, we estimate the Choleski decompo-

sition: Σ = PP ′ where P is a lower diagonal matrix with positive diagonal elements. We simulate

a model with 4 random-coefficients, which leads to 10 non-linear parameters. For this experiment,

we increase the number of products per market to 50, and leave the number of markets unchanged

at 100.

To identify this model, we need to use a richer set of differentiation measures. In particular,

it is essential that the instruments capture the correlation in the distribution of characteristics

differences across multiple dimensions. In particular we consider all binary interactions between

the K = 5 dimensions of differentiation:

Differentiation IV: Adjt(xt) =


n∑

j′=0

d1jt,j′ × dkjt,j′ , . . . ,
n∑

j′=0

dKjt,j′ × dkjt,j′


k=1,...,K

.

This leads to 25 instruments, instead of the 5 used in the IID models.

The results are summarized in Table 3. The top panel reports the average estimated covariance

coefficients (and RMSE), and the middle panel reports the true covariance matrix used to simulate

the model. The simulations confirm the ability of the Differentiation IVs to identify rich substitu-

tion patterns. The GMM estimates are almost indistinguishable from the true parameters, and the

RMSEs are of the same magnitude as the ones reported in the IID models. Notice also that the

Gauss-Newton algorithm quickly converges (on average in three seconds per sample). This is very

encouraging, since this unrestricted covariance model is estimated on a larger sample (5,000 versus

1,5000 observations) and contains more parameters (10 versus 4) than the IID model presented

earlier.

To compare the performance of the Differentiation IVs with weak instruments, we construct

an estimator based on the optimal IV approximation proposed by Berry et al. (1999). Recall that

these instruments are based on the following heuristic:

E

(
∂σ−1j

(
st,x

(2);θ0
)

∂θk

∣∣∣∣∣xt
)
≈
∂σ−1j

(
st,x

(2); θ̂
)

∂θk

∣∣∣∣∣
ξjt=0

.

The challenge with this approach is to obtain an initial estimate θ̂. If we use the estimates

obtained with Differentiation IVs as starting values, the results would be nearly indistinguishable

from the ones in Table 3. Instead, we use random starting values to calculate the analytical

Jacobian function at ξjt = 0: θ̂ ∼ N(0, 1). Of course this can be viewed as a worst-case scenario,

since these parameter values are not even consistent estimates. Our objective however is twofold:

(i) we want to investigate the robustness of the heuristic approximation to the starting values, and

(ii) we want to compare the results obtained with the Differentiation IVs with a potentially weaker

set of instruments.
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Table 3: Monte-Carlo simulation results for the correlated random-coefficient specification

Σ.1 Σ.2 Σ.3 Σ.4

Estimated parameters:
Σ1. 4.491

(3.136)
Σ2. -2.047 4.394

(1.379) (1.57)
Σ3. 2.059 0.747 4.558

(.735) (.41) (.355)
Σ4. -1.243 -0.389 -0.484 3.089

(.497) (.307) (.264) (.256)
True parameters:

Σ1. 4.064
Σ2. -2.083 4.270
Σ3. 1.995 0.689 4.505
Σ4. -1.152 -0.398 -0.462 3.071

Nb. Products 50
Nb. Markets 100
CPU time (sec) 191.690
Failed convergence 0.06
Singular matrix 0.24
Algorithm newton

Each entry measures the average estimates, and the root-mean-square-error (parenthesis). Each specification is
estimated over 1,000 monte-carlo replications. The distribution of the random coefficients is approximated using a
three-points grid in each dimension (i.e. 0.25, 0.5 and 0.75 percentiles). The estimation is initiated at the true value
of the parameters.
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Table 4: Monte-Carlo simulation results for the correlated random-coefficient specification with the
optimal IV approximation

Σ.1 Σ.2 Σ.3 Σ.4

Estimated parameters:
Σ1. 4.491

(3.136)
Σ2. -2.047 4.394

(1.379) (1.57)
Σ3. 2.059 0.747 4.558

(.735) (.41) (.355)
Σ4. -1.243 -0.389 -0.484 3.089

(.497) (.307) (.264) (.256)
True parameters:

Σ1. 4.064
Σ2. -2.083 4.270
Σ3. 1.995 0.689 4.505
Σ4. -1.152 -0.398 -0.462 3.071

Nb. Products 50
Nb. Markets 100
CPU time (sec) 192
Failed convergence 0.06
Singular matrix 0.24
Algorithm Simplex

