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1. Introduction

Empirical work on auctions often requires a complex estimation approach relying on strong

assumptions about the data generating process. For example, computing revenue under

counterfactual auction formats typically involves making simplifying assumptions, such as

bidders having independent private values (IPV).1 The researcher may then estimate the un-

derlying distribution of bidder valuations from bid data, and use the estimated distribution

to simulate the counterfactuals of interest. While these involved methods or strong assump-

tions are sometimes necessary, we demonstrate that some key questions in the analysis and

design of auctions—such as discriminating between models of entry, quantifying the revenue

gains from improving auction design (Bulow and Klemperer 1996), and measuring revenue

losses from mergers or collusion—can be answered with a simple-to-compute tool we refer

to as the bidder exclusion effect.

The bidder exclusion effect is the decrease in expected auction revenue when a random

bidder is excluded from an auction. The effect is not of intrinsic interest but instead serves

as a means to an end, providing a simple and powerful tool for empirical analysis. For the

intuition behind how the bidder exclusion effect can be estimated, consider the example of an

n > 2 bidder ascending auction with private values and no reserve price, where in equilibrium

bidders bid their values. If a bidder is excluded at random from the auction, with probability

n−2
n

he will be one of the n − 2 lowest bidders, and so his exclusion will not affect revenue.

With probability 2
n
, he will be one of the two highest bidders, and revenue will drop from

the second-highest to the third-highest bid of the n bidders. The bidder exclusion effect is

therefore 2
n

times the expected difference between the second and third-highest bids.

This identification argument is robust to a variety of modeling frameworks which would

normally complicate or prohibit identification in auction models. For example, Athey and

Haile (2002) prove that the joint distribution of bidder valuations is not identified in ascend-

ing auction models with correlated private values because the researcher never observes the

willingness to pay of the highest bidder. The bidder exclusion effect, however, is identified in

this setting—and in a broad class of other auction settings considered in the literature—when

the econometrician observes the second and third-highest bids and the number of bidders.

1Paarsch and Hong (2006); Hendricks and Porter (2007); Athey and Haile (2007); and Hickman et al. (2012)
describe structural econometric methods for auction data and survey the literature.
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With these data, the bidder exclusion effect or a bound on the effect can be computed in

ascending auctions with correlated private or common values, auction-level heterogeneity

(observed or unobserved), asymmetric bidders, and non-button auctions (Haile and Tamer

2003). Bounds can also be obtained in settings with binding reserve prices, first price auc-

tions, or in cases in which the number of bidders is unobserved.2 In each case, estimation

simply requires computing means or conditional means, and does not require instruments,

exogenous variation in the number of bidders, or fitting a complex model. Incorporating

auction-level covariates parametrically or nonparametrically is also straightforward. The

ability of this approach to handle common values is novel, and represents the first positive

identification results for objects of interest in common values ascending auctions.

The bidder exclusion effect sheds light on several important issues in empirical auctions

work. First, it is possible to test whether bidders’ valuations are independent of the number

of bidders who participate in the auction.3 This type of independence is central to identifi-

cation in many recent methodological advances.4 Knowing whether the number of bidders

is independent of valuations is also key to modeling bidders’ entry decisions. Specifically,

a prominent distinction in the auction literature is between entry models which have this

property, and models of selective bidder entry, which do not.5 Choosing an inappropri-

ate entry model might result in misleading estimates of bidders’ valuations, or unreliable

counterfactual simulations.

Although the assumption that bidders’ values and the number of bidders are independent

is widely used in the empirical auctions literature and is critical for modeling entry, it is rarely

tested. We propose a simple test of this assumption, which compares the estimated bidder

exclusion effect to the observed difference in average revenue between n−1 and and n bidder

auctions. If the two quantities are significantly different, then n−1 bidder auctions differ from

2In the body of the paper, we focus on ascending auctions with non-binding reserves; extensions to binding
reserve prices or first price auctions are contained in the Appendix.
3This type of independence has a variety of names in the auctions literature: “exogenous participation”
(Athey and Haile 2002, 2007), “valuations are independent of N” (Aradillas-López et al. 2013a), or an
absence of “selective entry” (Roberts and Sweeting 2014).
4See, for example, Haile and Tamer (2003), Aradillas-López et al. (2013a), and Sections 5.3 and 5.4 of Athey
and Haile (2007).
5Bajari and Hortacsu (2003); Bajari et al. (2010); Athey et al. (2011); Krasnokutskaya and Seim (2011) and
Athey et al. (2013) feature entry models without selection, derived from the theoretical work of Levin and
Smith (1994). Li and Zheng (2009); Roberts and Sweeting (2013, 2014); Bhattacharya et al. (2014) and
Gentry and Li (2013) present models of selective entry.



THE BIDDER EXCLUSION EFFECT 3

n bidder auctions with one bidder randomly removed, which is evidence against exogeneity of

bidder participation. Estimating the bidder exclusion effect can therefore guide the decision

of whether to rely on exogenous variation in the number of bidders for identification and,

similarly, guide the choice of the most appropriate entry model. In contrast to other methods

of discriminating between entry models, our approach is computationally simpler, does not

require fully estimating an entry model, and does not require exogenous variation in—or

even observability of—the number of underlying potential bidders (See Li and Zheng 2009;

Marmer et al. 2013; Roberts and Sweeting 2014; Aradillas-López et al. 2013b).6 We also

present Monte Carlo evidence highlighting the power of our proposed test of selective entry.

The bidder exclusion effect also allows the analyst to gauge how important it is to set re-

serve prices optimally—a question which has been an important counterfactual of interest for

a large number of empirical auction studies, such as Paarsch (1997), Li and Perrigne (2003),

Li et al. (2003), Krasnokutskaya (2011), Li and Zheng (2012), Roberts and Sweeting (2014,

2013), Aradillas-López et al. (2013a), Bhattacharya et al. (2014), and Coey et al. (2015).

A typical empirical approach to answering this question would rely on assumptions about

the distribution of values and the information environment to estimate a detailed model,

determine optimal reserve prices using the seller’s first-order condition, and finally measure

the revenue difference between the optimally designed auction and a no-reserve auction. We

circumvent these steps by exploiting the theoretical results of Bulow and Klemperer (1996),

who demonstrated that sellers raise expected revenue more by adding another bidder than

by designing the auction optimally.7 Relying on this result, the bidder exclusion effect will be

an upper bound on the revenue gains from setting an optimal reserve price, and this bound

can be computed without the effort or assumptions necessary to apply more complicated ap-

proaches. Importantly, this result yields a bound on the benefit of an optimal reserve price in

a setting—i.e. common values ascending auctions—where no known identification (or even

partial identification) results exist for the optimal reserve price itself. In addition, because

6Marmer et al. (2013) and Roberts and Sweeting (2014) propose tests for selective entry based on observing
exogenous variation in the number of potential bidders. Li and Zheng (2009) estimate models with and
without selective bidder entry, and select between them on the basis of their predictive power. Aradillas-
López et al. (2013b) provide an alternative test of selective entry which is more complex than ours but which
has the advantage of not requiring observing multiple order statistics of bids.
7The main result of Bulow and Klemperer (1996) is frequently misunderstood as only applying to IPV
settings, when in fact the original results of Theorem 1 of Bulow and Klemperer (1996) are stated for
correlated private or common values settings, as discussed below.
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the bidder exclusion effect is simple to compute, the size of other estimated effects, such as

an experimental change in the auction process, can easily be compared to the benchmark of

optimal mechanism design.

The bidder exclusion effect, or modifications thereof, can also serve as an upper bound

on the fall in revenue that would result from collusion or mergers between bidders. Like the

gains from using an optimal reserve price, studying the effects of collusion has been a focus

of many auction papers (Graham and Marshall 1987; Froeb 1988; Mailath and Zemsky 1991;

Baldwin et al. 1997; Porter and Zona 1999; Pesendorfer 2000; Bajari and Ye 2003; Asker

2010; Athey et al. 2011) as have bidder mergers (Brannman and Froeb 2000; Li and Zhang

2015). Our approach provides a simple means of answering one question which these papers

seek to analyze: the effect of collusion or mergers on seller revenue. Intuitively, either a

merger or collusion between two bidders effectively removes one bidder from participating

in the auction, similar to the bidder exclusion discussed above. The conditions on which

the approach relies tie in closely to theoretical models of collusive bidding such as those in

Graham et al. (1990) and Asker (2010) or models of mergers.8

We illustrate the uses of the bidder exclusion effect with two applications. First, we use US

timber auction data from 1982-1989. We find that removing a single bidder at random would

decrease revenue by approximately 13% on average. Under conditions discussed below, this

implies that the increase in expected seller revenue from using an optimal reserve price is less

than 13%, and the loss in expected seller revenue from two bidders merging or colluding is

bounded above by 4%. Timber auctions are a setting in which much of the previous literature

has modeled entry as being non-selective. We find evidence of selective entry unconditionally,

but after controlling for bidder types (loggers vs. mills), the evidence for selective entry is

weaker. This suggests that assuming exogenous variation in the number of bidders may be

appropriate in timber auction settings once the bidder type has been accounted for.

Second, we show how to use the bidder exclusion effect to bound the impact of optimal

auction design when minimal data is available. We study wholesale used-car auction data

in which the number of bidders varies auction by auction but is unobservable to the econo-

metrician. We estimate an upper bound on the bidder exclusion effect, averaged over the

8We also present auxiliary evidence regarding the validity of our bounds, relying on the bidding cartel data
from Asker (2010) in the Appendix.
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unobserved realizations of the number of bidders. We obtain an upper bound on the revenue

increase from an optimal reserve price of approximately $283, and an upper bound on the

revenue losses from a merger or collusive bidding of $142. We illustrate how the bidder

exclusion bound can also be calculated conditional on observable covariates, and we use it

as a benchmark for other recently estimated effects from changes in auto auctions (Tadelis

and Zettelmeyer 2014; Lacetera et al. 2013; Hortaçsu et al. 2013).

In the spirit of Haile and Tamer (2003) and other bounds approaches that have followed

(Tang 2011; Armstrong 2013; Komarova 2013; Aradillas-López et al. 2013a; Gentry and Li

2013), our empirical approach does not seek to point identify and estimate the distribution

of bidder values. Instead we draw inferences from functions of the value distribution that

are point, or partially, identified. To our knowledge, we are the first to point out that a

statistic that is straightforward—and in some cases trivial—to compute has implications for

modeling entry in auctions or evaluating the revenue impact of optimal mechanism design or

bidder mergers/collusion. More broadly, our approach ties in closely to the recent literature

on sufficient statistics for welfare analysis (Chetty 2009; Einav et al. 2010; Jaffe and Weyl

2013), which focuses on obtaining robust welfare or optimality implications from simple

empirical objects without estimating detailed structural models.

2. Model and Empirical Strategy

We consider single-unit ascending auctions with risk-neutral bidders throughout, and we

assume the auctions analyzed took place without a reserve price. Section 5 discusses coun-

terfactual settings in which reserve prices are used, and Appendix B contains extensions

to cases where the auctions analyzed took place with a binding reserve price. Appendix C

contains extensions to first price auctions. The equilibrium concept we consider throughout

is Bayesian Nash. Let N be a random variable denoting the number of auction participants

and let n represent realizations of N . Following Athey and Haile (2002), let Wi = (Vi, Si)

denote bidder i’s value and private signal, and Bi his bid. With private values, Vi = Si for

all i. With common values, for all i and j, Vi and Sj are strictly affiliated conditional on any

χ ⊂ {Sk}k/∈j, but not perfectly correlated.9 For the subset of auctions which have exactly n

9The random variables Y = (Vi, Sj) with joint density fY (·) are strictly affiliated if for all y, y′, fY (y ∨
y′)fY (y ∧ y′) > fY (y)fY (y′), where ∨ denotes component-wise maximum, and ∧ denotes component-wise
minimum.
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bidders enter, let F n denote the joint distribution of W ≡ ((Vi)i=1,...,n, (Si)i=1,...,n). By bidder

symmetry, we refer to the case where F n is exchangeable with respect to bidder indices. Let

V 1:n, . . . , V n:n represent the bidders’ valuations ordered from smallest to largest. Similarly,

let the random variables B1:n, . . . , Bn:n represent their bids ordered from smallest to largest,

with realizations of Bk:n denoted bk:n.

For k ≤ m ≤ n, let Bk:m,n represent the kth smallest bid in m bidder auctions, where

the m bidders are selected uniformly at random from the n bidders in auctions which had

exactly n bidders enter. Some remarks on this quantity are in order. We stress that this is a

counterfactual if m < n: we assume that it is common knowledge amongst the remaining m

bidders that n−m of the original n bidders have been dropped, and that they are competing

in an m-bidder auction, not an n-bidder auction. The distribution of Bk:m,m and Bk:m,n for

m < n may be different, as different kinds of goods may attract different numbers of entrants,

and bidders may value goods sold in auctions with m entrants differently from those sold in

auctions with n entrants. Finally, Bk:m,m and Bk:m are the same random variable.

