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Abstract

A growing number of school districts use centralized assignment mechanisms to allo-
cate school seats in a manner that reflects student preferences and school priorities. Many
of these assignment schemes use lotteries to ration seats when schools are oversubscribed.
The resulting random assignment opens the door to credible quasi-experimental research
designs for the evaluation of school effectiveness. Yet the question of how best to separate
the lottery-generated variation integral to such designs from non-random preferences and
priorities remains open. This paper develops easily-implemented empirical strategies that
fully exploit the random assignment embedded in widely-used mechanisms such as deferred
acceptance. We use these new methods to evaluate charter schools in Denver, one of a
growing number of districts that integrate charter and traditional public schools in a uni-
fied assignment system. The resulting estimates show large achievement gains from charter
school attendance. Our approach generates substantial efficiency gains over ad hoc methods
that fail to exploit the full richness of the lotteries generated by centralized assignment with
random tie-breaking.
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1 Introduction

Many families in large urban school districts now have the option to send their children to any
public school in their district. The fact that some schools are more popular than others, and
the need to distinguish students who have higher priority at a given school (perhaps because
a sibling is enrolled) from those with lower priority generates a two-sided matching problem.
Cities increasingly use deferred acceptance and other centralized matchmaking algorithms to
assign students to schools. Originally proposed by Gale and Shapley (1962) and Shapley and
Scarf (1974), economic matchmaking via market design allocates valuable resources in markets
where prices cannot be relied upon to perform this function (Abdulkadiroğlu and Sönmez, 2003;
Roth, 2015). As of this writing, Boston, Charlotte, Denver, New Orleans, Newark, New York
City, San Francisco, Washington DC, and many European and Asian cities use market design to
assign students to schools.

Two benefits of matchmaking schemes like DA are efficiency and fairness: the resulting assign-
ments improve welfare relative to ad hoc alternatives, while lotteries ensure that students with
the same preferences and priorities have the same chance of obtaining highly-sought-after seats.
DA and related algorithms also have the virtue of narrowing the scope for strategic behavior that
would otherwise give sophisticated families the opportunity to game an assignment system at
the expense of less-sophisticated residents (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et
al., 2006; Pathak and Sönmez, 2008). No less important is the fact that centralized assignment
generates valuable data for empirical research on schools. In particular, when schools are over-
subscribed, lottery-based rationing generates quasi-experimental variation in school assignment
that can be used for credible evaluation of individual schools and of school models like charters,
magnets, and special programs.

Earlier work exploiting random tie-breaking in DA and related algorithms for student as-
signment includes studies of schools in Charlotte-Mecklenburg (Hastings et al., 2009; Deming,
2011; Deming et al., 2014) and New York (Bloom and Underman, 2014; Abdulkadiroğlu et al.,
2013). A closely related set of studies uses the regression-discontinuity (RD)-style tie-breaking
that distinguishes between applicants who apply to selective exam schools. These studies in-
clude evaluations of exam schools in the US and in Chile, Ghana, Kenya, Romania, Trinidad,
and Tobago.1 Although causal effects in these studies are identified by compelling sources of
quasi-experimental variation, the research designs deployed in this work fail to exploit the full
potential of random or RD-style tie-breaking embedded in market design matchmaking.

A stumbling block in the use of market-design for impact evaluation is the elaborate multi-
stage nature of market-design solutions. Assignment algorithms weave random or running vari-
able tie-breaking into an elaborate tapestry of information on student preferences and school
priorities that is far from random. In principle, all features of student preferences and school
priorities can shape the probability of assignment to each school. It’s only conditional on these
features that assignments are assuredly independent of potential outcomes. In view of this diffi-

1References here include Dobbie and Fryer (2014); Abdulkadiroğlu et al. (2014); Ajayi (2013); Lucas and Mbiti
(2014); Pop-Eleches and Urquiola (2013); Jackson (2010); Bergman (2014); Hastings et al. (2013); Kirkeboen et
al. (2015)
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culty, research exploiting centralized assignment has focused either on offers of seats at students’
first choices alone, or relied on instrumental variables indicating whether students’ lottery num-
bers fall below the highest number offered a seat at all schools that they’ve ranked (we call this
a qualification instrument). Both first-choice and qualification instruments discard much of the
variation induced by DA.

This paper explains how to recover the full range of quasi-experimental variation embedded
in DA. Specifically, we show how DA maps information on preferences, priorities, and school
capacities into a conditional probability of random assignment (the propensity score). As in
other stratified randomized research designs, we can then condition on this scalar propensity score
to eliminate selection bias arising from the association between all conditioning variables and
potential outcomes (Rosenbaum and Rubin, 1983). The payoff to propensity-score conditioning
turns out to be substantial in our application: naive stratification using all covariate cells reduces
empirical degrees of freedom markedly, eliminating many schools from consideration, while score-
based stratification leaves the research sample largely intact. But the propensity score does more
for us than reduce dimensionality. Because all applicants with score values strictly between zero
and one contribute variation that can be used for evaluation, the propensity score identifies the
maximal set of applicants for whom we have a randomized school-assignment experiment.

The propensity score generated by centralized assignment is a complicated function of many
arguments and not easily computed in general. We therefore develop an analytic approximation
to the general propensity score for a DA assignment mechanism. This DA propensity score
is a function of a few easily-computed sample statistics. Our analytical formula for the DA
propensity score is derived from an asymptotic approximation based on a large-market sequence
that increases the number of students and school capacities in fixed proportion. This approach is
validated by comparing empirical estimates using the large-market approximation with estimates
based on a brute force simulation, that is, a propensity score generated by drawing lottery
numbers many times and computing the resulting average assignment rates across draws.

Both the simulated (brute force) and DA (analytic) propensity scores work well as far as
covariate balance goes, but the approximate formula is, of course, much more quickly computed,
and highlights specific sources of randomness and confounding in DA-based assignment schemes.
In other words, the DA propensity score reveals the nature of the stratified experimental design
embedded in a particular match. We can learn, for example, the features of student preferences
and school priorities that lead to seats at certain schools being allocated randomly while offers
elsewhere are degenerate; these facts need not be revealed by naive comparisons of the demand
for schools and school capacities. This information in turn suggests ways in which school prior-
ities, capacities, and the instructions given to applicants might be modified so as to increase or
supplement the research value of particular assignment schemes.

Our test bed for these tools is an empirical analysis of charter school effects in the Denver
Public School (DPS) district, a new and interesting setting for charter school impact evaluation.2

2Charter schools operate with considerably more independence than traditional public schools. They are
free to structure their curriculum and school environment. Among other things, many charter schools fit more
instructional hours into a year by running longer school days and providing instruction on weekends and during the
summer. Because few charter schools are unionized, they hire and fire teachers and administrative staff without
regard to the collectively bargained seniority and tenure provisions that constrain such decisions in many public
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Because DPS assigns seats at traditional and charter schools in a unified match, the population
attending DPS charters is less positively selected than the population of charter applicants in
other large urban districts (where extra effort is required to participate in decentralized charter
lotteries). This descriptive fact makes DPS charter effects relevant for the ongoing debate over
charter expansion. As far as we know, ours is the first charter evaluation to exploit an assignment
scheme that combines charters with traditional public schools in a joint match.

Our empirical evaluation strategy uses an indicator for DA-generated charter offers to instru-
ment charter school attendance in a two-stage least squares (2SLS) setup. This 2SLS procedure
eliminates bias from non-random variation in preferences and priorities by controlling for the
offer propensity score with linear and saturated additive models. The step from propensity
score-based identification to empirical implementation raises a number of issues that we address
in a straightforward manner. The results of this empirical analysis show impressive achievement
gains from charter attendance in Denver.

We also compare our propensity-score-based estimates with those generated by first-choice
and qualification instruments such as have been employed in earlier school evaluations. Esti-
mation strategies that fully exploit the random assignment embedded in DA yield substantial
efficiency gains, while also allowing us to study charter attendance effects at schools for which
naive strategies generate little or no variation. Finally, we show how our identification strategy
identifies causal effects at different types of schools by using DA-induced offers to jointly estimate
the effects of attendance at charters and at DPS’s innovation schools, a popular alternative to
the charter model (for a descriptive evaluation of innovation schools, see Connors et al. (2014)).

The next section uses simple market design examples to explain the problem at hand. Follow-
ing this explanation, Section 3 uses the theory of market design to characterize and approximate
the propensity score in large markets. Section 4 applies these results to estimate charter and
innovation school attendance effects in Denver. Finally, Section 5 summarizes our theoretical
and empirical findings and outlines an agenda for further work. A theoretical appendix derives
propensity scores for the Boston (Immediate Acceptance) mechanism and for DA under a lottery
structure that involves multiple tie-breaking.

2 Understanding the DA Propensity Score

We begin by reviewing the basic DA setup for school choice, showing how DA generates prob-
abilities of school assignment that depend on preferences, priorities, and capacities. A total
of n students are to be assigned seats at schools of varying capacities.3 Students report their
preferences by ranking schools on an application form or website, while schools rank students by

schools. About half of Denver charters appear to implement versions of what we’ve called the No Excuses model
of urban education. No Excuses charters run a long school day and year, emphasize discipline and comportment
and traditional reading and math skills, and rely heavily on data and teacher feedback in strategies to improve
instructions. For more on what distinguishes charters from traditional public schools and No Excuses pedagogy,
see Abdulkadiroğlu et al. (2011) and Angrist et al. (2011).

3Most students in a district stay at the school where they’ve been enrolled previously. Those participating in
the assignment are either new entrants to the district, students facing a transition such as from middle to high
school, or students interested in switching schools.
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placing them in priority groups. For example, a school may give the highest priority to students
with already-enrolled siblings, second highest priority to those who live nearby, with the rest in
a third priority group below these two. Each student is also assigned a single random number
that is used to break ties.

DA assigns students to schools like this:

Each student applies to his most preferred school. Each school ranks all its applicants
first by priority then by random number within priority groups and tentatively admits
the highest-ranked applicants in this order up to its capacity. Other applicants are
rejected.

Each rejected student applies to his next most preferred school. Each school ranks
these new applicants together with applicants that it admitted tentatively in the pre-
vious round first by priority and then by random number. From this pool, the school
tentatively admits those it ranks highest up to capacity, rejecting the rest.

This algorithm terminates when there is no new application and all tentative assignments are
finalized (some students may remain unassigned). DA produces a stable assignment scheme in
the following sense. Any student who prefers another school to the one he has been assigned must
be outranked at that school either because everyone assigned there has higher priority or because
those who share the student’s priority at that school have higher lottery numbers. DA is also
strategy-proof, meaning that families do as well as possible by submitting a truthful preference
list (for example, there is nothing to be gained by ranking under-subscribed schools highly just
because they are likely to yield seats). See Roth and Sotomayor (1990) for a review of these and
related theoretical results.

2.1 Propensity Score Pooling

The probability that DA assigns student i a seat at school s depends on many factors: the
total number of students, school capacities, the distribution of student preferences, and student
priorities at each school. We refer to a student’s preferences and priorities as student type. For
example, a student of one type might rank school b first, school a second, and have sibling priority
at b.

Suppose we’d like to estimate the causal effect of attending a particular school, say a, relative
to other schools that students who rank a might attend (our application focuses on the causal
effect of attendance at groups of schools, specifically, charter schools, but the logic behind such
comparisons is similar). DA treats students of the same type symmetrically in that everyone of
a given type faces the same probability of assignment to each school. We can therefore eliminate
selection bias in comparisons of those who are and aren’t offered seats at a simply by conditioning
on type, since all that remains to determine assignment is a random number, presumed here to
be independent of potential outcomes. As a practical matter, however, we’d like to avoid full
type conditioning since this produces many small and even singleton or empty cells, reducing the
effective sample size available for impact analysis. The following example illustrates this point.
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Example 1. Five students {1, 2, 3, 4, 5} apply to three schools {a, b, c}, each with one seat.
Student 5 has the highest priority at c and student 2 has the highest priority at b, otherwise the
students have the same priority at all schools. We’re interested in measuring the effect of an
offer at school a. Student preferences are

1 : a ≻ b,

2 : a ≻ b,

3 : a,

4 : c ≻ a,

5 : c,

where a ≻ b means that a is preferred to b. Students 3 and 5 find only a single school acceptable.
Note that no two students have the same preferences and priorities. Therefore, full-type strati-
fication puts each student into a different stratum, a fact that rules out a research design based
on full type conditioning. Yet, DA assigns students 1, 2, 3, and 4 to a each with probability 0.25:
students 4 and 5 each apply to c and 5 gets it by virtue of priority of his priority there, leaving
1, 2, 3, and 4 all applying to a in the second round and no one advantaged there. Assignment
at a can therefore be analyzed in this example in a single stratum of size 4. This stratification
scheme is determined by the propensity score, the conditional probability of random assignment
to a.4

An important asymptotic result in the econometric theory of the estimation of treatment ef-
fects is that with discrete covariates, the asymptotic semiparametric efficiency bound for average
causal effects is obtained only by full covariate conditioning, meaning, in our case, exhaustive
stratification on type (Hahn, 1998). Example 1 highlights the fact that this cannot be true in
small samples or a finite population. Moreover, the efficiency cost due to full covariate condi-
tioning in finite samples exceeds that due to the data lost to singleton cells. Angrist and Hahn
(2004) show that with many small cells, probabilities of assignment close to zero or one, and a
modest R-squared for the regression of outcomes on covariates, Hahn (1998)’s large-sample result
favoring full conditioning can be misleading even when no cells are lost. Econometric strategies
that use propensity score conditioning are likely to enjoy finite sample efficiency gains over full
covariate conditioning for a number of reasons that are relevant in practice.5

2.2 Further Pooling in Large Markets

Under DA, the propensity score for assignment to school a is determined by a student’s failure
to win a seat at schools he ranks more highly than a and by the odds he wins a seat at a in
competition with those who have also ranked a and similarly failed to find seats at schools they’ve

4As a originally defined by Rosenbaum and Rubin (1983), the propensity score is a population probability,
determined by an experimental design and unrelated to the particular sampling scheme by which data might be
collected. The probabilities we have in mind are defined by repeatedly drawing lottery numbers and running DA
in a fixed population of students and schools.

5Closely related discussions include Rosenbaum (1987); Rubin and Thomas (1996); Heckman et al. (1998);
Hirano et al. (2003).
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ranked more highly than a. This structure leads to a large-market approximation that generates
pooling beyond that provided by the finite-market propensity score. We illustrate this point via
a second stylized example.

Example 2. Four students {1, 2, 3, 4} apply to three schools {a, b, c}, each with one seat. There
are no school priorities and student preferences are

1 : c,

2 : c ≻ b ≻ a,

3 : b ≻ a,

4 : a.

As in Example 1, each student is of a different type. Let pa(i) for i = 1, 2, 3, 4 denote the
probability that type i is assigned school a. With four students, pa(i) comes from 4! = 24

possible lottery realizations (orders of the four students), all equally likely. Given this modest
number of possibilities, pa(i) is easily calculated by enumeration:

• Not having ranked a, type 1 is never assigned a, so pa(1) = 0.

• Type 2 is seated at a when schools he’s ranked ahead of a, schools b and c, are filled by
others, and when he also beats type 4 in competition for a seat at a. This occurs for the
two realizations of the form (s, t, 2, 4) for s, t = 1, 3. Therefore, pa(2) = 2/24 = 1/12.

• Type 3 is seated at a when the schools he’s ranked ahead of a–in this case, only b–are filled
by others, while he also beats type 4 in competition for a seat at a. b can be filled by type
2 only when 2 loses to 1 in the lottery at c. Consequently, type 3 is seated at a only in
sequences of the form (1, 2, 3, 4), which occurs only once. Therefore, pa(3) = 1/24.

• Finally, since type 4 gets the seat at a if and only if the seat does not go to type 2 or type
3, pa(4) = 21/24.

In this example, the propensity score differs for each student. But in larger markets with the
same distribution of types, the score is smoother. To see this, consider a large market that
replicates the structure of this example n times, so that n students of each type apply to 3
schools, each with n seats.6 With large n, enumeration of assignment possibilities is a chore. We
can, however, simulate the propensity score by repeatedly drawing lottery numbers.

Figure 1, which plots simulation probabilities of assignment against market size for Example
2, reveals that as the market grows, the distinction between types 2 and 3 disappears. In
particular, Figure 1 shows that for large enough n,

pa(2) = pa(3) = 1/12; pa(1) = 0; pa(4) = 10/12 = 5/6,

6An increasing number of market-design analysts have found this sort of large-market approximation useful.
Examples include Roth and Peranson (1999); Immorlica and Mahdian (2005); Abdulkadiroğlu et al. (2009); Kesten
(2009); Kojima and Manea (2010); Kojima and Pathak (2009); Che and Kojima (2010); Budish (2011); Azevedo
and Leshno (2014); Lee (2014); Ashlagi et al. (2015); Azevedo and Hatfield (2015).
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with the probability of assignment at a for types 2 and 3 converging quickly. This convergence
is a consequence of a result we prove in the next section, which shows how, with many students
and seats, the probability that type 3 is seated at a is determined by failure to qualify at b, just
as it is for type 2.

The large-market model leads us to a general characterization of the DA propensity score.
This model also reveals why some schools and applicant types are subject to randomization, while
for others, assignment risk is degenerate. A single feature of the large market characterization
is the central role played by lottery qualification cutoffs at schools ranked ahead of school a in
determining probabilities of assignment at a. This is illustrated by Example 2, which shows
that, in the large-market limit, we need only be concerned with what happens at the school
at which it’s easiest to qualify among those schools that an applicant prefers to a. In general,
this most informative disqualification (MID) determines how distributions of lottery numbers for
applicants of differing types are effectively truncated before entering the competition for seats
at a, thereby determining offer rates at a.

3 Score Theory

3.1 Setup

A general school choice problem, which we refer to as an economy, is defined by a set of students,
schools, school capacities, student preferences over schools, and student priorities at schools. Let
I denote a set of students, indexed by i, and let s = 1, ..., S index schools. We consider markets
with a finite number of schools, but with either finite (n) or infinitely many students. The latter
setting is referred to as a continuum economy. In a continuum economy, I = [0, 1] and school
capacities are defined as the fraction of the continuum that can be seated at each school.

Student i’s preferences over schools constitute a partial ordering of schools, ≻i, where a ≻i b

means that i prefers school a to school b. Each student is also granted a priority at every school.
Let ρis ∈ {1, ...,K,∞} denote student i’s priority at school s, where ρis < ρjs means school
s prioritizes i over j. For instance, ρis = 2 might encode the fact that student s has sibling
priority at school s, while ρis = 3 encodes neighborhood priority, and applicants with siblings
are prioritized ahead of those from the neighborhood. We use ρis = ∞ to indicate that i is
ineligible for school s. Students often share priorities at a given school, in which case ρis = ρjs
for some i ̸= j. Let ρi = (ρi1, ..., ρiS) be a vector of student i’s priorities for each school. Student
type is denoted by θi = (≻i,ρi). We say that a student of type θ has preferences ≻θ and priorities
ρθ. Θ denotes the set of all possible types.

An economy is also characterized in part by a non-negative capacity vector, q, which is nor-
malized by the total number of students or their measure when students are indexed continuously.
In a finite economy, where the set I contains n students and each school s has ks seats, capacity
is defined by qs = ks

n . In a continuum economy, qs is the proportion of the set I that can be
seated at school s.

We model a school assignment mechanism using lotteries to distinguish between students
with the same preferences and priorities. Student i’s lottery number, ri, is the realization of a
uniformly distributed random variable on [0, 1], independent and identically distributed for all
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students. In particular, lottery draws are independent of type. In what follows, we consider a
centralized assignment system relying on a single lottery number for each student. Extension
to the less-common multiple tie-breaking case, in which a student may have different lottery
numbers at different schools, is discussed in the theoretical appendix.

For any set of student types Θ0 ⊂ Θ and for any number r0 ∈ [0, 1], define the set of students
in Θ0 with lottery number less than r0 to be

I(Θ0, r0) = {i ∈ I | θi ∈ Θ0, ri ≤ r0}.

We use the shorthand notation I0 = I(Θ0, r0) for sets of applicants defined by type and lottery
number. Also, when r0 = 1, so that I0 includes all lottery numbers, we omit the second argument
and write I0 = {i ∈ I | θi ∈ Θ0} for various choices of Θ0.

When discussing a continuum economy, we let F (I0) denote the fraction of students in I0.
By our independence and uniform distribution assumption for lottery numbers in the continuum,
this is given by

F (I0) = E[1{θi ∈ Θ0}]× r0,

where the expectation is taken with respect to the distribution of types across students and
E[1{θi ∈ Θ0}] means the proportion of types in set Θ0. In a finite economy with n students, the
corresponding fraction is computed as

F (I0) =
|I0|
n

.