Each entry measures the average estimates, and the root-mean-square-error (parenthesis). Each specification is
estimated over 1,000 monte-carlo replications. The distribution of the random coefficients is approximated using a
three-points grid in each dimension (i.e. 0.25, 0.5 and 0.75 percentiles). The estimation is initiated at the true value
of the parameters. The instruments are calculated by evaluating the analytical jacobian at ξjt = 0 and θ̂ ∼ N(0, 1).
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The results are presented in Table 4. Although this IV procedure tends to perform slightly

better than the Market IVs presented earlier, the estimates are much less precise and more biased

than the ones obtained with the Differentiation IVs. Similarly, the convergence properties of the

estimator is much worst. Consistent with the idea using random starting values leads to weak

instruments, we frequently encounter convergence problems, and the average computation time per

simulated is almost 200 seconds (compared with 3 seconds above).

Therefore we conclude that the performance of this approximation to the optimal instruments

is highly dependent on the consistency of the starting values. This conclusion differs slightly form

the discussion of those instruments in Reynaert and Verboven (2013). They show, using Monte-

Carlo simulations, that the quality of the starting values was largely irrelevant in the context of

models with low dimensions and IID random-coefficients. Our results show that this conclusion

is no longer valid when number of random-coefficients is large, and/or with correlated unobserved

heterogeneity.

4.3 Endogenous prices

In this section, we simulate an equilibrium mixed-logit model with vertical differentiation. Our

objective is to illustrate the construction and performance of the Differentiation IVs in the presence

of a second simultaneity problem. We also compare the performance of the instruments with existing

instruments proposed in the literature, including those used in Berry et al. ((1995), (1999)) and

Reynaert and Verboven (2013).

We consider the following indirect utility function:

uijt =

β0 + βxxjt + ξjt − αipjt + εijt If j > 0

εi0t Else.
(18)

where αi = βp + σpy
−1
i and ln(yi − 1) ∼ N(0, 1) (known), and εij

iid∼ T1EV (0, 1). Recall that the

parameter values are standardized by the implicit variance of εijt. Since our objective is to simulate

a model that exhibits substitution patterns that are close to a pure-vertical differentiation model

(e.g. Bresnahan (1987)), we set the spread parameter to 0.1. This leads to the following parameter

values: β0 = 2.5, βx = 10, βp = 1, σp = 20. The distribution of product characteristics are given by:

xjt ∼ N(0, 3.5), ξjt ∼ N(0, 1.5). We introduce variation across markets in the number of products:

nt = 40 + et where et ∼ Poisson(10).

We simulate equilibrium prices using a multi-product Bertrand-Nash pricing game (Berry et al.

(1995)):

pjt = mcjt + (Ωt ·∆t)
−1 st, (19)

where ∆t = {∂sjt/∂pkt} and Ωjk,t = 1 if product j and k and owned by the same firm. To generate

random ownership matrix in each market, we simulate a firm identifier from a Poisson distribution
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with mean nt/2. Let Fjt denotes the set of products (other than product j) owned by the same

firm as product j.

The marginal-cost function is an increasing function of the quality of products:

ln mcjt = λ0 + λ1qjt + ωjt

where qjt = β0 + βxxjt + ξjt is the quality of product j, and ωjt ∼ N(0, 0.1) an unobserved cost

residual.13 In some econometrics specifications, we will treat ωjt as an observed cost shocks.

As we discussed above, the additional challenge when considering models with endogenous

prices, is that the reduced-form of the model is function of the distribution of endogenous price

differences:

E (ξjt|xjt, pjt) = E
(
f
({
skt, d

p
jt,k

})
+ Ct − xjtβ

∣∣djt) 6= 0.

To evaluate the reduced-form of the model, in theory one must take into account the joint distribu-

tion of prices and shares. This is especially challenging when consumers have heterogeneous price

coefficients, since this conditional expectation must incorporate the equilibrium supply relationship.

Since our objective is to identify demand without supply, we rely instead on two alternative

linear reduced-form equations relating prices and products’ own characteristics:

ln p̂costjt = π̂cost0 + π̂costx xjt + π̂costω ωjt, (20)

ln p̂no-costjt = π̂no-cost0 + π̂no-costx xjt, (21)

where π̂’s are OLS regression coefficients. We will use these two conditional expectations alterna-

tively to analyze the performance of the estimators with and without cost shifters.

