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Worker and firm heterogeneity

• Important questions: firm/worker sorting and optimal allocations,

sources of wage inequality...

• For more than 20 years, researchers have relied on matched data

that follow workers across firms over time.

• Matched panel datasets are useful to allow for both unobserved

worker and firm heterogeneity.



Fixed-effects regression

• Abowd, Kramarz and Margolis (1999) estimated:

log wage = worker FE + firmFE + covariates + error term

on French matched employer employee data.

• This allows to document the association cov(worker FE, firmFE),

and more generally the contributions of workers and firms to wage

dispersion.

• Widely applied method, in labor (for example Card, Heining and

Kline 2013) and outside (schools, hospitals, cities...).



Fixed-effects regression (cont.)

1. Additive model (in logs). Hence a very specific form of comple-

mentarity between worker and firm characteristics.

-Theoretical and structural literature on sorting models (Becker 1974,

Shimer and Smith 2000, Eeckhout and Kircher 2011, among others).

2. In panels with limited job mobility, estimates based on a fixed-

effects approach may be biased (Andrews et al. 2008).



This paper

• Estimate wage distributions conditional on worker and firm het-

erogeneity, and estimate worker composition in different firms.

• The framework is consistent with a number of theoretical sorting

models.

• Discrete heterogeneity: “grouped fixed-effects” for firms, and “cor-

related random-effects” for workers.

• Show nonparametric identification. 3-step estimation method. Ap-

ply the method to Swedish employer-employee data.

• Key source of variation: wages of job movers (as in fixed-effects

regressions).



Plan of the talk

• Framework

• Identification and Estimation

• Data and empirical results (preliminary)



Framework



Heterogeneity and wages in period 1

• Workers indexed by i with discrete types ω(i) ∈ {1, ...,K}, and firms

indexed by j with discrete classes f(j) ∈ {1, ..., L}.

• Let jit denote the identifier of the firm where i works at time t.

• The proportion of type-k workers (that is, ω(i) = k) in a class-` firm

(that is, f(ji1) = `) is πk(`).

• The cdf of log wages Yi1 for a type-k worker in a class-` firm is

Fk`(y).

• Here we abstract from worker- and firm-level covariates.



Job mobility (2-periods model)

• Period 1:

-A type-k worker in a class-` firm draws a wage Yi1 from Fk`(y).

• Period 2:

-The worker moves to a class-`′ firm with a probability that depends

on k and `, not on Yi1.

-If he moves, the worker draws a wage Yi2 from a distribution Gk`′(y
′)

that depends on k and `′, not on (`, Yi1).

• Two assumptions: 1) mobility is driven by types/classes, 2) serial

independence upon job change.



Job mobility (4-periods model)

• Periods 1 and 2: A type-k worker in a class-` firm draws wages

(Yi1, Yi2) from a bivariate distribution that depends on (k, `).

• Period 3:

-The worker moves to a class-`′ firm with a probability that depends

on k, ` and Yi2, not on Yi1.

-If he moves, the worker draws a wage Yi3 from a distribution that

depends on k, `′, `, Yi2, not on Yi1.

• Period 4: The worker then draws a wage Yi4 from a distribution

that depends on k, `′, Yi3, not on (`, Yi2, Yi1).



Statistical implications

• 2-periods model: if mi = 1{ji1 6= ji2} denotes job mobility, then

Yi1 and Yi2 are conditionally independent given

(mi = 1, k, `, `′).

Type proportions of job movers are denoted as pk(`, `′).

• 4-periods model: if mi = 1{ji2 6= ji3} denotes job mobility between

periods 2 and 3, then

Yi1 and Yi4 are conditionally independent given

(mi = 1, k, `, `′, Yi2, Yi3).



Main restrictions (2-periods model)

• In the 2-periods model we have:

Pr
[
Yi1 ≤ y , Yi2 ≤ y′ |mi = 1, f(ji1) = `, f(ji2) = `′

]
=

K∑
k=1

pk
(
`, `′

)
Fk`(y)Gk`′(y

′), (MOV)

Pr [Yi1 ≤ y | f(ji1) = `] =
K∑
k=1

πk (`)Fk`(y). (CROSS)

• Firm classes f(j) can be recovered using (MOV) and/or (CROSS).

• We show how to recover Fk`, Gk`′, and pk(`, `′) from (MOV) using

job movers, and πk(`) from (CROSS) using the first cross-section.