Note that, unlike in a continuum economy, the value of F (I0) in a finite economy depends on
particular lottery assignments. Either way, the student side of an economy is fully characterized
by these distribution functions, for which we use the shorthand notation, F . Note also that
every finite economy has a continuum analog. This analog can be constructed by replicating the
type distribution of the finite economy at increasing scale, while fixing the proportion of seats
at school s to be qs. Ultimately, we will show that conditioning on the propensity score for a
continuum analog of a finite economy (the 2012 DPS match) eliminates omitted variables bias as
effectively as would conditioning on the relevant finite-market propensity score. This provides an
empirical illustration of our principal theoretical claim, which is that the propensity score for the
continuous analog of a finite economy offers an easily computed and empirical useful asymptotic
approximation to the relevant finite-market score.

Defining DA

We define DA using the notation outlined above, nesting the finite-market and continuum cases.
First, combine priority status and lottery realization into a single number for each student and
school, which we call student rank :

πis = ρis + ri.

Since the difference between any two priorities is at least 1 and random numbers are between 0
and 1, student rank is lexicographic in priority and lottery numbers.
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DA proceeds in a series of rounds. Denote the evolving vector of admissions cutoffs in round
t by ct = (ct1, ..., c

t
S). The demand for seats at school s conditional on ct is defined as

Qs(c
t) = {i ∈ I | πis ≤ cts and s ≻i s̃ for all s̃ ∈ S such that πis̃ ≤ cts̃}.

In other words, school s is demanded by students with rank below the school-s cutoff and who
prefer school s to any other school for which they are also below the relevant cutoff.

The largest possible value of an eligible student’s rank is K+1, so we can start with c1s = K+1

for all s. Cutoffs then evolve as follows:

ct+1
s =

{
K + 1 if F (Qs(c

t)) < qs,

max
{
x ∈ [0,K + 1] | F ({i ∈ Qs(c

t) such that πis ≤ x}) ≤ qs
}

otherwise;

where, because the argument for F can be written in the form {i ∈ I | θi ∈ Θ0, ri ≤ r0}, the
expression is well-defined. This formalizes the idea that when the demand for seats at s falls
below capacity at s, the cutoff is K + 1 and cleared by all applicants eligible for the school.
Otherwise, the cutoff at s is the largest value such that demand for seats at s is less than or
equal to capacity at s.

The final admissions cutoffs determined by DA for each school s are given by

cs = lim
t→∞

cts.

The set of students that are assigned school s under DA is the demand for seats at the limiting
cutoffs: {i ∈ Qs(c)} where c = (c1, ..., cS). Since cs ≤ K + 1, an ineligible student is never
assigned to school s.

We write the final DA cutoffs as a limiting outcome to accommodate the continuum economy;
in finite markets, DA converges after finitely many rounds. Appendix A.1 shows that this
description of DA is valid in the sense that: (a) the necessary limits exist for every economy,
finite or continuous; (b) for every finite economy, the allocation upon convergence matches that
produced by DA as usually described (Gale and Shapley (1962)).

3.2 Characterizing the Propensity Score

Let Di(s) indicate whether student i is assigned school s. Di(s) depends on lottery realizations.
For a market of any size, the propensity score ps(θ) is

ps(θ) = Pr[Di(s) = 1|θi = θ],

defined for students who rank s (we think of this as the group of applicants to s). We’re interested
in the structure of ps(θ), specifically, the manner in which this probability (determined by the
fraction of type θ students assigned s in the continuum economy, or induced by re-randomization
of lottery numbers for a fixed set of applicants and schools in a finite economy) depends on
preferences and priorities.

A key component in our characterization of ps(θ) is the notion of a marginal priority group
at school s. The marginal priority group consists of applicants with priority status such that the
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seats assigned to anyone in this group are allocated by lottery if the school is over-subscribed.
Formally, the marginal priority, ρs, is the integer part of the cutoff, cs. Conditional on being
rejected by all more preferred schools and applying for school s, a student is assigned s with
certainty if his ρis < ρs, that is, if he clears marginal priority. Applicants with ρis > ρs have no
chance of finding a seat at s. Applicants for whom ρis = ρs are marginal and potentially subject
to random assignment at s.

The propensity score defines the set of students who have some chance of being seated at
s, but are not certain to end up there. In addition to falling into the marginal priority group,
these students have failed to qualify for seats at schools they prefer to s. Failure to qualify at
these schools can be described as a function of school-specific lottery cutoffs. The lottery cutoff
at school s, denoted τs, is the decimal part of the cutoff at s, that is, τs = cs−ρs. Lottery cutoffs
are defined within marginal priority groups for each school.

A second key component of our score formulation reflects the fact that failure to qualify at
schools other than s may truncate the distribution of lottery numbers in the marginal priority
group for s. To characterize the distribution of lottery numbers among those at risk of assignment
at s, we first define the set of schools ranked above s for which type θ is marginal as follows:

Mθs = {s̃ ∈ Bθs | ρs̃ = ρθs̃},

where
Bθs = {s′ ∈ S | s′ ≻θ s}

denotes the set of schools that type θ prefers to s. Mθs is defined for every θ and may be empty.
An applicant’s most informative disqualification (MID) at s is defined as a function of Mθs

and lottery number according to

MIDθs ≡


1 if cs′ = K + 1 for some s′ ∈ Bθs,

max{τs̃ | s̃ ∈ Mθs} if cs′ < K + 1 for all s′ ∈ Bθs and Mθs ̸= ∅,
0 otherwise.

MIDθs tells us where the lottery number distribution among applicants to s is cut off by qual-
ification at schools these applicants prefer to s. For example, MIDθs is zero when the priority
status of type θ students is worse-than-marginal at all higher ranked schools, because there’s no
lottery number truncation in this case. On the other hand, when at least one school in Bθs is
under-subscribed, the cutoff at that school is K + 1, so the lottery cutoff is 1 and MIDθs = 1.

We call MIDθs the most informative disqualification because any student who fail to clear
τs̃ is surely disqualified at schools with lower cutoffs. For example, applicants who fail to qualify
at a school they’ve ranked ahead of s with a cutoff of 0.5 fail to qualify at schools they prefer
to s with cutoffs below 0.5. To keep track of the truncation induced by disqualification at all
schools an applicant prefers to s, we need record only the most forgiving cutoff that an applicant
fails to clear.

In finite markets, MIDθs varies from realization to realization, but in a continuum economy,
MIDθs is fixed. Consider the large-market analog of Example 2 in which n students of each of
four types compete for the n seats at each of three schools. For large n, we can think of realized
lottery numbers as being distributed according to a continuous uniform distribution over [0, 1].
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Types 2 and 3 rank different schools ahead of a, i.e., B3a = M3a = {b} while B2a = M2a = {b, c}.
Nevertheless, because τc = 0.5 < 0.75 = τb, we have that MID2a = MID3a = τb = 0.75. To
see where these cutoffs come from, note first that among the 2n type 1 and type 2 students who
rank c first in this large market, those with lottery numbers lower (better) than 0.5 are assigned
to c since it has a capacity of n: τc = 0.5. The remaining type 2 students (half of the original
mass of type 2), all of whom have lottery numbers higher (worse) than 0.5, must compete with
all type 3 students for seats at b. We therefore have 1.5n school-b hopefuls but only n seats at
b. All type 3 students with lottery numbers below 0.5 get seated at b (the type 2 students all
have lottery numbers above 0.5), but this doesn’t fill b. The remaining seats are therefore split
equally between type 2 and 3 students in the upper half of the lottery distribution, implying that
the highest lottery number seated at b is τb = 0.75.

It remains to integrate the truncation captured by MIDθs with marginal priorities. To that
end, let Θs denote the set of student types who rank s and partition Θs according to

i) Θ−
s = {θ ∈ Θs | ρθs > ρs or ρθs̃ < ρs̃ for some s̃ ∈ Bθs},

ii) Θ+
s = {θ ∈ Θs | ρθs < ρs and ρθs̃ ≥ ρs̃ for every s̃ ∈ Bθs}, and

iii) Θ∗
s = {θ ∈ Θs | ρθs = ρs and ρθs̃ ≥ ρs̃ for every s̃ ∈ Bθs}

The set Θ−
s contains applicant types who either have worse-than-marginal priority at s or who

clear marginal priority at a higher ranked choice. No one in this group is assigned to s. Θ+
s

contains applicant types that clear marginal priority at s, while failing to clear marginal priority
at higher ranked choices. Because some of these applicants may be marginal at higher ranked
choices, they are assigned s only if they fail to find a seat at any school they’ve ranked more
highly. Finally, Θ∗

s is the subset of Θs that fails to clear marginal priority at higher ranked
choices and is marginal at s. In this group, too, some maybe be marginal at higher ranked
choices. These applicants are therefore assigned s only if they are not assigned a higher choice
and have a random number that clears the lottery cutoff at s.

In finite markets, lottery cutoffs, marginal priority status, and MIDθs are all random, varying
from one lottery realization to another. Consequently, the propensity score for a finite economy
is not easily computed in general, requiring the sort of enumeration used in the examples in
the previous section, or a time-consuming Monte Carlo-style simulation using repeated lottery
draws. We therefore turn to the continuum for an asymptotic approximation of the propensity
score in real markets. Specifically, we use the marginal priority and MID concepts to define an
easily-computed DA propensity score that is a deterministic function of applicant type. This
result is given below:

Theorem 1. Consider a continuum economy populated by applicants of type θ ∈ Θ, to be assigned
to schools indexed by s ∈ S. For all s and θ in this economy, we have:

Pr[Di(s) = 1|θi = θ] = p̃s(θ) ≡


0 if θ ∈ Θ−

s ,

(1−MIDθs) if θ ∈ Θ+
s ,

(1−MIDθs)×max

{
0,

τs −MIDθs

1−MIDθs

}
if θ ∈ Θ∗

s.

(1)
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The proof appears in Appendix A.2. This formulation aligns with the usual notion of a propensity
score: p̃s(θ) describes fixed features of the conditional-on-type assignment distribution indepen-
dent of lottery numbers.

By way of intuition for p̃s(θ), note first that the DA propensity score reflects the two key
components described above: (1) random assignment at s occurs partly as a consequence of
not being seated a school preferred to s; (2) for those not seated at a more preferred school,
assignment at s is determined by draws from the truncated distribution of lottery numbers
remaining after eliminating applicants seated at schools they’ve ranked more highly. Applying
these principles in the continuum allows us to simplify as follows:

i) Type Θ−
s applicants have a DA score of zero because these applicants have either worse-

than-marginal priority at s or they clear marginal priority at a more highly-ranked school.

ii) The probability of assignment at s is 1 − MIDθs for applicants in Θ+
s because these

applicants clear marginal priority at s, but not at higher-ranked choices. Applicants who
clear marginal priority at s are guaranteed a seat there if they don’t do better. Not doing
better means failing to clear MIDθs, the most forgiving cutoff to which they’re exposed
in the set of schools preferred to s. This event occurs with probability 1 − MIDθs by
virtue of the uniformity of lottery numbers in the continuum. Note that no one in Θ+

s has
MIDθs = 1, because this implies clearance of marginal priority at a higher-ranked choice
and hence membership in Θ−

s .

iii) Applicants in Θ∗
s are marginal at s but fail to clear marginal priority at higher-ranked

choices. For these applicants to be seated at s they must both fail to be seated at a
higher-ranked choice and win the competition for seats at s. As for applicants in Θ+

s ,
the proportion in Θ∗

s left for consideration at s is 1 − MIDθs (again, no one here has
MIDθs = 1). Applicants in Θ∗

s are marginal at s, so their status at s is also determined
by the lottery cutoff at s. If the cutoff at s, τs, falls below the truncation point, MIDθs,
no one in this partition finds a seat at s. On the other hand, when τs exceeds MIDθs,
seats are awarded by drawing from a continuous uniform distribution on [MIDθs, 1]. The
assignment probability for those disqualified at more preferred schools for whom τs >

MIDθs is therefore
τs −MIDθs

1−MIDθs
.

Applying Theorem 1 to the large-market version of Example 2 explains the convergence in
type 2 and type 3 propensity scores seen in Figure 1. With no priorities, both types are in Θ∗

a.
As we’ve seen, MID2a = MID3a = τb = 0.75, that is, type 2 and 3 students seated at a must
have lottery numbers above 0.75. It remains to compute the cutoff, τa. Types 2 and 3 compete
only with type 4 at a, and are surely beaten out there by type 4s with lottery numbers below
0.75. The remaining 0.25 seats are shared equally between types 2, 3, and 4, going to the best
lottery numbers in [0.75, 1], without regard to type. The lottery cutoff at a, τa, is therefore
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0.75 + 0.25/3 = 5/6. Plugging these into equation (1), we have

p̃a(θ) = (1−MIDθa)×max

{
0,

τa −MIDθa

1−MIDθa

}
= (1− 0.75)×max

{
0,

5/6− 0.75

1− 0.75

}
.

The DA propensity score is a simple function of a small number of intermediate quantities,
specifically, MIDθs, τs, and marginal priority status at s and elsewhere. In stylized examples,
we can easily compute continuum values for these parameters. In real markets with elaborate
preferences and priorities, it’s natural to use sample analogs for score estimation. As we show
below, the resulting estimated DA propensity score provides an asymptotic approximation to the
propensity score for finite markets.

3.3 Asymptotic Properties of the DA Score

We’re interested in the limiting behavior of score estimates based on Theorem 1. The asymp-
totic sequence for our large-market analysis works as follows: randomly sample n students and
their lottery numbers from a continuum economy, described by type distribution F and school
capacities, {qs}. Call the distribution of types and lottery numbers in this sample Fn. Fix the
proportion of seats at school s to be qs and run DA with these students and schools. Compute
MIDθs, τs, and partition Θs by observing cutoffs and assignments in this single realization, then
plug these quantities into equation (1). This generates an estimated propensity score, p̂ns(θ),
constructed by treating a size-n sample economy like its continuum analog. The actual propen-
sity score for this finite economy, computed by repeatedly drawing lottery numbers for the sample
of students described by Fn and the set of schools with proportional capacities {qs}, is denoted
pns(θ). We consider the gap between p̂ns(θ) and pns(θ) as n grows. Our analysis here makes use
of a regularity condition:

Assumption 1. (First choice support) For any s ∈ S and priority ρ ∈ {1, ...,K} with F ({i ∈
I : ρis = ρ}) > 0, we have F ({i ∈ I : ρis = ρ, i ranks s first}) > 0.

This says that in the continuum economy, every school is ranked first by at least some students
in every priority group defined for that school.

In this setup, the propensity score estimated by applying Theorem 1 to data drawn from a
single sample and lottery realization converges almost surely to the propensity score generated
by repeatedly drawing lottery numbers. This result is presented as a theorem:

Theorem 2. In the asymptotic sequence described by Fn with proportional school capacities fixed
at {qs}, maintaining Assumption 1, the DA propensity score p̂ns(θ) is a consistent estimator of
propensity score pns(θ) in the following sense:

sup
θ∈Θ,s∈S

|p̂ns(θ)− pns(θ)|
a.s.−→ 0.
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Proof. The proof use two intermediate results, given as lemmas in Appendix A. The first step
establishes that the vector of cutoffs computed for the sampled economy, ĉn, converges to the
vector of cutoffs in the continuum economy.7 That is,

ĉn
a.s.−→ c,

where c denotes the continuum economy cutoffs (Lemma 1 in Appendix A). This result, together
with the continuous mapping theorem, implies that each ˆMIDθs,n computed in a sampled finite
economy converges to the corresponding MIDθs in the continuum economy as n grows, since the
sampled ˆMIDθs,n are continuous functions of cn. Moreover, since p̂ns(θ) is an almost-everywhere
continuous function of the ˆMIDθs,n and cutoffs ĉn,

p̂ns(θ)
a.s.−→ p̃s(θ).

In other words, the DA propensity score estimated by applying Theorem 1 to a sampled finite
economy converges to the DA propensity score for the corresponding continuum economy.

The second step establishes that for all θ ∈ Θ and s ∈ S,

pns(θ)
a.s.−→ p̃s(θ).

That is, the actual (re-randomization-based) propensity score in the sampled finite economy also
converges to the propensity score in the continuum economy (Lemma 2 in Appendix A). Hence,
the propensity score estimated using Theorem 1 approaches the actual propensity score in the
limit.

Theorem 2 justifies our use of the sample analog of the formula in Theorem 1 to control for
student type in empirical work looking at school attendance effects. Not surprisingly, however, a
number of implementation details associated with this strategy remain to be determined. These
gaps are filled in the empirical application below.

3.4 Empirical Strategies

Because DA-generated offers of school seats are generated by randomly assigned lottery num-
bers conditional on type, they provide compelling instruments for the causal effects of school
attendance. Specifically, we use DPS SchoolChoice first-round charter offers as instruments for
eventual charter enrollment. How should the resulting 2SLS estimates be interpreted? Our IV
procedure identifies causal effects for applicants treated when DA produces a charter offer but
not otherwise; in the local average treatment effects (LATE) framework of Imbens and Angrist
(1994) and Angrist et al. (1996), these are charter-offer compliers. IV fails to reveal average
causal effects for applicants who decline a first round DA charter offer and are assigned another
type of school in round 2 (in the LATE framework, these are never-takers). Likewise, IV methods

7Azevedo and Leshno (2014) show something similar for the cutoffs generated by a sequence of stable assign-
ments. Our characterization of the limiting propensity score in Theorem 1 and Theorem 2 does not appear to
have an analog in their framework.
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are not directly informative about charter enrollment effects on applicants not offered a charter
seat in round 1, but who nevertheless find their way into a charter in the second round (LATE
always-takers).

To flesh out the nature of this interpretation and the assumptions it rests on, let Ci be a
charter attendance treatment indicator. Causal effects are defined by potential outcomes, indexed
against Ci: we see Y1i when i is treated and Y0i otherwise, though both are assumed to exist for
all i. The observed outcome is therefore

Yi = Y0i + (Y1i − Y0i)Ci.

Average causal effects on charter-offer compliers–local average treatment effects–are described
by conditioning on potential treatment status. Potential treatment status is indexed against the
DA offer instrument, denoted Di. In particular, we see C1i when Di is switched on and C0i

otherwise (both of these are also assumed to exist for all i), so that the observed treatment is

Ci = C0i + (C1i − C0i)Di.

Note that the treatment variable of interest here indicates attendance at any charter school,
rather than at a specific school (e.g, “school a” in the notation of the previous section). Since
the DA mechanism of interest to us produces a single offer, however, offers of a seat at particular
schools are mutually exclusive. We can therefore construct Di by summing individual charter
offer dummies. Likewise, the propensity score for this variable, pD(θ) ≡ E[Di|θ], is obtained by
summing the scores for the individual charter schools in the match.

Conditional on θi = θ, and hence, conditional on pD(θ), the offer variable, Di, is independent
of type and therefore likely to be independent of potential outcomes, Y1i and Y0i.8

In addition to conditional independence of charter offers and potential outcomes, we also
assume that, conditional on the propensity score, offers cause enrollment for at least some stu-
dents, and that offers can only make enrollment more likely, so that C1i ≥ C0i for all i. Given
these assumptions, the conditional-on-score IV estimand is a conditional average causal affect
for compliers, that is:

E[Yi|Di = 1, pD(θi) = x]− E[Yi|Di = 0, pD(θi) = x]

E[Ci|Di = 1, pD(θi) = x]− E[Ci|Di = 0, pD(θi) = x]
= E[Y1i − Y0i|pD(θi) = x,C1i > C0i], (2)

8More formally, we’re asserting the following joint conditional independence/exclusion restriction:

(Y1i, Y0i, C1i, C0i) ⊥⊥ Di|θi.

In the large market framework, independence of offers and potential outcomes is an immediate consequence of
the fact that offers are determined solely by whether an applicant’s (randomly assigned) lottery number clears
the relevant constant cutoffs. The case for the exclusion restriction is less immediate because, under centralized
assignment with a single random tie-breaker, the same lottery number can affect opportunities at schools other
than those where a seat is offered. Suppose, for example, that applicants take the time to research a school only
after learning they’ve been offered a seat there. Those offered a seat at a investigate it and learn they don’t like it,
but by this time a second choice, b, is full, and only an under-subscribed fallback, c, has empty seats in the second
round. In this scenario, no one goes to a and offers at a induce some to switch from b to c. This violates charter
offer exclusion if applicants have heterogenous potential outcomes at b and c. Implicitly, therefore, the exclusion
restriction requires us to rule out such consequential preference reversals, or to limit heterogeneity among control
schools. The later point is addressed in Section 4.6 by allowing for an additional treatment channel.
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where x indexes values in the support of the score.
Given the proliferation of treatment effects generated by cell-by-cell application of (2), it’s

natural to consider parsimonious models that use data from all propensity-score cells to estimate
a single average causal effect. We accomplish this by estimating a 2SLS specification that can
be written

Ci =
∑
x

γ(x)di(x) + δDi + νi, (3)

Yi =
∑
x

α(x)di(x) + βCi + ϵi, (4)

where the di(x)’s are dummies indicating values of the DA propensity score, indexed by x,
and γ(x) and α(x) are the associated “score effects” in the first and second stages. A formal
interpretation of the resulting 2SLS estimates comes from Abadie (2003): Because the covariate
parameterization here is saturated, E[Di|pD(θi) = x] is linear in x. The 2SLS estimand defined
by equations (3) and (4) therefore provides the best (in a minimum mean-squared error sense)
additive approximation to the unrestricted local average causal response function associated with
this IV setup.9

Alternative Estimation Strategies

We compare 2SLS estimates computed using DA offer instruments to the results generated by
two IV strategies employed in earlier studies that use centralized assignment mechanisms to
identify causal effects of school attendance. The first exploits information on offers at schools
that students have ranked first, ignoring lower-ranked schools.10 The second uses an instru-
ment determined solely by qualification, that is, whether a student has a lottery number below
the highest number offered a seat at any school he or she has ranked, ignoring more specific
information on preferences and offers received.11

In our large-market framework, both of these instruments provide conditional random assign-
ment. To see this for first-choice instruments, note that outside the marginal priority group at
a, the probability of an offer at a is zero or one. In the marginal priority group, DA offers a seat
to those who rank a first with probability τa, without regard to the identity of schools applicants
have ranked lower. Because cutoffs are fixed and unrelated to applicant type in large markets,
empirical strategies using first-choice offers as an instrument need only condition on the identity
of the school ranked first in samples of applicants in the marginal priority group.

