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Abstract. This paper assesses the sensitivity of standard empirical methods for measuring
group differences in achievement to violations in the cardinal comparability of achievement
test scores. The paper defines a distance measure over possible weighting functions (scalings)
of test scores. It then constructs worst-case bounds for the bias in the estimated achieve-
ment gap (or achievement gap change) that could result from using the observed rather
than the true test scale, given that the true and observed scales are no more than a certain
distance from each other. The paper next estimates these worst-case weighting functions
for black/white and high-/low-income achievement gaps and gap changes using several com-
monly employed surveys. The results of this empirical exercise suggest that cross-sectional
achievement gap estimates tend to be quite robust to scale misspecification. In contrast,
achievement gap change estimates seem to be quite sensitive to the choice of test scale.
The paper next extends the bounding methodology to study bias in regression coefficients
when the left-hand side variable is incorrectly scaled. The same survey data suggest that
regression coefficients relating income to achievement in the cross-section are quite robust
to scale-misspecification, while first differences in regression coefficients appear to be much
more fragile. Standard empirical methods do not robustly identify the sign of the trend
in achievement inequality between students from different racial groups and income classes.
JEL Codes: C18, I24, I26

1. Introduction

Researchers frequently use test-score data to assess group differences in achievement. The

vast majority of such investigations assume that some known normalization renders test scores

cardinally comparable in the sense that a given score change has the same meaning throughout

the range of possible scores. Furthermore, such investigations typically assume that a given test

score has the same meaning across different surveys, student ages, or time periods.1 Neither

of these comparability assumptions are well motivated by either economic or psychometric

theory. If either fails, standard estimates of achievement gaps and achievement gap changes

Date: October, 2015.
Seminar participants at the Copenhagen Education Network, the DC Education Working Group, and the
Federal Reserve contributed valuable feedback and suggestions for this project. Rick Ogden provided excellent
research assistance. The views and opinions expressed in this paper are solely those of the author and do
not reflect those of the Board of Governors or the Federal Reserve System. Contact: Division of Research
and Statistics, Board of Governors of the Federal Reserve System, Mail Stop 97, 20th and C Street NW,
Washington, D.C. 20551. eric.r.nielsen@frb.gov. (202) 872-7591.
1Consider SAT scores. If SAT scores are comparable over time, a student who earned a 600 on the math
section in 1980 should have the same achievement as a student who earned a 600 in 2010. If the SAT has a
cardinal (interval) scale, then a student who improves her math score from 400 to 500 has improved by the
same amount as a student whose score increased from 600 to 700.
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(“gaps/changes”) may be severely biased. Such estimates are no longer even guaranteed to

correctly identify the sign of the achievement gap/change.

In a parallel working paper I show how to make achievement comparisons using only the

ordinal content of test scores. That paper shows that the cardinal/ordinal distinction has real

importance; standard cardinal methods suggest that the achievement gap between youth from

high- and low-income households widened or changed ambiguously in recent decades, whereas

ordinal methods indicate just the opposite.2

The two necessary conditions for ordinal statistics to unambiguously identify achievement

differences are quite demanding. First, it must be possible to place test scores on a common

scale so that a given score corresponds to the same underlying level of achievement regardless

of the year, cohort, or age group from which the score was drawn.3 Second, various first-

order stochastic dominance conditions must hold between the relevant test-score distributions.4

These conditions will not be met for many economically interesting achievement comparisons.

The stringency of the necessary conditions for valid ordinal inference means that many

interesting achievement comparisons are inherently scale dependent. In these situations we

really cannot determine with certainty the sign of an achievement gap/change without leaning

more or less heavily on some particular cardinalization of achievement. Since test scores are

unlikely to be valid cardinal measures, should researchers simply plead ignorance when ordinal

estimates are inconclusive?

There are good reasons to resist such radical agnosticism. Test scales may not be perfectly

cardinal, yet they may still carry useful cardinal information. For example, suppose we are

comparing three students with SAT scores of 1000, 1500, and 1510. It seems plausible that

the student with a 1500 is closer to the 1510 student than she is to the 1000 student, even

if the true differences are not exactly proportional to 10 and 500. Eschewing cardinality

completely may throw away a lot of useful information, unnecessarily decreasing one’s power

2In particular, ordinal analysis of data on student achievement in 1980 1997 strongly suggests a decrease in
the income-achievement gap, while cardinal methods applied to the same data suggest a flat or increasing gap.
Data comparing cohorts from 1990 and 2002 yield an ambiguous ordinal gap change and an ambiguous or
increasing cardinal gap change.
3Many standardized tests are renormed every year, violating the common-scale assumption. I abstract from
this problem in the theory sections of this paper. In my empirical work I take great care to use scores that
allow one to rank students from different surveys against each other consistently.
4In particular, the “high” group score distribution must first-order dominate the “low” group score distribution
within a given year/cohort for the sign of the cross-sectional achievement gap to be unambiguous. For an
achievement gap change to be unambiguous, the high group in the earlier period must first-order dominate the
high group in the later period, and the low group in the later period must first-order dominate the low group
in the earlier period.
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to detect achievement differences. Intuitively, if a known test scale is “almost” cardinal, cardinal

statistical tests may correctly identify the sign of an achievement gap/change and have greater

power than ordinal tests. In contrast, if the test scale used is actually very far from the true

scale, then cardinal methods may misidentify achievement gaps/changes and ordinal methods

should be used instead.

In order to operationalize this intuitive tradeoff, I define in this paper a distance measure

that quantifies how far apart are two candidate test scales. Next, I suppose that nothing is

known about the true test scale other than that it lies within a fixed distance of the observed

scale. I then search for the unobserved true scale satisfying the hypothesized distance restric-

tion that maximizes the difference between the observed and true achievement gap/change.

By studying the worst-case bias as a function of the hypothesized distance between the true

and observed scales, I can assess the sensitivity of standard methods to scale misspecification.

I derive closed-form expressions for the test scales that maximize and minimize the true

gap/change relative to the observed gap/change. The worst-case weighting functions are all

piecewise-linear, with flat regions (where changes in observed test scores are uninformative)

and cardinal regions (where changes in observed test scores map linearly to changes in true

achievement). Furthermore, the weighting functions often feature discontinuous jumps where

a small change in the observed test score corresponds to a large change in true achievement.

I estimate the worst-case weighting functions and resulting biases for black/white and

high/low-income achievement gaps/changes in the National Longitudinal Surveys of Youth

(NLSY) 1979 and 1997 and the National Education Longitudinal Surveys (NELS/ELS) 1990

and 2002. The cross-sectional achievement gap estimates are quite robust in these data. It

is often not possible to find a rescaling that flips the sign of a given gap estimate, no matter

the distance restriction. In other cases, the minimum distance needed for the observed scale

to misidentify the sign of the true gap is very large. For instance, to flip the sign of the

black/white reading achievement gap in the NLSY97, the weights placed on test scores by

the true and observed scales must differ by at least 2 standard-deviation units somewhere on

the range of the observed scores. In contrast, gap-change estimates are typically much more

sensitive to scale deviations. The sign of every gap-change I analyze can be flipped given a

sufficiently large distance restriction. Furthermore, the minimum distances required to affect

a sign flip are often quite small. For example, if the true and observed scale are allowed to
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differ by only 0.15 standard deviations somewhere on their (normalized) support, the sign of

the income-achievement gap change for reading may be misidentified in the NELS/ELS data.

Test scores are also often used as outcome variables in regression models, either to estimate

school/teacher value-added effects or to assess how strongly achievement is related to some

socioeconomic or demographic variable of interest. Regression-based methods also assume that

test scores are cardinal measures of achievement and therefore may produce biased estimates if

the scale of achievement has been incorrectly specified. The bounding methodology developed

for mean differences can be modified easily to study bias in ordinary least squares (OLS) or

instrumental variables (IV) regression coefficients when the left-hand side variable is incorrectly

scaled. Empirically, I estimate the robustness of OLS regression coefficients relating household

income to student achievement in the NLSY data. I find that the regression coefficients

describing the cross-sectional relationships between income and achievement are uniformly

very robust to scale misspecification. It is never possible to flip the sign of these coefficients by

rescaling the test scores. However, estimates of the change in the association between income

and achievement from the NLSY79 to the NLSY97 are not robust. It is always possible to

reverse the estimated trend in this association, and sometimes only minor changes to the

observed test scale are sufficient to affect such a reversal.

Although the main applications studied in this paper are quite specific, the techniques in-

troduced here can be easily adapted to study robustness in a number of other empirical appli-

cations. The methodology can be applied to any situation in which either mean differences or

regressions are used on a variable that does not have a clearly-defined, cardinally-interpretable

scale. Other potential applications include measuring group differences in self-reported happi-

ness, group differences in non-cognitive skills, and group differences in poverty rates assessed

using deprivation indicators. In order to keep the length and scope of this paper manageable,

such empirical extensions are left for future work.

My empirical results cast serious doubt on research that uses cardinal methods to measure

time trends in achievement inequality. Some of the most well-studied achievement trends

estimated with very widely used data are not robust to minor rescalings of test scores. Since

there are not good reasons to prefer the observed test scale to other, similar scales, such

estimates are not credible. Researchers assessing changes in achievement inequality over time

should be much more circumspect in their deployment of standard cardinal methods and

should use ordinal methods where possible.
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This paper is not entirely negative, as I develop tools that allow researchers to assess whether

a particular cardinal estimate is sensitive to the choice of scale. These tools are straightforward

to apply and do not require more data than would be used in standard empirical calculations.

If standard methods turn out to be robust in a particular setting, then there is no need to

proceed to less familiar and less powerful ordinal approaches.

Ultimately, whether a test scale should be used cardinally depends on the judgment of the

researcher. A given test scale may be cardinal for some applications and not cardinal for

others. For instance, a test score which gives the percentage of an alphabet that a student

knows is cardinal by definition if the outcome of interest is the percentage of the alphabet

known. If the outcome of interest, however, is adult earnings capacity, literacy, or virtually

any long-run outcome, then such a test scale is likely not cardinal even if the scores strongly

predict outcomes. The bounding methods developed in this paper allow one to effectively

parametrize one’s uncertainty about the cardinality of a test scale in a given application and

assess the robustness of standard approaches as a function of that uncertainty.

The rest of the paper proceeds as follows. Section 2 reviews the relevant literature. Section

3 lays out the notation, defines the necessary mathematical objects, and justifies the normal-

izations and simplifications employed. Section 4 derives the worst-case weighting functions for

a general class of achievement gap/change estimates and shows how to extend these results to

linear OLS and IV regression. Section 5 assesses the sensitivity of a number of achievement

gap/change estimates to cardinal deviations using the NLSY and NELS/ELS data. Section 6

investigates the sensitivity of regression coefficients to scale misspecification in the NLSY data.

Section 7 discusses estimation error, inference, and measurement error. Section 8 concludes.

Appendices A through E contain figures, estimates, proofs, and additional discussion.

2. Literature Review

The economics literature using cardinal methods to assess group differences in achievement

is vast. Fryer and Levitt[9, 10], Clotfelter, Ladd, and Vigdor[6], Duncan and Magnuson[8],

Hanushek and Rivkin[11], and Neal[18], among many others, use cardinal methods to assess

changes in black/white achievement inequality in the United States.5 Reardon[23] employs

cardinal methods to argue that the gap in achievement between high- and low-income youth

has widened tremendously over the past several decades. Research assessing school and teacher
5Neal[18] does recognize, however, that “[a]chievement has not natural units,” and so he also analyzes the
percentile rankings of black versus white test takers.
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performance through value-added models (VAMs) and papers estimating the productivity of

various inputs such as class size and teacher quality on student achievement also typically

assume that test scores are cardinal measures.6

This paper is not the first to argue that normalized test scores are not cardinal measures of

achievement. In psychometrics, Stevens[27] and Lord[17] argue that most psychometric test

scores are inherently ordinal. In economics, Cunha and Heckman[7], along with many others,

argue for “anchoring” test scores on interpretable life outcomes to avoid using test scores

cardinally. Lang[16], Bond and Lang[4], Cascio and Staiger[5], Reardon[22], and Nielsen[20]

all discuss the sensitivity of standard achievement gap/change estimates to order-preserving

transformations of test scores. The analysis in Bond and Lang[4] is particularly relevant to

this paper. These authors search over a fairly general class of order-preserving transformations

of test scores in order to find rescalings that maximize and minimize the apparent change

in black/white achievement inequality through the first several years of school. In spirit,

my paper is also quite similar to a working paper (currently not posted) from Schroeder

and Yitzhaki[24] that investigates whether sign reversals are possible in regressions in which

the outcome variable is self-reported life satisfaction. In addition to considering a different

empirical application, their paper differs from mine in that it focuses primarily on regressions

and does not attempt to construct bounds on how badly misspecified a scale must be in order

to generate a sign reversal.