Our empirical strategy centers around three key variables. The first is the bidder exclusion

effect. We define the bidder exclusion effect in n bidder auctions with no reserve price, ∆(n),

as the expected fall in revenue produced by randomly excluding a bidder from those auctions.

In ascending auctions, the bidder exclusion effect is:

∆(n) ≡ E(Bn−1:n)− E(Bn−2:n−1,n),

that is, the expected second-highest bid in n bidder auctions, minus the expected second-

highest bid in n − 1 bidder auctions, where those n − 1 bidder auctions are obtained by

publicly dropping a bidder at random from n bidder auctions.

The second variable, ∆bid(n), is the expected fall in revenue from dropping a bid (rather

than a bidder) at random, assuming all other bids remain unchanged:

∆bid(n) ≡ 2

n
E(Bn−1:n −Bn−2:n).

With probability 2
n

one of the highest two bids will be dropped, and revenue will drop to the

third-highest bid of the original sample, and with probability n−2
n

, one of the lowest n − 2

bids will be dropped, and revenue will not change.
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The third variable, ∆obs(n), is the observed difference in expected revenue between those

auctions in which n bidders choose to enter, and those in which n− 1 choose to enter:

∆obs(n) ≡ E(Bn−1:n)− E(Bn−2:n−1).

Unlike ∆(n), the quantities ∆bid(n) and ∆obs(n) are not counterfactual and can always be

estimated using data on the two highest bids and the number of auction entrants. Section

3 gives conditions under which ∆(n) is equal to, or bounded above by, ∆bid(n). As Section

4 describes, if entry is selective, then ∆(n) 6= ∆obs(n). Combining this with the results of

Section 3, we have testable implications of selective entry in terms of the relation between

∆bid(n) and ∆obs(n). Section 5 relates the increase in revenue from an optimal reserve to

∆(n), and, by the results of Section 3, to ∆bid(n).

3. Identifying and Estimating the Bidder Exclusion Effect

3.1. The Näıve Approach. A näıve approach to estimating the bidder exclusion effect is to

compare revenue between n bidder and n− 1 bidder auctions. This approach is appropriate

under two strong assumptions, both of which are frequently employed in the structural

auctions literature: First, the number of bidders varies exogenously, and, second, the number

of bidders is correctly observed. While these assumptions greatly aid in identification and

testing, they may not hold in practice.

An appealing alternative is an instrumental variables approach.10 However, even with valid

instruments for bidder participation, instrumental variables estimates would only capture the

effect on revenue for those auction observations in which the instrument changes the number

of participating bidders (Angrist and Imbens 1995).11 Our approach, which we turn to

next, does not require instruments or variation in the number of bidders, and applies to all

auctions, rather than a subset determined by the choice of instrument.

3.2. The Basic Model: Point Identification. In private value ascending auctions with

no reserve where bidders bid their values, it follows immediately that the bidder exclusion

10For example, Haile et al. (2003) use the numbers of nearby sawmills and logging firms as instruments for
the number of bidders at US timber auctions, in a test for common values.
11For instance, it may be the case that some auction sales are “always-takers”, in the language of treatment
effects, always having a high number of bidders, independent of the value of the instrument.
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effect is equal to the effect of dropping a bid at random, assuming the other bids remain

unchanged. This holds with asymmetric and correlated private values.

Observation 1. In ascending auctions with private values and no reserve price where bidders

bid their values, for all n > 2 the bidder exclusion effect ∆(n) = ∆bid(n).

Estimating the bidder exclusion effect in this setting is trivial, as long as the total number

of auction participants and the second and third-highest bids are observed. One simply forms

the sample analog of ∆bid(n).12 Incorporating auction-level observables into estimation is also

straightforward. For a vector of auction-level covariates X, one estimates the sample analog

of

∆bid(n|X) ≡ 2

n
E(Bn−1:n −Bn−2:n|X), (1)

using any parametric or nonparametric approach for estimating conditional means.

3.3. Extensions to the Basic Model. We now demonstrate that upper bounds on the

bidder exclusion effect are available with private values when losing bidders may drop out

below their values (which we refer to throughout as “low bidding”), with symmetric common

values, and in settings where the number of entrants is unobserved but it is known be greater

than some lower bound. Upper bounds are more important than lower bounds for our

applications. Models of selective entry often imply that bidders’ valuations are increasing

with the total number of entrants (Aradillas-López et al. 2013a,b). An upper bound allows

us to detect sufficiently large increases in valuations with the number of entrants, in a sense

which will be made precise. Similarly, to bound above the impact of optimal auction design

or to bound the losses from mergers/collusion, an upper bound on the bidder exclusion

effect is required. Appendices B and C describe further extensions, showing how the bidder

exclusion effect can be identified or bounded with binding reserve prices, and in first price

auctions.

12Alternatively, if all bids are observed, one could estimate the bidder exclusion effect by removing one bid at
random from n bidder auctions and computing the average decrease in the second-highest bid. This cannot
be applied to ascending auctions, as the highest willingness to pay is unobserved. Moreover, this alternative
would be subject to more sampling error, as it effectively involves simulating an indicator variable which
is 1 with probability 2

n (the indicator for selecting one of the top two bids), rather than directly using the

probability 2
n .
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3.3.1. Low Bidding. In the “button auction” model of ascending auctions with private values

(Milgrom and Weber (1982)), bidders drop out at their values. As highlighted in Haile and

Tamer (2003), in practice bidders’ (highest) bids may not equal their values. For example,

in English auctions, multiple bidders may attempt to bid at a certain price but only the first

bidder the auctioneer sees may be recorded. Jump bidding or minimum bid increments may

also lead to cases where bids do not equal values. Additionally, in some cases, a bidder may

drop out at a low bid level, planning to participate again but never doing so as the bidding

rises past her value. We make the following assumption for these non-button settings, which

is equivalent to an argument in Athey and Haile (2002) and similar to an assumption in

Haile and Tamer (2003) (we extend this result to also apply to the slightly more general

setting of Haile and Tamer (2003) in Appendix D):

Assumption 1. Bidders have private values. The second-highest bidder bids his willingness-

to-pay, and lower bidders’ bids are less than or equal to their willingness-to-pay.

As pointed out in Athey and Haile (2002), the researcher may be willing to assume that

the bidder with the second-highest valuation bids his value, as there are only two bidders

remaining at this stage, but for lower bids she may only be willing to assume that the

remaining bids are lower than the bidders’ values.13

Our next proposition shows that this assumption can be used to obtain an upper bound

on the bidder exclusion effect. The proof, and the proofs of all subsequent results, are in

Appendix A.

Proposition 1. If in ascending auctions with no reserve price, Assumption 1 holds, then

for all n > 2 the bidder exclusion effect ∆(n) ≤ ∆bid(n).

Note that this result only relies on Assumption 1 (private values with low bidding); it does

not require independence of valuations, nor does it require symmetry.

3.3.2. Symmetric Common Values. Under the assumptions of Observation 1, the change in

auction revenue when one bidder is excluded can be computed by removing one bidder’s bid,

13Athey and Haile (2002) argue, “...for many ascending auctions, a plausible alternative hypothesis is that
bids Bn−2:n and below do not always reflect the full willingness to pay of losing bidders, although Bn−1:n

does (since only two bidders are active when that bid is placed).” See Appendix D for an extension to the
general setting of Haile and Tamer (2003).
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and calculating the fall in revenue assuming the other bids remain unchanged. This is not

true with common values, as removing a bidder changes the remaining bidders’ equilibrium

bidding strategies. It follows from Theorem 9 of Athey and Haile (2002) that with sym-

metric common values, in the button auction model of ascending auctions, the equality of

Observation 1 can be replaced by an inequality.14 Common values ascending auctions may

have many equilibria; however, the results of Bikhchandani et al. (2002) demonstrate that

this inequality is true in any symmetric, separating equilibrium of an ascending auction.

Removing one bidder’s bid and assuming other bids remain unchanged thus overstates the

decline in revenue from excluding a random bidder, because it does not account for the in-

crease in bids due to the reduced winner’s curse. The following assumption and proposition

summarize this result:

Assumption 2. Bidders have symmetric common values, and bidding follows a button auc-

tion format.

Proposition 2. If in ascending auctions with no reserve price, Assumption 2 holds, then

in any symmetric, separating equilibrium, for all n > 2 the bidder exclusion effect ∆(n) <

∆bid(n).

To our knowledge, Proposition 2 is the first positive identification result for ascending

auctions with common values. Note also that this result only relies on Assumption 2; it does

not require independence of signals.

3.3.3. Unobserved Number of Bidders. In some settings the number of bidders may not be

known to the researcher. In ascending auctions, for example, not all potential bidders may

place bids. A lower bound on the number of potential bidders may be known, however, as

in our used-car application in Section 8. Let n represent this lower bound, such that for all

realizations n of the random variable N , n > n. In this case Propositions 1–2 extend to yield

an upper bound on the average bidder exclusion effect, E(∆(N)), where the expectation is

over the unobserved realization of N , the number of bidders.

14Theorem 9 is used for a different purpose in Athey and Haile (2002). They show that, assuming total
bidder participation varies exogenously across auctions, private value models can be tested against common
value models.
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Corollary 1. In ascending auctions with no reserve price, if for all realizations n, 2 < n ≤ n

and either Assumption 1 or Assumption 2 holds, then E(∆(N)) ≤ 2
n
E(BN−1:N −BN−2:N).

It is important to note that many empirical auctions approaches require that the researcher

perfectly observe the number of bidders (Haile and Tamer 2003; Aradillas-López et al. 2013a),

and existing identification arguments relaxing this requirement only apply in IPV settings

(Song 2004). Corollary 1 is the first positive identification result of which we are aware for

non-IPV ascending auctions with unknown N .

Estimation in the case where n is unknown consists of computing the mean gap between

second and third order statistics and scaling this quantity by 2/n. The expectation of this

gap conditional on covariates can be estimated by standard nonparametric or parametric

techniques.

4. Testing If Valuations and Signals Are Independent of N

Determining whether bidder valuations are independent of the number of bidders (i.e.

whether entry is non-selective) is a vital step in correctly modeling auctions and applying

empirical auctions results. As pointed out in Section 1, recent identification arguments

exploit the assumption that valuations are independent of N , and a growing literature points

to the importance of correctly accounting for the entry process in auctions. For example,

Zheng (2009), focusing on timber auctions, suggests that misspecifying the entry process

can lead to misleading results regarding the societal cost incurred due to excess entry. In

this section, we derive a simple and robust test for selective entry using the bidder exclusion

effect.

If bidders’ valuations and signals do not vary systematically with the number of auction

participants, then n − 1 bidder auctions are just like n bidder auctions with one bidder

removed at random. This suggests a test of whether bidders’ valuations and signals are

independent of the number of entrants. If the estimated bidder exclusion effect is significantly

different from the observed change in revenue between n and n − 1 bidder auctions, this

is evidence against independence of valuations and signals, and the number of entrants.

We develop this test in more detail below. Throughout this section, we assume that the
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econometrician observes the total number of bidders as well as the second and third-highest

bids from all auctions.

Let F n
m denote the distribution of values and signals of a random subset of m bidders, in

auctions which actually had n participating bidders, where the m ≤ n bidders are drawn

uniformly at random from the n bidders. Following Aradillas-López et al. (2013a), we say

that valuations and signals are independent of N if F n
m = F n′

m for any m ≤ n, n′. With

private values, we simply say valuations are independent of N , as valuations and signals are

equal.

When valuations and signals are independent of N , we have F n
n−1 = F n−1

n−1 . Thus if valu-

ations and signals are independent of N , it follows that E(Bn−2:n−1,n) = E(Bn−2:n−1,n−1) =

E(Bn−2:n−1), and

∆(n) ≡ E(Bn−1:n)− E(Bn−2:n−1,n) (2)

= E(Bn−1:n)− E(Bn−2:n−1) (3)

≡ ∆obs(n). (4)

If valuations or signals are not independent of N , we refer to entry as being selective.

Selective entry may occur if bidders observe a signal of their value before entering, so that

the entry decision, and consequently the number of entrants, may be correlated with bidder

valuations (e.g. Roberts and Sweeting (2014); Gentry and Li (2013)).15 By contrast if bidders

do not observe signals of their values before entering and play mixed entry strategies, then

the variation in the number of entrants is independent of valuations (e.g. Athey et al. 2011;

Krasnokutskaya and Seim 2011).

The previous section discusses estimating the bidder exclusion effect, ∆(n), when it is point

identified, and estimating an upper bound on ∆(n) when it is not. If the econometrician

observes auction revenue and the total number of auction participants, then ∆obs(n) can be

estimated by the observed difference in average revenue between n and n−1 bidder auctions.