9This conclusion is implied by Proposition 5.1 in Abadie (2003). The unrestricted local average causal response
function is E[Yi|Xi, Ci, C1i ≥ C0i]. This conditional mean function describes a causal relationship because
treatment is randomly assigned for compliers. In other words,

E[Yi|Xi, Ci, C1i ≥ C0i] = E[YCi|Xi, C1i ≥ C0i].

2SLS provides a best additive approximation to this.
10This strategy is used in Abdulkadiroğlu et al. (2013), Deming (2011), Deming et al. (2014), and Hastings et

al. (2009). First-choice instruments have also been used with decentralized assignment mechanisms (Cullen et al.
(2006), Abdulkadiroğlu et al. (2011), Dobbie and Fryer (2011), and Hoxby et al. (2009)).

11Dobbie and Fryer (2014), Lucas and Mbiti (2014), and Pop-Eleches and Urquiola (2013) use qualification
instruments.
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The argument for qualification instruments proceeds similarly. As with first-choice instru-
ments, the qualification strategy for the effect of attendance at a discards students outside the
marginal priority group for a. In the marginal priority group, student i is said to be qualified at
school a when he has ranked a and if ρia + ria ≤ ca, that is, when the sum of his priority and
random number at a is less than or equal to the admissions cutoff at a. Because qualification is
necessary (though not sufficient) for assignment to a, an indicator for qualification at a is likely
to be correlated with offers and attendance there. Moreover, because cutoffs are fixed under
repeated lottery draws in the large market, the qualification propensity score is the same for all
types, regardless of how a is ranked by applicants in the relevant marginal priority group.12

Although valid for causal inference, we expect both first-choice and qualification instruments
to generate second-stage estimates that are markedly less precise than those produced by the
DA offer-IV strategy described by equations (3) and (4). Both qualification and first-choice
instruments are compromised by the fact that they fail to isolate the subsample where compliance
rates with offers are highest, that is, the sample of applicants at risk of assignment at a who have
failed to qualify at schools they’ve ranked higher. Moreover, because first-choice instruments
necessarily fail to exploit information on random assignment at school a when a is ranked second
or lower, they may fail to identify causal effects at schools for which our strategy produces a
useful first stage.

Multiple Treatments

We use this same 2SLS framework to estimate the effects of attendance at different types of
schools. This extension is motivated by the fact that the DPS district enrolls students in a
number of different types of schools besides traditional and charter schools. Most importantly, in
addition to a large charter sector, DPS includes many “innovation” schools. These are schools that
operate under an innovation plan that waives some provisions of the relevant collective bargaining
agreements. These waivers are subject to approval by the Denver Classroom Teachers Association
(which organizes Denver public school teachers’ bargaining unit), and they allow, for example,
increased instruction time.13 The details of our two-treatments analysis are outlined following
the presentation of the estimated charter treatment effects arising from a single-treatment model.

4 School Effectiveness in Denver

Since the 2011 school year, DPS has used DA to assign students to most schools in the district,
a process known as SchoolChoice. Denver school assignment involves two rounds, but only the
first round uses DA. Our analysis therefore focuses on the first round.14

12The question of whether the first-choice and qualification instruments are valid in finite markets is more
subtle; In finite markets, realized cutoffs may be correlated with type.

13DPS innovation schools appear to have much in common with Boston’s pilot schools, a model examined in
Abdulkadiroğlu et al. (2011).

14The second round allows families unhappy with first-round assignment to apply directly to schools. In practice,
few submit second-round applications. Information for parents is posted online at http://schoolchoice.dpsk12.
org.
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In the first round of SchoolChoice, parents can rank up to five schools of any type, including
traditional public schools, magnet schools, innovation schools, and most charters, in addition
to a neighborhood school which is automatically ranked for them. Schools ration seats using
a mix of priorities and a single tie breaker used by all schools. Priorities vary across schools
and typically involve siblings and neighborhoods. Seats may be reserved for a certain number of
subsidized-lunch students and for children of school staff.15 The DA assignment is also specific
to grades.

DPS distinguishes between programs, known as “buckets”, within some schools. Buckets
have distinct priorities and capacities. DPS converts preferences over schools into preferences
over buckets, splitting off separate sub-schools for each. The upshot for our purposes is that
DPS’s version of DA assigns seats at sub-schools determined by seat reservation and buckets
rather than schools, while the relevant propensity score captures the probability of offers at
these sub-schools.16 The discussion that follows refers to propensity scores for schools, with the
understanding that the fundamental unit of assignment is a bucket, from which assignment rates
to schools must be constructed.

4.1 Computing the DA Propensity Score

The score estimates used as controls in first- and second-stage equations (3) and (4) were con-
structed three ways. The first is a benchmark: we ran DA for one million lottery draws and
recorded the proportion of draws in which applicants of a given type in our fixed DPS sample
were seated at each school.17 By a conventional law of large numbers, this simulated score con-
verges to the actual finite-market score as the number of draws increases. In practice, of course,
the number of replications is far smaller than the number of possible lottery draws, so the sim-
ulated score takes on more values than we’d expect to see for the actual score. For applicants
with a simulated score strictly between zero and one, the simulated score takes on more than
1,100 distinct values (with fewer than 1,300 types in this sample). Because many simulated score
values are exceedingly close to one another (or to 0 or 1) our estimators that control for the score
use simulated score values that have been rounded.

We’re particularly interested in taking advantage of the DA score defined in Theorem 1. This
theoretical result is used for propensity score estimation in two ways. The first, which we label
a “formula” calculation, applies equation (1) directly to the DPS data. Specifically, for each
applicant type, school, and entry grade, we identified marginal priorities, and applicants were
allocated by priority status to either Θ−

s , Θ+
s , or Θ∗

s. The DA score, p̃s(θ) is then estimated by
15Reserved seats are allocated by splitting schools and assigning the highest priority status to students in the

reserved group at one of the sub-schools created by a split. For example, a school that reserves seats for staff
children is treated as two sub-schools, one with priorities that ignore this consideration and one giving highest
priority to staff children.

16For more on DA with slot-specific priorities, see Kominers and Sönmez (2014) and Dur et al. (2014). DPS
also modifies the DA mechanism described in Section 2 by recoding the lottery numbers of all siblings applying
to the same school to be the best random number held by any of them. This modification (known as “family
link”) changes the allocation of only about 0.6% of students from that generated by standard DA. Our analysis
incorporates family link by defining distinct types for linked students.

17Calsamiglia et al. (2014) and Agarwal and Somaini (2015) simulate the Boston mechanism as part of an effort
to estimate preferences in a structural model of latent preferences over schools.
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computing the sample analog of MIDθs and τs in the DPS assignment and plugging these into
equation (1).

The bulk of our empirical work uses a second application of Theorem 1, which also starts with
marginal priorities, MIDs, and cutoffs in the DPS data. This score estimate, however, which we
refer to as a “frequency” calculation, is given by the offer rate in cells defined by these variables.
The frequency score is closer to an estimated score of the sort discussed by Abadie and Imbens
(2012) than is the formula score, which ignores realized assignment rates. The large-sample
distribution theory in Abadie and Imbens (2012) suggests that conditioning on an estimated
score based on realized assignment rates may increase the efficiency of score-based estimates of
average treatment effects.

Propensity scores for school offers tell us the number of applicants subject to random assign-
ment at each DPS charter school.18 These counts, reported in columns 3-5 of Table 1 for the
three different score estimators, range from none to over 300. The proportion of applicants sub-
ject to random assignment varies markedly from school to school. This can be seen by comparing
the count of applicants subject to random assignment with the total applicant count in column
1. The randomized applicant count calculated using frequency and formula score estimates are
close, but some differences emerge when a simulated score is used.19

Column 5 of Table 1 also establishes the fact that at least some applicants were subject to
random assignment at every charter except for the Denver Language School, which offered no
seats. In other words, every school besides the Denver Language School had applicants with a
simulated propensity score strictly in the unit interval. Three schools for which the simulated
score shows with very few randomized applicants (Pioneer, SOAR Oakland, Wyatt) have an
empirical offer rate of zero, so the frequency version of the DA propensity score is zero for these
schools (applicant counts based on intervals determined by DA frequency and formula scores
appear in columns 3 and 4).

DA produces random assignment of seats for students ranking charters first at a much smaller
set of schools. This can be seen in the last column of Table 1, which reports the number of ap-
plicants who ranked the school first and have a simulated score implying a risk of assignment
strictly between zero and one. The reduction in randomization scope is important for our com-
parison of strategies using the DA propensity score with previously-employed IV strategies using
first-choice instruments. First-choice instruments applied to the DPS charter sector necessarily

18The data analyzed here come from files containing the information used for first-round assignment of students
applying in the 2011-12 school year for seats the following year (this information includes preference lists, priorities,
random numbers, assignment status, and school capacities). School-level scores were constructed by summing
scores for all component sub-schools used to implement seat reservation policies and to define buckets. Our
empirical work also uses files with information on October enrollment and standardized scores from the Colorado
School Assessment Program (CSAP) and the Transitional Colorado Assessment Program (TCAP) tests, given
annually in grades 3-10. A data appendix describes these files and the extract we’ve created from them. “Charter
schools” are schools identified as “charter” in DPS 2012-2013 SchoolChoice Enrollment Guide brochures and not
identified as “intensive pathways” schools, which serve students who are much older than typical for their grade.

19The gap here is probably due to our treatment of family link. The Blair charter school, where the simulated
score randomization count is farthest from the corresponding DA score counts, has more applicants with family
link than any other school. Unlike our DA score calculation, which ignores family link, the simulated score
accommodates family link by assigning a unique type to every student affected by a link.
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ignore many schools. Note also that while some schools had only a handful of applicants subject
to random assignment, over 1400 students were randomized in the charter sector as a whole.

The number of applicants randomized at particular schools can be understood further using
Theorem 1. For example, STRIVE Prep - GVR had 116 applicants randomized, even though
Table 1 shows that no one with non-degenerate offer risk ranked this school first. Random
assignment at GVR is a consequence of the many GVR applicants found in Θ+

s , the group for
which random assignment is determined solely by failure to obtain an offer at schools ranked
more highly. This and related determinants of offer risk are detailed in Table 2, which explores
the anatomy of the DA propensity score for 6th grade applicants to four middle schools in the
STRIVE network. In particular, we see (in columns 9 and 10 of the table) that all randomized
GVR applicants fall into Θ+

s , with no one randomized at the GVR cutoff.
In contrast with STRIVE’s GVR school, few applicants were randomized at STRIVE’s High-

land and Lake campuses because applicants ranking these schools were likely to clear marginal
priority at schools they had ranked more highly (thereby falling into Θ−

s , producing a score of
zero) or at the schools themselves (falling into Θ+

s and with MIDθs = 0, producing a score of
one). Interestingly, STRIVE’s Federal campus is the only STRIVE school to lose randomized
applicants to a low cutoff in the marginal priority group: 110 Federal applicants in Θ∗

s, 40% of the
Θ∗

s partition, are lost to random assignment because MIDθs ≥ τs. We could learn more about
the impact of attendance at STRIVE Federal by changing the cutoff there (e.g., by changing
capacity), whereas such a change would be of little consequence for evaluations of Highland and
Lake.

A broad picture of DPS random assignment appears in Figure 2. Panel (a) captures the
information in columns 3 and 6 in Table 1 by plotting the number of first-choice applicants
subject to randomization as black dots, with the total randomized at each school plotted as
an arrow pointing up from these dots (schools are indexed on the x-axis by their capacities).
This representation highlights the dramatic gains in the number of schools and the precision
with which they can be studied as a payoff to our full-information approach to the DA research
design. These benefits are not limited to the charter sector, a fact documented in Panel (b) of
the figure, which plots the same comparisons for non-charter schools in the DPS assignment.

4.2 DPS Data and Descriptive Statistics

The DPS population enrolled in grades 3-9 in the Fall of 2011 is roughly 60% Hispanic, a fact
reported in Table 3, along with other descriptive statistics. We focus on grades 3-9 in 2011
because outcome scores come from TCAP tests taken in grades 4-10 in the spring of the 2012-13
school year.20 The high proportion Hispanic makes DPS an especially interesting and unusual
urban district. Not surprisingly in view of this, almost 30 percent of DPS students have limited
English proficiency. Consistent with the high poverty rates seen in many urban districts, three
quarters of DPS students are poor enough to qualify for a subsidized lunch. Roughly 20%
of the DPS students in our data are identified as gifted, a designation that qualifies them for
differentiated instruction and other programs.

20Grade 3 is omitted from the outcome sample because 3rd graders have no baseline test.
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Nearly 11,000 of the roughly 40,000 students enrolled in grades 3-9 in Fall 2011 sought to
change their school for the following year by participating in the assignment, which occurs in the
spring. The sample participating in the assignment, described in column 2 of Table 3, contains
fewer charter school students than appear in the total DPS population, but is otherwise demo-
graphically similar. It’s also worth noting that our impact analysis is limited to students enrolled
in DPS in the baseline (pre-assignment) year. The sample described in column 2 is therefore a
subset of that described in column 1. The 2012 school assignment, which also determines the
propensity score, includes the column 2 sample plus new entrants.

Column 3 of Table 3 shows that of the nearly 11,000 DPS-at-baseline students included in the
assignment, almost 5,000 ranked at least one charter school. We refer to these students as charter
applicants; the estimated charter attendance effects that follow are for subsets of this applicant
group. DPS charter applicants have baseline achievement levels and demographic characteristics
broadly similar to those seen district-wide. The most noteworthy feature of the charter applicant
sample is a reduced proportion white, from about 19% in the centralized assignment to a little
over 12% among charter applicants. It’s also worth noting that charter applicants have baseline
test scores close to the DPS average. This contrasts with the modest positive selection of charter
applicants seen in Boston (reported in Abdulkadiroğlu et al. (2011)).

A little over 1,400 charter applicants have a frequency estimate of the probability of charter
assignment between zero and one; the count of applicants subject to random assignment rises to
about 1,500 when the score is estimated by simulation. Charter applicants subject to random
assignment are described in columns 4 and 6 of Table 3. Although only about 30% of charter
applicants were randomly assigned a charter seat, these students look much like the full charter
applicant pool. The main difference is a higher proportion of applicants of randomized applicants
originating at a charter school (that is, already enrolled at a charter at the time they applied for
seats elsewhere). Columns 5 and 7, which report statistics for the subset of the randomized group
that enrolls in a charter school, show slightly higher baseline scores among charter students.

4.3 Score-Based Balance

Conditional on the propensity score, applicants offered a charter seat should look much like those
not offered a seat. Moreover, because offers are randomly assigned conditional on the score, we
expect to see conditional balance in all applicant characteristics and not just for the variables
that define an applicant’s type. We assess the balancing properties of the DA propensity score
using simulated expectations. Specifically, drawing lottery numbers 400 times, we ran DA and
computed the DA propensity score each time, and then computed average covariate differences
by offer status. The balance analysis begins with uncontrolled differences in means, followed
by regression-adjusted differences that put applicant characteristics on the left-hand side of
regression models like equation (3).

Uncontrolled comparisons by offer status, reported in columns 1 and 2 of Table 4, show
large differences in average student characteristics, especially for variables related to preferences.
For instance, across 400 lottery draws, those not offered a charter seat ranked an average of
1.4 charters, but this figure increases by almost half a school for applicants who were offered a
charter seat. Likewise, while fewer than 30% of those not offered a charter seat had ranked a
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charter school first, the probability applicants ranked a charter first increases to over 0.9 (that
is, 0.29+0.62) for those offered a charter seat. Column 2 also reveals important demographic
differences by offer status; Hispanic applicants, for example, are substantially over-represented
among those offered a charter seat.21

Conditioning on frequency estimates of the DA propensity score reduces differences by offer
status markedly. This can be seen in columns 3-5 of Table 4. The first set of conditional re-
sults, which come from models adding the propensity score as a linear control, show virtually no
difference by offer status in the odds a charter is ranked first or that an applicant is Hispanic.
Offer gaps in other application and demographic variables are also much reduced in this specifi-
cation. Columns 4 and 5 of the table show that non-parametric control for the DA propensity
score (implemented by dummying all score values in the unit interval; an average of 39 across
simulations when rounded to nearest hundredth and an average 47 without rounding) reduces
offer gaps even further. This confirms that a single DPS applicant cohort is large enough for the
DA propensity score to eliminate selection bias. It’s also important to note that the analysis to
follow shows the imbalance left after conditioning on the DA propensity score matter little for
the 2SLS estimate we’re ultimately after.

Columns 6-8 of Table 4, which report estimated offer gaps conditional on a simulated propen-
sity score, show that the simulated score does a better job of balancing treatment and control
groups than does the DA score. Differences by offer status conditional on the simulated score,
whether estimated linearly or with nonparametric controls, appear mostly in the third decimal
place. This reflects the fact that simulation recovers the actual finite-market propensity score
(up to simulation error), while the DA propensity score is an asymptotic approximation that
should be expected to provide perfect treatment-control balance only in the limit. It’s worth
noting, however, that the simulated score starts with 1,148 unique values. As a practical matter,
the simulated score must be smoothed to accommodate non-parametric control. Rounding to
the nearest hundredth leaves us with 51 points of support, close to the number of support points
seen for the DA score. Rounding to the nearest ten-thousandth leaves 120 points of support.
Finer rounding produces noticeably better balance for the number-of-schools-ranked variable.

Because the balancing properties of the DA propensity score are central to our methodolog-
ical agenda, we explore this further in Table 5. This table provides a computational proof of
Theorem 2 by reporting offer gaps of the sort shown in Table 4 for scaled-up versions of the DPS
economy. As a reference point, the first two columns of Table 5 repeat the actual-market offer
gaps estimated with no controls and the gaps estimated with saturated (nonparametric) controls
for the DA propensity score (repeated from columns 2 and 5 of Table 4). Column 3 shows that
doubling the number of applicants and seats at each school in the DPS market pushes the gaps
down sharply (conditional on the DA propensity score). Market sizes of 4n and 8n make most
of these small gaps even smaller. In fact, as with the estimates that condition on the simulated
score in Table 4, most of the gaps here are zero out to the third decimal place.

Our exploration of score-based balance is rounded out with the results from a traditional
balance analysis such as would be found in published analyses of a conventional randomized

21Table 4 omits standard errors because the only source of uncertainty here is the modest simulation error
arising from the fact that we’ve drawn lottery numbers only 400 times.
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trial. Specifically, Table 6 documents balance for the realized DPS assignment by reporting the
usual t and F statistics for offer gaps.22 Again, we look at balance conditional on propensity
scores for applicants with scores strictly between 0 and 1. As can be seen in Table 6a, application
covariates are well-balanced by non-parametric control for either DA or simulated score estimates
(linear control for the DA propensity score leaves a significant gap in the number of charter schools
ranked).

Table 6a also demonstrates that full control for type leaves us with a much smaller sample
than does control for the propensity score: models with full type control are run on a sample of
size 301, a sample size reported in the last column of the table. Likewise, the fact that saturated
control for the simulated score requires some smoothing can be see in the second last column
showing the reduced sample available for estimation of models that control fully for a simulated
score rounded to the nearest ten-thousandth.

Not surprisingly, a few significant imbalances emerge in balance tests for the longer list of
baseline covariates, reported in Table 6b. Here, the simulated score seems to balance charac-
teristics somewhat more completely than does the DA score, but the F-statistics (reported at
the bottom of the table) that jointly test balance of all baseline covariates fail to reject the null
hypothesis of conditional balance for any specification reported.

Modes of Inference

An important question in this context concerns the appropriate mode of inference when inter-
preting statistical results like that reported in tables like 6a and 6b. Econometric inference
typically tries to quantify the uncertainty due to random sampling. Here, we might imagine
that the 2012 DPS applicants we happen to be studying constitute a random sample from some
larger population or stochastic process. At the same time, its clear that the uncertainty in our
empirical work can also be seen as a consequence of random assignment : we see only a single
lottery draw for each applicant, one of many possibilities. The population of 2012 applicants, on
the other hand, is legitimately viewed as fixed, and therefore not a source of uncertainty.23

In an effort to determine whether the distinction between sampling inference and random-
ization inference matters for our purposes, we computed randomization p-values by repeatedly
drawing lottery numbers and calculating offer gaps in covariates conditional on the simulated
propensity score. Conditioning on the simulated score produces near-perfect balance in Table 4
so this produces an appropriate null distribution. Randomization p-values are given by quantiles
of the t-statistics in the distribution resulting from these repeated draws.

