
Research Design Meets Market Design:

Using Centralized Assignment for Impact Evaluation∗

Atila Abdulkadiro§lu Joshua D. Angrist Yusuke Narita Parag A. Pathak†

October 2015

Abstract

A growing number of school districts use centralized assignment mechanisms to allocate

school seats in a manner that re�ects student preferences and school priorities. Many of

these assignment schemes use lotteries to ration seats when schools are oversubscribed. The

resulting random assignment opens the door to credible quasi-experimental research designs

for the evaluation of school e�ectiveness. Yet the question of how best to separate the

lottery-generated variation integral to such designs from non-random preferences and prior-

ities remains open. This paper develops easily-implemented empirical strategies that fully

exploit the random assignment embedded in the widely-used deferred acceptance mechanism

and its variants. We use these new methods to evaluate charter schools in Denver, one of

a growing number of districts that integrate charter and traditional public schools in a uni-

�ed assignment system. The resulting estimates show large achievement gains from charter

school attendance. Our approach generates substantial e�ciency gains over ad hoc methods

that fail to exploit the full richness of the lotteries generated by centralized assignment with

random tie-breaking.
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1 Introduction

Many children in large urban school districts can now apply for seats at any public school in their

district. The fact that some schools are more popular than others, and the need to distinguish

between students who have the same admissions priority at a given school, generates a matching

problem. Introduced by Gale and Shapley (1962) and Shapley and Scarf (1974), matchmaking

via market design allocates scarce resources, such as seats in public schools, in markets where

prices cannot be called upon to perform this function. The market-design approach to school

choice, pioneered by Abdulkadiro§lu and Sönmez (2003), is used in a long and growing list of

public school districts in American, European, and Asian cities. Most of these cities match

students to schools using a matching mechanism known as deferred acceptance (DA).

Two bene�ts of matchmaking schemes like DA are e�ciency and fairness: the resulting

assignments improve welfare and transparency relative to ad hoc alternatives, while lotteries

ensure that students with the same preferences and priorities have the same chance of obtaining

highly-sought-after seats. DA and related algorithms also have the virtue of narrowing the scope

for strategic behavior that would otherwise give sophisticated families the opportunity to game

an assignment system at the expense of less-sophisticated residents (Abdulkadiro§lu et al., 2006;

Pathak and Sönmez, 2008). No less important is the fact that centralized assignment generates

valuable data for empirical research on schools. In particular, when schools are oversubscribed,

lottery-based rationing generates quasi-experimental variation in school assignment that can be

used for credible evaluation of individual schools and of school models like charters and magnets.

Previous work exploiting random tie-breaking in DA and related algorithms for student as-

signment includes studies of schools in Charlotte-Mecklenburg (Hastings et al., 2009; Deming,

2011; Deming et al., 2014) and New York (Bloom and Unterman, 2014; Abdulkadiro§lu et al.,

2013). A closely related set of studies uses regression-discontinuity (RD)-style tie-breaking as a

source of quasi-experimental variation in selective exam school assignment. These studies include

evaluations of exam schools in the US and in Chile, Ghana, Kenya, Romania, and Trinidad.1

Causal e�ects in these studies are identi�ed by compelling sources of quasi-experimental varia-

tion, but the research designs deployed in this work fail to exploit the full power of random or

RD-style tie-breaking embedded in centralized assignment schemes.

A stumbling block in the use of market-design for impact evaluation is the elaborate multi-

stage nature of many market-design solutions. The most widely used assignment algorithms

weave random or running variable tie-breaking into an elaborate tapestry of information on

student preferences and school priorities that is far from random. In principle, all features of

student preferences and school priorities can shape the probability of assignment to each school.

It's only conditional on these features that assignments are independent of potential outcomes.

In view of this di�culty, research exploiting centralized assignment has focused either on o�ers

of seats at students' �rst choices alone, or relied on instrumental variables indicating whether

students' lottery numbers fall below the highest number o�ered a seat at all schools that they've

1Studies of exam school systems that combined centralized assignment with RD include Dobbie and Fryer
(2014); Abdulkadiro§lu et al. (2014a); Ajayi (2014); Lucas and Mbiti (2014); Pop-Eleches and Urquiola (2013);
Jackson (2010); Bergman (2014); Hastings et al. (2013); Kirkeboen et al. (2015).
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ranked (we call this a quali�cation instrument). Both �rst-choice and quali�cation instruments

discard much of the variation induced by DA.

This paper explains how to recover the full range of quasi-experimental variation embedded

in DA. Speci�cally, we show how DA maps information on preferences, priorities, and school ca-

pacities into a conditional probability of random assignment, often referred to as the propensity

score. As in other strati�ed randomized research designs, conditioning on the scalar propensity

score eliminates selection bias arising from the association between all conditioning variables

and potential outcomes (Rosenbaum and Rubin, 1983). The payo� to propensity-score condi-

tioning turns out to be substantial in our application: naive strati�cation using all covariate

cells reduces empirical degrees of freedom markedly, eliminating many schools and students from

consideration, while score-based strati�cation leaves our research sample largely intact. But

the propensity score does more for us than reduce dimensionality. Because all applicants with

score values strictly between zero and one contribute variation that can be used for evaluation,

the propensity score identi�es the maximal set of applicants for whom we have a randomized

school-assignment experiment.

The propensity score generated by centralized assignment is a complicated function of many

arguments and not easily computed in general. Our theoretical framework therefore revolves

around an asymptotic approximation to the general propensity score for a DA assignment mech-

anism. This DA propensity score is a function of a few easily-computed sample statistics. Our

analytical formula for the DA propensity score is derived from a large-market sequence that

increases the number of students and school capacities in �xed proportion. This approach is val-

idated by comparing empirical estimates using the large-market approximation with estimates

based on simulation, that is, a propensity score generated by drawing lottery numbers many

times and computing the resulting average assignment rates across draws.

Both the simulated and DA (analytic) propensity scores work well as far as covariate balance

goes, but the approximate formula is, of course, much more quickly computed, and highlights

speci�c sources of randomness and confounding in DA-based assignment schemes. In other words,

the DA propensity score reveals the nature of the strati�ed experimental design embedded in a

particular match. We can learn, for example, the features of student preferences and school pri-

orities that induce random assignment at some schools while o�er rates elsewhere are degenerate;

these facts are obscured by simple comparisons of the demand for schools and school capacities.

This information in turn shows how school priorities, capacities, and the instructions given to

applicants might be modi�ed so as to increase or supplement the research value of particular

assignment schemes.

Our test bed for the DA propensity score is an empirical analysis of charter school e�ects

in the Denver Public School (DPS) district, a new and interesting setting for charter school

impact evaluation.2 Because DPS assigns seats at traditional and charter schools in a uni�ed

2Charter schools operate with considerably more independence than traditional public schools. They are
free to structure their curriculum and school environment. Among other things, many charter schools �t more
instructional hours into a year by running longer school days and providing instruction on weekends and during the
summer. Because few charter schools are unionized, they hire and �re teachers and administrative sta� without
regard to the collectively bargained seniority and tenure provisions that constrain such decisions in many public
schools. About half of Denver charters appear to implement versions of what we've called the No Excuses model
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match, the population attending DPS charters is less positively selected than the population of

charter applicants in other large urban districts (where extra e�ort is required to participate in

decentralized charter lotteries). This descriptive fact makes DPS charter e�ects relevant for the

ongoing debate over charter expansion. As far as we know, ours is the �rst charter evaluation

to exploit an assignment scheme that simultaneously allocates seats in both the charter and

traditional public school sectors.

Our empirical evaluation strategy uses an indicator for DA-generated charter o�ers to instru-

ment charter school attendance in a two-stage least squares (2SLS) setup. This 2SLS procedure

eliminates bias from non-random variation in preferences and priorities by controlling for the

o�er propensity score with linear and saturated regression models. The step from propensity

score-based identi�cation to empirical implementation raises a number of issues that we address

in a straightforward manner. The results of this empirical analysis show impressive achievement

gains from charter attendance in Denver.

We also compare our propensity-score-based estimates with those generated by �rst-choice

and quali�cation instruments such as have been employed in earlier school evaluations in districts

with centralized assignments. Estimation strategies that fully exploit the random assignment em-

bedded in DA yield substantial e�ciency gains, while also allowing us to study charter attendance

e�ects at schools for which naive empirical strategies generate little or no variation. Finally, we

show how our identi�cation strategy captures causal e�ects at di�erent types of schools by using

DA-induced o�ers to jointly estimate the e�ects of attendance at charters and at DPS's innova-

tion schools, a popular alternative to the charter model (for a descriptive evaluation of innovation

schools, see Connors et al. 2013).

The next section uses simple market design examples to explain the problem at hand. Follow-

ing this explanation, Section 3 uses the theory of market design to characterize and approximate

the propensity score in large markets. Section 4 applies these results to estimate charter and

innovation school attendance e�ects in Denver. Finally, Section 5 summarizes our theoretical

and empirical �ndings and outlines an agenda for further work. A theoretical appendix derives

propensity scores for the Boston (Immediate Acceptance) mechanism and for DA with multiple

tie-breaking.

2 Understanding the DA Propensity Score

We begin by reviewing the basic DA setup for school choice, showing how DA generates prob-

abilities of school assignment that depend on preferences, priorities, and capacities. A total of

n students are to be assigned seats at schools of varying capacities. Students report their pref-

erences by ranking schools on an application form or website, while schools rank students by

placing them in priority groups. For example, a school may give the highest priority to students

with already-enrolled siblings, second highest priority to those who live nearby, with the rest in

of urban education. No Excuses charters run a long school day and year, emphasize discipline and comportment
and traditional reading and math skills, and rely heavily on data and teacher feedback in strategies to improve
instructions. For more on what distinguishes charters from traditional public schools and No Excuses pedagogy,
see Abdulkadiro§lu et al. (2011) and Angrist et al. (2013).
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a third priority group below these two. Each student is also assigned a single random number

that is used to break ties.

DA assigns students to schools like this:

Each student applies to his most preferred school. Each school ranks all its applicants

�rst by priority then by random number within priority groups and tentatively admits

the highest-ranked applicants in this order up to its capacity. Other applicants are

rejected.

Each rejected student applies to his next most preferred school. Each school ranks

these new applicants together with applicants that it admitted tentatively in the pre-

vious round �rst by priority and then by random number. From this pool, the school

tentatively admits those it ranks highest up to capacity, rejecting the rest.

This algorithm terminates when there are no new applications (some students may remain unas-

signed). DA produces a stable allocation in the following sense: any student who prefers another

school to the one he has been assigned must be outranked at that school, either because every-

one assigned there has higher priority, or because those who share the student's priority at that

school have higher lottery numbers. DA is also strategy-proof, meaning that families do as well

as possible by submitting a truthful preference list (for example, there is nothing to be gained

by ranking under-subscribed schools highly just because they are likely to yield seats). See Roth

and Sotomayor (1990) for a review of these and related theoretical results.

2.1 Propensity Score Pooling

The probability that DA assigns student i a seat at school s depends on many factors: the

total number of students, school capacities, the distribution of student preferences, and student

priorities at each school. We refer to a student's preferences and priorities as student type. For

example, a student of one type might rank school b �rst, school a second, and have sibling priority

at b.

Suppose we'd like to estimate the causal e�ect of attending a particular school, say a, relative

to other schools that students who rank a might attend (our application focuses on the causal

e�ect of attendance at groups of schools, speci�cally, charter schools, but the logic behind such

comparisons is similar). DA treats students of the same type symmetrically in that everyone of

a given type faces the same probability of assignment to each school. We can therefore eliminate

selection bias in comparisons of those who are and aren't o�ered seats at a simply by conditioning

on type, since all that remains to determine assignment is a random number, presumed here to

be independent of potential outcomes. As a practical matter, however, we'd like to avoid full

type conditioning, since this produces many small and even singleton or empty cells, reducing the

sample available for impact analysis dramatically. The following example illustrates this point.

Example 1. Five students {1, 2, 3, 4, 5} apply to three schools {a, b, c}, each with one seat.

Student 5 has the highest priority at c and student 2 has the highest priority at b, otherwise the

students have the same priority at all schools. We're interested in measuring the e�ect of an
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o�er at school a. Student preferences are

1 : a � b,
2 : a � b,
3 : a,

4 : c � a,
5 : c,

where a � b means that a is preferred to b. Students 3 and 5 �nd only a single school acceptable.

Note that no two students here have the same preferences and priorities. Therefore, full-

type strati�cation puts each student into a di�erent stratum, a fact that rules out a research

design based on full type conditioning. Yet, DA assigns students 1, 2, 3, and 4 to a each with

probability 0.25: students 4 and 5 each apply to c and 5 gets it by virtue of priority of his priority

there, leaving 1, 2, 3, and 4 all applying to a in the second round and no one advantaged there.

Assignment at a can therefore be analyzed in this example in a single stratum of size 4. As we

explain more formally in Section 3, this strati�cation scheme is determined by the propensity

score, the conditional probability of random assignment to a. Speci�cally, we can use a dummy

indicating o�ers at a as an instrument for attendance at a in a sample that includes types 1-4:

o�ers among these types occur with equal frequency and are therefore likely to be independent

of potential outcomes; we also expect o�ers of seats at a to boost enrollment there.

2.2 Further Pooling in Large Markets

Under DA, the propensity score for assignment to school a is determined by a student's failure

to win a seat at schools he ranks more highly than a and by the odds he wins a seat at a in

competition with those who have also ranked a and similarly failed to �nd seats at schools they've

ranked more highly than a. This structure leads to a large-market approximation that generates

pooling beyond that provided by the �nite-market propensity score. We illustrate this point via

a second simple example.

Example 2. Four students {1, 2, 3, 4} apply to three schools {a, b, c}, each with one seat. There

are no school priorities and student preferences are

1 : c,

2 : c � b � a,
3 : b � a,
4 : a.

As in Example 1, each student is of a di�erent type.

Let pa(i) for i = 1, 2, 3, 4 denote the probability that type i is assigned school a. With four

students, pa(i) comes from 4! = 24 possible lottery realizations (orders of the four students), all

equally likely. Given this modest number of possibilities, pa(i) is easily calculated by enumeration:

• Not having ranked a, type 1 is never assigned there, so pa(1) = 0.
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• Type 2 is seated at a when schools he's ranked ahead of a, schools b and c, are �lled by

others, and when he also beats type 4 in competition for a seat at a. This occurs for the

two realizations of the form (s, t, 2, 4) for s, t = 1, 3. Therefore, pa(2) = 2/24 = 1/12.

• Type 3 is seated at a when the schools he's ranked ahead of a�in this case, only b�are �lled

by others, while he also beats type 4 in competition for a seat at a. b can be �lled by type

2 only when 2 loses to 1 in the lottery at c. Consequently, type 3 is seated at a only in

sequences of the form (1, 2, 3, 4), which occurs only once. Therefore, pa(3) = 1/24.

• Finally, since type 4 gets the seat at a if and only if the seat does not go to type 2 or type

3, pa(4) = 21/24.

In this example, the propensity score di�ers for each student. But in larger markets with the

same distribution of types, the score is smoother. To see this, consider a large market that

replicates the structure of this example n times, so that n students of each type apply to 3

schools, each with n seats.3 With large n, enumeration of assignment possibilities is a chore. We

can, however, simulate the propensity score by repeatedly drawing lottery numbers.

A plot of simulation probabilities of assignment against market size for Example 2, shown in

Figure 1, reveals that as the market grows, the distinction between types 2 and 3 disappears. In

particular, Figure 1 shows that for large enough n,

pa(2) = pa(3) = 1/12; pa(1) = 0; pa(4) = 10/12 = 5/6,

with the probability of assignment at a for types 2 and 3 converging quickly. This convergence is

a consequence of a result established in the next section, which explains how, with many students

and seats, the probability that type 3 is seated at a is determined by failure to qualify at b, just

as it is for type 2.

The propensity score for a �nite economy is not easily computed in general, requiring the

sort of enumeration, or a time-consuming Monte Carlo-style simulation using repeated lottery

draws. We therefore focus on the continuum model, which leads us to a general characterization

of the DA propensity score. This model also reveals why some schools and applicant types are

subject to random assignment, while for others, assignment risk is degenerate. A signal feature

of the large market characterization is the role played by lottery quali�cation cuto�s at schools

ranked ahead of school a in determining probabilities of assignment at a. This is illustrated by

Example 2, which shows that, in the large-market limit, among schools that an applicant prefers

to a, we need only be concerned with what happens at the school at which it's easiest to qualify.

In general, this most informative disquali�cation (MID) determines how distributions of lottery

numbers for applicants of di�ering types are e�ectively truncated before entering the competition

for seats at a, thereby changing o�er rates at a.

3Many market-design analysts have found this sort of large-market approximation useful. Examples include
Abdulkadiro§lu et al. (2015); Kesten (2009); Kojima and Manea (2010); Che and Kojima (2010); Budish (2011);
Azevedo and Leshno (2014); Kesten and Ünver (2015).
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3 Score Theory

3.1 Setup

A general school choice problem, which we refer to as an economy, is de�ned by a set of students,

schools, school capacities, student preferences over schools, and student priorities at schools. Let

I denote a set of students, indexed by i, and let s = 1, ..., S index schools. We consider markets

with a �nite number of schools, but with either �nite (n) or in�nitely many students. As in

Abdulkadiro§lu et al. (2015) and Azevedo and Leshno (2014), the latter setting is referred to as

a continuum economy. In a continuum economy, I = [0, 1] and school capacities are de�ned as

the fraction of the continuum that can be seated at each school.

Student i's preferences over schools constitute a partial ordering of schools, �i, where a �i b
means that i prefers school a to school b. Each student is also granted a priority at every school.

Let ρis ∈ {1, ...,K,∞} denote student i's priority at school s, where ρis < ρjs means school s

prioritizes i over j. For instance, ρis = 1 might encode the fact that student s has sibling priority

at school s, while ρis = 2 encodes neighborhood priority, and ρis = 3 for everyone else. We use

ρis = ∞ to indicate that i is ineligible for school s. Many students share priorities at a given

school, in which case ρis = ρjs for some i 6= j. Let ρi = (ρi1, ..., ρiS) be the vector of student

i's priorities for each school. Student type is denoted by θi = (�i,ρi). We say that a student of

type θ has preferences �θ and priorities ρθ. Θ denotes the set of all possible types.

An economy is also characterized in part by a non-negative capacity vector, q, which is

normalized by the total number of students, or by their measure when students are indexed

continuously. In a �nite economy, where the set I contains n students and each school s has ks
seats, capacity is de�ned by qs = ks

n . In a continuum economy, qs is the proportion of the set I

that can be seated at school s.

The analysis here is concerned with school assignment mechanisms that use lotteries to dis-

tinguish between students with the same preferences and priorities. Student i's lottery number,

ri, is the realization of a uniformly distributed random variable on [0, 1], independent and iden-

tically distributed for all students. In particular, lottery draws are independent of type. In what

follows, we consider a centralized assignment system relying on a single lottery number for each

student. Extension to the less-common multiple tie-breaking case, in which a student may have

di�erent lottery numbers at di�erent schools, is discussed in the theoretical appendix.

For any set of student types Θ0 ⊂ Θ and for any number r0 ∈ [0, 1], de�ne the set of students

in Θ0 with lottery number less than r0 to be

I(Θ0, r0) = {i ∈ I | θi ∈ Θ0, ri ≤ r0}.

We use the shorthand notation I0 = I(Θ0, r0) for sets of applicants de�ned by type and lottery

number. Also, when r0 = 1, so that I0 includes all lottery numbers, the second argument is

omitted and I0 = {i ∈ I | θi ∈ Θ0} for various choices of Θ0.

When discussing a continuum economy, we let F (I0) denote the fraction of students in I0.

Since lottery numbers are uniform and independent of type, this is given by

F (I0) = E[1{θi ∈ Θ0}]× r0,
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where E[1{θi ∈ Θ0}] is the proportion of types in set Θ0. In a �nite economy with n students,

the corresponding fraction is computed as

F (I0) =
|I0|
n
.

For a continuum economy, F (I0) is �xed, that is, non-stochastic. By contrast, F (I0) for a

�nite economy depends on the realized lottery draw. Either way, the student side of an economy

is fully characterized by the distribution of types and lottery numbers, for which we sometimes

use the shorthand notation, F . Note also that every �nite economy has a continuum analog.