Comparing estimates of ∆(n) and ∆obs(n) is the idea behind the test for selective entry.

15Aradillas-López et al. (2013a) prove that in the entry model of Marmer et al. (2013) where potential bidders
observe signals of their values when deciding whether to enter, if the distribution of values and signals is
symmetric and affiliated, and a symmetric equilibrium exists in cutoff strategies, then valuations are not
independent of N (Theorem A3 of Aradillas-López et al. 2013a).
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4.1. Testing for selective entry with private values. In private value settings where

bidders bid their values, by Observation 1, ∆(n) = ∆bid(n) for n > 2. If in addition valuations

are independent of N , then ∆(n) = ∆obs(n), implying that ∆bid(n) = ∆obs(n). We define

T (n) as

T (n) ≡ ∆obs(n)−∆bid(n)

=
(
E(Bn−1:n)− E(Bn−2:n−1)

)
− 2

n
E(Bn−1:n −Bn−2:n)

= E

(
n− 2

n
Bn−1:n +

2

n
Bn−2:n

)
− E(Bn−2:n−1). (5)

The first term in the final expression is the expected revenue in n bidder auctions when one

bidder is dropped at random, and the second term is the expected revenue in n − 1 bidder

auctions.16

To assess whether valuations are independent of N (i.e. whether entry is not selective) we

test the null hypothesis T (n) = 0 for n > 2. For any given n this can be implemented as

a simple t-test.17 Let An represent the set of auctions with n entrants. The test statistic,

T̂ (n), for this null is the sample analog of equation (5),

T̂ (n) =
1

|An|
∑
j∈An

(
n− 2

n
bn−1:nj +

2

n
bn−2:nj

)
− 1

|An−1|
∑

j∈An−1

(bn−2:n−1j ). (6)

A simple regression-based form of this test is as follows. Let yj = n−2
n
bn−1:nj + 2

n
bn−2:nj if

j ∈ An and yj = bn−2:n−1j if j ∈ An−1. Regress yj on a constant and an indicator 1(j ∈ An).

The coefficient on the indicator is T̂ (n).

If T̂ (n) is significantly different from 0, the test indicates the presence of selective entry.

This test is consistent against all forms of selective entry which affect expected revenue (if

∆bid(n) 6= ∆obs(n) then the test rejects with probability approaching 1 as the number of

16Athey and Haile (2002) propose a test of private vs. common values in which they assume valuations and
signals are independent of N and point out that, under this assumption, T (n) < 0 in a common values
setting and T (n) = 0 in a private values setting. We discuss generalizations to common values settings in
Section 4.2.
17Standard techniques, like a Wald test or a Bonferroni correction, can be used to test T (n) = 0 for all n
in some finite set. Note also that this test only uses information on the second and third-highest bids. If
more losing bids are available and interpretable as the willingness-to-pay of lower-value bidders, this test
could be made more powerful by including information from these losing bids. Intuitively, one could compare
the revenue drop which would occur if k out of n bidders were dropped at random to the actual revenue
difference between n and n− k bidder auctions.
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auctions goes to infinity). Appendix E shows Monte Carlo evidence on the power of this

test relative to simply comparing mean values in n − 1 and n bidder auctions in a model

of selective entry nesting that of Levin and Smith (1994). The bidder exclusion test is a

reasonably powerful alternative to this mean comparison test given that it uses considerably

less data. Moreover, the bidder exclusion test is implementable with ascending auction data

while the mean comparison test is not.18

4.2. Testing for selective entry with common values or low bidding. With sym-

metric common values or low bidding, Propositions 1 and 2 imply that ∆(n) ≤ ∆bid(n). If

in addition valuations and signals are independent of N , then ∆(n) = ∆obs(n), implying

that ∆obs(n) ≤ ∆bid(n).19 We can test this null using the same statistic as before, T̂ (n).

Unlike private value settings where bidders bid their values, this test only indicates the pres-

ence of selective entry if T̂ (n) is significantly greater than zero, and not if it is significantly

less than zero. This test is consistent against forms of selective entry in which bidders’

values are “sufficiently increasing” with N : precisely, if E(Bn−2:n−1,n) − E(Bn−2:n−1) >

2
n
E(Bn−1:n −Bn−2:n)− (E(Bn−1:n)− E(Bn−2:n−1,n)).20

4.3. Incorporating covariates. Testing is also possible if valuations and signals are as-

sumed independent of N conditional on a set of observable auction characteristics X rather

than unconditionally. The null hypothesis in private values auctions where bidders bid their

values is T (n|X) = 0, where T (n|X) is defined as

T (n|X) ≡ E

(
n− 2

n
Bn−1:n +

2

n
Bn−2:n

∣∣∣∣X)− E(Bn−2:n−1|X). (7)

With symmetric common values or low bidding the null is T (n|X) < 0. This test can

be performed nonparametrically, without assuming any particular form for the conditional

means. Chetverikov (2011); Andrews and Shi (2013) and Chernozhukov et al. (2013) develop

inference procedures that apply to this setting.

18The bidder exclusion test uses the second and third-highest values in n bidder auctions and the second-
highest value in n−1 bidder auctions, while the mean comparison test uses all n values in n bidder auctions
and all n−1 values in n−1 bidder auctions. The mean comparison test cannot be implemented in ascending
auctions because the highest valuation is never observed.
19Note that the two preceding inequalities will be strict in the common values case (Proposition 2).
20This feature is shared by the test proposed in Aradillas-López et al. (2013b), which the authors explain,
“has power against a fairly wide class of ‘typical’ violations of [valuations being independent of N ].”
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A simple parametric version of this test is as follows. For a fixed n, specify the bidding

equation for bidders in auction j as

bj = αn + βXj + εnj, (8)

where Xj is a vector of observable characteristics of auction j and εnj ⊥⊥ Xj.
21 Then

n− 2

n
bn−1:nj +

2

n
bn−2:nj = a1 + βXj + e1j, j ∈ An (9)

bn−2:n−1j = a2 + βXj + e2j, j ∈ An−1 (10)

where a1 = αn +E(n−2
n
εn−1:nnj + 2

n
εn−2:nnj ), a2 = αn−1 +E(εn−2:n−1(n−1)j ), E(e1j) = E(e2j) = 0 and

e1j, e2j ⊥⊥ Xj.

After controlling for observables, a1 determines the expected second order statistic (i.e.

seller’s revenue) when a bidder is removed at random from n bidder auctions and a2 deter-

mines the expected second order statistic in n− 1 bidder auctions when the actual number

of bidders is indeed n − 1. In a private values framework, testing the null hypothesis of

equation (7) amounts to testing the null of a1 = a2. With common values or low bidding,

the null is a1 < a2.

We combine (9) and (10) as follows:

yj = a2 + (a1 − a2)1(j ∈ An) + βXj + e3j, j ∈ An ∪ An−1, (11)

where if j ∈ An, then yj = n−2
n
bn−1:nj + 2

n
bn−2:nj and e3j = e1j, and if j ∈ An−1, then

yj = bn−2:n−1j and e3j = e2j. This allows for a convenient regression-based test of the

null hypothesis that valuations (or valuations and signals, in the common values case) are

independent of N . When β = 0, this test nests the regression-based test described in Section

4.1. We emphasize again that this parametric version is not the only way to implement our

test; if desired, the test can also be implemented nonparametrically as described above.

4.4. Bidder asymmetries. The approach to testing for selective entry with private values

described above does not require bidder symmetry. If bidders are asymmetric, the assump-

tion of independence between valuations and N is less straightforward, and it less clear what

21Athey et al. (2011) and Athey et al. (2013) also take the approach of specifying a parametric model directly
for bids, rather than the underlying values. Bajari et al. (2007) take an analogous approach in simplifying
the estimation of dynamic oligopoly models.
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it might mean if a test rejects the assumption. Intuitively, values may fail to be independent

of N either because different bidders are more likely to enter depending on N , or because

the same bidders enter but the value of the goods sold varies by N . We formalize and prove

this statement in Appendix F, following the setup of Coey et al. (2015).

5. Bounding the Impact of Optimal Reserve Prices

The celebrated theorem of Bulow and Klemperer (1996) relates bidder entry to optimal

auction design.22 Under their assumptions, with symmetric bidders and independent signals,

an English auction with no reserve price and n+ 1 bidders is more profitable in expectation

than any mechanism with n bidders. When bidders have affiliated signals, Bulow and Klem-

perer (1996) show that an auction with n+ 1 bidders and no reserve price still outperforms

any “standard” mechanism with n bidders.23 On these grounds, they suggest that sellers

may be better off trying to induce more entry than trying to implement a better mechanism.

As they acknowledge, this interpretation may be problematic if the new bidders are weaker

than the bidders who would have entered anyway (for example, if increased marketing efforts

induce lower-value bidders to enter the auction).

We propose an alternative interpretation of their theorem, namely that it can be used in

empirical work to easily obtain upper bounds on the effect of improving auction design. As

described in Section 1, the question of how much seller revenue would increase under the

optimal reserve price has been a counterfactual of interest for a large number of empirical

auction studies. Our approach provides a computationally simple and robust way to ad-

dress this question without the effort or assumptions typically necessary to fully estimate

underlying distributions of buyer valuations.

22Following Bulow and Klemperer (1996) and most of the auction theory literature, we use “optimal” to
mean optimal given a fixed set of participants. If entry is endogenous, then the mechanism’s design may
affect the number of participants. Optimal reserve prices for fixed and for endogenous entry may be different
(McAfee and McMillan 1987; Levin and Smith 1994).
23A “standard” mechanism in this context is one in which 1) losers pay nothing, 2) the bidder with the
highest signal wins (if anyone) and pays an amount which increases in his own signal given any realization
of other bidders’ signals. Bulow and Klemperer (1996) highlight a result of Lopomo’s (1995), which shows
that an optimal mechanism in this class is an English auction followed by a final, take-it-or-leave-it offer
to the high bidder (a reserve price). When bidders have correlated values, Crémer and McLean (1988),
McAfee et al. (1989), and McAfee and Reny (1992) have provided examples of non-standard mechanisms
which extract all bidder surplus and outperform an auction with a reserve price.
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Below we use the term “increasing marginal revenue” as it is defined in Bulow and Klem-

perer (1996).24 We also follow Bulow and Klemperer (1996) by using the term “optimal

reserve price” to refer to a take-it-or-leave-it offer made to the final bidder—the last remain-

ing bidder after the auction ends—which maximizes the expected payment of that bidder.25

Throughout we assume sellers are risk-neutral.

Bulow and Klemperer (1996) make the following assumption:

Assumption 3. Bidders are symmetric and have increasing marginal revenue.

We make the following additional assumption:

Assumption 4. The absolute value of the change in expected revenue is smaller when adding

a random bidder than when removing a random bidder.

Assumption 4 is natural in many contexts, although it will not hold in all environments.26

In Appendix G we derive sufficient conditions for Assumption 4 to hold in IPV or conditional

IPV environments. Specifically, we show in these settings that the assumptions required for

the Bulow and Klemperer (1996) result (Assumption 3) imply Assumption 4.27 Our main

revenue-bounding result follows:

Proposition 3. In ascending auctions with no reserve price, if i) either Assumption 1 or

Assumption 2 holds and ii) Assumptions 3 and 4 hold, then for all n > 2 the increase in

expected revenue from using the optimal reserve price is less than ∆bid(n).

24See Appendix G for details. Bulow and Klemperer parameterize marginal revenue in terms of bidder
“quantity” rather than their private signals, so that their marginal revenue function is decreasing.
25Bulow and Klemperer (1996) point out that, with correlated bidder signals, expected revenue will generally
be greater when the reserve is set optimally after the auction, conditional on the observed bids, rather than
being set before the auction takes place. Note also that we define “revenue” to be the payment from the
final bidder to the seller, whereas Bulow and Klemperer (1996) define “revenue” as the payment from the
final bidder to the seller if the reserve price is met, and the seller’s value of keeping the good if the reserve
price is not met. Their definition requires the explicit assumption that the seller always values the good less
than buyers. Our results hold under their definition as well.
26Dughmi et al. (2012) provided a counterexample where all bidders have iid values, which are 1 with
probability p and 0 otherwise. For sufficiently small p, the revenue increase from one to two bidders is
smaller than from two to three bidders. It can be shown that, for any exchangeable value distribution Fn+1,
a necessary and sufficient condition for the revenue change from n− 1 to n bidders to be larger than from n
to n+ 1 bidders is 3(E(V n:n+1)− E(V n−1:n+1)) > E(V n+1:n+1)− E(V n:n+1).
27We prove a special case of results already established by Dughmi et al. (2012) (Theorem 3.2). The
specialization to our current single item auction setting allows us to use only elementary mathematics, in
contrast to Dughmi et al. (2012)’s proof which relies on matroid theory.
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Note that this result applies to both symmetric correlated private values auctions with low

bidding, and to symmetric common values button auctions. The idea behind the proof is as

follows. By the Bulow-Klemperer theorem, under Assumption 3, the increase in expected

revenue from the optimal reserve price is less than the increase in expected revenue from

adding another bidder, which, by Assumption 4, is in turn less than the bidder exclusion

effect. The result follows from Proposition 1, if Assumption 1 holds, and from Proposition

2, if Assumption 2 holds.