The p-values associated with the t-statistics for covariate balance computed from the real-
ized DPS data turn out to be close to the randomization p-values (for the number of charter
schools ranked, for example, the conventional p-value for balance is 0.885 while the corresponding
sampling p-value is 0.850). This is consistent with the the theorem from mathematical statistics
which says that randomization and sampling p-values for differences in means are asymptotically
equivalent (see Lehmann and Romano (2005) chapter 15).

22Table 6 reports the results controlling for the DA propensity score (frequency) and the simulated propensity
score. The results under the DA propensity score (formula) are in Appendix Table B3.

23See Rosenbaum (2002) for more on the distinction between these modes of inference.
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Aside from tiny simulation error, the simulated score can be viewed as a “known” or pop-
ulation score. Our empirical strategy conditions on formula and frequency estimates of the
propensity score as well as the known (simulated) score. As noted by Hirano et al. (2003) and
Abadie and Imbens (2012), conditioning on an estimated score may affect sampling distributions.
We therefore checked conventional large-sample p-values against randomization p-values for the
reduced-form charter offer effects associated with the various sorts of 2SLS estimates discussed
in the next section. Here too, conventional asymptotic sampling formulas generate p-values close
to a randomization-inference benchmark, regardless of how the score behind these estimates was
constructed. In view of these findings, we rely on the usual asymptotic (robust) standard errors
and test statistics for inference about treatment effects.24

4.4 Effects of Charter Enrollment

A DA-generated charter offer boosts charter middle school attendance rates by 0.42-0.45, de-
pending on whether formula or frequency estimates are used to control for the propensity score.
These first-stage estimates (computed with saturated controls for the score included in equation
(3)) are reported in the first row of Table 7, which also shows a middle school first stage esti-
mate of 0.43 constructed using a simulated score (rounded to the nearest hundredth). At around
one-third, the first stage for high school charter applicants, reported in the first row of Panel B
in the table, is noticeably smaller than that for middle school. Here too, first stage estimates
are similar across alternative score estimators. First stage estimates of around 0.67 computed
without score controls, shown in column 4 of the table, are clearly biased upwards.25

2SLS estimates of charter attendance effects on test scores, reported below the first-stage
estimates in Table 7, show remarkably large gains in math, with smaller effects on reading that
aren’t significantly different from zero. The math gains reported here are similar to those found
for charter middle school students in Boston (see, for example, Angrist et al. (2015), Angrist et
al. (2012)). Previous lottery-based studies of charter schools likewise report substantially larger
gains in math than in reading. Here, we also see large and statistically significant gains in middle
school writing scores. Across subjects, 2SLS estimates for high school are markedly less precise
than those for middle school, a natural consequence of the smaller high school applicant sample

24Appendix table B2 reports conditional-on-score estimates of attrition differentials by offer status. Here, we
see marginally significant gaps on the order of 4-5 points when estimated conditional on the DA propensity score.
Attrition differentials fall to a statistically insignificant 3 points when estimated conditional on a simulated score.
As the estimated charter attendance effects discussed below are similar when computed using either type of score
control, it seems unlikely that differential attrition is a source of bias in our 2SLS estimates.

25The middle school sample for Table 7 includes DPS 4th-8th graders enrolled in 2012-13; the high school
sample includes 9th and 10th graders. The middle and high school samples used for IV estimation are limited
to charter applicants with propensity scores in the unit interval, for which score cells have offer variation (this
is not necessarily implied by the unit interval restriction for formula and simulated scores since it is possible
that applicants with a nontrivial propensity score, say 0.1, experience no offer variation under realized offers).
The OLS estimation sample includes charter applicants, ignoring score- and cell-variation restrictions. First- and
second-stage estimates in this table also control for grade tested, gender, origin school charter status, race, gifted
status, bilingual status, subsidized price lunch eligibility, special education, limited English proficient status, and
test scores at baseline.
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and first stage.26

Importantly for our methodological agenda, Table 7 shows charter impact estimates that are
largely invariant to whether the score is estimated by simulation or by a frequency or formula
calculation that uses Theorem 1. Compare, for example, math middle school impact estimates
of 0.525, 0.527, and 0.559 using frequency-, formula-, and simulation-based score controls, all
estimated with similar precision. This alignment validates the use of Theorem 1 to construct
score controls.

Estimates that omit propensity score controls entirely highlight the risk of selection bias in
a naive empirical strategy. This is documented in column 4 of Table 7, which shows that 2SLS
estimates constructed using DA offer instruments without control for the propensity score are
too small by about half. A corresponding set of OLS estimates without propensity score controls,
reported in column 5 of the table, are also too small. On the other hand, including score controls
in the OLS model for high school students pulls the middle school estimate back up, close to the
corresponding 2SLS estimates. This suggests that the primary source of selection bias in OLS
estimates for high school applicants is omitted preferences and priorities rather than unobserved
differences in potential achievement between those who do and don’t enroll at a charter school.

4.5 Other IV Strategies

We’re interested in comparing 2SLS estimates constructed using a DA offer dummy as an instru-
ment while controlling for the DA propensity score with suitably-controlled estimates constructed
using first-choice and qualification instruments. As noted in Section 3.4, we expect DA-offer in-
struments to yield both a precision gain and an increase in the number of schools represented in
the estimation sample relative to these two previously-employed IV strategies.

Let Q(θi) be a variable that uniquely identifies the charter that applicant i ranks first, along
with his priority status at this school, defined for applicants whose first choice is indeed a charter
school. Q(θi) ignores other schools that might have been ranked. The first-choice strategy is
implemented by the following 2SLS setup:

Yi =
∑
x

α(x)1{Q(θi) = x}+ βCi + ϵi (5)

Ci =
∑
x

γ(x)1{Q(θi) = x}+ δDf
i + νi, (6)

where the summation index, x, runs over all possible values of Q(θi). The first-choice instrument,
Df

i , is a dummy variable indicating i’s qualification at the first-choice school. In other words,

Df
i = 1[πis ≤ cs for charter s that i has ranked first].

26Standard errors for the 2SLS estimates reported here ignore the fact that the DA propensity score is estimated.
This is probably conservative: Abadie and Imbens (2012) show that the correction for conditioning on an estimated
score reduces the asymptotic variance matrix for an estimated average treatment effect. Strictly speaking, our
2SLS procedure estimates a population average treatment effect only under additional assumptions (like constant
effects). Still, as noted in our discussion of Table 7, the p-values implied by conventional (robust) 2SLS standard
errors ignoring score estimation come out close to randomization p-values, suggesting any adjustment for score
estimation in this context is small.
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First choice qualification is the same as first choice offer since under DA, applicants who have
ranked a first are offered a seat at a if and only if they qualify at a.27

The qualification strategy expands the sample to include all charter applicants, with Q(θi)

identifying the set of all charter schools that i ranks, along with his priority status at each of these
schools. Q(θi) ignores the order in which schools are ranked, coding only their identities, but
priorities are associated with schools.28 The qualification instrument, Dq

i , indicates qualification
at any charter he or she has ranked. In other words,

Dq
i = 1[πis ≤ cs for at least one charter s that i has ranked].

Under the same sequence used to establish Theorem 1, the instruments Df
i and Dq

i can be shown
to be asymptotically independent of type conditional on Q(θi).29

A primary source of inefficiency in the first-choice and qualification strategies is apparent in
Panel A of Table 8. This panel reports two sorts of first stage estimates for each instrument:
the first of these regresses a dummy indicating any charter offer–that is, our DA charter offer
instrument, Di–on each of the three instruments under consideration. A regression of Di on itself
necessarily produces a coefficient of one. By contrast, a first-choice offer boosts the probability
of any charter offer by only around 0.77 in the sample of those who’ve ranked a charter first.
This reflects the fact that, while anyone receiving a first choice charter offer has surely been
offered a charter seat, roughly 23% of the sample ranking a charter first is offered a charter seat
at schools other than their first choice. The relationship between Dq

i and charter offers is even
weaker, at around 0.48. This reflects the fact that for schools below the one ranked first, charter
qualification is not sufficient for a charter offer.

The diminished impact of the two alternative instruments on charter offers translates into a
weakened first stage for charter enrollment. The best case scenario, using all DA-generated offers
(that is, Di) as a source of quasi-experimental variation, produces a first stage of around 0.41
(this differs from the first-stage estimates reported in Table 7 in that it uses a pooled elementary-
middle-high-school sample). But first-choice offers boost charter enrollment by just 0.32, while
qualification anywhere yields a charter enrollment gain of only 0.18. As always with comparisons
of IV strategies, the size of the first stage is a primary determinant of relative precision.

At 0.071, the standard error of the DA-offer estimate is markedly lower than the standard
error of 0.102 yielded by a first-choice strategy and well below the standard error of 0.149 gen-
erated by qualification instruments. In fact, the precision loss here is virtually the same as the
decline in the intermediate first stages recorded in the first row of the table (compare 0.774
with 0.071/0.102 = 0.696 and 0.476 with 0.071/0.149 = 0.477). Note also that the loss here is
substantial: columns 4 and 5 show the sample size increase needed to undo the damage done by
a smaller first stage for each alternative instrument.30

27Specifically, all applicants who clear marginal priority qualify and are offered a seat; applicants with less than
marginal priority are unqualified and not offered a seat; applicants having marginal priority are offered a seat
with probability determined by τs, the school-specific lottery cutoff in the marginal priority group.

28For example, an applicant who ranks A and B with marginal priority only at A is distinguished from an
applicant who ranks A and B with marginal priority only at B.

29See Appendix A.4 for details.
30The sample used to construct the estimates in columns 1-3 of Table 8 is limited to those who have variation

in the instrument at hand conditional on the relevant risk sets controls.
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Interestingly, the first-choice estimate of the effect of charter enrollment on math and read-
ing scores are noticeably larger than the estimates generated using DA offer and qualification
instruments (compare the estimate of 0.5 using DA offers with estimates of 0.6 and 0.41 using
first-choice and qualification instruments). This likely reflects the fact that only half as many
schools are represented in the first-choice analysis sample as in the DA sample (At 24, the num-
ber of schools in the qualification sample is closer to the full complement of 30 schools available
for study with DA offers). First-choice analyses lose schools because many do not produce
randomization for first-choice applicants alone (as seen in Table 1 and Figure 2).

School-impact heterogeneity here may reflect an advantage for those awarded a seat at their
first choice school (Hastings et al. (2009); Deming (2011); Deming et al. (2014) find a general
“first choice advantage” in analyses of school attendance effects.) By contrast, the DA offer
instrument captures causal effects across all schools applied to, yielding an estimand that would
appear to be more representative of “typical charter attendance effects.”

4.6 Charter School Effects with a Mixed Counterfactual

The 2SLS estimates in Tables 7 and 8 contrast charter outcomes with potential outcomes gen-
erated by attendance at a mix of traditional public schools and schools from other non-charter
sectors. We’d like to simplify this mix so as to produce something closer to a pure sector-
to-sector comparison. Allowance for more than one treatment channel also addresses concerns
about charter-offer-induced changes in counterfactual outcomes that might cause violations of
the exclusion restriction.

Our first step in this effort is to describe the distribution of non-charter school choices for
applicants who were and weren’t offered a charter seat in the DPS assignment. We then identify
the distribution of counterfactual (non-charter) school sectors for the group of charter-lottery
compliers. Finally, we use the DA mechanism to jointly estimate causal effects of attendance at
schools in different sectors, thereby making the non-charter counterfactual in our 2SLS estimates
more homogeneous.

The analysis here builds on a multinomial variable, Wi, which denotes the school sector
student i enrolls in. Important DPS sectors besides the charter sector are traditional public
schools, innovation schools, magnet schools, and alternative schools. Innovation and magnet
schools are managed by DPS. Innovation schools design and implement innovative practices
to improve student outcomes (for details and a descriptive evaluation of innovation schools,
see Connors et al. (2014)). Magnet schools serve students with particular styles of learning.
Alternative schools serve mainly older students struggling with factors that may prevent them
from succeeding in a traditional school environment. Smaller school sectors include a single
charter middle school outside the DPS assignment (now closed) and a private school contracted
to serve DPS students.

The distribution of enrollment sectors for students who do and don’t receive a charter offer
are described in the first two columns of Table 9. These columns show a charter enrollment
rate of over 85% in the group offered a charter seat, along with substantial but much smaller
charter enrollment in the non-offered group.31 Perhaps surprisingly, only around 40% of those

31Applicants unhappy with the offer they’ve receive in the first round of the Denver assignment may apply to
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not offered a charter seat enroll in a traditional public schools, with the rest of the non-offered
group distributed over a variety of school types. Innovation schools are the leading alternative
to traditional public schools.

The sector distribution for non-offered applicants with non-trivial charter risk appears in
column 3 of Table 9, alongside the sum of the non-offered mean and a charter-offer treatment
effect on enrollment in each sector in column 4. These extended first-stage estimates, computed
by putting indicators 1(Wi = j) on the left-hand side of equation (3), control for the charter
offer propensity score and therefore have a causal interpretation. The number of applicants not
offered a seat who end up in a charter school is higher for those with non-trivial charter offer risk
than in the full applicant sample, as can be seen by comparing columns 3 and 1. The charter
enrollment first stage in the column 4-vs-3 comparison matches the first stage in Table 7. First
stages for other sectors show charter offers sharply reduce innovation school enrollment as well
as enrollment in traditional public schools.

The 2SLS estimates reported in Table 7 capture causal effect for charter lottery compliers.
We describe the distribution of school sectors for compliers by defining potential sector enroll-
ment variables, W1i and W0i, indexed against charter offers, Di. Potential and observed sectors
variables are related by

Wi = W0i + (W1i −W0i)Di.

In the population of charter-offer compliers, W1i = charter for all i: by definition, charter-offer
compliers attend a charter school when the DPS assignment offers them the opportunity to do so.
Here, we’re interested in E[1(W0i = j)|C1i > C0i], that is, the sector distribution for charter-offer
compliers in the scenario where they aren’t offered a charter seat. We refer to this distribution
as describing “counterfactual destinies” for compliers.

Counterfactual destinies are marginal potential outcome distributions for compliers. As
shown by Abadie (2002), these are identified by a simple 2SLS estimand. The details of our
implementation of this identification strategy follow those in Angrist et al. (2015), with the
modification that instead of estimating marginal potential outcome densities for a continuous
variable, the outcomes of interest here are Bernoulli.32

Column 5 of Table 9 shows that, among middle- and elementary-school applicants, 64% of
charter lottery compliers end up in a traditional public school if they aren’t offered a charter seat.
The second most-likely counterfactual destiny for the younger applicant group is an innovation
school, with a little over 20% of non-offered compliers enrolling in one of these.

Innovation schools dominate the destiny distribution for high school applicants: two thirds
of high school compliers wind up in an innovation school when not offered a charter seat, while
only 13% of this group ends up in a traditional public school. This probably reflects the fact
that even for non-traditional sectors, choices are heavily neighborhood-based. In particular, the
non-charter high school options nearest to the largest charter high school, DSST: Green Valley

schools individually in a second round. This process produces charter offers for those not offered a charter seat
initially.

32Briefly, our procedure puts (1−Ci)1(Wi = j) on the left hand side of a version of equation (4) with endogenous
variable 1 − Ci. The coefficient on this endogenous variable is an estimate of E[1(W0i = j)|C1i > C0i, Xi]. The
covariates and sample used here are the same as used to construct the 2SLS impact estimates reported in column
1 of Table 7.
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Ranch, are innovation schools. Disappointed Green Valley applicants are therefore likely to have
ranked an innovation school highly as well.

Isolating an Innovation School Effect

The outsize role of innovation schools in counterfactual destinies motivates an empirical strategy
that allows for distinct charter and innovation school treatment effects, which we label β1 and
β2. By pulling innovation schools out of the non-charter achievement outcome, β1 is driven
mainly by the contrast between charter and traditional public schools. Of course, the innovation
treatment effect, β2, is also of interest in its own right.

Innovation and charter enrollment effects are separately identified by a 2SLS procedure with
two endogenous variables, C1

i for charter school enrollment and C2
i for innovation school enroll-

ment. Specifically, we estimate

Yi =
∑
x

[α1(x)d
1
i (x) + α2(x)d

2
i (x)] + β1C

1
i + β2C

2
i + ϵi, (7)

C1
i =

∑
x

[γ11(x)d
1
i (x) + γ12(x)d

2
i (x)] + δ11D

1
i + δ12D

2
i + νi, (8)

C2
i =

∑
x

[γ21(x)d
1
i (x) + γ22(x)d

2
i (x)] + δ21D

1
i + δ22D

2
i + ηi, (9)

where the dummy control variables, d1i (x) and d2i (x), saturate the estimated propensity scores,
p̂1(θi) and p̂2(θi), for each treatment. In other words, p̂1(θi) and p̂2(θi) estimate E[D1

i |θi] and
E[D2

i |θi], and

d1i (x) = 1[p̂1(θi) = x], (10)

d2i (x) = 1[p̂2(θi) = x], (11)

with the index, x, running over all possible values in the union of the supports for the two scores.
The sample used for this analysis is the union of charter and innovation school applicants.

As a benchmark, columns 1-2 of Table 10 compare charter-only and innovation-only estimates
computed using DA (frequency) score controls, computed in the relevant applicant sub-samples.33

Like the estimates in Table 8, these differ from the 2SLS estimates of charter effects reported in
Table 7 in that they pool all grades. A parallel set of benchmark estimates using simulated score
controls appears in columns 5 and 6. The innovation first stage (the effect of an innovation school
offer on innovation school enrollment) is around 0.35. The pooled single-sector charter estimates
in Table 10 are the same as those in Table 8. Not surprisingly in view of the substantially
reduced number of applicants with non-trivial innovation offer risk (546 in column 2 and 613
in column 6), the estimated effects of innovation school attendance are much less precise than
are the corresponding charter estimates. This imprecision notwithstanding, the innovation-only
models generate a large negative and marginally significant innovation school effect on reading
when estimated with the DA score.

33Appendix Table B4 lists innovation schools and describes the rand om assignment pattern at these schools in
the same format as Table 1 for charter schools. Covariate balance and differential attrition results for innovation
schools are reported in Appendix Table B5.
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2SLS estimates of equation (7) appear in columns 3 and 7 of Table 10. Charter school effects
change little in this specification, but (insignificant) negative innovation estimates for math
flip to positive when estimated using a model that also isolates charter treatment effects. The
negative innovation school effects on reading seen in columns 2 and 6 also become smaller in the
two-endogenous-variables model. Most interestingly, perhaps, the marginally significant positive
charter school effect on reading also disappears. While charter students’ reading performance
exceeds what we can expect to see were these students to enroll in a mix of traditional and (low-
performing) innovation schools, the reading gap between charters and traditional public schools
is somewhat smaller.

Finally, its worth noting that the use of additive propensity score controls in equation (7) is
justified by an additive causal model. Specifically, the additive setup presumes that Yi−β1C

1
i is

independent of D2
i conditional on applicant type and vice versa. This is a simplifying assumption

motivated by constant causal effects. In general, propensity score conditioning with a multinomial
treatment should fix the conditional probability of assignment for all treatment levels jointly
(Imbens, 2000). We therefore also report results from an estimation strategy that replaces
additive score controls in equations (7), (8), and (9) with joint score controls of the form

d12i (x1, x2) = 1[p̂1(θi) = x1, p̂2(θi) = x2],

where the indices, x1 and x2, run independently over all values in the support for each score.
The results of estimation with joint score controls, reported in columns 4 and 8 of Table 10,

differ little from estimates constructed using additive controls in columns 3 and 7 (a marginally
significant though still imprecisely estimate positive innovation effect on math scores emerges
in column 4). Overall, it seems fair to say that the findings on charter effectiveness in Table 7
stand when charter effects are estimated while removing the innovation sector from the charter
enrollment counterfactual.

5 Summary and Directions for Further Work

We investigate empirical strategies that use the random tie-breaking embedded in market design
solutions to school matching problems as a research tool. The fruit of this inquiry is the DA
propensity score, an easily-computed formula for the conditional probability of assignment to
particular schools as a function of type. The DA propensity score reveals the nature of the
experimental design generated as a by-product of market design and suggests directions in which
match parameters might be modified so as to boost the research value of school assignment and
other matching schemes. We also show how the DA score can be used to simultaneously evaluate
attendance effects in multiple sectors or schools.

A score-based analysis of data from Denver’s unified school match reveals substantial gains
from attendance at one of Denver’s many charter schools. The resulting charter effect estimates
are similar to those computed using single-school lottery strategies for charters in Boston. At
the same time, as with previously reported results for Boston Pilot schools, Denver’s Innovation
model does not appear to generate substantial achievement gains.
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The methods developed here should be broadly applicable to markets in which allocations
use the DA family of mechanisms for centralized assignment. There’s nothing special about
markets that match schools and students, except, perhaps, accessible high-quality applicant and
outcome data. At the same time, other markets and matches use mechanisms not covered by
the DA framework. Most important on this list of extensions is the top trading cycles (TTC)
mechanism (Shapley and Scarf, 1974; Abdulkadiroğlu and Sönmez, 2003), which allows students
to trade priorities rather than treating priorities as fixed. We expect to have theoretical results
on the TTC propensity score soon, along with an application to New Orleans OneApp, which
has experimented with TTC matching.