This analog can be constructed by replicating the type distribution and the number of seats in

the �nite economy, while �xing the proportion of seats at school s to be qs.

De�ning DA

We de�ne DA using the notation outlined above, nesting the �nite-market and continuum cases.

First, combine priority status and lottery realization into a single number for each student and

school, which we call student rank :

πis = ρis + ri.

Since the di�erence between any two priorities is at least 1 and random numbers are between 0

and 1, student rank is lexicographic in priority and lottery numbers.

DA proceeds in a series of rounds. Denote the evolving vector of admissions cuto�s in round

t by ct = (ct1, ..., c
t
S). The demand for seats at school s conditional on ct is de�ned as

Qs(c
t) = {i ∈ I | πis ≤ cts and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cts̃}.

In other words, school s is demanded by students with rank below the school-s cuto�, who prefer

school s to any other school for which they are also below the relevant cuto�.

The largest possible value of an eligible student's rank isK+1, so we can start with c1
s = K+1

for all s. Cuto�s then evolve as follows:

ct+1
s =

{
K + 1 if F (Qs(c

t)) < qs,

max
{
x ∈ [0,K + 1] | F ({i ∈ Qs(ct) such that πis ≤ x}) ≤ qs

}
otherwise;

where, because the argument for F can be written in the form {i ∈ I | θi ∈ Θ0, ri ≤ r0}, the
expression is well-de�ned. This formalizes the idea that when the demand for seats at s falls

below capacity at s, the cuto� is K + 1. Otherwise, the cuto� at s is the largest value such that

demand for seats at s is less than or equal to capacity at s.

The �nal admissions cuto�s determined by DA for each school s are given by

cs = lim
t→∞

cts.

The set of students that are assigned school s under DA is the demand for seats at the limiting

cuto�s: {i ∈ Qs(c)} where c = (c1, ..., cS). Since cs ≤ K + 1, an ineligible student is never

assigned to school s.
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We write the �nal DA cuto�s as a limiting outcome to accommodate the continuum economy;

in �nite markets, DA converges after �nitely many rounds. Appendix A.1 shows that this

description of DA is valid in the sense that: (a) the necessary limits exist for every economy,

�nite or continuous; (b) for every �nite economy, the allocation upon convergence matches that

produced by DA as usually described (for example, by Gale and Shapley (1962) and the many

market design studies building on their work).

De�ning the Propensity Score

DA-generated o�ers depend on preferences and priorities as well as on lottery numbers. DA

can therefore be seen as inducing a strati�ed randomized trial, where the �strata� are de�ned

by type, θ. Because students of di�erent types are likely to have di�erent outcomes for reasons

unrelated to their DA assignments, we're interested in isolating the variation in o�ers determined

by lottery numbers alone.

As in Rosenbaum and Rubin (1983)'s classic analysis of covariate conditioning, a key com-

ponent of our e�ort to isolate random assignment within strata is the propensity score. The

propensity score for a market of any size, denoted ps(θ), is the scalar function of type de�ned by

ps(θ) = Pr[Di(s) = 1|θi = θ],

where Di(s) indicates whether student i is o�ered a seat at school s. This function has domain

given by the set of types who rank s (we think of this as the group of applicants to s; for the

moment, the notation ps(θ) ignores the fact that the propensity score depends on market size.)

The Rosenbaum and Rubin (1983) propensity score theorem implies that without regard to the

support or dimensionality of θ, variation in treatment is unconfounded by strati�cation variables

that might be related to outcomes after conditioning on the scalar propensity score.

Propensity score conditioning is motivated by a pair of conditional independence results.

We �rst have the fact that DA o�ers are randomly assigned conditional on student type. In

other words, for any random variable Wi that is independent of lottery numbers (this can be

anything that is not a function of lottery numbers, including potential outcomes and student

characteristics like free lunch status), the o�er distribution satis�es

P [Di(s) = 1|Wi, θi = θ] = P [Di(s) = 1|θi = θ]. (1)

Although unsurprising, this result provides a necessary foundation for everything that follows;

Appendix A.2 therefore presents a formal proof.

The examples in Section 2 show that full type conditioning, that is, conditioning on each

value of θ, reduces the sample available for impact evaluation considerably and can eliminate

some schools from a causal analysis. It's natural, therefore, to consider grouping and smoothing

schemes that implicitly pool values of θ. The propensity score theorem is a dimension-reducing

conditional independence result that leads to optimal pooling. Speci�cally, given (1), it follows

immediately from Rosenbaum and Rubin's (1983) propensity score theorem (and from our proof

of (1)) that propensity score conditioning is enough to ensure o�ers are independent of Wi. In

other words,

P [Di(s) = 1|Wi, ps(θ)] = P [Di(s) = 1|ps(θ)] = ps(θ), (2)
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where P [Di(s) = 1|Wi, p(θ)] is shorthand for the conditional probability of assignment to s for

applicants with (unspeci�ed) Wi and of any type such that their score value is �xed at p(θ).

Our empirical strategy exploits (2), which implies that conditional on ps(θ) o�ers are inde-

pendent of potential outcomes. This follows from the fact that that o�ers are randomly assigned

conditional on type (the statement in (1)), while statement (2) ensures that propensity score

conditioning eliminates the possibility of omitted variables bias due to the relationship between

o�ers and type.4

A potential concern with score-based estimation strategies is an e�ciency loss. Ultimately,

we're concerned with IV estimates using DA-generated charter o�ers to instrument for charter

enrollment. The precision of these IV estimates is determined by the precision of the reduced

form, which in this case is the average causal e�ect of assignment to a school or group of schools.

With discrete covariates, attainment of the asymptotic semiparametric e�ciency bound for such

average causal e�ects requires full covariate conditioning, meaning, in our case, exhaustive strati-

�cation on type (Hahn, 1998). Example 1 highlights the fact that this result fails to hold in small

samples or a �nite population, however; more parsimonious conditioning is better. Moreover,

the e�ciency cost due to full covariate conditioning in �nite samples exceeds that due to lost

cells.5 Our next step is to derive an expression for ps(θ) that exploits the structure of DA.

3.2 Characterizing the DA Propensity Score

A key component in our characterization of ps(θ) is the notion of a marginal priority group at

school s. The marginal priority group consists of applicants for whom seats are allocated by

lottery if the school is over-subscribed. Formally, the marginal priority, ρs, is the integer part

of the cuto�, cs. Conditional on being rejected by all more preferred schools and applying for

school s, a student is assigned s with certainty if his ρis < ρs, that is, if he clears marginal

priority. Applicants with ρis > ρs have no chance of �nding a seat at s. Applicants for whom

ρis = ρs are marginal: these applicants are seated at s when their lottery numbers fall below a

school-speci�c lottery cuto�. The lottery cuto� at school s, denoted τs, is the decimal part of

the cuto� at s, that is, τs = cs − ρs.
These observations motivate a partition determined by marginal priorities at s. Let Θs denote

the set of student types who rank s and partition Θs according to

i) Θn
s = {θ ∈ Θs | ρθs > ρs}, (never seated)

ii) Θa
s = {θ ∈ Θs | ρθs < ρs}, (always seated)

iii) Θc
s = {θ ∈ Θs | ρθs = ρs}. (conditionally seated)

4Rosenbaum and Rubin (1983) also show that the propensity score provides the coarsest balancing score, which
in this case means that no coarser function of type ensures conditional independence of Di(s) and Wi.

5Angrist and Hahn (2004) show that with many small cells, probabilities of assignment close to zero or one,
and with a modest R-squared for the regression of outcomes on covariates, Hahn (1998)'s large-sample result
favoring full conditioning can be misleading even when no cells are lost. Similar arguments for propensity score
conditioning appear in Rosenbaum (1987); Rubin and Thomas (1996); Heckman et al. (1998); Hirano et al. (2003).
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The set Θn
s contains applicant types who have worse-than-marginal priority at s. No one in this

group is assigned to s. Θa
s contains applicant types that clear marginal priority at s. Some of

these applicants may end up seated at a school they prefer to s, but they're assigned s for sure if

they fail to �nd a seat at any school they've ranked more highly. Finally, Θc
s is the subset of Θs

that is marginal at s. These applicants are assigned s when they're not assigned a higher choice

and have a lottery number that clears the lottery cuto� at s.

A second key component of our score formulation re�ects the fact that failure to qualify at

schools other than s may truncate the distribution of lottery numbers in the marginal priority

group for s. To characterize the distribution of lottery numbers among those at risk of assignment

at s, we �rst de�ne the set of schools ranked above s. Speci�cally, applicants of type θ view the

following set of schools as better than s:

Bθs = {s′ ∈ S | s′ �θ s}.

An applicant's most informative disquali�cation (MID) at s is de�ned as a function of the cuto�s

at schools in Bθs

MIDθs ≡


0 if ρθs̃ > ρs̃ for all s̃ ∈ Bθs,
1 if ρθs̃ < ρs̃ for some s̃ ∈ Bθs
max{τs̃ | s̃ ∈ Bθs and ρθs̃ = ρs̃} if ρθs̃ = ρs̃ for some s̃ ∈ Bθs and ρθs̃ > ρs̃ otherwise.

MIDθs tells us how the lottery number distribution among applicants to s is truncated by

quali�cation at schools these applicants prefer to s. MIDθs is zero when type θ students have

worse-than-marginal priority at all higher ranked schools: when no s applicants can be seated at

a more preferred school, there's no lottery number truncation among those at risk of assignment

to s. On the other hand, when at least one school in Bθs is under-subscribed, no one of type θ

competes for a seat at s. Truncation is therefore complete, and MIDθs = 1.

The de�nition of MIDθs also re�ects the fact that, among applicants for whom ρθs̃ = ρs̃ for

some s̃ ∈ Bθs, any student who fails to clear τs̃ is surely disquali�ed at schools with lower cuto�s.

For example, applicants who fail to qualify at a school with a cuto� of 0.5 fail to qualify at schools

with cuto�s below 0.5. Therefore, to keep track of the truncation induced by disquali�cation at

all schools an applicant prefers to s, we need to record only the most forgiving cuto� that an

applicant fails to clear.

In �nite markets, MIDθs varies from one lottery draw to another, but in a continuum econ-

omy, MIDθs is �xed. Consider the large-market analog of Example 2 in which n students of

each of four types compete for the n seats at each of three schools. In this example, there's

a single priority group, so everyone is marginal. For large n, we can think of realized lottery

numbers as being distributed according to a continuous uniform distribution over [0, 1]. Types 2

and 3 rank di�erent schools ahead of a, i.e., B3a = {b} while B2a = {b, c}. Nevertheless, because
τc = 0.5 < 0.75 = τb, we have that MID2a = MID3a = τb = 0.75. To see where these cuto�s

come from, note �rst that among the 2n type 1 and type 2 students who rank c �rst in this

large market, those with lottery numbers lower (better) than 0.5 are assigned to c since it has a

capacity of n: τc = 0.5. The remaining type 2 students (half of the original mass of type 2), all

of whom have lottery numbers higher (worse) than 0.5, must compete with all type 3 students
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for seats at b. We therefore have 1.5n school-b hopefuls but only n seats at b. All type 3 students

with lottery numbers below 0.5 get seated at b (the type 2 students all have lottery numbers

above 0.5), but this doesn't �ll b. The remaining seats are therefore split equally between type

2 and 3 students in the upper half of the lottery distribution, implying that the highest lottery

number seated at b is τb = 0.75.

The following theorem uses the marginal priority and MID concepts to de�ne an easily-

computed DA propensity score that is a deterministic function of applicant type:

Theorem 1. Consider a continuum economy populated by applicants of type θ ∈ Θ to be assigned

to schools indexed by s ∈ S. For all s and θ in this economy, we have:

ps(θ) = ϕs(θ) ≡


0 if θ ∈ Θn

s ,

(1−MIDθs) if θ ∈ Θa
s ,

(1−MIDθs)×max

{
0,
τs −MIDθs

1−MIDθs

}
if θ ∈ Θc

s.

(3)

where we also set ϕs(θ) = 0 when MIDθs = 1 and θ ∈ Θc
s.

The proof appears in Appendix A.3.

The case without priorities o�ers a revealing simpli�cation of this result. Without priorities,

DA is the same as a random serial dictatorship (RSD), that is, a serial dictatorship with applicants

ordered by lottery number (see, e.g., Abdulkadiroglu and Sonmez 1998, Svensson 1999, Pathak

and Sethuraman 2010).6 Theorem 1 therefore implies the following corollary, which gives the

RSD propensity score:

Corollary 1. Consider a continuum economy with no priorities populated by applicants of type

θ ∈ Θ, to be assigned to schools indexed by s ∈ S. For all s and θ in this economy, we have:

ϕs(θ) ≡ (1−MIDθs)×max

{
0,
τs −MIDθs

1−MIDθs

}
= max {0, τs −MIDθs} .

Without priorities, Θn
s and Θa

s are empty. The probability of assignment at s is therefore de-

termined solely by draws from the truncated distribution of lottery numbers remaining after

eliminating applicants seated at schools they've ranked more highly. Applicants' whose most

informative disquali�cation exceeds the cuto� at school s cannot be seated at s because disqual-

i�cation at a more preferred school implies disquali�cation at s.

In a match with priorities, the DA propensity score also accounts for the fact that random

assignment at s occurs partly as a consequence of not being seated a school preferred to s.

Applying these principles in the continuum allows us to describe the DA propensity score as

follows:

i) Type Θn
s applicants have a DA score of zero because these applicants have worse-than-

marginal priority at s.

6Exam school seats are often assigned by a serial dictatorship based on admission test scores instead of random
numbers (see, e.g., Abdulkadiro§lu et al. 2014a, Dobbie and Fryer 2014). A generalization of RSD, multi-category
serial dictatorship, is used for Turkish college admissions (Balinski and Sönmez, 1999).
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ii) The probability of assignment at s is 1−MIDθs for applicants in Θa
s because these appli-

cants clear marginal priority at s, but not at higher-ranked choices. Applicants who clear

marginal priority at s are guaranteed a seat there if they don't do better. Not doing better

means failing to clear MIDθs, the most forgiving cuto� to which they're exposed in the

set of schools preferred to s. Since lottery numbers are uniform, this happens occurs with

probability 1−MIDθs.

iii) Applicants in Θc
s are marginal at s but fail to clear marginal priority at higher-ranked

choices. For these applicants to be seated at s they must fail to be seated at a higher-

ranked choice and win the competition for seats at s. As for applicants in Θa
s , the proportion

in Θc
s left for consideration at s is 1−MIDθs. Applicants in Θc

s are marginal at s, so their

status at s is also determined by the lottery cuto� at s. If the cuto� at s, τs, falls below the

truncation point,MIDθs, no one in this partition �nds a seat at s. On the other hand, when

τs exceedsMIDθs, seats are awarded by drawing from a continuous uniform distribution on

[MIDθs, 1]. The resulting assignment probability is therefore (τs−MIDθs)/(1−MIDθs).

Applying Theorem 1 to the large-market version of Example 2 explains the convergence in

type 2 and type 3 propensity scores seen in Figure 1. With no priorities, both types are in Θc
s.

As we've seen, MID2a = MID3a = τb = 0.75, that is, type 2 and 3 students seated at a must

have lottery numbers above 0.75. It remains to compute the cuto�, τa. Types 2 and 3 compete

only with type 4 at a, and are surely beaten out there by type 4s with lottery numbers below

0.75. The remaining 0.25 seats are shared equally between types 2, 3, and 4, going to the best

lottery numbers in [0.75, 1], without regard to type. The lottery cuto� at a, τa, is therefore

0.75 + 0.25/3 = 5/6. Plugging these into equation (3) gives the DA score for types 2 and 3:

ϕa(θ) = (1−MIDθa)×max

{
0,
τa −MIDθa

1−MIDθa

}
= (1− 0.75)×max

{
0,

5/6− 0.75

1− 0.75

}
=

1

12
.

The score for type 4 is the remaining probability, 1− (2× 1

12
) =

5

6
.

The DA propensity score is a simple function of a small number of intermediate quantities,

speci�cally, MIDθs, τs, and marginal priority status at s and elsewhere. In stylized examples,

we can easily compute continuum values for these parameters. In real markets with elaborate

preferences and priorities, it's natural to use sample analogs for score estimation. As we show

below, the resulting estimated DA propensity score provides an asymptotic approximation to the

propensity score for �nite markets.

3.3 Estimating the DA Propensity Score

We're interested in the limiting behavior of score estimates based on Theorem 1. The asymp-

totic sequence for our large-market analysis works as follows: randomly sample n students and

their lottery numbers from a continuum economy, described by type distribution F and school
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capacities, {qs}. Call the distribution of types and lottery numbers in this sample Fn. Fix the

proportion of seats at school s to be qs and run DA with these students and schools. Compute

MIDθs, τs, and partition Θs by observing cuto�s ĉn and assignments in this single realization,

then plug these quantities into equation (3). This generates an estimated propensity score,

p̂ns(θ), constructed by treating a size-n sample economy like its continuum analog. The actual

propensity score for this �nite economy, computed by repeatedly drawing lottery numbers for

the sample of students described by Fn and the set of schools with proportional capacities {qs},
is denoted pns(θ). We consider the gap between p̂ns(θ) and pns(θ) as n grows. The analysis here

makes use of a regularity condition:

Assumption 1. (First choice support) For any s ∈ S and priority ρ ∈ {1, ...,K} with F ({i ∈
I : ρis = ρ}) > 0, we have F ({i ∈ I : ρis = ρ, i ranks s �rst}) > 0.

This says that in the continuum economy, every school is ranked �rst by at least some students

in every priority group de�ned for that school.

In this setup, the propensity score estimated by applying Theorem 1 to data drawn from a

single sample and lottery realization converges almost surely to the propensity score generated

by repeatedly drawing lottery numbers. This result is presented as a theorem:

Theorem 2. In the asymptotic sequence described by Fn with proportional school capacities �xed

at {qs} and maintaining Assumption 1, the DA propensity score p̂ns(θ) is a consistent estimator

of pns(θ) in the following sense: For all θ ∈ Θ and s ∈ S,

|p̂ns(θ)− pns(θ)|
a.s.−→ 0.

Proof. The proof uses intermediate results, given as lemmas in the theoretical appendix. The �rst

lemma establishes that the vector of cuto�s computed for the sampled economy, ĉn, converges

to the vector of cuto�s in the continuum economy. That is,

ĉn
a.s.−→ c,

where c denotes the continuum economy cuto�s. This result, together with the continuous

mapping theorem, implies

p̂ns(θ)
a.s.−→ ϕs(θ).

In other words, the propensity score estimated by applying Theorem 1 to a sampled �nite econ-

omy converges to the DA propensity score for the corresponding continuum economy.

A second lemma establishes that for all θ ∈ Θ and s ∈ S,

pns(θ)
a.s.−→ ϕs(θ).

since ϕs is a continuous function of cuto�s.
7 That is, the actual (re-randomization-based) propen-

sity score in the sampled �nite economy also converges to the propensity score in the continuum

economy (Lemma 2 in Appendix A).

7See Azevedo and Leshno (2014), who provide convergence results for the cuto�s and conditional-on-type
probabilities of assignment generated by a sequence of stable matchings, showing that the empirical assignment
rates for types in a �nite market converge to the continuum probability of assignment. The characterization of
the DA propensity score in Theorem 1 does not appear to have an analog in their framework.
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Combining these two results shows that for all θ ∈ Θ and s ∈ S,

|p̂ns(θ)− pns(θ)|
a.s.−→ |ϕs(θ)− ϕs(θ)| = 0,

completing the proof. Since both Θ and S are �nite, this also implies uniform convergence, i.e.,

supθ∈Θ,s∈S |p̂ns(θ)− pns(θ)|
a.s.−→ 0.

Theorem 2 justi�es our use of the formula in Theorem 1 to control for student type in

empirical work looking at school attendance e�ects. Speci�cally, the theorem explains why, as

in example 2, it may be enough to stratify on applicants' most informative disquali�cation and

marginal priority status instead of all possible values of θ when estimating the causal e�ects of

school attendance. Not surprisingly, however, a number of implementation details associated

with this strategy remain to be determined. These gaps are �lled in the empirical application

below.

3.4 Identi�cation

Conditioning on the propensity score to control for type, we use DPS's �rst-round charter o�ers

to construct instrumental variables estimates of the e�ects of charter enrollment on achievement.

