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1 Introduction

Aggregate market risks exhibit discontinuities (i.e., jumps) in their dynamics.1 Bearing such non-

diversifiable jump risk is significantly rewarded, as is evident for example from the expensiveness of

short-maturity options written on the market index with strikes that are far from its current level.2

Therefore, precise time series estimates of the comovement of jumps in asset prices with those of

aggregate risk factors will play a key role in our understanding of the pricing of jump risk in the

cross-section.

The goal of the current paper is to develop econometric tools for testing and efficiently estimating

the relationship between jumps of an asset price process (Yt)t≥0 and an aggregate risk factor (Zt)t≥0.

More specifically we study the relationship between ∆Yτ and ∆Zτ for τ ∈ T , where ∆Yτ = Yτ−Yτ−
and ∆Zτ = Zτ −Zτ−, and T is the collection of jump times of Z. The statistical inference is based

on discrete observations of (Y, Z) sampled on an observation grid with asymptotically shrinking

mesh. The ratio (henceforth referred to as the spot jump beta)

βτ ≡ ∆Yτ
∆Zτ

, τ ∈ T , (1.1)

measures the co-movement of the jumps in the two processes. Without any model restriction,

the spot jump beta is stochastic and varies across instances of jump events. However, in many

cases such as factor models, which are used pervasively in asset pricing, the relationship between

the jumps of Y and Z can be captured by a function which is known up to a finite-dimensional

parameter. The most common is the linear function:

∆Yτ = β∆Zτ , for all τ ∈ T , (1.2)

for some constant β. Equation (1.2) amounts to a constancy restriction on the spot jump beta.

We can view (1.2) as a linear jump regression model, while noting the important fact that neither

the jump time τ nor the jump sizes (∆Yτ ,∆Zτ )τ∈T are directly observable from data sampled at

discrete times.

A motivating empirical example of the jump regression is given in Figure 1. From log returns

sampled at the 10-minute frequency, we select locally large jump returns of the S&P 500 exchange

1There is substantial earlier parametric evidence for jumps, as well as more recent strong nonparametric evidence
based on high-frequency data and different jump tests; see, for example, Huang and Tauchen (2005), Barndorff-Nielsen
and Shephard (2006), Jiang and Oomen (2008), Lee and Mykland (2008) and Aı̈t-Sahalia and Jacod (2009).

2The presence of nontrivial market jump risk premium has been well documented in the empirical option pricing
literature.
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Figure 1: A Representative Illustration of Jump Regressions
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Note: The horizontal axes are the jump returns of the S&P 500 ETF (SPY) while the
vertical axes are the contemporaneous returns of the Financial Sector ETF (XLF) for data
sampled at the 10-minute frequency in 2008 (left) and 2007-2012 (right), together with
linear fits. The jump returns are selected according the thresholding procedure described in
Section 6. In the left panel there are two observations with horizontal coordinates -0.4974
and -0.4920 that turn out to be visually indistinguishable in the plot.

traded fund (ETF), which is our proxy for the market, and plot them versus the contemporaneous

Financial Sector ETF returns,3 along with a linear fit based on model (1.2). We see that the simple

linear jump regression model provides quite a good fit in the one-year subsample (left).4 The fit for

the six-year sample (right) appears reasonable, but it is less tight than the former, especially in the

tails. Are these patterns statistically consistent with model (1.2)? On one hand, due to the very

nature of jumps, jump regressions such as those displayed on Figure 1, are inevitably based on a

few high-frequency observations. On the other hand, the signal-to-noise ratio of these observations

is likely to be very high. If model (1.2) is true, how do we efficiently estimate the jump beta? The

main contribution of this paper is to develop econometric tools that address the above questions.

Despite the apparent similarity between the classical linear regression and the jump regression,

we emphasize some important distinctions at the outset. First, in the high-frequency setting with

3The identification of the jump returns of the market portfolio is done using a standard adaptive thresholding
technique, see e.g., Lee and Mykland (2008), that is described and rigorously justified in the main text below. The
underlying intuition is as follows: a return is considered “locally large”, and is subsequently associated with a jump,
if its magnitude exceeds a threshold slightly larger than 4 local standard deviations. The diffusive component of the
price, which is locally mixed Gaussian, will generate such a large in magnitude 10-minute return about once every
three years. Hence, the effect from misclassifying diffusive increments as ones containing jumps is quite negligible for
the frequency and threshold used in our analysis.

4This good fit is consistent with Andersen, Bollerslev, Diebold, and Vega (2003) who find that in foreign exchange
markets news announcements that generate sharp jump-like moves play a key role in price discovery. Therefore, we
might expect to see the large moves embodied in a jump regression to reveal best the key economic relationships.
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infill asymptotics, unknown parameters are identified from sample paths, instead of distributions,

of the studied processes. For this reason, our method only requires some mild pathwise regular-

ity without imposing any stationarity or weak-dependence assumptions. In particular, we make

essentially no assumption on the stochastic volatility process; in the jump regression setting, this

amounts to an arbitrary form of heteroskedasticity and, hence, leads to a nontrivial complication

for efficient estimation. Second, the precision of our inference depends on the precision of recovering

(certain functionals of) the price jumps from discretely sampled data. Since jumps are rare events,

only a small subsample of observed returns, like those plotted on Figure 1, contain realized jumps

that are directly related to model (1.2) and are informative for the inference of jump beta. Third,

the
√
n-rate (n is the sample size) asymptotic mixed Gaussianity of our jump beta estimator is

driven by the local approximate mixed Gaussianity of the diffusive component of asset returns.5

The parametric convergence rate is achieved despite the fact that only a small number of obser-

vations are informative for jumps. This is unlike the classical econometric setting, as well as the

high-frequency setting for volatility estimation, where the
√
n-rate asymptotic (mixed) normality

is attained by a central limit theorem for the average of a large number of observations.

We now summarize our main theoretical results. In the first part of our analysis, we develop

a specification test for the linear relationship (1.2) and its piecewise generalizations. The test is

asymptotically consistent against all nonparametric fixed alternatives for which (1.2) is violated,

for example, due to time variation in the jump beta and/or nonlinearity in the jump relationship

(i.e., the dependence of the jump beta on the jump size). The test is based on the fact that the

linear model (1.2) is equivalent to the singularity of the realized jump covariation matrix

∑
τ∈T

 ∆Y 2
τ ∆Yτ∆Zτ

∆Zτ∆Yτ ∆Z2
τ

 . (1.3)

Our test rejects the null hypothesis when the determinant of a sample analogue estimator of the

jump covariation matrix is larger than a critical value. While the estimator for the jump covariation

has a well-known central limit theorem at the usual parametric
√
n-rate, see e.g., Jacod (2008),

its determinant is asymptotically degenerate under the null hypothesis specified by (1.2) and no

asymptotic theory has been developed for it to date. We thus consider higher-order asymptotics

so as to characterize the non-degenerate asymptotic null distribution of the test statistic. The

resultant null distribution can be represented as a quadratic form of mixed Gaussian variables

5By the martingale representation theorem, a continuous local martingale with absolutely continuous quadratic
variation can be represented as a stochastic integral of a stochastic volatility process with respect to the Brownian
motion. As a result, the diffusive component of the return is approximately mixed Gaussian with the mixing variable
being the stochastic volatility.
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scaled by (random) jumps and spot volatilities. Since this distribution is highly nonstandard, we

further provide a simple simulation-based algorithm to compute the critical value for our test.

The proposed test also has a natural interpretation via the realized jump correlation, that is, the

correlation coefficient associated with the matrix (1.3). Indeed, the test rejects if and only if the

squared realized jump correlation is sufficiently lower than one.

On the presumption of the linear model (1.2), for a given time interval and a range of the jump

size, we further study the efficient estimation of the jump beta. Under certain (common) assump-

tions, we derive a semiparametric lower efficiency bound for regular estimators of the jump beta.

The general theory of semiparametric efficient estimation has been developed for models admitting

locally asymptotically normal (LAN) likelihood ratios, see e.g., Bickel, Klaassen, Ritov, and Wellner

(1998) and references therein. By contrast, the infill asymptotic setting with high-frequency data

is non-ergodic which renders the limiting distribution random, meaning that its variability depends

on the realization of the underlying processes. In this nonstandard setting, Mykland and Zhang

(2009), Jacod and Rosenbaum (2013), Clément, Delattre, and Gloter (2013) and Renault, Sarisoy,

and Werker (2014) study the efficient nonparametric estimation of general integrated volatility

functionals, and Li, Todorov, and Tauchen (2014) study the adaptive estimation in a semiparamet-

ric regression model for the diffusive part of a multivariate semimartingale process. All this work

focuses on the diffusive components of the asset prices, by either filtering out the price jumps or

assuming them away. But the jumps are exactly the focus of the current paper. As well known,

the econometric analysis of volatility and jumps require very distinct technical tools. Hence, our

semiparametric efficiency analysis differs substantially from the aforementioned work.

Following Stein’s insight (Stein (1956)) that the estimation in a semiparametric problem is no

easier than in any parametric submodel, we compute the efficiency bound by first constructing

a class of submodels. These submodels satisfy the local asymptotic mixed normality (LAMN)

property with a random information matrix. For these submodels, we compute the worst-case

Cramer-Rao information bound of estimating the jump beta. In addition, we show that this lower

efficiency bound is actually sharp by constructing a semiparametric estimator which attains it.

This direct approach reveals that the key nuisance component is the unknown heterogeneous jump

sizes of Z and the least favorable submodel should fully account for their presence. In particular,

the estimation of jump beta is generally not adaptive with respect to the sizes of jumps in Z.

This finding qualitatively resembles results in the classical Gaussian location model. However,

an interesting and distinctive feature of our setting is that the number of these jumps and their

locations are random, which means that the submodel that attains the lower efficiency bound, i.e.,
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the least favorable submodel, depends on the realization of the underlying processes.

The proposed efficient estimator is an optimally weighted linear estimator and has formal par-

allels to classical weighted least squares estimation in a linear heteroskedastic regression context.

The optimal weights in the present setting are determined by nonparametric high-frequency esti-

mates of the local volatility of the instantaneous residual term Y − βZ at the jump times. The

efficient estimator enjoys the parametric convergence rate
√
n, despite the presence of spot volatil-

ity estimates, which in general can be estimated at a convergence rate no faster than n1/4; see, for

example, the general results for statistics involving jumps and spot volatility in Jacod and Todorov

(2010). The reason for the faster rate in our case is that the spot volatility estimates participate

only in the weights in our jump beta estimator and their sampling variability is annihilated in the

second-order asymptotics, as is typical for weighted estimators.6

To improve finite sample performance, we further derive a novel higher-order expansion for

the optimally weighted estimator. This expansion clearly reveals the role of the spot covariance

estimates in the efficient estimation of jump beta. Moreover, it allows us to design a simple finite-

sample refinement (relative to the standard high-frequency asymptotics) for confidence sets of the

jump beta. Using realistically calibrated numerical examples, we demonstrate that the proposed

efficient estimator provides considerable efficiency gains over natural alternatives based on the ratio

of the jump covariation between Y and Z to the jump variation of Z (Gobbi and Mancini (2012))

as well as ratios of higher order power variations (Todorov and Bollerslev (2010)). Indeed, for the

frequency and jump size distribution as well as volatility variability as in the data sets included in

our empirical analysis, we document reduction in the asymptotic standard deviation of the jump

beta estimates of around 40%.

In an empirical application of the proposed inference techniques, we study the market jump

betas of the nine industry portfolios comprising the S&P 500 stock market index, three well-

known common stocks, and a gold ETF for the period 2007–2012. The premise of our empirical

application is the well-known fact that standard market betas are strongly time-varying due to

changing conditioning information; see, for example, the work of Barndorff-Nielsen and Shephard

(2004a) using high frequency realized betas based on the realized covariance as well as Andersen,

Bollerslev, Diebold, and Wu (2006) for a review. The key empirical question that we address

here is whether the previously documented temporal instability of market betas is constrained

only to the regular non-jump moves or it is present for the jump moves as well. The pattern

6The reason for attaining the parametric convergence rate is thus very different for our estimator and the statistics
of Jacod and Rosenbaum (2013) who similarly use block-based volatility estimates. For the statistics of Jacod and
Rosenbaum (2013), the parametric convergence rate is obtained because the sampling errors of spot variance estimates
are averaged out over an asymptotically increasing number of blocks.
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seen in Figure 1 is indeed representative for our empirical findings for all assets in our empirical

analysis. While we find evidence for temporal instability over the whole six-year sample, market

jump betas appear reasonably stable over periods as long as a year. Motivated by recent evidence

on downside risk (see, e.g., Ang, Chen, and Xing (2006) and Lettau, Maggiori, and Weber (2014)),

we further examine the possibility of piecewise linear jump regression function which allows for

different positive and negative jump betas, and we find that in some cases this generalization can

provide further improvement.

The rest of the paper is organized as follows. Section 2 presents the setting. The theory is

developed in Section 3 for specification testing and in Section 4 for efficient estimation. Sections 5

and 6 present results from a Monte Carlo study and an empirical application respectively. Section

7 concludes. All proofs are in the appendix.

2 Setting and modeling jump dependence

We start with introducing the formal setup for our analysis. Section 2.1 describes the conditions

on the studied processes. Section 2.2 introduces the jump regression models. Section 2.3 presents

an auxiliary result for the approximation of jumps. The following notations are used throughout.

We denote the transpose of a matrix A by A⊤. The adjoint matrix of a square matrix A is denoted

A#. For two vectors a and b, we write a ≤ b if the inequality holds component-wise. The functions

vec (·), det (·) and Tr(·) denote matrix vectorization, determinant and trace, respectively. The

Euclidean norm of a linear space is denoted ∥ · ∥. We use R∗ to denote the set of nonzero real

numbers, that is, R∗ ≡ R \ {0}. The cardinality of a (possibly random) set P is denoted |P|.
For any random variable ξ, we use the standard shorthand notation {ξ satisfies some property}
for {ω ∈ Ω : ξ (ω) satisfies some property}. The largest smaller integer function is denoted by ⌊·⌋.
For two sequences of positive real numbers an and bn, we write an ≍ bn if bn/c ≤ an ≤ cbn for

some constant c ≥ 1 and all n. All limits are for n → ∞. We use
P−→,

L−→ and
L-s−→ to denote

convergence in probability, convergence in law and stable convergence in law, respectively.