Proposition 3 states that the bidder exclusion effect in n bidder auctions is greater than

the revenue increase from an optimal reserve price. As pointed out by Bulow and Klemperer

(1996), even when signals are affiliated, an ascending auction with a optimal reserve yields

at least as much expected revenue as any standard mechanism (Lopomo 1995).28 Thus the

increase in expected revenue from using any standard mechanism is also less than ∆bid(n).29

Importantly, this result yields a bound on the benefit of an optimal reserve price in a setting—

i.e. common values ascending auctions—where no known identification (or even partial

identification) results exist for the optimal reserve price itself.

The bidder exclusion effect provides a bound on the impact of optimal reserve prices

for a fixed number of bidders, even if the data comes from auctions with selective entry,

as estimating the bidder exclusion effect (or its upper bound) does not require exogenous

variation in the number of bidders. When the number of bidders is unknown, an upper

bound on the average bidder exclusion effect, as described in Section 3.3.3, gives an upper

bound on the gain from improving auction design averaged over the (unobserved) realized

values of N . Section 8 illustrates this empirically. All existing approaches for computing

the benefit of choosing an optimal reserve price require that N be perfectly observed (e.g.

Aradillas-López et al. 2013a) or that the researcher maintain an IPV assumption in order to

deal with unobserved N (e.g. Song 2004); our approach requires neither of these restrictions.

28In later work, Bulow and Klemperer (2002) highlighted that the assumption of marginal revenues increasing
in signals may be more stringent in common values settings than in private values settings, and the authors
provided examples of common values settings in which the original Bulow and Klemperer (1996) result will
not hold when the condition of increasing marginal revenues is violated.
29If the bidder exclusion effect is small, the benefit from setting even an optimal reserve is small, and therefore
determining the optimal reserve may not be worth the cost of doing so. In related work, Chawla et al. (2014)
provide an additional reason to avoid reserves: they may hinder inference about bidders’ valuations.
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6. Bidder Collusion and Mergers

The concept behind the bidder exclusion effect can also be used to bound above the

expected fall in revenue resulting from mergers or collusion between bidders. As described

in Section 1, the effects of collusion in auctions have been a major focus of empirical auctions

work. Moreover, collusion in auctions is historically one of the most common accusations

in filings under the Sherman Act (Froeb 1988). The effect of mergers has also been an

important counterfactual of interest (Brannman and Froeb 2000; Li and Zhang 2015), and

Athey and Haile (2002) point out how a misspecified model will lead to incorrect estimates

of the effects of bidder mergers. The bidder exclusion effect provides a simple and robust

approach to partially address the question of the effects of mergers or collusion.

We state our results in terms of a merger or collusion between two of the n bidders, but the

results easily extend to more than two bidders merging or colluding (see Appendix H). When

bidders i and j merge or collude, let Mk denote the willingness-to-pay of bidder k 6= i, j,

and Mi,j denote the willingness-to-pay of the joint entity—i.e. the merged entity in the case

of a merger or the bidding ring in the case of collusion. Our results for both mergers and

collusion rely on the following assumption:

Assumption 5. When any two bidders i and j merge or collude, Mk ≥ Vk for all k 6= i, j,

and Mi,j ≥ max{Vi, Vj}.

Assumption 5 has a different interpretation and motivation in the case of mergers than

it does with collusion. In the merger case, Assumption 5 implies that mergers may result

in increased production efficiencies and hence an increased willingness to pay of the merged

entity, but the merger will not decrease this entity’s willingness-to-pay. Further intuition

for this assumption comes from considering instead a procurement (reverse auction) setting,

where the analogous assumption would be that costs of merging bidders do not rise after

the merger, but may decrease (due to economies of scale or other cost efficiencies).

In the case of collusion, Assumption 5 is consistent with theoretical models of collusive

bidding at auctions, such as Asker (2010) and Graham et al. (1990). In these models,

colluding bidders participate in a pre-auction knockout round, in which each member of the

bidding ring places a bid. The knockout round determines who will receive the object if
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the bidding ring wins at the target auction (the actual auction), what the willingness-to-pay

of the bidding ring should be at the target auction, and how the bidding ring will split

any surplus through sidepayments from the member of the ring who wins to the other ring

members. In such models, the incentives induced by the presence of sidepayments yields the

result that the willingness-to-pay of the bidding ring at the target auction is always greater

than or equal to the maximum value of the colluding bidders, i.e. Assumption 5.

It is important to note that Assumption 5 does not imply that the joint entity will nec-

essarily end up paying more than max{Vi, Vj}; this will only occur in cases where the joint

entity wins post-merger/post-collusion, but would not have won (i.e. neither of two bidders

merging/colluding would have won) in the absence of the merger/collusion. The actual price

paid by the joint entity, when it wins, will be determined by the second-highest willingness-

to-pay.

Under Assumption 5, we obtain the following result:

Proposition 4. In ascending auctions with no reserve price where Assumptions 1 and 5

hold, then, for all n > 2, the decrease in expected revenue from two bidders merging or

colluding is bounded above (i) by 1
n−1∆(n) when the two bidders are randomly selected and

(ii) by E(Bn−1:n −Bn−2:n) when the two bidders are not randomly selected.

Note that this proposition holds in asymmetric correlated private values cases where low

bidding may be present. The upper bound in part (i) of Proposition 4 is smaller than ∆(n),

by a factor of 1
n−1 . Intuitively, this is because randomly selecting the merging/colluding pair

is equivalent to randomly selecting a pair of bidders, dropping the bidder with the lower value

in the pair (and hence the highest value bidder would never be dropped in this process), and

then weakly raising the willingness-to-pay of the remaining bidders. As shown in the proof

of Proposition 5, this process will only lead to decrease in revenue when the lower-value

bidder in the selected pair is the bidder whose value corresponds to V n−1:n, which occurs

with probability 1

(n
2)

= 2
n(n−1) .

In practice, it may be the case that bidders are not randomly matched to merge/collude,

and in these cases the wider bound in part (ii) can be useful, bounding the seller’s loss using

the unscaled expected gap between the second and third order statistics of bids. However, it

is important to note that even when bidders are not randomly matched, the tighter bound in



THE BIDDER EXCLUSION EFFECT 21

(i) may still be an upper bound on the seller’s loss in many cases. In mergers, this would be

true if the merged entity is more likely to include low-value bidders than would a randomly

formed merged entity (for example, if the merger is motivated by a bidder acquiring a smaller

competitor). And with collusion, (i) is likely to be an upper bound even if bidders are not

randomly matched because of the incentives created by side payments in bidding rings, which

in many cases can lead to bidders being adversely selected to form a bidding ring; that is,

weak bidders can be overrepresented in the ring relative to if the ring had been formed by

random matching (Asker 2010), and thus the bound relying on randomly matched bidders

will still be an upper bound on the seller’s loss. To illustrate this idea, in Appendix H, we

analyze data from Asker (2010) and demonstrate that the bidding ring wins less often that

would be the case if the bidders were randomly matched.

In the proof of Proposition 4 it can be seen that the bounds in (i) and (ii) will hold with

equality, and hence the revenue loss is point identified, if the inequalities in Assumption

5 bind and bidders bid their values (as is the case in one of the collusive bidding models

studied in Graham et al. (1990), for example) when the bidders are randomly matched in

the case of (i) or when the bidders are the two highest bidders in the case of (ii).

For estimation, Proposition 4 implies that an upper bound on the loss in revenue due to

two bidders colluding or merging can be computed using the empirical analog of 1
n−1∆bid(n)

if the two bidders are assumed to be randomly selected and E(Bn−1:n − Bn−2:n) if not. If

the number of bidders is unobserved, the average revenue loss due due to two non-random

bidders merging/colluding can be bounded by averaging the expected gap between second

and third highest bids, averaged over all (unobserved) realizations of N ; in the case of two

random bidders merging/colluding this quantity should then be scaled by 2
n(n−1) .

These approaches to analyzing mergers and collusion in auctions using a simple-to-compute

statistic may be useful for antitrust authorities. For example, prior to the 2010 revision of the

US Merger Guidelines, the Federal Trade Commission and Department of Justice published

a variety of questions for comment, one of which addressed how exactly unilateral effects

should be evaluated in markets with auctions or negotiations (FTC 2009). In response to

these questions, Moresi (2009) hints at a similar idea to what we propose: one can examine

the second and third-lowest bids in a procurement auction (analogous to the second and
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third-highest in our ascending auction setting) to understand the pricing pressure created

by bidders choosing to merge. The bidder exclusion effect provides one simple yet formal

tool for such analysis.

7. Application 1: Testing for Selective Entry at Timber Auctions

Our first application uses US timber auction data to illustrate how the bidder exclusion

effect can be used to distinguish between models of entry and bound the impact of optimal

auction design or the losses from mergers/collusion. The Forest Service’s timber auction

data has been used extensively in the empirical auctions literature, and is a natural context

to demonstrate the applications of the bidder exclusion effect. For example, Haile and Tamer

(2003), Aradillas-López et al. (2013a), and Coey et al. (2015) use timber auction data and

develop bounds methods relying on the assumption that valuations are independent of N

(i.e. that entry is not selective), and Brannman and Froeb (2000) assume valuations are

independent of N in their simulation of merger effects at timber auctions. Below we test

the validity of this assumption. Other papers in the literature have also demonstrated the

importance of correctly modeling entry in timber auction settings, including Zheng (2009),

Athey et al. (2011), Li and Zheng (2012), and Li and Zhang (2015). Optimal reserve prices

have also been a major focus of timber auction work (Paarsch 1997; Li and Perrigne 2003;

Haile and Tamer 2003; Roberts and Sweeting 2014, 2013; Aradillas-López et al. 2013a; Coey

et al. 2015). By estimating the bidder exclusion effect and relating it to the work of Bulow and

Klemperer (1996), we are able to side-step the need for a complex estimation approach and

still obtain a simple estimate of the revenue increase from an optimal reserve price. Finally,

studies of bidder mergers and collusion have also focused on timber auctions (Baldwin et al.

1997; Brannman and Froeb 2000; Athey et al. 2011; Li and Zhang 2015), and Baldwin

et al. (1997) point out that accusations of collusion at timber auctions are historically quite

common.

Our data comes from ascending auctions held in California between 1982 and 1989 in

which there were at least three entrants. There are 1,086 such auctions. The data contains

all bids, as well as auction-level information, such as appraisal variables, measures of local

industry activity, and other sale characteristics.
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By Propositions 1 and 2, with private values and low bidding, or in button auctions with

symmetric common values, the bidder exclusion effect is less than 2
n
E(Bn−1:n−Bn−2:n). We

estimate the sample analog of this upper bound conditional on the number of entrants in

the auction but unconditional on auction characteristics. Figure 1 shows the results, both as

a percentage of revenue, and in absolute terms.30 The upper bound on the bidder exclusion

effect is 12% of auction revenue, averaging over all values of n, with a standard error of

0.4%. Under the conditions of Proposition 3, the average increase in revenue from setting

an optimal reserve price is therefore less than around 13%. Computing instead the quantity

2
n(n−1)E(Bn−1:n − Bn−2:n) yields an upper bound on the fall in revenue from two random

bidders colluding or merging; we find this quantity to be 4% of revenue. A bound on the

loss in seller revenue when instead two non-random bidders form a bidding ring can be

recovered simply by scaling the values in Figure 1 by a factor of n/2, yielding the expected

gap between the second and third order statistics. These estimated bounds on the revenue

impact of optimal reserve prices or collusion or mergers are consistent with those found in

the structural timber auctions papers cited in the first paragraph of this section; importantly,

however, the bounds we compute require only a small fraction of the computational cost or

modeling assumptions of these previous approaches.

We now turn to the test for selective entry, our focus for the remainder of this application.

We begin with the simplest version of the test, without controlling for covariates. Table 1

displays the results. In the table, a1 represents the expected second order statistic when a

bidder is removed at random from n bidder auctions, a2 represents the expected second order

statistic in n − 1 bidder auctions when the actual number of bidders is indeed n − 1, and

the test statistic is given by T̂ (n) = a1 − a2. For most n ∈ {3, ..., 8}, T̂ (n) is insignificant,

although at n = 3 and n = 5, the test statistic is significant and positive, indicating that

selective entry may be a concern. Intuitively, a positive T (n) indicates that bidders’ values

are higher in n than n− 1 bidder auctions, as might be the case when attractive goods tend

to draw many entrants.

Table 2 shows the results of the selective entry test conditional on auction characteristics.