Economists and policymakers are usually not really interested in the test scores themselves,

but rather are interested in the (social) value of the achievement represented by the test scores.

This formulation yields an isomorphism between measuring achievement gaps and using social

welfare functions to rank income distributions. In this context, Atkinson[3] shows that first-

order stochastic dominance (FOSD) is both necessary and sufficient for all increasing social

welfare functions to agree on the ranking of two distributions, while all concave functions

will rank identically under second-order dominance. Aaberge, Havnes, and Mogstad[1] extend

the analysis to consider ranking distributions under dominance of any order. Applying these

results to test scores requires imposing conditions on the social welfare function that are less

plausible for test scores than for income. For example, the relationship between test scores

and life outcomes may be quite convex, so that social welfare may not be convex in test scores

6For example, Krueger[15] and Hoxby[13] both use test scores cardinally to estimate the effect of class size on
student achievement. Value-added methodologies such as those expounded in Raudenbush[21] and elsewhere
likewise suppose that (normalized) test scores are cardinally comparable.
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even if it is concave in life outcomes.7 Furthermore, if academic achievement is itself the object

of interest, there is no particular reason to impose that the true scale is a concave function of

the observed scale.

3. Notation, Assumptions, Definitions

This section introduces the notation and assumptions I maintain throughout the paper. I

introduce assumptions and concepts specific to a particular application as needed.

Consider a population of students with real-valued test scores s distributed according to

cumulative density function (cdf) F . LetW0(s) be the true value of the underlying achievement

corresponding to test score s. My preferred framing conceives of W0 as the composition of

several conceptually distinct maps: the map from test scores to true achievement, the map

from true achievement to life outcomes, and the map from life outcomes to welfare. Even

assuming that the choice of the welfare function is uncontroversial, the first of these maps

is not knowable and the second is very difficult to estimate even with very rich data.8 An

alternative framing simply considers W0 as the true, unknown scale of achievement that may

be distinct from the observed test scale. The fundamental idea is that W0 represents the

scaling that would render cardinal methods valid in a particular application. I assume that

W0 is totally inaccessible to the researcher.

The only a priori restriction I place onW0 is that it be weakly increasing in s.9 Weak mono-

tonicity is a natural assumption in this setting because higher test scores should correspond to

weakly higher underlying achievement, and life outcomes (income, marriage, etc.) should be

causally linked to achievement. I do not assume that W0 is strictly monotone because I want

to allow for the possibility that changes in test scores in some regions do not effect overall

welfare, either because the scores themselves are uninformative or because higher achievement

does not always lead to better outcomes. Even if the map from test scores to achievement is

7For example, consider a test of athletic ability and suppose that we are interested in lifetime labor income.
Reasonable preferences on income will likely be concave, but the relationship between athletic ability and
income may be highly convex. The increase in income associated with moving from the level of a good college
basketball player to the level of LeBron James is so large that it may well swamp any concavity in social
welfare.
8Life outcomes such as longevity, health, total labor market earnings, marriage quality, and so forth are
only fully revealed decades after most achievement test scores are recorded. Estimating even some of these
outcomes with the best longitudinal data available is a major econometric challenge. Nielsen[20] carries out
such a calculation for lifetime earnings in the National Longitudinal Surveys of Youth (NLSY) data.
9That is, s > s′ =⇒ W0(s) ≥ W0(s′) ∧W (s) > W0(s′) =⇒ s > s′. Note that this formulation supposes
that test scores are perfectly reliable. A full treatment of test-score measurement error is beyond the scope of
this paper. Nonetheless, I argue in section 7 that classical measurement error will tend to make mean-based
achievement gap/change estimates appear more robust to scale misspecification than they in fact are.
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strictly monotone, either or both of the maps from achievement to life outcomes or from life

outcomes to social welfare may have flat regions. Weak monotonicity does not rule out the

possibility that W0 is constant everywhere. However, the worst-case W0’s I derive in subse-

quent sections will be strictly increasing somewhere in all but the most extreme cases. Unless

I explicitly specify otherwise, I will therefore treat generic W0’s in the remaining analysis as

having at least two values s > s̃ such that W0(s) > W0(s̃).

I make a number of assumptions and normalizations on the observed test-score distributions

and true score weighting functions in order to simplify the analysis. These assumptions do

not rule out any economically interesting cases.

Definition 3.1. F satisfies (A1) iff:

(i) F ∈ F , the set of univariate distributions with continuous densities everywhere on their

support. Let f denote the probability density function (pdf) associated with F .

(ii) Support(F ) = [0, 1]

Part (i) of definition 3.1 is convenient for technical reasons. Part (ii) is just a normalization

and is without loss of generality because test scores can always be rescaled to fit in [0,1] from

whatever cardinal scale the researcher prefers.10

Definition 3.2. W0 satisfies (A2) iff:

(i) W0 is weakly increasing and right-continuous in s.

(ii) W0(s) ∈ [0, 1] for all s ∈ Support(F ).

The assumption that W0 is weakly increasing was justified previously. The requirement that

W0 be right-continuous in part (i) of definition 3.2 is a technical assumption that guarantees

uniqueness of the worst-case weighting functions.11 Part (ii) of definition 3.2 normalizesW0(s)

to have the same support as F . One can change the units of W0 without changing anything

in the analysis except for the units of the distance restriction and the resulting biases. Figure

1 in appendix A plots several possible W0’s satisfying (A2). The figure shows that convex

functions, concave functions, and discontinuous functions can all satisfy (A2).

10Suppose a researcher has a candidate cardinal scale such that test scores follow distribution F̃ with
Support(F̃ ) = (a, b) ⊂ (−∞,∞). Since a and b are finite, an affine transformation will rescale test scores
to [0,1] while preserving the purported cardinality of F̃ .
11In particular, the worst-case W0’s will often have discontinuous jumps somewhere on Support(F ). Right-
continuity rules out the existence of multiple W0’s that differ only on these (measure-0) regions.
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In order to assess how sensitive a given cardinal achievement statistic is to scale misspec-

ification, I must first define a distance measure on test scales. I define the distance between

two candidate test scales using the sup norm.

Definition 3.3. Let W and W̃ be test-score weighting functions with support on [0,1]. The

distance between W and W̃ is

D(W, W̃ ) ≡ sup
s∈[0,1]

|W (s)− W̃ (s)|.

The sup norm gives an intuitive way to assess the degree to which two weighting functions

disagree. If D(W, W̃ ) is very small, then at no point do the weighting functions differ by very

much. In contrast, when D(W, W̃ ) is large, there is at least one test score that the two scales

value very differently. The sup norm is not the only way to formalize the notion of distance

between weighting functions, but the analysis using alternative distance measures is much less

tractable mathematically.12

Section 4 shows that the bias created by incorrectly scaled test scores depends on expressions

of the form
´

(W0(s)− s)G(s)ds. The function G, which depends on the particular bounding

application, determines both the magnitude of the bias and the functional form of the worst-

case test-score weighting functions. As theorems 4.2 and 4.6 demonstrate, these worst-case

weights are generally parametrized by the number and location of the crossing-point zeros of

G. Assumption (A3) therefore characterizes functions G according to these zeros.

Definition 3.4. G satisfies (A3) for N ∈ N if the following conditions hold:

(i) G is continuous with support on [0,1].

(ii)∃s∗1, s∗2, . . . , s∗N with 0 < s∗1 < s∗2 < . . . < 1 such that G(s∗i ) = 0 ∀i ∈ {1, . . . , N}.
(iii) For each s∗i there exist εi,l > 0 and εi,h > 0 such that sign[G(si − δi,l)] = −sign[G(s∗i +

δi,h)] for all δi,l ∈ (0, εi,l.) and δi,h ∈ (0, εi,h) where si = sup{s|s ≤ s∗i ∧G(s) 6= 0}.
(iv) For some ε1 > 0, G(s∗1 − δ1) ≤ 0 for all δ1 ∈ (0, ε1).

(v) If G(s̄) = 0 for some s̄ /∈ {s∗i }, then s̄ does not satisfy condition (iii).

Assumption (A3) defines a very general class of functions with support on [0,1]. Parts (ii)

and (iii) assert that G crosses 0 exactly N times on (0,1), although they allow for the possibility

12For instance, one could define D(W, W̃ ) ≡
´
|W (x)− W̃ (x)|dx. This alternative definition will assess a large

difference in the case that W and W̃ differ by a small amount everywhere on [0,1].
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that G is identically equal to 0 for some subintervals of [0,1]. Part (iv) of the definition says

that G is weakly negative before the first such crossing point. This assumption is without

loss of generality in the applications studied here because it will always be possible to pick

a reference group of students such that it holds.13 Figure 2 in appendix A displays several

functions consistent with (A3) for various values of N .

4. Bounding Analysis

This section presents theoretical bounding results for a number of empirically relevant ap-

plications. Section 4.1 characterizes the worst-case bounds for mean gap and gap-change esti-

mates. Sections 4.2 analyzes the bias in regression coefficients due to scale miss-specification

when the right-hand side variable is continuous. Appendix D extends the analysis to binary

regression and mean differences with multiple dimensions of achievement.

4.1. Mean Gaps/Changes. Consider measuring the cross-sectional achievement gap be-

tween two groups of students, A and B. Letting FA,t and FB,t denote their test-score distri-

butions in period t, the true cross-sectional achievement gap between them is given by

∆V (W0, A,B, t) ≡ EFA,t
[W0]− EFB,t

[W0] =

ˆ 1

0
W0(s) [fA,t(s)− fB,t(s)]︸ ︷︷ ︸

≡∆ft(s)

ds.

Analogously, the change in the cross-sectional achievement gap from period t to t+ 1 is14

∆V (W0, A,B, t, t+1) ≡ ∆V (W0, A,B, t+1)−∆V (W0, A,B, t) =

ˆ 1

0
W0(s) [∆ft+1(s)−∆ft(s)]︸ ︷︷ ︸

≡∆ft+1,t(s)

ds.

In both of these cases, the object of interest is an integral of the form
´ 1

0 W0(s)∆f(s), where ∆f

is some sum and difference of the relevant density functions. The specific application (cross-

sectional or gap-change) matters only insofar as it alters ∆f . Therefore, I will characterize

bias in expressions with the general form ∆V (W0,∆f) ≡
´ 1

0 W0(s)∆f(s)ds, while leaving the

specific objective in the background.

13For example, if (iv) is not satisfied when low-income students are the reference group and high-income
students are the comparison group, switching these two group’s roles in the analysis will guarantee that (iv)
holds.
14I will exclusively use language describing gap-changes occurring over time. However, nothing in the analysis
requires time to be the dimension along which change is assessed. For instance, one could replace “t” with
“urban school district” and “t+ 1” with “suburban school district,” and nothing about the mathematics would
change.
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Suppose that I(s) = s were used to calculate ∆V instead of W0. The “pseudo-gap” as

measured by I would then be ∆V (I,∆f) =
´ 1

0 s∆f(s)ds. The bias created from using I

instead of W0 is just the difference between the true gap and the pseudo gap. There are two

cases to consider for bounding this bias: weights that maximizes the degree to which the true

difference is larger than the observed difference and weights that maximizes the degree to

which the true difference is smaller than the observed difference. Define

B+(I,W0,∆f) ≡
ˆ 1

0
(W0(s)− s) ∆f(s)ds, B−(I,W0,∆f) ≡

ˆ 1

0
(s−W0(s)) ∆f(s)ds.

The worst-case W0’s for a given k are just those weighting functions that maximize B+ and

B− among all weighting functions that satisfy D(W, I) ≤ k.

