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Abstract

The literature on recursive preference attributes all the time variation in bond risk

premia to stochastic volatility. We introduce another source: time-varying prices of risk

that co-move with inflation and consumption growth through a preference shock. We

find that a time-varying price of risk driven by inflation dominates stochastic volatility

in contributing to time variation in term premia. Once preference shocks are present,

term premia are economically the same with or without stochastic volatility.
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1 Introduction

The risk premium in the bond market, the term premium, is a key object of interest for

central banks. It helps determine the effectiveness of a central bank’s monetary policy

because it influences how manipulations of short term interest rates are transmitted into

the real economy through borrowing at longer maturities. For example, Greenspan labeled

the period from 2004 through 2005 a “conundrum,” when the Federal Reserve raised short

term interest rates in response to a better economic environment yet long term interest rates

remained low. Many researchers attribute this behavior of the yield curve to a decline in the

term premium; see, e.g. Rudebusch, Swanson, and Wu(2006). Our paper develops a new

consumption based asset pricing model with recursive preferences that realistically captures

the dynamics of term premia and provides an economic interpretation for its source.

Our model introduces two potential channels of time variation in term premia: time-

varying prices of risk and quantities of risk. The primary channel for time-varying prices

of risk are through preferences shocks, while time-varying quantities of risk are driven by

stochastic volatility. In our model, correlation between shocks to preferences and shocks

to the state vector driving consumption growth and inflation introduce time-varying risk

premia, even when shocks are homoskedastic. Comparing a range of models within our

framework, we find the key driving force behind fluctuations in term premia is a time-varying

price of risk that co-moves with expected inflation.

The two potential sources for time-varying term premia have been studied in separate but

related literatures. Gaussian affine term structure models (ATSMs), the primary modeling

tool for interest rates in central banks worldwide, attribute all the variation in term premia

to a time-varying price of risk while the quantity of risk is constant; see, Wright(2011) and

Bauer, Rudebusch, and Wu(2012). Although Gaussian ATSMs provide a good description

of the yield curve, the lack of micro-foundations makes it hard to interpret what economic

mechanism ultimately drives the term premium. Conversely, structural models with recursive

preferences generate time-varying risk premia through stochastic volatility; see Bansal and
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Yaron(2004) and Bansal and Shaliastovich(2013). When a model with recursive preferences

has stochastic volatility, there is both a time-varying price and quantity of risk. However,

these models strongly restrict the price of risk to be completely driven by stochastic volatility

alone. Estimating several models for the dynamics of consumption growth and inflation, we

find that models with recursive preferences and stochastic volatility produce implausible

term premia. Compared to reduced form evidence from Gaussian ATSMs, they can have a

combination of the wrong sign, are economically insignificant, and have infeasible dynamics.

We also find that estimated term premia from stochastic volatility models (without preference

shocks) are highly sensitive to the dynamics of consumption growth and inflation.

Our new model with preference shocks allows for greater flexibility in how the prices of

risk can vary through time. This allows us to disentangle the driving force of term premia

and pin down which is a more plausible explanation for its variability: a time-varying price

of risk or quantity of risk. Adding preference shocks enables us to produce realistic term

premia. The general pattern is the term premia rise for the first half of the sample from

1959 through the late 1970s, drop sharply in the early 80s, then keep steady, for the five year

maturity between 1% and 2% afterwards. They also resemble the cyclical pattern discussed

in Bauer, Rudebusch, and Wu(2012). Term premia increase before recessions and drop post

recessions. During the Great Recession, term premia drop sharply due to the flight to quality

argument. The basic dynamics of term premia are not sensitive to the time series process

of inflation and consumption, nor to whether we include stochastic volatility. This evidence

points to preference shocks as the main driving force for the time variation in term premia

through price of risk.

We also investigate whether these models are able to match other key moments from the

data. Most empirical work on the term structure in either endowment economies or DSGE

models has focused on matching the unconditional slope of the term structure. We show

that Gaussian models with recursive preferences can match the unconditional slope of the

yield curve with or without preference shocks, consistent with the literature, see Piazzesi
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and Schneider(2007).

Conversely, adding stochastic volatility without preference shocks inhibits the models’

ability to fit the unconditional yield curve. The yield curve slopes downward in models with

stochastic volatility. Although stochastic volatility is introduced with the intention of making

models more flexible, it can have the opposite effect. In structural models with recursive

preferences, there are only three parameters in the representative agent’s utility function

(the time discount factor, risk aversion, and the intertemporal elasticity of substitution).

These three parameters need to fit the original bond loadings on inflation, consumption, and

the intercept across different maturities that are present in Gaussian models plus the bond

loadings that are introduced when stochastic volatility factors are added. This consequently

prevents the model from fitting a fundamental moment of the yield curve. Preference shocks

relax this tension and enable us to fit the unconditional yield curve as well as a Gaussian

model does.

Empirical examination of the asset pricing implications of recursive preferences requires

solving for the stochastic discount factor.1 However, a solution does not always exist. We

provide conditions on the model’s parameters guaranteeing the existence of a solution when

the state vector driving consumption follows a general affine process. The general rule is

that agents cannot be too patient, i.e. their rate of time preference cannot be too high.

In special cases with no preference shocks, the upper bound depends on how risk averse

the agents are. When the intertemporal elasticity of substitution is lower than 1, the more

risk averse the agent is the more impatient he needs to be. In the opposite case, the less

risk averse the agent is the more patient he is allowed to be. A direct implication of the

general rule is that an extremely patient agent faces more restrictions in their risk aversion

and intertemporal elasticity of substitution. These conditions partition the parameter space

and make it cumbersome for econometricians implementing either an optimization-based

1Specifically, we implement a solution method developed by Bansal and Yaron(2004) that is widely used
in the macroeconomics and finance literatures; see, e.g. Bollerslev, Tauchen, and Zhou(2009), Bansal, Kiku,
and Yaron(2012) and Schorfheide, Song, and Yaron(2014). Rudebusch and Swanson(2012) and Caldara,
Fernández-Villaverde, Rubio-Ramı́rez, and Yao(2012) describe other solution methods.
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estimator or Bayesian Markov chain Monte Carlo algorithm.

This paper continues as follows. In Subsection 1.1, we discuss the literature. In Section 2,

we introduce preference shocks into models with recursive preferences when consumption and

inflation follow a homoskedastic, Gaussian process. In Section 3, we generalize the dynamics

of consumption and inflation to include stochastic volatility. In Section 4, we discuss suffi-

cient conditions for the existence of a solution to the (approximate) Euler equation and the

restrictions this places on the model’s structural parameters. In Section 5, we evaluate the

ability of the models to fit key moments of the data including the unconditional slope of the

term structure. Section 6 examines the model’s ability to generate realistic term premia and

trace for the underlying economic source. The paper concludes in Section Section 7 with a

discussion of possible extensions.

1.1 Relationship to the literature

A large literature in macroeconomics and finance uses recursive preferences as developed

by Kreps and Porteus(1978), Epstein and Zin(1989), and Weil(1989). These preferences

separate intertemporal substitution from risk aversion, which are directly linked under power

utility. The combination of recursive preferences and affine dynamics of the state variables

is particularly attractive because it generates (approximate) closed-form solutions for bond

and equity prices. A prime example is the long-run risk model of Bansal and Yaron(2004).

Our specification for preference shocks is motivated by Campbell and Cochrane(1999).

In their model, preference shocks induced by habit formation are driven by shocks to con-

sumption growth and are scaled by a risk sensitivity function. The interaction between the

consumption shock and the risk sensitivity function introduces a time-varying price of risk

into the stochastic discount factor, which is a highly autocorrelated function of consumption

growth. Consequently, it exhibits business cycle variation. We introduce risk sensitivity

functions as in Campbell and Cochrane(1999) that allow the representative agent’s utility

and their marginal rate of substitution to depend on the state of the economy. State de-
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pendent preferences are intuitive. During bad times (times when consumption growth is

low), agents may be more risk averse and more sensitive to shocks. They consequently re-

quire a larger risk premium in order to hold risky assets. Albuquerque, Eichenbaum, and

Rebelo(2014) and Schorfheide, Song, and Yaron(2014) also analyze models with recursive

preferences and preference shocks. Our model nests their models as a special case but we

also include the risk sensitivity function which is critical for generating flexible time-varying

prices of risk into the model.

Several authors have developed consumption based models with endowment economies

to study the yield curve. Wachter(2006) studies a model of habit formation with Camp-

bell and Cochrane(1999) style preferences. Piazzesi and Schneider(2007) build a model of

recursive preferences with unitary intertemporal elasticity of substitution and homoskedas-

tic, Gaussian shocks to the state vector. Bansal and Shaliastovich(2013) evaluate a model

with recursive preferences where shocks to consumption growth and inflation have stochastic

volatility. Le and Singleton(2010) build a model of recursive preferences without stochastic

volatility that has a time-varying price of risk. The main focus of our paper is to build a

model that generates realistic term premia and decomposes the sources of risk premia. We

achieve this by (i) introducing a preference shock that generates flexible time-varying prices

of risk, and (ii) allowing shocks to be homoskedastic or heteroskedastic.

Hansen and Scheinkman(2012) discuss theoretical conditions that guarantee a solution to

the representative agent’s problem under recursive preferences. Campbell, Giglio, Polk, and

Turley(2014) discuss existence conditions for their ICAPM model with stochastic volatility.

2 Time-varying risk premia in Gaussian models

In this section, we introduce a model with recursive preferences that generates a time-varying

market price of risk when consumption and inflation follow a homoskedastic, Gaussian pro-

cess. The source of the variation is a preference shock. We use Gaussian models to demon-
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strate the intuition, which we extend to stochastic volatility models in Section 3.

2.1 Basic framework

Preferences We consider a discrete-time endowment economy. The representative agent

optimizes over his lifetime utility

Vt =

[
(1− β) ΥtC

1−η
t + β

{
Et

[
V 1−γ
t+1

]} 1−η
1−γ

] 1
1−η

, (1)

where β is the time discount factor, γ measures risk aversion, and ψ = 1
η

is the elasticity of

intertemporal substitution when there is no uncertainty. For convenience, let ϑ ≡ 1−γ
1−η . Our

formulation of recursive preferences (1) includes a stochastic rate of time preference with

Υt as in Albuquerque, Eichenbaum, and Rebelo(2014). Like the habit formation models

of Abel(1990) and Campbell and Cochrane(1999), we assume that the representative agent

treats it as external to the model when making decisions about consumption.

Agents maximize utility (1) subject to the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Rc,t+1 is the gross return on the consumption asset and Wt is wealth.

Stochastic discount factor The log stochastic discount factor (SDF) in this model is

mt+1 = ϑ ln (β) + ϑ∆υt+1 − ηϑ∆ct+1 + (ϑ− 1) rc,t+1, (2)

where ct = ln (Ct), rc,t+1 = ln (Rc,t+1) is the continuously compounded return and υt+1 =

ln
(

Υt+1

Υt

)
is the preference shock. Nominal assets are priced using the nominal pricing kernel

m$
t+1 = mt+1 − πt+1, (3)
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where inflation is πt+1 = ln (Πt+1)− ln (Πt) and Πt is the nominal price level.

Dynamics The state of the economy is summarized by a G× 1 vector gt, which includes

consumption growth ∆ct and inflation πt

∆ct = Z ′cgt, (4)

πt = Z ′πgt, (5)

where Zc and Zπ are G×1 selection vectors containing only zeros and ones. The state vector

follows a Gaussian process, summarized in companion form as

gt+1 = µg + Φggt + Σ0,gεg,t+1 εg,t+1,∼ N (0, I) . (6)

Preference shock Our specification of the preference shocks is more general than in recent

papers; see, e.g. Albuquerque, Eichenbaum, and Rebelo(2014) and Schorfheide, Song, and

Yaron(2014). We model their stochastic process as

υt+1 = Z ′υgt+1 + Λ1 (gt) + Λ2 (gt)
′ εg,t+1, (7)

where Zυ is a G × 1 selection vector and Λ1 (gt) and Λ2 (gt) are risk sensitivity functions.

The key function Λ2 (gt) is defined as

Λ2 (gt) = −ηΣ−1
0,g (λ0 + λggt) . (8)

It introduces time-varying prices of risk into the Gaussian model. As we explain below, the

parameter λg determines how important “state dependence” is to the representative agent’s

utility. The term Λ1 (gt) = −ϑη2

2
(λ0 + λggt)

′ (Σ0,gΣ
′
0,g

)−1
(λ0 + λggt) + Λ̄ is introduced to

keep the model inside the affine family, while the constant Λ̄ ensures the shocks have mean

zero, see Appendix B.
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Solution method The SDF in (2) is a function of the return on the consumption asset

rc,t+1, which is generally regarded as unobserved in the data. We eliminate this variable from

the SDF using a standard approach in the finance literature, see Bansal and Yaron(2004)

and Bansal, Kiku, and Yaron(2012).2 We apply the log-linearization technique of Campbell

and Shiller(1989) and write it as a function of the price to consumption ratio rc,t+1 =

κ0 + κ1pct+1 − pct + ∆ct+1, where κ0 and κ1 are log-linearization constants that depend on

the average price to consumption ratio p̄c. As the real pricing kernel in (2) must also price

the consumption good with return of rc,t+1, we can solve the coefficients in pct = D0 +D′ggt

as functions of the underlying parameters, including κ0, κ1. This is a fixed point problem:

pct depends on κ0, κ1 through D0, Dg, which in turn depend on p̄c = E [pct]. We discuss this

fixed point problem and its solutions in more detail in Appendix C.

2.2 Sources of risk premia

Using the solution method described above, the nominal log-SDF in deviation from the mean

form becomes

m$
t+1 − Et

[
m$
t+1

]
= −λ$,′

g,tεg,t+1, (9)

Shocks to the SDF are heteroskedastic with a time-varying price of risk λ$
g,t due to the risk

sensitivity functions. The time-varying risk premium can be decomposed into the following

terms

Σ0,gλ
$
g,t = Σ0,gΣ

′
0,g (γZc + Zπ) ← power utility

− κ1
(η − γ)

(1− η)
Σ0,gΣ

′
0,gDg ← recursive preferences

− ϑΣ0,gΣ
′
0,gZυ + ηϑλ0 + ηϑλggt, ← preference shocks (10)

2The solution method used by Campbell, Giglio, Polk, and Turley(2014) for their ICAPM model is similar,
only they substitute out consumption instead of the return on the consumption asset.
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where the first term is inherited from power utility, the second line comes from recursive

preferences, and the terms in the third line are due to preference shocks.