How should the resulting IV estimates be interpreted? Our IV procedure identi�es causal e�ects

for applicants treated when DA produces a charter o�er but not otherwise; in the local average

treatment e�ects (LATE) framework of Imbens and Angrist (1994) and Angrist et al. (1996),

these are charter-o�er compliers. IV fails to reveal average causal e�ects for applicants who

decline a �rst round DA charter o�er and are assigned another type of school in round 2 (in the

LATE framework, these are never-takers). Likewise, IV methods are not directly informative

about the e�ects of charter enrollment on applicants not o�ered a charter seat in round 1, but

who nevertheless �nd their way into a charter school in the second round (LATE always-takers).

To �esh out this interpretation and the assumptions on which it rests, let Ci be a charter

enrollment indicator and let Di indicate the o�er of a charter seat. These variables indicate

attendance and o�ers at any charter school, rather than at a speci�c school. Since DA produces

a single o�er, o�ers of seats at particular schools are mutually exclusive. We can therefore

construct Di by summing individual charter o�er dummies. Likewise, the propensity score for

this variable, pD(θ) ≡ E[Di|θ], is obtained by summing the scores for all charter schools to which

i has applied.

The population of charter-o�er compliers (LATEs) is de�ned by potential treatment status.

Potential treatment status (charter enrollment status) is indexed against the DA o�er instrument,

denoted Di. In particular, we see potential treatment C1i when Di is switched on and potential

treatment C0i otherwise (both of these are also assumed to exist for all i). Observed treatment

is therefore

Ci = C0i + (C1i − C0i)Di.

Compliers have C1i − C0i = 1, an event that happens when C1i = 1 and C0i = 0.

Causal e�ects are determined by potential outcomes, indexed against Ci. Initially, we allow

for the fact that o�ers might have a direct e�ect on outcomes even knowing Ci. This possibility
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is expressed by writing potential outcomes as Y1i(d) and Y0i(d). This means that when Di = d,

we see Y1i(d) if i is treated and we see Y0i(d) otherwise. All four of these potential outcomes are

assumed to exist for all i.

Equation (1) implies that conditional on θi = θ, the o�er variable, Di, is independent of

potential outcomes and assignments. In a manner analogous to the conditional independence of

single-school o�ers described by equation (1), this can be expressed by writing:

{Y1i(1), Y1i(0), Y0i(1), Y0i(0), C1i, C0i} ⊥⊥ Di|θi; (4)

where the vector {Y1i(1), Y1i(0), Y0i(1), Y0i(0), C1i, C0i} plays the role of Wi. Likewise, as for

single-school o�ers in equation (2), the propensity score theorem implies

{Y1i(1), Y1i(0), Y0i(1), Y0i(0), C1i, C0i} ⊥⊥ Di|pD(θi). (5)

The conditional independence conditions described by (4) and (5) allow us to estimate causal

e�ects of charter o�ers, the treatment indicated by Di. In practice, however, we're interested in

the e�ects of charter attendance, the treatment indicated by Ci.

Identi�cation of average causal e�ects of charter school attendance requires an exclusion

restriction. Speci�cally, we assume

Yji(1) = Yji(0) ≡ Yji; j = 0, 1.

In other words, charter o�ers are assumed to be unrelated to outcomes for applicant i once we

know whether this applicant attended a charter school. The exclusion restriction allows us to

replace the four double-index potential outcomes in (4) and (5) with two single-index potential

outcomes, Y1i and Y0i.

The case for the exclusion restriction is less immediate than that for conditional independence.

We might worry, for example, that outcomes are a�ected by lottery numbers even for applicants

whose charter status is unchanged by the lottery (that is, for always-takers and never-takers).

Denver's second round allocates any remaining school seats in an ad hoc school-by-school appli-

cation process, unrelated to lottery numbers drawn in the �rst round. But lottery numbers can

nevertheless a�ect the second round indirectly by changing opportunities. Consider, for example,

a skittish charter applicant who chooses a popular non-charter option when Di = 0 in round

1. Fearing the long charter school day and having applied to charter schools only to satisfy his

mother, this applicant also goes non-charter if his Di = 1. But in this case, having been o�ered a

charter seat in round 1, he must settle for a less desirable and perhaps lower-quality non-charter

option in round 2. This violates the exclusion restriction if Y0i(1) 6= Y0i(0). We must therefore

either assume away within-sector di�erences in potential outcomes, or introduce a �ner-grained

parameterization of school sector e�ects. The latter approach is explored in Section 4.6, below.

In addition to the conditional independence and exclusion restrictions, we also assume that,

conditional on the propensity score, charter o�ers cause charter enrollment for at least some

students, and that charter o�ers can only make charter enrollment more likely, so that C1i ≥ C0i

for all i. Given these assumptions, the conditional-on-score IV estimand is a conditional average

causal a�ect for compliers, that is:

E[Yi|Di = 1, pD(θi) = x]− E[Yi|Di = 0, pD(θi) = x]

E[Ci|Di = 1, pD(θi) = x]− E[Ci|Di = 0, pD(θi) = x]
= E[Y1i − Y0i|pD(θi) = x,C1i > C0i], (6)
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where pD(θi) is the charter-o�er propensity score associated with applicant i's type and x indexes

values in the support of pD(θ).

3.5 Estimation

In view of the fact that (6) generates a distinct causal e�ect for each score value, it's natural to

consider parsimonious models that use data from all propensity-score cells to estimate a single

average causal e�ect. We accomplish this by estimating a 2SLS speci�cation with �rst and second

stage equations that can be written

Ci =
∑
x

γ(x)di(x) + δDi +X ′iλ+ νi, (7)

Yi =
∑
x

α(x)di(x) + βCi +X ′iµ+ εi, (8)

where the di(x)'s are dummies indicating values of pD(θi), indexed by x, and γ(x) and α(x) are

the associated �score e�ects� in the �rst and second stages. The coe�cient δ in (7) is the �rst-stage

e�ect of charter o�ers on charter enrollment, while the coe�cient β in (8) is the causal e�ect of

interest These �rst and second stage equations include baseline covariates, Xi, to reduce residual

variance and increase precision (These consist of dummies for grade tested, gender, origin school

charter status, race, gifted status, bilingual status, subsidized lunch eligibility, special education,

limited English pro�cient status, and baseline test scores).

We also report semiparametric estimates of E[Y1i − Y0i|C1i > C0i]. In contrast with the

additive 2SLS setup, the semiparametric procedure requires only correct speci�cation of the

propensity score to generate a single average causal e�ect for all compliers. The semiparamet-

ric strategy is founded on Abadie (2003)'s observation that the conditional independence and

exclusion restrictions imply:

E[Y0i|C1i > C0i] =
1

Pr(C1i > C0i)
E

[
CiYi(Di − pD(θi))

(1− pD(θi))pD(θi)

]
,

E[Y1i|C1i > C0i] =
1

Pr(C1i > C0i)
E

[
(1− Ci)Yi((1−Di)− (1− pD(θi)))

(1− pD(θi))pD(θi)

]
.

Subtracting and rearranging, we have:

E[Y1i − Y0i|C1i > C0i] =
1

Pr(C1i > C0i)
E

[
Yi(Di − pD(θ))

(1− pD(θi))pD(θi)

]
. (9)

The �rst stage in this case, P [C1i > C0i], is constructed using

P [C1i > C0i] = E

[
Ci(Di − pD(θi))

(1− pD(θi))pD(θi)

]
. (10)

The semi-parametric IV estimator is the sample analog of the right hand side of (9) with de-

nominator given by the sample analog of (10).8

8Covariates are incorporated in the semiparametric estimation procedure by adding Xi to a logit model for
E[Di|Xi, pD(θi)] and using �tted values from this instead of estimates of pD(θi) in equations (9) and (10).
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4 School E�ectiveness in Denver

Since the 2011 school year, DPS has used DA to assign students to most schools in the district,

a process known as SchoolChoice. Denver school assignment involves two rounds, but only the

�rst round uses DA. Our analysis therefore focuses on the initial round.

In the �rst round of SchoolChoice, parents can rank up to �ve schools of any type, including

traditional public schools, magnet schools, innovation schools, and most charters. A neighbor-

hood school is also ranked automatically (if a student has a neighborhood school, the district

adds his neighborhood school to his choice list as the last choice). Schools ration seats using a

mix of priorities and a single lottery number. Priorities vary across schools and typically involve

siblings and neighborhoods. Seats may be reserved for a certain number of subsidized-lunch

students and for children of school sta�. Reserved seats are allocated by splitting schools and

assigning the highest priority status to students in the reserved group at one of the sub-schools

created by a split. Match participants can only qualify for seats in a single grade.

The DPS match distinguishes between groups of seats at a given school, known as �buckets�.

Buckets in the same school have distinct priorities and capacities. DPS converts applicants' pref-

erences over schools into preferences over buckets, splitting o� separate sub-schools for each. The

upshot for our purposes is that DPS's version of DA assigns seats at the sub-schools determined

by seat reservation policies and buckets rather than schools, while the relevant propensity score

captures the probability of o�ers at sub-schools. The discussion that follows refers to propensity

scores for schools, with the understanding that the fundamental unit of assignment is a bucket,

from which assignment rates to schools have been constructed.9

4.1 Computing the DA Propensity Score

The score estimates used as controls in equations (7) and (8) were constructed three ways. The

�rst is a simulation-based benchmark: we ran DA for one million lottery draws and recorded the

proportion of draws in which applicants of a given type in our �xed DPS sample were seated

at each school.10 By a conventional law of large numbers, this simulated score converges to the

actual �nite-market score as the number of draws increases. In practice, of course, the number of

replications is far smaller than the number of possible lottery draws, so the simulated score takes

on more values than we'd expect to see for the actual score. For applicants with a simulated score

strictly between zero and one, the simulated score takes on more than 1,100 distinct values (with

fewer than 1,300 types in this sample). Because many simulated score values are exceedingly

close to one another (or to 0 or 1) some of the estimators that control for the simulated score

use values that have been rounded.

We're particularly interested in taking advantage of the DA score de�ned in Theorem 1. This

theoretical result is used for propensity score estimation in two ways. The �rst, which we label

9DPS modi�es traditional DA mechanism by recoding the lottery numbers of all siblings applying to the same
school to be the best random number held by any of them. This modi�cation (known as �family link�) changes
the allocation of only about 0.6% of students from that generated by standard DA. Our analysis incorporates
family link by de�ning distinct types for linked students.

10Calsamiglia et al. (2014) and Agarwal and Somaini (2015) simulate the Boston mechanism as part of an e�ort
to estimate preferences in a structural model of latent preferences over schools.
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a �formula� calculation, applies equation (3) directly to the DPS data. Speci�cally, for each

applicant type, school, and entry grade, we identi�ed marginal priorities, and applicants were

allocated by priority status to either Θn
s , Θa

s , or Θc
s. The DA score, ϕs(θ) is then estimated by

computing the sample analog of MIDθs and τs in the DPS assignment data and plugging these

into equation (3).

The bulk of our empirical work uses a second application of Theorem 1, which also starts

with marginal priorities, MIDs, and cuto�s in the DPS data. This score estimate, however, is

given by the empirical o�er rate in cells de�ned by these variables. This score estimate, which

we refer to as a �frequency� calculation, is closer to an estimated score of the sort discussed by

Abadie and Imbens (2012) than is the formula score, which ignores realized assignment rates.

The large-sample distribution theory in Abadie and Imbens (2012) suggests that conditioning on

an estimated score based on realized assignment rates may increase the e�ciency of score-based

estimates of average treatment e�ects.

Propensity scores for school o�ers tell us the number of applicants subject to random assign-

ment at each DPS charter school.11 These counts, reported in columns 3-5 of Table 1 for the

three di�erent score estimators, range from none to over 300. The proportion of applicants sub-

ject to random assignment varies markedly from school to school. This can be seen by comparing

the count of applicants subject to random assignment with the total applicant count in column

1. The randomized applicant count calculated using frequency and formula score estimates are

close, but some di�erences emerge when a simulated score is used.12

Column 5 of Table 1 also establishes the fact that at least some applicants were subject to

random assignment at every charter except for the Denver Language School, which o�ered no

seats. In other words, every school besides the Denver Language School had applicants with a

simulated propensity score strictly in the unit interval. Three schools for which the simulated

score shows very few randomized applicants (Pioneer, SOAR Oakland, Wyatt) have an empirical

o�er rate of zero, so the frequency version of the DA propensity score is zero for these schools

(applicant counts based on intervals determined by DA frequency and formula scores appear in

columns 3 and 4).

DA produces random assignment of seats for students ranking charters �rst for a much smaller

set of schools. This can be seen in the last column of Table 1, which reports the number of appli-

11The data analyzed here come from �les containing the information used for �rst-round assignment of students
applying in the 2011-12 school year for seats the following year (this information includes preference lists, priorities,
random numbers, assignment status, and school capacities). School-level scores were constructed by summing
scores for all component sub-schools used to implement seat reservation policies and to de�ne buckets. Our
empirical work also uses �les with information on October enrollment and standardized scores from the Colorado
School Assessment Program (CSAP) and the Transitional Colorado Assessment Program (TCAP) tests, given
annually in grades 3-10. A data appendix describes these �les and the extract we've created from them. For
our purposes, �Charter schools� are schools identi�ed as �charter� in DPS 2012-2013 SchoolChoice Enrollment

Guide brochures and not identi�ed as �intensive pathways� schools, which serve students who are much older than
typical for their grade.

12The gap here is probably due to our treatment of family link. The Blair charter school, where the simulated
score randomization count is farthest from the corresponding DA score counts, has more applicants with family
link than any other school. Unlike our DA score calculation, which ignores family link, the simulated score
accommodates family link by assigning a unique type to every student a�ected by a link.
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cants with a simulated score strictly between zero and one, who also ranked each school �rst. The

reduced scope of �rst-choice randomization is important for our comparison of strategies using

the DA propensity score with previously-employed IV strategies using �rst-choice instruments.

First-choice instruments applied to the DPS charter sector necessarily ignore many schools. Note

also that while some schools had only a handful of applicants subject to random assignment,

over 1,400 students were randomized in the charter sector as a whole.

The number of applicants randomized at particular schools can be understood further using

Theorem 1. Why did STRIVE Prep - GVR have 116 applicants randomized, even though Table

1 shows that no applicant with non-degenerate o�er risk ranked this school �rst? Random as-

signment at GVR is a consequence of the many GVR applicants randomized by admissions o�ers

at schools they'd ranked more highly. This and related determinants of o�er risk are detailed

in Table 2, which explores the anatomy of the DA propensity score for 6th grade applicants to

four middle schools in the STRIVE network. In particular, we see (in column 8 of the table)

that all randomized GVR applicants were randomized by virtue of havingMIDθs inside the unit

interval, with no one randomized at GVR's own cuto� (column 7 counts applicants randomized

at each school's cuto�).

In contrast with STRIVE's GVR school, few applicants were randomized at STRIVE's High-

land, Lake, and Montbello campuses. This is a consequence of the fact that most Highland,

Lake, and Montbello applicants were likely to clear marginal priority at these schools (having

ρθs < ρs), while having values of MIDθs mostly equal to zero or 1, eliminating random as-

signment at schools ranked more highly. Interestingly, the Federal and Westwood campuses are

the only STRIVE schools to see applicants randomized around the cuto� in the school's own

marginal priority group. We could therefore learn more about the impact of attendance at Fed-

eral and Westwood by changing the cuto� there (e.g., by changing capacity), whereas such a

change would be of little consequence for evaluations of the other schools.

Table 2 also documents the weak connection between applicant randomization counts and a

naive de�nition of over-subscription based on school capacity. In particular, columns 2 and 3

reveal that four out of six schools described in the table ultimately made fewer o�ers than they

had seats available (far fewer in the case of Montbello). Even so, assignment at these schools

was far from certain: they contribute to our score-conditioned charter school impact analysis.

A broad summary of DPS random assignment appears in Figure 2. Panel (a) captures the

information in columns 3 and 6 of Table 1 by plotting the number of �rst-choice applicants

subject to randomization as black dots, with the total randomized at each school plotted as

an arrow pointing up from these dots (schools are indexed on the x-axis by their capacities).

This representation highlights the dramatic gains in the number of schools and the precision

with which they can be studied as a payo� to our full-information approach to the DA research

design. These bene�ts are not limited to the charter sector, a fact documented in Panel (b) of

the �gure, which plots the same comparisons for non-charter schools in the DPS match.

4.2 DPS Data and Descriptive Statistics

The DPS population enrolled in grades 3-9 in the Fall of 2011 is roughly 60% Hispanic, a fact

reported in Table 3, along with other descriptive statistics. We focus on grades 3-9 in 2011
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because outcome scores come from TCAP tests taken in grades 4-10 in the spring of the 2012-13

school year.13 The high proportion Hispanic makes DPS an especially interesting and unusual

urban district. Not surprisingly in view of this, almost 30 percent of DPS students have limited

English pro�ciency. Consistent with the high poverty rates seen in many urban districts, three

quarters of DPS students are poor enough to qualify for a subsidized lunch. Roughly 20%

of the DPS students in our data are identi�ed as gifted, a designation that quali�es them for

di�erentiated instruction and other programs.

Nearly 11,000 of the roughly 40,000 students enrolled in grades 3-9 in Fall 2011 sought to

change their school for the following year by participating in the assignment, which occurs in

the spring. The sample participating in the assignment, described in column 2 of Table 3,

contains fewer charter school students than appear in the total DPS population, but is otherwise

demographically similar. It's also worth noting that our impact analysis is limited to students

enrolled in DPS in the baseline (pre-assignment) year of 2011. The sample described in column

2 is therefore a subset of that described in column 1. The 2012 school assignment, which also

determines the propensity score, includes the column 2 sample plus new entrants.

Column 3 of Table 3 shows that of the nearly 11,000 DPS-at-baseline students included in the

assignment, almost 5,000 ranked at least one charter school. We refer to these students as charter

applicants; the estimated charter attendance e�ects that follow are for subsets of this applicant

group. DPS charter applicants have baseline achievement levels and demographic characteristics

broadly similar to those seen district-wide. The most noteworthy feature of the charter applicant

sample is a reduced proportion white, from about 19% in the centralized assignment to a little

over 12% among charter applicants. It's also worth noting that charter applicants have baseline

test scores close to the DPS average. This contrasts with the modest positive selection of charter

applicants seen in Boston (reported in Abdulkadiro§lu et al. 2011).

A little over 1,400 charter applicants have a frequency estimate of the probability of charter

assignment between zero and one; the count of applicants subject to random assignment rises to

about 1,500 when the score is estimated by simulation. Charter applicants subject to random

assignment are described in columns 4 and 6 of Table 3. Although only about 30% of charter

applicants were randomly assigned a charter seat, these students look much like the full charter

applicant pool. The main di�erence is a higher proportion of applicants of randomized applicants

originating at a charter school (that is, already enrolled at a charter at the time they applied for

seats elsewhere). Columns 5 and 7, which report statistics for the subset of the randomized group

that enrolls in a charter school, show slightly higher baseline scores among charter students.

4.3 Score-Based Balance

Conditional on the propensity score, applicants o�ered a charter seat should look much like those

not o�ered a seat. Moreover, because o�ers are randomly assigned conditional on the score, we

expect to see conditional balance in all applicant characteristics and not just for the variables

that de�ne an applicant's type. We assess the balancing properties of the DA propensity score

using simulated expectations. Speci�cally, drawing lottery numbers 400 times, we ran DA and

13Grade 3 is omitted from the outcome sample because 3rd graders have no baseline test.
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computed the DA propensity score each time, and then computed average covariate di�erences

by o�er status. The balance analysis begins with uncontrolled di�erences in average applicant

characteristics, followed by regression-adjusted di�erences that put applicant characteristics on

the left-hand side of regression models like equation (7), omitting the covariate controls, Xi.

Uncontrolled comparisons by o�er status, reported in columns 1 and 2 of Table 4, show

large di�erences in average student characteristics, especially for variables related to preferences.