Our analysis leaves a number of other important areas unexplored. In particular, we’ve
focused here on defining and estimating the DA propensity score, giving less attention to the
problem of how best to use the score for estimation. Simple 2SLS procedures seem to work
well, but it’s natural to integrate the score with more modern semiparametric IV strategies such
as have been detailed by Abadie (2003). The analysis here also avoids the complications of
non-random tie-breaking. Many markets involving DA break ties with a non-random running
variable. The question of how best to define and exploit a DA propensity score for markets
that combine regression-discontinuity designs with market design is a natural next step on our
research design and market design agenda.

32



References

Abadie, Alberto, “Bootstrap Tests for Distributional Treatment Effects in Instrumental Vari-
able Models,” Journal of the American Statistical Association, 2002, 97(457), 284–292.

, “Semiparametric instrumental variables estimation of treatment response models,” Journal
of Econometrics, 2003, 113(2), 231–263.

and Guido Imbens, “Matching on the Estimated Propensity Score,” 2012. Working Paper.

Abdulkadiroğlu, Atila and Tayfun Sönmez, “School Choice: A Mechanism Design Ap-
proach,” American Economic Review, 2003, 93, 729–747.

, Josh Angrist, and Parag Pathak, “The Elite Illusion: Achievement Effects at Boston
and New York Exam Schools,” Econometrica, 2014, 82(1), 137–196.

, Joshua D. Angrist, Susan M. Dynarski, Thomas J. Kane, and Parag A. Pathak,
“Accountability and Flexibility in Public Schools: Evidence from Boston’s Charters and Pilots,”
Quarterly Journal of Economics, 2011, 126(2), 699–748.

, Parag A. Pathak, Alvin E. Roth, and Tayfun Sönmez, “Changing the Boston School
Choice Mechanism,” 2006. NBER Working paper, 11965.

, Weiwei Hu, and Parag Pathak, “Small High Schools and Student Achievement: Lottery-
Based Evidence from New York City,” 2013. NBER Working paper 19576.

, Yeon-Koo Che, and Yosuke Yasuda, “Expanding Choice in School Choice,” 2009. Eco-
nomic Research Initiatives at Duke Research Paper No. 20.

Agarwal, Nikhil and Paulo Somaini, “Demand Analysis Using Strategic Reports: An Ap-
plication to a School Choice Mechanism,” 2015. Working Paper.

Ajayi, Kehinde, “Does School Quality Improve Student Performance? New Evidence from
Ghana,” 2013. Working paper, Boston University.

Angrist, Joshua D. and Jinyong Hahn, “When to Control for Covariates? Panel Asymptotics
for Estimates of Treatment Effects,” The Review of Economics and Statistics, 2004, 86(1), 58–
72.

, Guido W. Imbens, and Donald B. Rubin, “Identification of Causal Effects Using Instru-
mental Variables,” Journal of the American Statistical Association, 1996, 91(434), 444–455.

, Parag A. Pathak, and Christopher R. Walters, “Explaining Charter School Effective-
ness,” 2011. NBER Working Paper 17332.

, Sarah Cohodes, Susan Dynarski, Parag Pathak, and Christopher Walters, “Stand
and Deliver: Effects of Boston’s Charter High Schools on College Preparation, Entry, and
Choice,” Journal of Labor Economics, 2015, Forthcoming.

33



, Susan M. Dynarski, Thomas J. Kane, Parag A. Pathak, and Christopher R.
Walters, “Who Benefits from KIPP?,” Journal of Policy Analysis and Management, 2012,
31(4), 837–860.

Ashlagi, Itai, Yash Kanoria, and Jacob D. Leshno, “Unblanaced Random Matching Mar-
kets: the Stark Effect of Competition,” 2015. Working Paper.

Azevedo, Eduardo and Jacob Leshno, “A Supply and Demand Framework for Two-Sided
Matching Markets,” 2014. Working Paper.

Azevedo, Eduardo M. and John William Hatfield, “Existence of Stable Matchings in Large
Markets with Complementarities,” 2015. Working Paper.

Bergman, Peter, “Educational Attainment and School Desegregation: Evidence from Random-
ized Lotteries,” 2014. Working Paper.

Bloom, Howard and Rebecca Underman, “Can Small High Schools of Choice Improve Edu-
cational Prospects for Disadvantaged Students?,” Journal of Policy Analysis and Management,
2014, 33(2).

Budish, Eric, “The Combinatorial Assignment Problem: Approximate Competitive Equilibrium
from Equal Incomes,” Journal of Political Economy, 2011, 119(6), 1061–1103.

Calsamiglia, Caterina, Chao Fu, and Maia Güell, “Structural Estimation of a Model of
School Choices: The Boston Mechanism vs. Its Alternatives,” 2014. Working Paper.

Che, Yeon-Koo and Fuhito Kojima, “Asymptotic Equivalence of Probabilistic Serial and
Random Priority Mechanisms,” Econometrica, 2010, 78(5), 1625–1672.

Connors, Susan, Erika Moldow, Amelia Challender, and Bonnie Walters, “Innovation
Schools in DPS: Year Three of an Evaluation Study,” University of Colorado Denver: The
Evaluation Center, School of Education and Human Development, 2014.

Cullen, Jullie Berry, Brian A. Jacob, and Steven Levitt, “The Effect of School Choice on
Participants: Evidence from Randomized Lotteries,” Econometrica, 2006, 74(5), 1191–1230.

de Haan, Monique, Pieter A. Gautier, Hessel Oosterbeek, and Bas van der Klaauw,
“The Performance of School Assignment Mechanisms in Practice,” 2015. Working Paper.

Deming, David, “Better Schools, Less Crime?,” Quarterly Journal of Economics, 2011, 126(4),
2063–2115.

, Justine Hastings, Thomas Kane, and Douglas Staiger, “School Choice, School Quality
and Postsecondary Attainment,” American Economic Review, 2014, 104(3), 991–1013.

Dobbie, Will and Roland G. Fryer, “Exam High Schools and Academic Achievement: Ev-
idence from New York City,” American Economic Journal: Applied Economics, 2014, 6(3),
58–75.

34



Dobbie, William and Roland Fryer, “Are High-Quality Schools Enough to Increase Achieve-
ment Among the Poor? Evidence from the Harlem Children’s Zone,” American Economic
Journal: Applied Economics, 2011, 3(3), 158–187.

Dur, Umut, Scott Kominers, Parag Pathak, and Tayfun Söname, “The Demise of Walk
Zones in Boston: Priorities vs. Precedence in School Choice,” 2014. NBER Working Paper
18981.

Ergin, Haluk and Tayfun Sönmez, “Games of School Choice under the Boston Mechanism,”
Journal of Public Economics, 2006, 90, 215–237.

Gale, David and Lloyd S. Shapley, “College Admissions and the Stability of Marriage,”
American Mathematical Monthly, 1962, 69, 9–15.

Hahn, Jinyong, “On the Role of the Propensity Score in Efficient Semiparametric Estimation
of Average Treatment Effects,” Econometrica, 1998, 66(2), 315–331.

Hastings, Justine, Christopher Neilson, and Seth Zimmerman, “Are Some Degrees
Worth More than Others? Evidence from College Admission Cutoffs in Chile,” 2013. NBER
Working paper 19241.

, Thomas J. Kane, and Douglas O. Staiger, “Heterogenous Preferences and the Efficacy
of Public School Choice,” 2009. Working paper, Yale University.

Heckman, James J., Hidehiko Ichimura, and Petra Todd, “Matching As An Econometric
Evaluation Estimator,” Review of Economic Studies, 1998, pp. 261–294.

Hirano, Keisuke, Guido Imbens, and Geert Ridder, “Efficient Estimation of Average
Treatment Effects Using the Estimated Propensity Score,” Econometrica, 2003, 71(4), 1161–
1189.

Hoxby, Caroline M., Sonali Murarka, and Jenny Kang, “How New York City’s Charter
Schools Affect Achievement,” 2009. Working Paper.

Imbens, Guido, “The Role of the Propensity Score in Estimating Dose-response Functions,”
Biometrica, 2000, 87(3), 706–710.

and Joshua D. Angrist, “Identification and Estimation of Local Average Treatment Effects,”
Econometrica, 1994, pp. 467–475.

Immorlica, Nicole and Mohammad Mahdian, “Marriage, Honesty, and Stability,” SODA,
2005, pp. 53–62.

Jackson, Kirabo, “Do Students Benefit from Attending Better Schools? Evidence from Rule-
based Student Assignments in Trinidad and Tobago,” Economic Journal, 2010, 120(549),
1399–1429.

Kesten, Onur, “Why Do Popular Mechanisms Lack Efficiency in Random Environments?,”
Journal of Economic Theory, 2009, 144(5), 2209–2226.

35



Kirkeboen, Lars, Edwin Leuven, and Magne Mogstad, “Field of Study, Earnings, and
Self-Selection,” 2015. Working Paper.

Kojima, Fuhito and Mihai Manea, “Incentives in the Probabilistic Serial Mechanism,” Jour-
nal of Economic Theory, 2010, 145, 106–123.

and Parag A. Pathak, “Incentives and Stability in Large Two-Sided Matching Markets,”
American Economic Review, 2009, 99, 608–627.

Kominers, Scott D. and Tayfun Sönmez, “Matching with Slot-Specific Priorities: Theory,”
2014. forthcoming, Theoretical Economics.

Lee, SangMok, “Incentive Compatibility of Large Centralized Matching Markets,” 2014. Work-
ing Paper.

Lehmann, Erich L. and Joseph P. Romano, Testing Statistical Hypotheses, Springer, 2005.

Lucas, Adrienne and Isaac Mbiti, “Effects of School Quality on Student Achievement: Dis-
continuity Evidence from Kenya,” American Economic Journal: Applied Economics, 2014,
6(3), 234–63.

Pathak, Parag A. and Tayfun Sönmez, “Leveling the Playing Field: Sincere and Sophisti-
cated Players in the Boston Mechanism,” American Economic Review, 2008, 98(4), 1636–1652.

Pop-Eleches, Cristian and Miguel Urquiola, “Going to a Better School: Effects and Be-
havioral Responses,” American Economic Review, 2013, 103(4), 1289–1324.

Rosenbaum, Paul R., “Model-Based Direct Adjustment,” Journal of the American Statistical
Association, 1987, pp. 387–394.

, Observational Studies, Springer, 2002.

and Donald B. Rubin, “The Central Role of the Propensity Score in Observational Studies
for Causal Effects,” Biometrica, 1983, pp. 41–55.

Roth, Alvin E., Who Gets What — And Why: The New Economics of Matchmaking and
Market Design, Eamon Dolan, 2015.

and Elliott Peranson, “The Redesign of the Matching Market for American Physicians:
Some Engineering Aspects of Economic Design,” American Economic Review, 1999, 89, 748–
780.

and Marilda A. O. Sotomayor, Two-sided Matching: a Study in Game-theoretic Modeling
and Analysis, Cambridge University Press: Econometric Society monographs, 1990.

Rubin, Donald B. and Neal Thomas, “Matching Using Estimated Propensity Scores: Re-
lating Theory to Practice,” Biometrics, 1996, pp. 249–264.

Shapley, Lloyd and Herbert Scarf, “On Cores and Indivisibility,” Journal of Mathematical
Economics, 1974, 1, 23–28.

36



van der Vaart, A. W., Asymptotic Statistics, Cambridge University Press, 2000.

37



Figure 1: Propensity Scores and Market Size in in Example 2
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Notes: This figure plots finite-market propensity scores for expansions of Example 2 in Section 2.2. For each
value of the x axis, we consider an expansion of the example with x students of each type. The propensity scores
plotted here were computed by drawing lottery numbers 100,000 times.
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Figure 2: Sample Size Gains from the Propensity Score Strategy
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(b)

Notes: These figures compare the sample size under our DA propensity score strategy to that under the first
choice strategy. Down arrows mean the two empirical strategies produce the same number of applicants subject
to randomization at the corresponding schools. We say a student is subject to randomization at a school if the
student has the DA propensity score (frequency) of assignment to that school that is neither 0 nor 1.
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Table 1: DPS charter schools
Propensity score in (0,1)

Total applicants
Applicants 

offered seats
DA score 

(frequency)
DA score 
(formula) Simulated score

Simulated score 
(first choice)

(1) (2) (3) (4) (5) (6)
Elementary and middle schools

Cesar Chavez Academy Denver 62 9 7 9 8 3
Denver Language School 4 0 0 0 0 0
DSST: Cole 281 129 31 40 44 0
DSST: College View 299 130 47 67 68 0
DSST: Green Valley Ranch 1014 146 324 344 357 291
DSST: Stapleton 849 156 180 189 221 137
Girls Athletic Leadership School 221 86 18 40 48 0
Highline Academy Charter School 159 26 69 78 84 50
KIPP Montbello College Prep 211 39 36 48 55 20
KIPP Sunshine Peak Academy 389 83 41 42 44 36
Odyssey Charter Elementary 215 6 20 21 22 14
Omar D. Blair Charter School 385 114 135 141 182 99
Pioneer Charter School 25 5 0 2 2 0
SIMS Fayola International Academy Denver 86 37 7 18 20 0
SOAR at Green Valley Ranch 85 9 41 42 43 37
SOAR Oakland 40 4 0 9 7 2
STRIVE Prep - Federal 621 138 170 172 175 131
STRIVE Prep - GVR 324 112 104 116 118 0
STRIVE Prep - Highland 263 112 2 21 18 0
STRIVE Prep - Lake 320 126 18 26 26 0
STRIVE Prep - Montbello 188 37 16 31 35 0
STRIVE Prep - Westwood 535 141 235 238 239 141
Venture Prep 100 50 12 17 17 0
Wyatt Edison Charter Elementary 48 4 0 3 2 0

High schools
DSST: Green Valley Ranch 806 173 290 343 330 263
DSST: Stapleton 522 27 116 117 139 96
Southwest Early College 265 76 34 47 55 0
Venture Prep 140 39 28 42 45 0
KIPP Denver Collegiate High School 268 60 29 37 40 24
SIMS Fayola International Academy Denver 71 15 6 22 22 0
STRIVE Prep - SMART 383 160 175 175 175 175

Notes: This table shows application patterns at charter schools. Column 1 is the number of applicants ranking each school. Columns 3-6 are restricted to applicants with 
propensity score values that are neither zero (i.e. ineligible for a seat) nor one (i.e. guaranteed a seat) according to different score computation methods. Column 6 is the 
number of applicants in column 5 who rank each school as their first choice. Elementary and middle schools are those serving grades 4-8. High schools are those serving 
grades 9 and 10.
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Table 2: DA score anatomy
DA Score = 1 DA Score = 0 DA Score in (0,1)

Eligible 
applicants Capacity Offers

Randomized 
seats

In Θs
+, 

MID = 0
In Θs

-, 
ρθś < ρś

In Θs
-, 

ρθs > ρs

In Θs
*, 

MID ≥ τs

In Θs
+, 

0 < MID < 1
In Θs

*, 
MID < τs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
STRIVE Prep - GVR 324 147 112 63 49 159 0 0 116 0
STRIVE Prep - Highland 244 147 112 10 102 121 0 0 21 0
STRIVE Prep - Lake 274 147 126 10 116 132 0 0 26 0
STRIVE Prep - Federal 574 138 138 101 37 222 33 110 1 171
Notes: This table shows how formula scores are determined for STRIVE school seats in grade 6 (all 6th grade seats at these schools are assigned in a single bucket; 
ineligible applicants, who have a score of zero, are omitted). Column 3 records offers made to these applicants and column 4 describes the number of seats that 
were randomly assigned. Total offers equals randomized seats plus certain offers, i.e., offers made to applicants with a DA score of one (reported in column 5). 
Columns 6-8 show the number of applicants in partitions with a score of zero, as detailed in the formal statement of Theorem 1. Likewise, columns 9 and 10 show 
the number of applicants subject to random assignment, distinguishing between those randomized in Θs

+ and those randomized in Θs
-.
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Table 3: Baseline characteristics of DPS students
Propensity score in (0,1)

DA score (frequency) Simulated score
All applicants Enroll at charter All applicants Enroll at charter

(1) (2) (3) (4) (5) (6) (7)
Origin school is charter 0.133 0.080 0.130 0.259 0.371 0.230 0.357
Female 0.495 0.502 0.518 0.488 0.496 0.506 0.511
Race

Hispanic 0.594 0.593 0.633 0.667 0.713 0.636 0.711
Black 0.141 0.143 0.169 0.181 0.161 0.192 0.168
White 0.192 0.187 0.124 0.084 0.062 0.098 0.059
Asian 0.034 0.034 0.032 0.032 0.039 0.033 0.037

Gifted 0.171 0.213 0.192 0.159 0.152 0.165 0.149
Bilingual 0.039 0.026 0.033 0.038 0.042 0.032 0.037
Subsidized lunch 0.753 0.756 0.797 0.813 0.818 0.800 0.823
Limited English proficient 0.285 0.290 0.324 0.343 0.378 0.337 0.380
Special education 0.119 0.114 0.085 0.079 0.068 0.083 0.070

Baseline scores
Math 0.000 0.015 0.021 0.037 0.089 0.037 0.062
Reading 0.000 0.016 0.005 -0.011 0.007 0.008 -0.002
Writing 0.000 0.010 0.006 0.001 0.039 0.016 0.035

N 40,143 10,898 4,964 1,436 828 1,523 781
Notes: This table reports demographic characteristics of Denver 3rd-9th graders in 2011-2012, the baseline (and application) year. Column 1 includes all charter and non-
charter students. Column 2 restricts the sample to students who submitted an application to the SchoolChoice system for a seat in grades 4-10 at another DPS school in 
2012-2013. Column 3 reports values for students ranking any charter school. Columns 4-7 are restricted to applicants with propensity score values that are neither zero 
(i.e. ineligible for a seat) nor one (i.e. guaranteed a seat). Test scores are standardized to have mean zero and standard deviation one within each grade based on all 
Denver students.

Denver 
students

SchoolChoice 
applicants

Charter 
applicants



Table 4: Average covariate balance across 400 offer simulations
Propensity score controls

DA score (frequency) Simulated score
Non-offered 

mean No controls Linear Hundredths Saturated Linear Hundredths
Ten 

Thousandths
(1) (2) (3) (4) (5) (6) (7) (8)

A. Application covariates
Number of schools ranked 4.374 -0.340 0.112 0.067 0.054 0.018 0.017 0.001
Number of charter schools ranked 1.426 0.474 0.111 0.071 0.056 0.008 0.008 0.002
First school ranked is charter 0.290 0.617 0.005 0.005 0.002 0.001 0.001 -0.001

B. Baseline covariates
Origin school is charter 0.083 0.114 -0.020 -0.005 -0.002 -0.002 -0.002 0.000
Female 0.520 -0.007 0.004 0.005 0.005 0.004 0.003 0.000
Race

Hispanic 0.595 0.094 -0.010 -0.004 -0.005 0.003 0.001 0.001
Black 0.182 -0.031 0.005 0.001 0.002 -0.001 0.001 0.000

Gifted 0.200 -0.021 0.000 -0.001 -0.003 0.003 0.003 0.003
Bilingual 0.025 0.020 0.001 0.001 0.001 0.001 0.001 0.001
Subsidized lunch 0.767 0.074 0.004 0.003 0.003 0.003 0.000 0.000
Limited English proficient 0.289 0.085 -0.001 -0.002 -0.002 0.003 0.001 -0.002
Special education 0.087 -0.004 -0.004 -0.005 -0.004 0.000 -0.001 -0.001
Baseline scores

Math 0.017 0.010 -0.023 -0.019 -0.020 -0.003 -0.003 0.005
Reading 0.034 -0.071 -0.019 -0.017 -0.017 -0.005 -0.004 0.001
Writing 0.029 -0.056 -0.019 -0.016 -0.016 -0.002 -0.001 0.003

Average risk set points of support 87 39 47 1,148 51 120
Notes: This table shows the average of covariate balance coefficients across 400 charter offer simulations. We first simulate the real Denver mechanism 400 times and run the covariate balance 
regressions under each simulation. Coefficients are estimated from regressions of each variable on the left on an any-charter simulated offer dummy, controlling for the variables indicated in 
each column header. Only applicants to 2012-2013 charter seats in grades 4-10 who were enrolled in Denver at baseline grade are included. Test scores are standardized to have mean zero and 
standard deviation one within each grade based on all Denver students. Charter offer equals one if a student is accepted into any charter school, excluding alternative charters. Column 1 reports 
baseline characteristics of charter applicants who did not receive a charter offer. For columns 3 and 6, risk set points of support report the average number (across 400 offer simulations) of 
unique values in the support of the respective propensity scores. For columns 4-5 and 7-8, risk set points of support report the average number of cells (as defined by dummies for each value of 
the saturated score) with offer instrument variation. Coefficients in columns 3-8 control for the probability of assignment to a charter school according to different functional forms and 
probability computation methods, and exclude applicants with propensity score equal to zero (i.e. ineligible) or one (i.e. guaranteed). Controls in columns 4 and 7 are dummies for rounded 
values in the propensity score support, rounding to the hundredths. Controls in column 5 are dummies for every value in the propensity score support. Column 8  are dummies for rounded 
values of the simulated score, rounding to the ten thousandths.