One contribution of our paper is to introduce time-varying prices of risk into a Gaussian

model through the preference shocks. The key term in (10) is λggt. Only when λg is non-zero

does the model have a time-varying price of risk and a time-varying term premia. The affine

form of the market prices of risk is similar to the expressions found in Gaussian ATSMs;

see, e.g. Duffee(2002). It is this feature that has enabled Gaussian ATSMs to become the

benchmark model in the term structure literature. Conversely, term premia are constant in

Gaussian models if λg = 0. This includes existing models without preference shocks, or with

preference shocks through Zυ 6= 0 as in Albuquerque, Eichenbaum, and Rebelo(2014) and

Schorfheide, Song, and Yaron(2014).

The remaining terms in (10) are intuitive. Consider the standard case when there are no

preference shocks and Zυ = λ0 = λg = 0. If in addition η = γ, the model reduces to power

utility with only a constant risk premium term. The magnitude of the risk adjustment is

small for any reasonable value of the risk aversion parameter γ. When γ = 0, investors are

risk neutral.

The second term in (10) is due to recursive preferences and the separation of the inverse

of the intertemporal elasticity of substitution from risk aversion η 6= γ. The sign of this term

depends on whether η is greater or less than γ.3 If γ > η, the representative agent prefers

an earlier resolution of uncertainty, and this term adds a positive value to the risk premium.

If on the other hand γ < η, then this term contributes negatively to the risk premium.

The magnitude of this term is a function of how far apart γ and η are from one another.

The larger their difference the greater the impact recursive preferences have on asset prices.

In the other extreme, when η = γ, this term disappears and the model collapses to power

utility.

We can alternatively characterize risk aversion as the difference between the parameters

3The demonimator (1− η) gets canceled out with Dg = (1− η)
(
IG − Φ′g

)−1
Φ′gZc
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of the nominal risk neutral measure Q$ and the physical measure P as

Σ0,gλ
$
g,t =

(
µg − µQ,$g

)
+
(
Φg − ΦQ,$g

)
gt.

The implied dynamics of gt under Q$ are also a Gaussian vector autoregression

gt+1 = µQ,$g + ΦQ,$g gt + Σ0,gε
Q,$
g,t+1, εQ,$g,t+1 ∼ N (0, I) . (11)

and the relationship between the P and nominal Q$ parameters is

µQ,$g = µg − Σ0,gΣ
′
0,g (γZc + Zπ) + κ1

(η − γ)

(1− η)
Σ0,gΣ

′
0,gDg + ϑΣ0,gΣ

′
0,gZυ − ηϑλ0, (12)

ΦQ,$g = Φg − ηϑλg, (13)

If λg = 0, then Φg = ΦQ,$g . The parameters of the real risk neutral measure Q can be found

by setting Zπ = 0.

2.3 Bond prices

The price of a zero-coupon real bond with maturity n at time t is the expected price of the

same asset at time t+ 1 discounted by the stochastic discount factor

P
(n)
t = Et

[
exp (mt+1)P

(n−1)
t+1

]
. (14)

Using standard techniques for bond pricing in Gaussian models (see Ang and Piazzesi(2003),

Creal and Wu(2015a)), the real yield can be expressed as a linear function of the state vector

y
(n)
t ≡ −

1

n
ln
(
P

(n)
t

)
= an + b′n,ggt. (15)
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Similarly, we can derive nominal yields as

y
$,(n)
t ≡ − 1

n
ln
(
P

$,(n)
t

)
= a$

n + b$,′
n,ggt, (16)

where the real and nominal bond-loadings (an, bn) and (a$
n, b

$
n) follow difference equations

given in Appendix D.

Real yields can be expressed as the expected average future path of consumption between

t and t + n scaled by the inverse of the elasticity of intertemporal substitution plus a risk

premium and Jensen’s inequality terms

y
(n)
t = − ln (β) +

1

ψ

1

n

n∑
j=1

Et [∆ct+j] +
1

ψ

1

n

n∑
j=1

(
EQt [∆ct+j]− Et [∆ct+j]

)
+ Jensen’s Ineq.

where we have set Zυ = 0. The risk premium is the difference between the expected average

path of consumption under the P and Q measures. It varies over time if λg 6= 0 otherwise

the difference between expected consumption is a constant.

A nominal yield has a similar expression only it takes into account the expected average

future path of inflation as well as consumption

y
$,(n)
t = − ln (β) +

1

ψ

1

n

n∑
j=1

Et [∆ct+j] +
1

ψ

1

n

n∑
j=1

(
EQ,$t [∆ct+j]− Et [∆ct+j]

)
+

1

n

n∑
j=1

Et [πt+j] +
1

n

n∑
j=1

(
EQ,$t [πt+j]− Et [πt+j]

)
+ Jensen’s Ineq.

where we have set Zυ = 0. If the agent is sensitive to inflation shocks, he requires additional

compensation for uncertainty about future inflation. In standard macroeconomic models,

the difference between nominal and real yields of a given maturity y
$,(n)
t −y(n)

t reflects average

expected inflation over this period. Our expressions suggest that this difference can include

a risk premium component that may vary through time.

The nominal term premium is defined as the difference between the model implied yield
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y
$,(n)
t in (16) and the average of expected future short rates over the same period

tp
$,(n)
t = y

$,(n)
t − 1

n
Et

[
r$
t + r$

t+1 + . . . ,+r$
t+n−1

]
. (17)

The term premium has a simple portfolio interpretation. An investor can buy an n-period

bond and hold it until maturity or he can purchase a sequence of 1 period bonds, repeatedly

rolling them over for n periods. The term premium measures the additional compensation a

risk averse agent needs to choose one option over another. Under the expectations hypothesis,

term premia are constant. For Gaussian models with homoskedastic shocks, this coincides

with setting λg = 0 and eliminating time-variation in the risk sensitivity functions.

2.4 Discussion on preference shocks

Preference shocks have been used to add flexibility to the SDF in (2) in order to better

explain variation in stock prices. We focus on their implications for bond prices, especially

bond risk premia. Time variation of risk premia has important implications for market

participants as well as central bankers, but realistic dynamics are difficult to capture in a

consumption-based model. We use the preference shock to achieve both.

The risk sensitivity functions (8) are motivated by the habit formation model of Campbell

and Cochrane(1999). In their model, preference shocks are induced by habit formation with

their influence on the SDF determined by past shocks to aggregate consumption. Impor-

tantly, past shocks to consumption are scaled by a risk sensitivity function like Λ2 (gt) that

generates a time-varying market price of risk. The sensitivity function (8) is different than

Campbell and Cochrane(1999) for two reasons. First, it may depend on all shocks εg,t that

hit the state vector gt in (6) instead of only shocks to consumption growth. This introduces

flexibility into the price of risk. Specifically, the non-zero columns of the matrix λg determine

which elements of the state vector gt have an impact on agent’s preferences. If columns of

λg are set to zero, it shuts down state dependence in the corresponding element of the state
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vector. Second, the risk sensitivity functions Λ1 (gt) and Λ2 (gt) result in closed-form real

and nominal bond prices as shown in Section 2.3, whereas the traditional risk sensitivity

functions in models of habit formation do not; see, e.g. Wachter(2006).4

The process for υt+1 in (7) allows two sources of variation in the preference shocks. If

there are no risk sensitivity functions Λ1 (gt) = Λ2 (gt) = 0 and Zυ = 0, preference shocks

υt+1 can be present as a latent variable in the state vector gt. This is consistent with most

of the macroeconomics literature, see also Albuquerque, Eichenbaum, and Rebelo(2014) and

Schorfheide, Song, and Yaron(2014). Latent factors can help explain variation in asset prices

and improve the fit of a model but they do not introduce a time-varying market price of risk

without the risk sensitivity functions. Alternatively, if we shut down latent factors by setting

Zυ = 0, preference shocks do not have their own source of variation and are driven entirely

by shocks to consumption growth and inflation but scaled by the risk sensitivity functions.

In this case, the key term is Λ2 (gt). It introduces time-varying market prices of risk into

agent’s preferences. Finally, our approach allows for both latent factors and risk sensitivity

functions, making the model a Gaussian ATSM with macro factors.

Piazzesi and Schneider(2007) study an economy with recursive preferences when the

inverse of the elasticity of intertemporal substitution equals one, η = 1. In this case, re-

cursive preferences can be solved analytically; see, e.g. Tallarini(2000), Hansen, Heaton,

and Li(2008), and Appendix C.3. The difference between our work and theirs for Gaussian

models are the preference shocks, which are critical for introducing time-variation into the

term premium.

3 Interaction between price and quantity of risk

In this section, we introduce preference shocks into models where shocks to consumption

growth and inflation have stochastic volatility. In models with recursive preferences, stochas-

4When γ = η, the model reduces to power utility. The risk sensitivity functions here can be chosen to
make the SDF in (2) observationally equivalent to the SDF of the habit formation model in Wachter(2006)
by setting Λ1 = (1− φυ) ῡ + φυυt and Λ2 = 1

Ῡ

√
1− 2 (υt − ῡ)− 1.
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tic volatility is typically the sole source of time variation in term premia, e.g. Bansal and

Yaron(2004). We demonstrate how the preference shock, introduced in Section 2, induces

another source of variation in addition to stochastic volatility. Then, in Section 5, we de-

compose the contribution each channel has on the term premium as we see in the data.

Dynamics We generalize the dynamics of the state vector in (6) to

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + Σg,tεg,t+1 εg,t+1 ∼ N (0, I) (18)

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit

ht+1 ∼ NCG (νh,Φh,Σh) (19)

εh,t+1 = ht+1 − Et [ht+1|ht]

where ht is a H × 1 vector following a non-central gamma (NCG) process as in Creal and

Wu(2015a). This is an affine process that is the exact discrete time equivalent of a mul-

tivariate Cox, Ingersoll, and Ross(1985) process. The conditional mean is Et [ht+1|ht] =

Σhνh + Φhht meaning that Φh controls the autocovariances and Σhνh is the intercept. Σh

is a matrix of scale parameters and νh are a vector of shape parameters. The vector εh,t+1

are shocks to volatility with conditional heteroskedasticity Vt [ht+1|ht] = Σh,tΣ
′
h,t, and Σgh

measures the covariance between Gaussian and non-Gaussian shocks, i.e. the leverage effect.

Further details on properties of the model can be found in Appendix A.5

5The timing of how volatility scales the shocks in discrete-time models such as (18) is an outstanding
issue in financial econometrics. Both timings Σg,tεg,t+1 and Σg,t+1εg,t+1 lead to log-SDF’s that are linear
in the state variables and produce affine bond prices. Our analysis focuses on the timing in (18), which
is common in finance. However, the alternative timing Σg,t+1εg,t+1 means the representative agent faces
greater short term uncertainty. Volatility has an immediate and potentially more significant impact on the
short rate (and consequently all yields) even when there is no leverage effect.
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Preference shocks We generalize the preference shocks in (7) so that they can potentially

depend on shocks to volatility.

υt+1 = Z ′υgt+1 + Λ1 (gt, ht) + Λ2 (gt, ht)
′ εg,t+1 + Λ3 (ht)

′ εh,t+1

Our specification for the risk sensitivity functions is a straightforward generalization of the

Gaussian model

Λ1 (gt, ht) = Λ̄− ϑη2

2
(λ0 + λggt + λghht)

′ (Σg,tΣ
′
g,t

)−1
(λ0 + λggt + λghht) ,

Λ2 (gt, ht) = −ηΣ−1
g,t (λ0 + λggt + λghht) ,

Λ3 (ht) = −λh.

In theory, we can make Λ3 (ht) time-varying as well. But to keep the model simple and see

how much mileage we gain from the single source of variation in Λ2 (gt, ht), we only allow

the sensitivity function for the Gaussian shock Λ2 (gt, ht) to vary over time. Under these

assumptions, the key term is again Λ2 (gt, ht). It introduces flexibility into the cross-section

of asset prices. The constant Λ̄ can be found in Appendix B.

SDF To obtain an expression for the SDF, we follow the same procedure as the Gaussian

model. The only difference is the price to consumption ratio is also a function of the volatility

pct = D0 +D′ggt +D′hht. In Section 4, we describe the solution method in detail, and discuss

how the existence of a solution to the model restricts the structural parameters (β, γ, ψ).

The nominal log-SDF can be written as

m$
t+1 − Et

[
m$
t+1

]
= −λ$,′

g,tεg,t+1 − λ$,′
h,tε̃h,t+1 (20)

where the shock ε̃h,t+1 = Σ−1
h,tεh,t+1 is the standardized shock to volatility with unit variance.
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Sources of risk premia First, we decompose the risk premium for Gaussian shocks into

their sources

Σg,tλ
$
g,t = Σ0,gΣ

′
0,g (γZc + Zπ)− κ1

(η − γ)

(1− η)
Σ0,gΣ

′
0,gDg − ϑΣ0,gΣ

′
0,gZυ + ηϑλ0 + ηϑλggt

+(γZc + Zπ ⊗ IG)′ S̃ght ← power utility

−κ1
(η − γ)

(1− η)
(Dg ⊗ IG)′ S̃ght ← recursive preferences

+ηϑλghht − ϑ (Zυ ⊗ IG)′ S̃ght ← preference shock

+ leverage effect (21)

where S̃g is a G2 ×H matrix with columns vec
(
Σg,iΣ

′
g,i

)
for i = 1, . . . , H.

The terms in the first line of (21) are the same as the Gaussian model in (10). Importantly,

Gaussian factors gt only impact the price of risk through the preference shock when λg 6= 0;

otherwise, the price of risk is not a function gt. Economically, if λg = 0, time variation in

the risk premium cannot be driven by any elements of gt such as (expected) inflation and/or

consumption growth.

Stochastic volatility introduces the remaining terms. The second line is due to the in-

teraction between power utility and stochastic volatility. It has a similar functional form as

the power utility term in the Gaussian model except that the new term varies through time

with ht. The third line comes from recursive preferences. Similar to the Gaussian model

in (10), the sign and magnitude of this term depends on the relative sizes of η and γ. If

γ > η, the representative agent prefers an earlier resolution of uncertainty, and this term

adds a positive value to the risk premium. The two terms in line 4 come from preference

shocks. The main difference between the terms in line 2-4 and their counterparts in line 1 is

that they all vary across time as a function of the volatility ht. The last line comes from the

leverage effect, which is 0 when Σgh = 0. A detailed expression for this term can be found

in Appendix A.2.
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Next, we decompose the prices of risk for the non-Gaussian shocks λ$
h,t as

Σ′,−1
h,t λ

$
h,t = Σ′gh (γZc + Zπ) ← power utility

−κ1
(η − γ)

(1− η)

(
Σ′ghDg +Dh

)
← recursive preference

−ϑ
(
Σ′ghZυ − λh

)
← preference shock (22)

The three terms have similar features and functional forms as those in (10) and (21). Power

utility only has an impact on the price of volatility risk through the leverage effect when

Σgh 6= 0, while recursive preferences will generate a price of risk even when Σgh = 0.