For instance, across 400 lottery draws, those not o�ered a charter seat ranked an average of

1.4 charters, but this �gure increases by almost half a school for applicants who were o�ered a

charter seat. Likewise, while fewer than 30% of those not o�ered a charter seat had ranked a

charter school �rst, the probability applicants ranked a charter �rst increases to over 0.9 (that

is, 0.29+0.62) for those o�ered a charter seat. Column 2 also reveals important demographic

di�erences by o�er status; Hispanic applicants, for example, are substantially over-represented

among those o�ered a charter seat.14

Conditioning on frequency estimates of the DA propensity score reduces di�erences by o�er

status markedly. This can be seen in columns 3-5 of Table 4. The �rst set of conditional results,

which come from regression models with linear control for the propensity score rather than

dummies, show virtually no di�erence by o�er status in the odds a charter is ranked �rst or that

an applicant is Hispanic. O�er gaps in other application and demographic variables are also much

reduced in this speci�cation. Columns 4 and 5 of the table show that non-parametric control for

the DA propensity score (implemented by dummying all score values in the unit interval, with

an average of 39 values across simulations when rounded to nearest hundredth and an average

47 without rounding) reduces o�er gaps even further. These results establish that a single DPS

applicant cohort is large enough for the DA propensity score to eliminate selection bias.15

Columns 6-8 of Table 4, which report estimated o�er gaps conditional on a simulated propen-

sity score, show that the simulated score does a better job of balancing treatment and control

groups than does the DA score. Di�erences by o�er status conditional on the simulated score,

whether estimated linearly or with nonparametric controls, appear mostly in the third decimal

place. This re�ects the fact that simulation recovers the actual �nite-market propensity score

(up to simulation error), while the DA propensity score is an asymptotic approximation that

should be expected to provide perfect treatment-control balance only in the limit. It's worth

noting, however, that the simulated score starts with 1,148 unique values. As a practical matter,

the simulated score must be smoothed to accommodate non-parametric control. Rounding to

the nearest hundredth leaves us with 51 points of support, close to the number of support points

seen for the DA score. Rounding to the nearest ten-thousandth leaves 121 points of support.

Finer rounding produces noticeably better balance for the number-of-schools-ranked variable.

Our exploration of score-based balance is rounded out with the results from a traditional

balance analysis such as would be seen in analyses of a randomized trial. Speci�cally, Table 5

documents balance for the DPS match by reporting the usual t and F-statistics for o�er gaps

14Table 4 omits standard errors because the only source of uncertainty here is the modest simulation error
arising from the fact that we've drawn lottery numbers 400 instead of in�nitely many times.

15Table B4 provides a computational proof of Theorem 2 by reporting o�er gaps of the sort shown in Table 4 for
scaled-up versions of the DPS economy. Doubling the number of applicants and seats at each school in the DPS
market pushes conditional gaps down markedly, and multiples of 4 and 8 make these small gaps even smaller.
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in covariate means. Again, we look at balance conditional on propensity scores for applicants

with scores strictly between 0 and 1. As can be seen in Table 5a, application covariates are well-

balanced by non-parametric control for either DA or simulated score estimates (linear control

for the DA propensity score leaves a signi�cant gap in the number of charter schools ranked).16

Table 5a also demonstrates that full control for type leaves us with a much smaller sample

than does control for the propensity score: models with full type control are run on a sample of

size 301, a sample size reported in the last column of the table. Likewise, the fact that saturated

control for the simulated score requires some smoothing can be see in the second last column

showing the reduced sample available for estimation of models that control fully for a simulated

score rounded to the nearest ten-thousandth.

Not surprisingly, a few signi�cant imbalances emerge in balance tests for the longer list of

baseline covariates, reported in Table 5b. Here, the simulated score seems to balance charac-

teristics somewhat more completely than does the DA score, but the F-statistics (reported at

the bottom of the table) that jointly test balance of all baseline covariates fail to reject the null

hypothesis of conditional balance for any speci�cation reported.

Baseline score gaps as large as −0.1σ appear in some of the comparisons at the bottom of

the table. The fact that these gaps are not mirrored in the comparisons in Table 4 suggests the

di�erences in Table 5 are due to chance. Still, we can mitigate the e�ect of chance di�erences on

2SLS estimates of charter e�ects by adding baseline score controls (and other covariates) to our

empirical models. The inclusion of these additional controls also has the salutary e�ect of making

the 2SLS estimates of interest considerably more precise (baseline score controls are responsible

for most of the resulting precision gain). Finally, it's worth noting that the imbalance left after

conditioning on the DA propensity score turns out to matter little for the 2SLS estimates we're

ultimately after.

Modes of Inference

Econometric inference typically tries to quantify the uncertainty due to random sampling. What

then, to make of the fact that we have data on all DPS applicants from 2012, rather than a

random sample? On one hand, we might imagine that the applicants we happen to be studying

constitute a random sample from some larger population of possible applicants. At the same

time, the statistical uncertainty in our empirical work can also be seen as a consequence of random

assignment : we see only a single lottery draw for each applicant, one of many possibilities even

when the sample of applicants is viewed as �xed.

In an e�ort to determine whether the distinction between sampling inference and random-

ization inference matters for our purposes, we computed randomization p-values by repeatedly

drawing lottery numbers and calculating o�er gaps in covariates conditional on the simulated

propensity score. Regression conditioning on the simulated score produces near-perfect balance

in Table 4 so this distribution is what we should expect to see under the null hypothesis of no

di�erence by treatment assignment. Randomization p-values are therefore given by quantiles of

the t-statistics in the distribution resulting from these repeated draws.

16Table 5 reports the results controlling for frequency estimates of the DA propensity score and the simulated
propensity score. Balance results using formula estimates of the score appear in Appendix Table B3.
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The p-values associated with conventional robust t-statistics for covariate balance turn out

to be close to the corresponding randomization p-values. For the number of charter schools

an applicant has ranked, for example, the conventional p-value for balance is 0.885 while the

corresponding randomization p-value is 0.850. This is consistent with a classic result on the

asymptotic equivalence of randomization and sampling tests for di�erences in means (see, e.g.,

15.2 in Lehmann and Romano 2005).

Abadie et al. (2014) generalize results on the large-sample equivalence of randomization and

sampling inference to cover regression estimates of treatment e�ects and covariate balance such

as reported here. Speci�cally, they show that if the regression function is linear and the regression

of treatment on controls is linear, the usual robust covariance matrix associated with random

sampling is asymptotically valid for the sampling distribution induced by random assignment.

The treatment in our case is an o�er dummy, while the controls are dummies or a linear model

for the propensity score. The second of these requirements holds here when the controls fully

saturate the propensity score (ignoring any additional covariates). The �rst requires constant

o�er e�ects given a saturated model for the score. Apparently, we're not so far from this that it

matters for inference.

A related issue arises from the fact that the simulated score generates a �known� or population

score, while our empirical strategy also conditions on formula and frequency estimates of the

propensity score. As noted by Hirano et al. (2003) and Abadie and Imbens (2012), conditioning

on an estimated score may a�ect sampling distributions of the resulting estimated causal e�ects.

We therefore checked conventional large-sample p-values against randomization p-values for the

reduced-form charter o�er e�ects associated with the various sorts of 2SLS estimates discussed

in the next section. Robust asymptotic sampling formulas again generate p-values close to

a randomization-inference benchmark, regardless of how the score behind these estimates was

constructed. In view of these �ndings, we rely on the usual robust standard errors and test

statistics for inference about 2SLS estimates of treatment e�ects.17

4.4 E�ects of Charter Enrollment

2SLS estimates of charter attendance e�ects are remarkably similar to the corresponding semi-

parametric estimates. This is apparent in Table 6, which compares 2SLS estimates of models with

additive score controls to semiparametric estimates of average treatment e�ects constructed using

propensity score weighting and three versions of the score. Compare, for example, frequency-

score-controlled 2SLS estimates of e�ects on math and reading of 0.496 and 0.127 with semipara-

metric estimates around 0.44 and 0.11. At the same time, standard errors for the semiparametric

estimates are higher than those for 2SLS (semiparametric precision is estimated using a Bayesian

bootstrap that randomly reweights observations; see Shao and Tu (1995) for an introduction).

Semiparametric estimates weighted using a simulated score are especially imprecise.

17Appendix Table B2 reports conditional-on-score estimates of attrition di�erentials by o�er status. Here, we
see marginally signi�cant gaps on the order of 4-5 points when estimated conditional on the DA propensity score.
Attrition di�erentials fall to a statistically insigni�cant 3 points when estimated conditional on a simulated score.
The estimated charter attendance e�ects discussed below are similar when computed using either type of score
control, so it seems unlikely that di�erential attrition is a source of bias in our 2SLS estimates.
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The similarity of 2SLS and semiparametric estimates leads us to report only 2SLS estimates

in what follows. In addition to their relative precision, 2SLS inference relieves researchers of

the need to make judgements regarding bootstrap methods or implementation (we found, for

example, that a conventional nonparametric bootstrap required trimming or tuning to eliminate

the in�uence of occasional small �rst stage estimates) .

A DA-generated charter o�er boosts charter school attendance rates by about 0.4. These

�rst stage estimates, shown in the �rst row of Table 7, are computed by estimating equation

(7). First-stage estimates of around 0.68 computed without score controls, shown in column 4 of

the table, are clearly biased upwards. The estimates reported in this table control for baseline

test scores and covariates described earlier. These extra controls are not necessary for consistent

causal inference but their inclusion increases precision (Estimates without covariates appear in

the appendix).18

2SLS estimates of charter attendance e�ects on test scores, reported below the �rst-stage

estimates in Table 7, show remarkably large gains in math, with smaller e�ects on reading. The

math gains reported here are similar to those found for charter students in Boston (see, for

example, Abdulkadiro§lu et al. 2011). Previous lottery-based studies of charter schools likewise

report substantially larger gains in math than in reading. Here, we also see large and statistically

signi�cant gains in writing scores.19

Importantly for our methodological agenda, charter impact estimates reported in Table 7 are

largely invariant to whether the propensity score is estimated by simulation or by a frequency or

formula calculation that uses Theorem 1. Compare, for example, math impact estimates of 0.496,

0.524, and 0.543 using frequency-, formula-, and simulation-based score controls, all estimated

with similar precision. This alignment validates the use of Theorem 1 to control for applicant

type.

Estimates that omit propensity score controls highlight the risk of selection bias in a naive

2SLS empirical strategy. This is documented in column 4 of Table 7, which shows that 2SLS

estimates of math and writing e�ects constructed using DA o�er instruments while omitting

propensity score controls are too small by about half. A corresponding set of OLS estimates

without propensity score controls, reported in column 5 of the table, also comes in too small.

The results in column 6 show that adding score controls to the OLS model pulls the estimates up

a little, but a substantial gap between between these and the corresponding set of 2SLS estimates

remains.

18Results here are for scores in grades 4-10. The pattern of results in an analysis that separates high schools
from middle and elementary schools is similar. The sample used for IV estimation is limited to charter applicants
with the relevant propensity score in the unit interval, for which score cells have o�er variation in the data at
hand (these restrictions amount to the same thing for the frequency score). The OLS estimation sample includes
charter applicants, ignoring score- and cell-variation restrictions.

19Standard errors for the 2SLS estimates reported here ignore the fact that the DA propensity score is estimated.
This is probably conservative: Abadie and Imbens (2012) show that the correction for conditioning on an estimated
score reduces the asymptotic variance matrix for an estimated average treatment e�ect. Strictly speaking, our
2SLS procedure estimates a population average treatment e�ect only under additional assumptions (like constant
e�ects). Still, as noted in our discussion of modes of inference, the p-values implied by conventional (robust) 2SLS
standard errors ignoring score estimation come out close to randomization p-values, suggesting any adjustment
for score estimation in this context is small.
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4.5 Alternative Identi�cation Results

We're interested in comparing 2SLS estimates constructed using a DA o�er dummy as an instru-

ment while controlling for the DA propensity score with suitably-controlled estimates constructed

using �rst-choice and quali�cation instruments. As noted in Section 3.4, we expect DA-o�er in-

struments to yield a precision gain and to increase the number of schools represented in the

estimation sample relative to these two previously-employed IV strategies.20

Let Q(θi) be a variable that uniquely identi�es the charter school that applicant i ranks �rst,

along with his priority status at this school, de�ned for applicants whose �rst choice is indeed

a charter school. Q(θi) ignores other schools that might have been ranked. The �rst-choice

strategy is implemented by the following 2SLS setup:

Yi =
∑
x

α(x)qi(x) + βCi + εi,

Ci =
∑
x

γ(x)qi(x) + δDf
i + νi,

where the di(x)'s are dummies indicating values of Q(θi), indexed by x, and γ(x) and α(x)

are the associated �quali�cation risk set e�ects� in the �rst and second stages. The �rst-choice

instrument, Df
i , is a dummy variable indicating i's quali�cation at his or her �rst-choice school.

In other words,

Df
i = 1[πis ≤ cs for charter s that i has ranked �rst].

First choice quali�cation is the same as �rst choice o�er since under DA, applicants who rank a

�rst are o�ered a seat there if and only if they qualify at a.

The quali�cation strategy expands the sample to include all charter applicants, with Q(θi)

identifying the set of all charter schools that i ranks, along with his or her priority status at each of

these schools. Q(θi) ignores the order in which schools are ranked, coding only their identities, but

priorities are associated with schools.21 The quali�cation instrument, Dq
i , indicates quali�cation

at any charter he or she has ranked. In other words,

Dq
i = 1[πis ≤ cs for at least one charter s that i has ranked].

In large markets, the instruments Df
i and Dq

i are independent of type conditional on Q(θi); see

Appendix A.5 for details.

A primary source of ine�ciency in the �rst-choice and quali�cation strategies is apparent in

Panel A of Table 8. This panel reports two sorts of �rst stage estimates for each instrument:

the �rst of these regresses a dummy indicating any charter o�er�that is, our DA charter o�er

instrument, Di�on each of the three instruments under consideration. A regression of Di on itself

necessarily produces a coe�cient of one. By contrast, a �rst-choice o�er boosts the probability

20First-choice applications include Abdulkadiro§lu et al. (2013), Deming (2011), Deming et al. (2014), and
Hastings et al. (2009). First-choice instruments have also been used with decentralized assignment mechanisms
(Cullen et al. (2006), Abdulkadiro§lu et al. (2011), Dobbie and Fryer (2011), and Hoxby et al. (2009)). Dobbie
and Fryer (2014), Lucas and Mbiti (2014), and Pop-Eleches and Urquiola (2013) use quali�cation instruments.

21For example, an applicant who ranks A and B with marginal priority only at A is distinguished from an
applicant who ranks A and B with marginal priority only at B.
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of any charter o�er by only around 0.77 in the sample of those who have ranked a charter �rst.

This re�ects the fact that, while anyone receiving a �rst choice charter o�er has surely been

o�ered a charter seat, roughly 23% of the sample ranking a charter �rst is o�ered a charter seat

at schools other than their �rst choice. The relationship between Dq
i and charter o�ers is even

weaker, at around 0.48. This re�ects the fact that for schools below the one ranked �rst, charter

quali�cation is not su�cient for a charter o�er.

The diminished impact of the two alternative instruments on charter o�ers translates into

a weakened �rst stage for charter enrollment. The best case scenario, using all DA-generated

o�ers (that is, Di) as a source of quasi-experimental variation, produces a �rst stage of around

0.41. But �rst-choice o�ers boost charter enrollment by just 0.32, while quali�cation anywhere

yields a charter enrollment gain of only 0.18. As always with comparisons of IV strategies, the

size of the �rst stage is a primary determinant of relative precision.

At 0.071, the standard error of the DA-o�er estimate is markedly lower than the standard

error of 0.102 yielded by a �rst-choice strategy and well below the standard error of 0.149 gen-

erated by quali�cation instruments. In fact, the precision loss here is virtually the same as the

decline in the intermediate �rst stages recorded in the �rst row of the table (compare 0.774 with

0.071/0.102 = 0.696 and 0.476 with 0.071/0.149 = 0.477). The loss here is substantial: columns

4 and 5 show the sample size increase needed to undo the damage done by a smaller �rst stage

for each alternative instrument.22

Only half as many schools are represented in the �rst-choice analysis sample as in the DA

sample (At 24, the number of schools in the quali�cation sample is closer to the full complement

of 30 schools available for study with DA o�ers). First-choice analyses lose schools because many

lotteries fail to randomize �rst-choice applicants (as seen in Table 1). It's therefore interesting

to note that the �rst-choice estimate of e�ects on math and reading scores are noticeably larger

than the estimates generated using DA o�er and quali�cation instruments (compare the estimate

of 0.5 using DA o�ers with estimates of 0.6 and 0.41 using �rst-choice and quali�cation instru-

ments). This �nding may re�ect an advantage for those awarded a seat at their �rst choice school

(Hastings et al. 2009; Deming 2011; Deming et al. 2014 �nd a general ��rst choice advantage� in

analyses of school attendance e�ects.) By contrast, the DA o�er instrument yields an estimand

that is more representative of the full complement of charter schools in the match. In the same

spirit, it's worth noting that the �rst-choice and quali�cation IV samples include no 10th graders.

4.6 Charter School E�ects with a Mixed Counterfactual

The 2SLS estimates in Tables 7 and 8 contrast charter outcomes with potential outcomes gen-

erated by attendance at a mix of traditional public schools and schools from other non-charter

sectors. We'd like to simplify this mix so as to produce something closer to a pure sector-

to-sector comparison. Allowance for more than one treatment channel also addresses concerns

about charter-o�er-induced changes in counterfactual outcomes that might cause violations of

the exclusion restriction.

22The sample used to construct the estimates in columns 1-3 of Table 8 is limited to those who have variation
in the instrument at hand conditional on the relevant risk sets controls.
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Our �rst step in this e�ort is to describe the distribution of non-charter school choices for

applicants who were and weren't o�ered a charter seat in the DPS assignment. We then identify

the distribution of counterfactual (non-charter) school sectors for the group of charter-lottery

compliers. Finally, we use the DA mechanism to jointly estimate causal e�ects of attendance at

schools in di�erent sectors, thereby making the non-charter counterfactual in our 2SLS estimates

more homogeneous.

The analysis here builds on a categorical variable, Wi, capturing school sector in which i

is enrolled. Important DPS sectors besides the charter sector are traditional public schools,

innovation schools, magnet schools, and alternative schools. Innovation and magnet schools

are managed by DPS. Innovation schools design and implement innovative practices meant to

improve student outcomes (for details and a descriptive evaluation of innovation schools, see

Connors et al. 2013). Magnet schools serve students with particular styles of learning. Alter-

native schools serve mainly older students struggling with factors that may prevent them from

succeeding in a traditional school environment. Smaller school sectors include a single charter

middle school outside the centralized DPS assignment process (now closed) and a private school

contracted to serve DPS students.

The distribution of enrollment sectors for students who do and don't receive a charter o�er

are described in the �rst two columns of Table 9. These columns show a charter enrollment

rate of 87% in the group o�ered a charter seat, along with substantial but much smaller charter

enrollment in the non-o�ered group.23 Perhaps surprisingly, only around 41% of those not

o�ered a charter seat enroll in a traditional public schools, with the rest of the non-o�ered

group distributed over a variety of school types. Innovation schools are the leading non-charter

alternative to traditional public schools. Innovation schools operate under an innovation plan

that waives some provisions of the relevant collective bargaining agreements (for a descriptive

evaluation of these schools, see Connors et al. 2013).24

The sector distribution for non-o�ered applicants with non-trivial charter risk appears in col-

umn 3 of Table 9, alongside the sum of the non-o�ered mean and a charter-o�er treatment e�ect

on enrollment in each sector in column 4. These extended �rst-stage estimates, computed by

putting indicators 1(Wi = j) on the left-hand side of equation (7), control for the DA propensity

score and therefore have a causal interpretation. The number of applicants not o�ered a seat

who end up in a charter school is higher for those with non-trivial charter o�er risk than in the

full applicant sample, as can be seen by comparing columns 3 and 1. The charter enrollment �rst

stage that's implicit in the column 4-vs-3 comparison matches the �rst stage in Table 7. First

stages for other sectors show charter o�ers sharply reduce innovation school enrollment as well

as reducing enrollment in traditional public schools.

The 2SLS estimates reported in Table 7 capture causal e�ect for charter lottery compliers. We

23Applicants unhappy with the o�er they've receive in the �rst round of the Denver assignment may apply to
schools individually in a second round. This process produces charter o�ers for those not o�ered a charter seat
initially.