Definition 4.1. The worst-case W0’s satisfying (A2) and D(I,W ) ≤ k for a given distance

restriction k are defined by

W+
0 (s|k,∆f) ≡ max

W∈W∧D(I,W )≤k
B+(I,W,∆f)

W−0 (s|k,∆f) ≡ max
W∈W∧D(I,W )≤k

B−(I,W,∆f).

Let B̄+(k) ≡ B+(I,W+
0 (s|k,∆f),∆f) and B̄−(k) ≡ B−(I,W−0 (s|k,∆f),∆f) denote the worst-

case biases given k. Similarly, let ∆V (W+
0 (k)) ≡ ∆V (I)+ B̄+(k) and ∆V (W−0 (k)) ≡ ∆V (I)−

B̄−(k) be the worst-case true gaps/changes as a function of k.

I now construct closed-form expressions for W+
0 and W−0 when ∆f satisfies (A3) for some

N . Both W+
0 and W−0 have relatively simple functional forms under (A3) for any value of

k ∈ [0, 1]. In contrast, it will not generally be possible to find closed-form expressions for

B̄+(k) and B̄−(k). Nonetheless, knowing the forms of W+
0 and W−0 makes approximating

B̄+(k) and B̄−(k) fairly straightforward in most empirical applications.

The functional forms of W+
0 and W−0 depend on whether N is even or odd, as both W+

0

and W−0 are parametrized by the values they take at the various crossing points of ∆f . In

particular, W+
0 is parametrized by its values at even-indexed crossing points (s∗i such that i

is even), while W−0 depends on its values at odd-indexed crossing points. Theorem 4.2 below

characterizes W+
0 and W−0 for arbitrary N . Figures 5 and 6 in appendix A plot possible W+

0

and W−0 functions when N = 2 or N = 3.
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Theorem 4.2. If (A1)-(A3) hold for N ∈ N, then there exist non-decreasing sequences 0 ≤
s+

2 ≤ s+
4 ≤ . . . ≤ 1 and 0 ≤ s−1 ≤ s−3 ≤ · · · ≤ 1 such that W+

0 (s∗i |k) = s+
i ∈ [max{s∗i −

k, 0},min{s∗i + k, 1}] for even i ≤ N , W−0 (s∗i |k) = s−i ∈ [max{s∗i − k, 0},min{s∗i + k, 1}] for
odd i ≤ N , and such that

(4.1)

W+
0 (s|k) =



max{0, s− k}, s ≤ s∗1

min{s+ k, s+
2 }, s ∈ (s∗1, s

∗
2]

max{s− k, s+
2 }, s ∈ (s∗2, s

∗
3]

...

max{s− k, s+
N}, s ∈ (s∗N , 1], N even

min{s+ k, 1}, s ∈ (s∗N , 1], N odd.

W−0 (s|k) =



min{s+ k, s−1 }, s ≤ s∗1

max{s− k, s−1 }, s ∈ (s∗1, s
∗
2]

min{s+ k, s−3 }, s ∈ (s∗2, s
∗
3]

...

min{s+ k, 1}, s ∈ (s∗N , 1], N even

max{s− k, s−N}, s ∈ (s∗N , 1], N odd.

Proof. In appendix C. �

Theorem 4.2 is somewhat difficult to parse. Therefore, I will discuss the special case N = 1

at length, as W+
0 and W−0 have particularly simple and intuitive expressions when ∆f crosses

0 only once. The forces determining W+
0 and W−0 when ∆f has more than one zero are

identical, but the mathematical expressions are more complicated.

Corollary 4.3. If (A1)-(A3) hold for N = 1, then for some sc ∈ [max{s∗1 − k, 0},min{s∗1 +

k, 1}], W−0 and W+
0 are given by15

(4.2) W+
0 (s|k) =


max {s− k, 0} , s ∈ [0, s∗1)

min{s+ k, 1}, s ∈ [s∗1, 1]

W−0 (s|k)


min{sc, s+ k}, s ∈ [0, s∗1)

max{sc, s− k}, s ∈ [s∗1, 1].

To understand the expression forW+
0 in equation (4.2), recall that B+ is large when [W0(s)−

s] and ∆f(s) have the same sign. This implies that B+ will be maximized when W+
0 is as far

as possible below the 45 degree line for values of s less than s∗1 and as far above the diagonal

when s is greater than s∗1. The farthest possible value below s consistent with D(I,W+
0 ) is

just max{s− k, 0}, which is the expression for W+
0 on [0, s∗1), while the farthest possible value

above is min{s + k, 1}, which defines W+
0 on [s∗1, 1]. Figure 3 in appendix A plots one such

W+
0 .

15I will always include s∗1 in the “upper half” of W+
0 or W−0 . This choice is arbitrary and unimportant since

s∗1 has 0 measure.
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The analysis for W−0 when N = 1 is more involved. The complicating factor is that B−

is large when [W0(s) − s] and ∆f have opposite signs. Therefore, W−0 would “like” to be

as far above the diagonal as possible on [0, s∗1) and as far below the diagonal as possible on

[s∗1, 1]. But W−0 must be weakly increasing, so the larger sc = W−0 (s∗1) is, the less bias can

be created on [s∗1, 1], and the smaller sc = W−0 (s∗1) is, the less bias can be created on [0, s∗1).

The functional form of W−0 is straightforward to derive given sc, and each potential choice

of sc trades off bias creation below and above s∗1 differently. Since (A1)-(A3) imply that this

tradeoff is a smooth function of sc, there must be some value of sc in the interval [s∗1−k, s∗1 +k]

that maximizes the overall bias. Figure 4 in appendix A plots W−0 for three different values

of sc.

Both W+
0 and W−0 have an intuitive interpretation for cross-sectional achievement gaps in

the case that FA � FB. FOSD implies that any weighting scheme will measure a positive gap

between A and B. Since the scores in A dominate those in B, type-B students have relatively

greater density among scores close to 0 and relatively lower density among scores close to 1 so

that ∆f satisfies (A3) for N = 1. The true gap between A and B will therefore be very large

if scores close to 0 are given as little weight as possible while scores close to 1 are weighted

quite heavily, which is exactly what W+
0 does. Symmetrically, the true gap between them will

be as small as possible exactly when low scores are given as much as weight as possible relative

to high scores, which is just what W−0 does.

Consider now the case that ∆f has more than one interior crossing point (N > 1). This

modification substantially complicates the determination of W+
0 and W−0 , although closed-

form expressions still exist for both weighting functions. The source of the complication is

again the tension between setting W+
0 or W−0 as low (or high) as possible over an interval

[s∗i , s
∗
i+1] and setting it as high (or low) as possible on [s∗i+1, s

∗
i+2]. The intuition for the exact

forms of these worst-case weighting functions is exactly the same as the intuition behind the

determination of sc for W−0 in the case with only one crossing point. The functional forms

of W+
0 and W−0 are pinned down by the values they take at the interior cross points of ∆f .

One then need only search over the range of feasible values for these crossing points to find

the true worst-case test scales. Figures 5 and 6 in appendix A plot various potential W−0 and

W+
0 functions for N = 2 and N = 3 crossing points.

The robustness of a cardinal gap/change estimate to deviations in scale depends on how

rapidly the associated biases B̄+ and B̄− increase as k increases. If these biases increase rapidly
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with k, then a relatively small k may be sufficient to flip the sign of the gap/change estimate.

In contrast, if they increase slowly, a reversal will only be possible when k is quite large. In

general, it is not possible to derive closed-form expressions for the derivatives of B̄+ and B̄−

with respect to k because these derivatives depend on the particular shape of ∆f . Nonetheless,

it is still possible to gain some intuition about what features of ∆f determine how quickly B̄+

and B̄− increase with increases in k. I only present the analysis for the case that ∆f crosses

0 once; the results are qualitatively similar with more crossing points, but the expressions are

messier and less intuitive.

Theorem 4.4. If (A1)-(A3) hold for N = 1 and k is sufficiently close to 0, then16

∂B̄+

∂k
=

ˆ 1−k

k
|∆f(s)|ds

∂B̄−
∂k

=

ˆ 1

sc+k
∆f(s)ds−

ˆ sc−k

0
∆f(s)ds−

ˆ sc+k

sc−k

∂sc
∂k

∆f(s)ds.

Proof. In appendix C. �

Theorem 4.4 says that β̄(k)+ will increase rapidly with k when there is a lot of area between

∆f and 0 on the central interval [k, 1−k]. Furthermore, ∂B̄
+

∂k is monotonically decreasing in k

and approaches 0 from above as k approaches 0.5. The expression for ∂B̄−
∂k is somewhat harder

to interpret because sc is only defined implicitly. For simplicity, suppose that ∆f is symmetric

in the sense that ∆f(0.5−x) = −∆f(0.5 +x) for any x ∈ [0, 0.5]. It is immediate in this case

that sc is equal to 0.5 for all values of k, which implies that ∂B̄−
∂k is larger the larger is the area

between 0 and ∆f on the tail intervals [0, 0.5 − k] and [0.5 + k, 1]. Theorem 4.4 also implies

that ∂B̄+
∂k |k=0 = ∂B̄−

∂k |k=0 =
´ 1

0 |∆f(s)|ds. For values of k very close to 0, B̄+ and B̄− increase

symmetrically with k. As k grows larger, the relevant subintervals of [0,1] contributing the

most to B̄+ and B̄− become more and more distinct. This divergence, coupled with possible

increases or decreases in sc as k grows larger, means that ∂B̄+
∂k and ∂B̄−

∂k will not generally be

equal when k is strictly greater than 0.

Theorem 4.2 shows that both W+
0 and W−0 generically consist of regions where increases

in scores are not valuable, regions where the true value increases one to one with observed

test scores, and discontinuous achievement thresholds where the true value jumps up between

adjacent test scores. Although these bias-maximizing scales may look extreme, they are not

16In particular, the expression for ∂B+

∂k
assumes that k < min{s∗, 1−s∗}, while the expression for ∂B−

∂k
requires

that k < min{sc, 1− sc}.
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economically implausible. For example, consider a test score equal to the share of the Russian

Cyrillic alphabet that a student knows. This scale is interval in the sense that each score

increment of 1
33 corresponds to a new, identifiable skill: knowing an additional letter of the

alphabet. However, if Russian literacy is the ultimate objective, a plausible economic weighting

of these scores should be mostly flat for scores between 0 and 32
33 and display a sizable increase

between 32
33 and 1 because knowing the entire alphabet is a prerequisite for reading and writing

in the Russian language. Similarly, a job may require a constellation of skills such that the

productivity of a worker lacking any one of the skills is close to 0 while the productivity of a

worker possessing all of the requisite skills is quite high.17 Finally, selective institutions may

employ admissions thresholds, again creating discontinuities and kinks in the economically-

relevant score weighting function. In short, it is not hard to find realistic scenarios where the

relevant test scale may not be a smooth function of the observed scores.

4.2. Regression Bias with a Continuous Covariate. Suppose we are interested in us-

ing linear regression to understand the relationship between some continuous variable x and

achievement.18 For example, one might regress test scores on household income, school expen-

ditures, or parental education. Using test scores on the left-hand side of a regression assumes

that the scores are cardinal measures of achievement. This section investigates how robust

such regression-based methods are to scale misspecification.

As in previous sections, I assume that the true, cardinal scale of achievement is unobservable.

I use Y0 throughout this section to denote the true scale in order to limit potential confusion

between the weights used for bounding regression coefficients and those used for bounding

mean differences. I carry through all of the assumptions and definitions from section 4.1.

What remains is to specify the properties of the variable x and its relationship with observed

test scores.

Definition 4.5. The variable x satisfies (A4) for Nx ∈ N with respect to s iff:

(i) x follows distribution H ∈ F with mean µx and variance σ2
x. Let h denote the pdf

associated with H and h(�|s) the conditional pdf of x given s.

(ii) Support(H) = [0, 1].