Under the Q$ measure, the factors have the same dynamics as under the P measure and

are a Gaussian vector autoregression with stochastic volatility as in (18)-(19) but with up-

dated parameters for (µQ,$g ,ΦQ,$g ,ΦQ,$gh ,Φ
Q,$
h ,ΣQ,$h ), see Appendix A.2 for detailed expressions.

We can write the risk premium for Gaussian shocks as a relationship between the P and Q$

parameters as

Σg,tλ
$
g,t =

(
µg − µQ,$g

)
+
(
Φg − ΦQ,$g

)
gt +

(
Φgh − ΦQ,$gh

)
ht, (23)

and, when Σh is diagonal, λ$
h,t can be written as

λ$
h,t = Σ−1

h

(
ΣQ,$h

)−1

Σh − Σ−1
h . (24)

Like the Gaussian model in Section 2, the price of risk λ$
g,t is not a function of gt without

preference shocks. This is because the physical and risk-neutral measures are equal Φg = ΦQ,$g

when λg = 0. In standard models with recursive preferences and no preference shocks such

as Bansal and Yaron(2004), time-variation in the price of risk λ$
g,t is driven by stochastic

volatility because in these models the risk neutral and physical measures for volatility are

typically not equal Φgh 6= ΦQ,$gh .
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Bond prices Following Creal and Wu(2015a), we derive real and nominal yields for

discrete-time models with stochastic volatility using the standard formula for asset prices

(14). Yields are an affine function of both the Gaussian state vector and volatility

y
(n)
t = an + b′n,ggt + b′n,hht, (25)

y
$,(n)
t = a$

n + b$,′
n,ggt + b$,′

n,hht, (26)

where the bond-loadings are in Appendix D.

4 Model properties

Empirical examination of the asset pricing implications of recursive preferences requires solv-

ing for the SDF. In the approach used here, we need to solve for the return on the consump-

tion asset rc,t+1 in (2) as a function of the underlying state of the economy. Whether there

exists an economy that is consistent with recursive preferences, mathematically amounts to

a fixed point problem. In this section, we provide the conditions that lead to a valid solution

for the Euler equation and asset prices. We base our analysis on the approximation method

used by Bansal, Kiku, and Yaron(2012) and Schorfheide, Song, and Yaron(2014), among

many others.

We partition the vector of all parameters of the model θ = (β, ψ, γ, θr) into the structural

parameters (β, ψ, γ) and the rest of the parameters θr. We condition our analysis on θr and

characterize the restrictions on the parameter space for the structural parameters.

4.1 Gaussian models

For models with Gaussian dynamics defined in Section 2, the following proposition provides

a sufficient condition for the fixed point problem to have a solution.
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Proposition 1 There is a value β̄(ψ, γ, θr) such that if β < β̄, then there exists a solution

for the fixed point problem.

Proof: See Appendix E.1.

The proposition provides a general condition that guarantees a solution to the represen-

tative agent’s problem for any Gaussian model and characterizes the joint restrictions that

exist between the structural parameters (β, γ, ψ). Given the dynamics of the economy and

the parameters driving the preference shock in θr, agents’ risk appetite γ, and the intertem-

poral elasticity of substitution ψ, the representative agent needs to be sufficiently impatient

(small β) in order for a solution to exist.

For some special cases with no preference shocks, we can simplify the general condition

between (β, γ, ψ) to only restrict γ. The following corollary also characterizes the upper

bound β̄ as a monotonic function in γ.

Corollary 1 If there is no preference shock, i.e., λ0 = 0, λg = 0, Λ̄ = 0, Zυ = 0, then

1. If Z∞′1 µg ≤ 0, then ϑ = 1−γ
1−η < 0 guarantees the existence of a solution.

2. If β = 1, there is a value γ̄(θr) such that γ̄−γ
1−η < 0 guarantees a solution.

3. For any ψ, β̄ is monotonic in γ: for ψ > 1, then dβ̄
dγ
> 0; for ψ < 1, then dβ̄

dγ
< 0.

Under the condition specified in part 1 of Corollary 1, a solution exists if (γ > 1, ψ > 1)

or (γ < 1, ψ < 1). This divides the parameter space for (γ, ψ) into four quadrants, and only

two of these four have a solution. Part 2 of Corollary 1 says that if an agent is perfectly

patient with β = 1, then (γ > γ̄, ψ > 1) or (γ < γ̄, ψ < 1) guarantees a solution. Again,

two out of the four quadrants have a solution, similar to part 1. The intuition is also similar.

Although the cutoff for ψ is always 1, the difference is the boundary on γ now depends on

the parameters driving the dynamics of the model in θr.

The upper left panel of Figure 1 provides a visualization for parts 1-2 of Corollary 1.

This plot is based on the Gaussian dynamics of Model #1 (long-run risk) in Section 5.1 with
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no preference shocks. We set β = 1, which is consistent with the assumption in part 2 of the

corollary. The remaining parameters of the model are fixed at their posterior mean values

from Table 1. The plot illustrates how the parameter space for (γ, ψ) is partitioned into 4

regions, and the areas that have a solution are the lower-left and upper-right quadrants. As

stated in the corollary, the cutoff for ψ is always 1 while the boundary for γ is determined

by the unconditional mean of gt and the variance, see Appendix E.1.

The separation of the parameter space into quadrants makes estimation more challenging.

For example, if the optimum is within the upper-right region and we start from the lower

left region, a numerical optimization algorithm or a Bayesian MCMC algorithm, can have a

hard time getting through the tiny bottleneck and reaching the correct part of the parameter

space. In practice, we observe these algorithms hitting the (red) regions where no solution

exists and often stopping. Estimation gets more complicated when the structural parameters

interact with the remaining parameters of the model as the boundaries can shift creating

strong dependencies among the model’s parameters.

Corollary 1 part 3 states the relationship between the upper bound for β and γ. If the

substitution effect dominates the wealth effect, then the more risk averse the agent is the

more patient he must be. If the wealth effect dominates the substitution effect, then a more

risk averse agents need to be less patient and discount the future faster. The case ψ < 1 is

shown in the right panel of Figure 1, where we use ψ = 0.33 for demonstration purposes.

The graph shows a downward sloping line that separates the parameter space for (β, γ) into

feasible (blue) and infeasible (red) regions. The larger the value of risk aversion γ gets, the

smaller the discount rate β needs to be to remain in a region with a valid solution.

4.2 Non-Gaussian models

Stochastic volatility introduces several new restrictions on the parameter space. A solution

to the fixed point problem requires a solution for the loadings Dh in the price to consumption

ratio pct = D0 +D′ggt +D′hht. A real solution for Dh does not always exist nor is it unique.
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Figure 1: Feasible and infeasible regions of the parameter space.
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Feasible (blue) and infeasible (red) regions of the parameters space. Figures are based on Gaussian Model #1

(long-run risk) with no preference shocks. Top row has no stochastic volatility and bottom row has stochastic

volatility. Top left: Parameter space for (γ, ψ) with β = 1.0. Top right: Parameter space for (γ, β) with

ψ = 0.33. Bottom left: Parameter space for (γ, ψ) with β = 1.0. Bottom right: Parameter space for (γ, β)

with ψ = 0.33. Parameters θr are equal to the posterior mean values from Table 1.

The solution can be calculated in closed-form when both Σh and Φh are lower-triangular or

when Σh is diagonal. For simplicity, we derive the conditions when Σh and Φh are diagonal.

Assumption 1 For any real p̄c, the loadings Dh have a real solution.

Assumption 2 For any real p̄c and Dh, the conditional Laplace transform exists.
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Both Assumptions 1 and 2 are necessary conditions that impose restrictions on the param-

eter space. Assumption 1 amounts to the existence of a real solution for a series of H

quadratic equations in H unknowns. The solution of each equation requires their respective

discriminant to be positive.6 Assumption 2 is a necessary condition for the existence of the

conditional expectations when stochastic volatility follows a multivariate Cox, Ingersoll, and

Ross(1985) process. Appendix C discusses these conditions in more detail.

Conditional on these being satisfied, we have the following proposition.

Proposition 2 Given Assumption 1-2, there is a value ¯̄β(ψ, γ, θr) such that if β < ¯̄β, then

there exists a real solution for the fixed point problem.

Proof: See Appendix E.2.

Proposition 2 provides a sufficient condition for the existence of a real solution for the

fixed point problem, that is a counterpart to Proposition 1 for the Gaussian model. The

difference from the Gaussian model are the additional restrictions that Assumptions 1-2

impose on the parameter space and the function ¯̄β(ψ, γ, θr) is more general. The nature of

the fixed point problem requires that all three conditions be jointly satisfied for a solution

to exist.

In Figure 1, we plot the structural parameters (β, γ, ψ) that illustrate the conditions

above. First, we focus on the case when β = 1 and the representative agent is extremely

patient, see the bottom left plot. The upper-left and lower-right regions remain infeasible

as before with similar intuition as Gaussian models. The difference is now the upper-right

region becomes infeasible in addition to the earlier regions in order to satisfy Assumptions

1-2. This emphasizes that in stochastic volatility models both the intertemporal elasticity

of substitution and risk aversion need to be modest. The implications are two-fold. First,

much of the economics literature evaluates a model’s success according to whether or not it

can produce a small value of γ. We need to interpret this result with caution. As we show,

6This condition is similar to an existence condition discussed by Campbell, Giglio, Polk, and Turley(2014)
in their ICAPM model. They do not provide a condition guaranteeing a solution to the fixed point problem.
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for stochastic volatility models with no preference shocks, a small value of γ is required to

satisfy the constraints of the model and is not necessarily a feature of a specific consumption-

based model. Second, stochastic volatility models have much smaller feasible regions of the

parameter space, and they are more likely to encounter numerical problems and boundaries.

The bottom right panel in Figure 1 is similar to the upper right plot. Again the downward

sloping line that divides the blue and red regions indicates that with a small intertemporal

elasticity of substitution, an agent needs to be more patient as their risk aversion increases.

This replicates the result from the Gaussian models.

5 Slope of the yield curve

In the next two sections, we investigate the ability of consumption based models to fit

key moments of the term structure empirically. The moments that we focus on are the

unconditional slope of the yield curve (this section) and the variation in the term premium

(next section).

5.1 Dynamics for consumption and inflation

Model #1: Long-run risk in consumption and inflation Consider a model with

long-run risks for consumption growth as in Bansal and Yaron(2004) and a long-run risk

factor in inflation similar to Stock and Watson(2007). The model is

πt+1 = π̄t + επ1,t+1 επ1,t+1 ∼ N (0, ht,π1) (27)

∆ct+1 = c̄t + εc1,t+1 εc1,t+1 ∼ N (0, ht,c1) (28)

π̄t+1 = µπ + φππ̄t + επ2,t+1 επ2,t+1 ∼ N (0, ht,π2) (29)

c̄t+1 = µc + φcc̄t + σc,πεπ2,t+1 + εc2,t+1 εc2,t+1 ∼ N (0, ht,c2) (30)
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where c̄t is the long-run growth rate of consumption (long-run risk) and π̄t is the trend

in inflation. The shocks εc1,t and επ1,t are transitory, and determine the high-frequency

movements in their respective series whereas επ2,t and εc2,t are shocks to their persistent

components. In our model, shocks to long run inflation have a contemporaneous impact

on the long run risk, and all shocks have stochastic volatility. The state vectors are gt =

(πt,∆ct, π̄t, c̄t)
′ and ht = (ht,π1 , ht,c1 , ht,π2 , ht,c2)

′. See Appendix A.3 for more details.

Model #2: VARMA(1,1) Similar to Wachter(2006) and Piazzesi and Schneider(2007),

we also consider a VARMA(1,1) model for consumption growth and inflation given by

πt+1 = µπ + φππt + φπ,c∆ct + επ,t+1 + ψπεπ,t επ,t+1 ∼ N (0, ht,π) (31)

∆ct+1 = µc + φc,ππt + φc∆ct + σc,πεπ,t+1 + εc,t+1 + ψcεc,t εc,t+1 ∼ N (0, ht,c) (32)

Shocks to consumption growth and inflation are correlated and both have stochastic volatil-

ity. The state vectors are gt = (πt,∆ct, επ,t, εc,t)
′ and ht = (ht,π, ht,c)

′. See Appendix A.4 for

more details.

5.2 Data and estimation

It is well established in the Gaussian ATSM literature that if we allow latent factors, any

procedure to fit the yield curve will select the level, slope and curvature as factors. Some

factors in (27)-(32) are inherently latent (e.g., the long run inflation π̄t and consumption

c̄t). If we simultaneously fit yields, inflation and consumption data, the estimated latent

factors, such as π̄t and c̄t, will look like level and slope, and lose their original purpose of

having a structural economic underpinning. The reasons are simple. First, we have more

yield data than consumption or inflation. Second, the conditional variance of yields is small

compared to consumption growth and inflation, which have greater high frequency variation.

Therefore, any sensible estimation procedure will emphasize the fit of yields first while fitting
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consumption growth and inflation poorly.

To maintain the economic interpretation of any latent factors, we constrain the factors to

fit the macroeconomic variables through a two step estimation procedure.7 First, we estimate

time series models for consumption growth and inflation, which gives us estimates of the P

parameters θP and the pricing factors gt and ht. Conditional on these estimates, we run

cross-sectional regressions of yields on these factors to estimate the structural parameters.

Data Our measure of monthly real per capita consumption growth is constructed from

nominal non-durables and services data downloaded from the NIPA tables at the U.S. Bureau

of Economic Analysis. We deflate each of these series by their respective price indices, add

them together, and divide by the civilian population. The population series and monthly

U.S. CPI inflation are downloaded from the Federal Reserve Bank of St. Louis. Yields are

the Fama and Bliss(1987) zero coupon bond data available from the Center for Research

in Securities Prices (CRSP) with maturities of (1, 3, 12, 24, 36, 48, 60) months. The data

spans from February 1959 through June 2014 for a total of T = 665 observations.

State space form Stacking yields y
$,(n)
t and bond loadings in order for N different ma-

turities n1, n2, ..., nN gives y$
t =

(
y

$,(n1)
t , y

$,(n2)
t , . . . , y

$,(nN )
t

)
, A$ = (a$

n1
, . . . , a$

nN
)′, B$

g =

(b$,′
g,n1

, ..., b$,′
g,nN

)′,and B$
h = (b$,′

h,n1
, ..., b$,′

h,nN
)′. The observation equations for yields are mea-

sured with errors

y$
t = A+B$

ggt +B$
hht + ηt

where ηt is a vector of pricing errors.