24Innovation waivers are subject to approval by the Denver Classroom Teachers Association (which organizes
Denver public school teachers' bargaining unit), and they allow, for example, increased instruction time. DPS in-
novation schools appear to have much in common with Boston's pilot schools, a model examined in Abdulkadiro§lu
et al. (2011).
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describe the distribution of school sectors for compliers by de�ning potential sector enrollment

variables,W1i andW0i, indexed against charter o�ers, Di. Potential and observed sector variables

are related by

Wi = W0i + (W1i −W0i)Di.

In the population of charter-o�er compliers, W1i = charter for all i: by de�nition, charter-o�er

compliers attend a charter school when the DPS assignment o�ers them the opportunity to do so.

Here, we're interested in E[1(W0i = j)|C1i > C0i], that is, the sector distribution for charter-o�er

compliers in the scenario where they aren't o�ered a charter seat. We refer to this distribution

as describing �enrollment destinies� for compliers.

Enrollment destinies are marginal potential outcome distributions for compliers. As shown by

Abadie (2002), these are identi�ed by a simple 2SLS estimand. The details of our implementation

of this identi�cation strategy follow those in Angrist et al. (2015), with the modi�cation that

instead of estimating marginal potential outcome densities for a continuous variable, the outcomes

of interest here are Bernoulli.25

Column 5 of Table 9 reveals that only about half of charter lottery compliers are destined to

end up in a traditional public school if they aren't o�ered a charter seat. The second most-likely

counterfactual destiny for the younger applicant group is an innovation school, with nearly a

third of non-o�ered compliers enrolling in one of these. The likelihood of an enrollment destiny

outside the charter, traditional, and innovation sectors is much smaller.

Isolating an Innovation School E�ect

The outsize role of innovation schools in counterfactual destinies motivates an empirical strategy

that allows for distinct charter and innovation school treatment e�ects. By pulling innovation

schools out of the non-charter counterfactual, we capture charter e�ects driven mainly by the

contrast between charter and traditional public schools. Comparisons with a more homogeneous

counterfactual also mitigates bias that might arise from violations of the exclusion restriction

(discussed in Section 3.4). And, of course, the innovation treatment e�ect is also of interest in

its own right.

For the purposes of this discussion, we code the sector variable, Wi, as taking on the value

2 for innovation schools, the value 1 for charters, and 0 otherwise. The corresponding potential

outcomes are Y2i, Y1i, and Y0i. At this point, we also adopt a constant-e�ects causal framework;

the question of how to identify average causal e�ects in instrumental variables models with

multiple treatments raises issues that go beyond the scope of this paper.26 De�ning constant

e�ects with the notation

Y2i − Y0i = β2,

Y1i − Y0i = β1,

25Brie�y, our procedure puts (1−Ci)1(Wi = j) on the left hand side of a version of equation (8) with endogenous
variable 1 − Ci. The coe�cient on this endogenous variable is an estimate of E[1(W0i = j)|C1i > C0i, Xi]. The
covariates and sample used here are the same as used to construct the 2SLS impact estimates reported in column
1 of Table 7.

26See Behaghel et al. (2013) and Blackwell (2015) for recent progress on this issue.
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our two-sector identi�cation strategy can be motivated by the conditional independence assump-

tion,

Y0i ⊥⊥ Zi|θi, (11)

where Zi is a categorical variable that records DA-generated o�ers in each sector sector (charter,

innovation, other).

The instruments here are indicators for charter and innovation-sector o�ers, D1
i = 1[Zi =

1] and D2
i = 1[Zi = 2]. These dummy instruments are used in a 2SLS procedure with two

endogenous variables, C1
i for charter school enrollment and C2

i for innovation school enrollment.

Propensity score conditioning is justi�ed by the fact that conditional independence relation (11)

implies

Y0i ⊥⊥ Zi | p1(θ), p2(θ), (12)

where p1(θ) = E[D1
i |θ] and p2(θ) = E[D2

i |θ].
The 2SLS setup in this case consists of

Yi =
∑
x

α1(x)d1
i (x) +

∑
x

α2(x)d2
i (x) + β1C

1
i + β2C

2
i + εi, (13)

C1
i =

∑
x

γ11(x)d1
i (x) +

∑
x

γ12(x)d2
i (x) + δ11D

1
i + δ12D

2
i + νi, (14)

C2
i =

∑
x

γ21(x)d1
i (x) +

∑
x

γ22(x)d2
i (x) + δ21D

1
i + δ22D

2
i + ηi, (15)

where the dummy control variables, d1
i (x) and d2

i (x), saturate estimates of the scores for each

treatment, p̂1(θi) and p̂2(θi), with corresponding score e�ects denoted by γ's and α's in the �rst

and second stage models. The sample used for this analysis is the union of charter and innovation

school applicants.

As noted by Imbens (2000) and Yang et al. (2014), the key conditional independence relation

in this context (equation (12)) suggests we should choose a parameterization that �xes the

conditional probability of assignment for all treatment levels jointly. Joint score control replaces

the additive score controls in equations (13), (14), and (15) with score controls of the form

d12
i (x1, x2) = 1[p̂1(θi) = x1, p̂2(θi) = x2],

where hats denote score estimates and the indices, x1 and x2, run independently over all values in

the support for each score. This model generates far more score �xed e�ects than does equation

(13).27 Fortunately, however, the algebra of 2SLS obviates the need for joint score control;

additive is enough.

To see why additive control is adequate for 2SLS models that exploit (12), note �rst that

2SLS estimates of the second stage equation, (13), can be obtained by �rst regressing each o�er

dummy on the full set of d1
i (x) and d2

i (x) and then using the residuals from this regression as

27When p1(θ) takes on k1 values and p2(θ) takes on k2 values, the additive model has k1+k2−2 score parameters,
while the joint model has k1k2 − 1.
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instruments after dropping these controls from the model (see, e.g., Angrist and Pischke 2009).

Note also that both sets of regressors in this auxiliary �rst-step model are functions of type.

A regression of Dj
i on the full set of d1

i (x) and d2
i (x) therefore returns �tted values given by

E[Dj |θ] = pj(θi).

Suppose now that we replace additive controls, d1
i (x) and d2

i (x), with the full set of dummies,

d12
i (x1, x2), parameterizing the jointly-controlled model. Since the model here is saturated, a

regression of Dj
i on the full set of d12

i (x1, x2) dummies recovers the conditional expectation

function of o�ers given both scores. By the law of iterated expectations, however, this is

E[Dj
i |p1(θi), p2(θi)] = E{E[Dj

i |θi]|p1(θi), p2(θi)]} = pj(θi).

From this we conclude that the IV equivalent of 2SLS is the same in the additive and jointly-

controlled models.28

As a benchmark, columns 1-2 of Table 10 compare charter-only and innovation-only estimates

computed using DA (frequency) score controls. Each sample is limited to applicants to the

relevant sector.29 A parallel set of single-sector estimates using simulated score controls appears

in columns 5 and 6. The innovation �rst stage (the e�ect of an innovation school o�er on

innovation school enrollment) is around 0.35. The pooled single-sector charter estimates in

Table 10 are the same as those in Table 7. Not surprisingly in view of the substantially reduced

number of applicants with non-trivial innovation o�er risk (546 in column 2 and 613 in column

6 of Table 10), and the smaller innovation �rst stage, the innovation attendance e�ects are

relatively imprecise. This imprecision notwithstanding, the innovation-only model generates a

large negative and marginally signi�cant e�ect on reading when estimated with the DA score.

2SLS estimates of equation (13) appear in columns 3 and 7 of Table 10. Charter school e�ects

change little in this speci�cation, but (insigni�cant) negative innovation estimates for math �ip

to positive when estimated using a model that also isolates charter treatment e�ects. The

negative innovation school e�ects on reading seen in columns 2 and 6 also become smaller in the

two-endogenous-variables models. Most interestingly, perhaps, the marginally signi�cant positive

charter school e�ect on reading (when estimating using DA score controls) also disappears. While

charter students' reading performance exceeds what we can expect to see were these students to

enroll in a mix of traditional and (low-performing) innovation schools, the reading gap between

charters and traditional public schools is a little smaller.

Finally, as the theoretical discussion above leads us to expect, the results of estimation with

joint score controls, shown in columns 4 and 8 of Table 10, di�er little from the estimates

constructed using additive score controls reported in columns 3 and 7 (a marginally signi�cant

though still imprecisely estimate positive innovation e�ect on math scores emerges in column

4). Overall, it seems fair to say that the �ndings on charter e�ectiveness in Table 7 stand when

28This conclusion holds in the population, but need not hold exactly in our data (because scores here are
estimated by something more elaborate than a sample mean conditional on type) or for models that include
additional covariates beyond saturated score controls.

29Appendix Table B6 lists innovation schools and describes the random assignment pattern at these schools
along the lines of Table 1 for charter schools. Covariate balance and di�erential attrition results for innovation
schools are reported in Appendix Table B7.
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charter e�ects are estimated using a procedure that removes the innovation sector from the

charter enrollment counterfactual.

5 Summary and Directions for Further Work

We investigate empirical strategies that use the random tie-breaking embedded in market design

solutions to school matching problems as a research tool. The most important fruit of this

inquiry is the DA propensity score, an easily-computed formula for the conditional probability

of assignment to particular schools as a function of type. The DA propensity score reveals

the nature of the experimental design generated as a by-product of market design and suggests

directions in which match parameters might be modi�ed so as to boost the research value of

school assignment and other matching schemes. We also show how the DA score can be used to

simultaneously evaluate attendance e�ects in multiple sectors or schools.

A score-based analysis of data from Denver's uni�ed school match reveals substantial gains

from attendance at one of Denver's many charter schools. The resulting charter e�ects are

similar to those computed using single-school lottery strategies for Boston's charters reported in

Abdulkadiro§lu et al. (2011). At the same time, as with previously reported results for Boston

Pilot schools, Denver's Innovation model does not appear to generate substantial achievement

gains. Our analysis focuses on de�ning and estimating the DA propensity score, giving less

attention to the problem of how best to use the score for estimation. Still, simple 2SLS procedures

seem to work well, and the resulting estimates of DPS charter e�ects di�er little from those

generated by semiparametric alternatives.

The methods developed here should be broadly applicable to markets using the DA family

of mechanisms for centralized assignment. There's nothing special about markets that match

schools and students, except, perhaps, their accessible high-quality data. At the same time, some

markets and matches use mechanisms not covered by the DA framework. Most important on

this list is the top trading cycles (TTC) mechanism (Shapley and Scarf, 1974; Abdulkadiro§lu

and Sönmez, 2003), which allows students to trade priorities rather than treating priorities as

�xed. We expect to have theoretical results on the TTC propensity score soon, along with

an application to New Orleans Recovery School District, which has experimented with TTC

matching (Abdulkadiro§lu et al., 2014b).

Many matching problems, such as the Boston and New York exam schools analyzed by

Abdulkadiro§lu et al. (2014a), use some kind of non-randomly-assigned tie-breaker rather than

a lottery. These schemes embed a regression discontinuity design inside a market design rather

than a randomized trial. The question of how best to de�ne and exploit a DA propensity score

for markets that combine regression-discontinuity designs with market design matchmaking is

also a natural next step for our research design and market design agenda.
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Figure 1: Propensity Scores and Market Size in in Example 2
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Notes: This �gure plots �nite-market propensity scores for expansions of Example 2 in Section 2.2. For each

value of the x axis, we consider an expansion of the example with x students of each type. The propensity scores

plotted here were computed by drawing lottery numbers 100,000 times.

39



Figure 2: Sample Size Gains from the Propensity Score Strategy
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Notes: These �gures compare the sample size under our DA propensity score strategy to that under the �rst

choice strategy. Down arrows mean the two empirical strategies produce the same number of applicants subject
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Table 1: DPS charter schools
Propensity score in (0,1)

School Total applicants
Applicants 

offered seats
DA score 

(frequency)
DA score 
(formula) Simulated score

Simulated score 
(first choice)

(1) (2) (3) (4) (5) (6)
Elementary and middle schools

Cesar Chavez Academy Denver 62 9 7 9 8 3
Denver Language School 4 0 0 0 0 0
DSST: Cole 281 129 31 40 44 0
DSST: College View 299 130 47 67 68 0
DSST: Green Valley Ranch 1014 146 324 344 357 291
DSST: Stapleton 849 156 180 189 221 137
Girls Athletic Leadership School 221 86 18 40 48 0
Highline Academy Charter School 159 26 69 78 84 50
KIPP Montbello College Prep 211 39 36 48 55 20
KIPP Sunshine Peak Academy 389 83 41 42 44 36
Odyssey Charter Elementary 215 6 20 21 22 14
Omar D. Blair Charter School 385 114 135 141 182 99
Pioneer Charter School 25 5 0 2 2 0
SIMS Fayola International Academy Denver 86 37 7 18 20 0
SOAR at Green Valley Ranch 85 9 41 42 43 37
SOAR Oakland 40 4 0 9 7 2
STRIVE Prep - Federal 621 138 170 172 175 131
STRIVE Prep - GVR 324 112 104 116 118 0
STRIVE Prep - Highland 263 112 2 21 18 0
STRIVE Prep - Lake 320 126 18 26 26 0
STRIVE Prep - Montbello 188 37 16 31 35 0
STRIVE Prep - Westwood 535 141 235 238 239 141
Venture Prep 100 50 12 17 17 0
Wyatt Edison Charter Elementary 48 4 0 3 2 0

High schools
DSST: Green Valley Ranch 806 173 290 343 330 263
DSST: Stapleton 522 27 116 117 139 96
Southwest Early College 265 76 34 47 55 0
Venture Prep 140 39 28 42 45 0
KIPP Denver Collegiate High School 268 60 29 37 40 24
SIMS Fayola International Academy Denver 71 15 6 22 22 0
STRIVE Prep - SMART 383 160 175 175 175 175

Notes: This table describes DPS charter applications. Column 1 reports the number of applicants ranking each school. Columns 3-6 count applicants with propensity score values 
strictly between zero and one according to different score computation methods. Column 6 shows the subset of applicants from column 5 who rank each school as their first 
choice. 



Table 2: DA Score anatomy
DA Score = 0 DA Score in (0,1) DA Score = 1

Capacity Offers 0≤MID≤1 MID ≥ τs MID = 1 MID < τs 0<MID<1 MID = 0

Campus (1) (2) (3) (4) (5) (6) (7) (8) (9)
GVR 324 147 112 0 0 159 0 116 49
Lake 274 147 126 0 0 132 0 26 116
Highland 244 147 112 0 0 121 0 21 102
Montbello 188 147 37 0 0 128 0 31 29
Federal 574 138 138 78 284 3 171 1 37
Westwood 494 141 141 53 181 4 238 0 18
Notes: This table shows how formula scores are determined for STRIVE school seats in grade 6 (all 6th grade seats at these schools are assigned in a 
single bucket; ineligible applicants, who have a score of zero, are omitted). Column 3 records offers made to these applicants. Columns 4-6 show the 
number of applicants in partitions with a score of zero. Columns 7 and 8 show the number of applicants subject to random assignment. Column 9 shows 
the number of applicants with certain offers.

Eligible 
applicants

Θ𝑠𝑠𝑛𝑛 Θ𝑠𝑠𝑐𝑐 Θ𝑠𝑠𝑎𝑎 Θ𝑠𝑠𝑐𝑐 Θ𝑠𝑠𝑎𝑎 Θ𝑠𝑠𝑎𝑎 



Table 3: DPS student characteristics
Propensity score in (0,1)

DA score (frequency) Simulated score
Charter applicants Charter students Charter applicants Charter students

(1) (2) (3) (4) (5) (6) (7)
Origin school is charter 0.133 0.080 0.130 0.259 0.371 0.230 0.357
Female 0.495 0.502 0.518 0.488 0.496 0.506 0.511
Race

Hispanic 0.594 0.593 0.633 0.667 0.713 0.636 0.711
Black 0.141 0.143 0.169 0.181 0.161 0.192 0.168
White 0.192 0.187 0.124 0.084 0.062 0.098 0.059
Asian 0.034 0.034 0.032 0.032 0.039 0.033 0.037

Gifted 0.171 0.213 0.192 0.159 0.152 0.165 0.149
Bilingual 0.039 0.026 0.033 0.038 0.042 0.032 0.037
Subsidized lunch 0.753 0.756 0.797 0.813 0.818 0.800 0.823
Limited English proficient 0.285 0.290 0.324 0.343 0.378 0.337 0.380
Special education 0.119 0.114 0.085 0.079 0.068 0.083 0.070

Baseline scores
Math 0.000 0.015 0.021 0.037 0.089 0.037 0.062
Reading 0.000 0.016 0.005 -0.011 0.007 0.008 -0.002
Writing 0.000 0.010 0.006 0.001 0.039 0.016 0.035

N 40,143 10,898 4,964 1,436 828 1,523 781
Notes: This table decribes the population of Denver 3rd-9th graders in 2011-2012, the baseline and application year. Statistics in column 1 are for charter and non-
charter students. Column 2 describes the subset that submitted an application to the SchoolChoice system for a seat in grades 4-10 at another DPS school in 2012-2013. 
Column 3 reports values for applicants ranking any charter school. Columns 4-7 show statistics for charter applicants with propensity score values strictly between zero 
and one. Test scores are standardized to the population in column 1.

Denver 
students

SchoolChoice 
applicants

Charter 
applicants



Table 4: Expected balance
Propensity score controls

DA score (frequency) Simulated score
Nonparametric Nonparametric

Non-offered 
mean No controls

Rounded 
(hundredths) Saturated

Rounded 
(hundredths)

Rounded (ten 
thousandths

Covariate (1) (2) (3) (4) (5) (6) (7) (8)
A. Application covariates

Number of schools ranked 4.375 -0.341 0.107 0.065 0.052 0.012 0.013 0.001
Number of charter schools ranked 1.426 0.474 0.109 0.069 0.055 0.004 0.004 0.000
First school ranked is charter 0.290 0.616 0.004 0.004 0.001 -0.002 -0.002 0.000

B. Baseline covariates
Origin school is charter 0.083 0.115 -0.017 -0.002 0.001 0.001 -0.001 0.000
Female 0.521 -0.007 0.002 0.003 0.003 0.002 0.001 0.001
Race

Hispanic 0.595 0.094 -0.010 -0.005 -0.005 0.003 0.002 0.000
Black 0.182 -0.031 0.005 0.001 0.001 -0.001 0.000 0.000

Gifted 0.201 -0.022 -0.003 -0.004 -0.005 0.000 0.001 0.000
Bilingual 0.025 0.020 0.001 0.001 0.001 0.000 0.001 0.000
Subsidized lunch 0.767 0.073 0.003 0.003 0.003 0.002 0.002 0.000
Limited English proficient 0.290 0.084 -0.004 -0.004 -0.005 0.000 0.000 -0.001
Special education 0.087 -0.004 -0.004 -0.004 -0.003 0.001 0.000 0.000
Baseline scores

Math 0.017 0.010 -0.023 -0.019 -0.020 -0.001 -0.002 -0.002
Reading 0.034 -0.070 -0.016 -0.014 -0.014 -0.002 -0.002 -0.003
Writing 0.029 -0.056 -0.019 -0.016 -0.016 -0.001 -0.002 -0.002

Average risk set points of support 87 39 47 1,148 51 121
Notes: This table reports average covariate balance by charter offer status across 400 lottery draws, with DA rerun each time. Balance is estimated by regressing each covariate on an any-
charter simulated offer dummy, controlling for the propensity score variables indicated in each column header. The table reports averages of these balance coefficients.  The sample 
includes applicants for 2012-13 charter seats in grades 4-10 who were enrolled in Denver at baseline. The charter offer variable indicates an offer at any charter school, excluding 
alternative charters. Column 1 reports the baseline characteristics of charter applicants who did not receive a charter offer. The average risk set points of support reported at the bottom of 
the table count the average number of unique values found in the support of the relevant propensity score. Except for columns 3 and 6, this excludes values of zero and one.  The 
estimates in columns 4, 7 and 8 use score values rounded as indicated in the column header; the estimates in column 5 control for every score value seen in the data. 