We use these linear regressions to approximate the reduced-form of the model as follows:

Dj,k(xt,ωt,Ωt) = E

[
∂σ−1j

(
st,pt|Σ0

)
∂Σk

∣∣∣∣∣xt,ωt,Ωt

]
≈ h

({
dxjt, d

p̂
jt,Ωt

})
. (22)

In other words, rather than explicitly modeling the conditional expectation of the inverse-demand

(over prices and shares), we construct our instruments using the conditional expectation evaluated

at the expected prices obtained from equation 20 or 21. This is similar to the approach taken by

Reynaert and Verboven (2013).

Letting wjt = {intercept, xjt, ωjt} (i.e. with cost shifter) or wjt = {intercept, xjt} (i.e. without

13The parameters of the cost function are: λ0 = −0.1, λ1 = 0.075.
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Figure 3: Distribution of parameter estimates with and without cost shifters
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(a) Without cost shifters
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(b) With cost shifters

cost shifter), we use three basis functions to construct our instruments:

Market IV: Amj (wt) =

 ∑
j′∈Fjt

wjt,
∑
j′ /∈Fjt

wjt


Differentiation IV (1): Ad1j (wt) =

 ∑
j′∈Fjt

(
dkjt,j′

)2
,
∑
j′ /∈Fjt

(
dkjt,j′

)2
k∈{x,p̂}

Differentiation IV (2): Ad2j (wt) =

 ∑
j′∈Fjt

1
(
|dp̂jt,j′ | < sd(p̂)

)
wj′t,

∑
j′ /∈Fjt

1
(
|dp̂jt,j′ | < sd(p̂)

)
wj′t


The first function corresponds to the instrument vector used in Berry et al. (1995). The second

function measures the sum of square of exogenous characteristic differences. The third function

measures the sum of exogenous characteristics among rivals located within one standard-deviation

in the exogenous price ranking. All three functions measure the characteristics of rivals within

and across firms. Overall, we compare the results across six specifications: three measures of

differentiation, with and without cost shifters.

Figure 3 plots the distribution of the simulated parameter estimates for the panel with T = 10

markets. The results are consistent with the conclusions reached earlier with the exogenous char-

acteristic models. The distributions of the random-coefficient parameter with the Market IVs are

significantly more dispersed than the distributions obtained with the two Differentiation IVs, and

share the same non-standard characteristics documented earlier (e.g. bunching at zero, outliers,

etc.). Importantly, Figure 3b shows that the inclusion of cost-shifters does not fix this weak iden-

tification problem. Although the distribution of the estimated random-coefficient is less dispersed,
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Figure 4: Distribution of parameter estimates in small and large samples

0
.0

5
.1

.1
5

.2
Ke

rn
el

 d
en

si
ty

0 20 40 60
Random coefficient estimate (price)

BLP (1995) Local competition

Sample size: Solid = 500, Long dash = 1,000, Dash = 2,500.

the Market IV estimates are still very dispersed and contain a large number of outliers (e.g. σp = 0

and σp > 40).

Moreover, Figure 4 confirms that the performance of the weak IV specifications does not improve

significantly in large samples. In particular, when we increase the number of markets from 10 to

100, the dispersion the parameter estimates with Market IVs remains large. To some extent, this

is caused by the fact that we observe a large number of outliers even with 2,500 observations (e.g.

σp = 0 or σp > 40) . In contrast, the densities of the parameter estimates have a clear bell shape

across all three samples, are centered around the true parameter value (i.e. 20).

Table 5a summarizes the simulations results for four specifications: Market IV and Differenta-

tion IV, with and without cost shifters. Consistent with the figures above, we find that the Market

IV specifications are severally biased and imprecise, especially without using cost shifters. Adding

strong price instruments (i.e. cost) improves the performance of the Market IV specification, but

does not eliminate entirely the bias, and the estimates remain very noisy. In contrast, the Differ-

entiation IV specifications are precise and unbiased even without using cost shifters, and adding a

strong price instrument further improves the precision. Therefore, the results suggest that using

a strong price IV is not sufficient to solve the weak identification problems when consumers have

heterogeneous price coefficients. It is essential to construct instruments that measure the degree of
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Table 5: Monte-Carlo simulations with endogenous prices.