Estimation of the time series dynamics We estimate time series models for consump-

tion growth and inflation by a particle Gibbs sampler which is an algorithm recently devel-

7Formally, our procedure can be interpreted as an indirect inference estimator where there are more
moment conditions than parameters to estimate. The weighting matrix is implicitly chosen so that the P
parameters are estimated entirely from the time series using no cross-sectional information.
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Table 1: Estimates of Model #1 and #2 with and without stochastic volatility

Pr. m Pr. St. D. Post. m Post. St. D. Pr. m Pr. St. D. Post. m Post. St. D.

µπ 0.001 0.010 1.12e-04 5.22e-05 µπ 0.001 0.010 0.62e-04 2.85e-05
µc 0.001 0.010 0.50e-04 2.53e-05 µc 0.001 0.010 1.34e-03 5.06e-05
φπ 0.950 0.030 0.966 0.014 φπ 0.950 0.030 0.975 0.010
φc 0.950 0.030 0.962 0.016 φc 0.950 0.030 0.900 0.026

σπ1 0.9e-03 4.62e-04 0.0021 0.092e-03 σh,π1
1.48e-04 5.26e-05 1.61e-04 3.31e-04

σc1 0.9e-03 4.62e-04 0.0034 0.098e-03 σh,c1 2.22e-04 5.99e-05 1.38e-04 3.79e-04
σπ2 0.47e-03 1.37e-04 6.64e-04 0.125e-03 σh,π2

2.74e-06 2.76e-07 2.40e-07 3.75e-08
σc2 0.47e-03 1.37e-04 2.64e-04 0.042e-03 σh,c2 2.38e-06 3.64e-07 2.72e-06 2.78e-08
σc,π 0 1.70e-04 -1.28e-04 0.074e-03 σc,π 0 1 -0.1122 0.1484

Φh,π1
0.975 0.01 0.956 0.0113

Φh,c1 0.975 0.01 0.980 0.0066
Φh,π2

0.975 0.01 0.979 0.0064
Φh,c2 0.975 0.01 0.987 0.0049

νh,π1
2 0.20 1.771 0.164

νh,c1 2 0.20 2.091 0.162
νh,π2

2 0.20 1.932 0.178
νh,c2 2 0.20 2.024 0.168

µπ 0.001 0.01 0.2641 0.1394 µπ 0.001 0.01 1.451e-04 1.092e-04
µc 0.001 0.01 1.14e-03 0.2011 µc 0.001 0.01 1.28e-03 1.73e-04

φπ 0.95 0.10 0.884 0.038 φπ 0.95 0.10 0.911 0.032
φc,π 0 0.10 -0.091 0.030 φπ,c 0 0.10 -0.091 0.040
φπ,c 0 0.10 0.079 0.026 φπ,c 0 0.10 0.068 0.025
φc 0.65 0.10 0.379 0.091 φc 0.65 0.10 0.142 0.053

ψπ -0.2 0.32 -0.474 0.076 ψπ -0.2 0.32 -0.552 0.074
ψc 0 0.32 -0.479 0.092 ψc 0 0.32 -0.242 0.032

σπ 1.49e-03 5.40e-04 2.36e-03 6.81e-05 σh,π 1.48e-04 5.26e-05 3.84e-05 9.81e-05
σc 1.49e-03 4.35e-04 3.02e-05 6.54e-06 σh,c 2.22e-04 5.99e-05 1.22e-04 6.81e-06
σc,π 0 7.06e-04 -3.44e-04 9.59e-05 σc,π 0 1 -0.190 0.148

Φh,π 0.975 0.01 0.976 0.007
Φh,c 0.975 0.01 0.971 0.009

νh,π 2 0.20 1.66 0.331
νh,c 2 0.20 2.77 0.744

Prior and posterior mean and standard deviation of Model #1 (top) and #2 (bottom) with and without
stochastic volatility.

oped in the Bayesian statistics literature; see, e.g. Andrieu, Doucet, and Holenstein(2010).

The particle Gibbs sampler is an MCMC algorithm that uses a particle filter to draw from

distributions that are intractable; see Creal(2012) for a survey on particle filtering.

Given a prior distribution p
(
θP
)

for the P parameters, we sample from the joint posterior

distribution

p
(
θP, g1:T , h0:T |Y1:T

)
∝ p (Y1:T |g1:T , h0:T , θ) p (g1:T |h0:T ) p (h0:T |θ) p

(
θP
)

(33)
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where Yt = (∆ct, πt) and xt:t+k = (xt, . . . , xt+k). Starting with an initial value for the

parameters θP,(0), the particle Gibbs sampler draws from this distribution by iterating for

j = 1, . . . ,M between the two full conditional distributions

(g1:T , h0:T )(j) ∼ p
(
g1:T , h0:T |Y1:T , θ

P,(j−1)
)

(34)

θP,(j) ∼ p
(
θP|Y1:T , g

(j)
1:T , h

(j)
0:T

)
(35)

This produces a Markov chain whose stationary distribution is the posterior (33). The

models for consumption growth and inflation (27)-(32) are non-linear, non-Gaussian state

space models. In these models, the full conditional distribution of the latent state variables

given the data and model’s parameters (34) is not easy to sample. The particle Gibbs

sampler overcomes this limitation by using a particle filter to jointly sample paths of the

state variables (g1:T , h0:T ) in large blocks. Consequently, it improves the mixing of the

MCMC algorithm and the efficiency with which the Markov chain explores the parameter

space. Further details of the algorithm can be found in Appendix F.1, see also Creal and

Tsay(2015) for a longer discussion.

Using the particle Gibbs sampler, we estimate Models #1 and #2 with and without

stochastic volatility. Posterior means and standard deviations for the parameters of the

model are in Table 1. Filtered and smoothed estimates of the latent state variables are

plotted in Figures 2 and 3, respectively.

In Model #1, there is considerable variation in the long-run risk factor c̄t of consumption

growth (top left). It shows a noticeable decline during each recession, with the largest decline

during the Great Recession. The pattern replicates the long run risk in the literature. While

the volatility of the long run growth rate (top middle) is economically small and does not

vary much, the stochastic volatility of the high frequency component (top right) is larger

with more variation. The volatility of trend inflation increases during the mid-1970’s, peaks

during the early 1980’s, and declines gradually until late 1990s, and keeps at a low level
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Figure 2: Estimated factors from Model #1: long-run risk in consumption and inflation.

Filtered (red) and smoothed (blue) estimates of the factors from Model # 1. Top row is consumption growth

and bottom row is inflation. Top left to right: long-run risk c̄t, long-run risk volatility ht,c2 , high-frequency

volatility ht,c1 . Bottom left to right: inflation trend π̄t, trend volatility ht,π2
, high-frequency volatility ht,π1

.

afterwards. The estimates of stochastic volatility from this model of inflation are similar to

those found by Stock and Watson(2007) and Creal(2012). The stochastic volatilities from

Model #2 in Figure 3 resemble the high frequency components in Model #1.

Estimation of the structural parameters Given the estimated parameters θ̂P and the

filtered factors ĝt and ĥt from the time series dynamics, we estimate the structural parameters

θu = (β, γ, ψ) and the risk sensitivity parameters θλ that enter the bond loadings. This is a

cross-sectional regression of yields on the factors

y$
t = A$

(
θu, θλ

)
+B$

g

(
θu, θλ

)
ĝt +B$

h

(
θu, θλ

)
ĥt + ηt ηt ∼ N (0,Ω) (36)
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Figure 3: Estimated factors from Model #2.

Filtered (red) and smoothed (blue) estimates of volatility from Model # 2. Consumption volatility ht,c and

inflation volatility ht,π

The parameters have to satisfy the constraints required for the existence of a solution as

discussed in Section 4. The bond loadings are also a function of the P parameters θP which

we have fixed at their posterior mean estimates from Table 1. For many models, the Gaussian

state vector gt can be rotated so that the bond loadings B$
g are zero for some of the factors.

Let G∗ denote the minimal amount of Gaussian factors which have non-zero bond loadings.8

To estimate the parameters, we run a least squares regression of yields on the filtered

estimates of the factors. This produces reduced form estimates of the loadings Â$,r, B̂$,r
g

and B̂$,r
h that do not impose the restrictions from the structural model. Next, we estimate

the structural parameters θu and θλ by minimizing the distance between the reduced form

parameters ζ̂r =
(
Â$,r, vec

(
B̂$,r
g

)
, vec

(
B̂$,r
h

))
and the loadings implied by the structural

model ζ
(
θu, θλ

)
. The criterion function is

argmin
θu,θλ

T
(
ζ̂r − ζ

(
θu, θλ

))′
W
(
ζ̂r − ζ

(
θu, θλ

))
8For example, in Model #1, the state vector has dimension G = 4 and is defined as gt = (πt,∆ct, π̄t, c̄t)

′
.

However, the bond loadings on inflation and consumption are zero and only expected inflation π̄t and
expected consumption growth c̄t have non-zero bond loadings making G∗ = 2. Similarly, in Model #2, the
state vector can be rotated to include expected consumption growth and expected inflation making G∗ = 2.
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Table 2: Estimated structural and preference shock parameters

Model 1 Model 1 PS Model 1 SV Model 1 SV-PS Model 2 Model 2 PS Model 2 SV Model 2 SV-PS

β 0.9822 0.9999 0.9987 0.9994 0.9999 0.9951 0.9999 0.9999
ψ 19.01 1.995 2.741 1.887 0.478 0.439 0.622 0.999
γ 374.91 11.3127 0.001 9.03e-07 140.06 470.01 46.83 2.868
p̄c 3.363 4.288 7.795 7.621 7.135 5.552 7.365 17.801
λπ – 0.0035 – -0.0335 e-07 – -0.0255 – -0.1121 e-05
λc – 0.0031 – 3.900 e-03 – 0.161 e-03 – -0.0484 e-05

Estimated structural and preference shock parameters from eight models. These are Model #1 and #2 without
and stochastic volatility (SV) and preference shocks (PS).

where W is a weighting matrix. In our work, the weighting matrix is W = − 1
T

E
[

∂2Lr
∂ζr∂ζr,′

]
,

where Lr is the reduced-form log-likelihood from (36). This procedure produces a minimum

chi-square estimator, because the optimized objective function yields a chi-square statistic.

A similar procedure has been used in Gaussian ATSMs by Hamilton and Wu(2012).

There are two advantages to this procedure as opposed to direct maximum likelihood

estimation of (36). First, the weighting matrix W is well-conditioned for any value of the

structural parameters and it only needs to be evaluated once as opposed to every iteration

within an optimizer. Second, we obtain estimates of the reduced form parameters which

measure the “best” fit we could hope to achieve for a given set of pricing factors. Then, the

value of the objective function tells us how far away we are from the best fit, and how severe

the restrictions imposed by the structural models are.

For the models with preference shocks, to keep the model minimal, we only allow the

price of inflation risk to depend on inflation, and the price of consumption risk to depend

on consumption. This means that we only introduce two new parameters into the matrix λg

while the remaining preference shock parameters are set to zero Zυ = λ0 = λgh = λh = 0,

see Appendix A for details. If there are no preference shocks, there are three free parameters

to fit N × (G∗ + H + 1) reduced form moments in a stochastic volatility model. In models

with preference shocks, there are a total of five free parameters.

The parameter estimates from these models are in Table 2. Across all models, the time

discount factor β is estimated to be close to 1. The intertemporal elasticity of substitution ψ

varies from 0.4 to a high of 19, although most estimates are close to the former rather than
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the latter. Estimates of the risk aversion parameter γ vary markedly from homoskedastic

models to stochastic volatility models. For models without stochastic volatility, the estimates

are high and range between 11 to 470. Estimates of γ in stochastic volatility models are

considerably lower.

5.3 Slope of the yield curve

In standard models with no preference shocks, there are only 3 structural parameters (β, γ, ψ)

that can be used to fit the cross section of the yield curve. The literature has thus far

primarily focused on a model’s ability to fit the unconditional slope of the yield curve with

these parameters.

Figure 4 plots the unconditional yield curve from the data (in blue) along with the

unconditional slope from Models’ #1 (in the left panels) and #2 (in the right panels) with

(yellow) and without (red) the preference shock parameter λg set to zero. The top row are

homoskedastic, Gaussian models and the bottom row are models with stochastic volatility.

The four Gaussian models are all able to generate an upward sloping yield curve, repli-

cating a key finding in the literature. Piazzesi and Schneider(2007) argue that a contributing

factor of this result are the negatively correlated shocks to consumption growth and inflation.

Our estimates of the covariance are also negative and significant (see Table 1).

In the bottom row, we can see that both stochastic volatility models without preference

shocks have flat if not downward sloping yield curves (in red). Stochastic volatility models

have a harder time fitting the unconditional yield curve. This is because the addition of

stochastic volatility introduces more moment conditions that need to be fit without adding

any free structural parameters. Adding stochastic volatility to generate time-varying risk

premia actually makes it increasingly difficult to fit the unconditional yield curve. In contrast,

adding preference shocks allows the SV models (yellow lines at the bottom) as well as the

Gaussian models (yellow lines on the top).

In Figures 5 and 6, we plot the time series of yields with 1, 12, and 60 month maturities
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Figure 4: Unconditional yield curves from Models #1 and #2
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Unconditional yield curves as a function of maturity in blue. Red (yellow) are estimates from models without

(with) preference shocks. Top left: Model #1 (long-run risk) without stochastic volatility. Top right: Model

#2 (VARMA) without stochastic volatility. Bottom left: Model #1 (long-run risk) with stochastic volatility.

Bottom right: Model #2 (VARMA) with stochastic volatility.

from the data (upper left), the unrestricted reduced form (upper right) and the implied

yields with (bottom right) and without (bottom left) preference shocks. These are for the

stochastic volatility Models #1 and #2, respectively. In the observed data, long rates are

higher than short rates for most of the sample. Both the reduced form and structural model

with preference shocks can replicate this fact, hence the upward sloping yield curves in

Figure 4. Models without preference shocks (bottom left) fail to capture this basic feature.