17An airplane pilot who can take off but not land a plane is useless.
18The mean difference bounding methodology can be used to study bias in regression coefficients for binary
covariates. Recall that for a binary variable D, the coefficient β in the regression s = α+ βD+ ε identifies the
difference in the mean of s conditional on D = 1 versus D = 0. Therefore, letting group A be those students
with D = 1 and group B be those students with D = 0, the analysis of bias in β is equivalent to the gap-change
case presented in section 4.1. Please refer to appendix D.1 for an elaboration of this point.
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(iv) (µx|s − µx) satisfies (A3) for Nx, where µx|s ≡
´ 1

0 xh(x|s)dx. Let s∗x,1 < s∗x,2 < . . . <

s∗x,Nx
denote the interior crossing zeros of (µx|s − µx).

In essence, definition 4.5 simply guarantees that (µx|s−µx) satisfies the same properties that

∆f was assumed to satisfy in the mean difference case. The assumption that (µx|s − µx) < 0

for s sufficiently close to 0 is without loss of generality because (−x) can always be used in

place of x.

Consider a linear regression of s on x and let β̂(I) denote the corresponding OLS estimator,

where the I argument indicates that the test scores were scaled by the identity function prior to

running the regression.19 The probability limit (plim) of β̂(I) is just β(I) ≡ cov(s,x)
var(x) . Similarly,

β(Y (s)) ≡ cov(Y (s),x)
var(x) gives the plim of the OLS coefficient from the regression of Y (s) on

x. Define R+(I, Y,G) ≡ β(Y ) − β(I) and R−(I, Y,G) ≡ β(I) − β(Y ); the bounding exercise

amounts to finding weighting functions Y +
0 (s|k) and Y −0 (s|k) consistent with D(I, Y ) ≤ k such

that R+ and R− are maximized.20

The conditions imposed by assumption (A4) render problem of selecting Y +
0 and Y −0 for-

mally equivalent to the selection of W+
0 and W−0 under assumptions (A1), (A2), and (A3).

The key assumption driving this equivalence is that (µx|s − µx) satisfies (A3) and therefore

behaves like ∆f from the mean-difference case. Theorem 4.6 shows that Y +
0 and Y −0 have the

same functional form as W+
0 and W−0 , but with the zeros of (µx|s−µx) playing the role of the

zeros of ∆f .

Theorem 4.6. Suppose that (A1), (A2), and (A4) hold for Nx. Then there exist sequences

0 ≤ s−x,1 ≤ s−x,3 ≤ . . . ≤ 1 and 0 ≤ s+
x,2 ≤ s+

x,4 ≤ . . . ≤ 1 such that Y −0 has the same functional

form as W−0 and Y +
0 has the same form as W+

0 from theorem 4.2 but with the {s−x,i} playing
the role of the {s−i } and the {s+

x,i} playing the role of the {s+
i }.

Proof. In appendix C. �

Although Y +
0 (s|k) and Y −0 (s|k) are formally identical to W+

0 (s|k) and W−0 (s|k), the distri-

butional features of the data that determine their shapes and their ability to generate bias are

quite different. In particular, the analog of ∆f in this setting is Γ(s) ≡
(
σ2
x

)−1
f(s)(µx|s−µx).21

19All regressions discussed in this section include constants.
20At most one of these regression models can be correctly specified. If s is linear in x, then Y0(s) will not be
linear, and vice versa. I am not focused on model specification in this section. Rather, the goal is to determine
when scale deviations will cause one to conclude that two variables are positively or negatively associated with
each other, when the opposite is the case.
21Please see the proof of theorem 4.6 for a demonstration of this claim.



ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL COMPARABILITY 17

The test scores at which
(
µx|s − µx

)
switches sign determines the functional forms of Y +

0 and

Y −0 . The rate at which bias increases with k depends on the total area between Γ(s) and

0, which in turn depends on the magnitude of the variance of x and the interplay between

|µx|s − µx| and f(s).

The analysis can be extended very easily to multivariable linear regression. Suppose that

we estimate the regression model s = α + β1x1 + β2x2 + . . . + βNxN + ε. Denote by s̃ and

x̃1 the residuals from regressions of s and x1 on {x2, . . . , xN}. The plim of β̂1(I) from the full

multivariable regression is β1(I) = cov(s̃,x̃1)
var(x̃1) . In other words, β1 is identified by the relationship

between those parts of s and x1 that are orthogonal to the other x’s. If the distributions of

s̃ and x̃1 satisfy (A1), (A2), and (A4), then theorem 4.6 will provide valid worst-case residual

test score weights for bias in β1.

4.3. IV Regression. Suppose that we are interested in estimating β in the regression s =

α+βx+ε for some continuously distributed x, but we fear that cov(x, ε) is not 0. In response,

suppose that we instrument using some continuous variable z that satisfies the exogeneity and

relevance conditions necessary to be a valid instrument. If the test scale is not cardinal,

then plim B̂IV ≡ βIV may not identify the sign of the true causal relationship between x

and achievement. The question addressed here is how sensitive IV regression is to cardinal

differences between s and the true scale Y0(s).

The theoretical results for IV regression are almost identical to the univariate regression case

studied previously. The main difference is that the function playing the role of Γ(s) depends

now on the joint distribution of the instrument and the endogenous regressor as well as on the

conditional mean of the instrument given s. Interestingly, the bounding analysis exposes yet

another problem with weak instruments (instruments where cov(x, z) ≡ σxz is close to 0): all

else equal, the magnitude of the bias consistent with D(Y0, I) ≤ k is proportional to 1/σxz so

that as σxz → 0, Bias→∞.

Theorem 4.7. Suppose that (A1), (A2), and (A4) hold for Nz. Then there exist sequences

0 ≤ s−z,1 ≤ s−z,3 ≤ . . . ≤ 1 and 0 ≤ s+
z,2 ≤ s+

z,4 ≤ . . . ≤ 1 such that Y −0 has the same functional

form as W−0 and Y +
0 has the same form as W+

0 from theorem 4.2 but with the {s−z,i} playing
the role of the {s−i } and the {s+

z,i} playing the role of the {s+
i }. Moreover, the function which

plays the role of Γ(s) from theorem 4.6 is ΓIV (s) ≡ f(s)
σxz

[
µz|s − µz

]
.

Proof. In appendix C. �
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Theorem 4.7 simply says that the bounding analysis for βIV is identical to the bounding

analysis for βOLS but with ΓIV = f(s)
σxz

[
µz|s − µz

]
standing in place of Γ = f(s)

σ2
z

(µx|s−µx). The

key interaction is between the distribution of s and the difference (µz|s−µz); the distribution

of x, the ultimate variable of interest, only enters through the scaling term σ−1
xz .

The discussion so far has hidden a subtlety generated in the transition from bounding popu-

lation correlations (OLS) to bounding causal effects (IV). OLS simply seeks to understand the

population association between achievement and x. However, in order for IV to be desirable,

it must be that we are interested in the causal effect of x on achievement. Since Y0 will not

generally be a linear transformation of s, at most one of the two relevant causal relationships

can be described fully by a single parameter. For example, suppose that s = α+ βx+ ε fully

describes the relationship between test scores and x, so that β is the causal effect of x on s. In

this case, the relationship between x and true achievement is given by Y0(s) = Y0(α+βx+ ε).

The local causal effect of x on Y0 (assuming differentiability) is β(s) ≡ ∂Y0
∂s (s)β and the average

causal effect over the support of s is β̄ = β
´ 1

0
∂Y0
∂s (s)f(s)ds. Generally, β(s) and β̄ will not

equal β, complicating the discussion of bias. However, since ∂Y0
∂s ≥ 0 always, the sign of β̄ (and

β(s) when ∂Y0
∂s (s) > 0) will be determined by the sign of β. This implies that it will suffice to

study sign miss-identification for βIV in (s, x)-space, since this will also lead (weakly) to sign

miss-identification in (Y0, x)-space.

This discussion shows that there can be an interesting trade-off between endogeneity bias

and cardinality bias. IV will not suffer from endogeneity bias when s is a cardinal measure

(which is why it is so popular in empirical work). On the other hand, if σxz is much smaller

than σ2
x, it is possible for βIV to be much more sensitive than βOLS to scale misspecification.

Whether or not IV is preferable to standard OLS depends on the signs and magnitudes of

these two types of bias.

5. Empirical Sensitivity Analysis: Mean Differences

This section uses several common data sets to assess the sensitivity of standard achievement

gap/change estimates to scale misspecification. The headline conclusion from this exercise is

that cross-sectional gaps are often quite robust to scale misspecification, whereas gap changes

are typically much less robust. The values of k that are needed to flip the sign of most cross-

sectional estimates are quite large, or even non-existent, while the values of k that are needed

to flip the sign of many gap-change estimates are often much smaller.
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5.1. Data and Method. I employ four commonly used surveys: the NLSY 1979, NLSY

1997, NELS 1988, and the ELS 2002. The two NLSY surveys were designed to be nationally

representative and directly comparable to each other, as were the NELS and the ELS. Both

pairs of surveys have comparable demographic, income, and achievement data that allow one

to estimate income and racial achievement gaps/changes. Please refer to appendix E for a

more detailed discussion of these data.

I restrict my analysis to students who were between the ages of 15 and 17 at the time of

testing. I make this restriction for two reasons. First, students in this age range are relatively

close to completing school, so their test scores should provide a summary measure of the

cumulative effects of their initial endowments and investments over time by parents, schools,

and the students themselves. Second, estimates using a narrow range of student ages are not

sensitive to how test scores are adjusted for student age. This is particularly important for

the NLSY comparisons because these surveys had very different test-taker age distributions.

Valid gap change estimates require at a minimum that test scores be ordinally comparable

over time.22 Fortunately, it is possible to scale achievement scores in these surveys such

that students from the NELS can be ranked consistently against students from the ELS and

students in the NLSY79 can be ranked consistently against students in the NLSY97. Although

the exact psychometric details differ somewhat between the pairs of surveys, the basic feature

that allows such a scaling is the existence of a group of test takers who answered test questions

appearing on both of the relevant achievement tests.

Each pair of surveys collect consistently defined and comparable student demographic and

household income variables. The demographic comparisons I make are by race and household

income. For the NLSY surveys, I use a comprehensive measure of household income that

sums income for all household members from all sources. I use this continuous variable to

define high-income youth as those respondents with household income in the top 20% of the

year-specific household income distribution and low-income youth as those in the bottom 20%.

The NELS and ELS surveys only record income categorically, so I define “high-income” and

“low-income” to be the sets of categories that most closely approximate the upper and lower

quintiles.

22Simply normalizing scores to have a mean of 0 and a standard deviation of 1 within each year/age group is
not likely to render the scores ordinally comparable. Researchers should have a positive reason for believing
that a score s means the same thing in different years.
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I estimate each∆f by first estimating each component density on a grid using a smoothed

kernel estimator. I then re-normalize the densities so that each has support on [0,1] and

estimate ∆f as the sum or difference in these normalized distributions. Importantly, I use

the same normalization for all of the component densities in ∆f , which guarantees that the

normalized scores will still correctly order students from different surveys. W+
0 and W−0 are

parametrized by their values at the zeros of ∆f . Therefore, I search over a grid of all possible

values at these crossing points and select the configuration that maximizes bias given k.

5.2. Black/White Achievement Gaps/Changes. Figure 7 plots ∆V (I), ∆V (W−0 ), and

∆V (W+
0 ) as functions of k for both cross-sectional and gap-change achievement estimates

using the NLSY data. The cross-sectional plots show that as k grows larger, ∆V (W+
0 ) and

∆V (W−0 ) for both math and reading fan out from their observed values. The ∆V (W−0 )’s for

math never cross 0, while for reading they cross at around k ≈ 0.4. The observed black/white

reading achievement gaps in the NLSY79 and NLSY97 may not correctly identify the sign

of the true gaps, while the sign of the cross-sectional math gaps will never be misidentified.

Although the ∆V (W−0 )’s for reading do cross 0, they remain very close to the horizontal

axis for large k. The gap-change plots also show ∆V (W−0 ) and ∆V (W+
0 ) fanning out from

their observed values as k increases. However, unlike the cross-sectional ∆V ’s, the gap-change

∆V (W+
0 )’s cross 0 for relatively small values of k.23 For values of k greater than about 0.1,

the true gap change could be positive for either math or reading, while the corresponding

observed gap change would be negative. The NLSY gap-change estimates are substantially

less robust to cardinal deviations than the cross-sectional estimates.