The objects a1, a2, and T (n) are as in Table 1, but after controlling for covariates (following

30The larger confidence interval for the n = 7 auctions in the right panel of Figure 1 is driven by an outlier
(an outlier in terms of its realization of Bn−1:n − Bn−2:n but not as a percentage of revenue, (Bn−1:n −
Bn−2:n)/Bn−1:n, and thus in the left panel the effect is still precisely measured).
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the parametric procedure described in Section 4.3). Following Athey et al. (2013), we control

for appraisal variables (quintiles of the reserve price, selling value, manufacturing costs,

logging costs, road construction costs, and dummies for missing road costs and missing

appraisals), sale characteristics (species Herfindahl index, density of timber, salvage sale or

scale sale dummies, deciles of timber volume, and dummies for forest, year, and primary

species), and local industry activity (number of logging companies in the county, sawmills

in the county, small firms active in the forest-district in the last year, and big firms active

in the forest-district in the last year).

There is stronger evidence for selective entry when controlling for auction characteristics

than in the unconditional case. Conditional on auction characteristics, average revenue

when a bidder is removed at random from n bidder auctions is higher than average revenue

is n − 1 bidder auctions when n ∈ {3, 4, 5, 7}, and this difference is significant at the 95%

level. Again, this supports positive selection: bidders’ valuations appear to be higher in

auctions with more entrants. With n ∈ {6, 8} the difference is negative and insignificant,

consistent with a setting where valuations are independent of N . The joint null hypothesis

of no selective entry across all n ∈ {3, . . . , 8} can be rejected at the 99.9% level.

Some bidders in timber auctions may be stronger than others. One common distinction

in the literature is between mills, who have the capacity to process the timber, and loggers,

who do not. Mills typically have higher valuations than loggers (e.g. Athey et al. 2011,

2013; Roberts and Sweeting 2014; Coey et al. 2015). The evidence of selective entry above

may be driven by differences in logger and mill entry patterns. We next turn to the ques-

tion of whether evidence of selective entry exists, even after restricting attention to a more

homogeneous subset of bidders–in this case, loggers.31

Table 3 shows the results. The sample size is significantly smaller when restricting to

auctions in which all entrants are loggers. At n = 4, the test still rejects the null hypothesis

that valuations are independent of N . However, the evidence on the whole is much weaker

in the loggers-only sample: at n ∈ {3, 5, 6} the difference is much smaller and insignificant,

although the smaller sample size may play a role. The joint null hypothesis of no selective

entry across all n can no longer be rejected as before accounting for asymmetries. Together

31There are too few auctions without logger entrants (only 21) to present the same analysis for mills.
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the results from Tables 2 and 3 suggest that selective entry may be a feature of timber

auctions but may be reasonably controlled for by accounting for bidder types.

8. Application 2: Bounding the Impact of Optimal Auction Design at Auto

Auctions

Our second application uses wholesale used-car auction data to illustrate how the bidder

exclusion effect can be used to bound the revenue impact of optimal auction design. Recent

studies report causal effects of various interventions at used-car auctions, and our approach

allows us to judge the economic relevance of these effects by benchmarking them against the

effect of optimal auction design, a question to which much of the auction literature—both

theoretical and empirical—is dedicated. This setting also shows how the bidder exclusion

effect can be used with minimal assumptions and data requirements. Specifically, records

from used-car auctions do not contain the number of bidders and this number can vary

from auction to auction, posing challenges for many structural auctions techniques, and

consequently very few studies apply structural auctions methods to used-car auction data.32

Finally, the robustness of the bidder exclusion effect to common value settings, where pre-

vious identification arguments are non-existent for ascending auctions, can be particularly

useful at used-car auctions if the researcher is concerned with interdependency of valuations

introduced by the resale nature of the goods sold, as in Haile (2001).

Our dataset contains the second and third-highest bids from 6,003 sales of used cars, as

well as car characteristics. Summary statistics for these auction sales are shown in Table 4.

These cars are mostly late-model (two years old on average), low-mileage cars (33,369 miles

on average). The market thickness measure comes from a larger, nationwide sample of auto

auction sales from which our final sample is taken, and represents the total number of sales

32To our knowledge, Larsen (2014) is the only such study for US auto auctions; Roberts (2013) and Kim
and Lee (2014) are the only two other structural auction studies of auto auctions, both focusing on Korean
auctions.
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for a given make-by-model-by-age combination.33 Table 4 shows that, on average, a given

make-by-model-by-age combination sold over 1,000 times in the nationwide sample.

Multiple auctions take place in different lanes within the auction house simultaneously,

and it is difficult to determine the number of participating bidders (who may be physically

present at the auction house or watching online) for any given sale. The data does record the

number of online bidders who have logged in to the online console for a given lane at some

point during the sale day, which is 35 bidders on average. However, many of these online

bidders may not actually be participating bidders for a given sale. For the lower bound on

the number of bidders present we choose n = 3, the most conservative lower bound given

that our estimation sample contains the second and third-highest bids.

Table 4 also displays summary statistics for the second order statistic (the highest observed

bid), third order statistic (one bid increment beyond where the third-final bidder dropped

out), and the gap between the two. Following Section 3.3.3, when the number of bidders is

unobserved, an upper bound on the bidder exclusion effect, averaged over the unobserved

values of n, is given by the mean of the gap between second and third order statistics scaled

by 2/n. This implies an unconditional estimate of the bidder exclusion effect upper bound of

(2/3)×$425 = $283. This provides an upper bound on the average revenue increase from an

optimal reserve price. The unscaled gap, $425, provides a bound on two non-random bidders

engaging in collusion or merging, and the gap scaled by 2/(n(n − 1)) provides a bound on

two random bidders colluding, $142.34

For the remainder of this section, we focus on the use of the bidder exclusion effect in

bounding the impact of optimal reserve prices. Following Section 3.3.3, we estimate the upper

bound on the average bidder exclusion effect conditional on covariates X, approximating the

conditional expectation using a kernel regression.35 Figure 2 displays the estimates with X

33This larger, nationwide sample contains 901,338 auction sales from 27 auction houses nationwide between
2007 and 2010. For each auction in this larger sample, we observe a complete bid log of all bids submitted
but we do not observe identities of floor bidders (those who are physically present at the auction) and
we are therefore only able to identify the third order statistic of bids in cases where at least two of the
last three bidders to place bids were online bidders (whose identities are always recorded). This leaves a
sample of 8,005 auction sales. We drop recreational vehicles (including boats, motorhomes, motorcycles)
or observations lying outside the first or ninety-ninth percentiles of mileage, age, or the number of online
bidders. This leaves 6,003 records.
34Conversations with industry professionals suggest that collusion has been a concern historically at some
used auto auctions.
35We use an Epanechnikov kernel and rule-of-thumb bandwidth.
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being the vehicle’s mileage, the vehicle’s age, the number of online bidders, or the market

thickness measure. Panels A and B suggest that auctions of cars which are lower in mileage

or younger in age exhibit a lower bidder exclusion effect. That is, excluding a random bidder

from the auction does less damage to revenue in these auctions than in auctions for older,

higher mileage cars. This is consistent with sales of newer, lower mileage cars being cases

where demand is high and many bidders participate, and hence optimal auction design is

less important and a no-reserve auction is likely to perform well. Similarly, Panels C and

D suggest that in cases where more bidders have logged in online or where the car is of a

frequently sold make-by-model-by-age combination, the bidder exclusion effect is small.

The bidder exclusion effect also leads to bounds on the revenue from bidders which could

be expected in any auction, ranging from a no-reserve auction to an auction with an optimal

reserve price, as a function of sale characteristics. For each observation j, let lower and upper

bounds on revenue conditional on observables Xj be denoted πj(Xj) and πj(Xj), given by

πj(Xj) = b
nj−1:nj

j (Xj) (12)

πj(Xj) = b
nj−1:nj

j (Xj) +
2

n

(
b
nj−1:nj

j (Xj)− b
nj−2:nj

j (Xj)
)

(13)

The lower bound is the observed second order statistic (the no-reserve revenue) and the

upper bound is the observed second order statistic plus the scaled gap between second and

third order statistics (the expectation of this upper bound is an upper bound on the optimal

reserve revenue, under the conditions of Proposition 3). The shaded region in Figure 3

shows the area between the upper pointwise 95% confidence band for Ê(πj|Xj) and the

lower pointwise 95% confidence band for Ê(πj|Xj), where each conditional expectation is

estimated using a kernel regression as above.

Panels A and B of Figure 3 demonstrate that the expected revenue is tightly bounded,

regardless of the seller’s choice of reserve price, for newer, high-mileage cars. Similarly, Panels

C and D show that the fraction of expected revenue which could be manipulated through

the use of reserve prices is much smaller for auctions of more popular cars or auctions in

lanes where more online bidders have logged in.

These estimates are a benchmark for evaluating the economic significance of other effects

measured in this industry. Tadelis and Zettelmeyer (2014), through a field experiment at a
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wholesale auto auction, find that revealing information about the quality of the car (through

standardized condition reports) leads to a difference in revenue of $643.36 Lacetera et al.

(2013) find that a one-standard-deviation improvement in auctioneer performance raises

revenue by $348.37 Hortaçsu et al. (2013) find that a 1,000 point increase in credit default

swap spreads decrease wholesale auction prices by approximately $68.38 The cars studied

in these papers have average mileage and age values which correspond to a bidder exclusion

effect of approximately $333 in Figure 3.39 Therefore, a comparison to the bidder exclusion

effect suggests that information-disclosing reports or high-performing auctioneers do more

to increase revenues than would the use of an optimal reserve price. Similarly, swings in

auction prices resulting from changes in firms’ perceived financial stability are at least 20%

of the size of price changes which the adoption of optimal reserve prices could generate.

9. Conclusion

We developed a simple procedure for estimating the causal effect of removing a random

bidder on auction revenue—the bidder exclusion effect—without requiring instruments, a

detailed structural model, or exogenous variation in the number of bidders. Our approach

is robust to a wide range of auction settings. The bidder exclusion effect is useful in testing

the independence of bidders’ valuations and the number of bidders participating, allowing

the researcher to distinguish between models of entry. Furthermore, we introduced a new

empirical use for the theoretical results of Bulow and Klemperer (1996), demonstrating that

the bidder exclusion effect can be used to bound the revenue increase achievable through

36Tables 2 and 3 of Tadelis and Zettelmeyer (2014) show that the probability of sale and expected price
conditional on sale for the treatment group, for which condition reports were posted, were 0.455 and $8,738.90,
respectively, vs. 0.392 and $8,502.20 in the control group.
37Table 2, row 8 of Lacetera et al. (2013) shows that one standard deviation of the probability of sale among
auctioneers is 0.023. Table 1 shows that the average price on cars conditional on sale is $15,141. The
product of these two numbers is the expected revenue increase from employing an auctioneer who performs
one standard deviation above the mean, all else equal.
38This number is the price conditional on sale, but Hortaçsu et al. (2013) focus primarily on cars which sell
with very high probability (fleet/lease cars). Therefore, the effect on the price conditional on sale is a good
approximation for overall effect of financial distress on revenue from bidders.
39The average odometer reading and age are 75,959 miles and five years old in Table 16 of Tadelis and
Zettelmeyer (2014); 56,237 miles and 4.4. years in Table 1 of Lacetera et al. (2013); and 44,270 miles in
Table 4 of Hortaçsu et al. (2013) (which does not report age). Given that each of these studies used datasets
which are similar to but distinct from ours, a more precise comparison would be performed by estimating
the bidder exclusion effect using the original data for each study. The comparison here is only meant to
illustrate the use of this benchmark.
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optimal auction design. The effect can also provide a bound on the revenue decrease from

bidder mergers or collusion. We believe these uses can prove useful to researchers model-

ing auctions, practitioners choosing whether to use reserve prices, or antitrust authorities

analyzing mergers or collusion.

Given that our approach makes only weak assumptions on the auction setting, it cannot

identify all objects of interest. For example, while our approach gives bounds on the revenue

gain which an optimal reserve price could achieve or the revenue losses which collusion would

imply, stronger assumptions on the structure of bidders’ valuations or the underlying model

would be required in order to recommend a reserve price or test for collusion. Similarly,

while the bidder exclusion effect can be used to test for selective entry, it cannot be used

to determine precisely which model of selective entry best fits a situation in cases where

the test rejects non-selective entry; such a choice would require further assumptions and the

positing of particular models of selective entry. However, it may be possible to extend the

underlying ideas of our approach to these questions as well.

We believe that the bidder exclusion effect is also likely to be useful for other applications

beyond those highlighted herein. For example, the bidder exclusion effect also provides a

simple specification check of standard assumptions in empirical auctions analysis: Under the

assumption of independent private values in button auctions, one can invert the second-order

statistic distribution to obtain an estimate of the underlying distribution of buyer valuations

(Athey and Haile 2007) and simulate the revenue increase under an optimal reserve price; if

the simulated revenue increase exceeds the bidder exclusion effect, the validity of either the

assumption of independence or the assumption of private values—or both—is in question.