2.1 The underlying processes

The object of study of the paper is the dependence of the jumps in a univariate process Y on the

jumps of another process Z. For simplicity of exposition, we will assume that Z is one-dimensional,

but the results can be trivially generalized to settings where Z is multidimensional and the jump

arrival times of its individual elements are disjoint, i.e., the jump components of its elements are

independent of each other. The reason for this is that the asymptotics developed in the paper are
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determined solely by the behavior of the processes Y and Z around the jump times of Z. In the

above mentioned multivariate setting the individual components of Z jump at different times, and

therefore the asymptotic analysis will reduce to the bivariate setting that we consider henceforth.

We proceed with the formal setup. Let Z and Y be defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). Throughout the paper, all processes are assumed to be càdlàg adapted. We

denote X = (Z, Y )⊤. Our basic assumption is that X is an Itô semimartingale (see, e.g., Jacod

and Protter (2012), Section 2.1.4) with the form

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, Jt =

∫ t

0

∫
R
δ (s, u)µ (ds, du) , (2.1)

where the drift bt takes value in R2; the volatility process σt takes value in M2, the space of

2 × 2 positive definite matrices; W is a 2-dimensional standard Brownian motion; δ = (δZ , δY )
⊤ :

Ω × R+ × R 7→ R2 is a predictable function; µ is a Poisson random measure on R+ × R with

its compensator ν (dt, du) = dt ⊗ λ (du) for some measure λ on R. Recall from the introduction,

that the jump of X at time t is denoted by ∆Xt ≡ Xt − Xt−, where Xt− ≡ lims↑tXs. The spot

covariance matrix of X at time t is denoted by ct ≡ σtσ
⊤
t , which we partition as

ct =

 cZZ,t cZY,t

cZY,t cY Y,t

 . (2.2)

We also write Jt = (JZ,t, JY,t)
⊤, so that JZ and JY are the jump components of Z and Y , respec-

tively. Our basic regularity condition for X is given by the following assumption.

Assumption 1. (a) The process b is locally bounded; (b) ct is nonsingular for t ∈ [0, T ]; (c)

ν ([0, T ]× R) <∞.

The only nontrivial restriction in Assumption 1 is the assumption of finite activity jumps in X.

This assumption is used mainly for simplicity as our focus in the paper are “big” jumps, i.e., jumps

that are not “sufficiently” close to zero. Alternatively, we can drop Assumption 1(c) and focus on

jumps with sizes bounded away from zero.7

Turning to the sampling scheme, we assume that X is observed at discrete times i∆n, for

0 ≤ i ≤ n ≡ ⌊T/∆n⌋, within the fixed time interval [0, T ]. The increments of X are denoted by

∆n
i X ≡ Xi∆n −X(i−1)∆n

, i = 1, . . . , n. (2.3)

Below, we consider an infill asymptotic setting, that is, ∆n → 0 as n→ ∞.

7Yet another strategy, that can allow for studying dependence in infinite activity jumps, is to use higher order
powers in the statistics that we develop henceforth. This, however, comes at the price of losing some efficiency for
the analysis of the “big” jumps.
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2.2 Piecewise linear jump regression models

We proceed with introducing the jump regression models which concern the behavior of Y at the

jump times of Z. Let (τp)p≥1 be the successive jump times of the process Z. We define two random

sets P = {p ≥ 1 : τp ≤ T} and T = {τp : p ∈ P}, which collect respectively the indices of the jump

times on [0, T ] and the jump times themselves. Since Z has finite activity jumps, these sets are

finite almost surely. In a fully nonparametric setting, with the spot jump beta given by (1.1), we

have

∆Yτ = βτ∆Zτ , τ ∈ T . (2.4)

We remark that βτ is only defined, and identified, at the jump times of Z. We also note that Y

can jump at times in [0, T ] \ T . We refer to these jumps as Y -specific jumps which, by definition,

do not occur at the same times as the jumps of Z. Finally, we observe that βτ can take a value of

zero which will correspond to the situation in which Z jumps but Y does not.

In general the spot jump beta is a non-predictable function that depends on time as well as the

jump size realization, which of course in general cannot be predicted from information prior to its

arrival. This non-adaptiveness of βτ is a unique characteristic of jump risk. Indeed, in a diffusive

setting returns are locally Gaussian, and hence we have linear dependence between the increments

of Y and Z over short time intervals. Therefore, the continuous beta process which measures the

exposure of the diffusive risk of an asset towards the systematic diffusive risk, has trajectories that

are predictable functions in time unlike those of the jump beta process.

Our interest in this paper is to develop inference techniques for situations where the spot jump

beta remains constant over regions specified by time and jump size. Before introducing the formal

setup, we consider a few motivating examples.

Example 1 (Constant Beta). The simplest model restriction on (2.4) is to impose that βτ = β

for some constant β and all τ ∈ T , that is, a constant beta model. This constant beta restriction

naturally arises in factor models, commonly used in asset pricing, in which JY,t = βJZ,t + εt with

εt denoting the Y -specific jump process. We can represent the constant beta model equivalently as

∆Yt = β∆Zt +∆εt, ∆Zt∆εt = 0, t ∈ [0, T ] . (2.5)

Example 2 (Temporal Breaks). Conditional asset pricing models allow for the exposure of assets

to fundamental risks to change over time, see e.g., Hansen and Richard (1987). In our context,

this implies that the jump beta can vary over time, but presumably not too erratically. A practically

relevant model is to assume that the jump beta remains constant over fixed intervals of time (e.g,

months, quarters, years), an assumption which is often made in empirical asset pricing. We refer

9



to such an extension of the constant beta model as a temporal structural break model in connection

with the structural break models in time series (see Stock (1994) and references therein). More

formally, let (Sk)1≤k≤k̄ be a finite disjoint partition of [0, T ], which correspond to the horizon of k̄

regimes. The structural break model amounts to imposing

βτ =
k̄∑

k=1

β0,k1{τ∈Sk}, τ ∈ T , (2.6)

where the constant β0,k is the jump beta during the time period Sk. Equivalently, the model can be

written as

∆Yt =
k̄∑

k=1

β0,k∆Zt1{t∈Sk} +∆εt, ∆Zt∆εt = 0, t ∈ [0, T ] . (2.7)

Example 3 (Spatial Breaks). An alternative way to generalize the constant beta model is to allow

the spot jump beta to depend on the jump size of Z, but in a time-invariant manner. In other

words, Y reacts differently to jumps in Z depending on the size of the latter. The simplest model is

to allow the jump beta to be different depending on the sign of ∆Z, leading to the notion of up-side

and down-side jump betas. The latter can be viewed as continuous-time analogues of the downside

betas of Ang, Chen, and Xing (2006) and Lettau, Maggiori, and Weber (2014) which are based on

discrete (large) returns. More generally, let (Sk)1≤k≤k̄ be a finite disjoint partition of R. We set

βτ =

k̄∑
k=1

β0,k1{∆Zτ∈Sk}, τ ∈ T . (2.8)

This corresponds to a piece-wise linear model:

∆Yt =
k̄∑

k=1

β0,k∆Zt1{∆Zt∈Sk} +∆εt ∆Zt∆εt = 0, t ∈ [0, T ] . (2.9)

Our jump regression setting incorporates the above examples as special cases. Below, we refer

to a Borel measurable subset D ⊆ [0, T ] × R∗ as a (temporal-spatial) region. For the jump of

Z that occurs at stopping time τ ∈ T , we call (τ,∆Zτ ) its mark. For each region D, we set

PD ≡ {p ∈ P : (τp,∆Zτp) ∈ D}; the random set PD collects the indices of jumps whose marks fall

in the region D. The jump regression is a model of the form

∆Yτp = β∆Zτp , for some constant β ∈ R and all p ∈ PD. (2.10)

That is, the spot jump beta is a constant for all jumps whose marks are in the region D. Example

1 corresponds to D = [0, T ]×R∗, and Examples 2 and 3 concern regions of the form Dk = Sk ×R∗
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and [0, T ]× Sk, respectively. Below, the jump covariation matrix on the region D is given by

Q (D) =

 QZZ (D) QZY (D)

QZY (D) QY Y (D)

 ≡
∑
p∈PD

∆Xτp∆X
⊤
τp . (2.11)

2.3 Inference for the jump marks

We finish this section with an auxiliary result concerning the approximation of the jump marks

of the process X using discretely sampled data. This result provides guidance for the theory for

the jump regressions developed below. It also gives a theoretical justification for scatter plots like

Figure 1. In order to disentangle jumps from the diffusive component of asset returns, we choose a

sequence vn of truncation threshold values which satisfy the following condition:

vn ≍ ∆ϖ
n for some constant ϖ ∈ (0, 1/2) . (2.12)

For each p ∈ P, we denote by i (p) the unique random index i such that τp ∈ ((i− 1)∆n, i∆n].

We set

In (D) ≡ {i : 1 ≤ i ≤ n, ((i− 1)∆n,∆
n
i Z) ∈ D, |∆n

i Z| > vn} , (2.13)

I (D) ≡ {i (p) : p ∈ PD}.

The set-valued statistic In (D) collects the indices of returns whose “marks” ((i−1)∆n,∆
n
i Z) are in

the region D, where the truncation criterion |∆n
i Z| > vn eliminates diffusive returns asymptotically.

The set I (D) collects the indices of sampling intervals that contain the jumps with marks in D.

Clearly, the set I (D) is random and unobservable. We also impose the following mild regularity

condition on D, which amounts to requiring that the jump marks of Z almost surely do not fall on

the boundary of D.

Assumption 2. ν ({(s, u) ∈ [0, T ]× R : (s, δZ (s, u)) ∈ ∂D}) = 0, where ∂D denotes the boundary

of D.

Below, we use the following definition for the convergence of random vectors with possibly

different length: for a sequence Nn of random integers and a sequence ((Aj,n)1≤j≤Nn
)n≥1 of random

elements, we write (Aj,n)1≤j≤Nn

P−→ (Aj)1≤j≤N if P (Nn = N) −→ 1 and (Aj,n)1≤j≤N 1{Nn=N}
P−→

(Aj)1≤j≤N .

Proposition 1 (Approximation of Jump Marks). Under Assumptions 1 and 2,

(a) P (In (D) = I (D)) → 1;

(b) ((i− 1)∆n,∆
n
i X)i∈In(D)

P−→
(
τp,∆Xτp

)
p∈PD

.
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Proposition 1(a) shows that the set In (D) coincides with I (D) with probability approaching

one. In this sense, In (D) consistently locates the discrete time intervals that contain jumps with

marks in the region D. A by-product of this result is that |In (D)| is a consistent (integer-valued)

estimator of the number of jumps with marks in D. Proposition 1(b) further shows that the

jump marks of interest, that is
(
τp,∆Xτp

)
p∈PD

, can be consistently estimated by the collection of

time-return pairs ((i− 1)∆n,∆
n
i X)i∈In(D).

Proposition 1 has a useful implication for data visualization in empirical work. Indeed, the

collections ((i− 1)∆n,∆
n
i X)i∈In(D) and

(
τp,∆Xτp

)
p∈PD

can be visualized as scatter plots on [0, T ]×
R2, or its low-dimensional projections like Figure 1. Proposition 1(b) thus provides a sense in which

the graph of the former consistently estimates that of the latter.8

3 Testing for constant jump beta

We start our theoretical analysis of the jump dependence with testing the hypothesis of constant

jump beta on a fixed region D. We shall consider the nondegenerate case where Z has at least two

jumps with marks in D, that is, |PD| ≥ 2. This is fairly innocuous given the abundant evidence

for the prevalence of jumps in high-frequency financial data. Formally, the testing problem is to

decide in which of the following two sets the observed sample path falls:9 Ω0(D) ≡ {ω ∈ Ω : condition (2.10) holds for some β0(ω) on path ω} ∩ {|PD| ≥ 2} ,

Ωa (D) ≡ {ω ∈ Ω : condition (2.10) does not hold on path ω} ∩ {|PD| ≥ 2} .
(3.1)

By the Cauchy-Schwarz inequality, it is easy to see that condition (2.10) is equivalent to the

singularity of the positive semidefinite matrix Q (D). Hence, a test for constant jump beta can be

carried out via a one-sided test for det [Q (D)] = 0.

We now describe the test statistic. In view of Proposition 1, we construct a sample analogue

estimator for Q (D) as

Qn (D) =

 QZZ,n (D) QZY,n (D)

QZY,n (D) QY Y,n (D)

 =
∑

i∈In(D)

∆n
i X∆n

i X
⊤.

8We remark some finite-sample considerations. Clearly, in finite samples, the estimate In (D) generally does not
coincide with I (D), so scatter plots like Figure 1 are subject to classification errors. In the context of jump regressions,
we recommend choosing the threshold vn conservatively, that is, setting vn large, so that In (D) is more likely to
contain jumps (which model (2.10) is about) instead of large diffusive returns. This will mitigate the finite-sample
bias resulting from fitting the jump regression model to diffusive price movements. The cost of doing so is that some
small jumps may be discarded, which can potentially lead to efficiency loss in finite samples.

9Specifying hypotheses in terms of random events is unlike the classical setting of hypothesis testing (e.g., Lehmann
and Romano (2005)), but is standard in the study of high frequency data; the reference of record is Jacod and Protter
(2012), with references and discussions therein.
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The determinant of Q (D) can then be estimated by det[Qn(D)]. At significance level α ∈ (0, 1),

our test rejects the null hypothesis of constant jump beta if det [Qn(D)] > cvαn for some sequence

cvαn of critical values.