5.4 How structural parameters enter the bond loadings

We elaborate more on the mechanism of how structural parameters enter the loadings, and

hence influence the slope of the yield curve. We use Gaussian models with no preference

shock for intuition. First, consider the unconditional mean of (36), and write the loadings
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Figure 5: Yields for Model #1
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Top left: Observed Fama-Bliss yields. Top right: reduced form yields. Bottom left: model implied yields from

Model #1 without preference shocks. Bottom right: model implied yields from Model # 1 with preference

shock λg.

as explicit functions of the underlying parameters: ȳ$ = A$ (β, ψ, γ, θr) +B$
g (ψ, θr) µ̄g. The

unconditional mean of the Gaussian factors are positive empirically µ̄g > 0. The loadings

B$
g on consumption growth only depend on ψ, more precisely, the initial bond loading b$

1,g on

expected consumption growth always equals ψ−1 and the initial loading on expected inflation

equals 1. As long as the Gaussian factors are modeled as a stationary (non-explosive) process,

the loadings will decay as a function of maturity. Consequently, the Gaussian term B$
g µ̄g

must be positive and decrease as a function of maturity. This means that in a Gaussian

model with no preference shocks the loadings A$ must be upward sloping in order to match

the unconditional yield curve.

Next, consider the impact each structural parameter has on A$, see the detailed expres-

sions for the bond recursions in Appendix D.2. We focus on the space near our estimates

with the feature κ1 ≈ 1, and ∂κ1/∂θ
u ≈ 0. The time discount parameter β only enters
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Figure 6: Yields for Model #2
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Top left: Observed Fama-Bliss yields. Top right: reduced form yields. Bottom left: model implied yields from

Model # 2 without preference shocks. Bottom right: model implied yields from Model # 2 with preference

shock λg.

the loadings A$ and it does so additively as ln (β). Increases or decreases in ln (β) shift

all yields in parallel and have no impact on the unconditional slope of the yield curve, i.e.,

∂A$/∂ ln(β) ≈ −ι. The remaining parameters γ and ψ enter the loadings through more

complicated functional forms. And these two parameters need to pin down the slope as well

as level of A$, and B$
g for consumption.

The two preference parameters that enter λg create additionally flexibility for the Gaus-

sian bond loadings, B$
g . In a standard model, the slope of the bond loadings B$

g is only a

function of the autocovariance matrix Φg under the P measure. The cross-section of yields

and the time series of the factors are strongly linked. In the data, the autocorrelations of

consumption growth are typically quickly mean reverting while monthly inflation reverts to

its mean more slowly, see the estimates in Table 1. The preference parameters λg allow
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the slope of the bond loadings to differ from the autocorrelations of consumption growth

and inflation. The bond loadings can even increase as a function of maturity which is an

important feature of the data, especially inflation.

6 Term premia

The term premium is a crucial object to understand in order for central banks to implement

monetary policy. The primary tool central banks rely on to estimate term premia are Gaus-

sian ATSMs, see Wright(2011) and Bauer, Rudebusch, and Wu(2012). The only economic

structural imposed within a ATSM is a condition guaranteeing the absence of arbitrage. The

minimal amount of structure allows these models to fit the yield curve well, hence produce

plausible term premia for monetary authorities. At the same time, the lack of economic

structure and dependence on latent factors make it hard to interpret what economic mech-

anism ultimately drives the term premium. Conversely, structural models only have a few

structural parameters. Consequently, they have trouble matching even the unconditional

moments of term premia, not to mention the dynamics; for a discussion see Rudebusch and

Swanson(2008) and Rudebusch and Swanson(2012).

Our new model brings economic structure and flexibility together by introducing prefer-

ence shocks to an equilibrium model. It is able to produce realistic term premia and provide

an economic interpretation to its movements. Our model allows for flexibility in both time-

varying prices and quantities of risk. Hence, it allows us to disentangle the driving force of

term premia, and determine which is a more plausible explanation for its variation: time-

varying prices or quantities of risk.

First, we shut down the preference shocks, but allow stochastic volatility to replicate

models in the literature. Model #1 with long run risk is similar to the model estimated

by Bansal and Shaliastovich(2013). We plot term premia for this model in the top row left

panel of Figure 7, for maturities of one (blue) and five (red) years. For comparison, we also
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Figure 7: Term premia from Models #1, #2 and a Gaussian ATSM.
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Estimated 1 and 5 year term premia from alternative models. Top left: Model #1 with SV and no preference

shocks; Top right: Model #2 with SV and no preference shocks; Second row left: Model #1 with SV and

preference shocks λg; Second row right: Model #2 with SV and preference shocks λg; Bottom left: Model #1

without SV and with preference shocks. Bottom right: reduced-form 3 factor Gaussian ATSM.

plot estimates from a three-factor Gaussian ATSM in the bottom right panel. The term

premia generated by Model #1 are economically insignificant: the one year term premium is

close to zero the whole time, and the five year term premium peaks at about 10 basis points.

Moreover, the term premia generated by this model are negative. This is counter-intuitive

and implausible as the model produces the wrong sign.

In the top row on the right, we change dynamics to a VARMA, Model #2, also with no
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preference shocks. We can see that the two plots give completely different pictures of how

term premia behave. Model #2 does produce positive term premia. The size of the term

premium is still smaller compared to the reduced form evidence in the lower right panel.

Moreover, the dynamics of term premia are counter-intuitive as well: the term premium

achieves its maximum during the Great Recession, as opposed to in the 1980s as suggested

by ATSM. This is driven by the fact that term premia comove only with volatility, primarily

inflation volatility, see right panel of Figure 3.

Next, we add preference shocks to both models, with term premia in the middle panels

of Figure 7. Once we add the preference shock, the resulting term premia look closer to the

reduced form term premia from the Gaussian ATSM, and each other. The general pattern

is the term premia rise for the first half of the sample, drop sharply in the early 1980s, and

then keep steady between 1% and 2% afterwards for the 5 year maturity. They also resemble

the cyclical pattern discussed in Bauer, Rudebusch, and Wu(2012). Term premia increase

in anticipation of recessions, and drop post recession. For the Great Recession, term premia

drop sharply due to the flight to quality argument.

The contrast between the first two rows in Figure 7 demonstrate that adding preference

shocks is crucial to produce meaningful dynamics for term premia. With stochastic volatility

being present in all these pictures, the question is does stochastic volatility play a significant

part in explaining variation in term premia? We investigate this question by looking into a

Gaussian model with preference shocks. The term premia from Model #1 are in the lower

left panel. Interestingly, the term premia in this panel look almost identical to those in the

panel right above it. This illustrates that all the meaningful variation in the term premia

is driven by time variation in the price of risk through preference shocks associated with

inflation. In contrast, time variation in stochastic volatility can in theory generate time

variation for term premia, but in practice, it is not the primary source of its fluctuations.
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7 Conclusion

We developed a model of recursive preferences to capture time variation in term premia

through two sources: time-varying prices and quantities of risk. We introduced time-varying

prices of risk through a preference shock that comoves with consumption growth and infla-

tion. This generates a time-varying risk premia even when the shocks are homoskedastic.

We found that the time varying prices of risk driven by expected inflation is the primary

channel empirically. On the contrary, once the preference shock is present, with or without

stochastic volatility does not alter the economic implication of the dynamics of term premia.

Conversely, a stochastic volatility model without preference shocks cannot match the upward

sloping unconditional yield curve, the fundamental moment in the term structure. Adding

preference shock solves this problem as well.

Empirical implementation of recursive preferences requires careful attention when solving

for the stochastic discount factor. A solution does not exist for certain combinations of

structural parameters. Our paper provided conditions that guaranteed the existence of a

solution. We use these conditions to provide guidelines for empirical implementation.

Several authors have studied term structure models with recursive preferences in DSGE

models, e.g. Rudebusch and Swanson(2008), Rudebusch and Swanson(2012), van Binsber-

gen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez(2012), and Dew-Becker(2014). How

to introduce our technology of capturing realistic dynamics into a DSGE framework remains

an open question, and logical next step for the literature.
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Appendix A Dynamics of the state vector

Appendix A.1 General Model

The dynamics of the Gaussian state vector gt driving ∆ct and πt are

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + Σg,tεg,t+1, εg,t+1 ∼ N (0, I) ,

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit,

εh,t+1 = ht+1 − Et [ht+1|ht] ,

where the dynamics of volatility are

ht+1 = Σhwt+1,

wi,t+1 ∼ Gamma (νh,i + zi,t+1, 1) , i = 1, . . . ,H (A.1)

zi,t+1 ∼ Poisson
(
e′iΣ
−1
h ΦhΣhwt

)
, i = 1, . . . ,H. (A.2)

This is a discrete-time, multivariate Cox, Ingersoll, and Ross(1985) process. To guarantee positivity and

existence of ht, the process requires Σh > 0, Σ−1
h ΦhΣh > 0 and the Feller condition νh,i > 1 for i = 1, . . . ,H.

The conditional mean and variance of the process are

Et [ht+1|ht] = Σhνh + Φhht, (A.3)

Vt [ht+1|ht] = Σh,tΣ
′
h,t

= Σhdiag (νh) Σ′h + Σhdiag
(
2Σ−1

h Φhht
)

Σ′h, (A.4)

where Σh is a H ×H matrix of scale parameters, Φh is a H ×H matrix of autoregressive parameters and

the intercept is equal to Σhνh. The unconditional mean is µ̄h = (IH − Φh)
−1

Σhνh. The transition density

is

p (ht+1|ht, νh,Φh,Σh) = |Σ−1
h |

H∏
i=1

(
e′iΣ
−1
h ht+1

) νh,i−1

2
(
e′iΣ
−1
h Φhht

)− νh,i−1

2

exp

(
−

H∑
i=1

e′iΣ
−1
h ht+1 + e′iΣ

−1
h Φhht

)
Iνh,i−1

(
2
√(

e′iΣ
−1
h ht+1

) (
e′iΣ
−1
h Φhht

))
(A.5)
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where Iν (x) is the modified Bessel function. The Laplace transform needed to solve the model with recursive

preferences and for pricing assets is

Et [exp (u′ht+1)] = exp

(
H∑
i=1

e′iΣ
′
hu

1− e′iΣ
′
hu

e′iΣ
−1
h Φhht −

H∑
i=1

νh,i log (1− e′iΣ
′
hu)

)
,

which exists only if e′iΣ
′
hu < 1 for i = 1, . . . ,H. Further properties of the univariate process are developed

by Gouriéroux and Jasiak(2006).

Appendix A.2 Risk neutral Q$ dynamics

After solving for the short rate r$
t , we can deduce the implied dynamics of the state variables under the

nominal risk neutral measure

p
(
gt+1|gt, ht+1, ht; θ,Q

$
)
p
(
ht+1|ht; θ,Q$

)
= exp

(
r$
t

)
M$
t+1p (gt+1|gt, ht+1, ht; θ,P) p (ht+1|ht; θ,P)

The dynamics of the state vector under the nominal risk-neutral measure are

gt+1 = µQ,$g + ΦQ,$g gt + ΦQ,$gh ht + Σghε
Q,$
h,t+1 + Σg,tε

Q,$
g,t+1 εQ,$g,t+1 ∼ N (0, I)

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit

εQ,$h,t+1 = ht+1 − EQ,$t [ht+1|ht]

ht+1 ∼ NCG
(
νh,Φ

Q,$
h ,ΣQ,$h

)

For the stochastic volatility dynamics, the relationship between P and Q$ is

ΦQ,$h = Σh
(
IH − diag

(
Σ′h
[
Σ′gh (ϑZυ − γZc − Zπ + (ϑ− 1)κ1Dg)− ϑλh + (ϑ− 1)κ1Dh

]))−2
Σ−1
h Φh

ΣQ,$h = Σh
(
IH − diag

(
Σ′h
[
Σ′gh (ϑZυ − γZc − Zπ + (ϑ− 1)κ1Dg)− ϑλh + (ϑ− 1)κ1Dh

]))−1
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For the Gaussian dynamics, the relationship between the P and Q$ parameters is

µQ,$g = µg − Σ0,gΣ
′
0,g (γZc + Zπ) + κ1

(η − γ)

(1− η)
Σ0,gΣ

′
0,gDg + ϑΣ0,gΣ

′
0,gZυ − ηϑλ0

−Σgh

(
Σh − ΣQ,$h

)
νh

ΦQ,$g = Φg − ηϑλg

ΦQ,$gh = Φgh − ([γZc + Zπ]⊗ IG)
′
S̃g + κ1

(η − γ)

(1− η)
(Dg ⊗ IG)

′
S̃g

+ϑ (Zυ ⊗ IG)
′
S̃g − Σgh

(
Φh − ΦQ,$h

)
− ηϑλgh

The parameters of the real risk neutral measure Q can be determined by setting Zπ = 0.

Appendix A.3 Model #1

The model with long-run risk to consumption growth and trend inflation has four stochastic volatility factors

given by ht = (ht,c1 , ht,c2 , ht,π1 , ht,π2)
′
. We assume that these evolve independently of one another as

ht+1,π1 ∼ NCG (νh,π1 , φh,π1 , σh,π1)

ht+1,c1 ∼ NCG (νh,c1 , φh,c1 , σh,c1)

ht+1,π2
∼ NCG (νh,π2

, φh,π2
, σh,π2

)

ht+1,c2 ∼ NCG (νh,c2 , φh,c2 , σh,c2)

The models can be placed in the notation of the paper as

gt =



πt

∆ct

π̄t

c̄t


Zc =



0

1

0

0


Zπ =



1

0

0

0


Φg =



0 0 1 0

0 0 0 1

0 0 φπ 0

0 0 0 φc


µg =



0

0

µπ

µc



Φgh =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Σgh =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Σ0,g =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Σ1,g =



1√
1000

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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Σ2,g =



0 0 0 0

0 1√
1000

0 0

0 0 0 0

0 0 0 0


Σ3,g =



0 0 0 0

0 0 0 0

0 0 1√
1000

0

0 0
σc,π√
1000

0


Σ4,g =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1√
1000


We have scaled these matrices by 1/

√
1000 so that the volatility factors ht are roughly the same magnitude

as the Gaussian factors gt. For the volatility processes, the matrices are

νh =



νh,π1

νh,c1

νh,π2

νh,c2


Φh =



φπ1 0 0 0

0 φc1 0 0

0 0 φπ2
0

0 0 0 φc2


Σh =



σh,π1 0 0 0

0 σh,c1 0 0

0 0 σh,π2
0

0 0 0 σh,c2


For Gaussian models with no stochastic volatility, we set the scale matrix equal to

Σ0,g =



σπ1
0 0 0

0 σc1 0 0

0 0 σπ2
0

0 0 σc,π σc2


.