Main restrictions (4-periods model)

• In the more general 4-periods model we have:

Pr
[
Yi1 ≤ y1, Yi4 ≤ y4 |mi = 1, Yi2 = y2, Yi3 = y3, f(ji2) = `, f(ji3) = `′

]
=

K∑
k=1

pk
(
y2, y3, `, `

′
)
Fk`(y1|y2)Gk`′(y4|y3).

(MOV-ENDO)

• Similar structure as in the setup with exogenous mobility, one

period further away on each side.

• Identification follows using similar arguments.



Identification and estimation



A simple model

• For illustration, consider a special case of the 2-periods model.

• Job movers between ` and `′:

Yi1 = a(`) + b(`)αi + σ(`)εi1,

Yi2 = a(`′) + b(`′)αi + σ(`′)εi2,

where αi has mean E``′(αi) and variance Var``′(αi), and εit are iid

standard Gaussian.

• The ratio b(`′)/b(`) is not nonparametrically identified using mean

and covariance restrictions.

• For example: not identified if αi Gaussian (Reiersol, 1950).



A simple model (cont.)

• Now adding job movers between `′ and `:

Yi1 = a(`′) + b(`′)αi + σ(`′)εi1,

Yi2 = a(`) + b(`)αi + σ(`)εi2.

• Then b(`′)/b(`) is identified, as:

b(`′)

b(`)
=

E``′(Yi2)− E`′`(Yi1)

E``′(Yi1)− E`′`(Yi2)
,

provided that b(`) 6= 0, and that:

E``′(αi) 6= E`′`(αi).

• Empirical counterpart: check whether

E``′ (Yi1 + Yi2) 6= E`′` (Yi1 + Yi2) .



Identification of firm classes and worker composition

• To recover firm classes f(j), note that, for all firms j such that

f(j) = ` the cdf of log wages in period 1 is:

Pr [Yi1 ≤ y | f(ji1) = `] =
K∑
k=1

πk(`)Fk`(y) ≡ H` (y) ,

where H`, ` = 1, ..., L, are univariate cdfs.

• Identifying the f(j) thus amounts to solving a classification prob-

lem. This requires the H` to be distinct.

• Finally, given firm classes f(j) and cdfs Fk` it is immediate to re-

cover the type proportions πk(`) from cross-sectional wages, through

(CROSS).



Estimation 1st step: firm classes

• Let F̂j be the empirical cdf of wages in firm j, and nj the number

of workers in firm j.

• We estimate firm classes f(j), for all firms j ∈ {1, ..., J}, by solving:

min
f(1),...,f(J),H1,...,HL

J∑
j=1

nj

D∑
d=1

(
F̂j(yd)−Hf(j) (yd)

)2
,

where y1, ...., yD is a grid of values.

• This is a clustering algorithm (weighted k-means).

• Uniform consistency of f̂(j) can be shown by verifying the condi-

tions of Theorem 2 in Bonhomme and Manresa (2015).



Estimation 2nd and 3rd steps: wage distributions and worker

composition

• Given estimated firm classes we solve a finite mixture problem.

• Under parametric assumptions on Fk` and Gk`, we maximize:

N∑
i=1

L∑
`=1

L∑
`′=1

1{f̂(ji1) = `}1{f̂(ji2) = `′} ln

 K∑
k=1

pk(`, `′)fk`(Yi1; θ)gk`′(Yi2; θ)

 .
• In the application we assume that Fk` is Gaussian with (k, `)-specific

means and variances, and we use the EM algorithm.

• Lastly, given f̂(j) and F̂k` we estimate πk(`) by maximizing:

N∑
i=1

L∑
`=1

1{f̂(ji1) = `} ln

 K∑
k=1

πk(`)fk`(Yi1; θ̂)

 .



Data and empirical results (preliminary)



Sample description

• We use four different databases covering the entire working age

population in Sweden between 1997 and 2006.

• We follow Friedrich, Laun, Meghir and Pistaferri (2014, WP) for

matching and sample selection.

• We select full-year employed males in 2002 (period 1). We refer to

this sample of 800,000 workers and 50,000 firms as Sample 1.



Sample description (cont.)

• From Sample 1 we select job movers who are full-year employed in

2004 (period 2), and whose firm IDs are different in 2002 and 2004.