Before specifying the critical value cvαn , we first discuss the asymptotic behavior of det[Qn(D)],

for which we need some notation. Let (κp, ξp−, ξp+)p≥1 be a collection of mutually independent

random variables which are also independent of F , such that κp is uniformly distributed on the

unit interval and both ξp− and ξp+ are bivariate standard normal variables. For each p ≥ 1, we

define a 2-dimensional vector Rp as

Rp ≡
√
κpστp−ξp− +

√
1− κpστpξp+. (3.2)

The stable convergence in law10 of Qn(D) is well understood from prior work. We have11

∆−1/2
n (Qn (D)−Q (D))

L-s−→
∑
p∈PD

(
∆XτpR

⊤
p +Rp∆X

⊤
τp

)
, (3.3)

and by the delta-method,12

∆−1/2
n (det [Qn (D)]− det [Q (D)])

L-s−→ 2Tr

Q (D)#
∑
p∈PD

∆XτpR
⊤
p

 . (3.4)

However, it is important to note that the limiting variable in the above convergence is degenerate

under the null hypothesis of constant jump beta. Indeed, in restriction to Ω0 (D),

Q (D)#
∑
p∈PD

∆XτpR
⊤
p = QZZ (D)

 β20 −β0

−β0 1

 1

β0

 ∑
p∈PD

∆ZτpR
⊤
p = 0. (3.5)

Therefore, the standard convergence result (3.4) at the “usual” ∆
−1/2
n rate is not useful for char-

acterizing the asymptotic null distribution of our test statistic.

The novel technical component underlying our testing result is to characterize the nondegenerate

asymptotic null distribution of det [Qn (D)] at a faster rate ∆−1
n , as detailed in Theorem 1 below.

The limiting distribution is characterized by an F-conditional law and the critical value cvαn should

consistently estimate its conditional (1− α)-quantile. Since the null asymptotic distribution is

highly nonstandard, its conditional quantiles cannot be written in closed form. Nevertheless, the

critical values can be easily determined via simulation which we now explain.

10Stable convergence in law is stronger than the usual notion of weak convergence. It requires that the convergence
holds jointly with any bounded random variable defined on the original probability space. Its importance for our
problem stems from the fact that the limiting distributions of our estimators are characterized by F-conditional laws
and stable convergence allows for feasible inference using consistent estimators for their F-conditional quantiles. See
Jacod and Shiryaev (2003) for further details on stable convergence on filtered probability spaces.

11The claim can be proved by a straightforward adaptation of Theorem 13.1.1 in Jacod and Protter (2012). Tech-
nical details are omitted for brevity, but are available upon request.

12Recall that, for a matrix A, the differential of det(A) is Tr
[
A#dA

]
, where A# is the adjoint matrix of A.
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1 Simulate a collection of variables
(
κ̃i, ξ̃i−, ξ̃i+

)
i∈I′

n(D)
consisting of independent copies of

(κp, ξp−, ξp+). Set for i ∈ I ′
n (D) ,
R̃n,i =

√
κ̃iĉ

1/2
n,i−ξ̃i− +

√
1− κ̃iĉ

1/2
n,i+ξ̃i+,

ς̃n,i =

(
−
QZY,n (D)

QZZ,n (D)
, 1

)
R̃n,i.

2 Compute

ζ̃n (D) ≡

 ∑
i∈I′

n(D)

∆n
i Z

2

 ∑
i∈I′

n(D)

ς̃2n,i

−

 ∑
i∈I′

n(D)

∆n
i Zς̃n,i

2

.

3 Generate a large number of Monte Carlo simulations according to step 1 and step 2, and

then set cvαn as the (1− α)-quantile of ζ̃n (D) in the Monte Carlo sample.

Algorithm 1: Critical value of the constant jump beta test.

To construct the critical value cvαn , we need to approximate the spot covariance matrix around

each jump time. To this end, we pick a sequence kn of integers such that

kn → ∞ and kn∆n → 0. (3.6)

We also pick a R2-valued sequence v′n of truncation threshold that satisfies13∥∥v′n∥∥ ≍ ∆ϖ
n for some constant ϖ ∈ (0, 1/2) . (3.7)

Let I ′
n (D) = {i ∈ In (D) : kn + 1 ≤ i ≤ ⌊T/∆n⌋ − kn}. For each i ∈ I ′

n (D), we approximate the

pre-jump and the post-jump spot covariance matrices respectively by

ĉn,i+ =
1

kn∆n

kn∑
j=1

(∆n
i+jX)(∆n

i+jX)⊤1{−v′n≤∆n
i+jX≤v′n}, (3.8)

ĉn,i− =
1

kn∆n

kn−1∑
j=0

(∆n
i−kn+jX)(∆n

i−kn+jX)⊤1{−v′n≤∆n
i+jX≤v′n}. (3.9)

Algorithm 1 describes how to compute the critical value cvαn . Theorem 1 below provides the

asymptotic justification for the proposed test. To state it, we use the following additional notation:

recall Rp from (3.2) and set

ςp ≡
(
−QZY (D)

QZZ (D)
, 1

)
Rp, p ≥ 1. (3.10)

13An asymptotically valid choice of v′n is (vn, vn), where vn is given by (2.12). In practice, it is useful to allow the
truncation threshold to vary across assets.
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Note that, in restriction to Ω0 (D), we have ςp ≡ (−β0, 1)Rp. It is useful to note that (ςp)p≥1 are F-

conditionally independent. Moreover, each ςp is a mixture of two F-conditionally Gaussian random

variables with possibly distinct conditional variances. The variable ςp becomes F-conditionally

Gaussian when ∆cτp = 0.

Theorem 1. Under Assumptions 1 and 2, the following statements hold.

(a) In restriction to Ω0 (D), we have

∆−1
n det[Qn (D)]

L-s−→ ζ (D) ≡

∑
p∈PD

∆Z2
τp

∑
p∈PD

ς2p

−

∑
p∈PD

∆Zτpςp

2

. (3.11)

(b) In restriction to Ω0 (D) ∪ Ωa (D), the sequence cvαn of variables defined in Algorithm 1

converges in probability to the F-conditional (1− α)-quantile of ζ (D).

(c) The test defined by the critical region {∆−1
n det [Qn (D)] > cvαn} has asymptotic size α under

the null and asymptotic power one under the alternative, that is,

P
(
∆−1

n det [Qn (D)] > cvαn |Ω0(D)
)
−→ α, P

(
∆−1

n det [Qn (D)] > cvαn |Ωa(D)
)
−→ 1.

Part (a) of Theorem 1 describes the stable convergence of the test statistic det[Qn (D)] under the

null hypothesis, which occurs at the ∆−1
n convergence rate. The limiting variable ζ (D) is quadratic

in the variables ςp, which, conditional on F , are mutually independent mixed Gaussian variables.

Comparing (3.6) and (3.11), it is easy to see that ζ̃n (D) is designed to mimic the limiting variable

ζ (D). Part (b) shows that the quantile of the former consistently estimates that of the latter. We

note that part (b) holds under both the null and the alternative. Part (c) shows that the proposed

test has valid size control and is consistent against general fixed alternatives.

In practice, the test above can be equivalently reported in terms of the realized jump correlation

coefficient defined as

ρn (D) ≡
QZY,n(D)√

QZZ,n (D)QY Y,n (D)
.

Observe that
det[Qn (D)]

QZZ,n (D)QY Y,n (D)
= 1− ρ2n (D) .

Therefore, the test rejects the null hypothesis of constant jump beta when ρ2n (D) is sufficiently

lower than 1, with the critical value for their difference being ∆ncv
α
n/QZZ,n (D)QY Y,n (D). Since

the jump correlation coefficient is scale-invariant, its value is easier to interpret and compare across

studies than the determinant. For this reason we recommend reporting the test in terms of the

jump correlation coefficient in empirical work.
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Finally, we remark that the test described in Theorem 1 can be easily extended to test the joint

null hypothesis that (2.10) holds on each of a finite number of disjoint regions (Dk)1≤k≤k̄, with pos-

sibly different betas across regions. To avoid repetition, we only sketch the procedure here. Among

many possible choices, one can employ a “sup” test using the test statistic ∆−1
n max1≤k≤k̄ det[Qn (D)].

By a trivial extension of Theorem 1(a), it can be shown that in restriction to the (joint) null hy-

pothesis ∩1≤k≤k̄Ω0 (Dk), (
∆−1

n det[Qn (D)]
)
1≤k≤k̄

L-s−→ (ζ (Dk))1≤k≤k̄ ,

and, hence, the asymptotic null distribution of the test statistic is max1≤k≤k̄ ζ (Dk). The critical

value at significance level α can be obtained by computing the (1−α)-quantile of max1≤k≤k̄ ζ̃n (Dk)

via simulation.

4 Efficient estimation for the jump beta

We continue with the efficient estimation of jump beta under a constant beta model. We first

derive an optimally weighted estimator and its asymptotic properties. We then compute the semi-

parametric efficiency bound for estimating jump beta and show that this bound is achieved by our

optimally weighted estimator. We finish the section with a higher-order expansion for the estimator

and use it to construct refined confidence sets for jump betas.

4.1 The optimally weighted estimator

In this subsection, we fix a region D, on which we suppose the constant beta condition (2.10) holds

for some true value β0. Clearly, in order to identify β0, it is necessary that Z has at least one jump

with mark in D. The results below hence are in restriction to the set {|PD| ≥ 1}.
We propose a class of estimators of the constant jump beta formed by using weighted jump

covariations. To this end, we consider weight functions w : M2 × M2 × R 7→ (0,∞) that satisfy

Assumption 3 below.

Assumption 3. The function (c−, c+, β) 7→ w(c−, c+, β) is continuous at (c−, c+, β0) for any c−,

c+ ∈ M2.

With any weight function w, we associate a weighted estimator of the jump beta defined as

β̂n (D, w) =
∑

i∈I′
n(D)w(ĉn,i−, ĉn,i+, β̃n)∆

n
i Z∆

n
i Y∑

i∈I′
n(D)w(ĉn,i−, ĉn,i+, β̃n) (∆

n
i Z)

2 , (4.1)
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1 Simulate (ς̃n,i)i∈I′
n(D) as in step 1 of Algorithm 1.

2 Compute

ζ̃n,β (D, w) ≡

∑
i∈I′

n(D)w
(
ĉn,i−, ĉn,i+, β̃n

)
∆n

i Zς̃n,i∑
i∈I′

n(D)w
(
ĉn,i−, ĉn,i+, β̃n

)
(∆n

i Z)
2
.

3 Generate a large number of Monte Carlo simulations in the first two steps and set cv
α/2
n,β as

the (1− α/2)-quantile of ζ̃n,β (D, w) in the Monte Carlo sample. Set the 1− α level
two-sided symmetric confidence interval (CI) as

CIαn =
[
β̂n (D, w)−∆1/2

n cv
α/2
n,β , β̂n (D, w) + ∆1/2

n cv
α/2
n,β

]
.

Algorithm 2: Confidence intervals for the jump beta.

where β̃n is a consistent preliminary estimator for β0. For concreteness, below, we fix

β̃n ≡
QZY,n (D)

QZZ,n (D)
, (4.2)

which corresponds to no weighting. In Theorem 2 below, we describe the central limit theorem for

the weighted estimator β̂n(D, w). The limiting variable takes the form (recall ςp from (3.10))

ζβ (D, w) ≡
∑

p∈PD
w
(
cτp−, cτp , β0

)
∆Zτpςp∑

p∈PD
w
(
cτp−, cτp , β0

)
∆Z2

τp

. (4.3)

It is easy to see from (3.2) and (3.10) that, conditional on F , the limiting variable ζβ (D, w) has

zero mean with variance

Σ (D, w) ≡
∑

p∈PD
w
(
cτp−, cτp , β0

)2
∆Z2

τp(−β0, 1)
(
cτp− + cτp

)
(−β0, 1)⊤

2
(∑

p∈PD
w
(
cτp−, cτp , β0

)
∆Z2

τp

)2 . (4.4)

From here, we shall also show (Theorem 2(b)) that the optimal weight function, in the sense of

minimizing the F-conditional asymptotic variance Σ (D, w) among all weight functions, is

w∗(ĉn,i−, ĉn,i+, β̃n) =
2

(−β̃n, 1) (ĉn,i− + ĉn,i+) (−β̃n, 1)⊤
. (4.5)

Since the variables ςp are generally not conditionally Gaussian, nor is ζβ (D, w). Consequently, a
consistent estimator for the conditional asymptotic variance Σ (D, w) is not sufficient for construct-

ing confidence intervals (CI). Instead, we construct CIs for β0 by approximating the conditional

law of ζβ(D, w) as described by Algorithm 2. For brevity, we focus on two-sided symmetric CIs,

while noting that other types of confidence sets can be constructed analogously. The asymptotic

properties of the estimator β̂n (D, w) and CIαn (see Algorithm 2) are described by Theorem 2 below.
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Theorem 2. Under Assumptions 1–3, the following statements hold in restriction to {|PD| ≥ 1}.
(a) We have ∆

−1/2
n

(
β̂n (D, w)− β0

)
L-s−→ ζβ (D, w). If, in addition, the process (ct)t≥0 does not

jump at the same time as (Zt)t≥0, then the limiting distribution is mixed Gaussian:

∆−1/2
n

(
β̂n (D, w)− β0

)
L-s−→ MN (0,Σ(D, w)) . (4.6)

(b) Σ(D, w∗) ≤ Σ(D, w) for any weight function w.

(c) The sequence CIαn described in Algorithm 2 has asymptotic level 1− α, that is,

P(β0 ∈ CIαn ) → 1− α. (4.7)

Part (a) shows the central limit theorem for the estimator β̂n (D, w) at the parametric rate

∆
−1/2
n . It is interesting to note that the two building blocks of β̂n (D, w), i.e., QZY,n (D, w) and

QZZ,n (D, w), converge only at a slower rate. Indeed, their sampling error is driven by that in

(ĉn,i−, ĉn,i+), the optimal convergence rate of which is ∆
−1/4
n ; see Theorem 3.2 of Jacod and Todorov

(2010). Part (a) also shows that β̂n (D, w) has an F-conditionally Gaussian asymptotic distribution

in the absence of price-volatility co-jumps. Part (b) shows that w∗ (·) minimizes the F-conditional

asymptotic variance. Part (c) shows that CIαn is asymptotically valid.