Table 5: Average covariate balance by market size
DA score (frequency) controls (saturated)

No controls
Actual market 

size
Twice the market 

size
Four times the 

market size
Eight times the 

market size
(1) (2) (3) (4) (5)

Number of schools ranked -0.340 0.054 0.022 0.009 0.003
Number of charter schools ranked 0.474 0.056 0.019 0.006 -0.001
First school ranked is charter 0.617 0.002 0.001 0.001 0.001

Origin school is charter 0.114 -0.002 0.000 0.001 0.001
Female -0.007 0.005 0.001 0.000 0.000
Race

Hispanic 0.094 -0.005 0.001 0.003 0.003
Black -0.031 0.002 -0.002 -0.002 -0.001

Gifted -0.021 -0.003 -0.002 -0.002 -0.001
Bilingual 0.020 0.001 0.001 0.002 0.001
Subsidized lunch 0.074 0.003 0.002 0.000 0.000
Limited English proficient 0.085 -0.002 0.000 -0.001 -0.002
Special education -0.004 -0.004 -0.003 -0.003 -0.002
Baseline scores

Math 0.010 -0.020 -0.013 -0.010 -0.009
Reading -0.071 -0.017 -0.011 -0.007 -0.005
Writing -0.056 -0.016 -0.008 -0.006 -0.006

Average sample size 4,964 1,417 2,631 5,432 11058
Notes: This table shows the average of covariate balance coefficients across 400 charter offer simulations using replicas of students in the realized 
market to increase the market size. Coefficients are estimated from regressions of each variable on the left on an any-charter simulated offer dummy, 
controlling for the variables indicated in each column header. All estimates are based on a sample of charter applicants to grades 4 through 10 with 
probability of assignment into a charter school greater than zero and less than one. Average sample size reports the average number of students 
(across 400 offer simulations) with propensity score values that are neither zero (i.e. ineligible for a seat) nor one (i.e. guaranteed a seat), and whose 
DA score (frequency) control (saturated) cell has variation in instrument.



Table 6a: Application covariate balance
Propensity score controls

DA score (frequency) Simulated score

No controls Linear Hundredths Saturated Linear Hundredths
Ten 

Thousandths
(1) (2) (3) (4) (5) (6) (7) (8)

Number of schools ranked -0.341*** 0.097 0.059 0.028 0.014 0.001 -0.061 -0.015
(0.046) (0.103) (0.095) (0.094) (0.102) (0.095) (0.125) (0.042)

Number of charter schools ranked 0.476*** 0.143*** 0.100** 0.074 0.020 -0.017 0.009 0.007
(0.024) (0.052) (0.047) (0.047) (0.048) (0.043) (0.061) (0.010)

First school ranked is charter 0.612*** 0.012 0.002 -0.001 -0.030 -0.042* 0.012 0.000
(0.011) (0.025) (0.022) (0.020) (0.027) (0.022) (0.027) (0.000)

N 4,964 1,436 1,289 1,247 1,523 1,290 681 301

Risk set points of support 88 40 47 1,148 51 126 61

Robust F-test for joint significance 1189.785 2.699 1.699 1.091 0.492 1.259 0.311 0.343
p-value 0.000 0.044 0.165 0.352 0.688 0.287 0.817 0.710

Full applicant 
type controls

Notes: This table reports coefficients from regressions of the application characteristics on each row on an any-charter school offer receivership dummy. Only applicants to 2012-2013 charter seats in 
grades 4-10 who were enrolled in Denver at baseline grade are included. Columns 1-7 are as defined in Table 3. Column 8 controls for fully saturated applicant types (that is, unique combinations of 
applicant preferences over school programs and school priorities in those programs). Robust standard errors are reported in parentheses. P-values for robust joint significance tests are estimated by 
stacking outcomes and clustering standard errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%



Table 6b: Baseline covariate balance
Propensity score controls

DA score (frequency) Simulated score

No controls Linear Hundredths Saturated Linear Hundredths
Ten 

Thousandths
(1) (2) (3) (4) (5) (6) (7)

Origin school is charter 0.108*** -0.051** -0.037** -0.029* -0.039* -0.036** -0.037*
(0.010) (0.024) (0.017) (0.017) (0.023) (0.017) (0.022)

Female -0.005 0.024 0.021 0.019 0.016 0.030 0.010
(0.014) (0.034) (0.034) (0.034) (0.033) (0.034) (0.054)

Race
Hispanic 0.095*** -0.022 -0.013 -0.007 0.005 -0.001 -0.018

(0.014) (0.031) (0.028) (0.028) (0.031) (0.029) (0.042)
Black -0.033*** -0.002 -0.005 -0.007 -0.012 -0.012 0.011

(0.011) (0.026) (0.025) (0.025) (0.026) (0.026) (0.039)

Gifted -0.028** -0.026 -0.028 -0.030 -0.032 -0.035 -0.037
(0.011) (0.026) (0.026) (0.026) (0.025) (0.026) (0.042)

Bilingual 0.023*** 0.016 0.014 0.015 0.012 0.014 0.011
(0.005) (0.014) (0.013) (0.014) (0.014) (0.014) (0.021)

Subsidized lunch 0.073*** -0.003 -0.004 0.001 0.001 -0.005 0.024
(0.011) (0.027) (0.025) (0.025) (0.027) (0.026) (0.037)

Limited English proficient 0.086*** -0.002 -0.002 0.001 0.011 0.001 0.004
(0.014) (0.032) (0.032) (0.032) (0.032) (0.032) (0.053)

Special education 0.004 0.034** 0.032* 0.032* 0.043** 0.044** 0.035
(0.008) (0.017) (0.017) (0.017) (0.017) (0.018) (0.028)

N 4,964 1,436 1,289 1,247 1,523 1,290 681
Baseline scores

Math -0.002 -0.087 -0.083 -0.082 -0.068 -0.078 -0.053
(0.027) (0.061) (0.060) (0.061) (0.061) (0.061) (0.094)

Reading -0.085*** -0.096* -0.100* -0.108* -0.081 -0.086 -0.070
(0.026) (0.057) (0.056) (0.056) (0.056) (0.056) (0.087)

Writing -0.072*** -0.097* -0.096* -0.101* -0.085 -0.094* -0.053
(0.026) (0.056) (0.054) (0.055) (0.055) (0.054) (0.083)

N 4,889 1,420 1,275 1,234 1,504 1,275 675

Robust F-test for joint significance 19.139 1.199 1.133 0.992 1.041 1.351 0.709
p-value 0.000 0.278 0.329 0.454 0.408 0.183 0.743

Notes: This table reports coefficients from regressions of the baseline characteristics on each row on an any-charter school offer receivership dummy. Only applicants to 2012-2013 
charter seats in grades 4-10 who were enrolled in Denver at baseline grade are included. Test scores are standardized to have mean zero and standard deviation one within each 
grade based on all Denver students. Columns 1-7 are as defined in Table 3.  Robust standard errors are reported in parentheses. P-values for robust joint significance tests are 
estimated by stacking outcomes and clustering standard errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%



Table 7: DPS Charter attendance effects on standardized scores

DA score

(1) (2) (3) (4) (5) (6)
A. Elementary and middle school

First stage 0.442*** 0.422*** 0.425*** 0.688***
(0.038) (0.038) (0.039) (0.014)

Math 0.525*** 0.527*** 0.559*** 0.329*** 0.302*** 0.347***
(0.077) (0.080) (0.081) (0.023) (0.016) (0.037)

Reading 0.163** 0.098 0.094 0.133*** 0.134*** 0.125***
(0.074) (0.077) (0.077) (0.023) (0.016) (0.035)

Writing 0.386*** 0.356*** 0.348*** 0.221*** 0.204*** 0.254***
(0.088) (0.092) (0.090) (0.027) (0.018) (0.045)

N 705 708 732 2,991 2,991 705

B. High school
First stage 0.342*** 0.308*** 0.311*** 0.673***

(0.054) (0.056) (0.056) (0.026)

Math 0.456*** 0.509*** 0.510*** 0.241*** 0.312*** 0.478***
(0.160) (0.187) (0.193) (0.046) (0.033) (0.078)

Reading 0.055 0.157 0.044 -0.002 0.010 0.009
(0.130) (0.152) (0.151) (0.039) (0.027) (0.053)

Writing 0.114 0.281* 0.181 0.083** 0.099*** 0.042
(0.147) (0.161) (0.160) (0.041) (0.029) (0.060)

N 397 375 405 1,326 1,326 397
Notes: This table reports 2SLS and OLS estimates of charter attendance effects on 2012-2013 TCAP scores of Denver 4th-8th graders (panel A) 
and 9th-10th graders (panel B) using the SchoolChoice any-charter offer instrument. Test scores are standardized to have mean zero and standard 
deviation one within each grade based on all Denver students. Column 6 estimates OLS using DA score (frequency) controls (saturated). Columns 
1-6 control for grade tested, gender, origin school charter status, race, gifted status, bilingual status, subsidized price lunch eligibility, special 
education, limited English proficient status, and test scores at baseline. Robust standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%
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Table 8: Other IV strategies
Charter attendance effect

(1) (2) (3) (4) (5)
A. First stage estimates

1.000 0.774*** 0.476***
-- (0.026) (0.024)

0.410*** 0.323*** 0.178***
(0.031) (0.035) (0.027)

B. 2SLS estimates
Math 0.496*** 0.596*** 0.409***

(0.071) (0.102) (0.149) 2.0 4.4

Reading 0.127** 0.227** 0.229
(0.065) (0.102) (0.144) 2.5 4.9

Writing 0.325*** 0.333*** 0.505***
(0.077) (0.119) (0.162) 2.4 4.5

N (students) 1,102 1,125 1,969
N (schools) 30 15 24

Notes:  This table compares 2SLS attendance effects on 2012-2013 TCAP scores of Denver 4th-10th graders estimated using DA score (frequency) 
controls (saturated) to other IV strategies. First stage for charter offers reports the regression coefficient of the any-charter offer dummy (the instrument 
used in column 1) on other instruments, conditioning on the same controls used in the corresponding first stage estimates for charter enrollment. Column 
2 reports charter attendance effects using a first-choice charter offer instrument. Column 3 reports charter attendance effects using an any-charter 
qualification instrument. Columns 2 and 3 control for risk sets making the first-choice and qualification instruments conditionally random; see the main 
text for details. Columns 2 and 3 exclude 10th graders because there were no 10th grade applicants in risk sets with variation in either first choice offer 
or any-charter qualification. Test scores are standardized to have mean zero and standard deviation one within each grade based on all Denver students. 
Columns 4 and 5 report the multiples of the first-choice offer sample size and qualification sample size needed, respectively, in order to achieve a 
precision gain equivalent to the gain from using the any-charter offer instrument, and is calculated as one minus the square of ratio of the standard error 
in column 3 to the standard error in column 1. Coefficients in columns 1-3 control for grade tested, gender, origin school charter status, race, gifted 
status, subsidized price lunch eligibility, special education, bilingual status, limited English proficient status, and test scores at baseline. The last row 
counts the number of schools for which we observe in-sample variation in the assignment to each school conditional on the cell controls included in the 
model.
*significant at 10%; **significant at 5%; ***significant at 1%
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Table 9: Enrollment destinies among charter applicants
Charter applicants with DA score (frequency) in (0,1)

All charter applicants All applicants Compliers
No charter offer

(Z = 0)
Charter offer

(Z = 1)
Non-offered 

mean
First stage 

+ col 3
No charter offer

(Z = 0)
Charter offer

(Z = 1)
(1) (2) (3) (4) (5) (6)

A. Elementary and middle school
Enrolled in a study charter 0.178 0.868 0.359 0.801 -- 1.000
         … in a traditional public 0.394 0.078 0.317 0.036 0.636 --
         … in an innovation school 0.219 0.024 0.178 0.086 0.208 --
         … in a magnet school 0.180 0.024 0.108 0.070 0.085 --
         … in an alternative school 0.008 0.003 0.006 0.006 0.002 --
         … in a contract school 0.019 0.004 0.029 0.000 0.064 --
         … in a non-study charter 0.001 0.000 0.003 0.001 0.005 --

N 1,631 1,397 315 705 -- --

B. High school
Enrolled in a study charter 0.091 0.858 0.328 0.670 -- 1.000
         … in a traditional public 0.423 0.092 0.153 0.107 0.134 --
         … in an innovation school 0.261 0.021 0.350 0.123 0.663 --
         … in a magnet school 0.213 0.014 0.131 0.095 0.104 --
         … in an alternative school 0.010 0.014 0.038 0.004 0.101 --
         … in a contract school 0.000 0.002 0.000 0.001 0.000 --

N 924 436 183 397 -- --
Notes: This table describes school enrollment for charter applicants. The sample in this table is identical to that in Table 6. Columns 1-2 describe enrollment for 
applicants with a charter offer (Z=1) and without a charter offer (Z=0) across all charter applicants, while columns 3-4 and 5-6 show the same for applicants with 
DA score (frequency) greater than zero and less than one, and for compliers, respectively. Columns 3-6 are restricted to applicants whose DA score (frequency) 
control (saturated) cells have variation in charter offer. Column 4 adds the non-offered mean in column 3 to the first stage estimate of a regression of a dummy for 
each school type on the left on an any-charter offer dummy, conditional on the same DA score (frequency) controls and demographic controls as used to construct 
the estimates in Table 6. School classification is conducted at the grade level, since some schools run magnet programs for a subset of grades served only. 
Innovation and magnet schools are managed by DPS. Innovation schools design and implement innovative practices to improve student outcomes. Magnet schools 
serve students with particular styles of learning. Alternative schools include "intensive pathways" and "multiple pathways" schools. The former serve students 
struggling with academics, behavior, attendance, or other factors that may prevent them from succeeding in a traditional school environment; the latter offer faster 
pathways toward high school graduation, such as GED preparation and technical education. Non-study charter corresponds to Northeast Academy, a K-8 school 
that was not included in the SchoolChoice mechanism and closed in May 2013. Contract school corresponds to Escuela Tlatelolco, a private school contracted to 
serve DPS students. Complier means are estimated by 2SLS following Abadie (2002), using the same DA score (frequency) controls and demographic controls as 
used to construct the estimates in Table 6. The coefficient for contract school in column 5 was rounded down to zero from -0.002.



Table 10: DPS charter and innovation school attendance effects
DA score (frequency) controls (saturated) Simulated score controls (hundredths)

Both dummies Both dummies

(1) (2) (3) (4) (5) (6) (7) (8)

Charter First Stage 0.410*** -- 0.405*** 0.398*** 0.377*** -- 0.437*** 0.417***
(0.031) -- (0.034) (0.035) (0.032) -- (0.032) (0.035)

Innovation First Stage -- 0.348*** 0.347*** 0.348*** -- 0.345*** 0.301*** 0.300***
-- (0.042) (0.042) (0.044) -- (0.041) (0.040) (0.043)

A. Math
Charter 0.496*** -- 0.534*** 0.517*** 0.543*** -- 0.618*** 0.550***

(0.071) -- (0.077) (0.082) (0.079) -- (0.073) (0.082)

Innovation -- -0.035 0.177 0.286* -- -0.180 0.199 0.146
-- (0.136) (0.134) (0.147) -- (0.137) (0.159) (0.174)

B. Reading
Charter 0.127** -- 0.076 0.072 0.106 -- 0.105 0.089

(0.065) -- (0.078) (0.084) (0.071) -- (0.075) (0.085)

Innovation -- -0.285** -0.231 -0.190 -- -0.203 -0.074 -0.162
-- (0.141) (0.153) (0.165) -- (0.136) (0.161) (0.185)

C. Writing
Charter 0.325*** -- 0.357*** 0.334*** 0.324*** -- 0.348*** 0.393***

(0.077) -- (0.087) (0.094) (0.080) -- (0.079) (0.087)

Innovation -- -0.119 0.115 0.052 -- -0.057 0.063 0.004
-- (0.136) (0.148) (0.156) -- (0.132) (0.153) (0.167)

N 1,102 546 1,418 1,274 1,137 613 1,583 1,274
Notes: This table reports 2SLS estimates of charter and innovation attendance effects on 2012-2013 TCAP scores of Denver 4th-10th graders. Columns 1 and 5 use the any-charter offer 
instrument and condition on charter-specific DA score (frequency) controls (saturated). Columns 2 and 6 use the any-innovation offer instrument and condition on innovation-specific 
saturated score controls. Columns 3 and 7 report coefficients from a two-endogenous, two-instrument 2SLS model for the attendance effects of charters and innovations, conditioning 
additively on charter-specific and innovation-specific saturated score controls. Columns 4 and 8 present similar estimates, but conditioning on interactions of charter-specific and 
innovation-specific saturated score controls ("joint score controls"). Test scores are standardized to have mean zero and standard deviation one within each grade based on all Denver 
students. All columns control for grade tested, gender, origin school charter and innovation statuses, race, gifted status, bilingual status, subsidized price lunch eligibility, special 
education, limited English proficient status, and test scores at baseline. Robust standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%
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A Theory Appendix

A.1 Defining DA: Details

Our general formulation defines the DA allocation as determined by cutoffs found in the limit of
a sequence. Recall that these cutoffs evolve according to

ct+1
s =

{
K + 1 if F (Qs(c

t)) < qs,

max
{
x ∈ [0,K + 1] | F ({i ∈ Qs(c

t) such that πis ≤ x}) ≤ qs
}

otherwise,

where Qs(c
t) is the demand for seats at school s for a given vector of cutoffs ct and is defined as

Qs(c
t) = {i ∈ I | πis ≤ cts and s ≻i s̃ for all s̃ ∈ S such that πis̃ ≤ cts̃}.

The following result confirms that these limiting cutoffs exist, i.e., that the sequence ct converges.

Proposition 1. Consider an economy described by a distribution of students F and school capac-
ities as defined in Section 3.1. Construct a sequence of cutoffs, cts, for this economy as described
above. Then, limt→∞ cts exists.

Proof. cts is well-defined for all t ≥ 1 and all s ∈ S since it is either K + 1 or the maximizer of
a continuous function over a compact set. We will show by induction that {cts} is a decreasing
sequence for all s.

For the base case, c2s ≤ c1s for all s since c1s = K + 1 and c2s ≤ K + 1 by construction.
For the inductive step, suppose that cts ≤ ct−1

s for all s and all t = 1, ..., T. For each s, if
cTs = K + 1, then cT+1

s ≤ cTs since cts ≤ K + 1 for all t by construction. Otherwise, suppose to
the contrary that cT+1

s > cTs . Since cTs < K + 1, F ({i ∈ Qs(c
T−1) such that πis ≤ cTs }) = qs.

Then,

F ({i ∈ Qs(c
T ) such that πis ≤ cT+1

s })
= F ({i ∈ Qs(c

T ) such that πis ≤ cTs }) + F ({i ∈ Qs(c
T ) such that cTs < πis ≤ cT+1

s })
≥ F ({i ∈ Qs(c

T−1) such that πis ≤ cTs }) + F ({i ∈ Qs(c
T ) such that cTs < πis ≤ cT+1

s }) (12)

≥ qs + F ({i ∈ Qs(c
T ) such that cTs < πis ≤ cT+1

s }) (13)

> qs. (14)

Expression (12) follows because

{i ∈ Qs(c
T ) such that πis ≤ cTs }

= {i ∈ I | πis ≤ cTs and s ≻i s̃ for all s̃ ∈ S such that πis̃ ≤ cTs̃ }
⊇ {i ∈ I | πis ≤ cTs and s ≻i s̃ for all s̃ ∈ S such that πis̃ ≤ cT−1

s̃ } (by cTs̃ ≤ cT−1
s̃ )

= {i ∈ Qs(c
T−1) such that πis ≤ cTs }.

Expression (13) follows by the inductive assumption and since cTs < K + 1.
Expression (14) follows since if F ({i ∈ Qs(c

T ) such that cTs < πis ≤ cT+1
s }) = 0, then

F ({i ∈ Qs(c
T−1) such that πis ≤ cT+1

s }) = F ({i ∈ Qs(c
T−1) such that πis ≤ cTs }) ≤ qs,
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while cT+1
s > cTs , contradicting the definition of cTs .

Expression (14) contradicts the definition of cT+1 since the cutoff at step T + 1 results in
an allocation that exceeds the capacity of school s. This therefore establishes the inductive step
that cT+1

s ≤ cTs .
To complete the proof of the proposition, observe that since {cts} is a decreasing sequence in

the compact interval [0,K + 1], cts converges by the monotone convergence theorem.