IV: Sum of charact. IV: Local competitors
w/o cost w/ cost w/o cost w/ cost

βp
Average 0.46 1.08 1.00 1.02
RMSE 2.19 1.32 0.22 0.18

σp
Average 13.24 17.47 19.10 19.68
RMSE 10.84 7.95 3.93 1.51

(a) Market versus Differentiation IVs

IV: Sum of charact. IV: Local competitors
Market IV Opt. IV Diff. IV Opt. IV

βp
Average 0.46 1.29 1.00 1.16
RMSE 2.19 0.93 0.22 0.45

σp
Average 13.24 16.61 19.10 17.28
RMSE 10.84 28.23 3.93 19.07

(b) Optimal IV approximation without cost shifter

Sample size: n̄t×T = 500. Number of Monte-Carlo simulations = 1,000. True parameter value: σp = 20, βp = 1.
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differentiation between products along the exogenous characteristics.

Table 5b investigates the ability of the optimal IV approximation proposed by Berry et al. (1999)

to solve this weak identification problem. We consider the specifications without cost shifters, and

use the Market IV or Differentiation IV estimates as starting values to evaluate the Jacobian of

the inverse demand with respect to σp at ξjt = 0 and pjt = p̂jt.

The results obtained using the Market IV estimates as starting values show a modest reduction

in the bias, but a deterioration in the precision. This latter result is caused by the fact that the

optimal IV approximation leads to a outlier parameter estimates. Importantly, the problem of

outliers is present both when we use the Market IV and Differentiation IV estimates as starting

values. Removing those samples from the calculation would lead to sizable improvements in the

precision of the estimates with the Market IV specification, and nearly indistinguishable results

with the Differentiation IV specifications.

The results from Table 5b confirm that using weak instruments in the first-stage leads to

inconsistent and noisy estimates of the non-linear parameter in the second-stage. The problem

is exacerbated by the presence of endogenous prices. In particular, our simulations suggest that

evaluating the Jacobian function at p̂ introduces an additional non-linear approximation error that

further deteriorates the precision of the estimates. Improving the precision of the estimates of

p̂jt, for instance by using a cost shifter, significantly improves the performance of the optimal IV

approximation. However, across all of our simulations, we did not find systematic evidence that

the approximation improved the performance of the estimator relative to using the Differentiation

IVs directly.
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A Simultaneity bias

To illustrate the need for instruments, we start by documenting the sign and the importance of

the simultaneity bias. To do so, we estimate the model by non-linear least-square (NLLS). The

expected bias of NLLS corresponds to the expected value of the OLS coefficients of the Gauss-

Newton regression:

E
(
θ̂nlls − θ0

)
= E

(
b̂ols
)

= E
[
(JT (θ0)J(θ0))−1

]
E
[
JT (θ0)ξ

]
6= 0 (23)

The source and strength of this bias depend on the correlation between the slope of the inverse

demand and the model residual: Corr
(
∂σ−1jt /∂σx, ξjt

)
6= 0. As the next simulations will demon-

strate, this correlation depends on the degree of substitution between products, and wether or not

the market is close or not to a monopolistic competition environment.

Figure 5 plots the distribution of the log difference between the true value of the random-

coefficient parameter and the NLS estimate, across different data-generating processes. Each kernel

density is constructed using the 1, 000 Monte-Carlo replications.

Figure 5a shows that the size of the bias depends intuitively on the variance of the model

residual. When the standard-deviation of ξjt is equal 0.5, the least-square estimate of σx essentially

unbiased. As we increase sd(ξ), the average bias increases almost linearly, and reaches −45% when

sd(ξ) = 3.5. As expected, increasing the variance of the model residual also greatly reduces the

precision of the estimates.

Interestingly, the sign of the average bias is negative across all of our simulations. In other

words, the simultaneity problem systematically leads to an underestimation of the amount of the

heterogeneity in taste, in favor of the multinomial logit model.

The next two subfigures vary the degree of substitution between products. Figure 5b simulates

identical panels with 10 products (on average) and 50 markets, while increasing the value of the

outside option; measured by the model intercept β0. When β0 = −15, the outside option is the

“closest” substitute of every products, as measured by the diversion-ratio. This is standard feature

of mixed-logit models: despite the presence of large heterogeneity in the taste of consumers for

observed characteristics, the presence of an idiosyncratic “logit” error implies that elasticity of

substitution between products is very sensitive the relative magnitude of the average quality index

δjt. When the quality of products is very small (relative to the outside option), products compete

mostly with the outside good, and the derivative of the quality assignment function with respect

to σx is nearly independent of the characteristics of other products.