We refer to the estimator associated with the optimal weight function, i.e., β̂n(D, w∗), as the

optimally weighted estimator. The corresponding F-conditional asymptotic variance is

Σ (D, w∗) =

∑
p∈PD

2∆Z2
τp

(−β0, 1)
(
cτp− + cτp

)
(−β0, 1)⊤

−1

. (4.8)

It is instructive to illustrate the efficiency gain of the optimally weighted estimator with respect

to the unweighted estimator β̃n (D). Up to asymptotically negligible boundary terms, the lat-

ter is equivalent to β̂n (D, w1) for w1 (·) = 1 identically. Using the Cauchy–Schwarz inequality,

it can be shown that Σ (D, w∗) ≤ Σ(D, w1) and the equality holds if and only if the variables

(−β0, 1)
(
cτp− + cτp

)
(−β0, 1)⊤ are constant across p ∈ PD, that is, under a homoskedasticity-type

condition. When this condition is violated, the efficiency gain of the optimally weighted estimator

relative to the unweighted estimator is strict. We quantify this gain in empirically realistic settings

in Section 5 below.

4.2 The semiparametric efficiency of the optimally weighted estimator

In the previous subsection, we constructed the optimally weighted estimator as the most efficient

estimator within a class of weighted estimators. We now compute the semiparametric efficiency
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bound for estimating the jump beta under some additional simplifications on the data generating

process; see Assumptions 4 and 5 below. We stress from the outset that these assumptions are

only needed for this subsection. We further show that the optimally weighted estimator attains

this efficiency bound and, hence, is semiparametrically efficient. To simplify the discussion, we fix

D = [0, T ] × R∗ throughout this subsection, while noting that the extension to multiple regions

only involve notational complications.

We note that the current setting is very nonstandard in comparison with the classical setting for

studying semiparametric efficiency (see, e.g., Bickel, Klaassen, Ritov, and Wellner (1998)), which

mainly concerns independent and identically distributed data. By contrast, the current setting is

non-ergodic, where asymptotic distributions are characterized as F-conditional laws which depend

on the realized values of the stochastic volatility and the jump processes. Since these processes are

time-varying, an essentially arbitrary form of data heterogeneity needs to be accommodated. In

view of these nonstandard features, it appears necessary to develop the semiparametric efficiency

bound for estimating the jump beta from first principles. Our approach relies on the specific

structure of the problem at hand but should be a useful start for a more general theory in the spirit

of Bickel, Klaassen, Ritov, and Wellner (1998).

Our approach is outlined as follows. We first construct a class of parametric submodels which

pass through the true model. We show that these submodels satisfy the LAMN property. Unlike

the LAN setting, the information matrix in the LAMN setting is random. By results in Jeganathan

(1982, 1983), the inverse of the random information matrix provides an information bound for

estimating β. We then compute a lower efficiency bound as the supremum of the Cramer-Rao bound

for estimating β over this class of submodels. Since the class of submodels under consideration do

not exhaust all possible smooth parametric submodels, it is possible that this supremum is lower

than the semiparametric efficiency bound. We rule out this possibility by verifying that this lower

efficiency bound is sharp. Indeed, the optimally weighted estimator attains this bound. From here,

we conclude that the optimally weighted estimator is semiparametrically efficient. The key to our

approach is the construction of a class of submodels that contains, in a well-defined sense, the least

favorable submodel.

We now proceed with the details. Below, we denote by Pn
θ the joint distribution of the data

sequence (∆n
i X)1≤i≤n, in a parametric model with an unknown parameter θ ∈ Rdθ . The sequence

(Pn
θ ) is said to satisfy the LAMN property at θ = θ0 if there exist a sequence Γn of dθ × dθ a.s.

positive semidefinite matrices and a sequence ψn of dθ-vectors, such that, for any h ∈ Rdθ ,

log
dPn

θ0+∆
1/2
n h

dPn
θ0

= h⊤Γ1/2
n ψn − 1

2
h⊤Γnh+ op(1), (4.9)
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and

(ψn,Γn)
L−→ (ψ,Γ) , (4.10)

where the information matrix Γ is a dθ×dθ positive semidefinite F-measurable random matrix and

ψ is a dθ-dimensional standard normal variable independent of Γ.

In order to establish the asymptotic behavior of the log likelihood ratio, we maintain the fol-

lowing assumption in this subsection.

Assumption 4. We have Assumption 1 and the processes (bt)t≥0, (σt)t≥0 and (Jt)t≥0 are inde-

pendent of (Wt)t≥0, and their joint law does not depend on β.

Assumption 4 allows for a closed-form expression for the likelihood ratio. Since the law of

(b, σ, J) does not depend on β, it does not determine the likelihood ratio. Moreover, conditional

on (b, σ, J), the returns (∆n
i X)1≤i≤n are independent with (non-identical) marginal distribution

∆n
i X|b, σ, J ∼ N

∫ i∆n

(i−1)∆n

bsds+

 ∆n
i JZ

β∆n
i JZ +∆n

i ε

 ,

∫ i∆n

(i−1)∆n

csds

 , (4.11)

where the process (εt)t≥0 denotes the Y -specific jumps. Assumption 4 greatly simplifies our analysis

because, otherwise, the closed-form expression for transition densities are unavailable for general

stochastic differential equations. We stress that we only need this sufficient condition for the

analysis of semiparametric efficiency, while the testing and estimation results in Sections 3 and

4 are valid under settings that are far more general. Finally, we remark that independence-type

assumption have also been used by Reiß (2011) and Renault, Sarisoy, and Werker (2014) in the

study of efficient estimation of integrated volatility functionals.

In order to ensure that the estimators are asymptotically F-conditionally Gaussian, we restrict

our analysis to the case without price-volatility co-jumps (recall Theorem 2(a)).

Assumption 5. The process (ct)t≥0 does not jump at the same time as the process (Zt)t≥0 almost

surely.

We now proceed to constructing a class of parametric submodels which pass through the original

model. We do so by perturbing multiplicatively the jump process JZ by a step function with known,

but arbitrary, break points and unknown step sizes. Each set of break points corresponds to a

submodel in which the unknown step sizes play the role of nuisance parameters for the estimation

of β. More precisely, we denote the collection of break points by

S ≡
{
S = (Sj)0≤j≤m : 0 = S0 < · · · < Sm = T, m ≥ 1

}
. (4.12)
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Note that each S ∈ S specifies dim (S) − 1 steps with the form (Sj−1, Sj ]. With any S ∈ S, we

associate the following parametric model: for some unknown parameter η ∈ Rdim(S)−1,

dXt = btdt+ σtdWt +

 ηjdJZ,t

βηjdJZ,t + dεt

 , for t ∈ (Sj−1, Sj ], 1 ≤ j ≤ dim (S)− 1. (4.13)

We denote the law of (∆n
i X)1≤i≤n under this model by Pn

θ , where θ = (β, η). Below, it is useful

to emphasize the dependence of Pn
θ on S by writing Pn

θ (S). The parametric submodel (Pn
θ (S) :

θ ∈ Rdim(S)) is formed by treating θ = (β, η) as the unknown parameter and treating the vector

S and the law of (b, σ, JZ , ε) as known. Clearly, each submodel passes through the true model at

θ0 =
(
β0, η

⊤
0

)⊤
, where η0 is a vector of 1’s.

Before stating the formal results, we provide some heuristics to guide intuition concerning the

submodels constructed above. To focus on the main idea, we discuss a simple case where both the

drift b and the Y -specific jump ε are absent, so (4.11) becomes a bivariate Gaussian experiment

∆n
i X|b, σ, J ∼ N

 ∆n
i JZ

β∆n
i JZ

 ,

∫ i∆n

(i−1)∆n

csds

 . (4.14)

It is intuitively clear that the observation ∆n
i X contains information for β only when the process

Z has a jump during the interval ((i − 1)∆n, i∆n]. The size of each jump of Z can be considered

as a nuisance parameter for the estimation of β.14 Analogous to standard Gaussian location-scale

experiments, the estimation of β is not adaptive to the jump size (i.e. location); this is unlike the

local covariance matrix
∫ i∆n

(i−1)∆n
csds, to which the estimation of β is adaptive. Furthermore, it is

crucial to treat all jump sizes as separate nuisance parameters because jump sizes are time-varying.

Constructing a submodel which captures the heterogeneity in jump sizes would be straightforward

in the ideal (but counterfactual) scenario where there are a fixed number of jumps at fixed times.

Indeed, any submodel (4.13) would suffice provided that each interval (Sj−1, Sj ] contains at most

one jump time, so that the size of each jump is assigned a nuisance parameter. That being said, the

complication here is that both the number of jumps (which is finite but unbounded) and the jump

times are actually random. This means, any fixed submodel cannot fully capture the heterogeneity

in jump sizes. Therefore, it is important to consider a “sufficiently rich” class of submodels, in the

sense that, on every sample path, we can find some submodels in this class that play the role of

the least favorable model.

14Referring to the jump size as a nuisance “parameter” may be nonstandard, because the jump size is itself an
random variable. Note that in the continuous-time limit (i.e., the “population”), the jump process is identified
pathwise.
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As shown in Theorem 3 below, the parametric submodel (Pn
θ (S) : θ ∈ Rdim(S)) satisfies the

LAMN property for each S ∈ S. To describe the information matrix in each submodel, we need

some notation. We define the continuous beta and the spot idiosyncratic variance respectively as

βct ≡
cZY,t

cZZ,t
and vct ≡ cY Y,t −

c2ZY,t

cZZ,t
. (4.15)

We then set for t ≥ 0, 
γ1t =

∆Z2
t

vct
(β0 − βct ) ,

γ2t = ∆Z2
t

(
(β0 − βct )

2

vct
+

1

cZZ,t

)
.

(4.16)

The information matrix for Pn
θ (S) at θ = θ0 is given by

Γ (S) =



∑
s≤T

∆Z2
s

vcs

∑
S0<s≤S1

γ1s · · ·
∑

Sm−1<s≤Sm
γ1s∑

S0<s≤S1
γ1s

∑
S0<s≤S1

γ2s 0
...

. . .∑
Sm−1<s≤Sm

γ1s 0
∑

Sm−1<s≤Sm
γ2s


. (4.17)

We note that the nonsingularity of the (nonrandom) information matrix is typically imposed

for a regular parametric submodel in the LAN setting; see, for example, Definition 1 in Section 2.1

of Bickel, Klaassen, Ritov, and Wellner (1998). In the LAMN setting, the information matrix is

random, so this type of regularity generally depends on the realization. Therefore, for each S ∈ S,

we consider the set

Ω (S) ≡ {Γ (S) is nonsingular} . (4.18)

By applying the conditional convolution theorem (Theorem 3, Jeganathan (1982)) in restriction to

Ω (S), the efficiency bound for estimating θ is given by Γ (S)−1.

We now present the main theorem of this subsection. Below, a nonrandom vector S ∈ S is said

to shatter the jump times on a sample path if each time interval (Sj−1, Sj ] contains exactly one

jump. It is useful to note that Γ (S) is nonsingular whenever S shatters the jumps of (Zt)0≤t≤T .

Theorem 3. Under Assumptions 4 and 5, the following statements hold.

(a) For each S ∈ S, the sequence (Pn
θ (S) : θ ∈ Rdim(S)) satisfies the LAMN property at θ = θ0

with information matrix Γ (S). In restriction to Ω (S), the information bound for estimating β,

that is, the first diagonal element of Γ (S)−1, has the form

Σ̄β (S) =

∑
s≤T

∆Z2
s

vcs
−

dim(S)−1∑
j=1

(∑
Sj−1<s≤Sj

γ1s

)2∑
Sj−1<s≤Sj

γ2s


−1

. (4.19)
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(b) We have

sup
S∈S

Σ̄β (S) 1Ω(S) = Σ∗, (4.20)

where Σ∗ is given by (4.8) with D = [0, T ]× R∗. Moreover, on each sample path, the supremum is

attained by any S that shatters the jump times of the process (Zt)0≤t≤T .

The key message of Theorem 3 is part (b), which shows that the lower efficiency bound (i.e.,

supS∈S Σ̄β (S) 1Ω(S)) for estimating β among the aforementioned class of submodels is attained

by the optimally weighted estimator. We remind the reader that the asymptotic property of

the optimally weighted estimator (Theorem 2) is valid in a general setting without imposing the

parametric submodel. In other words, the lower efficiency bound derived for these submodels is

sharp and the optimally weighted estimator is semiparametrically efficient. Part (b) also shows that

the lower efficiency bound is attained by submodels with a sufficiently rich and properly located

set of break points (collected by S) which can shatter the realized jump times. In this sense, the

least favorable submodel is implicitly chosen in a “random” manner in the sense that it depends

on the realization of jump times.

Part (a) of Theorem 3 confirms the intuition that the estimation of β is generally not adaptive

to the (unobservable) jumps of Z. Indeed, we see from (4.17) that in the absence of the nuisance

parameter η, the Cramer-Rao bound for estimating β is

Σ̄a
β ≡

∑
s≤T

∆Z2
s

vcs

−1

, (4.21)

where we use the superscript “a” to indicate adaptiveness, because Σ̄a
β is the information bound

for estimating β in the parametric model where the only unknown parameter is β. From Theorem

3, we also see that Σ∗ can be written as

Σ∗ =

∑
s≤T

(
∆Z2

s

vcs
− γ21s
γ2s

)−1

. (4.22)

Comparing (4.21) and (4.22), it is clear that Σ̄a
β ≤ Σ∗, where the equality holds if and only if the

process (γ1t)t≥0 is identically zero over [0, T ]. Observe that the latter condition amounts to saying

that βct = β0 whenever ∆Zt ̸= 0. In other words, Σ∗ coincides with the adaptive bound Σ̄a
β only

when the continuous beta is equal to the constant jump beta at all jump times of Z. From a practical

point of view, this condition appears to be rather peculiar. A stronger, but arguably more natural,

restriction is to assume that the continuous beta process βc coincides with the constant jump beta

over the entire time span [0, T ]. But this additional restriction can be exploited to improve the
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semiparametric efficiency bound for estimating the common (i.e., continuous and jump) beta. It

can be shown that under this stronger assumption, adaptive estimation for the common beta can

be achieved.15

4.3 Higher-order asymptotics for the optimally weighted estimator

We proceed with designing refined confidence sets of the optimally weighted estimator based on

a higher-order asymptotic expansion. To motivate, we observe that while the optimally weighted

estimator β̂n (D, w∗) depends on the spot covariance estimates (ĉn,i−, ĉn,i+), the sampling variability

of the latter is not reflected in the asymptotic distribution described by Theorem 2. The reason is

that these estimates enter only the weights and their sampling errors are annihilated in the second-

order asymptotics. In finite samples, the sampling variability of the spot covariance estimates may

still have some effect, because the latter enjoy only a nonparametric convergence rate. To account

for such effects, we need a refined characterization of the asymptotic behavior of the optimally

weighted estimator, so we proceed to derive its higher-order expansion. Based on this expansion,

we provide a refinement to the confidence interval construction described in Algorithm 2.