Additionally, we suspect that other tools for the analysis of auction data may benefit from a

similar approach to that taken here, focusing on obtaining estimates or bounds directly on

a counterfactual of interest without imposing assumptions required to fully identify bidders’

valuation distributions, and that, like the bidder exclusion effect, such tools may be more

robust to a wider range of environments and require less complex estimation than typical

empirical auctions approaches.
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Figure 1. Bounding the Bidder Exclusion Effect
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Notes: Graphs show point estimates and 95% pointwise confidence intervals for
2
nE(Bn−1:n −Bn−2:n), for various values of n, the total number of entrants in the auction.

Estimates in the left graph are expressed as a percentage of auction revenue. Estimates in the

right graph are expressed in dollars per thousand board feet.
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Figure 2. Upper Bounds on the Bidder Exclusion Effect
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Notes: Vertical axis in each panel represents upper bounds on the bidder exclusion effect in dollars. Solid
line represents bidder exclusion effect conditional on mileage (A), age (B), number of online bidders (C),
and market thickness (D). Estimates come from kernel regression with Epanechnikov kernel and
rule-of-thumb bandwidth. Dashed lines represent pointwise 95% confidence bands.
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Figure 3. Upper and Lower Bounds on Expected Revenue
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Notes: Vertical axis in each plot represents expected revenue in dollars. Lower boundary of shaded region is
given by lower 95% confidence band about the conditional expectation of the second order statistic. Upper
boundary of shaded region is given by upper 95% confidence band about the conditional expectation of the
sum of the second order statistic and the scaled gap between second and third order statistics (scaled by
2/n). Estimates are conditional on mileage (A), age (B), number of online bidders (C), and market
thickness (D), and come from kernel regression with Epanechnikov kernel and rule-of-thumb bandwidth.
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Table 1. Unconditional Tests for Selective Entry, All Auctions

Entrants 3 4 5 6 7 8
a1 78.15∗∗∗ 92.34∗∗∗ 119.75∗∗∗ 125.64∗∗∗ 123.16∗∗∗ 147.24∗∗∗

(6.36) (4.62) (4.81) (11.14) (6.69) (9.65)

a2 49.60∗∗∗ 78.37∗∗∗ 89.09∗∗∗ 119.66∗∗∗ 125.02∗∗∗ 130.46∗∗∗

(2.62) (6.43) (3.50) (4.85) (11.15) (12.04)

T (n) = a1 − a2 28.55∗∗∗ 13.97 30.66∗∗∗ 5.98 -1.86 16.78
(6.87) (7.92) (5.95) (12.15) (13.00) (15.43)

Sample Size 497 496 456 350 243 164

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table presents results of test for selective entry unconditional on covariates, for various

levels of the number of entrants.

Table 2. Conditional Tests for Selective Entry, All Auctions

Entrants 3 4 5 6 7 8
a1 -44.52 -120.64 3.34 -95.81∗∗ -111.39 -172.47

(59.38) (74.72) (24.72) (32.93) (71.81) (159.06)

a2 -64.84 -137.66 -10.47 -89.90∗∗ -124.05 -167.05
(59.39) (75.24) (25.01) (31.83) (72.75) (145.70)

T (n) = a1 − a2 20.32∗∗∗ 17.02∗∗∗ 13.81∗∗∗ -5.91 12.66∗ -5.42
(5.33) (4.21) (3.63) (4.75) (5.78) (17.94)

Sample Size 497 496 456 350 243 164

Heteroskedasticity-robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table presents results of test for selective entry conditional on covariates described in

Section 4.3, for various levels of the number of entrants.



40 COEY, LARSEN, AND SWEENEY

Table 3. Testing for Selective Entry, Auctions with Only Loggers

Entrants 3 4 5 6
a1 -158.28 -183.18 26.03 -285.34∗∗

(108.96) (115.53) (42.50) (115.06)

a2 -172.28 -222.73 8.53 -266.30
(105.59) (128.23) (43.13) (111.34)

T (n) = a1 − a2 14.00 39.54∗ 17.51 -19.04
(16.65) (19.29) (9.92) (25.66)

Sample Size 149 138 109 76

Heteroskedasticity-robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table presents results of test for selective entry conditional on covariates described in

Section 4.3, for various levels of the number of entrants, and only for auctions in which all

entrants are loggers.

Table 4. Wholesale Auto Auction Data Descriptive Statistics

Mean s.d. Min. Max.

Mileage 33,369 29,601 13 163,036

Age 1.95 2.18 0 10

# Online bidders 34.71 16.71 4 76

Market thickness 1,196.01 1,648.60 2 8,465

bn−1:n 15,429 7,733 300 55,100

bn−2:n 15,004 7,648 225 53,400

bn−1:n − bn−2:n 425 494 50 6650

Sample size 6,003

Notes: Age is in years. # Online bidders is the number of bidders who had logged into the lane the car was

sold in. Market thickness is the number of cars of the same make-by-model-by-age combination as a given

car. bn−1:n is the final auction price (second order statistic), bn−2:n is the highest bid of the third-final

bidder (third order statistic).
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Appendix A. Proofs

A.1. Proof of Proposition 1. Let V k:m,n represent the kth smallest value among m bidders

who are selected uniformly at random from n bidders.

∆(n) = E(Bn−1:n)− E(Bn−2:n−1,n)

= E(V n−1:n)− E(V n−2:n−1,n)

=
2

n
E(V n−1:n − V n−2:n)

≤ 2

n
E(Bn−1:n −Bn−2:n).

The first equality is true by definition of ∆(n). The second follows because by Assumption

1, the second-highest bidder bids his value. The third follows because with probability 2
n

dropping a value from (V1, . . . , Vn) uniformly at random will cause the second-highest value

to drop from V n−1:n to V n−2:n, and otherwise the second-highest value will be unchanged.

The final inequality holds because by Assumption 1, the second-highest bidder bids his value

and the third-highest bidder does not bid above his value.

A.2. Proof of Proposition 2. Athey and Haile (2002), Theorem 9 proves that for but-

ton auction ascending auctions with symmetric common values, regardless of the equi-

librium played, E(Bn−2:n−1,n) > 2
n
E(Bn−2:n) + n−2

n
E(Bn−1:n). This implies E(Bn−1:n) −

E(Bn−2:n−1,n) < 2
n
E(Bn−1:n −Bn−2:n), as required.

A.3. Proof of Corollary 1.

E(∆(N)) ≤ E

(
2

N
(BN−1:N −BN−2:N)

)
≤ 2

n
E(BN−1:N −BN−2:N),

where the first inequality follows by Proposition 1 if Assumption 1 holds and from Proposition

2 if Assumption 2 holds, and the second by n ≥ n for all realizations n of the random variable

N .

A.4. Proof of Proposition 3. Theorem 1 of Bulow and Klemperer (1996) implies that the

increase in expected revenue from using an optimal reserve price is less than the increase
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in expected revenue from adding another bidder, which by Assumption 4, is less than the

bidder exclusion effect. The result follows from Proposition 1 if Assumption 1 holds and

from Proposition 2 if Assumption 2 holds.

A.5. Proof of Proposition 4.

Proof. Let i and j represent the bidders who merge/collude, and without loss of generality let

Vi ≥ Vj. Let M1:n−1, ...,Mn−1:n−1 represent order statistics of {Mk}k 6=i,j ∪ {Mi,j}. Assump-

tion 1 implies that revenue in the presence of the merger/collusion will be given by Mn−2:n−1,

and thus the revenue loss due to the merger/collusion is given by E[Bn−1:n−Mn−2:n−1]. If j,

the lower-valued bidder in the joint entity, is such that Vj = V k:n for some k ∈ {1, ..., n− 2},

then revenue will not drop due to the merger/collusion, because in this case

Mn−2:n−1 ≥ V n−1:n (14)

= Bn−1:n, (15)

where the first line holds by Assumption 5 and the second by Assumption 1. The only case

where revenue may potentially drop is instead when j is such that Vj = V n−1:n, in which

case

Mn−2:n−1 ≥ V n−2:n (16)

≥ Bn−2:n, (17)

where the first line holds by Assumption 5 and the second by Assumption 1. Therefore, an

upper bound the loss in revenue due to two bidders merging/colluding is given by

E[Bn−1:n −Mn−2:n−1] ≤ E[Bn−1:n −Bn−2:n] (18)

proving (ii).

The proof of (i) follows by noting that if two bidders are randomly selected, only one such

pair of bidders i,j is such that j, the lower-valued bidder, has Vj = V n−1:n and the probability

of selecting this pair is given by 1

(n
2)

= 2
n(n−1) . Therefore,

E[Bn−1:n −Mn−2:n−1] ≤ 2

n(n− 1)
E[Bn−1:n − V n−2:n] =

1

n− 1
∆(n)
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where the final equality follows from the proof of Proposition 1. �

Appendix B. Binding Reserve Prices

We consider ascending auctions with private values where bidders bid their values, and

where there is a reserve price below which bids are not observed. We modify our notation

accordingly: ∆(n, r) denotes the fall in expected revenue produced by randomly excluding

a bidder from n bidder auctions, when the reserve price is r.

Proposition 5. In ascending auctions with private values and a reserve price of r where

bidders bid their value, for all n > 2 the bidder exclusion effect ∆(n, r) = 2
n
E(Bn−1:n −

max(Bn−2:n, r)|r ≤ Bn−1:n) Pr(r ≤ Bn−1:n) + 1
n
rPr(Bn−1:n < r ≤ Bn:n).

Proof. If r ≤ Bn−1:n, then with probability 2
n

dropping a bidder at random will cause revenue

to fall from Bn−1:n to max(Bn−2:n, r), so that in expectation revenue falls by 2
n
E(Bn−1:n −

max(Bn−2:n, r)|r ≤ Bn−1:n). If Bn−1:n < r ≤ Bn:n, then with probability 1
n

dropping a bidder

at random will cause revenue to fall from r to 0. If Bn:n < r, then dropping a bidder at

random will not change revenue. These observations imply the result. �

This expression for ∆(n, r) can be estimated given observed data, as it does not depend

on knowing the value of bids lower than the reserve price.

B.1. Applications of the Bidder Exclusion Effect with Binding Reserve Prices.

When the reserve price equals r in both n and n− 1 bidder auctions, the expected revenue

difference between those auctions is

E(max(Bn−1:n, r)|r ≤ Bn:n) Pr(r ≤ Bn:n)

− E(max(Bn−2:n−1, r)|r ≤ Bn−1:n−1) Pr(r ≤ Bn−1:n−1). (19)

If valuations are independent of N , then F n
n−1 = F n−1

n−1 = F n−1 and hence expression (19)

equals the expression for ∆(n, r) of Proposition 5. As in Section 4.1, we can test this

hypothesis with a t-test, where the test statistic is formed by replacing expectations by

sample averages. This test is consistent against forms of selective entry which affect ex-

pected revenue, i.e. such that E(max(Bn−2:n−1,n, r)|r ≤ Bn−1:n−1,n) Pr(r ≤ Bn−1:n−1,n) 6=

E(max(Bn−2:n−1, r)|r ≤ Bn−1:n−1) Pr(r ≤ Bn−1:n−1).
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This test can be adapted to incorporate covariates. The null hypothesis is:

E

(
1(r ≤ Bn−1:n)

(
n− 2

n
Bn−1:n +

2

n
max{Bn−2:n, r}

)
+ 1(Bn−1:n < r ≤ Bn:n)

n− 1

n
r

∣∣∣∣X)
= E(1(r ≤ Bn−1:n−1) max{Bn−2:n−1, r}|X). (20)

This states that, conditional on covariates, revenue in n bidder auctions when one bidder is

dropped at random equals revenue in n − 1 bidder auctions. The regression-based test of

Section 7 can be modified to test this restriction.

For the application to optimal mechanism design, we require an upper bound on ∆(n, 0).

Using the fact that bids are non-negative, we have

∆(n, 0) =
2

n
E(Bn−1:n −Bn−2:n|r ≤ Bn−2:n) Pr(r ≤ Bn−2:n)

+
2

n
E(Bn−1:n −Bn−2:n|Bn−2:n < r ≤ Bn−1:n) Pr(Bn−2:n < r ≤ Bn−1:n)

+
2

n
E(Bn−1:n −Bn−2:n|Bn−1:n < r) Pr(Bn−1:n < r) (21)

≤ 2

n
E(Bn−1:n −Bn−2:n|r ≤ Bn−2:n) Pr(r ≤ Bn−2:n)

+
2

n
E(Bn−1:n|Bn−2:n < r ≤ Bn−1:n) Pr(Bn−2:n < r ≤ Bn−1:n)

+
2

n
rPr(Bn−1:n < r) (22)

The terms in (22) do not depend on knowing the value of bids lower than the reserve price,

and can be estimated given observed data.