• In order to avoid considering job changes that are unrelated to job

mobility, in the baseline we discard workers whose firm identifier is

not present in 2002 or 2004.

• Sample 2 is the resulting sample of 20,000 job movers. [We also

estimated the model on a sample of 55,000 movers without imposing

the above selection.]

• In both samples we compute log pre-tax annual earnings, net of

time dummies (within education*cohort).



Descriptive statistics on estimated firm classes

firm cluster: 1 2 3 4 5 6 7 8 9 10 all

number of workers 21,662 62,929 110,792 114,324 100,080 78,837 137,971 85,806 58,728 27,023 798,152
number of firms 6,487 7,972 7,804 6,494 4,663 3,748 4,209 3,984 3,157 2,812 51,330

% HS dropout 28.9 28 26.6 26.9 23.7 21.1 18.9 12.2 5.31 3 20.7
% HS grade 59.7 62.5 62.6 62.5 61.7 57.8 58.6 47.2 32.9 23.9 56.1
% some college 11.4 9.42 10.7 10.7 14.6 21.2 22.5 40.5 61.8 73.1 23.3
mean log wages 9.6 9.87 9.99 10.1 10.1 10.1 10.2 10.4 10.5 10.8 10.2
mean of log value added per worker 12.4 12.5 12.7 12.7 12.8 12.8 12.9 13 13 13.2 12.7

Notes: Sample 1 in 2002. All workers are males, employed during the full year

2002. “HS” is high school.



Estimated means of log wages by worker type and firm class

(2-periods model)
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Notes: The graph plots the mean of F̂k`. The L = 10 firm classes (on the x-axis)

are ordered by mean log wage. The K = 6 worker types correspond to the 6

different curves. 95% confidence intervals based on the parametric bootstrap (200

replications).



Estimated proportions of worker types by firm class

(2-periods model)
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Notes: Type proportions π̂k(`). Firm classes are on the x-axis, type proportions on

the y-axis. Colors correspond to the 6 different worker types.



Simulations and decompositions

• We simulate the model based on the estimated parameters, condi-

tional on the job moves in the data.

• We simulate entire employment spells, using the spell lengths in the

data.

• We run linear regressions of the form:

Yi1 = α[ω0(i)] + ψ[f0(ji1)] + εi1

• We compare our results with fixed-effects regressions on real and

simulated data.



Variance decompositions on Swedish data and simulated data

(2-periods model)

min spell rep V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ) Corr(α,ψ)

Data

This paper 0.7766 0.0473 0.1762 0.4598
Fixed-effects 0.9813 0.3014 -0.2826 -0.2599

Simulated from the model

This paper 1 1 0.7669 0.0466 0.1866 0.4934
Fixed-effects 1 1 1.0879 0.3447 -0.4326 -0.3532

Simulated from the model without limited mobility

Fixed-effects 4 1 0.8948 0.1602 -0.055 -0.0727
Fixed-effects 4 10 0.7816 0.053 0.1654 0.4064

Notes: Real and simulated data. α is the worker (or type) fixed-effect, ψ is the firm

(or class) fixed-effect. “min spell” is the minimum length of employment spells.

“rep” is the number of job movers per firm, relative to the original dataset.



Wage distribution with/without sorting
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Notes: The left graph plots the log wage densities, Sample 1, 2002. Blue is

simulated from the model, red is simulated from the model without sorting. The

right graph plots quantiles of log wages. The log wage variance without sorting is

.127, versus .144 with sorting (88%).



Estimated means of log wages by worker type and firm class

(4-periods model, preliminary)
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Notes: The graph plots the mean of F̂k` for 2002 in the 4-periods model. Firm

classes are on the x-axis. The 6 worker types correspond to the different curves.



Estimated proportions of worker types by firm class

(4-periods model, preliminary)
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Notes: Type proportions π̂k(`) in the 4-periods model. Firm classes are on the

x-axis, type proportions on the y-axis. Colors correspond to the 6 different worker

types.

Variance explained by workers, firms, and covariance: 50% (60% when taking out

the steepest type), 29% (20%), and 21% (20%). Correlation: 28% (29%).



Conclusion

• Econometric framework for matched data.

• The clustering approach allows to get back to standard single-agent

econometric models.

• Application to structural models where joint estimation of the het-

erogeneity and the full model might be computationally prohibitive.

• Beyond workers and firms: sorting across schools, neighborhoods,

cities...