We first need some additional regularity on the spot volatility σ, namely that it is an Itô

semimartingale.

Assumption 6. The process σ is an Itô semimartingale of the form

vec (σt) = vec (σ0) +

∫ t

0
b̃sds+

∫ t

0
σ̃sdW̃s +

∫ t

0

∫
R
δ̃ (s, u) 1{∥δ̃(s,u)∥>1}µ̃ (ds, du)

+

∫ t

0

∫
R
δ̃ (s, u) 1{∥δ̃(s,u)∥≤1} (µ̃− ν̃) (ds, du) ,

where the processes b̃ and σ̃ are locally bounded and take values respectively in R4 and R4×4, W̃ is

a 4-dimensional Brownian motion, δ̃ : Ω× R+ × R 7→ R4 is a predictable function, µ̃ is a Poisson

random measure with compensator ν̃ of the form ν̃ (dt, du) = dt⊗ λ̃ (du) for some σ-finite measure

λ̃. Moreover, there exists a localizing sequence of stopping times (Tm)m≥1 and λ̃-integrable functions

(Γ̃m)m≥1, such that ∥δ̃ (ω, t, u) ∥2 ∧ 1 ≤ Γ̃ (u) for all ω ∈ Ω, t ≤ Tm and u ∈ R.

Assumption 6 is needed for characterizing the stable convergence of the spot covariance es-

timates. This assumption is fairly unrestrictive and is satisfied by many models in finance. In

particular, it allows for “leverage effect” that is, the Brownian motions W and W̃ can be corre-

lated. Moreover, Assumption 6 allows for volatility jumps, and it does not restrict their activity

15Formal results for the adaptive estimation of beta under the condition βc
t = β0, t ∈ [0, T ], are available upon

request.
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and dependence with the price jumps. However, this assumption does rule out certain long-memory

volatility models driven by the fractional Brownian motion (see Comte and Renault (1996)).

We now present the higher-order asymptotic expansion for the optimally weighted estimator.

We need some additional notation for this. Let v denote the spot variance of the residual Y −β0Z.
That is,

vt ≡ (−β0, 1) ct (−β0, 1)⊤ . (4.23)

Further, let
(
ξ′p−, ξ

′
p+

)
p≥1

be a collection of mutually independent random variables which are also

independent of F and (κp, ξp−, ξp+)p≥1, such that ξ′p− and ξ′p+ are scalar standard normal variables.

We set for p ≥ 1,

ϕp ≡
(−β0, 1)

(
cτp− + cτp

)
(−β0, 1)⊤

2
, Fp ≡

vτp−ξ
′
p− + vτpξ

′
p+√

2
. (4.24)

To guide intuition, we note that the variable Fp captures the sampling variability for approximating

the average residual volatility (vτp− + vτp)/2. We further note that ϕ−1
p = w∗(cτp−, cτp , β0), so the

limit variable ζβ(D, w∗) defined in (4.3) can be rewritten as

ζβ (D, w∗) ≡
∑

p∈PD
∆Zτpςp/ϕp∑

p∈PD
∆Z2

τp/ϕp
. (4.25)

Theorem 4. Let kn ≍ ∆−a
n for some constant a ∈ (0, 1/2). Suppose Assumptions 1, 2 and 6 hold

for ϖ ∈ (a/4, 1/2). Then we have the following expansion for the optimally weighted estimator:

∆−1/2
n

(
β̂n (D, w∗)− β0

)
= ζ∗n,β (D) + k−1/2

n H∗
n,β (D) + op(k

−1/2
n ), (4.26)

for some sequences of variables ζ∗n,β (D) and H∗
n,β (D) satisfying

(
ζ∗n,β (D) ,H∗

n,β (D)
) L-s−→

(
ζβ (D, w∗) ,H∗

β (D)
)
, (4.27)

where

H∗
β (D) ≡

(∑
p∈P

∆Z2
τpFp

ϕ2
p

)(∑
p∈P

∆Zτp ςp
ϕp

)
−
(∑

p∈P
∆Zτp ςp Fp

ϕ2
p

)(∑
p∈P

∆Z2
τp

ϕp

)
(∑

p∈P
∆Z2

τp

ϕp

)2 . (4.28)

The leading term ζ∗n,β (D) in (4.26) is what drives the convergence in Theorem 2. The higher-order

term k
−1/2
n H∗

n,β (D) is Op(k
−1/2
n ) and hence is asymptotically dominated by ζ∗n,β (D). The limiting

variable H∗
β (D) involves both Fp and ςp, which capture respectively the sampling variability that

arise from the estimation of the spot covariance and the estimation of jumps.
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1 Simulate (ς̃n,i)i∈I′
n(D) as in step 1 of Algorithm 1. Simulate (ξ̃′ni−, ξ̃

′n
i+)i∈I′

n(D) consisting of

independent copies of
(
ξ′p−, ξ

′
p+

)
. Set

F̃n,i ≡
v̂n,i−ξ̃

′
n,i− + v̂n,i+ξ̃

′
n,i+√

2
.

2 Compute

ζ̃∗n,β (D)

≡

 ∑
i∈I′

n(D)

∆n
i Z ς̃n,i

ϕ̂n,i

/ ∑
i∈I′

n(D)

∆n
i Z

2

ϕ̂n,i



+

 ∑
i∈I′

n(D)

∆n
i Z

2F̃n,i

ϕ̂2n,i

 ∑
i∈I′

n(D)

∆n
i Z ς̃n,i

ϕ̂n,i

−

 ∑
i∈I′

n(D)

∆n
i Z ς̃n,i F̃n,i

ϕ̂2n,i

 ∑
i∈I′

n(D)

∆n
i Z

2

ϕ̂n,i


k1/2n

 ∑
i∈I′

n(D)

∆n
i Z

2

ϕ̂n,i

2 .

3 Generate a large number of Monte Carlo simulations in the first two steps and set cv
α/2
n,β as

the (1− α/2)-quantile of ζ̃∗n,β (D, w) in the Monte Carlo sample. Set the 1− α level
two-sided symmetric confidence interval (CI) as

CI∗αn =
[
β̂n (D, w∗)−∆1/2

n cv
α/2
n,β , β̂n (D, w

∗) + ∆1/2
n cv

α/2
n,β

]
.

Algorithm 3: Refined confidence intervals for the jump beta.

Because of the higher-order asymptotic effect played by ĉn,i± in the efficient beta estimation,

the user has a lot of freedom in setting the block size kn. Indeed, as seen from Theorem 4, we

need only kn ≍ ∆−a
n with a in the wide range of (0, 1/2). This is unlike the block-based volatility

estimators, see e.g., Jacod and Rosenbaum (2013), where one has significantly less freedom in

choosing kn. Having the refined asymptotic result in Theorem 4 helps since if kn is relatively small,

the higher-order term k
−1/2
n H∗

n,β (D) might have nontrivial finite sample effect.

For concreteness, we describe in Algorithm 3 a finite-sample correction for the CIs described in

Algorithm 2, based on Theorem 4, where we set for i ∈ I ′
n (D),

ϕ̂n,i ≡

(
−β̃n, 1

)
(ĉn,i− + ĉn,i+)

(
−β̃n, 1

)
2

, v̂n,i± ≡
(
−β̃n, 1

)
ĉn,i±

(
−β̃n, 1

)⊤
. (4.29)

The proof of Theorem 2(c) can be easily adapted to show that CI∗αn defined in Algorithm 3 has

asymptotic level 1− α, that is, P(β0 ∈ CIαn ) → 1− α; the details are omitted for brevity.
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5 Numerical experiments

We now assess the efficiency gain provided by our efficient estimation procedure and we further

examine the finite-sample performance of the asymptotic theory above in realistically calibrated

simulations.

5.1 Relative efficiency of beta estimation

We start with gauging the efficiency gains of our efficient estimation procedure in empirical rele-

vant scenarios. As seen from the asymptotic theory in Section 4, the sampling variability in the

estimation of beta depends on the volatility processes of Y and Z, as well as the number and sizes

of jumps. Therefore, to make the efficiency comparisons practically relevant, we calibrate the nu-

merical environment using estimates of these quantities from our empirical application in Section

6. In particular, in the calculation of the asymptotic variances we will use the detected jumps in

our empirical data sets and we will further set ct =
1
2 (ĉn,i− + ĉn,i+) for t ∈ ((i− 1)∆n, i∆n].

We conduct two efficiency comparisons. First, in order to have a general sense about how

accurate the jump beta can be estimated, we compare the efficiency bound for estimating the jump

beta, which is attained by our optimally weighted estimator, with that for estimating the continuous

beta. Under the assumption that βct (recall (4.15)) is a constant, Li, Todorov, and Tauchen (2014)

show that the sharp lower efficiency bound for estimating the continuous beta is (
∫ T
0 cZZ,s/v

c
sds)

−1.

For the 13 assets studied in our empirical application, we find that estimating the continuous beta

is 6 to 7 times more accurate, measured by the F-conditional asymptotic standard deviation, than

estimating the jump beta from the same data set. We note that this is in spite of the fact that

the jump beta estimation is (effectively) based on 74 jump returns detected in the sample while

the continuous beta is based on the remaining of the total 56, 886 high-frequency increments. The

intuition is that, although the number of jump returns is small, these returns have much higher

signal-to-noise ratio than their diffusive counterparts for the estimation of betas.16

Our second efficiency comparison concerns the role of the optimal weighting in the efficient

estimation of jump beta. That is, we are interested in the efficiency gains from using the optimal

weight function w∗(·) over the case of no weighting, corresponding to w(·) = 1, which has been

done in prior work such as Gobbi and Mancini (2012) and Todorov and Bollerslev (2010). The

comparison is, again, implemented using estimates of jumps and volatility paths as explained above.

16Of course the above efficiency comparison is based on the premise that the continuous beta and the jump beta
remain constant over the same time interval. Results from tests for temporal stability of continuous betas in Reiss,
Todorov, and Tauchen (2014) indicate that continuous betas vary even over short periods such as months. This is
unlike our empirical findings for the jump betas, reported in the next section, for which we find temporal stability
over time spans of years.
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Table 1: Relative Efficiency of Jump Beta Estimation

Asset a.s.e.β̂n

a.s.e.β̃n
Asset a.s.e.β̂n

a.s.e.β̃n
Asset a.s.e.β̂n

a.s.e.β̃n
Asset a.s.e.β̂n

a.s.e.β̃n

XLB 0.68 XLK 0.61 XLV 0.61 XOM 0.69

XLE 0.61 XLP 0.66 XLY 0.61 BAC 0.32

XLF 0.44 XLU 0.55 IBM 0.51 GLD 0.55

XLI 0.69

Note: Calculations of the asymptotic standard error (a.s.e.) are based on detected jumps and
volatility paths extracted from the empirical data set discussed in Section 6. The efficient estimator
β̂n and the unweighted estimator β̃n correspond to β̂n([0, T ]×R∗, w) with w(·) = w∗(·) and w(·) = 1,
respectively.

Table 1 reports the relative efficiency of the unweighted estimator versus the efficient estimator.

We see that the optimal weighting indeed provides nontrivial efficiency gains, with the minimal

gain being 32% among all assets in our sample. Not surprisingly, these gains vary across assets

and are bigger for those with more volatility variations over the time period. We note that optimal

weighting is of particular relevance for the jump beta estimation: by their very nature, jumps are

rare events and, hence, for estimating the jump beta we naturally pool information from distinct

time periods which typically have very different volatility levels.

5.2 Monte Carlo

We proceed with assessing the performance of our inference techniques on simulated data from the

following model

dZt = σtdLt, dYt = βtdZt + σtdL̃t, dσ2t = 0.03(1− σ2t )dt+ 0.15σtdBt, (5.1)

where L and L̃ are two independent Lévy processes with characteristic triplets
(
0, 1, e

−|x|

24

)
and(

0, 1√
2
, e

−|x|

96

)
with respect to the zero truncation function; B is a Brownian motion independent

of L and L̃. This means that L and L̃ are Brownian motions plus compound Poisson jumps,

with jumps having double-exponential distribution. The frequency and jump size distributions are

calibrated to mimic those in the real data that we are going to use. For the beta process we consider βt = 1, for t ∈ [0, T ], under H0 (null hypothesis),

dβt = 0.005(1− βt)dt+ 0.005
√
βtdB̃t, under Ha (alternative hypothesis),

(5.2)
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Table 2: Monte Carlo Rejection Rates (%) of Tests for Constant Jump Beta

Case Under H0 Under Ha

Nominal Level Nominal Level

10% 5% 1% 10% 5% 1%

1/∆n = 38, kn = 19 11.79 6.65 2.65 58.00 46.00 29.00

1/∆n = 38, kn = 25 11.09 6.32 2.52 57.00 47.00 29.00

1/∆n = 81, kn = 27 11.60 6.33 1.90 83.00 76.00 65.00

1/∆n = 81, kn = 35 10.94 6.14 2.11 83.00 75.00 64.00

where B̃ is a Brownian motion independent of B, L and L̃. The unconditional mean of βt under

the alternative hypothesis is 1 and the expected range of the process (βt)t≥0 over the interval of

estimation is approximately 0.2.