Appendix C. First Price Auctions

We now give upper and lower bounds on the bidder exclusion effect in first price auctions

with symmetric IPV, and symmetric conditionally independent private values (CIPV). Let

b(Vi, F
n) denote bidder i’s equilibrium bid, as a function of his value, Vi, and the distribution

of bidders’ valuations, F n. We assume Vi is continuously distributed on some interval [0, u].

In this section we use subscripts to make explicit the distribution with respect to which

expectations are taken, e.g. expected revenue with no reserve price is EFn(b(V n:n, F n)) in

n bidder auctions and is EFn
n−1

(b(V n−1:n−1, F n
n−1)) when one of the n bidders is randomly

excluded. The bidder exclusion effect is ∆(n) ≡ EFn(b(V n:n, F n))−EFn
n−1

(b(V n−1:n−1, F n
n−1)).
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Proposition 6. In first price auctions without a reserve price if i) bidders have symmet-

ric independent private values, or ii) there is a random variable U common knowledge to

bidders such that bidders have symmetric independent private values conditional on U , then

EFn(b(V n:n, F n))−EFn
n−1

(b(V n−1:n−1, F n)) < ∆(n) < EFn(b(V n:n, F n))−EFn
n−1

(b(V n−2:n−1, F n)).

Proof. We first consider the case of symmetric independent private values. For the lower

bound, note that in symmetric independent private values settings, equilibrium bids are

strictly increasing in n: b(vi, F
n) > b(vi, F

n
n−1) (see, for example, Krishna (2009)). This

implies EFn
n−1
b(V n−1:n−1, F n) > EFn

n−1
b(V n−1:n−1, F n

n−1), and therefore EFn(b(V n:n, F n)) −

EFn
n−1
b(V n−1:n−1, F n) < ∆(n).

For the upper bound, we have

EFn
n−1

(b(V n−2:n−1, F n)) < EFn
n−1

(V n−2:n−1) (23)

= EFn
n−1

(b(V n−1:n−1, F n
n−1)). (24)

The inequality holds because equilibrium bids are strictly less than values. The equality

holds by revenue equivalence of first and second price auctions with symmetric independent

private values. It follows that ∆(n) < EFn(b(V n:n, F n))− EFn
n−1

(b(V n−2:n−1, F n)).

If values are symmetric and CIPV, then because U is common knowledge to bidders

these lower and upper bounds hold conditional on every realization of U , and therefore hold

unconditionally, taking expectations with respect to U . The bounds thus extend to the

conditionally independent private values case. �

The lower bound above is the expected fall in revenue in n bidder auctions when one bid

is removed at random, assuming the good will be sold at a price equal to the highest of

the remaining bids. The upper bound is the expected fall in revenue in n bidder auctions

when one bid is removed at random, assuming the good will be sold at a price equal to the

second highest of the remaining bids. The following corollary characterizes these bounds

more explicitly in terms of the bids from n bidder auctions.

Corollary 2. In first price auctions without a reserve price if i) bidders have symmetric

independent private values, or ii) there is a random variable U common knowledge to bidders
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such that bidders have symmetric independent private values conditional on U , then

1

n

(
EFn(b(V n:n, F n))− EFn(b(V n−1:n, F n))

)
< ∆(n) (25)

and

∆(n) <
n− 2

n

(
EFn(b(V n:n, F n))− EFn(b(V n−1:n, F n))

)
+

2

n

(
EFn(b(V n:n, F n))− EFn(b(V n−2:n, F n))

)
. (26)

Proof. For the lower bound, note that with probability n−1
n

dropping a bid at random will not

change the highest bid, and with probability 1
n

the highest bid will drop from b(V n:n, F n) to

b(V n−1:n, F n). For the upper bound, note that with probability n−2
n

the difference between

the highest bid in the original sample and the second-highest bid after one bid has been

dropped at random is b(V n:n, F n)− b(V n−1:n, F n), and with probability 2
n

it is b(V n:n, F n)−

b(V n−2:n, F n). �

Several remarks on these bounds are in order.

Remark 1. The lower bound in Proposition 6 also holds under symmetric correlated private

values, as long as equilibrium bids are strictly increasing in n.40

Remark 2. The upper bound in Proposition 6 also holds if bidders are risk-averse instead

of risk-neutral, as first price auctions raise more revenue than ascending auctions with sym-

metric risk-averse bidders in IPV environments (Riley and Samuelson 1981).

Remark 3. In the CIPV case, if U is not common knowledge amongst bidders, then bidders’

private information is correlated conditional on what they know at the time of bidding. This

affects equilibrium bidding behavior and the argument of Proposition 6 does not hold.

Remark 4. The upper bound of Proposition 6 can be replaced by

EFn(b(V n:n, F n))−EFn′
n−1

(b(V n−2:n−1, F n′)) for any n′ > n− 1, as bids are below values in n′

bidder auctions too. Consequently, ∆(n) ≤ EFn(b(V n:n, F n))−supn′ EFn′
n−1

(b(V n−2:n−1, F n′)).

40Pinkse and Tan (2005) give conditions for this to hold.
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C.1. Applications of the Bidder Exclusion Effect in First Price Auctions. As with

ascending auctions, the bidder exclusion effect can be used to test for selective entry in first

price auctions. Under the null hypothesis that entry is not selective, for all n ≥ 2, F n
n−1 =

F n−1
n−1 = F n−1. This implies that the bidder exclusion effect ∆(n) ≡ EFn(b(V n:n, F n)) −

EFn
n−1

(b(V n−1:n−1, F n
n−1)) equals EFn(b(V n:n, F n))−EFn−1(b(V n−1:n−1, F n−1)). If the sample

analog of EFn(b(V n:n, F n))−EFn−1(b(V n−1:n−1, F n−1))—which is simply average revenue in

n bidder auctions minus average revenue in n − 1 bidder auctions—lies outside the sample

analogs of the lower or upper bounds of Corollary 2, this is evidence against the null hy-

pothesis. This test is consistent against violations of the null when values are “sufficiently”

decreasing or increasing with n. Precisely, this is the case if EFn−1(b(V n−1:n−1, F n−1)) >

EFn
n−1

(b(V n−1:n−1, F n)) or EFn−1(b(V n−1:n−1, F n−1)) < EFn
n−1

(b(V n−2:n−1, F n)). Again, the

regression-based test of Section 7 can be modified to test that the null hypothesis holds

conditional on observable covariates, rather than unconditionally.

The application to optimal mechanism design also works for first price auctions. The

Bulow-Klemperer theorem is stated for ascending auctions, but by revenue equivalence also

applies to first price auctions when bidders have symmetric IPV (or symmetric CIPV). Thus

Proposition 3 extends to first price auctions, where the upper bound on the effect on expected

revenue of improving mechanism design is given by Corollary 2.

Appendix D. Haile and Tamer (2003) Setting

Haile and Tamer (2003) make the following assumption:

Assumption 6. Bidders (i) do not bid more than they are willing to pay and (ii) do not

allow an opponent to win at a price they are willing to beat.

As in the body of the paper, Bk:n represents the (k : n) order statisic of bids. In a non-

button auction setting, these bids are the last indication of willingness to pay by a bidder.

As in Haile and Tamer (2003) we use Bn:n to denote the final price of the auction, which can

exceed the willingness-to-pay of the second-highest value bidder due to jump bidding or bid

increments. Let Bn−1:n−1,n represent the final auction price when one bidder is randomly

removed from an n-bidder auction.
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We again use the notation ∆(n) to denote the bidder exclusion effect, i.e. the expected

drop in revenue when a random bidder is excluded, which in this setting will be given by

∆(n) ≡ E(Bn:n)− E(Bn−1:n−1,n)

In addition to Assumption 6, we make the following assumption:

Assumption 7. Removing one of the n − 2 lower bidders from the auction does not affect

the auction price.

Assumption 7 is unnecessary in the results stated in the body of the paper, but in the

Haile and Tamer (2003), the conditions in Assumption 6 are weak enough that they do not

rule out some cases which could lead to a change in the final price at the auction. For

example, it might be the case that the top bidder’s likelihood of jump bidding is lower when

one of the n− 2 bidders is removed. However, Assumption 7 is also quite weak in practice,

as the final price is set by back and forth activity between the top two bidders and hence is

unlikely to be affected by dropped one of the n− 2 lowest bidders.

We now state our result for this setting. Let τ represent the minimum bid increment.

Proposition 7. If in ascending auctions with no reserve price, Assumptions 6 and 7 hold,

then for all n > 2 the bidder exclusion effect ∆(n) ≤ 2
n
E [Bn:n − (Bn−2:n − τ)].

Proof. With probability n−2
n

, dropping a random bidder will have no effect on revenue, by

Assumption 7, which will remain at Bn:n. With probability 2
n

one of the highest two bidders

will be dropped. In this case, Bn−1:n−1,n ≥ V n−2:n − τ , because, if not, the (n − 2 : n)

bidder would have bid higher than Bn−1:n−1,n by Assumption 6(ii). It is then also true that

Bn−1:n−1,n ≥ Bn−2:n − τ by Assumption 6(i). Therefore, the drop in revenue from removing

a random bidder, ∆(n), is bounded weakly above by 2
n
E [Bn:n − (Bn−2:n − τ)]. �

Appendix E. Monte Carlo Power Simulations

For some evidence on how powerful our test of selective entry is, we compare it to another

test, which simply compares bidders’ mean values in n and n+1 bidder auctions. This latter

test requires the econometrician to observe all bidders’ values. Relative to our test based

on the bidder exclusion effect, it requires more data, and does not allow for low bidding.
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Furthermore, this mean comparison test is not actually feasible in ascending auctions in

practice given that the highest bid is never observed.

In our simulation, there are 10 potential bidders, who have iid lognormal private values

drawn from lnN(θ, 1), where θ is itself a random variable. All potential bidders see a common

signal δ = θ+ε, and Bayes update on the value of θ given their observation of δ. The random

variables (δ, θ, ε) are jointly normally distributed:
δ

θ

ε

 ∼ N




0

0

0

 ,


1 + σ2

ε , 1, σ2
ε

1, 1, 0

σ2
ε , 0, σ2

ε


 . (27)

As σε increases, the ratio of noise to signal increases, and the variable δ becomes less infor-

mative about the variable θ. To learn their value and bid in the ascending auction, potential

bidders must pay an entry cost of 0.5. They play mixed entry strategies, entering with a

probability p that depends on δ. In the limit as σε →∞, the signal δ is uninformative about

θ and the entry probability p no longer varies with δ. This limiting case corresponds to the

entry model of Levin and Smith (1994).

For each σε ∈ {1, 1.25, 1.5, . . . , 7}, and for n ∈ {3, 4}, we generate 1,000 datasets with

auctions in which n or n + 1 bidders choose to enter. Each dataset contains 500 n bidder

auctions and 500 n + 1 bidder auctions. We calculate the probability of rejecting the null

hypothesis of no selective entry at the 5% level over the 1,000 datasets, for each value of

σε and n, and for both bidder exclusion test, and the comparison of means test. Figure 4

shows the rejection probabilities as a function of σε. The comparison of means uses more

data (in the case of Panel (A), all three bids from n = 3 auctions and all four bids from

n = 4 auctions; and, in the case of Panel (B), all four bids from n = 4 auctions and all

five bids from n = 5 auctions), and is more powerful. The simulation results suggest that

when not all bidders’ values are observed and the comparison of means test is infeasible (as

in ascending auctions), the bidder exclusion based test is a reasonably powerful alternative,

especially when entry is more selective (corresponding in this model to low values of σε.)
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Figure 4. Monte Carlo Power Comparison
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(a) 3 and 4 Bidder Auctions
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(b) 4 and 5 Bidder Auctions

Notes: Figures show the simulated probability of rejecting the null hypothesis of no selective

entry for various levels of entry selectiveness (with greater σε corresponding to less selective

entry), for two tests: one based on a comparison of means between n and n+ 1 bidder auctions,

and one based on the bidder exclusion effect computed on n and n+ 1 bidder auctions. The left

panel shows the case of n = 3, and the right panel shows the case of n = 4.

Appendix F. Asymmetric Bidders

We give sufficient conditions for valuations to be independent of N with asymmetric

bidders and private values, following the setup of Coey et al. (2015). Let N be the full

set of potential bidders. Let P be a random vector representing the identities or types of

bidders participating in an auction, with realizations P ⊂ N. Let N be a random variable

representing the number of bidders participating in an auction, with realizations n ∈ N.