Our economic restrictions on the prices of risk imply that Σ−1
g,tλg needs to be diagonal mathematically. This

amounts to the following constraint for λ̃g = Σ̃−1
g λg with two free parameters, where Σ̃g =

∑H
j=0 Σj,g:

λ̃g =



0 0 0 0

0 0 0 0

0 0 λπ 0

0 0 0 λc


For better numerical behavior, in practice, we allow two free parameters in ΦQg , the (3,3) and (4,4) element,

and the following relationship translates these two free parameters back into the parameters in λ̃g

λπ =
Φg,33 − ΦQ,$g,33

ηϑΣ̃g,33

=
φπ − φQ,$π

ηϑΣ̃g,33

λc =
Φg,44 − ΦQ,$g,44

ηϑΣ̃g,44

=
φc − φQ,$c

ηϑΣ̃g,44
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Appendix A.4 Model #2

The VARMA(1,1) model has two stochastic volatility factors given by ht = (ht,π, ht,c)
′
. We assume that

these evolve independently of one another as

ht+1,π ∼ NCG (νh,π, φh,π, σh,π)

ht+1,c ∼ NCG (νh,c, φh,c, σh,c)

The models can be placed in the notation of the paper as

gt =



πt

∆ct

επ,t

εc,t


Zc =



0

1

0

0


Zπ =



1

0

0

0


Φg =



φπ φπ,c ψπ 0

φc,π φc 0 ψc

0 0 0 0

0 0 0 0


µg =



µπ

µc

0

0



Φgh =



0 0

0 0

0 0

0 0


Σgh =



0 0

0 0

0 0

0 0


Σ0,g =



0 0

0 0

0 0

0 0


Σ1,g =



1√
1000

0

σc,π√
1000

0

1√
1000

0

σc,π√
1000

0


Σ2,g =



0 0

0 1√
1000

0 0

0 1√
1000


For the volatility processes, the matrices are

νh =

 νh,π

νh,c

 Φh =

 φπ 0

0 φc

 Σh =

 σh,π 0

0 σh,c


For Gaussian models with no stochastic volatility, we set the scale

Σ0,g =



σπ 0

σc,π σc

σπ 0

σc,π σc


.
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Our economic restrictions on prices of risk imply that Σ−1
g,tλg needs to be diagonal mathematically. This

amounts to the following constraint for λ̃g = Σ̃−1
g λg with two free parameters, where Σ̃g =

∑H
j=0 Σj,g:

λ̃g =

 λπ 0 0 0

0 λc 0 0


For better numerical behavior, in practice, we allow two free parameters in ΦQg , the (3,3) and (4,4) element,

and the following relationship translates these two free parameters back into the parameters in λ̃g

λπ =
Φg,33 − ΦQ,$g,33

ηϑΣ̃g,33

=
φπ − φQ,$π

ηϑΣ̃g,33

λc =
Φg,44 − ΦQ,$g,44

ηϑΣ̃g,44

=
φc − φQ,$c

ηϑΣ̃g,44

Appendix B Stochastic discount factor

The Euler equation can be shown to be

1 = βϑEt

[(
Υt+1

Υt

)ϑ(
Ct+1

Ct

)−ηϑ
Rϑc,t+1

]

implying a pricing kernel of the form

Mt+1 = βϑ
(

Υt+1

Υt

)ϑ(
Ct+1

Ct

)−ηϑ
Rϑ−1
c,t+1

Let υt+1 = ln Υt+1 − ln Υt. The log SDF is

mt+1 = ϑ ln (β) + ϑυt+1 − ηϑ∆ct+1 + (ϑ− 1) rc,t+1

The constant is

Λ̄ =
ϑη2

2
(λ0 + λgµ̄g + λghµ̄h)

′
(λ0 + λgµ̄g + λghµ̄h) +

ϑη2

2
tr
(
λ′gλgΣ̃gΣ̃

′
g

)
+
ϑη2

2
tr
(
λ′ghλghΣ̃h

)

where µh and Σ̃h are the unconditional mean and variance of ht.
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Appendix C Recursive preferences model solution

Appendix C.1 Model solution

In order to simplify the expressions, we introduce the following notation

Z1 = Zυ + (1− η)Zc + κ1Dg

Z2 = ϑZυ − γZc + (ϑ− 1)κ1Dg

Z3 = Σ′gh (Zυ + (1− η)Zc + κ1Dg)− λh + κ1Dh

= Σ′ghZ1 − λh + κ1Dh

Z4 = Σ′gh (ϑZυ − γZc + (ϑ− 1)κ1Dg)− ϑλh + (ϑ− 1)κ1Dh

= Σ′ghZ2 − ϑλh + (ϑ− 1)κ1Dh

Z5 = Z4 − Σ′ghZπ

where the vectors Zc, Zπ and Zυ are selection vectors and the vectors Dg and Dh are part of the price to

consumption ratio pct = D0 +D′ggt +D′hht. We use this notation throughout the appendix.

Appendix C.1.1 Step 1: Campbell-Shiller approximation

Let pct = ln
(
Pt
Ct

)
be the log price to consumption ratio. The return on the consumption asset is

rc,t+1 ≡ ln

(
Pt+1 + Ct+1

Pt

)
= ln (Ct+1) + ln

(
Pt+1 + Ct+1

Ct+1

)
− ln (Pt)

= ln (Ct+1)− ln (Ct) + ln

(
1 +

Pt+1

Ct+1

)
− ln (Pt) + ln (Ct) = ∆ct+1 − pct + ln (1 + exp (pct+1)) .

Take a first order Taylor expansion of the function f (x) = ln (1 + exp (x)) around z̄.

rc,t+1 ≈ ∆ct+1 − pct + ln (1 + exp (p̄c)) +
exp (p̄c)

1 + exp (p̄c)
(pct+1 − z̄) (C.6)

= κ0 + κ1pct+1 − pct + ∆ct+1 (C.7)

where κ0 = ln (1 + exp (p̄c))− κ1p̄c and κ1 = exp(p̄c)
1+exp(p̄c) .
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Appendix C.1.2 Step 2: Solve for the price/consumption ratio

From the affine dynamics of the model, we can solve for the price to consumption ratio.

1 = Et [exp (mt+1 + rc,t+1)] = Et [exp (ϑ ln (β) + ϑυt+1 − ηϑ∆ct+1 + ϑrc,t+1)]

= exp (ϑ ln (β) + ϑκ0 − ϑpct) Et [exp (ϑυt+1 + ϑ (1− η) ∆ct+1 + ϑκ1pct+1)]

where we have used (C.7). Conjecture a solution for the price to consumption ratio

pct = D0 +D′ggt +D′hht

for unknown coefficients D0, Dg and Dh. Substitute the guess into the problem

1 = exp (ϑ ln (β) + ϑκ0 + ϑκ1D0 − ϑpct + ϑΛ1 (gt, ht)− ϑΛ′3 (Σhνh + Φhht))

exp (ϑZ ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht)))

Et

[
exp

((
ϑΛ2 (gt, ht) + ϑΣ′g,tZ1

)′
εg,t+1

)]
Et [exp (ϑZ ′3ht+1)]

Calculate the expectations using the Laplace transform

0 = ϑ ln (β) + ϑκ0 + ϑκ1D0 − ϑpct + ϑΛ1 (gt, ht)− ϑΛ′3 (Σhνh + Φhht)

+ϑZ ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht)) +
ϑ2

2

(
Λ2 (gt, ht) + Σ′g,tZ1

)′ (
Λ2 (gt, ht) + Σ′g,tZ1

)
−

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

H∑
i=1

e′iΣ
′
hϑZ3

1− e′iΣ
′
hϑZ3

e′iΣ
−1
h Φhht

The solution exists if e′iΣ
′
hϑZ3 < 1 for i = 1, . . . ,H.

Solve for pct as

pct = ln (β) + κ0 + κ1D0 + Λ1 (gt, ht)− Λ′3 (Σhνh + Φhht)

+Z ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht))

+
ϑ

2

(
Λ2 (gt, ht) + Σ′g,tZ1

)′ (
Λ2 (gt, ht) + Σ′g,tZ1

)
− 1

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φhht
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Plug in the risk sensitivity functions and cancel terms

pct = ln (β) + κ0 + κ1D0 + λ′h (Σhνh + Φhht)

+Z ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht))

+Λ̄− ηϑZ ′1 (λ0 + λggt + λghht)

+
ϑ

2
Z ′1Σg,tΣ

′
g,tZ1 −

1

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φhht

We now solve for the coefficients. Both D0 and Dg are analytical

D0 =
1

(1− κ1)

[
ln (β) + κ0 + Λ̄ + λ′hΣhνh + Z ′1 (µg − ΣghΣhνh − ηϑλ0)

− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1

]
Dg =

(
IG − κ1 (Φg − ηϑλg)′

)−1
(Φg − ηϑλg)′ (Zυ + (1− η)Zc)

An identifying assumption is that (IG − κ1 (Φg − ηϑλg)) is invertible. The vector Dh is the solution to the

system of equations

Dh = Φ′hλh + (Φgh − ΣghΦh − ηϑλgh)
′
Z1 +

ϑ

2
(ιH ⊗ Z1)

′
Σ̃gΣ̃

′
g (IH ⊗ Z1) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

Φ′hΣ−1,′
h ei

where Σ̃gΣ̃
′
g is a GH ×GH block diagonal matrix with Σi,gΣ

′
i,g along the diagonal. This cannot be solved

in closed-form in the general case. However, if Σh and Φh are lower triangular, then it can be calculated in

closed-form recursively for i = 1, . . . ,H. We discuss the analytical solution of this equation in more detail

in Appendix C.2.

Appendix C.1.3 Step 3: Solve for the fixed-point

During estimation, we determine the value of p̄c and the log-linearization constants κ0 and κ1 as a function

of the model parameters by solving the fixed-point problem

0 = p̄c−D0 (p̄c)−Dg (p̄c)
′
µ̄g −Dh (p̄c)

′
µ̄h

where the coefficients D0, Dg and Dh are functions of p̄c through κ0 and κ1. The parameters µ̄g and µ̄h are

the unconditional means of gt and ht.
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Appendix C.1.4 Step 4: Substitute the solution into the SDF

We can now write the log-SDF as a function of the r.v.’s εg,t+1 and ht+1 as

mt+1 = ϑ ln (β) + (ϑ− 1) (κ0 − (1− κ1)D0)

− (ϑ− 1)D′ggt − (ϑ− 1)D′hht + ϑΛ1 (gt, ht)− ϑΛ′3 (Σhνh + Φhht)

+Z ′2 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht)) +
(
ϑΛ2 (gt, ht) + Σ′g,tZ2

)′
εg,t+1 + Z ′4ht+1

Appendix C.2 Analytical solution of Dh

The H×1 vector of loadings Dh are a system of H equations in H unknowns. They can be solved analytically

when both Φh and Σh are lower triangular by recursively solving one equation after another. We will consider

the simpler case when they are both diagonal. Under this assumption, each equation is independent of one

another and they simplify to

Dh,i = D̄i +

(
Z̄3,i + κ1Dh,i

)
Φh,i

1− ϑΣh,i
(
Z̄3,i + κ1Dh,i

) i = 1, . . . ,H (C.8)

where Φh,i and Σh,i are the i-th diagonal elements and

D̄ = Φ′hλh + (Φgh − ΣghΦh − ηϑλgh)
′
Z1 +

ϑ

2
(ιH ⊗ Z1)

′
Σ̃gΣ̃

′
g (IH ⊗ Z1)

Z̄3 = Σ′ghZ1 − λh

and Z̄3,i and D̄i are the i-th element of these H × 1 vectors.

Each loading (C.8) for i = 1, . . . ,H is a quadratic equation

0 = κ1ϑΣh,iD
2
h,i +Dh,i

(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)
+ D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

The solutions are

Dh,i =
−
(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)
2κ1ϑΣh,i

±

√(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)2 − 4κ1ϑΣh,i
[
D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

]
2κ1ϑΣh,i

When a real solution exists, it has two solutions. Only one solution leads to a sensible value. This is the

value with a negative sign, see also Campbell, Giglio, Polk, and Turley(2014) for the ICAPM model.
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Appendix C.3 Model solution when η = 1 and no preference shocks

When the inverse of the elasticity of intertemporal substitution equals one η = 1 and there are no preference

shocks, recursive preferences can be solved in closed form; see, e.g. Tallarini(2000) and Hansen, Heaton, and

Li(2008). This provides a benchmark for comparison.

Let vct = ln
(
Vt
Ct

)
. From Hansen, Heaton, and Li(2008), we know

vct =
β

1− γ
ln (Et [exp ((1− γ) [vct+1 + ∆ct+1]]))

Guess that the solution is vct = E0 +E′ggt +E′hht for some unknown coefficients E0, Eg and Eh. Plugging

in the guess and calculating the expectation, we find

vct = β
(
E0 + (Eg + Zc)

′
(µg + Φggt + Φghht − Σgh (Σhνh + Φhht))

)
+ β

(
(1− γ)

2
(Eg + Zc)

′
Σg,tΣ

′
g,t (Eg + Zc)

)
+

β

1− γ

[
−

H∑
i=1

νh,i log
(
1− (1− γ) e′iΣ

′
h

[
Σ′gh (Eg + Zc) + Eh

])]

+β

 H∑
i=1

e′iΣ
′
h

[
Σ′gh (Eg + Zc) + Eh

]
(

1− (1− γ) e′iΣ
′
h

[
Σ′gh (Eg + Zc) + Eh

])e′iΣ
−1
h Φhht

 .
Existence of the conditional expectation introduces the restriction that (1− γ) e′iΣ

′
h

(
Σ′gh (Eg + Zc) + Eh

)
≤

1 for i = 1, . . . ,H. The solutions for E0, Eg and Eh are

E0 =
β

1− β
(Eg + Zc)

′
(µg − ΣghΣhνh) +

β

1− β
(1− γ)

2
(Eg + Zc)

′
Σ0,gΣ

′
0,g (Eg + Zc)

− β

(1− β) (1− γ)

H∑
i=1

νh,i log
(
1− (1− γ) e′iΣ

′
h

[
Σ′gh (Eg + Zc) + Eh

])
Eg = β

(
IG − βΦ′g

)−1
Φ′gZc

Eh = β (Φgh − ΣghΦh)
′
(Eg + Zc) +

β (1− γ)

2
(IH ⊗ (Eg + Zc))

′
Σ̃gΣ̃

′
g (ιH ⊗ (Eg + Zc))

+β

H∑
i=1

e′iΣ
′
h

[
Σ′gh (Eg + Zc) + Eh

]
(

1− (1− γ) e′iΣ
′
h

[
Σ′gh (Eg + Zc) + Eh

])Φ′hΣhei

The solutions for E0 and Eg are analytical. The solution for Eg exists as long as β 6= 1 if/when Φg has a

unit root. The solution for Eh can be found using the same procedure as Dh. This introduces a restriction
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on the parameter space. Define the following notation for simplicity

E1 = (1− γ)Eg − γZc − Zπ,

E2 = Σ′ghE1 + (1− γ)Eh.