Linear control Linear control



Table 5a: Statistical tests for balance in application covariates
Propensity score controls

DA score (frequency) Simulated score
Nonparametric Nonparametric

No controls
Rounded 

(hundredths) Saturated
Rounded 

(hundredths)
Rounded (ten 
thousandths)

Application variable (1) (2) (3) (4) (5) (6) (7) (8)
Number of schools ranked -0.341*** 0.097 0.059 0.028 0.014 0.001 -0.061 -0.015

(0.046) (0.103) (0.095) (0.094) (0.102) (0.095) (0.125) (0.042)
Number of charter schools ranked 0.476*** 0.143*** 0.100** 0.074 0.020 -0.017 0.009 0.007

(0.024) (0.052) (0.047) (0.047) (0.048) (0.043) (0.061) (0.010)
First school ranked is charter 0.612*** 0.012 0.002 -0.001 -0.030 -0.042* 0.012 0.000

(0.011) (0.025) (0.022) (0.020) (0.027) (0.022) (0.027) (0.000)

N 4,964 1,436 1,289 1,247 1,523 1,290 681 301

Risk set points of support 88 40 47 1,148 51 126 61

Robust F-test for joint significance 1190 2.70 1.70 1.09 0.49 1.26 0.31 0.34
p-value 0.000 0.044 0.165 0.352 0.688 0.287 0.817 0.710

Full applicant 
type controls

Notes: This table reports coefficients from regressions of the application variables in each row on a dummy for charter offers. The sample includes applicants for 2012-13 charter seats in grades 4-
10 who were enrolled in Denver at baseline. Columns 1-7 are from regressions like those used to construct expected balance in Table 4, except that the tests reported here use realized DA offers, 
with test statistics and standard errors computed in the usual way.  Column 8 reports the balance test generated by a regression with saturated controls for applicant type (that is, unique 
combinations of applicant preferences over school programs and school priorities in those programs). Robust standard errors are reported in parentheses. P-values for robust joint significance tests 
are estimated by stacking outcomes and clustering  at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%

Linear control Linear control



Table 5b: Statistical tests for balance in student characteristics
Propensity score controls

DA score (frequency) Simulated score
Nonparametric Nonparametric

No controls
Rounded 

(hundredths) Saturated
Rounded 

(hundredths)
Rounded (ten 
thousandths)

Student characteristics (1) (2) (3) (4) (5) (6) (7)
Origin school is charter 0.108*** -0.051** -0.037** -0.029* -0.039* -0.036** -0.037*

(0.010) (0.024) (0.017) (0.017) (0.023) (0.017) (0.022)
Female -0.005 0.024 0.021 0.019 0.016 0.030 0.010

(0.014) (0.034) (0.034) (0.034) (0.033) (0.034) (0.054)
Race

Hispanic 0.095*** -0.022 -0.013 -0.007 0.005 -0.001 -0.018
(0.014) (0.031) (0.028) (0.028) (0.031) (0.029) (0.042)

Black -0.033*** -0.002 -0.005 -0.007 -0.012 -0.012 0.011
(0.011) (0.026) (0.025) (0.025) (0.026) (0.026) (0.039)

Gifted -0.028** -0.026 -0.028 -0.030 -0.032 -0.035 -0.037
(0.011) (0.026) (0.026) (0.026) (0.025) (0.026) (0.042)

Bilingual 0.023*** 0.016 0.014 0.015 0.012 0.014 0.011
(0.005) (0.014) (0.013) (0.014) (0.014) (0.014) (0.021)

Subsidized lunch 0.073*** -0.003 -0.004 0.001 0.001 -0.005 0.024
(0.011) (0.027) (0.025) (0.025) (0.027) (0.026) (0.037)

Limited English proficient 0.086*** -0.002 -0.002 0.001 0.011 0.001 0.004
(0.014) (0.032) (0.032) (0.032) (0.032) (0.032) (0.053)

Special education 0.004 0.034** 0.032* 0.032* 0.043** 0.044** 0.035
(0.008) (0.017) (0.017) (0.017) (0.017) (0.018) (0.028)

N 4,964 1,436 1,289 1,247 1,523 1,290 681
Baseline scores

Math -0.002 -0.087 -0.083 -0.082 -0.068 -0.078 -0.053
(0.027) (0.061) (0.060) (0.061) (0.061) (0.061) (0.094)

Reading -0.085*** -0.096* -0.100* -0.108* -0.081 -0.086 -0.070
(0.026) (0.057) (0.056) (0.056) (0.056) (0.056) (0.087)

Writing -0.072*** -0.097* -0.096* -0.101* -0.085 -0.094* -0.053
(0.026) (0.056) (0.054) (0.055) (0.055) (0.054) (0.083)

N 4,889 1,420 1,275 1,234 1,504 1,275 675

Robust F-test for joint significance 19.1 1.20 1.13 0.99 1.04 1.35 0.71
p-value 0.000 0.278 0.329 0.454 0.408 0.183 0.743

See notes to Table 5a.
*significant at 10%; **significant at 5%; ***significant at 1%

Linear control Linear control



Table 6: Comparison of 2SLS and semiparametric estimates of charter effects
Frequency (saturated) Formula (saturated) Simulation (hundredths)

2SLS Semiparametric 2SLS Semiparametric 2SLS Semiparametric
(1) (2) (3) (4) (5) (6)

Math 0.496*** 0.443*** 0.524*** 0.486*** 0.543*** 0.474**
(0.076) (0.105) (0.071) (0.105) (0.075) (0.212)
{0.071} {0.076} {0.079}

Reading 0.127* 0.106 0.120* 0.118 0.106 0.127
(0.065) (0.107) (0.073) (0.115) (0.069) (0.173)
{0.065} {0.069} {0.071}

Writing 0.325*** 0.326*** 0.356*** 0.364*** 0.324*** 0.305**
(0.079) (0.102) (0.082) (0.113) (0.079) (0.145)
{0.077} {0.080} {0.080}

N 1,102 1,093 1,083 1,081 1,137 1,137
Notes: This table compares 2SLS and semiparametric estimates of charter attendance effects on the 2012-13 TCAP scores of Denver 4th-
10th graders. The instrument is an any-charter offer dummy. The semiparametric estimator is described in Section 3.5.  In addition to score 
variables, 2SLS estimates include controls for grade tested, gender, origin school charter status, race, gifted status, bilingual status, 
subsidized price lunch eligibility, special education, limited English proficient status, and baseline test scores. Semiparametric models use 
these same variables as controls when computing the score weighting function. Standard errors in parentheses are from a Bayesian 
bootstrap. Conventional robust standard errors for 2SLS estimates are reported in braces.
*significant at 10%; **significant at 5%; ***significant at 1%



Table 7: Comparison of 2SLS and OLS estimates of charter attendance effects

DA score

(1) (2) (3) (4) (5) (6)
First stage 0.410*** 0.389*** 0.377*** 0.683***

(0.031) (0.032) (0.032) (0.012)

Math 0.496*** 0.524*** 0.543*** 0.306*** 0.304*** 0.386***
(0.071) (0.076) (0.079) (0.021) (0.015) (0.034)

Reading 0.127** 0.120* 0.106 0.093*** 0.103*** 0.093***
(0.065) (0.069) (0.071) (0.020) (0.014) (0.029)

Writing 0.325*** 0.356*** 0.324*** 0.183*** 0.180*** 0.202***
(0.077) (0.080) (0.080) (0.023) (0.015) (0.036)

N 1,102 1,083 1,137 4,317 4,317 1,102
Notes: This table compares 2SLS and OLS estimates of charter attendance effects using the same sample and instruments as for Table 6. The OLS 
estimates in column 6 are from a model that includes saturated control for frequency estimates of the DA score. In addition to score variables, all 
models include controls for grade tested, gender, origin school charter status, race, gifted status, bilingual status, subsidized price lunch eligibility, 
special education, limited English proficient status, and baseline test scores. Robust standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%

2SLS estimates

Simulated score
rounded (hundredths)

Frequency
(saturated)

Formula
(saturated)

No score 
controls OLS

OLS with 
score controls



Table 8: Other IV strategies
Charter attendance effect

(1) (2) (3) (4) (5)
A. First stage estimates

1.000 0.774*** 0.476***
-- (0.026) (0.024)

0.410*** 0.323*** 0.178***
(0.031) (0.035) (0.027)

B. 2SLS estimates
Math 0.496*** 0.596*** 0.409***

(0.071) (0.102) (0.149) 2.0 4.4

Reading 0.127** 0.227** 0.229
(0.065) (0.102) (0.144) 2.5 4.9

Writing 0.325*** 0.333*** 0.505***
(0.077) (0.119) (0.162) 2.4 4.5

N (students) 1,102 1,125 1,969
N (schools) 30 15 24

Notes: This table compares alternative 2SLS estimates of charter attendance effects using the same sample and control variables used to construct the 
estimates in Tables 6-7. Column 1 repeats the estimates using a DA offer instrument from column 1 in Table 7. The row labeled "First stage for charter 
offers" reports the coefficient from a regression of any-charter offer dummy (the instrument used in column 1) on other instruments, conditioning on the 
same controls used in the corresponding first stage estimates for charter enrollment. Column 2 reports 2SLS estimates computed using a first-choice 
charter offer instrument. Column 3 reports charter attendance effects computed using an any-charter qualification instrument. These alternative IV 
models control for risk sets making the first-choice and qualification instruments conditionally random; see Section 4.5 for details. Columns 4 and 5 
report the multiples of the first-choice offer sample size and qualification sample size needed to achieve a precision gain equivalent to the gain from 
using the any-charter offer instrument. The last row counts the number of schools for which we observe in-sample variation in offer rates conditional on 
the score controls included in the model.
*significant at 10%; **significant at 5%; ***significant at 1%

Offer instrument with 
DA score (frequency) 
controls (saturated)

First choice charter 
offer with risk set 

controls

Qualification 
instrument with risk 

set controls

Sample size increase 
for equivalent gain 

(col 2 vs col 1)

Sample size increase 
for equivalent gain 

(col 3 vs col 1)

First stage for charter 
offers

First stage for charter 
enrollment



Table 9: Enrollment destinies for charter applicants
Charter applicants with DA score (frequency) in (0,1)

All charter applicants All applicants Compliers

No charter offer Charter offer
Non-offered 

mean
First stage 

+ col 3 No charter offer Charter offer
(1) (2) (3) (4) (5) (6)

Enrolled in a study charter 0.147 0.865 0.347 0.757 -- 1.000
         … in a traditional public 0.405 0.081 0.257 0.054 0.497 --
         … in an innovation school 0.234 0.023 0.241 0.107 0.328 --
         … in a magnet school 0.192 0.021 0.116 0.078 0.094 --
         … in an alternative school 0.009 0.005 0.018 0.006 0.030 --
         … in a contract school 0.012 0.004 0.018 -0.001 0.047 --
         … in a non-study charter 0.001 0.000 0.002 0.000 0.005 --

N 2,555 1,833 498 1,102 -- --
Notes: This table describes school enrollment outcomes for charter applicants in the sample used to construct the estimates reported in Table 7. Columns 1-2 show 
enrollment by sesctor for all applicants without and with a charter offer. The remaining columns look only at those with a DA (frequency) score strictly between 
zero and one. Column 4 adds the non-offered mean in column 3 to the first stage estimate of the effect of charter offers on charter enrollment. School sectors are 
classified by grade. Innovation schools design and implement innovative practices to improve student outcomes. Magnet schools serve students with particular 
styles of learning. Alternative schools serve students struggling with academics, behavior, attendance, or other factors that may prevent them from succeeding in a 
traditional school environment; the latter offer faster pathways toward high school graduation, such as GED preparation and technical education. There is a single 
contract school, Escuela Tlatelolco, a private school contracted to serve DPS students, and a single non-study charter that closed in May 2013. Complier means in 
columns 5 and 6 were estimated using the 2SLS procedures described by Abadie(2002), with the same propensity score and covariate controls as were used to 
construct the estimates in Table 7.



Table 10: DPS charter and innovation school attendance effects
DA score (frequency) controls (saturated) Simulated score controls rounded (hundredths)

Charter and innovation Charter and innovation

(1) (2) (3) (4) (5) (6) (7) (8)

Charter First Stage 0.410*** -- 0.405*** 0.398*** 0.377*** -- 0.437*** 0.417***
(0.031) -- (0.034) (0.035) (0.032) -- (0.032) (0.035)

Innovation First Stage -- 0.348*** 0.347*** 0.348*** -- 0.345*** 0.301*** 0.300***
-- (0.042) (0.042) (0.044) -- (0.041) (0.040) (0.043)

A. Math
Charter 0.496*** -- 0.534*** 0.517*** 0.543*** -- 0.618*** 0.550***

(0.071) -- (0.077) (0.082) (0.079) -- (0.073) (0.082)

Innovation -- -0.035 0.177 0.286* -- -0.180 0.199 0.146
-- (0.136) (0.134) (0.147) -- (0.137) (0.159) (0.174)

B. Reading
Charter 0.127** -- 0.076 0.072 0.106 -- 0.105 0.089

(0.065) -- (0.078) (0.084) (0.071) -- (0.075) (0.085)

Innovation -- -0.285** -0.231 -0.190 -- -0.203 -0.074 -0.162
-- (0.141) (0.153) (0.165) -- (0.136) (0.161) (0.185)

C. Writing
Charter 0.325*** -- 0.357*** 0.334*** 0.324*** -- 0.348*** 0.393***

(0.077) -- (0.087) (0.094) (0.080) -- (0.079) (0.087)

Innovation -- -0.119 0.115 0.052 -- -0.057 0.063 0.004
-- (0.136) (0.148) (0.156) -- (0.132) (0.153) (0.167)

N 1,102 546 1,418 1,274 1,137 613 1,583 1,274
Notes: This table reports 2SLS estimates of charter and innovation attendance effects for applicants to schools in one or both sectors. The estimates for charter applicants in columns 
1 and 5 are the same as reported in column 1 of Table 7. Columns 2 and 6 report innovation attendance effects for innovation applicants, estimated in models using an innovation 
offer instrument and innovation-specific saturated score controls constructed like those used for charter applicants. Columns 3 and 7 report coefficients from a two-endogenous-
variable/two-instrument 2SLS model for the attendance effects of charters and innovations, conditioning additively on charter-specific and innovation-specific saturated score 
controls. Columns 4 and 8 show results from joint-effect models that add interactions between the two scores to the specification that generated column 7.  
*significant at 10%; **significant at 5%; ***significant at 1%

Additive score
controlsInnovation onlyCharter only

Joint score 
controls

Additive score 
controlsInnovation onlyCharter only

Joint score 
controls



A Theoretical Appendix

A.1 De�ning DA: Details

Our general formulation de�nes the DA match as determined by cuto�s found in the limit of a

sequence. Recall that these cuto�s evolve according to

ct+1
s =

{
K + 1 if F (Qs(c

t)) < qs,

max
{
x ∈ [0,K + 1] | F ({i ∈ Qs(ct) such that πis ≤ x}) ≤ qs

}
otherwise,

where Qs(c
t) is the demand for seats at school s for a given vector of cuto�s ct and is de�ned as

Qs(c
t) = {i ∈ I | πis ≤ cts and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cts̃}. (16)

The following result con�rms that these limiting cuto�s exist, i.e., that the sequence ct converges.

Proposition 1. Consider an economy described by a distribution of students F and school capac-

ities as de�ned in Section 3.1. Construct a sequence of cuto�s, cts, for this economy as described

above. Then, limt→∞ c
t
s exists.

Proof. cts is well-de�ned for all t ≥ 1 and all s ∈ S since it is either K + 1 or the maximizer of

a continuous function over a compact set. We will show by induction that {cts} is a decreasing

sequence for all s.

For the base case, c2
s ≤ c1

s for all s since c
1
s = K + 1 and c2

s ≤ K + 1 by construction.

For the inductive step, suppose that cts ≤ ct−1
s for all s and all t = 1, ..., T. For each s, if

cTs = K + 1, then cT+1
s ≤ cTs since cts ≤ K + 1 for all t by construction. Otherwise, suppose to

the contrary that cT+1
s > cTs . Since cTs < K + 1, F ({i ∈ Qs(cT−1) such that πis ≤ cTs }) = qs.

Then,

F ({i ∈ Qs(cT ) such that πis ≤ cT+1
s })

= F ({i ∈ Qs(cT ) such that πis ≤ cTs }) + F ({i ∈ Qs(cT ) such that cTs < πis ≤ cT+1
s })

≥ F ({i ∈ Qs(cT−1) such that πis ≤ cTs }) + F ({i ∈ Qs(cT ) such that cTs < πis ≤ cT+1
s }) (17)

≥ qs + F ({i ∈ Qs(cT ) such that cTs < πis ≤ cT+1
s }) (18)

> qs. (19)

Expression (17) follows because

{i ∈ Qs(cT ) such that πis ≤ cTs }
= {i ∈ I | πis ≤ cTs and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cTs̃ }
⊇ {i ∈ I | πis ≤ cTs and s �i s̃ for all s̃ ∈ S such that πis̃ ≤ cT−1

s̃ } (by cTs̃ ≤ cT−1
s̃ )

= {i ∈ Qs(cT−1) such that πis ≤ cTs }.

Expression (18) follows by the inductive assumption and since cTs < K + 1.

Expression (19) follows since if F ({i ∈ Qs(cT ) such that cTs < πis ≤ cT+1
s }) = 0, then

F ({i ∈ Qs(cT−1) such that πis ≤ cT+1
s }) = F ({i ∈ Qs(cT−1) such that πis ≤ cTs }) ≤ qs,
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while cT+1
s > cTs , contradicting the de�nition of cTs .

Expression (19) contradicts the de�nition of cT+1 since the cuto� at step T + 1 results in

an allocation that exceeds the capacity of school s. This therefore establishes the inductive step

that cT+1
s ≤ cTs .

To complete the proof of the proposition, observe that since {cts} is a decreasing sequence in
the compact interval [0,K + 1], cts converges by the monotone convergence theorem.

Note that this result applies to the cuto�s for both �nite and continuum economies. In �nite

markets, at convergence, these cuto�s produce the allocation we get from the usual de�nition of

DA (e.g., as in Gale and Shapley (1962)). This can be seen by noting that

max{x ∈ [0,K + 1] | F ({i ∈ Qs(ct) such that πis ≤ x}) ≤ qs}
= max{x ∈ [0,K + 1] | |{j ∈ Qs(ct) : πjs ≤ x}| ≤ ks},

implying that the tentative cuto� at school s in step t in our DA formulation, which is determined

by the left hand side of this equality, is the same as that in Gale and Shapley (1962)'s DA

formulation, which is determined by the right hand side of the equality. Our DA formulation

and the Gale and Shapley (1962) formulation therefore produce the same cuto� at each step.

This also implies that, in �nite markets, our DA cuto�s are found in a �nite number of iterations,

since DA as described by Gale and Shapley (1962) converges in a �nite number of steps.

A.2 Conditional Independence of DA-generated O�ers

Proposition 2. LetWi be any variable that is independent of lottery numbers and write P [Di(s) =

1|Wi, θ] for P [Di(s) = 1|Wi, θi = θ]. Then

P [Di(s) = 1|Wi, θ] = P [Di(s) = 1|θ].

Proof. Suppose that DA converges at iteration T. Demand given cuto�s, Q(cT ), a function of

random numbers, preferences, and priorities, determines the distribution of o�ers. Equation (16)

therefore implies that

P [Di(s) = 1|Wi, c
T , θ] = P [Di(s) = 1|cT , θ]. (20)

Equation (20) does not contradict the fact that cT is determined in part by interactions

between types and realized lottery numbers, interactions that may distort the distribution of

lottery numbers conditional on cuto�s. In particular, (20) holds even if conditioning on cT makes

the lottery number distribution depend on θ. This follows from the fact that, as a consequence

of the de�nition of demand for DA, o�ers and cuto�s are jointly independent of Wi given θ.
30

30Using the shorthand notation P [Di(s),Wi, c
T , θ] to denote joint probability statements and the associated

conditionals without specifying realized values, we have:

P [Di(s)|Wi, c
T , θ] =

P [Di(s), c
T |Wi, θ]

P [cT |Wi, θ]
=
P [Di(s), c

T |θ]
P [cT |θ] = P [Di(s)|cT , θ].

Joint independence is used for the second equality.
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Note also that cuto�s satisfy

cT ⊥⊥Wi|θ, (21)

a consequence of the fact that cT is the same for all i in every lottery draw.