When necessary to clarify the number of bidders in a set of participating bidders, we let Pn

denote an arbitrary set of n participating bidders. Define F P to be the joint distribution

of (Vi)i∈P when P is the set of participating bidders.41 As before, F n represents the joint

distribution of values conditional on there being n entrants, but unconditional on the set

of participants. Therefore, F n(v1 . . . vn) =
∑

Pn⊂N Pr(P = Pn|N = n)F Pn(v1 . . . vn). For

P ′ ⊂ P , let F P ′|P denote the joint distribution of (Vi)i∈P ′ in auctions where P is the set of

participants. Let F P
m denote the joint distribution of values of m bidders drawn uniformly

41We adopt the convention that bidders are ordered according to their identities, i.e. if P = {2, 5, 12} then
FP is the joint distribution of (V2, V5, V12), rather than, for example, the joint distribution of (V5, V2, V12).
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at random without replacement from P , when the set P enters, and let F n
m(v1 . . . vn) =∑

Pn⊂N Pr(P = Pn|N = n)F Pn
m (v1 . . . vn).

We consider a subset of bidders to be of the same type if they are exchangeable, in the sense

that F n(v1, . . . , vn) = F n(vσ(1), . . . , vσ(n)) for any permutation σ : {1, . . . , n} → {1, . . . , n}

and any (v1, . . . , vn). Let Pr(Pn|Pn+1) denote the probability that Pn would be obtained by

dropping a bidder at random from Pn+1.
42

Definition 1. Valuations are independent of supersets if for all P ′ ⊂ P , F P ′|P = F P ′.

Definition 2. Bidder types are independent of N if, for all Pn, Pr(P = Pn|N = n) =∑
Pn+1⊃Pn

Pr(Pn|Pn+1) Pr(P = Pn+1|N = n+ 1).

These definitions describe different kinds of exogeneity. Definition 1 requires that condi-

tional on some set of bidders participating, those bidders’ values are independent of which

other bidders participate (what Athey and Haile (2002) refer to as exogenous participation).

Definition 2 requires that the distribution of participating bidder types in n bidder auctions

is just like the distribution of participating bidder types in n + 1 bidder auctions, with one

bidder randomly removed. It restricts who participates, but not what their values are. Coey

et al. (2015) demonstrate that one immediate implication of this condition is that for any

bidder type τ the expected fraction of bidders which are of type τ should be constant across

realizations of N . The following proposition shows that together these conditions imply that

valuations are independent of N . Consequently, evidence of selective entry suggests either

that valuations are not independent of supersets, or that bidder types are not independent

of N .

Proposition 8. If valuations are independent of supersets and bidder types are independent

of N , then valuations are independent of N .

42For example, consider a case with two types, H and L. Then Pr({2H, 2L}|{3H, 2L}) = 3
5 ,

Pr({3H, 2L}|{3H, 3L}) = 1
2 , etc. If instead each bidder is a distinct type, then for any n, Pr(Pn|Pn+1) = 1

n+1

for all n. To see this, fix Pn and note that for each Pn+1 ⊃ Pn, Pn is obtained by dropping the bidder Pn+1\Pn

from Pn+1. When bidders are dropped uniformly at random, this occurs with probability 1
n+1 .
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Proof. The proof follows Coey et al. (2015), Lemma 4. It suffices to prove that F n
m = F n+1

m

for any n ≥ m.

F n
m(v) =

∑
Pn

Pr(P = Pn|N = n)F Pn
m (v)

=
∑
Pn

∑
Pn+1⊃Pn

Pr(Pn|Pn+1) Pr(P = Pn+1|N = n+ 1)F Pn
m (v)

=
∑
Pn+1

∑
Pn⊂Pn+1

Pr(Pn|Pn+1) Pr(P = Pn+1|N = n+ 1)F Pn
m (v)

=
∑
Pn+1

∑
Pn⊂Pn+1

Pr(Pn|Pn+1) Pr(P = Pn+1|N = n+ 1)F Pn|Pn+1
m (v)

=
∑
Pn+1

Pr(P = Pn+1|N = n+ 1)F Pn+1
m (v)

= F n+1
m (v)

The second equality follows because bidder types are independent of N . The fourth equality

follows because F Pn = F Pn|Pn+1 , as valuations are independent of supersets. The fifth equality

follows because randomly selecting m bidders from n + 1 bidders is the same as randomly

selecting n bidders from n+ 1 bidders, and then randomly selecting m bidders from those n

bidders. �

Appendix G. Sufficient Conditions for the Absolute Value of the Change

in Revenue to be Smaller when Adding a Bidder Than When

Removing a Bidder

In this section we first provide a precise definition of marginal revenue and then, for

symmetric IPV (and CIPV) auctions, give conditions for Assumption 4 to hold. Following

Bulow and Klemperer (1996), let (S1, . . . , Sn) denote the private signals of the n bidders in

n bidder auctions. The n + 1th bidder, were he to enter, has a private signal denoted Sn+1.

We denote the marginal distribution of Sj by F n
j , and the corresponding density by fnj .

Define S ≡ (S1, . . . , Sn+1), and S = S−(n+1), that is, the signals of bidders other than bidder

n + 1. Let F n
j (Sj|S−j) and fnj (Sj|S−j) represent the distribution and density of bidder j’s

signal conditional on competitors’ signals. Let vj(S) represent the value to bidder j given
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all signals, and define vj(S) ≡ ESn+1vj(S). Define MRj(S) and MRj(S) as

MRj(S) ≡ −1

fnj (Sj|S−j)
d

dSj

(
vj(S)(1− F n

j (Sj|S−j))
)

(28)

MRj(S) ≡ −1

fnj (Sj|S−j)
d

dSj

(
vj(S)(1− F n

j (Sj|S−j))
)

(29)

We say bidders have “increasing marginal revenue” (as a function of their private signals)

if Sj > Si ⇒ MRj(S) > MRi(S) and MRj(S) > MRi(S). Equivalently, bidders have

decreasing marginal revenue, when marginal revenue is considered to be a function of bidder

“quantity” (i.e. (1−F n
j (Sj|S−j)) and (1−F n

j (Sj|S−j))) rather than of their private signals.

In the independent private values case, where this assumption simplifies to the function

MR(Sj) ≡ MRj(S) = MRj(S) = Sj −
1−Fn

j (Sj)

fnj (Sj)
being increasing in Sj (where as above

Sj = Vj for private values).43

In the symmetric IPV case, a sufficient condition for Assumption 4 to hold is for bidders

marginal revenue to be increasing in their values. This is a special case of a result established

by Dughmi et al. (2012).

Proposition 9. In ascending auctions with symmetric independent private values and no

reserve price, if bidders’ marginal revenue is increasing in their values then Assumption 4

holds.

Proof. We first prove that if Z1, . . . , Zn+1 are iid random variables,

E(max{Z1, . . . , Zn})− E(max{Z1, . . . , Zn−1}) ≥

E(max{Z1, . . . , Zn+1})− E(max{Z1, . . . , Zn}). (30)

For any z1, . . . , zn+1 ∈ Rn+1,

max{0, zn+1 −max{z1, . . . , zn−1}} ≥ max{0, zn+1 −max{z1, . . . , zn}}, (31)

implying

max{z1, . . . , zn−1, zn+1} −max{z1, . . . , zn−1} ≥ max{z1, . . . , zn+1} −max{z1, . . . , zn}. (32)

43For more on the interpretation of bidders’ marginal revenue, see Bulow and Roberts (1989).
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Consequently for any random variables Z1, . . . , Zn+1,

E(max{Z1, . . . , Zn−1, Zn+1})− E(max{Z1, . . . , Zn−1}) ≥

E(max{Z1, . . . , Zn+1})− E(max{Z1, . . . , Zn}), (33)

because (32) holds for every realization z1, . . . , zn+1 of Z1, . . . , Zn+1. If the Zi are iid, then

E(max{Z1, . . . , Zn−1, Zn+1}) = E(max{Z1, . . . , Zn}), yielding (30).

The expected revenue from any mechanism is the expected marginal revenue of the winning

bidder (Myerson 1981). Ascending auctions assign the good to the bidder with the highest

valuation, and therefore highest marginal revenue, because marginal revenue is increasing in

valuations. It follows that expected revenue with n bidders isE(max{MR(V1), . . . ,MR (Vn)}).

As MR(V1), . . . ,MR(Vn+1) are iid random variables, we have

E(max{MR(V1), . . . ,MR(Vn)})− E(max{MR(V1), . . . ,MR(Vn−1)}) ≥

E(max{MR(V1), . . . ,MR(Vn+1)})− E(max{MR(V1), . . . ,MR(Vn)}), (34)

implying that Assumption 4 holds. �

When there exists a random variable U such that bidder values V1, . . . , Vn are iid condi-

tional on U , if marginal revenue is increasing in values conditional on each realization of U ,

then Proposition 9 applies conditional on each realization of U . Taking expectations over

U , it follows that Assumption 4 holds in CIPV environments if bidders’ marginal revenue

curves are increasing in values conditional on each value of U .

Appendix H. Analysis Probability of Cartel Winning in Asker (2010)

In this section we compare the probability of winning when bidders are randomly matched

to form a bidding cartel vs. the probability the cartel actually wins using data from Asker

(2010), which studies the behavior of a bidding cartel at stamp auctions in New York City.

The mechanism followed by the ring consisted of a pre-auction knockout round among the

ring members, after which an agent (a taxi driver) bid on behalf of the ring in the actual

(target) auction up to a price determined by the knockout auction. Asker (2010) presents

a model of this mechanisms and demonstrates that it satisfies our Assumption 5. The data

is unique in that it contains detailed data on the knockout auction but does not contain
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much information on the target auction. The approach we present in Section 6 applies to

the reverse (and more common) setting, where the researcher has data on the target auction

but not on collusive behavior. However, the data in Asker (2010) can still provide useful

insights about seller losses under randomly matched bidding rings forming an upper bound

on seller losses in practice.

To conduct this analysis, we use data from Asker (2010) on the actual probability of the

bidding ring winning and compare this to the probability the bidding ring would win if

the bidders were randomly matched to form a ring. We modify Assumption 5 to allow for

mergers or rings larger than size two:44

Assumption 8. When any set of bidders I merge or collude, the willingness-to-pay Mk = Vk

for all k /∈ I, and the willingness-to-pay of the joint entity MI = maxi∈I{Vi}.

If Assumption 8 holds, it can be shown that when m out of n bidders randomly match

to form a bidding ring, the probability of the cartel winning is given by the probability that

the highest-value bidder is included in the bidding ring, which is
(
n−1
m−1

)
/
(
n
m

)
= m

n
.45 The

total number of bidders is unobserved in the data. We assume when the bidding ring is of

size m the total number of bidders n is bounded below by n = m + 1, and therefore the

probability of winning when bidders are randomly matched is bounded above by m
n

. This

essentially treats the scenario as one in which the ring always plays against one single non-

ring bidder, whose willingness-to-pay is equivalent to the highest of the non-ring bidders.

This formulation creates an asymmetry among the bidders, but is not problematic given that

our analysis does not require symmetry.

Table 5 displays the results. For each observed ring size, column 2 display the number of

observations (auction lots), column 3 displays the actual probability of a win by the cartel

44Note that under this assumption, it can be shown that Proposition 4 can be modified such that the upper

bound on seller losses in (i) (the randomly matched case) becomes
(n−2
m−2)
(n
m)

E
[
Bn−1:n −Bn−m:n

]
and in (ii)

(the non-randomly matched case) becomes E
[
Bn−1:n −Bn−m:n

]
. This is because collusion will only lead

to a decrease in auction revenue when the bidders with the top two values are included in the bidding ring.
If bidders are randomly matched this scenario will occur with probability

(
n−2
m−2

)
/
(
n
m

)
.

45Note that Assumption 8 states that the inequalities analogous to those in Assumption 5 bind with equality.
This condition is imposed solely for simplicity in computing the probability that the cartel wins. If instead
the willingness-to-pay of cartel bidders were to lie strictly above the highest valuation of the cartel members,
the qualitative findings of this section will still hold, as the probability of a randomly matched bidding ring
winning would be even higher in that case.
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in the Asker (2010) data, and column 4 displays the probability of trade which would be

implied by a scenario of random matching among bidders. The results demonstrate that

probability of the cartel winning is lower than would be predicted by random matching for

almost all ring sizes. This result is consistent with other anecdotal and empirical evidence

presented in Asker (2010) suggesting that the presence of side payments in bidding rings

created incentives for relatively weak bidders to participate in the ring. In this case, where

bidders are adversely selected in to the ring, the bound in part (i) of Proposition 4, relying

on randomly matched bidders, can still function as a upper bound on seller losses even if the

formation of the ring is non-random in practice.

Table 5. Probability of Cartel Winning

Ring Number of Prob. of Win Prob. of Win
Size Auctions Actual Random Matching

2 367 0.36 0.67

3 260 0.48 0.75

4 196 0.69 0.80

5 144 0.68 0.83

6 91 0.74 0.86

7 74 0.86 0.88

8 26 0.96 0.89

Notes: Table displays, for each value of the ring size observed in the data (from Asker 2010), the number of

observations, the observed probability of the bidding cartel winning, and the the probability of winning

implied by random matching of bidders.
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