The nominal log-SDF can be written as

m$
t+1 = ln (β) + (1− γ) (E0 + E′hht+1)− (1− γ)

β

(
E0 + E′ggt + E′hht

)
+ E′1gt+1 (C.9)

which can be used to solve for asset prices.

Appendix D Bond prices

Appendix D.1 Real bonds: general case

We will guess and verify that the solution for zero coupon bonds is P
(n)
t = exp

(
ān + b̄′n,ggt + b̄′n,hht

)
for

some unknown coefficients ān and b̄n,g and b̄n,h.

For a maturity n = 1, the payoff is guaranteed to be P
(0)
t+1 = 1 in which case P

(1)
t = Et [Mt+1]. Using

standard techniques for affine bond pricing in discrete-time (see Creal and Wu(2015a)), we find that at

maturity n = 1 the bond loadings are

ā1 = ln (β) + λ′hΣhνh + Λ̄ + (Zυ − ηZc)′ (µg − ΣghΣhνh − ηϑλ0)

−
H∑
i=1

νh,i log (1− e′iΣ
′
hZ4) +

(ϑ− 1)

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3)

− (ϑ− 1)ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1 +

1

2
Z ′2Σ0,gΣ

′
0,gZ2

b̄1,g = (Φg − ηϑλg)′ (Zυ − ηZc)

b̄1,h = (Φgh − ΣghΦh − ηϑλgh)
′
(Zυ − ηZc) + Φ′hλh

+

(
H∑
i=1

e′iΣ
′
hZ4

1− e′iΣ
′
hZ4

e′iΣ
−1
h Φh

)′
− (ϑ− 1)

(
H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φh

)′

+
1

2
(IH ⊗ Z2)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z2)− (ϑ− 1)ϑ

2
(IH ⊗ Z1)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z1)

where bond prices only exist if e′iΣ
′
hZ4 < 1 for i = 1, . . . ,H. At maturity n, we use the fact that P

(n)
t =
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Et

[
exp (mt+1)P

(n−1)
t+1

]
. The bond loadings are

ān = ān−1 + ā1 +

H∑
i=1

νh,i log

 1− e′iΣ
′
hZ4

1− e′iΣ
′
h

(
Σ′ghb̄n−1,g + b̄n−1,h + Z4

)


+ (µg − ΣghΣhνh − ηϑλ0)
′
b̄n−1,g +

1

2
b̄′n−1,gΣ0,gΣ

′
0,g b̄n−1,g + b̄′n−1,gΣ0,gΣ

′
0,gZ2

b̄n,g = (Φg − ηϑλg)′ b̄n−1,g + b̄1,g

b̄n,h = (Φgh − ΣghΦh − ηϑλgh)
′
b̄n−1,g + b̄1,h

+

 H∑
i=1

 e′iΣ
′
h

(
Σ′ghb̄n−1,g + b̄n−1,h + Z4

)
1− e′iΣ

′
h

(
Σ′ghb̄n−1,g + b̄n−1,h + Z4

) − e′iΣ
′
hZ4

1− e′iΣ
′
hZ4

 e′iΣ
−1
h Φh

′

+
1

2

(
IH ⊗ b̄n−1,g

)′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄n−1,g

)
+ (IH ⊗ Z2)

′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄n−1,g

)
Real yields are y

(n)
t = an + b′n,ggt + b′n,hht with an = − 1

n ān, bn,g = − 1
n b̄n,g and bn,h = − 1

n b̄n,h.

Appendix D.2 Nominal bonds: general case

The solution for zero coupon nominal bonds is P
$,(n)
t = exp

(
ā$
n + b̄$,′n,ggt + b̄$,′n,hht

)
for some unknown

coefficients ā$
n and b̄$n,g and b̄$n,h. For a maturity n = 1, the payoff is guaranteed to be P

$,(0)
t+1 = 1 in which

case P
$,(1)
t = Et

[
M$
t+1

]
. The solutions are

ā$
1 = ln (β) + λ′hΣhνh + Λ̄ + (Zυ − ηZc − Zπ)

′
(µg − ΣghΣhνh − ηϑλ0)

+
(ϑ− 1)

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3)−

H∑
i=1

νh,i log (1− e′iΣ
′
hZ5)

− (ϑ− 1)ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1 +

1

2
Z ′2Σ0,gΣ

′
0,gZ2 +

1

2
Z ′πΣ0,gΣ

′
0,gZπ − Z ′2Σ0,gΣ

′
0,gZπ

b̄$1,g = (Φg − ηϑλg)′ (Zυ − ηZc − Zπ)

b̄$1,h = (Φgh − ΣghΦh − ηϑλgh)
′
(Zυ − ηZc − Zπ) + Φ′hλh

− (ϑ− 1)

(
H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φh

)′
+

(
H∑
i=1

e′iΣ
′
hZ5

1− e′iΣ
′
hZ5

e′iΣ
−1
h Φh

)′
+

1

2
(IH ⊗ Zπ)

′
Σ̃gΣ̃

′
g (ιH ⊗ Zπ)− (IH ⊗ Z2)

′
Σ̃gΣ̃

′
g (ιH ⊗ Zπ)

+
1

2
(IH ⊗ Z2)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z2)− (ϑ− 1)ϑ

2
(IH ⊗ Z1)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z1)
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where bond prices only exist if e′iΣ
′
hZ5 < 1 for i = 1, . . . ,H. At longer maturities n, we use the fact that

P
$,(n)
t = Et

[
exp

(
m$
t+1

)
P

$,(n−1)
t+1

]
. The bond loadings are

ā$
n = ā$

n−1 + ā$
1 + (µg − ΣghΣhνh − ηϑλ0)

′
b̄$n−1,g

+

H∑
i=1

νh,i log

 1− e′iΣ
′
hZ5

1− e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + Z5

)


+
1

2
b̄$,′n−1,gΣ0,gΣ

′
0,g b̄

$
n−1,g + b̄$n−1,gΣ0,gΣ

′
0,g (Z2 − Zπ)

b̄$n,g = (Φg − ηϑλg)′ b̄$n−1,g + b̄$1,g

b̄$n,h = (Φgh − ΣghΦh − ηϑλgh)
′
b̄$n−1,g + b̄$1,h

+

 H∑
i=1

 e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + Z5

)
1− e′iΣ

′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + Z5

) − e′iΣ
′
hZ5

1− e′iΣ
′
hZ5

 e′iΣ
−1
h Φh

′

+
1

2

(
IH ⊗ b̄$n−1,g

)′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄$n−1,g

)
+
(
IH ⊗ b̄$n−1,g

)′
Σ̃gΣ̃

′
g (ιH ⊗ (Z2 − Zπ))

Nominal yields are y
$,(n)
t = a$

n + b$,′n,ggt + b$,′n,hht with a$
n = − 1

n ā
$
n, b

$
n,g = − 1

n b̄
$
n,g and b$n,h = − 1

n b̄
$
n,h.

Appendix D.3 Nominal bonds: special case of η = 1 and no pref-

erence shocks

In the special case when recursive preferences can be solved analytically, we can solve for bond prices. Using

the solution for the log-SDF given by (C.9), the loadings on nominal bonds are

ā$
1 = ln (β) + (1− γ)E0 −

(1− γ)

β
E0 + E′1 (µg − ΣghΣhνh) +

1

2
E′1Σ0,gΣ

′
0,gE1

−
H∑
i=1

νh,i log (1− e′iΣ
′
hE2)

b̄$1,g = − (1− γ)

β
Eg + Φ′gE1

b̄$1,h = − (1− γ)

β
Eh + (Φgh − ΣghΦh)

′
E1

+
1

2
(IH ⊗ E1)

′
Σ̃gΣ̃

′
g (ιH ⊗ E1) +

H∑
i=1

e′iΣ
′
hE2

1− e′iΣ
′
hE2

Φ′hΣ−1,′
h ei
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where E1 and E2 are defined above. At higher maturities, we find

ā$
n = ā$

1 + b̄$,′n−1,g

(
µg − ΣghΣhνh + Σ0,gΣ

′
0,gE1

)
+

1

2
b̄$,′n−1,gΣ0,gΣ

′
0,g b̄

$
n−1,g +

H∑
i=1

νh,i log (1− e′iΣ
′
hE2)

−
H∑
i=1

νh,i log
(

1− e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + E2

))
b̄$n,g = Φ′g b̄

$
n−1,g + b̄$1,g

b̄$n,h = b̄$1,h + (Φgh − ΣghΦh)
′
b̄$n−1,g

−
H∑
i=1

e′iΣ
′
hE2

1− e′iΣ
′
hE2

Φ′hΣ−1,′
h ei +

H∑
i=1

e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + E2

)
1− e′iΣ

′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + E2

)Φ′hΣ−1,′
h ei

+
1

2

(
IH ⊗

[
b̄$n−1,g + E1

])′
Σ̃gΣ̃

′
g

(
ιH ⊗

[
b̄$n−1,g + E1

])
−1

2
(IH ⊗ E1)

′
Σ̃gΣ̃

′
g (ιH ⊗ E1)

Yields only exist if e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + E2

)
< 1 for i = 1, . . . ,H.

Appendix E Proof of Propositions

Appendix E.1 Gaussian models

Define the fixed point problem

κ1 =
exp (p̄c)

1 + exp (p̄c)

κ0 = ln (1 + exp (p̄c))− κ1p̄c

D′g = (Zυ + (1− η)Zc)
′
(Φg − ϑηλg) (I − κ1 (Φg − ϑηλg))−1

Z1 = Zυ + (1− η)Zc + κ1Dg

D0 (1− κ1) = ln (β) + κ0 + Z ′1µg + Λ̄ +
1

2
ϑZ ′1Σ0,gΣ

′
0,gZ1 − ϑηZ ′1λ0

p̃c = D0 +D′gµ̄g

which is solved if p̄c = p̃c.
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Proof of Proposition 1

First, the derivative d(p̄c− p̃c)/dp̄c is a finite number when p̄c is finite, given the eigenvalue of (Φg − ϑηλg)

for consumption is smaller than 1. This proves the continuity of the function p̄c − p̃c. Second, derive

the limiting property for p̄c → −∞: limp̄c→−∞ κ1 = 0 and limp̄c→−∞ κ0 = 0. In this case, p̃c is finite,

so limp̄c→−∞(p̄c − p̃c) → −∞. Then, derive the limiting property for p̄c → ∞: limp̄c→∞ κ1 = 1 and

limp̄c→∞ κ0 = 0. This implies Dg is finite as long as the eigenvalue of (Φg − ϑηλg) for consumption is

smaller than 1. And limp̄c→∞D0 = limp̄c→∞
1

1−κ1
(ln (β) +Z ′1µg + Λ̄ + 1

2ϑZ
′
1Σ0,gΣ

′
0,gZ1−ϑηZ ′1λ0) is infinite

due to limp̄c→∞(1 − κ1) = 0. The condition limp̄c→∞D0 → −∞ implies limp̄c→∞(p̄c − p̃c) → ∞, which

together limp̄c→−∞(p̄c− p̃c)→ −∞ and the continuity of the function guarantees there exists a solution for

the fixed point problem.

With κ1 < 1, the condition limp̄c→∞D0 → −∞ is equivalent to

β < lim
p̄c→∞

exp

(
−Z ′1 (µg − ϑηλ0)− Λ̄− 1

2
ϑZ ′1Σ0,gΣ

′
0,gZ1

)
,

hence β̄(ψ, γ, θP, θλ) = exp
(
−Z∞′1 (µg − ϑηλ0)− Λ̄− 1

2ϑZ
∞′
1 Σ0,gΣ

′
0,gZ

∞
1

)
, where Z∞1 ≡ limp̄c→∞ Z1 (p̄c) =

Zυ + (1− η)Zc +D∞g and D∞′g ≡ limp̄c→∞Dg (p̄c)
′

= (Zυ + (1− η)Zc)
′
(Φg − ϑηλg) (I − (Φg − ϑηλg))−1

.

Proof of Corollary 1

For models with no preference shock λ0 = 0, λg = 0, Λ̄ = 0, Zυ = 0, the condition becomes

β < lim
p̄c→∞

exp

(
−Z ′1µg −

1

2
ϑZ ′1Σ0,gΣ

′
0,gZ1

)
, (E.10)

1. The condition (E.10) is guaranteed by Z∞′1 µg ≤ 0 and ϑ < 0.

2. If β = 1, then the condition can be simplified to

γ > 1 +
2Z ′c (I − Φg)

−1
µg

Z ′c (I − Φg)
−1

Σ0,gΣ′0,g
(
I − Φ′g

)−1
Zc
, if ψ > 1

γ < 1 +
2Z ′c (I − Φg)

−1
µg

Z ′c (I − Φg)
−1

Σ0,gΣ′0,g
(
I − Φ′g

)−1
Zc
, if ψ < 1

hence 1 + γ̄(θP ) =
2Z′c(I−Φg)−1µg

Z′c(I−Φg)−1Σ0,gΣ′0,g(I−Φ′g)
−1
Zc

, does not depend on ψ.

3. We have dϑ
dγ = − 1

1−η ,
dD∞′g
dγ = 0 and

dZ∞′1

dγ =
dD∞′g
dγ = 0. Hence, the derivative of ln β̄ w.r.t. γ is

d ln β̄

dγ
=

1

2(1− η)
Z∞′1 Σ0,gΣ

′
0,gZ

∞
1
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d ln β̄
dγ = 1

β̄
dβ̄
dγ implies that the two derivatives have the same sign. Therefore, for ψ > 1, then dβ̄

dγ > 0;

for ψ < 1, then dβ̄
dγ < 0.

Appendix E.2 Stochastic volatility models

Define the fixed point problem

κ1 =
exp (p̄c)

1 + exp (p̄c)

κ0 = ln (1 + exp (p̄c))− κ1p̄c

D′g = (Zυ + (1− η)Zc)
′
(Φg − ϑηλg) (I − κ1 (Φg − ϑηλg))−1

Z1 = Zυ + (1− η)Zc + κ1Dg

Z3 = Σ′gh (Zυ + (1− η)Zc + κ1Dg)− λh + κ1Dh

Dh = Φ′hλh + (Φgh − ΣghΦh − ηϑλgh)
′
Z1 +

ϑ

2
(ιH ⊗ Z1)

′
Σ̃gΣ̃

′
g (IH ⊗ Z1) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

Φ′hΣ−1,′
h ei

(1− κ1)D0 = ln (β) + κ0 + Λ̄ + λ′hΣhνh + Z ′1 (µg − ΣghΣhνh − ηϑλ0)

− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1

p̃c = D0 +D′gµ̄g +D′hµ̄h

which is solved if p̄c = p̃c.