We set T = 1, 500 days (our unit of time is a trading day), and consider two sampling frequencies:

∆n = 1/38 which corresponds to sampling every 10 minutes in a 6.5 hours trading day, and

∆n = 1/81 which corresponds to sampling every 5 minutes. We experiment with two values of

kn for each of the sampling frequency in order to check the sensitivity of the inference techniques

with respect to this tuning parameter. Finally, as is typical in truncation-based methods, we

select the truncation threshold in the following data-driven way. For the increment ∆n
i Z with

i = ⌊(t− 1)/∆n⌋+ 1, ..., ⌊t/∆n⌋, we set

vn = 4×
√
BVt ×∆0.49

n , BVt =
⌊t/∆n⌋

⌊t/∆n⌋ − 1

π

2

⌊t/∆n⌋∑
⌊(t−1)/∆n⌋+2

|∆n
i−1Z||∆n

i Z|. (5.3)

Here, BVt is the Bipower Variation of Barndorff-Nielsen and Shephard (2004b, 2006) which is a

jump-robust estimator of volatility and importantly free of tuning parameters. For the construction

of ĉn,i± we include all increments for which both components are below a threshold set similarly as

above but with 4 replaced by 3. There are 10,000 Monte Carlo trials.

In Table 2 we report the results from the Monte Carlo for the test of constant jump beta.

As seen from the table, the test has good size properties with only mild overrejections. These

overrejections decrease when the sampling frequency increases from 10 to 5 minutes. The test

also has a reasonable power against the considered alternative which increases with the sampling

frequency. In Table 3 we report the coverage probability for the refined CI of jump beta that is
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Table 3: Monte Carlo Coverage Probability (%) of Confidence Intervals

Case Nominal Level

90% 95% 99%

1/∆n = 38, kn = 19 88.00 93.43 98.21

1/∆n = 38, kn = 25 88.78 93.95 98.51

1/∆n = 81, kn = 27 88.60 94.18 98.52

1/∆n = 81, kn = 35 89.15 94.29 98.45

based on the efficient estimator and is described in Algorithm 3. The coverage probabilities are

in general quite close to the nominal levels of the CIs. Not surprisingly, we see again improved

performance at the higher sampling frequency. We also note that the coverage probability of the

CIs is not very sensitive to the choice of the block size kn. Overall, we find quite satisfactory

finite-sample performance of our inference techniques for the jump betas, even for relatively sparse

sampling of 1/∆n = 38.

6 Empirical application

The application concerns betas on market jumps for assets in three classes, with the market proxy

(as discussed in the Introduction) being the ETF that tracks the S&P 500 index (ticker symbol:

SPY). The first set of assets consists of the ETFs on the nine industry portfolios comprising

the S&P 500 index. The industry portfolios are, with ticker symbols in parenthesis, as follows:

materials (XLB), energy (XLE), financials (XLF), industry (XLI), technology (XLK), consumer

staples (XLP), utilities (XLU), healthcare (XLV), and consumer discretionary (XLY). The second

set consists of large-cap stocks: IBM (IBM), Exxon Mobil (XOM), and Bank of America (BAC).

Finally, we also consider the precious metal asset gold ETF (GLD).

Data on each series are sampled at the 10-minute frequency over the period 2007–2012. The

resultant data sets consists of 1, 746 days of 38 within-day returns (log-price increments). By using

10-minute sampling on liquid assets we essentially eliminate the impact of biases due to various

microstructure effects, such as within-asset trading frictions (e.g., bid-ask bounce, rounding error,

etc.) and asynchronous trading across assets.17 We set the truncation threshold exactly as (5.3)

17There is now a vast literature on noise-robust estimation for integrated variance and covariance. Developing a
noise-robust theory for the jump regressions is left for future research.
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in the Monte Carlo, with further correction for the well-known deterministic diurnal pattern in

volatility.18 The block size is set to kn = 19.

Figures 2 and 3 display the scatter plots of the detected jump increments of the various assets

against those of the market index. These scatters are estimates, in the sense of Proposition 1, of their

population counterparts. The figures also show the fit provided by the linear jump regression model

(1.2) based on the optimally weighted estimator developed in Section 4.1. Perhaps surprisingly, the

fit appears generally quite tight for equities and equity portfolios, despite the tail nature of jumps

and the fact that the sample spans both tranquil and turbulent market environments. That noted,

there is lack of fit on the left tail for certain assets. In contrast to equity-based assets, we observe

no strong relationship between the jumps in the gold ETF and the market index, consistent with

the fact that gold price has nontrivial exposure to other risk factors.

Table 4 reports summary statistics for the linear jump beta regressions over the full sample.

As seen from the table, the confidence intervals for beta are relatively tight which further confirms

the high precision with which we can estimate jump betas. It is also interesting to note that the

average volatility of the residual Y − βZ at the jump times of Z is higher than its value at the

times immediately preceding the jumps. This provides evidence for volatility jumps at the time of

the price jumps. Nevertheless, for most assets the volatility jump, at the time of the price jump,

is quite small on average, suggesting our beta estimator is close to mixed Gaussian. The second to

last column of Table 4, which reports the R2s, confirms our observation, based on Figures 2 and

3, of the good fit provided by the linear jump regression, with the exception of gold. In general

the R2s are quite high - the worst fit in terms of R2 is for gold, the financial ETF and the stock

from the financial sector, BAC. Despite the apparently good fit, the formal test for constancy of

the jump beta rejects the null for all but three of the assets in our sample at all conventional levels

of the test; see the last column of Table 4 for p-values of these tests. The deviations from linearity

observed in Figures 2 and 3 are thus in most cases strongly statistically significant.

Of course, as suggested by Figure 1 discussed in the Introduction, the linear jump regression

fits can probably be further stabilized when the regressions are run over a shorter period such as

one year. This is consistent with the conditional asset pricing models in which betas change over

time (see, e.g., Hansen and Richard (1987)). We hence perform the jump regressions year by year,

with results from the tests for the constant linear specification reported in Table 5. Allowing for

beta to change over years improves the performance of the linear jump regression model for the

industry portfolios. Indeed, the constant jump beta hypothesis is not rejected at the conventional

18We use the procedure detailed in the supplemental material of Todorov and Tauchen (2012).
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Figure 2: Scatter of Jumps: Industry Portfolios

−5 0 5
−5

0

5
XLB

∆ 
Y

−5 0 5
−5

0

5
XLE

−5 0 5
−10

−5

0

5
XLF

−5 0 5
−5

0

5
XLI

∆ 
Y

−5 0 5
−5

0

5
XLK

−5 0 5
−4

−2

0

2
XLP

−5 0 5
−4

−2

0

2

4
XLU

∆ Z

∆ 
Y

−5 0 5
−5

0

5
XLV

∆ Z
−5 0 5

−4

−2

0

2

4
XLY

∆ Z

Figure 3: Scatter of Jumps: Stocks and the Gold ETF
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Table 4: Jump Betas and Tests for Constancy over the Full Sample

Asset β̂ 95% CI σ̂τp− σ̂τp R2 p-val

XLB 1.0920 [1.0525 1.1315] 0.5775 0.5928 0.9614 0.0000

XLE 1.1093 [1.0669 1.1518] 0.7025 0.7283 0.9592 0.0111

XLF 1.2378 [1.1829 1.2926] 0.6515 0.7124 0.8875 0.0000

XLI 1.1225 [1.0918 1.1533] 0.3580 0.3989 0.9548 0.0000

XLK 0.9295 [0.9032 0.9559] 0.3753 0.3956 0.9800 0.0004

XLP 0.6546 [0.6270 0.6823] 0.3916 0.3735 0.9633 0.0003

XLU 0.7574 [0.7146 0.8001] 0.5706 0.6276 0.9534 0.0201

XLV 0.7425 [0.7120 0.7730] 0.3721 0.3991 0.9305 0.0000

XLY 0.9829 [0.9555 1.0102] 0.3949 0.4066 0.9821 0.0012

IBM 0.8647 [0.8172 0.9123] 0.6658 0.7187 0.9205 0.0000

XOM 0.9446 [0.8982 0.9910] 0.7005 0.7242 0.9437 0.0002

BAC 1.3582 [1.2617 1.4547] 1.6111 1.7155 0.7493 0.0186

GLD 0.1167 [0.0672 0.1661] 0.6020 0.6722 0.0434 0.0000

Note: The columns show the estimated jump beta, the 95% confidence interval (CI), the average
level of volatility of Y − βZ pre- and post-market jump, R2 of the regression, and the p-values for
the null hypothesis of a constant linear jump regression model for the period 2007–2012.

1% significance level in the majority of cases. The same holds true, albeit to a far less extent, for

the stocks.

The rejections of constant jump beta within a year seen in Table 4 could be due to temporal

instability within a year, nonlinearity in the jump regression (recall jump betas can depend on

the sign and size of jumps), or both. We thus further expand the above analysis by considering

a piecewise linear specification where, for each asset and year, separate jump betas are estimated

for the negative and positive market jumps. This is analogous to Ang, Chen, and Xing (2006)

and Lettau, Maggiori, and Weber (2014), who in discrete-time settings investigate the pricing

implications of separating upside and downside betas. Table 6 shows the summary results for

the three stocks.19 These results can reconcile and help understand the reasons for the rejections

19Since Table 5 shows that the constant jump beta model within each year works already quite well for the industry
portfolios, we do not report analogous results for them. On the other hand, for gold, even after allowing for the jump
beta to depend on the market jump size, we still detect rejection of such a piecewise linear jump regression in 2/3 of

33



Table 5: Tests for Constant Jump Beta over Years

Asset Year

2007 2008 2009 2010 2011 2012

XLB 0.030 0.016 0.015 0.085 0.007 0.049

XLE 0.539 0.421 0.090 0.064 0.426 0.027

XLF 0.000 0.133 0.019 0.009 0.029 0.071

XLI 0.002 0.000 0.597 0.006 0.033 0.000

XLK 0.001 0.058 0.280 0.004 0.261 0.077

XLP 0.043 0.015 0.008 0.009 0.343 0.002

XLU 0.533 0.782 0.047 0.209 0.061 0.022

XLV 0.000 0.027 0.004 0.022 0.260 0.000

XLY 0.022 0.038 0.020 0.291 0.173 0.267

IBM 0.001 0.030 0.099 0.009 0.006 0.013

XOM 0.000 0.007 0.007 0.831 0.303 0.001

BAC 0.299 0.166 0.000 0.278 0.343 0.087

GLD 0.047 0.001 0.000 0.000 0.000 0.000

Number of jumps within year

15 8 9 12 10 20

Note: The table reports p-values of the test for constant linear jump regression model for every
asset and every year in the sample.

by year and stock seen in Table 5. Starting with IBM, from Table 5, a linear jump relation is

rejected at the 1% level for years 2007, 2010, and 2011. For 2007, Table 6 indicates the rejection is

mostly due to instability of the linear relationship for negative market jumps, but also there is some

difference in the estimated positive and negative jump betas as well. For 2010 and 2011, the jump

betas appear quite stable within each region but differ across regions, suggesting the rejections for

the entire year are due to nonlinearity in the jump regression. For XOM, from Table 5, a linear

jump relation is rejected at 1% for years 2007, 2008, 2009, and 2012. From Table 6 it is seen that

different positive and negative jump betas can account for all these years. In the first three years

the sign/year combinations. We do not report these results in order to save space.
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the negative jump betas are lower than the positive ones, and for the rest of the sample we see the

reverse. Further in 2009, there is in addition some instability in the negative jump beta.

BAC is an interesting case. We first note that inference for this stock is rather difficult because

of the very high levels of idiosyncratic (with respect to the market) risk as evident from the relatively

wide confidence intervals for the jump betas reported in Table 6. From Table 5, we observe that

a test for a linear jump relation does not reject the null for all years except 2009. However, when

we subdivide and perform the test for linear jump relation on the set of positive and negative

jumps separately, we see that during some of the years there is some evidence for instability of the

linear relationship. For example, in 2007, 2008 and 2010 there is some instability in the negative

jump beta, and in 2011 in the positive jump beta. When pooling the set of positive and negative

jumps, these instabilities become harder to detect. Finally, in year 2009 we note a very significant

difference between positive and negative jump beta, with the latter being much higher than the

former. This nonlinearity can explain the failure of the linear jump regression model for that year.

The preceding analysis illustrates that a linear jump regression model, potentially with separate

betas for positive and negative market jumps, works well over periods of years in capturing the

dependence between jumps in industry portfolios and equity-based assets on one hand and the

market jumps on the other hand. The analysis here can be extended to a broader set of assets.

It can be further expanded to include a larger set of systematic risk factors (in addition to the

market portfolio). Overall, the tools developed in the paper should prove useful in studying jump

dependence which is a key building block in the analysis of pricing of jump risk in the cross-section.
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Table 6: Positive and Negative Jump Betas and Tests for Constancy over Years

Asset/Year ∆Z < 0 ∆Z > 0

IBM β̂ 95% CI p-val β̂ 95% CI p-val

2007 1.009 [0.848 1.170] 0.003 0.747 [0.595 0.899] 0.029

2008 1.309 [1.099 1.518] 0.025 0.722 [0.542 0.902] 0.029

2009 0.884 [0.728 1.040] 0.008 0.766 [0.669 0.863] 0.025

2010 0.849 [0.732 0.966] 0.728 0.892 [0.745 1.038] 0.526

2011 0.897 [0.660 1.133] 0.226 0.770 [0.601 0.939] 0.281

2012 0.837 [0.693 0.981] 0.660 0.847 [0.713 0.981] 0.000

XOM

2007 0.881 [0.748 1.014] 0.193 1.033 [0.830 1.236] 0.478

2008 0.803 [0.627 0.978] 0.625 1.173 [0.908 1.438] 0.941

2009 0.578 [0.432 0.723] 0.000 0.943 [0.839 1.047] 0.012

2010 1.040 [0.915 1.165] 0.219 0.894 [0.692 1.097] 0.255

2011 1.028 [0.792 1.265] 0.569 0.788 [0.629 0.947] 0.489

2012 1.181 [1.030 1.332] 0.411 1.082 [0.952 1.212] 0.041

BAC

2007 1.410 [1.218 1.602] 0.002 1.169 [1.009 1.330] 0.014

2008 1.649 [1.299 2.000] 0.004 1.894 [1.530 2.258] 0.151

2009 2.942 [2.273 3.611] 0.030 1.190 [0.912 1.467] 0.191

2010 0.974 [0.751 1.198] 0.005 1.194 [0.812 1.576] 0.624

2011 0.965 [0.588 1.341] 0.595 1.325 [0.983 1.666] 0.004

2012 1.468 [1.179 1.757] 0.674 2.056 [1.754 2.359] 0.012

Note: The left half of the table reports, for each stock and year, the estimated jump beta corre-
sponding to the negative market jumps, the 95% CI, and the p-value for the null hypothesis of a
constant linear jump regression model over that given year and jump size domain; the right side of
the table reports the corresponding quantities when restricting to the set of positive market jumps.
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7 Conclusion

We develop econometric tools for studying the dependence between jumps of two processes from

high-frequency observations on a fixed time interval. We derive tests for deciding whether a linear

relationship for jumps of two processes, implied by standard linear factor models, holds on a

given time interval and for a given region of the jump size domain. We show that the test has

power for detecting both nonlinearity in functional form and time-varying parameters. We further

propose an efficient estimator for the jump beta and construct feasible confidence sets, as well

as a finite-sample refinement of the latter based on a novel higher-order asymptotic expansion.