Additional slides



Job mobility (2-periods model, cont.)

• Let mi = 1{ji1 6= ji2} denote job mobility. Two assumptions:

i) Mobility driven by types/classes: job movements can depend on

worker type and firm classes (before and after the move), but not on

wages.

Pr
[
mi = 1, f(ji2) = `′ |ω(i) = k, f(ji1) = `,Yi1 = y

]
= Pr

[
mi = 1, f(ji2) = `′ |ω(i) = k, f(ji1) = `

]
.

ii) Serial independence: wages drawn from different firms are inde-

pendent, conditional on worker type and firm class.

Pr
[
Yi2 ≤ y′ |mi = 1, ω(i) = k, f(ji2) = `′,f(ji1) = `,Yi1 = y

]
= Pr

[
Yi2 ≤ y′ |mi = 1, ω(i) = k, f(ji2) = `′

]
.



Job mobility (4-periods model, cont.)

• Let mi = 1{ji2 6= ji3}. Two assumptions:

i) Pr
[
mi = 1, f(ji3) = `′, Yi3 ≤ y3 |ω(i) = k, f(ji2) = `, Yi2 = y2,Yi1 = y1

]
= Pr

[
mi = 1, f(ji3) = `′, Yi3 ≤ y3 |ω(i) = k, f(ji2) = `, Yi2 = y2

]
.

ii) Pr
[
Yi4 ≤ y4 |mi = 1, ω(i) = k, f(ji3) = `′, Yi3 = y3,f(ji2) = `,Yi2 = y2,Yi1 = y1

]
= Pr

[
Yi4 ≤ y4 |mi = 1, ω(i) = k, f(ji3) = `′, Yi3 = y3

]
.



Incorporating covariates

• Let Xit and Bjt denote covariates. The DGP in period 1 is as

follows:

-For all j, Bj1 is a draw from an `-specific distribution.

-For all i, Xi1 is a draw from an (`, b)-specific distribution.

-For all i, ω(i) is a draw from an (`, b, x)-specific distribution.

-For all i, Yi1 is a draw from an (k, `, b, x)-specific distribution.

• The f(j) can then be recovered by clustering firm wage distributions.

Alternatively, one can cluster firm distributions of (Yi1, Xi1, Bj(i,1),1).

• Then, covariates may be added to the wage distributions and type

proportions (Fkx`b, pkx1x2
(`, b1, `

′, b2), πkx(`, b)) in the second and third

estimation steps.



Link to theoretical models

• 2-periods model:

-Example: Shimer and Smith (2000), without or with on-the-job

search (workers’ threat points being the value of unemployment).

-No role for match-specific draws, unless independent over time or

measurement error. No sequential auctions.

• 4-periods model:

-All models where state variables (k, `t, Yt) are first-order Markov.

-Examples: wage posting, sequential auctions (Lamadon, Lise, Meghir

and Robin 2015).

-No latent human capital accumulation (kt), no permanent+transitory

within-job wage dynamics (example: random walk+i.i.d. shock).



Identification of wage distributions

• More generally, let ` 6= `′ be firm classes, and write (MOV) in matrix

form for (`, `′) transitions:

A(`, `′) = F (`)D(`, `′)G(`′)′.

• The identification argument relies on the joint diagonalization of

a set of matrices.

• In the stationary case (i.e., Fk` = Gk`) it is sufficient (but not

necessary) that:

-For all ` there exists an `′ such that pk(`, `′) 6= 0 for all k, and the

ratios pk(`′, `)/pk(`, `′), k = 1, ...,K, are distinct.

-The columns of F (`) (that is, the cdfs Fk`) are linearly independent.



Identification of wage distributions (cont.)

• Consider for simplicity the case where Fk` = Gk` (i.e., stationarity).

Then a singular value decomposition of A(`, `′) yields:

A(`, `′) = F (`)D(`, `′)F (`′)′ = USV ′,

where U and V are orthogonal with K columns, and S is diagonal.

• Letting W1 = S−
1
2U ′ and W2 = S−

1
2V ′, we have:

W1A(`′, `)′W ′2 = W1F (`)D(`, `′)−1D(`′, `)D(`, `′)F (`′)′W ′2,

where D(`, `′)F (`′)′W ′2 = (W1F (`))−1.

• Hence W1F (`) is a matrix of eigenvectors, the corresponding eigen-

values being the diagonal elements of D(`, `′)−1D(`′, `).