Conditions for Assumption 1

Each loading (C.8) for i = 1, . . . ,H is a quadratic equation

0 = κ1ϑΣh,iD
2
h,i +Dh,i

(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)
+ D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

When Σh and Φh are diagonal, the solutions are

Dh,i =
−
(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)
2κ1ϑΣh,i

±

√(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)2 − 4κ1ϑΣh,i
[
D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

]
2κ1ϑΣh,i

Therefore, the fixed point solution is only well-posed if for any value of κ1 the parameters satisfy

(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)2 − 4κ1ϑΣh,i
[
D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

]
≥ 0
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for i = 1, . . . ,H.

Conditions for Assumption 2

In order to solve for the condition asset pct, the conditional Laplace transform must exist. It exists if

ϑe′iΣ
′
h

[
Σ′gh (Zυ + (1− η)Zc + κ1Dg)− λh + κ1Dh

]
< 1 i = 1, . . . ,H

This is a joint restriction across all parameters of the model.

Proof of Proposition 2

First, derive the limiting property for p̄c→ −∞: limp̄c→−∞ κ1 = 0 and limp̄c→−∞ κ0 = 0. In this case, both

D0 and Dh are finite due to ϑe′iΣ
′
hZ3 < 1 in Assumption 1. Therefore, p̃c is finite, so limp̄c→−∞(p̄c− p̃c)→

−∞.

Next, derive the limiting property for p̄c → ∞: limp̄c→∞ κ1 = 1 and limp̄c→∞ κ0 = 0. This implies

Dg is finite as long as the eigenvalue of (Φg − ϑηλg) for consumption is smaller than 1. Dh is finite due

to ϑe′iΣ
′
hZ3 < 1. And limp̄c→∞ (1− κ1)D0 = limp̄c→∞ ln (β) + Λ̄ + λ′hΣhνh + Z ′1 (µg − ΣghΣhνh − ηϑλ0)−

1
ϑ

∑H
i=1 νh,i ln (1− e′iΣ

′
hϑZ3) + ϑ

2Z
′
1Σ0,gΣ

′
0,gZ1. The right hand side is finite due to ϑe′iΣ

′
hZ3 < 1. Therefore,

limp̄c→∞ κ1 = 1 leads to an infinite D0. The condition limp̄c→∞D0 → −∞ implies limp̄c→∞(p̄c− p̃c)→∞,

which together limp̄c→−∞(p̄c− p̃c)→ −∞ guarantees there exists a solution for the fixed point problem.

With κ1 < 1, the condition limp̄c→∞D0 → −∞ is equivalent to

β < lim
p̄c→∞

exp

[
−

(
Λ̄ + λ′hΣhνh + Z ′1 (µg − ΣghΣhνh − ηϑλ0)− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1

)]
.

Therefore, the boundary condition is

¯̄β = exp

[
−

(
Λ̄ + λ′hΣhνh + Z∞′1 (µg − ΣghΣhνh − ηϑλ0)− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ

∞
3 ) +

ϑ

2
Z∞′1 Σ0,gΣ

′
0,gZ

∞
1

)]
,

where

Z∞1 = Zυ + (1− η)Zc +D∞g

D∞′g = (Zυ + (1− η)Zc)
′
(Φg − ϑηλg) (I − (Φg − ϑηλg))−1

,

Z∞3 = Z̄∞3 +D∞h

Z̄∞3 = Σ′ghZ
∞
1 − λh

D∞h,i = − 1
2

(
Φh,i−1
ϑΣh,i

− D̄∞i + Z̄∞3,i

)
−
√

1
4

(
Φh,i−1
ϑΣh,i

− D̄∞i + Z̄∞3,i

)2

− 1
ϑΣh,i

[
D̄∞i

(
1− ϑΣh,iZ̄∞3,i

)
+ Z̄∞3,iΦh,i

]
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D̄∞ = Φ′hλh + (Φgh − ΣghΦh − ηϑλgh)
′
Z∞1 + ϑ

2 (ιH ⊗ Z∞1 )
′
Σ̃gΣ̃

′
g (IH ⊗ Z∞1 )

Appendix F MCMC and particle filters

Appendix F.1 MCMC

Our MCMC algorithm is the particle Gibbs (PG) sampler. It iterates between two broad steps: (i) drawing

the latent state variables (g1:T , h0:T ) conditional on the model’s parameters; and (ii) drawing the model’s

parameters θP given the latent state variables. We make heavy use of the fact that the model is a conditionally

linear Gaussian state space model.

Appendix F.1.1 Conditionally linear, Gaussian state space form

Conditional on h0:T , the model is a linear, Gaussian state space model. We write the model using the state

space form of Durbin and Koopman(2012) given by

Yt = Zgt + d+ η∗t η∗t ∼ N (0, H) , (F.11)

gt+1 = Tgt + ct +Rε∗t+1 ε∗t+1 ∼ N (0, Qt) , (F.12)

where Yt = (∆ct πt)
′
. The models in this paper can placed in this state space form as

Z =

 Zc

Zπ

 T = Φg d = 02×1 H = 02×2

ct = µg + Φghht + Σghεh,t+1 Qt = Σg,tΣ
′
g,t

For some models, there are free, estimable parameters in the matrices (µg,Φgh,Σgh). We can place these

in the state vector. This allows any free parameters in (µg,Φgh,Σgh) to be drawn jointly with the state

variables g1:T . It also allows us to marginalize over them when drawing other parameters, see Creal and

Wu(2015b) for discussion.
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Appendix F.1.2 Drawing the state variables

We draw (g1:T , h0:T ) from their full conditional distribution in two steps.

g1:T ∼ p
(
g1:T |Y1:T , h0:T , θ

P
)

h0:T ∼ p
(
h1:T |Y1:T , g1:T , θ

P
)

We draw g1:T conditional on h0:T from the conditionally linear, Gaussian state space model (F.11) and

(F.12) using a forward filtering backward sampling algorithm or simulation smoother; see, e.g. Durbin and

Koopman(2002). Conditional on the draw for g1:T , we draw h0:T using a particle Gibbs sampler.

There are two PG samplers developed in the literature. The original PG sampler of Andrieu, Doucet, and

Holenstein(2010) with the backward-sampling pass developed by Whiteley(2010), see Creal and Tsay(2015).

And, the PG sampler with ancestor sampling (PGAS) of Lindsten, Jordan, and Schön(2014). The former

algorithm is simple to implement for Model #1. We describe its implementation here.

Let J be the total number of particles. In our work, we select J = 100. The PG sampler starts with a

set of existing particles h
(1)
0:T that were drawn from the previous iteration.

For t = 1, . . . , T , run:

• For j = 2, . . . , J , draw from a proposal: (ht, ht−1)
(j) ∼ q

(
ht, ht−1|gt−1:t, θ

P
)
.

• For j = 1, . . . , J , calculate the importance weight:

w
(j)
t ∝

p
(
gt|gt−1, h

(j)
t , h

(j)
t−1, θ

P
)
p
(
h

(j)
t |h

(j)
t−1, θ

P
)

q
(
h

(j)
t , h

(j)
t−1|gt−1:t, θP

)

• For j = 1, . . . , J , normalize the weights: ŵ
(j)
t =

w
(j)
t∑J

j=1 w
(j)
t

.

• Conditionally resample the particles
{
h

(j)
t

}J
j=1

with probabilities
{
ŵ

(j)
t

}J
j=1

. In this step, the first

particle h
(1)
t always gets resampled and may be randomly duplicated.

Implementation of the PG sampler is different than a standard particle filter due to the “conditional”

resampling algorithm used in the last step. We use the conditional multinomial resampling algorithm from

Andrieu, Doucet, and Holenstein(2010).

In the original PG sampler, the particles
{
h

(j)
t

}J
j=1

are stored for t = 1, . . . , T and a single trajectory

is sampled using the probabilities from the last iteration
{
ŵ

(j)
T

}J
j=1

. An important improvement upon the

original PG sampler was introduced by Whiteley(2010), who suggested drawing the path of the state variables

from the discrete particle approximation using the backwards sampling algorithm of Godsill, Doucet, and
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West(2004). On the forwards pass, we store the normalized weights and particles
{
ŵ

(m)
t , h

(m)
i,t

}M
m=1

for

t = 1, . . . , T . We draw a path of the state variables (h∗1, . . . , h
∗
T ) from this discrete distribution.

At t = T , draw a particle h∗T = h
(j)
T with probability ŵ

(j)
T .

For t = T − 1, . . . , 0, run:

• For j = 1, . . . , J , calculate the backwards weights: w
(j)
t|T ∝ ŵ

(j)
t p

(
h∗t+1|h

(j)
t , θ

)
• For j = 1, . . . , J , normalize the weights: ŵ

(j)
t|T =

w
(j)

t|T∑J
j=1 w

(j)

t|T
.

• Draw a particle h∗t = h
(j)
t with probability ŵ

(j)
t|T .

The draw h0:T = (h∗0, . . . , h
∗
T ) is a draw from the full-conditional distribution. In practice, when the dimen-

sion H of ht is high, the number of particles J required for satisfactory performance can be quite large. In

this case, we can separate each element of the state vector hi,t for i = 1, . . . ,H and draw them one at a time.

Appendix F.1.3 Drawing the parameters

We block the parameters into groups that are highly correlated. These groups can be separated into param-

eters governing the dynamics of gt and the parameters that enter the dynamics of volatility ht.

1. Drawing parameters in µg,Φgh,Σgh: We place these parameters in the state vector and draw them

jointly with the Gaussian state variables.

2. Drawing parameters in Φg,Σ0,g: We use the independence Metropolis Hastings algorithm. Con-

ditional on the volatility state variables h0:T , the model is a linear, Gaussian state space model (F.11)

and (F.12). We maximize the likelihood using the Kalman filter and calculate the Hessian at the pos-

terior mode. We then draw from a Student’s t proposal distribution with mean equal to the posterior

mode and covariance matrix equal to the inverse Hessian at the mode; see, e.g. Creal and Wu(2015b)

for details.

3. Drawing parameters of the volatility process νh,Φh,Σh: We use an independence Metropolis-

Hastings step. When drawing these parameters, we can marginalize out the Gaussian state variables

using the Kalman filter. Conditional on the remaining parameters of the model (which we omit), the

target distribution of νh,Φh,Σh can be written as

p (νh,Φh,Σh|Y1:T , h0:T ) ∝ p (Y1:T |h0:T , νh,Φh,Σh) p (h0:T |νh,Φh,Σh) p (νh,Φh,Σh)

where p (Y1:T |h0:T , νh,Φh,Σh) is the likelihood from the Kalman filter, p (h0:T |νh,Φh,Σh) is the transi-

tion density of the volatility process (A.5). We maximize this target density and calculate the Hessian
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at the posterior mode. We then draw from a Student’s t proposal distribution with mean equal to

the posterior mode and covariance matrix equal to the inverse Hessian at the mode.

For Gaussian models, we draw the free parameters in Σ0,g instead of νh,Φh,Σh.

Appendix F.2 Particle filter

To estimate the structural parameters (β, γ, ψ) and the preference parameters θλ, we run cross-sectional

regressions on filtered estimates of the factors. In order to calculate the filtered estimates of the state

variables, we use a particle filter. The particle filter we implement is the mixture Kalman filter of Chen

and Liu(2000). Let gt|t−1 denote the conditional mean and Pt|t−1 the conditional covariance matrix of the

one-step ahead predictive distribution p(gt|Y1:t−1, h0:t−1; θ) of a conditionally linear, Gaussian state space

model. Similarly, let gt|t denote the conditional mean and Pt|t the conditional covariance matrix of the

filtering distribution p(gt|Y1:t, h0:t; θ). Conditional on the volatilities h0:T , these quantities can be calculated

by the Kalman filter.

Let J denote the number of particles and let Yt = (πt,∆ct) be N × 1. The particle filter then proceeds

as follows:

At t = 0, for i = 1, . . . , J , set w
(i)
0 = 1

J and

• Draw h
(i)
0 ∼ p (h0; θ) and calculate Σ

(i)
g,0Σ

(i),′
g,0 .

• Set g
(i)
1|0 = µ̄g + Φghh̄

(i)
0 , P

(i)
1|0 = Σ

(i)
g,0Σ

(i),′
g,0 ,

• Set `0 = 0.

For t = 1, . . . , T do:

STEP 1: For i = 1, . . . , J :

• Draw from the transition density: h
(i)
t+1 ∼ p(ht+1|h(i)

t ; θ) given by:

z
(i)
j,t+1 ∼ Poisson

(
e′jΣ
−1
h Φhh

(i)
t

)
j = 1, . . . ,H

w
(i)
j,t+1 ∼ Gamma

(
νh,j + z

(i)
j,t+1, 1

)
j = 1, . . . ,H

h
(i)
t+1 = Σhw

(i)
t+1
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• Calculate c
(i)
t and Q

(i)
t using h

(i)
t .

c
(i)
t = Φghh

(i)
t + Σghε

(i)
h,t+1

Q
(i)
t = Σ

(i)
g,tΣ

(i),′
g,t

• Run the Kalman filter:

v
(i)
t = Yt − Zg(i)

t|t−1 − d

F
(i)
t = ZP

(i)
t|t−1Z

′ +H

K
(i)
t = P

(i)
t|t−1Z

′
(
F

(i)
t

)−1

g
(i)
t|t = g

(i)
t|t−1 +K

(i)
t v

(i)
t

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t ZP

(i)
t|t−1

g
(i)
t+1|t = Tg

(i)
t|t + c

(i)
t

P
(i)
t+1|t = TP

(i)
t|t T

′ +RQ
(i)
t R′

• Calculate the weight: log
(
w

(i)
t

)
= log

(
ŵ

(i)
t−1

)
− 0.5N log (2π)− 0.5 log |F (i)

t | − 1
2v

(i)′
t

(
F

(i)
t

)−1

v
(i)
t .

STEP 2: Calculate an estimate of the log-likelihood: `t = `t−1 + log
(∑J

i=1 w
(i)
t

)
.

STEP 3: For i = 1, . . . , J , calculate the normalized importance weights: ŵ
(i)
t =

w
(i)
t∑J

j=1 w
(j)
t

.

STEP 4: Calculate the effective sample size Et = 1∑J
j=1

(
ŵ

(j)
t

)2 .

STEP 5: If Et < 0.5J , resample
{
g

(i)
t+1|t, P

(i)
t+1|t, h

(i)
t+1

}J
i=1

with probabilities ŵ
(i)
t and set ŵ

(i)
t = 1

J .

STEP 6: Increment time and return to STEP 1.

Within the particle filter, we use the residual resampling algorithm of Liu and Chen(1998). We set J =

100000.
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