The proposed efficient estimator is a weighted linear estimator, where the weights are constructed

from block-based estimates of local stochastic volatility before and after the jump times, and fully

account for an unrestricted form of heteroskedasticity. We derive a semiparametric efficiency bound

for the estimation in the linear jump regression model and we show that our estimator achieves

this efficiency bound. The asymptotic mixed Gaussianity of our estimator arises from the local

approximate Gaussianity of the diffusive price increments, rather than from averaging out a large

number of weakly dependent random disturbances. Therefore, despite the fact that only a small

number of jump observations are informative for the jump beta, our estimator enjoys the parametric

rate of convergence, with its asymptotic variance comparable with that for the estimation of the

linear regression coefficient of diffusions observed at high-frequency.

In an empirical application, we document that market jump betas of financial assets remain

stable over a period of one year, but find evidence for temporal variation for a longer time interval of

six years. In some of the cases, the temporal stability is achievable only after allowing for different

jump beta depending on the direction of market jumps. This evidence stands in contrast to that

for diffusive (continuous) market betas which are time-varying over quite shorter time periods.

8 Appendix: Proofs

Throughout this appendix, we use K to denote a generic constant that may change from line to

line; we sometimes emphasize the dependence of this constant on some parameter q by writing Kq.

We use 0k×q to denote a k×q matrix of zeros and when q = 1, we write 0k for notational simplicity;

0k is understood to be empty when k = 0. For any sequence of variables (ξn,p)p≥1, the convergence

(ξn,p)p≥1 → (ξp)p≥1 is understood as n → ∞ under the product topology. We write w.p.a.1 for

“with probability approaching 1.”

By a standard localization procedure (see Section 4.4.1 of Jacod and Protter (2012)), we can
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strengthen Assumption 1 to the following stronger version without loss of generality.

Assumption S1. We have Assumption 1. Moreover, the processes Xt, bt and σt are bounded.

Proof of Proposition 1. (a) Since the jumps of Z have finite activity, we can assume without

loss of generality that each interval ((i− 1)∆n, i∆n] contains at most one jump; otherwise we can

restrict our calculation to the w.p.a.1 set of sample paths on which this condition holds. We denote

the continuous part of Z by Zc, that is,

Zc
t = Zt −

∑
s≤t

∆Zs, t ≥ 0. (8.1)

Note that In (D) is the union of two disjoint sets I1n (D) and I2n (D) that are defined as

I1n (D) = In (D) ∩ {i (p) : p ∈ P} , I2n (D) = In (D) \I1n (D) . (8.2)

It suffices to show that, w.p.a.1,

I1n (D) = I (D) , I2n(D) = ∅. (8.3)

First consider I1n (D). Since vn → 0, we have |∆n
i(p)Z| > vn for all p ∈ P, when n is large

enough. Therefore,

I1n (D) =
{
i (p) : p ∈ P, ((i (p)− 1)∆n,∆

n
i(p)Z) ∈ D

}
w.p.a.1. (8.4)

Now, observe that

sup
p∈P

∥∥∥((i(p)− 1)∆n,∆
n
i(p)Z

)
−
(
τp,∆Zτp

)∥∥∥→ 0 a.s. (8.5)

Indeed, almost surely,

sup
p∈P

∥∥∥((i(p)− 1)∆n,∆
n
i(p)Z

)
−
(
τp,∆Zτp

)∥∥∥ = sup
p∈P

∥∥∥((i(p)− 1)∆n − τp,∆
n
i(p)Z

c
)∥∥∥

≤ ∆n + sup
s,t≤T,|s−t|≤∆n

|Zc
t − Zc

s | → 0. (8.6)

By Assumption 2, the marks (τp,∆Zτp)p∈PD are contained in the interior of D a.s. Then, by (8.5),

((i(p)−1)∆n,∆
n
i(p)Z)p∈PD ⊆ D w.p.a.1. With the same argument but with Dc (i.e. the complement

of D) replacing D, we deduce ((i(p) − 1)∆n,∆
n
i(p)Z)p∈P\PD

⊆ Dc w.p.a.1. Therefore, the set on

the right-hand side of (8.4) coincides with I (D) w.p.a.1. From here, the first claim of (8.3) readily

follows.
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It remains to show that I2n (D) is empty w.p.a.1. Note that for i ∈ I2n (D), ∆n
i Z = ∆n

i Z
c.

Hence, for any q > 2/ (1− 2ϖ),

P (I2n (D) ̸= ∅) ≤
⌊T/∆n⌋∑

i=1

P (|∆n
i Z

c| > vn) ≤ Kq∆
−1
n

∆
q/2
n

vqn
→ 0, (8.7)

where the second inequality is by Markov’s inequality and E |∆n
i Z

c|q ≤ Kq∆
q/2
n ; the convergence is

due to (2.12) and our choice of q. The proof of part (a) is now complete.

(b) By part (a), it suffices to show that

((i− 1)∆n,∆
n
i X)i∈I(D) −

(
τp,∆Xτp

)
p∈PD

= op(1). (8.8)

Observe that ((i− 1)∆n,∆
n
i X)i∈I(D) is simply ((i(p)− 1)∆n,∆

n
i(p)X)p∈PD . We deduce the desired

convergence via the same argument as that for (8.5). Q.E.D.

Proof of Theorem 1. (a) Let

β̄ (D) ≡ QZY (D)

QZZ (D)
. (8.9)

For each p ≥ 1, we set

Rn,p = ∆−1/2
n (∆n

i(p)X −∆Xτp) and ςn,p = (−β̄ (D) , 1)Rn,p. (8.10)

With these notations, we have in restriction to Ω0 (D),

∆n
i(p)Y = β0∆

n
i(p)Z +∆1/2

n ςn,p. (8.11)

By Proposition 4.4.10 in Jacod and Protter (2012), (Rn,p)p≥1
L-s−→ (Rp)p≥1, where Rp is defined in

(3.2). Consequently (recall the notation (3.10)),

(ςn,p)p≥1
L-s−→ (ςp)p≥1 . (8.12)

By Proposition 1(a), w.p.a.1.,

det [Qn (D)] =

∑
p∈PD

∆n
i(p)Z

2

∑
p∈PD

∆n
i(p)Y

2

−

∑
p∈PD

∆n
i(p)Z∆

n
i(p)Y

2

. (8.13)

Plug (8.11) into (8.13). After some algebra, we deduce

∆−1
n det[Qn (D)] =

∑
p∈PD

∆n
i(p)Z

2

∑
p∈PD

ς2n,p

−

∑
p∈PD

∆n
i(p)Z ςn,p

2

. (8.14)
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Note that for each p ≥ 1, ∆n
i(p)Z → ∆Zτp . Combining this convergence with (8.12), we use the

property of stable convergence to derive the joint convergence(
ςn,p,∆

n
i(p)Z

)
p≥1

L-s−→
(
ςp,∆Zτp

)
p≥1

. (8.15)

Since the set PD is a.s. finite, the assertion of part (a) follows from (8.14), (8.15) and the continuous

mapping theorem.

(b) By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we

assume that Assumption S1 holds without loss of generality. Since PD is a.s. finite, we can

also assume that |PD| ≤ M for some constant M > 0 for the purpose of proving convergence in

probability; otherwise, we can fix some largeM to make P (|PD| > M) arbitrarily small and restrict

the calculation below on the set {|PD| ≤M}.
By Theorem 9.3.2 in Jacod and Protter (2012), we have,

ĉn,i(p)−
P−→ cτp−, ĉn,i(p)+

P−→ cτp , all 1 ≤ p ≤M. (8.16)

By Proposition 1(b),

Qn (D)
P−→ Q (D) , (8.17)

which further implies (with β̃n ≡ QZY,n (D) /QZZ,n (D))

β̃n
P−→ β̄ (D) . (8.18)

Furthermore, by essentially the same argument as in the proof of Proposition 1(a), we deduce

I ′
n (D) = I (D) w.p.a.1. (8.19)

Therefore,

ζ̃n (D) =

∑
p∈PD

∆n
i(p)Z

2

∑
p∈PD

ς̃2n,i(p)

−

∑
p∈PD

∆n
i(p)Z ςn,i(p)

2

w.p.a.1. (8.20)

Fix any subsequence N1 ⊆ N. By (8.16) and (8.18), we can extract a further subsequence

N2 ⊆ N1, such that along N2,((
ĉn,i(p)−, ĉn,i(p)+

)
1≤p≤M

, β̃n

)
→
((
cτp−, cτp

)
1≤p≤M

, β̄ (D)
)

(8.21)

on some set Ω̃ with P(Ω̃) = 1. Then, for each ω ∈ Ω̃ fixed, the transition kernel of ζ̃n (D) given

F converges weakly to the F-conditional law of ζ (D). Moreover, observe that the F-conditional

law of the variables (ςp)1≤p≤M does not have atoms and has full support on RM . Therefore, the
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F-conditional distribution function of ζ (D) is continuous and strictly increasing. By Lemma 21.2

in van der Vaart (1998), we deduce that on each path ω ∈ Ω̃, along the subsequence N2, cv
α
n → cvα,

where cvα is the F-conditional (1 − α)-quantile of ζ (D). Since the subsequence N1 is arbitrarily

chosen, we further deduce that cvαn
P−→ cvα by the subsequence characterization of convergence in

probability. The proof for part (b) is now complete.

(c) By part (a) and part (b), as well as the property of stable convergence, we have

(∆−1
n det [Qn (D)] , cvαn , 1Ω0(D))

L-s−→ (ζ (D) , cvα, 1Ω0(D)). (8.22)

In particular,

P
(
{∆−1

n det [Qn (D)] > cvαn} ∩ Ω0 (D)
)
→ P ({ζ (D) > cvα} ∩ Ω0 (D)) . (8.23)

Since P (ζ (D) > cvα|F) = α and Ω0 (D) ∈ F , the right-hand side of (8.23) equals to αP (Ω0 (D)).

The first assertion of part (c) then follows from (8.23). To show the second assertion of part

(c), we first observe that (8.17) implies det [Qn (D)]
P−→ det [Q (D)]. In restriction to Ωa (D),

det [Q (D)] > 0 and, hence, ∆−1
n det [Qn (D)] diverges to +∞ in probability. Part (b) implies

that cvαn is tight in restriction to Ωa (D). Consequently, P
(
∆−1

n det [Qn (D)] > cvαn |Ωa (D)
)
→ 1 as

asserted. Q.E.D.

Proof of Theorem 2. (a) Observe that

QZY,n (D, w)− β0QZZ,n (D, w) =
∑

i∈I′
n(D)

w
(
ĉni−, ĉ

n
i+, β̃n

)
∆n

i Z (∆n
i Y − β0∆

n
i Z) . (8.24)

Recall the notation ςn,p from (8.10). By (8.19), we further deduce that, w.p.a.1,

∆−1/2
n (QZY,n (D, w)− β0QZZ,n (D, w)) =

∑
p∈PD

w
(
ĉn,i(p)−, ĉn,i(p)+, β̃n

)
∆n

i(p)Z ςn,p. (8.25)

By (8.16), (8.18) and Assumption 3,

w
(
ĉni(p)−, ĉ

n
i(p)+, β̃n

)
P−→ w

(
cτp−, cτp , β0

)
, p ≥ 1. (8.26)

Since PD is a.s. finite, we use properties of stable convergence to deduce from (8.12) and (8.26)

that

∆−1/2
n (QZY,n (D, w)− β0QZZ,n (D, w))

L-s−→
∑
p∈PD

w
(
cτp−, cτp , β0

)
∆Zτpςp. (8.27)

Note that

∆−1/2
n (β̂n (D, w)− β0) =

∆
−1/2
n (QZY,n (D, w)− β0QZZ,n (D, w))

QZZ,n (D, w)
. (8.28)
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By (8.19),

Qn (D, w) =
∑
p∈PD

w
(
ĉni(p)−, ĉ

n
i(p)+, β̃n

)
∆n

i(p)X∆n
i(p)X

⊤. (8.29)

By ∆n
i(p)X → ∆Xτp and (8.26), we deduce

Qn (D, w)
P−→

∑
p∈PD

w
(
cτp−, cτp , β0

)
∆Xτp∆X

⊤
τp . (8.30)

The first assertion of part (a), that is, ∆
−1/2
n (β̂n (D, w) − β0)

L-s−→ ζβ (D, w) readily follows from

(8.27), (8.28) and (8.30).

Turning to the second assertion of part (a), we first observe that when ct does not jump at the

same time as Zt, each ςp is F-conditionally centered Gaussian; moreover, the variables (ςp)p≥1 are F-

conditionally independent. Therefore, the limiting variable ζβ (D) is centered Gaussian conditional

on F , with conditional variance given by Σ (D, w). This finishes the proof of the second assertion.

(b) For notational simplicity, we denote

Ap =
(−β0, 1)

(
cτp− + cτp

)
(−β0, 1)⊤

2∆Z2
τp

, Bp = w
(
cτp−, cτp , β0

)
∆Z2

τp .

Then we can rewrite Σ (D, w) and Σ (D, w∗) as

Σ (D, w) =
∑

p∈PD
B2

pAp(∑
p∈PD

Bp

)2 , Σ (D, w∗) =

∑
p∈PD

A−1
p

−1

.