Figure 7 is representative of the various achievement gap/change comparisons in both the

NLSY and NELS/ELS data. Rather than present similar graphs for each comparison, I sum-

marize the relevant robustness information in tables 4 and 5 in appendix B. These tables show

k∗ for each gap/change estimate, where k∗ is defined as the smallest value of k such that the

true and observed estimates have opposite signs.24

The qualitative results on black/white achievement inequality are similar using the NELS/ELS

data. The cross-sectional estimates for both math and reading in the ELS are not reversible;

there is no value of k such that the observed and true gaps have opposite signs. In the NELS,

23The cross-sectional gaps are positive, so only the ∆V (W−0 )’s have a chance at reversing sign. In contrast,
the observed gap-change estimates are all negative, so the only candidates for reversal are the ∆V (W+

0 )’s.
24Formally, define k∗ = inf{k|∆V (W−0 (s|k),∆f) < 0} if ∆V (I,∆f) > 0 and k∗ = inf{k|∆V (W+

0 (s|k),∆f) >
0} if ∆V (I,∆f) < 0 in the case the a sign flip is possible.
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such a reversal is possible for both math and reading, but only for values of k greater than

about 0.33. Both the math and the reading gap-change estimates are reversible for values of

k greater than about 0.29, which is a substantially higher value than what was required in the

NLSY. It is also worth noting that the observed sign of the gap change in the NELS/ELS data

is positive for both math and reading, while both observed gap changes in the NLSY data are

negative.

5.3. High-/Low-Income Achievement Gaps/Changes. I now repeat the sensitivity anal-

ysis for achievement gaps/changes for youth from high- versus low-income households. Ta-

bles 4 and 5 generally suggest that income-achievement gaps/changes are less robust than

black/white gaps/changes. Furthermore, the gap-change estimates are again substantially less

robust than the cross-sectional estimates.

In the NELS/ELS data, neither of the cross-sectional gaps in math are reversible for any k.

The reading achievement gap is not reversible in the ELS, while a reversal is only possible for

k greater than 0.38 in the NELS. In contrast, all of the cross-sectional gaps are reversible in

the NLSY. The math and reading gaps in the NLSY79 can be flipped for k greater than about

0.13, indicating that these estimates are quite sensitive to cardinal deviations. The NLSY97

gaps are more robust, with k∗’s of 0.2 (reading) and 0.33 (math). With the exception of the

math gap change in the NLSY (k∗ = 0.27), all of the gap-change estimates using either data

source are very sensitive to scale misspecification. Each of the other gap-change estimates has

a k∗ less than 0.1. Even minor rescalings may be sufficient to reverse conclusions about trends

in achievement inequality by household income.

5.4. What if Z-Scores Are Used? The calculations in sections 5.3 and 5.2 deviate from

most of the literature on achievement inequality in that they do not use z-scores (scores in

standard-deviation units) to estimate achievement differences. Instead, they use scores that

enable one to rank students from different surveys against each other.25 There are strong

reasons to prefer such ordinally comparable scores, and there is no reason to think that z-score

gap/change estimates will be particularly robust to scale misspecification. Indeed, tables 4

and 5 show that gaps/changes estimated using NELS/ELS z-scores are roughly as fragile as

estimates using ordinally comparable scores. The cross-sectional gap estimates are mostly not

reversible, or are reversible only for fairly large values of k. The gap-change estimates using

25That is, scores such that si > sj implies that student i has more achievement than student j regardless of
whether i and j are from the same survey.



ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL COMPARABILITY 22

z-scores are uniformly quite fragile, with the black/white gap-change estimates substantially

more fragile than estimates using ordinally comparable scores.

5.5. TheMagnitude of k. Some achievement gaps/changes are sign-identified in the NELS/ELS

and NLSY data no matter how different the true and observed test scales are. For other

achievement gaps/changes, the sign may be misidentified by the observed test scores for suffi-

ciently large values of k. The magnitude of the smallest k for which a sign reversal is possible

varies enormously across different comparisons, from a minimum of 0.04 to a maximum of 0.4.

Since the bounding analysis is well-defined for any k in [0,1], a value of 0.04 might seem small

and 0.4 might seem large. However, it is not entirely clear what the scale of k means. Pinning

down the scale of k is a fundamentally hard problem since the relevant units of achievement

are not knowable (otherwise there would be no need to go through the bounding analysis).

This section explores a number of methods to determine what constitutes a “large” or a “small”

value of k.

Education researchers are familiar with test scores normalized to have a mean of 0 and

a standard deviation of 1. Although my work here questions whether such z-scores have an

interpretable scale, it is still possible to report ∆V +, ∆V −, and k in standard-deviation units.

For instance, the math z-scores in the NELS and ELS have a range of -2.2 to 2.4, which implies

that k = 0.04 corresponds to 0.18 = (2.4 + 2.2)× 0.04 standard-deviation units, while k = 0.4

corresponds to 1.8 standard-deviation units. Students typically gain about 0.07 standard

deviations of achievement per month in primary school, so a difference of 0.18 is neither very

large nor very small by this metric, while 1.8 is huge.26 Cross-sectional black/white and

high-/low-income achievement gaps are typically around 0.5 to 0.8 standard deviations, again

making k = 0.04 seem relatively small and k = 0.4 relatively large.27

26Krueger[15] uses the Tennessee STAR experiment to estimate that smaller class sizes correspond to about
0.22 standard deviations. He argues that this figure corresponds to about 3 months of progress in school.
Since most of the literature examining the effects of various inputs on student achievement apply cardinal
methods to z-scores, I can compare the “z-score” units of k to virtually any educational effect size I wish. For
example, Hanushek and Rivkin [12] review the literature on teacher value-added models and report that a
standard deviation in teacher performance is associated with student gains on the order of 0.1 to 0.2 standard
deviations.
27In my data, the black/white math gap is 0.79 in the NELS and 0.84 in the ELS. Fryer and Levitt[9]
estimate black/white achievement gaps for early elementary school students of between 0.4 to 0.7. Reardon[23]
estimates the math achievement gap between students from the 90th and 10th percentiles of the household
income distribution to be around 1 in the NELS and 1.1 in the ELS, whereas I estimate that the NELS math
income-achievement gap is 1.039 and in the ELS it is 0.904.
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6. Empirical Sensitivity Analysis: Regression

This section assesses the sensitivity of ordinary least squares regression to scale misspecifi-

cation when test scores are used as the outcome variable. I estimate simple linear regressions

between household income and math, reading, and composite achievement test scores in both

NLSY surveys. I then implement the bounding methodology outlined in section 4.2 to assess

the robustness of the estimated regression coefficients to order-preserving transformations of

the test scores. I also estimate the sensitivity of the estimated change in the coefficients from

the NLSY79 to the NLSY97. As with the mean-based estimates, the cross-sectional regression

coefficients are very robust to scale misspecification. It is always impossible to flip the sign of

the cross-sectional regression coefficients, no matter how different are the true and observed

scales. The coefficient difference estimates are much less robust. In all cases, there exist k’s

such that the true and observed differences have opposite signs, and for some achievement

measures even small values of k are sufficient for the true and observed differences to have

opposite signs.

6.1. Data and Method. I use the same subset of the NLSY data as in the mean difference

analysis. For each achievement measure and each survey, I regress the normalized test scores

s on p, the survey-specific income percentiles.28 Implementing the sensitivity analysis requires

the estimation of the conditional mean of p given s (µp|s) and the density of s (f(s)). I use

standard kernel methods to estimate the test score densities as in section 5. I use local poly-

nomial regression to estimate the conditional mean of p given s in a flexible, non-parametric

way. The resulting sensitivity estimates do not seem to be sensitive to the particular kernels

and smoothing parameters used.

The theory developed in section 4.2 does not quite apply to a difference in regression

coefficients. However, theorem 4.6 can be extended easily to cover this new case. The key new

requirement is that the following function satisfy assumption (A3):

(σ2
p,t)
−1ft(s)(µp|s,t − µp,t)− (σ2

p,t−1)−1ft−1(s)(µp|s,t−1 − µp,t−1).

28To be precise, I estimate regressions of the form si,t = αs,t +βs,tpi,t +εi,t. I use the income percentile, rather
than the raw income level normalized to fit in [0,1], for two reasons. First, it is computationally convenient for
the income distributions across both surveys to have the same variance. Second, papers such as Reardon[23]
estimate similar regressions in order to assess changes in achievement inequality at different relative locations
in the income distribution. For example, ∆β̂(0.9−0.1) gives the change in the expected test score gap between
youth at the 90th versus 10th percentiles of the household income distribution.
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Appendix D.3 demonstrates this claim formally.

6.2. Regression Estimates Using Income. Table 6 displays the baseline regression coeffi-

cients relating income and test scores. Income is strongly correlated with all three measures of

achievement in both NLSY surveys. The relationship between income and achievement seems

to be slightly weaker in the NLSY97 than in the NLSY79 – the regression coefficients and

R2’s are slightly lower for each achievement measure. Based on these regression results, an

analyst willing to treat test scores as cardinal measures of achievement would conclude both

that substantial achievement differences by income class exist in both surveys and that these

differences are smaller in then NLSY97 than in the NLSY79.

Figure 9 and Table 7 display the sensitivity estimates for the cross-sectional regression

coefficients and their first-differences. The basic conclusions here are similar to the mean

gap/change analysis in section 5. The β̂s,t estimates are uniformly robust to cardinal devia-

tions; it is never possible to flip their sign and the lower bounds always remain substantially

above 0. In contrast, it is always possible to flip the sign of ∆β̂ for sufficiently large values

of k. Moreover, the smallest k’s needed to flip the sign are often quite small. For example,

the sign of the coefficient difference for math achievement may be misidentified for values of

k greater than 0.04. Estimated trends in achievement inequality once again appear to be less

robust than estimated cross-sectional inequality.

7. Estimation and Measurement Error

The empirical analysis so far has ignored estimation error. The functions that critically

determine the sensitivity of the gap/change estimates in sections 5-6 (∆f , Γ, and ΓIV ) are

themselves estimated. Moreover, given an estimate for one of these functions, I approximate

the corresponding worst-case test scales on a finite grid of points and use these approximations

to estimate k∗. These multiple layers of estimation error mean that the estimated k∗’s I report

are noisy estimates of their true population values.

From one perspective, this concern is secondary to the main thrust of this paper. The

estimated functions ∆f , Γ, and ΓIV are consistent; as such, they are plausible guesses for the

kinds of functions that govern bias in important, applied settings. The estimated k∗’s suggest

that for many such functions, sign reversals are possible with even mild rescalings of test

scores. Even without knowing the estimation errors associated with my empirical procedure,
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I have certainly supplied evidence that standard methods applied to test-score data can easily

be quite sensitive to scale misspecification.

However, in order to state with confidence that the specific estimates I have identified as

being sensitive are in fact sensitive to cardinal deviations, I need some way to account for

estimation error. Bootstrapping is difficult to implement in this setting because the forms of

the worst-case weights depend on the number and location of the zeros of G, and different

bootstrap iterations may result in G’s that cross 0 a different number of times. Working out

a valid and computationally feasible way to conduct inference in this setting is on the agenda

for future research.

This paper also does not tackle the problem of test-score measurement error. I have explic-

itly assumed that observed test scores perfectly order students according to their true achieve-

ment. In practice, however, tests are noisy measures of achievement – student rank-orders

change somewhat from test to test. Fully characterizing the effects of test-score measurement

error is a project for future work. Nonetheless, it is clear that classical test-score measure-

ment will tend to exaggerate the apparent robustness of mean-based achievement gap/change

estimates. The intuition is that measurement error will tend to make the group-level test

score distributions less distinct, lowering the total area between ∆f and 0, while leaving the

estimated mean gap/change unchanged. The closer ∆f is to 0, the less “room” there is for

scale-misspecification to create bias. Therefore, mean gap/change sensitivity estimates calcu-

lated from noisy test score data will tend to understate how sensitive a given mean difference

is to cardinal deviations in the scale of achievement.

8. Conclusion and Extensions

This paper develops a method for assessing the sensitivity of standard achievement gap/change

estimates to test scale misspecification. The method makes precise the intuitive idea that car-

dinal methods will provide valid inference on the sign of achievement differences and trends

when the true scale and the observed scale are close to each other and incorrect inference when

the two scales are very different. The approach is readily interpretable and straightforward to

apply in many real-world empirical scenarios.