• Identification of F (`) then follows from the fact that Fk` are cdfs.



Identification of firm classes (cont.)

• When adding information from job movers, conditions needed for

identification are weaker:

Pr
[
Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `, f(ji2) = `′,mi = 1

]
≡ G``′

(
y, y′

)
.

• Identification of f(j) requires that for all ` 6= `′ there exists an `′′

such that G``′′ 6= G`′`′′ or G`′′` 6= G`′′`′.

• In this talk we cluster firms’ cross-sectional distributions.



Identification of wage distributions: an example

• Suppose K = L, and that types and classes are ordered. Suppose

that πk(`) 6= 0 iff |k − `| ≤ 1, and that pk(`, `′) 6= 0 iff (|k − `| ≤
1, |k − `′| ≤ 1).

• Then rankA(1,2) = rankA(2,1) = 2. It follows as in the main

analysis that (F11, F21) and (F12, F22) are identified.

• Likewise, rankA(2,3) = rankA(3,2) = 3. It follows that, for some

(k1, k2, k3), (Fk12, Fk22, Fk32) and (Fk13, Fk23, Fk33) are identified.

• As F (2) has full column rank, we can identify which of the (k1, k2, k3)

are equal to 1 or 2. Without loss of generality, let k1 = 1 and k2 = 2.

Set k3 = 3. Then (F12, F22, F32) and (F13, F23, F33) are identified.



Identification of wage distributions: an example (cont.)

• Continuing the argument we identify:

-(F11, F21)

-(F12, F22, F32)

-...

-(FL−2,L−1, FL−1,L−1, FL,L−1)

-(FL−1,L, FLL)

• The other Fk`’s are not identified. These correspond to the (k, `)

combinations such that πk(`) = 0.

• In this example, without additional structure one cannot assess the

wage effects of randomly allocating workers to jobs.



Theoretical search-matching model: setup

• Worker x and firm y, on-the-job search (λ0, λ1).

-Firms post vacancies.

-Production function f(x, y) = a+ (νxρ + (1− ν)yρ)1/ρ.

• Surplus equation is given by:

(r + δ)S(x, y) = (1 + r) (f(x, y)− δ(b(x)− c(y)))− r(1− δ)(Π0(y) +W0(x))

+ (1− δ)λ1

ˆ
P (x, y, y′)(αS(x, y′)− S(x, y))v1/2(y′)dy′,

where P (x, y, y′) is 1 when S(x, y) > S(x, y′).

• Wage equation is given by:

(1 + r)w(x, y) = (r + δ)αS(x, y) + (1− δ)rW0(x)−

(1− δ)λ1

ˆ
P (x, y, y′)(αS(x, y′)− αS(x, y))v1/2(y′)dy′.



Institutional Background in Sweden

• The literature has documented between-firm/plant wage variation

in Sweden to be lower compared to other countries such as Germany

or Brazil (e.g. Akerman et al. 2013, and Baumgarten et al. 2014).

• Potential factors: highly unionized labor market, and tradition of

collective wage bargaining agreements in Sweden.

• In particular, after World War II the introduction of the so-called

solidarity wage policy, which had as guiding principle “equal pay for

equal work”, significantly limited the capacity of firms to differentially

reward their employees.

• However, several reforms since the 1990s have contributed to an

increase in between-firm wage variation due to a more informal coor-

dination in wage setting. See Skans et al. (2009) for more details.



Descriptive statistics and data selection

all employed either employed both continuing firms

firms in 2002 54,753 53,610 46,597 43,884
firms in 2003 55,623 54,674 47,553 43,845
firms in 2004 56,374 54,867 46,450 43,887

workers in 2002 1,091,509 907,883 635,186 599,963
workers in 2003 1,082,028 910,454 635,135 598,834
workers in 2004 1,073,174 886,573 635,186 599,963

mean reported firm size in 2002 34.4 34.9 37.6 37.1
median reported firm size in 2002 10 10 10 10

movers between 2002 and 2004 142,580 121,090 54,968 19,745
% movers employed 12 months in 2003 0.755 0.868 0.952 0.968

co-movers 90 percentile 2 2 2 1
co-movers 99 percentile 13 15 22 7
co-movers 100 percentile 2,458 2,439 2,137 233

quaterly j2j probability 0.0196 0.0183 0.0149 0.00678
quaterly e2u probability 0.0228 0.0133 0.00396 0
quaterly u2e probability 0.155 0.34 0.477 -

Notes: Description of the data in different samples. The movers in the rightmost

column correspond to Sample 2. Note that Sample 1, which contains all workers

full-year employed in 2002, is not in this table.