The assertion of part (b) is then proved by observing√
Σ(D, w)
Σ (D, w∗)

=

√∑
p∈PD

B2
pAp

√∑
p∈PD

A−1
p∑

p∈PD
Bp

≥ 1,

where the inequality is by the Cauchy-Schwarz inequality.

(c) By (8.19) and (8.26), as well as ∆n
i(p)Z → ∆Zτp , we deduce that the F-conditional law

of ζ̃n,β(D, w) converges in probability to that of ζβ(D, w) under any metric for weak convergence.

From here, by using an argument similar to that in the proof of Theorem 1(b), we further deduce

that

cv
α/2
n,β

P−→ cv
α/2
β , (8.31)

where cv
α/2
β denotes the (1− α/2)-quantile of the F-conditional law of ζβ(D, w). It is easy to see

that the F-conditional law of ζβ (D, w) is symmetric. The assertion of part (c) then follows from

part (a) and (8.31). Q.E.D.
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Proof of Theorem 3. (a) Fix S ∈ S and let m = dim(S)− 1. We consider a sequence of subsets

Ωn defined by

Ωn =


For every 1 ≤ i ≤ ⌊T/∆n⌋ , if ((i− 1)∆n, i∆n] contains

some jump of Z, then this interval is contained in (Sj−1, Sj ]

for some 1 ≤ j ≤ m and it contains exactly one jump of Z.


Under Assumption 1, the process Z has finitely active jumps without any fixed time of discontinuity.

Hence, P (Ωn) → 1, so we can restrict our calculation below on Ωn without loss of generality.

Below, we write h = (h0, . . . hm)⊤ and denote the log likelihood ratio by

Ln (h) = log
dPn

θ0+∆
1/2
n h

dPn
θ0

.

For each i ≥ 1, we set h (n, i) = hj , where j is the unique integer in {1, . . . ,m} such that i∆n ∈
(Sj−1, Sj ]. On the set Ωn, with θ = θ0 +∆

1/2
n h, we have

∆n
i X =

∫ i∆n

(i−1)∆n

bsds+

∫ i∆n

(i−1)∆n

σsdWs +

 (1 + ∆
1/2
n h (n, i))∆n

i JZ(
β0 +∆

1/2
n h0

)
(1 + ∆

1/2
n h (n, i))∆n

i JZ +∆n
i ε

 .

To simplify notations, we denote for each i ≥ 1,

xn,i ≡ ∆−1/2
n

∫ i∆n

(i−1)∆n

σsdWs,

b̄n,i ≡
∫ i∆n

(i−1)∆n

bsds, c̄n,i ≡ ∆−1
n

∫ i∆n

(i−1)∆n

csds,

Jn,i ≡

 ∆n
i JZ

β0∆
n
i JZ +∆n

i ε

 , dn,i ≡

 h (n, i)

h0 + β0h (n, i) + ∆
1/2
n h0h (n, i)

 .

Note that under Assumption 4, (xn,i)i≥1 are independent conditional on (bt, σt, JZ,t, εt)t≥0 and

each xn,i is distributed as N (0, c̄n,i). With these notations, we can write the log likelihood ratio

explicitly as

Ln (h) =

⌊T/∆n⌋∑
i=1

∆n
i JZd

⊤
n,ic̄

−1
n,ixn,i −

1

2

⌊T/∆n⌋∑
i=1

∆n
i J

2
Zd

⊤
n,ic̄

−1
n,idn,i. (8.32)

Note that on Ωn, ∆n
i JZ ̸= 0 only if ((i− 1)∆n, i∆n] contains one (and only one) jump of Z.

Therefore,

Ln (h) =
∑
p∈P

∆Zτpd
⊤
n,i(p)c̄

−1
n,i(p)xn,i(p) −

1

2

∑
p∈P

∆Z2
τpd

⊤
n,i(p)c̄

−1
n,i(p)dn,i(p). (8.33)
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By Proposition 4.4.10 in Jacod and Protter (2012),
(
xn,i(p)

)
p≥1

L-s−→ (Rp)p≥1. Under Assumption

5, the variables (Rp)p≥1 are F-conditionally independent, where the F-conditional law of Rp is

N
(
0, cτp

)
; moreover, c̄n,i(p) → cτp a.s. for each p ≥ 1. Further note that for each p ≥ 1,

dn,i(p) −→ Dph. (8.34)

where the matrix Dp is defined as

Dp ≡

 0 0ᵀj−1 1 0ᵀm−j

1 0ᵀj−1 β0 0ᵀm−j

 for j such that τp ∈ (Sj−1, Sj ]. (8.35)

Since P is a.s. finite, we deduce (4.9) from (8.33) and (8.34), that is,

Ln (h) = h⊤Γ1/2
n ψn − 1

2
h⊤Γnh+ op(1), (8.36)

where

Γn ≡
∑
p∈P

∆Z2
τpD

⊤
p c̄

−1
n,i(p)Dp, ψn = Γ−1/2

n

∑
p∈P

∆ZτpD
⊤
p c̄

−1
n,i(p)xn,i(p). (8.37)

In addition, (4.10) follows with

Γ ≡
∑
p∈P

∆Z2
τpD

⊤
p c

−1
τp Dp, ψ ≡ Γ−1/2

∑
p∈P

∆ZτpD
⊤
p c

−1
τp Rp. (8.38)

It is easy to verify that Γ defined in (8.38) equals to Γ (S) defined by (4.17). To see, we make

the following explicit calculation using (8.35),

D⊤
p c

−1
τp Dp =



1
vcτp

0⊤j−1

β0−βc
τp

vcτp
0⊤m−j

0j−1 0(j−1)×(j−1) 0j−1 0(j−1)×(m−j)

β0−βc
τp

vcτp
0⊤j−1

(
β0−βc

τp

)2
vcτp

+ 1
cZZ,τp

0⊤m−j

0m−j 0(m−j)×(j−1) 0m−j 0(m−j)×(m−j)


. (8.39)

Finally, we note that conditional on F , ψ has a standard normal distribution and, hence, is inde-

pendent of F . The proof for the LAMN property is now complete.

From the proof of Theorem 3 of Jeganathan (1982), we see that the convolution theorem can

be applied in restriction to the set Ω (S) ≡ {Γ(S) is nonsingular}. The information bound for

estimating β, that is, the first diagonal element of Γ (S)−1, can then be easily computed by using

the inversion formula for partitioned matrices.
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(b) Since the jumps of Z have finite activity, on each sample path ω ∈ Ω there exists some

S∗(ω) ∈ S that shatters its jumps. That is, each interval (S∗
j−1(ω), S

∗
j (ω)] contains at exactly one

jump time of Z. We can then evaluate Σ̄β (·) at S∗ on each sample path and obtain

Σ̄β (S
∗) =

∑
s≤T

(
∆Z2

s

vcs
− γ21s
γ2s

)−1

. (8.40)

Plugging the definitions of γ1s and γ2s (see (4.16)) into (8.40), we can verify that

Σ̄β (S
∗) =

∑
s≤T

∆Z2
s

cY Y,s − 2β0cZY,s + β20cZZ,s

−1

. (8.41)

Recall that we fix D = [0, T ] × R∗ and Σ∗ ≡ Σ(D, w∗), with the latter given by (4.8). Under

Assumption 5, we see Σ̄β (S
∗) = Σ∗.

It remains to verify that Σ̄β (S
∗) ≥ Σ̄β (S) for all S ∈ S. By the Cauchy–Schwarz inequality,(∑
Sj−1<s≤Sj

γ1s

)2∑
Sj−1<s≤Sj

γ2s
≤

∑
Sj−1<s≤Sj

γ21s
γ2s

. (8.42)

From (4.19), (8.40) and (8.42), Σ̄β (S
∗) ≥ Σ̄β (S) readily follows. Q.E.D.

Proof of Theorem 4. We complement the notations in (4.29) with

ṽn,i± ≡ (−β0, 1) ĉn,i± (−β0, 1)⊤ . (8.43)

Observe that vt (recall (4.23)) is the spot covariance matrix of the process Y − β0Z. Then, by

applying Theorem 13.3.3(c) of Jacod and Protter (2012) to the process Y − β0Z, we deduce that

k1/2n

(
ṽn,i(p)− − vτp−, ṽn,i(p)+ − vτp

)
p≥1

L-s−→
(√

2vτp−ξ
′
p−,

√
2vτpξ

′
p+

)
p≥1

. (8.44)

Recall the notations in (4.24) and (4.29). For each p ≥ 1, we can decompose

ϕ̂n,i(p) = ϕp + k−1/2
n Fn,p +Gn,p, (8.45)

where  Fn,p ≡ k1/2n

((
ṽn,i(p)− + ṽn,i(p)+

)
/2− ϕp

)
,

Gn,p ≡ ϕ̂n,p −
(
ṽn,i(p)− + ṽn,i(p)+

)
/2.

(8.46)

From (8.44), it follows that

(Fn,p)p≥1
L-s−→ (Fp)p≥1 . (8.47)

45



We also see from Theorem 2(a) that β̃n − β0 = Op(∆
1/2
n ) = op(k

−1/2
n ), so we further deduce

Gn,p = op(k
−1/2
n ). (8.48)

We now turn to the estimator β̂n (D, w∗). By (8.19), we have

∆−1/2
n

(
β̂n (D, w∗)− β0

)
=

∆
−1/2
n

∑
p∈P ∆n

i(p)Z
(
∆n

i(p)Y − β0∆
n
i(p)Z

)
/ϕ̂n,i(p)∑

p∈P ∆n
i(p)Z

2/ϕ̂n,i(p)
w.p.a.1. (8.49)

Recall the notations Rn,p and ςn,p from (8.10) and write Rn,p = (RZ,n,p, RY,n,p)
⊤. We can rewrite

(8.49) as

∆−1/2
n

(
β̂n (D, w∗)− β0

)
=

∑
p∈P

(
∆Zτp +∆

1/2
n RZ,n,p

)
ςn,p/ϕ̂n,i(p)∑

p∈P

(
∆Zτp +∆

1/2
n RZ,n,p

)2
/ϕ̂n,i(p)

w.p.a.1. (8.50)

Next, we derive expansions for the numerator and the denominator of the right-hand side of

(8.50) separately. Observe that the numerator satisfies

∑
p∈P

(
∆Zτp +∆

1/2
n RZ,n,p

)
ςn,p

ϕ̂n,i(p)
−
∑
p∈P

∆Zτp ςn,p

ϕp

=
∑
p∈P

(
∆Zτp +∆

1/2
n RZ,n,p

)
ςn,p ϕp −∆Zτp ςn,p

(
ϕp + k

−1/2
n Fn,p +Gn,p

)
ϕ̂n,i(p)ϕp

= −k−1/2
n

∑
p∈P

∆Zτp ςn,p Fn,p

ϕ̂n,i(p)ϕp
+
∑
p∈P

∆
1/2
n RZ,n,pςn,p ϕp −∆Zτp ςn,pGn,p

ϕ̂n,i(p)ϕp

= −k−1/2
n

∑
p∈P

∆Zτp ςn,p Fn,p

ϕ2p
+ op(k

−1/2
n ),

(8.51)

where the first equality is obtained by using (8.45); the second equality is obvious; the third

equality follows from RZ,n,p = Op(1), ςn,p = Op(1), ϕ̂n,i(p) − ϕp = op(1) and (8.48). Similarly, the
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denominator of the right-hand side of (8.50) satisfies

∑
p∈P

(
∆Zτp +∆

1/2
n RZ,n,p

)2
ϕ̂n,i(p)

−
∑
p∈P

∆Z2
τp

ϕp

=
∑
p∈P

(
∆Zτp +∆

1/2
n RZ,n,p

)2
ϕp −∆Z2

τp

(
ϕp + k

−1/2
n Fn,p +Gn,p

)
ϕ̂n,i(p)ϕp

= −k−1/2
n

∑
p∈P

∆Z2
τpFn,p

ϕ̂n,i(p)ϕp

+
∑
p∈P

(
2∆

1/2
n ∆ZτpRZ,n,p +∆nR

2
Z,n,p

)
ϕp −∆Z2

τpGn,p

ϕ̂n,i(p)ϕp

= −k−1/2
n

∑
p∈P

∆Z2
τpFn,p

ϕ2p
+ op(k

−1/2
n ).

(8.52)

Finally, we plug the expansions (8.51) and (8.52) into (8.50) and deduce, w.p.a.1,

∆−1/2
n

(
β̂n (D, w∗)− β0

)
=

∑
p∈P ∆Zτp ςn,p/ϕp − k

−1/2
n

∑
p∈P ∆Zτp ςn,p Fn,p/ϕ

2
p + op(k

−1/2
n )∑

p∈P ∆Z2
τp/ϕp − k

−1/2
n

∑
p∈P ∆Z2

τpFn,p/ϕ2p + op(k
−1/2
n )

= ζ∗n,β (D) + k−1/2
n H∗

n,β (D) + op(k
−1/2
n ),

(8.53)

where
ζ∗n,β (D) ≡

(∑
p∈P

∆Zτp ςn,p

ϕp

)/(∑
p∈P

∆Z2
τp

ϕp

)
,

H∗
n,β (D) ≡

(∑
p∈P

∆Z2
τp

Fn,p

ϕ2p

)(∑
p∈P

∆Zτp ςn,p

ϕp

)
−
(∑

p∈P
∆Zτp ςn,p Fn,p

ϕ2p

)(∑
p∈P

∆Z2
τp

ϕp

)
(∑

p∈P
∆Z2

τp
ϕp

)2 .

(8.54)

We now observe that the estimators ĉn,i− and ĉn,i+ do not involve the increment ∆n
i X. From

here, it is easy to see that the convergence in (8.12) and (8.47) hold jointly with F-conditionally

independent limits, that is,

(ςn,p, Fn,p)p≥1
L-s−→ (ςp, Fp)p≥1 . (8.55)

By properties of stable convergence, we deduce

(
ζ∗n,β (D) ,H∗

n,β (D)
) L-s−→

(
ζ∗β (D) ,H∗

β (D)
)
. (8.56)

This finishes the proof. Q.E.D.
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