I use the method to investigate the cardinal sensitivity of standard achievement gap/change

estimates in the NLSY and NELS/ELS data. I find that cross-sectional black/white and high-

/low-income achievement gaps are usually robust to scale misspecification in these data. In
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many cases, there is no rescaling of the test scores that would reverse the sign of the estimated

gap, while in other cases the true scale would have to be quite different from the observed

scale in order for the sign to be misidentified. In contrast, achievement gap-change estimates

in these data are much less robust; even small differences between the true and observed scales

are often sufficient to reverse the sign of an estimated trend.

The same basic pattern holds empirically for bias in regressions of test scores on income.

In both the NLSY79 and NLSY97, income is strongly positively associated with achievement,

and there is no way to reverse this conclusion by rescaling the test scores. In contrast, the

estimated change in this association from the NLSY79 to the NLSY97 is much more fragile.

Cardinal statistical methods are easy to use and familiar to most researchers. If the observed

test scale is close to the true scale, cardinal methods are preferable because they have greater

power than ordinal approaches and will not misidentify the sign. This paper has shown that

relying on such methods may lead one very far astray if the true scale and the observed

scale are sufficiently different from each other. Ultimately, the true scale of achievement is

unknowable in most applied work; researchers must use their best judgment about how best

to employ test-score data. However, if my sensitivity method shows that a given conclusion

using cardinal methods is quite sensitive to the (essentially arbitrary) test scale used, applied

researchers may wish to abandon cardinal approaches and instead rely only on the ordinal

content of the test scores. If ordinal methods yield ambiguous results, then researchers should

invest more effort in crafting test scales that are plausibly cardinal for the application at hand.

Both the theoretical and empirical work presented here are quite preliminary, and each calls

out for a number of extensions. The bounding analysis depends on the choice of distance mea-

sure. The sup norm yields tractable expressions for the worst-case score weighting functions

for both mean differences and regression coefficients. Nonetheless, other distance measures

may produce bounds that are easier to interpret. Empirically, it would be worthwhile to ex-

tend the sensitivity analysis to other achievement gaps/changes and other data sets. It would

also be useful to work out more completely how to conduct valid inference on k∗. Finally,

future work should investigate the empirical relevance of the methods presented here to other

empirical settings, such as value-added models and poverty indices.
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Appendix A. Figures

Figure 1. Functions Satisfying (A2)

0 1s

W0(s)

(1,1)1

Note: Plot shows five weighting functions consistent with (A2). The red curve is the identity and is the
weighting function assumed when achievement gaps/changes are estimated using differences in sample means.
The other curves (in purple, green, orange, and blue) demonstrate the W0 can be convex, concave,
discontinuous, and non-differentiable and still satisfy (A2).

Figure 2. Examples of ∆f ’s Satisfying (A3)
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Figure 3. W+
0 (s|k) with One Crossing Point

I(s)

s∗0 1

∆f

0

0

1

k

k

W+
0 (s) = s− k

W+
0 (s) = s + k

Note: The green curve plots W+
0 when k < min{s∗, 1− s∗}. For values of s less than k or greater than 1− k,

W+
0 is flat. W+

0 increases 1-1 with s on the interval [k, 1− k] except for the point s∗ = 0.5, where W+
0 jumps

by 2k.

Figure 4. Potential W−0 (s|k)’s with One Crossing Point

I(s) = s

s∗0 1
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0
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W−
0 (s|s∗)

W−
0 (s|sc)|sc = s∗ + k

W−
0 (s|sc)|sc = s∗ − k

k

k

sc

sc

sc

Note: The function in green plots W−0 (s|s∗, k) when s∗ − k > 0 and s∗ + k < 1. In this case, the constraint
that D(I,W−0 ) ≤ k binds both above and below s∗. The purple curve shows W−0 (s|sc, k) for sc = s∗ − k
where k is such that sc − k < 0. In this case, D(I,W−0 ) only binds above s∗. Symmetrically, the teal curve
plots W−0 (s|sc, k) when sc = s∗ + k and k is such that D(I,W−0 ) only binds below s∗.
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Figure 5. Potential W+
0 (s|k)’s with Two and Three Crossing Points
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Note: The potential W+
0 ’s are indexed by W+

0 (s∗2) ≡ s+2 . The curves in magenta depict the case that
s+2 = s∗2 − k while the curves in teal set s+2 = s∗2 + k. The curves in green show intermediate cases where s+2
lies between these two extremes.
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Figure 6. Potential W−0 (s|k)’s with Two and Three Crossing Points
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Note: The potential W−0 ’s are indexed by W−0 (s∗1) ≡ s−1 and W−0 (s∗3) ≡ s−3 (for N = 3). The curves in
magenta depict the case that s−i = s∗i − k, i ∈ {1, 3}, while the curves in teal set s−i = s∗i + k. The curves in
green show intermediate cases where both values of s−i lie between these two extremes.
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Figure 7. Black/White Achievement Gap/Change Bounds, NLSY
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Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points and 50 evenly spaced
values of k. The left-hand panels show the cross-sectional gaps for the NLSY79 (solid) and NLSY97 (dashed)
calculated such that the differences in the observed curves (in red) equal the observed gap changes in the
right-hand panels. Data cleaned as described in section 5 and appendix E.
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Figure 8. W+
0 and W−0 for Math Income-Achievement Gap Changes,

NELS/ELS
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Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points. Data cleaned as
described in section 5 and appendix E. For these data, k = 0.1 is sufficient for the observed test scores
to misidentify the sign of the true gap change. The right panel shows that the worst case weighting
functions for k = 0.1 do not look particularly extreme. Under both W+

0 and W−
0 , the observed scores

are cardinal for most of [0,1], and neither weighting function ever strays too far from the identity
function. In contrast, W+

0 and W−
0 look very different from the identity when k = 0.4; the observed

scores are almost never cardinal and the jumps at the achievement thresholds are very large.
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Figure 9. Income Regression Coefficient Bounds, NLSY
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Note: Curves estimated on a grid of 1,000 evenly spaced points and 50 evenly spaced values of k. Data
cleaned as described in section 5 and appendix E.
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Appendix B. Tables

Table 1. NLSY Summary Statistics

Variable Survey N Mean Median S.D.
math NLSY79 3,277 96.77 95 18.23
math NLSY97 2,833 98.74 99 18.82
reading NLSY79 3,277 94.19 98 19.32
reading NLSY97 2,833 93.41 98 20.39
AFQT NLSY79 3,277 142.57 146 26.94
AFQT NLSY97 2,833 142.88 147.4 28.11
income NLSY79 3,388 $44,000 $39,800 $28,700
income NLSY97 3,570 $54,700 $43,100 $49,500
age NLSY79 3,388 16.08 16 0.78
age NLSY97 3,570 15.76 16 0.72
black NLSY79 3,388 0.14 0 0.35
black NLSY97 3,570 0.15 0 0.36

Note: Respondent ages are restricted to 15-17 as of ASVAB test date. All dollars have been converted to a
1997 basis using the CPI-U. The N shown for a variable is the sample size used in calculations involving that
variable. Data cleaned as described in section 5 and appendix E.

Table 2. NELS/ELS Summary Statistics

Variable Survey Wave N Mean Median S.D. Missing
math NELS 1990 14,410 44.03 44.31 13.57 777
math NELS 1992 12,008 49.00 49.53 14.07 2,138
reading NELS 1990 14,427 30.93 31.38 9.91 760
reading NELS 1992 11,999 33.33 34.68 10.01 2,147
age NELS 1990 15,187 16.13 16 0.68 0
age NELS 1992 14,146 18.14 18 .62 0
black NELS 1990 15,187 0.12 0 0.32 0
black NELS 1992 14,146 0.11 0 0.32 0
female NELS 1990 15,187 0.51 1 0.50 0
female NELS 1992 14,146 0.50 1 .50 0
math ELS 2002 14,934 44.62 44.79 13.57 0
math ELS 2004 13,444 50.22 51.38 14.13 1,148
reading ELS 2002 14,934 29.29 29.65 9.44 0
reading ELS 2004 NA NA NA NA NA
age ELS 2002 14,934 15.67 16 0.61 0
age ELS 2004 14,592 17.70 18 0.61 0
black ELS 2002 14,592 0.14 0 0.35 0
black ELS 2004 14,934 0.14 0 0.35 0
female ELS 2002 14,934 0.50 0 0.50 0
female ELS 2004 14,592 0.50 0 0.50 0

Note: Statistics shown for the NELS first-year follow up (1990) and the ELS base year (2002). Respondent
ages restricted to 15-17 as of survey date. Averages shown for non-missing, non-imputed observations using
cross-sectional weights. NELS 1990 sample includes “freshened” observations. Data cleaned as described in
section 5 and appendix E.
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Table 3. NELS/ELS Income Variables

NELS Percentage Percentage ELS Percentage Percentage
Income Full Sample Analysis Sample Income Full Sample Analysis Sample
none .26 .27 none .45 .43
less than $1,000 .49 .48 less than $1,000 1.09 1.14
$1,000-$2,999 1.07 1.13 $1,001-$5,000 1.73 1.78
3,000-$4,999 1.57 1.60 $5,001-$10,000 2.12 2.08
$5,000-$7,499 2.68 2.82 $10,001-$14,000 4.22 4.27
$7,500-$9,999 3.13 3.10 $15,001-$20,000 4.87 4.95
$10,000-$14,999 7.26 7.48 $20,001-$25,000 6.53 6.47
$15,000-$19,999 7.08 7.21 $25,001-$35,000 12.21 12.40
$20,000-$24,999 10.17 10.44 $35,001-$50,000 19.69 19.65
$25,000-$34,999 19.34 19.18 $50,001-$75,000 21.03 20.81
$35,000-$49,999 21.98 21.59 $75,001-$100,000 13.14 13.09
$50,000-$74,999 16.41 16.30 $100,001-$200,000 10.20 10.19
$75,000-$99,999 4.07 4.03 $200,001 or more 2.74 2.75
$100,000-$199,999 3.21 3.16
$200,000 or more 1.26 1.21

Note: Dollar ranges shown in survey-specific base-year real dollars (1988 for the NELS and 2002 for the
ELS). The full sample columns show the cross-sectionally weighted percentages for the full range of ages in
each survey base year. The analysis sample columns show the percentages of youth in the final sample used
to construct the various ∆f ’s. Data cleaned as described in section 5 and appendix E.
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Table 4. Cross-Sectional Mean Gap k∗’s

NELS/ELS
Subject Year Comparison k∗ Crosses?
math 1990 black/white 0.33 Yes
math 2002 black/white – No
reading 1990 black/white 0.32 Yes
reading 2002 black/white – No
math z 1990 black/white – No
math z 2002 black/white – No
reading z 1990 black/white – No
reading z 2002 black/white 0.17 Yes
math 1990 income – No
math 2002 income – No
reading 1990 income 0.38 Yes
reading 2002 income – No
math z 1990 income – No
math z 2002 income – No
reading z 1990 income 0.36 Yes
reading z 2002 income – No
NLSY
Subject Year Comparison k∗ Crosses?
math 1979 black/white – No
math 1997 black/white – No
reading 1979 black/white 0.35 Yes
reading 1997 black/white 0.40 Yes
math 1979 income 0.11 Yes
math 1997 income 0.33 Yes
reading 1979 income 0.13 Yes
reading 1997 income 0.20 Yes

Note: k∗’s estimated using ∆f ’s calculated on an evenly-spaced test-score grid of 5,000 points and k-grid of
1,000 points. Data cleaned as described in section 5 and appendix E. All observed cross-sectional gaps are
positive.



ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL COMPARABILITY 38

Table 5. Mean Gap-Change k∗’s

Survey Subject Comparison k∗ Crosses? Observed Sign
NELS/ELS math black/white 0.29 Yes pos
NELS/ELS reading black/white 0.28 Yes pos
NELS/ELS math z black/white 0.08 Yes pos
NELS/ELS reading z black/white 0.11 Yes neg
NELS/ELS math income 0.08 Yes neg
NELS/ELS reading income 0.04 Yes pos
NELS/ELS math z income 0.14 Yes neg
NELS/ELS reading z income 0.00 Yes neg
NLSY79/97 math black/white 0.11 Yes neg
NLSY79/97 reading black/white 0.12 Yes neg
NLSY79/97 math income 0.27 Yes neg
NLSY79/97 reading income 0.05 Yes neg

Note: k∗’s estimated using ∆f ’s calculated on an evenly-spaced test-score grid of 5,000 points and k-grid of
1,000 points. Data cleaned as described in section 5 and appendix E.