To better understand the relationship between the derivative of the quality assignment and the
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Figure 5: Distribution of simultaneity bias
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(a) Variance of the residual
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(b) Variance of the model intercept

0
2

4
6

K
er

ne
l d

en
si

ty

-.8 -.6 -.4 -.2 0 .2
Least-square bias in σx (log)

(J,T)=(100,5)
(J,T)=(50,10)
(J,T)=(10,50)
(J,T)=(5,100)

(c) Panel structure

Each figure plots the Kernel density of the log-difference between the least-square estimate of σx and the true
parameter value. Each density is estimated using 1,000 Monte-Carlo replications. The default values of the data-
generating processes are: sd(ξ) = 4, n = 10, T = 50, β0 = −10.
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elasticity of substitution, recall that Jjt,σx(θ) is defined using the implicit function theorem:

∂σ−1j

(
st,x

(2)
t ;σx

)
∂σx

= −

∂σj
(
δt,x

(2)
t ;σx

)
∂δ

−1
j,·

∂σt

(
st,x

(2)
t ;σx

)
σx

(24)

Although the last term term varies across products based on σx, the nt × nt matrix determining

elasticity of demand with respect to the average quality of products contains off-diagonal elements

that quickly go to zero when the market share of the outside good increases. When this happens,

in our simulation exercise, the variance in Jjt,σx(σx) across products can be fully explained but the

product’s own observed non-linear characteristics (i.e. xjt). For instance when β0 = −15, Hjt is

nearly independent of own and competing product market shares, and therefore uncorrelated with

the model residual.

As a result, the simultaneity bias from estimating σx by least-square is very small when the

share of the outside good is large. The four densities confirm that as we increase the average quality

of products, the simultaneity bias increases monotonically. When β0 = −6, the share of the outside

option is about 5%, and the average bias approaches −40%. In contrast, when β0 = −15, the share

of the outside option is about 90%, and the average bias is less than 5% in absolute value.

Figure 5c illustrates a related implication of the mixed-logit model. When the number of prod-

ucts in each market is small, the degree of “local” substitution is important, and the simultaneity

bias is large. This is consistent with the previous discussion. When the number of products grows

large, the elasticity of substitution between products become increasingly diffused, and the Jaco-

bian of the quality assignment is nearly independent of products’ market shares. In our smallest

cross-section example (i.e. n = 5), the average bias reaches −55%. In contrast, when the number

of products is equal to 100 on average, the the average bias is less than 10% in absolute value.
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B Proof of Propositions 1 and 2

B.1 First Proposition

Proposition 1 can be restated as follows.

Proposition 3. In the linear characteristics model the market inverse function can be expressed
as

D−1j (s0, s1, . . . , sJ ;X) = G
(
sj , {sk, djk}k 6=j

)
+ C

where djk = xk − xj and C is a constant that is common to all products j = 1, . . . , J .

The proposition implies that all the cross sectional variation in the inverse function comes from

the component

G
(
sj , {sk, djk}k 6=j

)
= G (sj , Fj (s, d))

where we have equivalently expressed the second argument as the empirical distribution of (sk, djk)

among products k 6= j (which includes the outside good 0 in this sample). It is important to note

that from this empirical distribution, we can only recover the set of the differences djk but cannot

isolate the difference with respect to any particular product, and also cannot recover xj itself from

this distribution (because we cannot identify the outside good in this set). This brings to light that

the cross sectional variation in the inverse function does not actually depend on a product’s level

of own xj , but rather the distribution of differences djk for k 6= j this product faces.

We will spend the rest of this section proving the result.

Step 1

The first step is to re-parameterize the demand function Dj (δ1, . . . , δJ) in terms of

tj =
exp (δj)∑J
l=0 exp (δl)

.

The advantage of this re-parameterization is that it is an alternative location normalization (re-

quiring that all products t’s to sum to one) that does not create an asymmetry between the outside

good 0 and the inside goods j > 1. This will be analytically more convenient than the standard

normalization of δ0 = 0. But they are mathematically identical. In particular observe that

Tj = log (tj) = δj + C

where C is a constant that is common to all products in a market (that can be solved by recognizing

log t0 = −C).
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We can thus express demand in terms of this re-parameterization, i.e.,

uij = u (tj , xj , θi) = Tj +
K∑
k=1

σkvikxjk + εij

and Dj (t0, . . . , tJ) =

ˆ
1 [u (tj , xj , θ) ≥ u (tk, xk, θ) ∀k = 0, . . . , J, k 6= j] dF (θ) . (25)

We then have that

Dj (t0, . . . , tJ) = Dj (δ1, . . . , δJ) .

(because an additive constant does not change preferences). Moreover we have that

logD−1j (s0, . . . , sJ) + C = D−1j (s0, . . . , sJ) .