Wages of job movers

E`1`2 (Yi1 + Yi2) (x-axis) vs E`2`1 (Yi1 + Yi2) (y-axis), `1 < `2
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Proportions of firms/workers in large (≥ 50) and small (< 50)

firms, by firm class
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Proportions of workers in different industries, by firm class

Proportions of workers Proportions of firms
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vices).



Wages of job movers

E`1`2 (Yi2 − Yi1) (x-axis) vs E`2`1 (Yi1 − Yi2) (y-axis), `1 < `2
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Estimated standard deviations of log wages by worker type and

firm class (2-periods model)
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Notes: The graph plots the standard deviation of F̂k`. The L = 10 firm classes (on

the x-axis) are ordered by mean log wage. The K = 6 worker types correspond to

the 6 different curves.



Estimated proportions of worker types by firm class (2-periods

model, no covariates)
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Notes: Type proportions net of differences in education and age x: π̃k(`) =∑
x p̂xπ̂k(`, x), where p̂x is the number of workers in cell x. Each plot corresponds

a different firm class. Average log wages by (k, `) combinations are on the x-axis,

proportions are on the y-axis.



Estimated proportions of worker types by education and age

categories (2-periods models)

drop out high school some college
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Notes: Type proportions by education and age categories.



Probability of moving to a higher firm class

(2-periods model)
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Notes: This graph plots the estimated probability of moving to a higher firm class

(y-axis), by worker type (x-axis), averaged over classes.



Estimated means of log wages by worker type and firm class,

by firm size (2-periods model)

small firms (<50) large firms (>=50)
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Notes: The graph plots the mean of F̂k`, for small and large firms. The wages in

the 8 firm classes are shown on the x-axis. The 5 worker types correspond to the

different curves.



Estimated means of log wages by worker type and firm class,

by worker education (2-periods model)

drop out high school some college
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Notes: The graph plots the mean of F̂k`, for high school drop-outs, high-school

graduates, and some college. The wages in the 8 firm classes are shown on the

x-axis. The 5 worker types correspond to the different curves.



Estimated proportions of worker types by firm class, by firm

size (2-periods model)

small firms (<50) large firms (>=50)
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Notes: Small (< 50) and large (≥ 50) firms.



Estimated proportions of worker types by firm class, by worker

education (2-periods model)

drop out high school some college
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Notes: High school drop-outs, high-school graduates, and some college.



Fit of log wage densities (2-periods model)
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Notes: Marginal densities of log wages for each x cell (in rows) and firm class (in

columns). Sample 1, 2002. The red line is the model, the shaded area is from the

data.



Fit of log wage correlations (2-periods model)
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Notes: Log wage correlations Corr(Y1, Y2|`1, `2), for job movers, by pairs of firm

classes. Sample 2. In the data (x-axis) and in the simulated data (y-axis).



Theoretical search-matching model: setup

Production PAM
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Notes: Model based on Shimer and Smith (2000) with on-the-job search.



Theoretical search-matching model: wage distributions
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Notes: Model based on Shimer and Smith (2000) with on-the-job search.



Theoretical search-matching model: simulation results

dim %bw %wwbf %wwwf V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ) Corr(α,ψ)

PAM model 6× 10 0.693 0.103 0.203 0.791 0.054 0.156 0.377
BLM 6× 10 0.636 0.101 0.263 0.756 0.069 0.175 0.385

NAM model 6× 10 0.661 0.136 0.203 1.082 0.125 -0.206 -0.281
BLM 6× 10 0.625 0.114 0.262 1.049 0.099 -0.148 -0.23

PAM model 50× 50 0.693 0.108 0.2 0.758 0.071 0.171 0.367
BLM 6× 10 0.591 0.121 0.288 0.701 0.095 0.204 0.396

NAM model 50× 50 0.685 0.115 0.201 1.079 0.107 -0.186 -0.273
BLM 6× 10 0.668 0.044 0.288 1.009 0.041 -0.05 -0.122

Notes: Model based on Shimer and Smith (2000) with on-the-job search. “BLM”

are estimates based on the 2-periods model.