Finally, using (20), we have

P [Di(s) = 1|Wi, θ] = E{E[Di|Wi, θ, c
T ]|Wi, θ} = E{E[Di|cT , θ]|Wi, θ},

and the further implication by (21) that

E{E[Di|cT , θ]|Wi, θ} = E{E[Di|cT , θ]|θ} = P [Di(s) = 1|θ],

completing the proof for �nite markets.

Extension to the continuum follows from the de�nition of Q(c) for the limiting allocation in

the continuum and the fact that the limiting cuto� in the continuum, c, is non-stochastic.

A.3 Proof of Theorem 1

Admissions cuto�s c in a continuum economy are invariant to lottery outcomes (ri): DA in the

continuum depends on (ri) only through F (I0) for sets I0 = {i ∈ I | θi ∈ Θ0} with various choices
of Θ0. In particular, F (I0) doesn't depend on lottery realizations. Likewise, marginal priority

ρs̃ is uniquely determined for every school s̃.

Consider the propensity score for school s. Students who don't rank s have ϕs(θ) = 0.

Among those who do rank s, those of type θ ∈ Θn
s have ρθs > ρs. Therefore ϕs(θ) = 0 for every

θ ∈ Θn
s ∪ (Θ\Θs).

Students of type θ ∈ Θa
s∪Θc

s may be assigned s̃ ∈ Bθs, where ρθs̃ = ρs̃. Since lottery numbers

are uniform, the proportion of type θ students assigned some s̃ ∈ Bθs where ρθs̃ = ρs̃ is MIDθs̃.

In other words, the probability of not being assigned any s̃ ∈ Bθs where ρθs̃ = ρs̃ for a type

θ student is 1 −MIDθs. Every student of type θ ∈ Θa
s who is not assigned a higher choice is

assigned s because ρθs < ρs, and so

ϕs(θ) = (1−MIDθs) for all θ ∈ Θa
s .

Finally, consider students of type θ ∈ Θc
s who are not assigned a higher choice. The fraction

of students θ ∈ Θc
s who are not assigned a higher choice is 1−MIDθs. Also, the random numbers

of these students is larger than MIDθs. If τs < MIDθs, then no such student is assigned s. If

τs ≥MIDθs, then the ratio of students that are assigned s within this set is given by τs−MIDθs
1−MIDθs

.

Hence, conditional on θ ∈ Θc
s and not being assigned a choice higher than s, the probability of

being assigned s is given by max{0, τs−MIDθs
1−MIDθs

}. Therefore,

ϕs(θ) = (1−MIDθs)×max

{
0,
τs −MIDθs

1−MIDθs

}
for all θ ∈ Θc

s.

A.4 Proof of Theorem 2

We complete the proof of Theorem 2 in Section 3.3 by proving the following two intermediate

results.
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Lemma 1. (Cuto� almost sure convergence) ĉn
a.s.−→ c.

Lemma 2. (Propensity score almost sure convergence) For all θ ∈ Θ and s ∈ S, pns(θ)
a.s.−→ ϕs(θ).

A.4.1 Proof of Lemma 1

We use the Extended Continuous Mapping Theorem (Theorem 19.1 in van der Vaart (2000))

to prove the lemma. We �rst show deterministic convergence of cuto�s in order to verify the

assumptions of the theorem.

Modify the de�nition of F to describe the distribution of lottery numbers as well types: For

any set of student types Θ0 ⊂ Θ and for any numbers r0, r1 ∈ [0, 1] with r0 < r1, de�ne the set

of students of types in Θ0 with random numbers worse than r0 and better than r1 as

I(Θ0, r0, r1) = {i ∈ I | θi ∈ Θ0, r0 < ri ≤ r1}.

In a continuum economy,

F (I(Θ0, r0, r1)) = E[1{θi ∈ Θ0}]× (r1 − r0),

where the expectation is assumed to exist. In a �nite economy with n students,

F (I(Θ0, r0, r1)) =
|I(Θ0, r0, r1)|

n
.

Let F be the set of possible F 's de�ned above. For any two distributions F and F ′, the supnorm

metric is de�ned by

d(F, F ′) = sup
Θ0⊂Θ,r0,r1∈[0,1]

|F (I(Θ0, r0, r1))− F ′(I(Θ0, r0, r1))|.

The notation is otherwise as in the text.

Proof. Consider a deterministic sequence of economies described by a sequence of distributions

{fn} over students, together with associated school capacities, so that for all n, fn ∈ F is a

potential realization produced by randomly drawing n students and their lottery numbers from

F . Assume that fn → F in metric space (F , d). Let cn denote the admissions cuto�s in fn. Note

the cn is constant because this is the cuto� for a particular realized economy fn.

The proof �rst shows deterministic convergence of cuto�s for any convergent subsequence

of fn. Let {f̃n} be a subsequence of realized economies {fn}. The corresponding cuto�s are

denoted {c̃n}. Let c̃ ≡ (c̃s) be the limit of c̃n. The following two claims establish that c̃n → c,

the cuto� associated with F .

Claim 1. c̃s ≥ cs for every s ∈ S.
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Proof of Claim 1. This is proved by contradiction in 3 steps. Suppose to the contrary that

c̃s < cs for some s. Let S′ ⊂ S be the set of schools the cuto�s of which are strictly lower

under c̃. For any s ∈ S′, de�ne Isn = {i ∈ I|c̃ns < πis ≤ cs and i ranks s �rst} where I is the
set of students in F , which contains the set of students in fn for all n. In other words, Isn
are the set of students ranking school s �rst who have a student rank in between c̃ns and cs.

Step (a): We �rst show that for our subsequence, when the market is large enough, there

must be some students who are in Isn. That is, there exists N such that for any n > N , we

have f̃n(Isn) > 0 for all s ∈ S′.

To see this, we begin by showing that for all s ∈ S′, there exists N such that for any n > N ,

we have F (Isn) > 0. Suppose, to the contrary, that there exists s ∈ S′ such that for all N ,

there exists n > N such that F (Isn) = 0. When we consider the subsequence of realized

economies {f̃n}, we �nd that

f̃n({i ∈ Qs(cn) such that πis ≤ cs})
= f̃n({i ∈ Qs(cn) such that πis ≤ c̃ns}) + f̃n({i ∈ Qs(cn) such that c̃ns < πis ≤ cs})
= f̃n({i ∈ Qs(cn) such that πis ≤ c̃ns}) (22)

≤ qs. (23)

Expression (22) follows from Assumption 1 by the following reason. (22) does not hold, i.e.,

f̃n({i ∈ Qs(cn) such that c̃ns < πis ≤ cs}) > 0 only if F ({i ∈ I|c̃ns < πis ≤ cs}) > 0.

This and Assumption 1 imply F ({i ∈ I|c̃ns < πis ≤ cs and i ranks s �rst}) ≡ F (Isn) > 0, a

contradiction to F (Isn) = 0. Since f̃n is realized as n iid samples from F , f̃n({i ∈ I|c̃ns <
πis ≤ cs}) = 0. Expression (23) follows by our de�nition of DA, which can never assign more

students to a school than its capacity for each of the n samples. We obtain our contradiction

since c̃ns is not maximal at s in f̃n since expression (23) means it is possible to increase the

cuto� c̃ns to cs without violating the capacity constraint.

Given that we've just shown that for each s ∈ S′, F (Isn) > 0 for some n, it is possible to

�nd an n such that F (Isn) > ε > 0. Since fn → F and so f̃n → F , there exists N such

that for all n > N , we have f̃n(Isn) > F (Isn) − ε > 0. Since the number of schools is �-

nite, such N can be taken uniformly over all s ∈ S. This completes the argument for Step (a).

Step (a) allows us to �nd some N such that for any n > N , f̃n(Isn) > 0 for all s′ ∈ S′. Let
s̃n ∈ S and t be such that c̃t−1

ns ≥ cs for all s ∈ S and c̃tns̃n < cs̃n . That is, s̃n is one of the

�rst schools the cuto� of which falls strictly below cs̃n under the DA algorithm in f̃n, which

happens in round t of the DA algorithm. Such s̃n and t exist since the choice of n guarantees

f̃n(Isn) > 0 and so c̃ns < cs for all s ∈ S′.
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Step (b): We next show that there exist in�nitely many values of n such that the associated

s̃n is in S′ and f̃n(Isn) > 0 for all s ∈ S′. It is because otherwise, by Step (a), there exists N

such that for all n > N , we have s̃n 6∈ S′. Since there are only �nitely many schools, {s̃n}
has a subsequence {s̃m} such that s̃m is the same school outside S′ for all m. By de�nition

of s̃n, c̃ms̃m ≤ c̃tms̃m < cs̃m for all m and so c̃s̃m < cs̃m , a contradiction to s̃m 6∈ S′. Therefore,
we have our desired conclusion of Step (b).

Fix some n such that the associated s̃n is in S′ and f̃n(lsn) > 0 for all s ∈ S′. Step (b)

guarantees that such n exists. Let Ãns̃n and As̃n be the sets of students assigned s̃n under

f̃n and F, respectively. All students in I s̃nn are assigned s̃n in F and rejected by s̃n in f̃n.

Since these students rank s̃n �rst, there must exist a positive measure (with respect to f̃n)

of students outside I s̃nn who are assigned s̃n in f̃n and some other school in F ; denote the set

of them by Ãns̃n\As̃n . f̃n(Ãns̃n\As̃n) > 0 since otherwise, for any n such that Step (b) applies,

f̃n(Ãns̃n) ≤ f̃n(As̃n \ I s̃nn ) = f̃n(As̃n)− f̃n(I s̃nn ),

which by Step (a) converges to something strictly smaller than F (As̃n) since

f̃n(As̃n) → F (As̃n) and f̃n(I s̃nn ) > 0 for all large enough n by Step (a). Note that

F (As̃n) is weakly smaller than qs̃n . This implies that for large enough n, f̃n(Ãns̃n) < qs̃n , a

contradiction to Ãns̃n 's being the set of students assigned s̃n at a cuto� strictly smaller than

the largest possible value K + 1. For each i ∈ Ãns̃n \ As̃n , let si be the school to which i is

assigned under F .

Step (c): To complete the argument for Claim 1, we show that some i ∈ Ãns̃n \ As̃n must

have been rejected by si in some step t̃ ≤ t − 1 of the DA algorithm in f̃n. That is, there

exists i ∈ Ãns̃n \As̃n and t̃ ≤ t− 1 such that πisi > c̃t̃nsi . Suppose to the contrary that for all

i ∈ Ãns̃n \ As̃n and t̃ ≤ t − 1, we have πisi ≤ c̃t̃nsi . Each such student i must prefer si to s̃n
because i is assigned si 6= s̃n under F though πis̃n ≤ c̃ns̃n < cs̃n , where the �rst inequality

holds because i is assigned s̃n in F̃n while the second inequality does because s̃n ∈ S′. This
implies none of Ãns̃n \As̃n is rejected by si, applies for s̃, and contributes to decreasing c̃tns̃n
at least until step t and so c̃tns̃n < cs̃n cannot be the case, a contradiction. Therefore, we

have our desired conclusion of Step (c).

Claim 1 can now be established by showing that Step (c) implies there are i ∈ Ãns̃n \ As̃n
and t̃ ≤ t − 1 such that πisi > c̃t̃nsi ≥ c̃nsi , where the last inequality is implies by the fact

that in every economy, for all s ∈ S and t ≥ 0, we have ct+1
s ≤ cts. Also, they are assigned si

in F so that πisi ≤ csi . These imply csi > c̃t̃nsi ≥ c̃nsi . That is, the cuto� of si falls below csi
in step t̃ ≤ t− 1 < t of the DA algorithm in f̃n. This contradicts the de�nition of s̃n and t.

Therefore c̃s ≥ cs for all s ∈ S, as desired.

Claim 2. By a similar argument, c̃s ≤ cs for every s ∈ S.

Since c̃s ≥ cs and c̃s ≤ cs for all s, it must be the case that c̃n → c. The following claim uses

this to show that cn → c.

Claim 3. If c̃n → c for every convergent subsequence {c̃n} of {cn}, then cn → c.
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Proof of Claim 3. Since {cn} is bounded in [0,K + 1]|S|, it has a convergent subsequence

by the Bolzano-Weierstrass theorem. Suppose to the contrary that for every convergent

subsequence {c̃n}, we have c̃n → c, but cn 6→ c. Then there exists ε > 0 such that for all

k > 0, there exists nk > k such that ||cnk − c|| ≥ ε. Then the subsequence {cnk}k ⊂ {cn}
has a convergent subsequence that does not converge to c (since ||cnk − c|| ≥ ε for all k),

which contradicts the supposition that every convergent subsequence of {cn} converges to
c.

The last step in the proof of Lemma 1 relates this fact to stochastic convergence.

Claim 4. cn → c implies ĉn
a.s.−→ c

Proof of Claim 4. This proof is based on two o�-the-shelf asymptotic results from mathe-

matical statics. First, let Fn be the distribution over I(Θ0, r0, r1)'s generated by randomly

drawing n students from F . Note that Fn is random since it involves randomly drawing n

students. Fn
a.s.→ F by the Glivenko-Cantelli theorem (Theorem 19.1 in van der Vaart (2000)).

Next, since Fn
a.s.→ F and cn → c, the Extended Continuous Mapping Theorem (Theorem

18.11 in van der Vaart (2000)) implies that ĉn
a.s.−→ c, completing the proof of Lemma 1.

A.4.2 Proof of Lemma 2

Proof. Consider any deterministic sequence of economies {fn} such that fn ∈ F for all n and

fn → F in the (F , d) metric space. Let pns(θ) be the (�nite-market, deterministic) propensity

score for a particular fn. Note that this subtly modi�es the de�nition of pns(θ) from that in

the text. The change here is that the propensity score for fn is not a random quantity, because

economy fn is viewed as �xed.

For Lemma 2, it is enough to show deterministic convergence of this �nite-market score, that

is, pns(θ)→ ϕs(θ) as fn → F . To see this, let Fn be the distribution over I(Θ0, r0, r1)'s induced

by randomly drawing n students from F . Note that Fn is random and that Fn
a.s.→ F by the

Glivenko-Cantelli theorem (Theorem 19.1 in van der Vaart (2000)). Fn
a.s.→ F and pns(θ)→ ϕs(θ)

allow us to apply the Extended Continuous Mapping Theorem (Theorem 18.11 in van der Vaart

(2000)) to obtain p̃ns(θ)
a.s.−→ ϕs(θ).

We prove convergence of pns(θ) → ϕs(θ) as follows. Let c̃ns and c̃ns′ be the random cuto�s

at s and s′, respectively, in fn, and

τθs ≡ cs − ρθs,
τθs− ≡ maxs′�θs{cs′ − ρθs′},
τ̃nθs ≡ c̃ns − ρθs, and
τ̃nθs− ≡ maxs′�θs{c̃ns′ − ρθs′}.

We can express ϕs(θ) and pns(θ) as follows.

ϕs(θ) = max{0, τθs − τθs−}
pns(θ) = Pn(τ̃nθs ≥ R > τ̃nθs−)

58



where Pn is the probability induced by randomly drawing lottery numbers given fn, and R is

any type θ student's random lottery number distributed according to U [0, 1]. By Lemma 1, with

probability 1, for all ε1 > 0, there exists N1 such that for all n > N1,

|c̃ns′ − cs′ | < ε1 for all s′,

which implies that with probability 1,

|τ̃nθs− − τθs− |
=|{c̃ns1 − ρθs1} − {cs2 − ρθs2}|

<

{
|{c̃ns1 − ρθs1} − ({c̃ns1 − ρθs2}+ ε1)| if cs2 − ρθs2 ≥ c̃ns1 − ρθs1
|{c̃ns1 − ρθs1} − ({c̃ns1 − ρθs2} − ε1)| if cs2 − ρθs2 < c̃ns1 − ρθs1

= ε1

where in the �rst equality, s1 ≡ arg maxs′�θs{c̃ns′ − ρθs′} and s2 ≡ arg max{cs′ − ρθs′}. The

inequality is by |c̃ns′− cs′ | < ε1 for all s
′. For all ε > 0, the above argument with setting ε1 < ε/2

implies that there exists N such that for all n > N ,

pns(θ)

= Pn(τ̃nθs ≥ R > τ̃nθs−})
∈ (max{0, τθs − τθs− − ε,max{0, τθs − τθs− + ε)

∈ (ϕs(θ)− ε, ϕs(θ) + ε),

where the second-to-last inclusion is because with probability 1, there exists N such that for all

n > N such that |τ̃nθs − τθs|, |τ̃nθs− − τθs− | < ε1 and R ∼ U [0, 1]. This means pns(θ) → ϕs(θ),

completing the proof of Lemma 2.

A.5 First Choice and Quali�cation Instruments: Details

Let Df
i be the �rst choice instrument de�ned in section 4.5 and let s̃i be i's �rst choice school.

The �rst choice risk set is Q(θi) ≡ (s̃i, ρis̃).

Proposition 3. In any continuum economy, Df
i is independent of θi conditional on Q(θi).

Proof. In general,

Pr(Df
i = 1|θi = θ)

= Pr(πis̃i ≤ cs̃i |θi = θ)

= Pr(ρis̃i + ri ≤ cs̃i |θi = θ)

= Pr(ri ≤ cs̃i − ρis̃i |θi = θ)

= cs̃i − ρis̃i ,
which depends on θi only through Q(θi) because cuto�s are �xed in the continuum..

Let Dq
i and Q(θi) be the quali�cation instrument and the associated risk set de�ned in section

4.5. The latter is given by the list of schools i ranks and his priority status at each, that is,

Q(θi) ≡ (Si, (ρis)s∈Si) where Si is the set of charter schools i ranks.

59



Proposition 4. In any continuum economy, Dq
i is independent of θi conditional on Q(θi).

Proof. In general, we have

Pr(Dq
i = 1|θi = θ)

= Pr(πis ≤ cs for some s ∈ Si|θi = θ)

= Pr(ρis + ri ≤ cs for some s ∈ Si|θi = θ)

= Pr(ri ≤ cs − ρis for some s ∈ Si|θi = θ)

= Pr(ri ≤ maxs∈Si(cs − ρis)|θi = θ)

= maxs∈Si(cs − ρis),
which depends on θi only through Q(θi) because cuto�s are �xed in the continuum.

A.6 Extension to a General Lottery Structure

Washington DC, New Orleans, and Amsterdam use DA with multiple lottery numbers, one for

each school (see, for example, de Haan et al. (2015)). Washington, DC uses a version of DA that

uses a mixture of shared and individual school lotteries. This section derives the DA propensity

score for a mechanism with any sort of multiple tie-breaking.

Let a random variable Ris denote student i's lottery number at school s. Assume that each

Ris is drawn from U [0, 1], independently with schools. We consider a general lottery structure

where Ris 6= Ris′ for some (not necessarily all) s, s′ ∈ S and i ∈ I.
Recall Bθs is de�ned as {s′ ∈ S | s′ �θ s}. Partition Bθs into m̄ disjoint sets B1

θs, ..., B
m̄
θs, so

that s′ and s′′ use the same lottery if and only if s′, s′′ ∈ Bm
θs for some m. Note that this partition

is speci�c to type θ. With single-school lotteries, m̄ simpli�es to |Bθs|, the number of schools

type θ ranks ahead of s.

The most informative disquali�cation, MIDm
θs, is de�ned for each m as

MIDm
θs ≡


0 if ρθs̃ > ρs̃ for all s̃ ∈ Bm

θs,

1 if ρθs̃ < ρs̃ for some s̃ ∈ Bm
θs,

max{τs̃ | s̃ ∈ Bm
θs and ρθs̃ = ρs̃} if ρθs̃ = ρs̃ for s̃ ∈ Bm

θs and ρθs̃ > ρs̃ otherwise.

Let m∗ be the value of m for schools in the partition that use the same lottery as s. Denote the

associated MID by MID∗θs. We de�ne MID∗θs = 0 when the lottery at s is unique and there

is no m∗. The following result extends Theorem 1 to a general lottery structure. The proof is

omitted.

Theorem 1 (Generalization). For all s and θ in any continuum economy, we have:

Pr[Di(s) = 1|θi = θ] = ϕs(θ) ≡


0 if θ ∈ Θn

s ,

Πm̄
m=1(1−MIDm

θs) if θ ∈ Θa
s ,

Πm̄
m=1(1−MIDm

θs)×max

{
0,
τs −MID∗θs
1−MID∗θs

}
if θ ∈ Θc

s.

where we set ϕs(θ) = 0 when MID∗θs = 1 and θ ∈ Θc
s.