Our strategy moving forward is to show that

D−1j (s0, . . . , sJ) = D−1
(
sj , {sk, djk}k 6=j

)
. (26)

Then defining G = logD−1 will give us the Theorem.

Step 2

We now establish 3 properties of Dj (t1, . . . , tJ) : symmetry, anonymity, and translation invariance.

Each of these properties will then be preserved by the inverse mapping D−1j . To establish these

properties let us define a product j’s state ωj as

ωj = (tj , xj)

and note that

Dj (t0, . . . , tJ) = Dj (ωj , ω−j) .

The following two properties are relatively straightforward to show using the definition of demand

(25) and the symmetry of the idiosyncratic errors (??). The first property is

Definition 1. The function Dj (ωj , ω−j) is symmetric if Dj (ωj , ω−j) = Dk (ωj , ω−j) for any k 6= j.

This implies we can write Dj (ωj , ω−j) = D (ωj , ω−j).

Definition 2. The function D (ωj , ω−j) is anonymous if D
(
ωj , ωρ(−j)

)
where ρ is any permutation

of the indices −j.
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We note that symmetry and anonymity are the same properties that Doraszleski and Pakes

(2007) use to reduce the dimensionality of value functions in dynamic games. These properties can

be established for the demand functions Dj .
There is one last property of demand we will exploit which is the following:

Definition 3. The function D (ωj , ω−j) is translation invariant if for any c ∈ RK we have that

D
(
ωj + (0, c) , ω−j + ~(0, c)

)
= D (ωj , ω−j)

where ~(0, c) is the J dimensional vector consisting of elements (0, c).

This property can be established using the linearity of the characteristics utility uij in xj . It is

important to note that the second argument in D includes the outside good.

Step 3

Now define the relevant state for the inverse mapping as

mj = (sj , xj) .

Then

D−1j (s0, . . . , sJ) = D−1j (mj ,m−j) .

Using the above properties of the demand function D, we can establish precisely the same properties

for D−1j , namely symmetry, anonymity, and translation invariance. Thus we have that

D−1j (mj ,m−j) = D−1
(
mj + (0,−xj) ,m−j + ~(0,−xj)

)
= D−1

(
sj , {(sj , djk)}k 6=j

)
where the first equality follows from symmetry and translation invariance, and the second equality

follows from anonymity. We have thus succeeded in establishing (26) and hence Theorem 3.

B.2 Second Proposition

Let X = (x0, . . . , xJ) be the entire market menu of product characteristics. We assume here for

simplicity that X is fully independent of ξ = ξ1, . . . , ξJ . Consistent with the symmetry of the model,

the distribution Fξ is assumed to have a symmetric distribution. Then we have the following result

which suffices to establish Proposition 2 in the paper.
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Proposition 4. The conditional expectation of interest in the model can be expressed as

E
[
D−1

(
sj , {(sj , djk)}k 6=j

)
| X
]

= E
[
D−1

(
sj , {(sj , djk)}k 6=j

)
| {djk}k 6=j

]
= E

[
D−1

(
sj , {(sj , djk)}k 6=j

)
| Fj (d)

]
where Fj (d) is the empirical distribution of the sample of differences {djk}k 6=j.

We will only sketch here the main ideas of the proof (with details to be filled later). Assume

that the djk can be canonically ordered (based on some complete ordering in RK , such as the

lexicographic ordering) such that d̃j1 ≤ · · · ≤ d̃jK where d̃jl is the lth largest from the {djk}k 6=k.
Then we can express

D−1
(
sj , {(sj , djk)}k 6=j

)
= D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃j1, . . . , d̃jJ

)
where s̃j0 is sj and s̃ji is the market share corresponding to the product with difference d̃ji. Now

it can be shown that the distribution

Fs̃j0,s̃j1,...,s̃jJ |X = Fs̃j0,s̃j1,...,s̃jJ |d̃j1,...,d̃jJ .

That is d̃j1, . . . , d̃jJ is a sufficient statistic of the market menu X to determine the distribution of

the shares (s̃j0, . . . , s̃jJ). We then have that

E
[
D−1

(
sj , {(sj , djk)}k 6=j

)
| X
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃j1, . . . , d̃jJ

)
| X
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃j1, . . . , d̃jJ

)
| d̃j1, . . . , d̃jJ

]
= E

[
D−1

(
sj , {(sj , djk)}k 6=j

)
| Fj (d)

]
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