Table 6. NLSY Regression Results

Survey Subject Covariate β̂ or ∆β̂ t-stat R2

NLSY79/97 math income -0.01 -0.71 0.14
NLSY79/97 reading income -0.05 -2.62 0.14
NLSY79/97 AFQT income -0.04 -2.16 0.16
NLSY97 math income 0.29 19.94 0.13
NLSY97 reading income 0.26 18.43 0.11
NLSY97 AFQT income 0.27 20.00 0.13
NLSY79 math income 0.30 24.19 0.15
NLSY79 reading income 0.31 25.14 0.16
NLSY79 AFQT income 0.31 26.51 0.18

Note: Data cleaned as described in section 5 and appendix E.

Table 7. NLSY Income Regression Coefficient k∗’s

Survey Subject Coefficient k∗ Crosses? Observed Sign
NLSY79/97 math income ∆β̂ 0.04 Yes neg
NLSY79/97 reading income ∆β̂ 0.33 Yes neg
NLSY79/97 AFQT income ∆β̂ 0.19 Yes neg
NLSY97 math income β̂ – No pos
NLSY97 reading income β̂ – No pos
NLSY97 AFQT income β̂ – No pos
NLSY79 math income β̂ – No pos
NLSY79 reading income β̂ – No pos
NLSY79 AFQT income β̂ – No pos

Note: k∗’s estimated on an evenly-spaced test-score grid of 1,000 points and k-grid of 1,000 points. Data
cleaned as described in section 5 and appendix E.
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Appendix C. Proofs

For notational simplicity, define B+(W,x, y) ≡
´ y
x (W (s) − s)∆f(s)ds and B−(W,x, y) ≡

´ y
x (s−W (s))∆f(s)ds.

C.1. Proofs of the Main Theorems.

Proof. (theorem 4.2 and theorem 4.3) LetW+
k denote the set of weighting functions satisfying

(A2) and D(I,W ) ≤ k that have the form given by the expression for W+
0 in equation (4.1).

Further, letM+
k denote the set of weighting functions satisfying (A2) and D ≤ k that differ

from any W+
0 ∈ W+

k on at least one interval with positive measure. Suppose ∃W̃0 ∈M+
k such

that B+(W̃0) > B+(W0) for all W0 ∈ W+
k . There are two cases to consider: N even and N

odd. Suppose first that N is even. Let {s̃2, s̃4, . . . , s̃N} be the points satisfying W̃0(s∗i ) = s̃i for

even values of i. Consider W+
0 (s|k, s̃2, s̃4, . . . , s̃N ) ≡ W̃+

0 . I claim that B−(W̃+
0 ) > B−(W̃0).

To see that this inequality follows, suppose that W̃0 deviates somewhere on [s∗i−1, s
∗
i+1] for

i even. Such a deviation implies that W̃0(s) ≤ W̃+
0 (s) on [s∗i−1, s

∗
i ] and W̃0(s) ≥ W̃+

0 (s)

on [s∗i , s
∗
i+1] with at least one of these inequalities strict. Therefore, B+(W̃0, s

∗
i−1, s

∗
i+1) <

B+(W̃+
0 , s

∗
i−1, s

∗
i+1), which implies that W̃+

0 dominates W̃0 on any interval not [0, s∗1] such

that W̃0 does not correspond to some W+
0 ∈ W+

k . To finish, consider [0, s∗1]. Note that

all W+
0 ∈ W+

k are identical on [0, s∗1], so if W̃0 deviates on this interval it must be that

W̃0(s) 6= max{s − k, 0} on some [sL, sH ] ⊆ [0, s∗1]. Because all functions satisfying (A2) and

D(I,W ) ≤ k are bounded from below by the maximum of 0 and s−k, W̃0(s) > W+
0 (s) for any

W+
0 ∈ W+

k on [s, s̄], which implies that B+(W̃0, 0, s
∗
1) < B+(W+

0 , 0, s
∗
1) for all W+

0 ∈ W+
k , a

contradiction. Now consider the case thatN is odd and construct W̃+
0 as before. The argument

that W̃+
0 dominates W̃0 on [0, s∗N−1] is exactly analogous to the domination argument for N

even on [0, 1]. N being odd implies that ∆f > 0 on (s∗N , 1). Note that all W+
0 ∈ W+

k are

identical on [s∗N , 1], so if W̃0 deviates on this interval it must be that W̃0(s) 6= min{s+k, 1} on
some [sL, sH ] ⊆ [s∗N , 1]. Because all functions satisfying (A2) and D(I,W ) ≤ k are bounded by

the minimum of 1 and s+k, W̃0(s) < W+
0 (s) for anyW+

0 ∈ W+
k on [sL, sH ], which implies that

B+(W̃0, s
∗
N , 1) < B+(W+

0 , s
∗
N , 1) for all W+

0 ∈ W+
k , a contradiction. LetW−k denote the set of

weighting functions satisfying (A2) and D(I,W ) ≤ k that can be written as the expression for

W−0 in equation (4.1). Further, letM−k denote the set of weighting functions satisfying (A2)

and D ≤ k that differ from any W−0 ∈ W−k on at least one interval with positive measure.

Suppose ∃W̃0 ∈ M+
k such that B−(W̃0) > B−(W−0 ) for all W−0 ∈ W−k . There are two cases
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to consider: N even and N odd. Suppose first that N is odd. Let {s̃1, s̃3, . . . , s̃N} be the

points satisfying W̃0(s∗i ) = s̃i for i odd. Consider W−0 (s|k, s̃1, s̃3, . . . , s̃N ) ≡ W̃−0 . I claim that

B−(W̃−0 ) > B−(W̃0). To see this, suppose that W̃0 deviates somewhere on [s∗i−1, s
∗
i+1] for some

odd i. This implies that W̃0(s) ≥ W̃−0 (s) on [s∗i−1, s
∗
i ] and W̃0(s) ≤ W̃−0 (s) on [s∗i , s

∗
i+1] with

at least one of these inequalities strict. Therefore, B−(W̃0, s
∗
i−1, s

∗
i+1) < B−(W̃−0 , s

∗
i−1, s

∗
i+1),

implying that W̃−0 dominates W̃0 on any interval such that W̃0 does not correspond to some

W ∈ W−k , a contradiction. Now consider the case that N is even and construct W̃−0 as before.

The argument that W̃−0 dominates W̃0 on [0, s∗N−1] is exactly analogous to the domination

argument for N odd on [0, 1]. N being even implies that ∆f < 0 on (s∗N , 1). Note that

all W−0 ∈ W−k are identical on [s∗N , 1], so if W̃0 deviates on this interval it must be that

W̃0(s) 6= min{s + k, 1} on some [sL, sH ] ⊆ [s∗N , 1]. Because all functions satisfying (A2)

and D(I,W ) ≤ k are bounded by the minimum of 1 and s + k, W̃0(s) < W (s) for any

W−0 ∈ W−k on [sL, sH ], which implies that B−(W̃0, s
∗
N , 1) < B−(W−0 , s

∗
N , 1) for all W−0 ∈ W−k ,

a contradiction. �

Proof. (theorem 4.4) Consider ∂B̄+
∂k . Suppose that k < min{s∗, 1 − s∗} so that W+

0 has the

form given in equation 4.1. In this case, B̄+ may be written as B̄+ = −
´ k

0 s∆f(s)ds −
´ s∗
k k∆f(s)ds +

´ 1−k
s∗ k∆f(s)ds +

´ 1
1−k(1 − s)∆f(s)ds. Differentiating each of these integrals

with respect to k yields ∂B̄+
∂k =

´ 1−k
s∗ ∆f(s)ds −

´ s∗
k ∆f(s)ds. Now consider ∂B̄−

∂k if sc > k

and sc + k < 1. In this case, B̄− may be written as B̄− = −
´ sc−k

0 k∆f(s)ds +
´ sc+k
sc−k (s −

sc)∆f(s)ds+
´ 1
sc+k k∆f(s)ds. Taking the derivative while noting that sc depends on k yields

∂B̄−
∂k =

´ 1
sc+k ∆f(s)ds−

´ sc−k
0 ∆f(s)ds−

´ sc+k
sc−k

∂sc
∂k ∆f(s)ds. �

Proof. (theorem 4.6) Define ·β+ = τx [cov(x, Y0(s))− cov(x, s)] where τ = 1/σ2
x is the pre-

cision of x. Use that cov(x, s) = E[xs] − µxµs and cov(x, Y0) = E[Y0x] − µW0µx to write

∆β+ = τx [E[xY0]− E[xs]− µx(µY0 − µs)]. Next, observe that E[xY0]−E[xs] =
˜ 1

0 x[Y0(s)−
s]g(x, s)dxds and µx(µY0 − µs) = µx

´ 1
0 [Y0(s) − s]f(s)ds by definition. Using that g(x, s) =

h(x|s)f(s), write
˜ 1

0 x[Y0(s) − s]g(x, s)dxds =
´ 1

0 [Y0(s) − s]
[´ 1

0 xh(x|s)dx
]
f(s)ds. But

´ 1
0 xh(x|s)dx is just µx|s, so the term E[xY0]−E[xs] may be written as

´ 1
0 µx|s[Y0(s)−s]f(s)ds.

Therefore, ∆β+ = τx
´ 1

0 [Y0(s) − s](µx|s − µx)f(s)ds. Define Γ(s) ≡ τx(µx|s − µx)f(s). Since

f(s)τx > 0 everywhere on [0,1], Γ(s) satisfies (A3). Therefore, ∆β+ =
´ 1

0 [Y0(s) − s]Γ(s)ds,

rendering the bounding problem formally equivalent to that considered in theorem 4.2. Sim-

ilarly, define ·β− = τx [cov(x, s)− cov(x, Y0(s))]. An analogous argument shows that ·β− =



ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL COMPARABILITY 41

´ 1
0 [s − Y0(s)]Γ(s)ds, rendering the bounding problem again formally equivalent to that con-

sidered in theorem 4.2. �

Proof. (theorem 4.7) Standard arguments show that plim β̂IV = cov(s,z)
cov(x,z) . Define ·β+

IV =

σ−1
xz [cov(z, Y0(s))− cov(z, s)]. By an argument exactly analogous to theorem 4.6, ∆β+

IV =

σ−1
xz

´ 1
0 [Y0(s)− s]

(
µz|s − µz

)
f(s)ds. Define ΓIV (s) ≡ σ−1

xz

(
µz|s − µz

)
f(s). Since f(s)σ−1

xz > 0

everywhere on [0,1], ΓIV (s) satisfies (A3), rendering the bounding problem formally equivalent

to that considered in theorem 4.2. Similarly, define ·β−IV = σ−1
xz [cov(z, s)− cov(z, Y0(s))]. An

analogous argument shows that ·β−IV =
´ 1

0 [s−Y0(s)]ΓIV (s)ds, rendering the bounding problem

again formally equivalent to that considered in theorem 4.2. �

Appendix D. Additional Exposition

D.1. Regression Bias with a Binary Covariate. Achievement test scores are commonly

used as outcome variables in regressions with binary predictor variables. For instance, value-

added models of teacher quality are based on regressions of test scores (or test score changes) on

teacher indicators and various control variables. The estimated coefficients on these indicators

are then interpreted as measures of teacher quality. Such value-added estimates depend on the

test scale used and thus may be sensitive to cardinal deviations. If the true scale of achievement

is sufficiently different from the observed scale, then individual value-added estimates may have

the wrong sign. Furthermore, rankings based on value-added estimates may also be erroneous;

one may conclude that teacher A is superior to teacher B when in fact just the opposite is the

case.