Note that in the single tie breaker case, the expression for ϕs(θ) reduces to that in Theorem 1

since m̄ = 1 in that case.
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A.7 The Boston (Immediate Acceptance) Mechanism

Studies by Hastings-Kane-Staiger (2009), Hastings-Neilson-Zimmerman (2012), and Deming-

Hastings-Kane-Staiger (2013)), among others, use data generated from versions of the Boston

mechanism. Given strict preferences of students and schools, the Boston mechanism is de�ned

as follows:

• Step 1: Each student applies to her most preferred acceptable school (if any). Each school

accepts its most-preferred students up to its capacity and rejects every other student.

In general, for any step t ≥ 2,

• Step t : Each student who has not been accepted by any school applies to her most preferred

acceptable school that has not rejected her (if any). Each school accepts its most-preferred

students up to its remaining capacity and rejects every other student.

This algorithm terminates at the �rst step in which no student applies to a school. Boston

assignments di�er DA in that any o�er at any step is �xed; students receiving o�ers cannot be

displaced later.

This important di�erence notwithstanding, the Boston mechanism can be represented as a

special case of DA by rede�ning priorities as follows:

Proposition 5. (Ergin and Sönmez (2006)) The Boston mechanism applied to (�i)i and (�s)s
produces the same assignment as DA applied to (�i)i and (�∗s)s where �∗s is de�ned as follows:

1. For k = 1, 2..., {students who rank s k-th} �∗s {students who rank s k + 1-th}

2. Within each category, �∗s ranks the students in the same order as original �s.

This equivalence allows us to construct a Boston propensity score by rede�ning priorities so that

priority groups at a given school consists of applicants who (i) share the same original priority

status at the school and (ii) give the same rank to the school.
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B Empirical Appendix

B.1 Data

The Denver Public Schools (DPS) analysis �le is constructed using application, school assign-

ment, enrollment, demographic, and outcome data provided by DPS for school years 2011-2012

and 2012-2013. All �les are de-identi�ed, but students can be matched across years and �les.

Applicant data are from the 2012-2013 SchoolChoice assignment �le and test score data are from

the CSAP (Colorado Student Assessment Program) and the TCAP (Transitional Colorado As-

sessment Program) �les. The CSAP was discontinued in 2011, and was replaced by the TCAP

beginning with the 2012-2013 school year. Enrollment, demographic, and outcome data are

available for students enrolled in DPS only; enrollment data are for October.

Applications and assignment: The SchoolChoice �le

The 2012-2013 SchoolChoice assignment �le contains information on applicants' preferences over

schools (school rankings), school priorities over applicants, applicants' school assignments (o�ers)

and lottery numbers, a �ag for whether the applicant is subject to the family link policy described

in the main text and, if so, to which sibling the applicant is linked. Each observation in the

assignment �le corresponds to an applicant applying for a seat in programs within schools known

as a bucket.31 Each applicant receives at most one o�er across all buckets at a school. Information

on applicant preferences, school priorities, lottery numbers, and o�ers are used to compute the

DA propensity score and the simulated propensity score.

Appendix Table B1 describes the construction of the analysis sample starting from all appli-

cants in the 2012-2013 SchoolChoice assignment �le. Out of a total of 25, 687 applicants seeking

a seat in DPS in the academic year 2012-2013, 5, 669 applied to any charter school seats in grades

4 through 10. We focus the analysis on applicants to grades 4 through 10 because baseline grade

test scores are available for these grades only. We further limit the sample to 4, 964 applicants

who were enrolled in DPS in the baseline grade (the grade prior to the application grade) in

the baseline year (2011-2012), for whom baseline enrollment demographic characteristics are

available.

Enrollment and demographic characteristics

Each observation in the enrollment �les describes a student enrolled in a school in a year, and

includes information on grade attended, student sex, race, gifted status, bilingual status, special

education status, limited English pro�ciency status, and subsidized lunch eligibility.32 Demo-

31Since applicants' rankings are at the school-level but seats are assigned at the bucket level, the SchoolChoice
assignment mechanism translates school-level rankings into bucket-level rankings. For example, if an applicant
ranked school A �rst and school B second, and if all seats at both A and B are split into two categories, one
for faculty children (�Faculty�) and one for any type of applicant (�Any�), then the applicant's ranking of the
programs at A and B would be listed as 10 for Faculty at A, 11 for Any at A, 20 for Faculty at B, 21 for Any at
B where numbers code preferences (smaller is more preferred).

32Race is coded as black, white, asian, hispanic, and other. In DPS these are mutually-exclusive categories.
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graphic and enrollment information are from the �rst calendar year a student spent in each

grade.

Applicant outcomes: CSAP/TCAP

Test scores and pro�ciency levels for the CSAP/TCAP math, reading, and writing exams are

available for grades 3 through 10. Each observation in the CSAP/TCAP data �le corresponds

to a student's test results in a particular subject, grade, and year. For each grade, we use scores

from the �rst attempt at a given subject test, and exclude the lowest obtainable scores as outliers.

As a result, 41 observed math scores, 19 observed reading scores, and 1 observed writing score

are excluded from the sample of charter applicants that are in DPS in baseline year. After outlier

exclusion, score variables are standardized to have mean zero and unit standard deviation in a

subject-grade-year in the DPS district.

School classi�cation: Parent Guide

We classify schools as charters, traditional public schools, magnet schools, innovation schools,

contract schools, or alternative schools (i.e. intensive pathways and multiple pathways schools)

according to the 2012-2013 Denver SchoolChoice Parent Guides for Elementary and Middle

Schools and High Schools. School classi�cation is by grade, since some schools run magnet

programs for a few grades only. Schools not included in the Parent Guide (i.e. SIMS Fayola

International Academy Denver) were classi�ed according to information from the school's website.
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Table B1: SchoolChoice application records
All applicants In DPS at baseline

Applicants Types Applicants Types
(1) (2) (3) (4)

All applicants 25,687 16,087 15,487 9,564
Applicants to grades 4 through 10 12,507 7,480 10,898 6,642
Applicants to any charters (grades 4 through 10) 5,669 4,833 4,964 4,282
Notes: All applications are for the 2012-2013 academic year. Columns 1 and 2 include all applicants in the SchoolChoice assignment file (see 
Data Appendix for details). Columns 3 and 4 exclude applicants who were not in DPS at the baseline grade (the grade prior to application grade) 
in baseline year (2011-2012). Applicants to grade "EC" (early childhood, or pre-kindergarten) are excluded from columns 3 and 4 because there is 
no baseline grade for those applicants. Columns 2 and 4 count unique combinations of applicant preferences over school programs and school 
priorities in those programs. 



Table B2: Attrition by offer status
Propensity score controls

Nonparametric
Non-offered 

mean No controls
Rounded 

(hundredths) Saturated
(1) (2) (3) (4) (5)

A. DA score (frequency)
Enrolled in DPS in follow-up year 0.905 0.029*** 0.041** 0.040** 0.038**

(0.008) (0.019) (0.019) (0.019)
Has scores in follow-up year 0.881 0.032*** 0.050** 0.049** 0.048**

(0.009) (0.020) (0.020) (0.021)

N 2,939 4,964 1,436 1,289 1,247

B. DA score (formula)
Enrolled in DPS in follow-up year 0.905 0.029*** 0.036** 0.027 0.031

(0.008) (0.017) (0.018) (0.020)
Has scores in follow-up year 0.881 0.032*** 0.032* 0.026 0.038*

(0.009) (0.018) (0.020) (0.022)

N 2,939 4,964 1,508 1,472 1,224

C. Simulated score
Enrolled in DPS in follow-up year 0.905 0.029*** 0.037** 0.040**

(0.008) (0.018) (0.019)
Has scores in follow-up year 0.881 0.032*** 0.040** 0.043**

(0.009) (0.020) (0.021)

N 2,939 4,964 1,523 1,290

Linear control

Notes: This table reports coefficients from regressions of DPS enrollment and test-score availability indicators on charter offers, for the 
sample of charter applicants potentially available to construct the 2SLS estimates reported in Table 7. Column 1 reports follow-up rates for 
charter applicants who did not receive a charter offer. The propensity score control schemes used to construct the estimates in columns 3-5 
parallel those used for Table 7. All models control for the covariates used for that table as well. Robust standard errors are reported in 
parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%



Table B3a: Statistical tests for balance in application characteristics
DA score (formula)

Nonparametric
Non-offered 

mean No controls
Rounded 

(hundredths) Saturated
Application variable (1) (2) (3) (4) (5)
Number of schools ranked 4.375 -0.341*** -0.317*** -0.056 -0.001

(0.046) (0.093) (0.086) (0.094)
Number of charter schools ranked 1.425 0.476*** 0.062 0.016 0.002

(0.024) (0.043) (0.041) (0.044)
First school ranked is charter 0.291 0.612*** 0.003 -0.005 -0.007

(0.011) (0.023) (0.020) (0.019)

N 2,939 4,964 1,508 1,472 1,224

Risk set points of support 156 43 58

Robust F-test for joint significance 1190 8.06 0.47 0.05
p-value 0.000 0.000 0.701 0.986

Notes: This table reports balance coefficients and standard errors like those shown in Table 5a, with the modification that score control uses 
the formula version of the DA score. Robust standard errors are reported in parentheses. P-values for robust joint significance tests are 
estimated by stacking outcomes and clustering standard errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%

Linear control



Table B3b: Statistical tests for balance in student characteristics
DA score (formula)

Nonparametric
Non-offered 

mean No controls
Rounded 

(hundredths) Saturated
Student characteristics (1) (2) (3) (4) (5)
Origin school is charter 0.086 0.108*** 0.085*** -0.012 -0.037**

(0.010) (0.022) (0.017) (0.017)
Female 0.520 -0.005 0.014 0.041 0.020

(0.014) (0.030) (0.032) (0.035)
Race

Hispanic 0.595 0.095*** -0.004 -0.031 0.003
(0.014) (0.028) (0.028) (0.029)

Black 0.183 -0.033*** -0.008 0.008 -0.009
(0.011) (0.024) (0.025) (0.027)

Gifted 0.203 -0.028** -0.047** -0.040* -0.036
(0.011) (0.023) (0.024) (0.027)

Bilingual 0.289 0.086*** 0.021 -0.002 0.010
(0.014) (0.029) (0.030) (0.033)

Subsidized lunch 0.767 0.073*** -0.007 0.011 0.002
(0.011) (0.024) (0.023) (0.026)

Limited English proficient 0.289 0.086*** 0.021 -0.002 0.010
(0.014) (0.029) (0.030) (0.033)

Special education 0.084 0.004 0.027* 0.036** 0.033*
(0.008) (0.016) (0.017) (0.018)

N 2,939 4,964 1,508 1,472 1,224
Baseline scores

Math 0.022 -0.002 0.018 -0.049 -0.080
(0.027) (0.056) (0.057) (0.063)

Reading 0.040 -0.085*** -0.023 -0.067 -0.100*
(0.026) (0.053) (0.053) (0.057)

Writing 0.035 -0.072*** -0.039 -0.068 -0.108*
(0.026) (0.051) (0.051) (0.055)

N 2,891 4,889 1,491 1,455 1,213

Robust F-test for joint significance 19.1 2.38 1.16 1.18
p-value 0.000 0.005 0.309 0.290

Notes: This table reports balance coefficients and standard errors like those shown in Table 5b, with the modification that score control uses 
the formula version of the DA score. Robust standard errors are reported in parentheses. P-values for robust joint significance tests are 
estimated by stacking outcomes and clustering standard errors at the student level. 
*significant at 10%; **significant at 5%; ***significant at 1%

Linear control



Table B4: Expected covariate balance by market size
DA score (frequency) controls (saturated)

No controls Actual size Double size Four times larger Eight times larger
(1) (2) (3) (4) (5)

Number of schools ranked -0.341 0.052 0.023 0.010 0.003
Number of charter schools ranked 0.474 0.055 0.019 0.004 -0.001
First school ranked is charter 0.616 0.001 0.000 0.000 0.001

Origin school is charter 0.115 0.001 0.001 0.001 0.001
Female -0.007 0.003 0.001 0.001 0.000
Race

Hispanic 0.094 -0.005 0.001 0.002 0.003
Black -0.031 0.001 -0.001 -0.002 -0.001

Gifted -0.022 -0.005 -0.002 -0.002 -0.001
Bilingual 0.020 0.001 0.001 0.001 0.001
Subsidized lunch 0.073 0.003 0.002 0.000 0.000
Limited English proficient 0.084 -0.005 -0.003 -0.002 -0.002
Special education -0.004 -0.003 -0.003 -0.002 -0.002
Baseline scores

Math 0.010 -0.020 -0.013 -0.009 -0.009
Reading -0.070 -0.014 -0.009 -0.005 -0.005
Writing -0.056 -0.016 -0.008 -0.005 -0.006

Average sample size 4,964 1,419 2,636 5,436 11058
Notes: This table repeats the expected balance calculations reported in Table 4 with markets of increasing size. Columns 1 and 2 are the same as 
columns 2 and 5 in Table 4. Columns 3-5 show balance after scaling market size by factors of 2, 4, and 8; this is accomplished by drawing additional 
lottery numbers and multiplying the number of seats accordingly. Except for column 1, the sample size reported at the bottom of the table shows the 
average number of participants in the appropriately scaled market with variation in the any-charter offer dummy conditional on the propensity score 
estimate that is relevant for that column.



Table B5: Comparison of 2SLS and OLS estimates of charter attendance effects without covariate controls

(1) (2) (3) (4) (5) (6)
First stage 0.399*** 0.376*** 0.367*** 0.734***

(0.032) (0.032) (0.032) (0.011)

Math 0.339** 0.363** 0.409** 0.239*** 0.285*** 0.457***
(0.148) (0.158) (0.162) (0.039) (0.028) (0.067)

Reading -0.102 -0.108 -0.091 -0.050 0.039 0.158***
(0.136) (0.144) (0.150) (0.038) (0.027) (0.059)

Writing 0.116 0.134 0.140 0.052 0.127*** 0.282***
(0.137) (0.144) (0.150) (0.039) (0.027) (0.059)

N 1,102 1,083 1,137 4,317 4,317 1,102
Notes: This table reports estimates analogous to those reported in Table 7, computed in models without covariate controls. Robust standard errors are 
reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%

2SLS estimates
DA score

Frequency
(saturated)

Formula
(saturated)

Simulation 
rounded (hundredths)

No score 
controls OLS

OLS with 
score controls



Table B6: DPS innovation schools
Propensity score in (0,1)

School Total applicants
Applicants 

offered seats
DA score 

(frequency)
DA score 
(formula) Simulated

(1) (2) (3) (4) (5)
Elementary and middle schools

Cole Arts and Science Academy 31 15 11 9 10
DCIS at Ford 16 0 0 0 1
DCIS at Montbello 412 125 163 156 170
Denver Green School 153 62 29 46 52
Godsman Elementary 10 8 0 0 0
Green Valley Elementary 53 15 3 23 35
Martin Luther King Jr. Early College 427 177 117 120 121
McAuliffe International School 406 165 91 115 112
McGlone 14 2 1 4 3
Montclair Elementary 15 11 2 1 1
Noel Community Arts School 288 108 92 97 105
Valdez Elementary 6 3 0 1 1
Whittier K-8 School 47 8 1 3 4

High schools
Collegiate Preparatory Academy 433 125 173 158 153
DCIS at  Montbello 506 125 208 169 174
High-Tech Early College 481 125 209 193 214
Manual High School 390 130 152 159 187
Martin Luther King Jr. Early College 515 144 179 151 162
Noel Community Arts School 334 78 112 112 107

Notes:  This table describes DPS innovation applications in a format like that used for charters in Table 1 (excluding column 6).



Table B7: Covariate balance and differential attrition for DPS innovation schools
Propensity score controls

DA score (frequency) Simulated score
Nonparametric Nonparametric

Non-offered 
mean No controls

Rounded 
(hundredths) Saturated

Rounded 
(hundredths)

Rounded (ten 
thousandths)

(1) (2) (3) (4) (5) (6) (7) (8)
A. Application covariates

Number of schools ranked 4.657 -0.142** 0.164 0.012 0.034 0.135 0.132 0.190
(0.058) (0.119) (0.107) (0.106) (0.114) (0.110) (0.158)

Number of innovation schools ranked 1.279 0.710*** 0.192** 0.086 0.035 0.121 0.092 0.097
(0.035) (0.079) (0.062) (0.059) (0.076) (0.069) (0.118)

First school ranked is innovation 0.052 0.611*** -0.003 -0.007 -0.005 -0.030 -0.030 -0.043
(0.015) (0.036) (0.022) (0.018) (0.032) (0.027) (0.037)

B. Baseline covariates
Origin school is innovation 0.116 0.125*** 0.032 0.045 0.044 0.010 0.040 0.100*

(0.015) (0.034) (0.036) (0.036) (0.033) (0.034) (0.053)
Female 0.526 -0.011 0.030 0.028 0.028 0.063 0.060 0.077

(0.020) (0.046) (0.047) (0.049) (0.044) (0.048) (0.087)
Race

Hispanic 0.491 0.136*** 0.028 0.015 -0.001 0.037 0.043 0.039
(0.020) (0.045) (0.044) (0.046) (0.044) (0.044) (0.077)

Black 0.262 -0.064*** 0.018 0.018 0.030 0.003 0.009 0.023
(0.017) (0.038) (0.039) (0.041) (0.036) (0.040) (0.071)

Gifted 0.198 -0.056*** -0.019 -0.028 -0.041 0.017 0.020 0.008
(0.015) (0.034) (0.035) (0.036) (0.033) (0.035) (0.062)

Bilingual 0.018 0.007 -0.025 -0.027* -0.029* -0.020 -0.014 -0.006
(0.006) (0.016) (0.016) (0.015) (0.015) (0.015) (0.029)

Subsidized lunch 0.763 0.047*** 0.029 0.034 0.016 0.011 0.013 -0.044
(0.016) (0.037) (0.036) (0.037) (0.037) (0.036) (0.061)

Limited English proficient 0.253 0.047*** 0.016 0.032 0.031 0.007 -0.001 -0.030
(0.018) (0.041) (0.042) (0.043) (0.041) (0.043) (0.085)

Special education 0.092 0.004 -0.021 -0.031 -0.036 -0.026 -0.037 -0.050
(0.012) (0.025) (0.025) (0.025) (0.025) (0.025) (0.062)

N 1,176 2,483 769 717 623 888 705 279
Baseline scores

Math -0.017 -0.186*** -0.032 -0.018 -0.057 0.023 0.042 0.030
(0.040) (0.091) (0.087) (0.088) (0.088) (0.091) (0.158)

Reading 0.036 -0.220*** -0.066 -0.047 -0.047 -0.013 0.002 0.015
(0.038) (0.084) (0.082) (0.084) (0.080) (0.083) (0.153)

Writing 0.000 -0.163*** 0.025 0.041 0.030 0.079 0.081 0.119
(0.038) (0.085) (0.082) (0.084) (0.082) (0.084) (0.165)

N 1,158 2,434 752 704 614 869 689 273

Robust F-test for joint significance 143 1.10 0.99 0.91 0.80 0.92 1.52
p-value 0.000 0.354 0.457 0.548 0.669 0.535 0.102

C. Differential attrition
Enrolls in Denver in follow-up year 0.920 -0.001 -0.017 -0.012 -0.011 -0.015 -0.020 -0.008

(0.011) (0.026) (0.027) (0.029) (0.024) (0.027) (0.044)
Has scores in follow-up year 0.897 -0.011 -0.019 -0.014 -0.018 -0.008 -0.017 0.018

(0.012) (0.027) (0.029) (0.030) (0.026) (0.029) (0.051)
N 1,176 2,483 769 717 623 888 705 279

Notes: Panels A and B report covariate balance tests for innovation offers in a manner analogous to that used for charter offer balance in Tables 5a and 5b.  Panel C reports attrition differentials for 
innovation offers in a manner analogous to that used for charter offer in Appendix Table B2.  Robust standard errors are reported in parentheses. P-values for robust joint significance tests are 
estimated by stacking outcomes and clustering standard errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%

Linear control Linear control