Note that this result applies to the cutoffs for both finite and continuum economies. In finite
markets, at convergence, these cutoffs produce the allocation we get from the usual definition of
DA (e.g., as in Gale and Shapley (1962)). This can be seen by noting that

max{x ∈ [0,K + 1] | F ({i ∈ Qs(c
t) such that πis ≤ x}) ≤ qs}

= max{x ∈ [0,K + 1] | |{j ∈ Qs(c
t) : πjs ≤ x}| ≤ ks},

implying that the tentative cutoff at school s in step t in our DA formulation, which is determined
by the left hand side of this equality, is the same as that in Gale and Shapley (1962)’s DA
formulation, which is determined by the right hand side of the equality. Our DA formulation
and the Gale and Shapley (1962) formulation therefore produce the same cutoff at each step.
This also implies that, in finite markets, our DA cutoffs are found in a finite number of iterations,
since DA as described by Gale and Shapley (1962) converges in a finite number of steps.

A.2 Proof of Theorem 1

Admissions cutoffs c in a continuum economy are invariant to lottery outcomes (ri): DA in the
continuum depends on (ri) only through F (I0) for sets I0 = {i ∈ I | θi ∈ Θ0} with various choices
of Θ0. In particular, F (I0) doesn’t depend on lottery realizations. Likewise, marginal priority
ρs̃ is uniquely determined for every school s̃.

Consider the propensity score for school s. If student i does not rank s, i.e. θi ∈ (Θ\Θs),

then he is not assigned s. Every student of type θ ∈ Θ−
s is either assigned a school that he ranks

higher than s because ρθs̃ < ρs̃ for some s̃ ∈ Bθs or is not assigned s because ρθs > ρs. Therefore
ps(θ) = 0 for every θ ∈ Θ−

s ∪ (Θ\Θs).

Students of type θ ∈ Θ∗
s ∪ Θ+

s may be assigned s̃ ∈ Mθs. The ratio of type θ students that
are assigned some s̃ ∈ Mθs is given by MIDθs̃ since lottery numbers are distributed uniformly
randomly, an assumption that we will use repeatedly in this proof without referring to it. In other
words, the probability of not being assigned any s̃ ∈ Mθs for a type θ students is 1 − MIDθs.

Every student of type θ ∈ Θ+
s who is not assigned a higher choice is assigned s because ρθs < ρs,

and therefore
ps(θ) = (1−MIDθs) for all θ ∈ Θ+

s .

Finally, consider students of type θ ∈ Θ∗
s who are not assigned a higher choice. The fraction

of students θ ∈ Θ∗
s who are not assigned a higher choice is 1−MIDθs. Also, the random numbers

of these students is larger than MIDθs. If τs < MIDθs, then no such student is assigned s. If
τs ≥ MIDθs, then the ratio of students that are assigned s within this set is given by τs−MIDθs

1−MIDθs
.
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Hence, conditional on θ ∈ Θ∗
s and not being assigned a choice higher than s, the probability of

being assigned s is given by max{0, τs−MIDθs
1−MIDθs

}. Therefore,

ps(θ) = (1−MIDθs)×max

{
0,

τs −MIDθs

1−MIDθs

}
for all θ ∈ Θ∗

s.

A.3 Proof of Theorem 2

We complete the proof of Theorem 2 in Section 3.3 by proving the following two intermediate
results.

Lemma 1. (Cutoff almost sure convergence) ĉn
a.s.−→ c.

Lemma 2. (Propensity score almost sure convergence) For all θ ∈ Θ and s ∈ S, pns(θ)
a.s.−→ ps(θ).

A.3.1 Proof of Lemma 1

We use the Extended Continuous Mapping Theorem (Theorem 19.1 in van der Vaart (2000))
to prove the lemma. We first show deterministic convergence of cutoffs in order to verify the
assumptions of the theorem.

Modify the definition of F to describe the distribution of lottery numbers as well types: For
any set of student types Θ0 ⊂ Θ and for any numbers r0, r1 ∈ [0, 1] with r0 < r1, define the set
of students of types in Θ0 with random numbers worse than r0 and better than r1 as

I(Θ0, r0, r1) = {i ∈ I | θi ∈ Θ0, r0 < ri ≤ r1}. (15)

In a continuum economy,

F (I(Θ0, r0, r1)) = E[1{θi ∈ Θ0}]× (r1 − r0),

where the expectation is assumed to exist. In a finite economy with n students,

F (I(Θ0, r0, r1)) =
|I(Θ0, r0, r1)|

n
.

Let F be the set of possible F ’s defined above. For any two distributions F and F ′, the supnorm
metric is defined by

d(F, F ′) = sup
Θ0⊂Θ,r0,r1∈[0,1]

|F (I(Θ0, r0, r1))− F ′(I(Θ0, r0, r1))|.

The notation is otherwise as in the text.

Proof. Consider a sequence of economies described by a sequence of distributions {fn} over
students, together with associated school capacities, so that for all n, fn ∈ F is a potential
realization produced by randomly drawing n students and their lottery numbers from F . Assume
that fn → F in metric space (F , d). Let cn denote the admissions cutoffs in fn. Note the cn is
constant because this is the cutoff for a particular realized economy fn.

The proof first shows deterministic convergence of cutoffs for any convergent subsequence
of fn. Let {f̃n} be a subsequence of realized economies {fn}. The corresponding cutoffs are
denoted {c̃n}. Let c̃ ≡ (c̃s) be the limit of c̃n. The following two claims establish that c̃n → c,
the cutoff associated with F .
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Claim 1. c̃s ≥ cs for every s ∈ S.

Proof of Claim 1. This is proved by contradiction in 3 steps. Suppose to the contrary that
c̃s < cs for some s. Let S′ ⊂ S be the set of schools the cutoffs of which are strictly lower
under c̃. For any s ∈ S′, define Isn = {i ∈ I|c̃ns < πis ≤ cs and i ranks s first} where I is the
set of students in F , which contains the set of students in fn for all n. In other words, Isn
are the set of students ranking school s first who have a student rank in between c̃ns and cs.

Step (a): We first show that for our subsequence, when the market is large enough, there
must be some students who are in Isn. That is, there exists N such that for any n > N , we
have f̃n(I

s
n) > 0 for all s ∈ S′.

To see this, we begin by showing that for all s ∈ S′, there exists N such that for any n > N ,
we have F (Isn) > 0. Suppose, to the contrary, that there exists s ∈ S′ such that for all N ,
there exists n > N such that F (Isn) = 0. When we consider the subsequence of realized
economies {f̃n}, we find that

f̃n({i ∈ Qs(cn) such that πis ≤ cs})
= f̃n({i ∈ Qs(cn) such that πis ≤ c̃ns}) + f̃n({i ∈ Qs(cn) such that c̃ns < πis ≤ cs})
= f̃n({i ∈ Qs(cn) such that πis ≤ c̃ns}) (16)

≤ qs. (17)

Expression (16) follows from Assumption 1 by the following reason. (16) does not hold, i.e.,
f̃n({i ∈ Qs(cn) such that c̃ns < πis ≤ cs}) > 0 only if F ({i ∈ I|c̃ns < πis ≤ cs}) > 0.
This and Assumption 1 imply F ({i ∈ I|c̃ns < πis ≤ cs and i ranks s first}) ≡ F (Isn) > 0, a
contradiction to F (Isn) = 0. Since f̃n is realized as n iid samples from F , f̃n({i ∈ I|c̃ns <

πis ≤ cs}) = 0. Expression (17) follows by our definition of DA, which can never assign more
students to a school than its capacity for each of the n samples. We obtain our contradiction
since c̃ns is not maximal at s in f̃n since expression (17) means it is possible to increase the
cutoff c̃ns to cs without violating the capacity constraint.

Given that we’ve just shown that for each s ∈ S′, F (Isn) > 0 for some n, it is possible to
find an n such that F (Isn) > ϵ > 0. Since fn → F and so f̃n → F , there exists N such
that for all n > N , we have f̃n(I

s
n) > F (Isn) − ϵ > 0. Since the number of schools is fi-

nite, such N can be taken uniformly over all s ∈ S. This completes the argument for Step (a).

Step (a) allows us to find some N such that for any n > N , f̃n(Isn) > 0 for all s′ ∈ S′. Let
s̃n ∈ S and t be such that c̃t−1

ns ≥ cs for all s ∈ S and c̃tns̃n < cs̃n . That is, s̃n is one of the
first schools the cutoff of which falls strictly below cs̃n under the DA algorithm in f̃n, which
happens in round t of the DA algorithm. Such s̃n and t exist since the choice of n guarantees
f̃n(I

s
n) > 0 and so c̃ns < cs for all s ∈ S′.
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Step (b): We next show that there exist infinitely many values of n such that the associated
s̃n is in S′ and f̃n(I

s
n) > 0 for all s ∈ S′. It is because otherwise, by Step (a), there exists N

such that for all n > N , we have s̃n ̸∈ S′. Since there are only finitely many schools, {s̃n}
has a subsequence {s̃m} such that s̃m is the same school outside S′ for all m. By definition
of s̃n, c̃ms̃m ≤ c̃tms̃m

< cs̃m for all m and so c̃s̃m < cs̃m , a contradiction to s̃m ̸∈ S′. Therefore,
we have our desired conclusion of Step (b).

Fix some n such that the associated s̃n is in S′ and f̃n(l
s
n) > 0 for all s ∈ S′. Step (b)

guarantees that such n exists. Let Ãns̃n and As̃n be the sets of students assigned s̃n under
f̃n and F, respectively. All students in I s̃nn are assigned s̃n in F and rejected by s̃n in f̃n.

Since these students rank s̃n first, there must exist a positive measure (with respect to f̃n)
of students outside I s̃nn who are assigned s̃n in f̃n and some other school in F ; denote the set
of them by Ãns̃n\As̃n . f̃n(Ãns̃n\As̃n) > 0 since otherwise, for any n such that Step (b) applies,

f̃n(Ãns̃n) ≤ f̃n(As̃n \ I s̃nn ) = f̃n(As̃n)− f̃n(I
s̃n
n ),

which by Step (a) converges to something strictly smaller than F (As̃n) since
f̃n(As̃n) → F (As̃n) and f̃n(I

s̃n
n ) > 0 for all large enough n by Step (a). Note that

F (As̃n) is weakly smaller than qs̃n . This implies that for large enough n, f̃n(Ãns̃n) < qs̃n , a
contradiction to Ãns̃n ’s being the set of students assigned s̃n at a cutoff strictly smaller than
the largest possible value K + 1. For each i ∈ Ãns̃n \ As̃n , let si be the school to which i is
assigned under F .

Step (c): To complete the argument for Claim 1, we show that some i ∈ Ãns̃n \ As̃n must
have been rejected by si in some step t̃ ≤ t − 1 of the DA algorithm in f̃n. That is, there
exists i ∈ Ãns̃n \As̃n and t̃ ≤ t− 1 such that πisi > c̃t̃nsi . Suppose to the contrary that for all
i ∈ Ãns̃n \ As̃n and t̃ ≤ t − 1, we have πisi ≤ c̃t̃nsi . Each such student i must prefer si to s̃n
because i is assigned si ̸= s̃n under F though πis̃n ≤ c̃ns̃n < cs̃n , where the first inequality
holds because i is assigned s̃n in F̃n while the second inequality does because s̃n ∈ S′. This
implies none of Ãns̃n \As̃n is rejected by si, applies for s̃, and contributes to decreasing c̃tns̃n
at least until step t and so c̃tns̃n < cs̃n cannot be the case, a contradiction. Therefore, we
have our desired conclusion of Step (c).

Claim 1 can now be established by showing that Step (c) implies there are i ∈ Ãns̃n \ As̃n

and t̃ ≤ t − 1 such that πisi > c̃t̃nsi ≥ c̃nsi , where the last inequality is implies by the fact
that in every economy, for all s ∈ S and t ≥ 0, we have ct+1

s ≤ cts. Also, they are assigned si
in F so that πisi ≤ csi . These imply csi > c̃t̃nsi ≥ c̃nsi . That is, the cutoff of si falls below csi
in step t̃ ≤ t− 1 < t of the DA algorithm in f̃n. This contradicts the definition of s̃n and t.

Therefore c̃s ≥ cs for all s ∈ S, as desired.

Claim 2. By a similar argument, c̃s ≤ cs for every s ∈ S.

Since c̃s ≥ cs and c̃s ≤ cs for all s, it must be the case that c̃n → c. The following claim uses
this to show that cn → c.

Claim 3. If c̃n → c for every convergent subsequence {c̃n} of {cn}, then cn → c.
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Proof of Claim 3. Since {cn} is bounded in [0,K + 1]|S|, it has a convergent subsequence
by the Bolzano-Weierstrass theorem. Suppose to the contrary that for every convergent
subsequence {c̃n}, we have c̃n → c, but cn ̸→ c. Then there exists ϵ > 0 such that for all
k > 0, there exists nk > k such that ||cnk

− c|| ≥ ϵ. Then the subsequence {cnk
}k ⊂ {cn}

has a convergent subsequence that does not converge to c (since ||cnk
− c|| ≥ ϵ for all k),

which contradicts the supposition that every convergent subsequence of {cn} converges to
c.

The last step in the proof of Lemma 1 relates this fact to stochastic convergence.

Claim 4. cn → c implies ĉn
a.s.−→ c

Proof of Claim 4. This proof is based on two off-the-shelf asymptotic results from mathe-
matical statics. First, let Fn be the distribution over I(Θ0, r0, r1)’s generated by randomly
drawing n students from F . Note that Fn is random since is involves randomly drawing n

students. Fn
a.s.→ F by the Glivenko-Cantelli theorem (Theorem 19.1 in van der Vaart (2000)).

Next, since Fn
a.s.→ F and cn → c, the Extended Continuous Mapping Theorem (Theorem

18.11 in van der Vaart (2000)) implies that ĉn
a.s.−→ c, completing the proof of Lemma 1.

A.3.2 Proof of Lemma 2

Proof. We use the Extended Continuous Mapping Theorem to prove Lemma 2. Consider any
sequence of economies {fn} such that fn ∈ F for all n and fn → F in the (F , d) metric space.
With a slight abuse of notation, let pns(θ) be the propensity score in fn; pns(θ) is deterministic
because it is the propensity score for a particular economy fn. For Lemma 2, it is enough to show
pns(θ) −→ ps(θ): To see this, let Fn be the distribution over I(Θ0, r0, r1)’s induced by randomly
drawing n students from F . Note that Fn is random. Fn

a.s.→ F by the Glivenko-Cantelli theorem
(Theorem 19.1 in van der Vaart (2000)). Fn

a.s.→ F and pns(θ) → ps(θ) allow us to apply the
Extended Continuous Mapping Theorem (Theorem 18.11 in van der Vaart (2000)) to obtain
p̃ns(θ)

a.s.−→ ps(θ).
We prove the desired convergence pns(θ) −→ ps(θ) as follows. Let c̃ns and c̃ns′ be the random

cutoffs at s and s′, respectively, in fn, and

τθs ≡ cs − ρθs,
τθs− ≡ maxs′≻θs{cs′ − ρθs′},
τ̃nθs ≡ c̃ns − ρθs, and
τ̃nθs− ≡ maxs′≻θs{c̃ns′ − ρθs′}.

We can express ps(θ) and pns(θ) as follows.

ps(θ) = max{0, τθs − τθs−}
pns(θ) = Pn(τ̃nθs ≥ R > τ̃nθs−)

where Pn is the probability induced by randomly drawing lottery numbers given fn, and R is any
type θ student’s random lottery number distributed according to U [0, 1]. By Lemma 1, there
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exists event Ω1 with Pr(ω ∈ Ω1) = 1 in the underlying probability space such that for all ω ∈ Ω1

and all ϵ1 > 0, there exists N1 such that for all n > N1,

|c̃ns′(ω)− cs′ | < ϵ1 for all s′,

which implies

|τ̃nθs−(ω)− τθs− |
(where τ̃nθs−(ω) is the realization of τ̃nθs− under ω)
=|{c̃ns1(ω)− ρθs1} − {cs2 − ρθs2}|
(where s1 ≡ argmaxs′≻θs{c̃ns′(ω)− ρθs′} and s2 ≡ argmax{cs′ − ρθs′}|)

<

{
|{c̃ns1(ω)− ρθs1} − ({c̃ns1(ω)− ρθs2}+ ϵ1)| if cs2 − ρθs2 ≥ c̃ns1(ω)− ρθs1

|{c̃ns1(ω)− ρθs1} − ({c̃ns1(ω)− ρθs2} − ϵ1)| if cs2 − ρθs2 < c̃ns1(ω)− ρθs1
= ϵ1

where the inequality is by |c̃ns′(ω)− cs′ | < ϵ1 for all s′. For all ϵ > 0, the above argument with
setting ϵ1 < ϵ/2 implies that there exists N such that for all n > N ,

pns(θ)

= Pn(τ̃nθs ≥ R > τ̃nθs−})
= Pn(τ̃nθs ≥ R > τ̃nθs− |ω ∈ Ω1)

∈ (max{0, τθs − τθs− − ϵ,max{0, τθs − τθs− + ϵ)

∈ (ps(θ)− ϵ, ps(θ) + ϵ),

where the second-to-last inclusion is because for any ω ∈ Ω1, there exists N such that for
all n > N such that |τ̃nθs(ω) − τθs|, |τ̃nθs−(ω) − τθs− | < ϵ1 and R ∼ U [0, 1]. This means
pns(θ) −→ ps(θ), thus completing the proof of Lemma 2.

A.4 Qualification Instrument: Details

Proposition 3. In any continuum economy, Dq
i is independent of type θi conditional on Q(θi),

where Dq
i and Q(θi) are the qualification instrument and the associated risk set (conditioning

variable), respectively, defined in section 4.5.

Proof. The key to this argument is that school cutoffs, cs, are constant any continuum economy
(though not in general finite economies). We therefore have that

Pr(Dq
i = 1|θi = θ)

= Pr(πis ≤ cs for some charter s ranked by i|θi = θ)

= Pr(ρis + ri ≤ cs for some charter s ranked by i|θi = θ)

= Pr(ri ≤ cs − ρis for some charter s ranked by i|θi = θ)

= Pr(ri ≤ maxs ranked by i(cs − ρis)|θi = θ)
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= maxs ranked by i(cs − ρis ),

which depends on θi only through Q(θi).

A.5 Extension to the General Lottery Structure

While section 3 assumes a student has a single lottery number common to all schools, some cities
such as Washington DC, New Orleans, and Amsterdam (see, for example, de Haan et al. (2015))
use a distinct student lottery number for each school. In this section, we extend our theory to
the case with multiple tie breakers.

Let a random variable Ris denote student i’s lottery number at school s. The only assumption
we need is that Ris is iid according to U [0, 1] across students within each school. Schools may use
independent lotteries and a student’s lottery numbers at different schools may be independent.
This setting allows not only for the single tie breaker we consider in section 3 but also for any
multiple tie breaker, i.e., a lottery structure where Ris ̸= Ris′ for some s, s′ ∈ S and i ∈ I.

Partition Mθs into disjoint sets M1
θs, ...,M

m̄
θs such that (1) if s′, s′′ ∈ Mm

θs for some m, then
s′ and s′′ use the same lottery and (2) for any m′ ̸= m′′, s′ ∈ Mm′

θs and s′′ ∈ Mm′′
θs , s and s′

use different lotteries. Partition Bθs in the same way so that Mm
θs ⊂ Bm

θs for all m. Here, m̄
denotes the number of distinct lotteries to which a student might be exposed. When each school
conducts its own lottery, m̄ simply equals the number of schools a student ranks ahead of s.
Define the most informative disqualification cutoff within Mm

θs as

MIDm
θs ≡


1 if cs′ = K + 1 for some s′ ∈ Bm

θs,

max{τs̃ | s̃ ∈ Mm
θs} if cs′ < K + 1 for all s′ ∈ Bm

θs and Mm
θs ̸= ∅,

0 otherwise.

Define Mm∗
θs ≡ {s̃ ∈ Mθs : ρs̃ = ρθs̃, s and s̃ use the same lottery}, Bm∗

θs ≡ {s̃ ∈ Bθs : s and s̃

use the same lottery}, and the most informative disqualification cutoff within Mm∗
θs as

MIDm∗
θs ≡


1 if cs′ = K + 1 for some s′ ∈ Bm∗

θs ,

max{τs̃ | s̃ ∈ Mm∗
θs } if cs′ < K + 1 for all s′ ∈ Bm∗

θs and Mm∗
θs ̸= ∅,

0 otherwise.

The following extends Theorem 1 to the general lottery structure. We omit the proof since it is
almost the same as the proof of Theorem 1 in Appendix A.2.

Theorem 1 (Generalization). For all s and θ in any continuum economy, we have:

Pr[Di(s) = 1|θi = θ] = p̃s(θ) ≡


0 if θ ∈ Θ−

s ,

Πm̄
m=1(1−MIDm

θs) if θ ∈ Θ+
s ,

Πm̄
m=1(1−MIDm

θs)×max

{
0,

τs −MIDm∗
θs

1−MIDm∗
θs

}
if θ ∈ Θ∗

s.