The analysis for mean differences presented in section 4.1 can be straightforwardly adapted

to study bias in regressions using binary predictor variables. Consider the regression of s

on some binary indicator D. The plim of the regression coefficient in this case is E[s|D =

1]−E[s|D = 0]. If instead we had regressed D onW0(s), we would have a plim of E[W0(s)|D =

1] − E[W0(s)|D = 0]. Let f0 denote the distribution of s conditional on D = 0, and f1 the

distribution of s conditional on D = 1. The difference in these two plims can be written as

ˆ 1

0
(W0(s)− s) [f1(s)− f0(s)] ds.

If [f1(s)− f0(s)] satisfies (A3), this is exactly the objective function that yields W+
0 (s|k) and

W−0 (s|k) as worst-case weights. The analysis in this case is formally unchanged from that in

section 4.1.
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D.2. Multidimensional Achievement Under Additive Separability. The main body

of this paper assumes that there is only one dimension of achievement. This assumption

is unrealistic: a large and growing body of research suggests that there are multiple types

of achievement relevant for labor market outcomes.29 In this appendix, I extend the mean-

difference bounding analysis to multiple dimensions in the special case that each dimension

of achievement enters welfare additively separably. Unfortunately, analyzing bias due to scale

misspecification for general welfare functions with multiple arguments is quite a hard prob-

lem mathematically. The simple techniques I introduce in this paper are not sufficient to

characterize worst-case bias when welfare is multidimensional and not additively separable.

Suppose that achievement has two dimensions with ordinally perfect test scores s and q.30

Let W0(s, q) denote the true cardinal value of the pair (s, q) and suppose that this value is

known to have the form W0(s, q) = ψ0(s) + ω0(q) for two increasing, unknown functions ψ

and ω. Denote by F , Fs, and Fq the generic joint and marginal distributions of s and q,

respectively. Additive separability in W0 implies that value of the joint distribution F is also

additively separable in the sense that EF [W0] = EFs [ψ0]+EFq [ω0].31 In turn, this implies that

joint distribution FA will be preferred to joint distribution FB for all W0 such that ψ and ω

are increasing only if FA,s � FB,s and FA,q � FB,q both hold. The dependence between s

and q does not affect welfare in this case. Therefore, the bias from using W̃ instead of W0 is

B(W0, W̃ , FA, FB) = |B(ψ̃, ψ0, FA,s, FB,s) + B(ω̃, ω0, FA,q, FB,q)|.
Additive separability does not quite imply that the bounding analysis can be carried out

separately in each dimension. There are two subtleties that preclude one from treating each

margin separately in constructing worst-case bounds. The first is that using the sup norm to

define the distance restriction between W0 and W̃ links the two dimensions of achievement

because the magnitude and sign of the difference along one dimension determines the range of

feasible differences along the other dimension.32 I circumvent this difficulty by requiring that

the distance restriction hold separately in each dimension.

29Kautz, Heckman, et al.[14] provides a good introduction and overview to this body of work.
30In empirical work, researchers typically assume that these dimensions are latent factors and that observed
test scores depend on some combination of the underlying achievements. I abstract from these considerations
here and simply suppose that we can craft tests which ordinally measure achievement along each relevant
dimension.
31To see this, note that V (W,F ) =

˜ 1

0
ψ(s)f(s, q)dqds +

˜ 1

0
ω(q)f(s, q)dqds. But

˜ 1

0
ψ(s)f(s, q)dqds =´ 1

0
ψ(s)fs(s)ds = V (ψ, Fs) and

˜ 1

0
ω(q)f(s, q)dqds =

´ 1
0
ω(q)fq(q)dq = V (ω, Fq).

32To see this, consider the restriction D(W0, W̃ ) ≤ k and suppose that sups[ψ0(s) − ψ̃(s)] = λk for some
λ ∈ (0, 1). Then the maximum possible value of supq[ω0(q) − ω̃(q)] is (1 − λ)k, while the minimum possible
value is −(1 + λ)k.
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Definition D.1. Suppose that W (s, q) = ψ(s) + ω(q) and W̃ (s, q) = ψ̃(s) + ω̃(q). Then the

pairwise distance between them is defined as

Dp(W, W̃ ) = max

{
sup
s∈[0,1]

|ψ(s)− ψ̃(s)|, sup
q∈[0,1]

|ω(q)− ω̃(q)|
}
.

Under Dp, the possible values of ω̃(q) given Dp ≤ k consist of the entire interval [ω(q) −
k, ω(q) + k], regardless of the shape of ψ̃ and ψ.33

There is one last wrinkle here compared to the one-dimensional bounds constructed in

section 4.1. That analysis assumed that ∆f is negative on some initial interval (0, s∗1) and

has a finite number of 0’s. Empirically, if ∆f > 0 on (0, s∗1), I argued that one could simply

switch the roles of A and B in the definition of ∆f in order to maintain the assumption that

∆f < 0 for test scores close to 0. If ∆fs and ∆fq both satisfy assumption (A3) or if −∆fs

and −∆fq both do, then the analysis can proceed as before, separately for s and q. However,

if ∆fs and −∆fq or −∆fs and ∆fs both satisfy (A3), there is no way to define A and B such

that the analysis can go forward separately as before. Fortunately, in the single-dimensional

case, W+
0 (s|k,∆f) = W−0 (s|k,−∆f) andW−0 (s|k,∆f) = W+

0 (s|k,−∆f). Since A and B may

be interchanged freely, there are only two distinct situations: ∆fs and ∆fq both satisfy (A3)

or only one of them does.

Theorem D.2. Suppose that (A1) and (A2) hold. If ∆fs and ∆fq both satisfy (A3) for Ns

and Nq, then W+
0,s, W

+
0,q, W

−
0,s and W

−
0,q are all as in Theorem 4.2. If instead ∆fs and −∆fq

satisfy (A3), then the worst-case weights for s are unchanged. In contrast, W+
0,q is given by

the expression for W−0 in Theorem 4.2 and W−0,q is given by the expression for W+
0 .

Theorem D.2, coupled with theorem 4.2, gives a general method for constructing worst-case

weighting functions in the two dimensional case. This analysis can be extended easily to more

than two achievement dimensions, provided that additive separability holds in each dimension.

33It is straightforward to verify that Dp is a distance measure. Separation, coincidence, and symmetry are all
satisfied trivially. To see that the triangle inequality is satisfied, note that the sup norm is itself a distance
measure and must satisfy the triangle inequality for each dimension s and q.

D(ψ, ψ̃) ≤ D(ψ, ψ̂) +D(ψ̂, ψ̃) ∧ D(ω, ω̃) ≤ D(ω, ω̂) +D(ω̂, ω̃) =⇒

max
{
D(ψ, ψ̃), D(ω, ω̃)

}
≤ max

{
D(ψ, ψ̂) +D(ψ̂, ψ̃), D(ω, ω̂) +D(ω̂, ω̃)

}
≤ max

{
D(ψ, ψ̂), D(ω, ω̂)

}
+ max

{
D(ψ̂, ψ̃), D(ω̂, ω̃)

}
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D.3. Bounding Differences of Regression Coefficients. This appendix extends theorem

4.6 to cover the sensitivity analysis for differences of regression coefficients. Consider the

difference ∆β(s) ≡ βA(s) − βB(s), where A and B denote different samples on which the

regression s = α + βx + ε is run. Let ∆β(Y0) denote the corresponding difference when the

weighted scores Y0 are used in the regressions instead. The difference that we are trying to

maximize for ∆β+ is ∆β(Y0)−∆β(s), which is equal to (βA(Y0)−βA(s))− (βB(Y0)−βB(s)).

The proof of theorem 4.6 showed that (β(Y0)−β(s)) = τx
´ 1

0 [Y0(s)−s](µx|s−µx)f(s)ds, which

implies that the bounding objective function here can be written as

ˆ 1

0
[Y0(s)− s]

(
τx,A(µx|s,A − µx,A)fA(s)− τx,B(µx|s,B − µx,B)fB(s)

)
ds.

Therefore, if Γ(s) ≡
(
τx,A(µx|s,A − µx,A)fA(s)− τx,B(µx|s,B − µx,B)fB(s)

)
satisfies (A3), the

bounding analysis will be formally equivalent to theorem 4.2. The analysis for ∆β− simply

replaces [Y0(s)− s] with [s− Y0(s)].

Appendix E. Data

The NELS first surveyed a nationally representative sample of eighth graders in the spring

of 1988 with follow-up surveys in 1990, 1992, and 2002. I make use of the 1990 wave in order

to keep the comparison groups consistent with my prior work on the income-achievement gap.

The NELS wave consists mostly of 10th graders who were between the ages of 15 and 17 at

the survey date. The ELS first surveyed a nationally representative sample of 10th graders in

2002, so all of my calculations compare this initial ELS wave to the first follow-up wave in the

NELS.

Both the NELS and ELS contain data on household income, demographics, and achieve-

ment. Respondents in both surveys took comparable achievement tests in each survey wave.

These tests covered similar content and followed a similar stratified design. Both assessments

included some items in common, and both surveys report three parameter logistic item re-

sponse theory (IRT) scores in the 1988 base-year scale estimated using these items. If the

IRT model is correctly specified, these base-year scale scores should be ordinally comparable

between the two surveys. That is, if student i has a higher score than student j, then student

i should have higher underlying achievement regardless of whether i and j were drawn from

the same or different surveys.
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The initial waves of the NELS and ELS collected data on household income. Unfortunately,

these data are categorical, significantly complicating the construction of directly comparable

income groups from both surveys. For this paper, these details are relatively unimportant,

and I simply use one plausible definition out of many for “high-income” and “low-income.” I

define high-income youth as those from the top 20% of the household income distribution and

low-income youth as those from the bottom 20%. I approximate these quintiles by selecting

the ranges of income buckets such that the masses of the high and low buckets are as close as

possible to 0.2.34 Unlike the NELS, the ELS imputes test scores, family income, and demo-

graphic variables. I drop imputed observations from the ELS sample. Nielsen[20] documents

that the inclusion or exclusion of these observations has relatively little effect on the estimated

achievement gap changes.

The NLSY79 and NLSY97 are high-quality, nationally representative surveys that contain

ordinally comparable achievement data along with detailed student demographic information.

Almost all respondents near the start of each survey took the Armed Services Vocational

Aptitude Battery (ASVAB). Following an extensive literature in economics using these data,

I study the math and reading subscores of the Armed Forces Qualifying Test (AFQT), which

itself is a subset of the ASVAB.35 The ASVAB test format changed from pencil-and-paper

to a computer aided design between the NLSY79 and NLSY97. The military commissioned

a study to determine how to compare scores from the new and old test formats. Segall[25]

constructs a score crosswalk by equating percentiles on the two tests for a sample of military

recruits who were randomly assigned to one version of the test or the other.36 I use these

crosswalked scores, as they should be ordinally comparable in the sense previously defined.

Both NLSY surveys collect extensive longitudinal data on each respondent’s family, income,

health, education, and employment history. I do not use the longitudinal component of these

surveys here. I define high- and low-income respondents as those in the top and bottom

34For example, suppose there are 8 ordered income categories with equal numbers of respondents in each
bucket. Then, the high-income group would simply be the top two income buckets (containing the top 25% of
the sample) and the low-income groups would likewise be the bottom two buckets. In this case, both categories
are somewhat larger than the target comparison groups.
35The ASVAB components feeding in to the AFQT changed in 1989. Throughout, I will use the current
definition that sets the math subscore to be the sum of the arithmetic reasoning and math knowledge ASVAB
component scores. The definition for reading did not change in 1989.
36The crosswalk is available courtesy of Altonji, Bhadarwaj, and Lange[2] and is available at the following
url: http://www.econ.yale.edu/~fl88/data.html. The crosswalk contain percentile-mapped scores for each
component score of the ASVAB. Simply adding these scores together is not strictly valid because it ignores the
covariance of the different ASVAB components. Fortunately, Segall[26] reports that summing the crosswalked
scores or crosswalking the summed scores leads to virtually identical results.
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quintiles of the base-year household income distribution. The household income variable sums

together all sources of income (wage, investment, business, etc.) for all household members.

Since the youth I study are all younger than 18 years old, their total contribution to household

income is typically negligible. Although I have not specifically assessed the robustness of

my estimates to these data choices, I found in Nielsen[19] that ordinal income-achievement

estimates using these data are not sensitive to plausible alternative income definitions.