(18)
Note that in the single tie breaker case, the expression for p̃s(θ) reduces to that in Theorem 1
since m̄ = 1 in that case. Everything else in our analysis remains the same with this modified
definition of the DA propensity score p̃s(θ).
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A.6 Extension to the Boston (Immediate Acceptance) Mechanism

The Boston (Immediate Acceptance) mechanism has been as popular in practice as DA. Sev-
eral papers (e.g. Hastings-Kane-Staiger (2009), Hastings-Neilson-Zimmerman (2012), Deming-
Hastings-Kane-Staiger (2013)) use data generated from versions of the Boston mechanism. It is
thus natural to consider our research question for the Boston mechanism.

Given strict preferences of students and schools, the Boston mechanism is defined through
the following algorithm.

• Step 1: Each student applies to her most preferred acceptable school (if any). Each school
accepts its most-preferred students up to its capacity and rejects every other student.

In general, for any step t ≥ 2,

• Step t : Each student who has not been accepted by any school applies to her most preferred
acceptable school that has not rejected her (if any). Each school accepts its most-preferred
students up to its remaining capacity and rejects every other student.

The algorithm terminates at the first step in which no student applies to a school. Each
student accepted by a school during some step of the algorithm is allocated a seat in that
school. The Boston algorithm differs from the deferred acceptance algorithm in that when a
school accepts a student at a step, in the Boston algorithm, the student is guaranteed a seat at
that school, while in the deferred acceptance algorithm, that student may be later displaced by
another student to whom the school gives a higher ex post priority.

It is easy to modify empirical strategies in section 3.4 and apply them to the Boston mech-
anism. To see this, take any strict preferences of students (≻i)i and schools (≻s)s as fixed, and
use the following existing result.

Proposition 4. (Ergin and Sönmez (2006)) The Boston mechanism applied to (≻i)i and (≻s)s
produces the same assignment as DA applied to (≻i)i and (≻∗

s)s where ≻∗
s is defined as follows:

1. For k = 1, 2..., {students who rank s k-th} ≻∗
s {students who rank s k + 1-th}

2. Within each category, ≻∗
s ranks the students in the same order as original ≻s.

This equivalence enables us to consider the Boston mechanism as a version of DA with priorities
where a priority group at a school consists of those who (i) share a same original priority status
at the school and (ii) give a same preference rank to the school. We can directly apply empirical
strategies in section 3.4 to the equivalent DA representation of the Boston mechanism.
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B Data Appendix and Additional Results

B.1 Data Appendix

The Denver Public Schools (DPS) analysis file is constructed using application, school assign-
ment, enrollment, demographic, and outcome data provided by DPS for school years 2011-2012
and 2012-2013. All files are de-identified, but students can be matched across years and across
files through a fake ID number. Applicant data are from the 2012-2013 SchoolChoice assign-
ment file,34 and test score data are from the CSAP (Colorado Student Assessment Program) and
the TCAP (Transitional Colorado Assessment Program) files. The CSAP was discontinued in
2011, and was replaced by the TCAP from the 2012-2013 school year. Enrollment, demographic,
and outcome data are available for students enrolled in DPS only, and enrollment files report
enrollment as of October.

Applications and assignment: SchoolChoice

The 2012-2013 SchoolChoice assignment file contains information on applicants’ preferences over
schools (school rankings), school priorities over applicants, applicants’ school assignments (offers)
and lottery numbers, a flag for whether the applicant is subject to the family link policy described
in the main text and, if so, to which sibling the applicant is linked. Each observation in the
assignment file corresponds to an applicant applying for a seat in a capacity program (i.e. bucket
explained in the main text) within a ranked school.35 Each applicant receives at most one offer
across all capacity programs. Information on applicant preferences, school priorities, lottery
numbers, and offers are used to compute the DA propensity score and the simulated propensity
score.

Appendix Table B1 describes the construction of the analysis sample starting from all appli-
cants in the 2012-2013 SchoolChoice assignment file. Out of a total of 25, 687 applicants seeking
a seat in DPS in the academic year 2012-2013, 5, 669 applied to any charter school seats in grades
4 through 10. We focus the analysis on applicants to grades 4 through 10 because baseline grade
test scores are available for these grades only. We further limit the sample to 4, 964 applicants
who were enrolled in DPS in the baseline grade (the grade prior to the application grade) in
the baseline year (2011-2012), for whom baseline enrollment demographic characteristics are
available.

34SchoolChoice is the name of DPS’s centralized enrollment process, introduced in 2011-2012. See https:

//www.dpsk12.org/.
35Since applicants’ rankings are at the school-level but seats are assigned at the capacity-program level, the

SchoolChoice assignment mechanism translates school-level rankings into capacity-program-level rankings. For
example, if an applicant ranked school A first and school B second, and if all seats at both A and B are split into
two categories, one for faculty children (“Faculty”) and one for any type of applicant (“Any”), then the applicant’s
ranking of the programs at A and B would be listed as 10 for Faculty at A, 11 for Any at A, 20 for Faculty at B,
21 for Any at B where numbers code preferences (smaller is more preferred).
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Applicant enrollment and demographics

DPS enrollment data are anonymized (i.e. no information on student names and dates of birth),
but students are uniquely identified across years through a fake ID. Each observation in the
enrollment files is a student enrolled in a school in a year, and includes information on grade
attended, student sex, race, gifted status, bilingual status, special education status, limited
English proficiency status, and subsidized lunch eligibility.36 We construct a panel dataset using
the unique student IDs capturing demographic and enrollment information for every student in
each grade, keeping information from the first calendar year spent in each grade. A student is
counted as attending a charter if the school in which she is enrolled according to the October
enrollment files is a charter school.

Applicant outcomes: CSAP/TCAP

Test scores and proficiency levels for the CSAP/TCAP math, reading, and writing exams are
available for grades 3 through 10. Each observation in the CSAP/TCAP data file corresponds
to a student’s test results in a particular subject, grade, and year. For each grade, we use scores
from the first attempt at a given subject test, and exclude the lowest obtainable scores as outliers.
As a result, 41 observed math scores, 19 observed reading scores, and 1 observed writing score
are excluded from the sample of charter applicants that are in DPS in baseline year. After the
outlier exclusion is implemented, The raw test score variables are standardized to have mean
zero and standard deviation one within a subject-grade-year in the DPS district.

School classification: Parent Guide

We classify schools as charters, traditional public schools, magnet schools, innovation schools,
contract schools, or alternative schools (i.e. intensive pathways and multiple pathways schools)
according to the 2012-2013 Denver SchoolChoice Parent Guides for Elementary and Middle
Schools and High Schools. School classification is conducted at the grade level, since some
schools run magnet programs for a subset of grades served only. See footnotes in Table 9 for
details. Schools not included in the Parent Guide (i.e. SIMS Fayola International Academy
Denver) were classified according to information from the school’s website.

36Race is coded as black, white, asian, hispanic, and other. In DPS these are mutually-exclusive categories.
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Table B1: SchoolChoice application records
All applicants In DPS at baseline

Applicants Types Applicants Types
(1) (2) (3) (4)

All applicants 25,687 16,087 15,487 9,564
Applicants to grades 4 through 10 12,507 7,480 10,898 6,642
Applicants to any charters (grades 4 through 10) 5,669 4,833 4,964 4,282
Notes: All applications are for the 2012-2013 academic year. Panel A includes all applicants in the SchoolChoice assignment file (see Data 
Appendix for details). Panels B-E exclude applicants who were not in DPS at the baseline grade (the grade prior to application grade) and 
baseline year (2011-2012). Applicants to grade "EC" (early childhood, or pre-kindergarten) are excluded from panels B-E because there is no 
baseline grade for those applicants. Panels C-E are restricted to applicants with propensity score values that are neither zero (i.e. ineligible for a 
seat) nor one (i.e. guaranteed a seat). Columns 2, 4, and 6 count unique combinations of applicant preferences over school programs and school 
priorities in those programs. 



Table B2: Differential attrition
Propensity score controls

Non-offered 
mean No controls Linear Hundredths Saturated

Ten 
Thousandths

(1) (2) (3) (4) (5) (6)
A. DA score (frequency)

Enrolls in Denver in follow-up year 0.905 0.029*** 0.041** 0.040** 0.038**
(0.008) (0.019) (0.019) (0.019)

Has scores in follow-up year 0.881 0.032*** 0.050** 0.049** 0.048**
(0.009) (0.020) (0.020) (0.021)

N 2,939 4,964 1,436 1,289 1,247

B. DA score (formula)
Enrolls in Denver in follow-up year 0.905 0.029*** 0.036** 0.027 0.031

(0.008) (0.017) (0.018) (0.020)
Has scores in follow-up year 0.881 0.032*** 0.032* 0.026 0.038*

(0.009) (0.018) (0.020) (0.022)

N 2,939 4,964 1,508 1,472 1,224

C. Simulated score
Enrolls in Denver in follow-up year 0.905 0.029*** 0.037** 0.040** 0.037*

(0.008) (0.018) (0.019) (0.022)
Has scores in follow-up year 0.881 0.032*** 0.040** 0.043** 0.046**

(0.009) (0.020) (0.021) (0.023)

N 2,939 4,964 1,523 1,290 1,112
Notes: This table reports coefficients from regressions of the availability of follow-up variables on each row on an any-charter school offer receivership dummy. 
Follow-up variables are observed for academic year 2012-2013. Only applicants to 2012-2013 charter seats in grades 4-10 who were enrolled in Denver at 
baseline grade are included. Charter offer equals one if a student is accepted into any charter school, excluding alternative charters. Column 1 reports baseline 
characteristics of charter applicants who did not receive a charter offer. Coefficients in columns 3-6 control for the probability of assignment to a charter school 
according to different functional forms and probability computation methods, and exclude applicants with propensity score equal to zero (i.e. ineligible) or one 
(i.e. guaranteed). Controls in column 4 are dummies for rounded values in the propensity score support, rounding to the hundredth. Controls in column 5 are 
dummies for rounded values of the simulated score, rounding to the thousandth. Controls in column 6 are dummies for every value in the propensity score 
support. Column 7 controls for fully saturated student types (that is,  the profile of all ranked schools and student priorities at the ranked schools). Robust 
standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%



Table B3a: Application covariate balance
DA score (formula)

Non-offered 
mean No controls Linear Hundredths Saturated

(1) (2) (3) (4) (5)
Number of schools ranked 4.375 -0.341*** -0.317*** -0.056 -0.001

(0.046) (0.093) (0.086) (0.094)
Number of charter schools ranked 1.425 0.476*** 0.062 0.016 0.002

(0.024) (0.043) (0.041) (0.044)
First school ranked is charter 0.291 0.612*** 0.003 -0.005 -0.007

(0.011) (0.023) (0.020) (0.019)

N 2,939 4,964 1,508 1,472 1,224

Risk set points of support 156 43 58

Robust F-test for joint significance 1189.785 8.058 0.473 0.048
p-value 0.000 0.000 0.701 0.986

Notes: This table reports coefficients from regressions of the application characteristics on each row on an any-charter school offer 
receivership dummy.  Only applicants to 2012-2013 charter seats in grades 4-10 who were enrolled in Denver at baseline grade are included. 
Charter offer equals one if a student is accepted into any charter school, excluding alternative charters. For column 3, risk set points of 
support count unique values in the support of the respective propensity scores. For column 4, risk set points of support count the number of 
bins or cells (as defined by dummies for each value of the saturated score or as dummies for student types) with offer instrument variation. 
Column 1 reports baseline characteristics of charter applicants who did not receive a charter offer. Coefficients in columns 3-5 control for 
the DA score (formula) of being assigned to a charter school according to different functional forms, and exclude applicants with propensity 
score equal to zero (i.e. ineligible) or one (i.e. guaranteed). Controls in columns 4 are dummies for rounded values in the propensity score 
support, rounding to the hundredth. Controls in column 5 are dummies for every value in the propensity score support. Robust standard 
errors are reported in parentheses. P-values for robust joint significance tests are estimated by stacking outcomes and clustering standard 
errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%



Table B3b: Baseline covariate balance
DA score (formula)

Non-offered 
mean No controls Linear Hundredths Saturated

(1) (2) (3) (4) (5)
Origin school is charter 0.086 0.108*** 0.085*** -0.012 -0.037**

(0.010) (0.022) (0.017) (0.017)
Female 0.520 -0.005 0.014 0.041 0.020

(0.014) (0.030) (0.032) (0.035)
Race

Hispanic 0.595 0.095*** -0.004 -0.031 0.003
(0.014) (0.028) (0.028) (0.029)

Black 0.183 -0.033*** -0.008 0.008 -0.009
(0.011) (0.024) (0.025) (0.027)

Gifted 0.203 -0.028** -0.047** -0.040* -0.036
(0.011) (0.023) (0.024) (0.027)

Bilingual 0.289 0.086*** 0.021 -0.002 0.010
(0.014) (0.029) (0.030) (0.033)

Subsidized lunch 0.767 0.073*** -0.007 0.011 0.002
(0.011) (0.024) (0.023) (0.026)

Limited English proficient 0.289 0.086*** 0.021 -0.002 0.010
(0.014) (0.029) (0.030) (0.033)

Special education 0.084 0.004 0.027* 0.036** 0.033*
(0.008) (0.016) (0.017) (0.018)

N 2,939 4,964 1,508 1,472 1,224
Baseline scores

Math 0.022 -0.002 0.018 -0.049 -0.080
(0.027) (0.056) (0.057) (0.063)

Reading 0.040 -0.085*** -0.023 -0.067 -0.100*
(0.026) (0.053) (0.053) (0.057)

Writing 0.035 -0.072*** -0.039 -0.068 -0.108*
(0.026) (0.051) (0.051) (0.055)

N 2,891 4,889 1,491 1,455 1,213

Robust F-test for joint significance 19.139 2.382 1.158 1.183
p-value 0.000 0.005 0.309 0.290

Notes: This table reports coefficients from regressions of the baseline characteristics on each row on an any-charter school offer receivership 
dummy.  Only applicants to 2012-2013 charter seats in grades 4-10 who were enrolled in Denver at baseline grade are included. Test scores 
are standardized to have mean zero and standard deviation one within each grade based on all Denver students. Charter offer equals one if a 
student is accepted into any charter school, excluding alternative charters. Column 1 reports baseline characteristics of charter applicants who 
did not receive a charter offer. Coefficients in column 3-5 control for the DA score (formula) of being assigned to a charter school according 
to different functional forms, and exclude applicants with propensity score equal to zero (i.e. ineligible) or one (i.e. guaranteed). Controls in 
columns 4 are dummies for rounded values in the propensity score support, rounding to the hundredth. Controls in column 5 are dummies for 
every value in the propensity score support. Robust standard errors are reported in parentheses. P-values for robust joint significance tests are 
estimated by stacking outcomes and clustering standard errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%



Table B4: DPS innovation schools
Propensity score in (0,1)

School Total applicants
Applicants 

offered seats
DA score 

(frequency)
DA score 
(formula) Simulated

(1) (2) (3) (4) (5)
Elementary and middle schools

Cole Arts and Science Academy 31 15 11 9 10
DCIS at Ford 16 0 0 0 1
DCIS at Montbello 412 125 163 156 170
Denver Green School 153 62 29 46 52
Godsman Elementary 10 8 0 0 0
Green Valley Elementary 53 15 3 23 35
Martin Luther King Jr. Early College 427 177 117 120 121
McAuliffe International School 406 165 91 115 112
McGlone 14 2 1 4 3
Montclair Elementary 15 11 2 1 1
Noel Community Arts School 288 108 92 97 105
Valdez Elementary 6 3 0 1 1
Whittier K-8 School 47 8 1 3 4

High schools
Collegiate Preparatory Academy 433 125 173 158 153
DCIS at  Montbello 506 125 208 169 174
High-Tech Early College 481 125 209 193 214
Manual High School 390 130 152 159 187
Martin Luther King Jr. Early College 515 144 179 151 162
Noel Community Arts School 334 78 112 112 107

Notes: This table shows application patterns at innovation schools. Column 1 is the number of applicants ranking each school. Columns 3-5 are 
restricted to applicants with propensity score values that are neither zero (i.e. ineligible for a seat) nor one (i.e. guaranteed a seat) according to 
different score computation methods. Elementary and middle schools are those serving grades 4-8. High schools are those serving grades 9 and 10.



Table B5: Covariate balance and differential attrition for DPS innovation schools
Propensity score controls

DA score (frequency) Simulated score
Non-offered 

mean No controls Linear Hundredths Saturated Linear Hundredths
Ten 

Thousandths
(1) (2) (3) (4) (5) (6) (7) (8)

A. Application covariates
Number of schools ranked 4.657 -0.142** 0.164 0.012 0.034 0.135 0.132 0.190

(0.058) (0.119) (0.107) (0.106) (0.114) (0.110) (0.158)
Number of innovation schools ranked 1.279 0.710*** 0.192** 0.086 0.035 0.121 0.092 0.097

(0.035) (0.079) (0.062) (0.059) (0.076) (0.069) (0.118)
First school ranked is innovation 0.052 0.611*** -0.003 -0.007 -0.005 -0.030 -0.030 -0.043

(0.015) (0.036) (0.022) (0.018) (0.032) (0.027) (0.037)

B. Baseline covariates
Origin school is innovation 0.116 0.125*** 0.032 0.045 0.044 0.010 0.040 0.100*

(0.015) (0.034) (0.036) (0.036) (0.033) (0.034) (0.053)
Female 0.526 -0.011 0.030 0.028 0.028 0.063 0.060 0.077

(0.020) (0.046) (0.047) (0.049) (0.044) (0.048) (0.087)
Race

Hispanic 0.491 0.136*** 0.028 0.015 -0.001 0.037 0.043 0.039
(0.020) (0.045) (0.044) (0.046) (0.044) (0.044) (0.077)

Black 0.262 -0.064*** 0.018 0.018 0.030 0.003 0.009 0.023
(0.017) (0.038) (0.039) (0.041) (0.036) (0.040) (0.071)

Gifted 0.198 -0.056*** -0.019 -0.028 -0.041 0.017 0.020 0.008
(0.015) (0.034) (0.035) (0.036) (0.033) (0.035) (0.062)

Bilingual 0.018 0.007 -0.025 -0.027* -0.029* -0.020 -0.014 -0.006
(0.006) (0.016) (0.016) (0.015) (0.015) (0.015) (0.029)

Subsidized lunch 0.763 0.047*** 0.029 0.034 0.016 0.011 0.013 -0.044
(0.016) (0.037) (0.036) (0.037) (0.037) (0.036) (0.061)

Limited English proficient 0.253 0.047*** 0.016 0.032 0.031 0.007 -0.001 -0.030
(0.018) (0.041) (0.042) (0.043) (0.041) (0.043) (0.085)

Special education 0.092 0.004 -0.021 -0.031 -0.036 -0.026 -0.037 -0.050
(0.012) (0.025) (0.025) (0.025) (0.025) (0.025) (0.062)

N 1,176 2,483 769 717 623 888 705 279
Baseline scores

Math -0.017 -0.186*** -0.032 -0.018 -0.057 0.023 0.042 0.030
(0.040) (0.091) (0.087) (0.088) (0.088) (0.091) (0.158)

Reading 0.036 -0.220*** -0.066 -0.047 -0.047 -0.013 0.002 0.015
(0.038) (0.084) (0.082) (0.084) (0.080) (0.083) (0.153)

Writing 0.000 -0.163*** 0.025 0.041 0.030 0.079 0.081 0.119
(0.038) (0.085) (0.082) (0.084) (0.082) (0.084) (0.165)

N 1,158 2,434 752 704 614 869 689 273

Robust F-test for joint significance 142.846 1.100 0.995 0.909 0.801 0.921 1.523
p-value 0.000 0.354 0.457 0.548 0.669 0.535 0.102

C. Differential attrition
Enrolls in Denver in follow-up year 0.920 -0.001 -0.017 -0.012 -0.011 -0.015 -0.020 -0.008

(0.011) (0.026) (0.027) (0.029) (0.024) (0.027) (0.044)
Has scores in follow-up year 0.897 -0.011 -0.019 -0.014 -0.018 -0.008 -0.017 0.018

(0.012) (0.027) (0.029) (0.030) (0.026) (0.029) (0.051)
N 1,176 2,483 769 717 623 888 705 279

Notes: This table reports coefficients from regressions of the baseline characteristics and follow-up variables on each row on an any-innovation school offer receivership dummy.  Only applicants to 
2012-2013 innovation seats in grades 4-10 who were enrolled in Denver at baseline grade are included. Test scores are standardized to have mean zero and standard deviation one within each grade 
based on all Denver students. Innovation offer equals one if a student is accepted into any innovation school. Column 1 reports baseline characteristics of innovation applicants who did not receive 
an innovation offer. Coefficients in columns 3-8 control for the probability of assignment to an innovation school according to different functional forms and probability computation methods, and 
exclude applicants with propensity score equal to zero (i.e. ineligible) or one (i.e. guaranteed).  Controls in columns 4 and 7 group observations into 200 bins of 0.5 percentage-point size each. 
Coefficients in columns 5 and 8 are estimated by fully saturating propensity score values, with scores in column 8 rounded to the nearest ten-thousandth decimal point. Robust standard errors are 
reported in parentheses. P-values for robust joint significance tests are estimated by stacking outcomes and clustering standard errors at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%


