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Abstract: We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse,
high-dimensional, linear time-series models. We assume that both the number of covariates in the
model and the number of candidate variables can increase with the sample size (polynomially or
geometrically). In other words, we let the number of candidate variables to be larger than the
number of observations. We show the adaLASSO consistently chooses the relevant variables as the
number of observations increases (model selection consistency) and has the oracle property, even
when the errors are non-Gaussian and conditionally heteroskedastic. This allows the adaLASSO
to be applied to a myriad of applications in empirical finance and macroeconomics. A simulation
study shows that the method performs well in very general settings with t-distributed and het-
eroskedastic errors as well with highly correlated regressors. Finally, we consider an application to
forecast monthly US inflation with many predictors. The model estimated by the adaLASSO de-
livers superior forecasts than traditional benchmark competitors such as autoregressive and factor
models.
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1. Introduction

We consider the problem of estimating single-equation linear dynamic time-series models with

non-Gaussian and conditionally heteroskedastic errors when the number of regressors is larger than

the sample size (high-dimensionality), but only some of the explanatory variables are relevant

(sparsity). We focus on the ℓ1-penalized least squares estimator and derive conditions under which

the method is model selection consistent and has the oracle property. By model selection consistency

we mean that the correct set of regressors are selected asymptotically. The oracle property means

that the penalized estimator has the same asymptotic distribution as the ordinary least squares

(OLS) estimator under the knowledge of the relevant subset of regressors (Fan and Li 2001). Since

our results are asymptotic, the high-dimension is understood as a polynomial increase in the number

of candidate variables. Finally, we also study the case where the number of candidates variables

increases exponentially with the sample size. In the latter case, stricter conditions on the error

term as well as on the regressors should be imposed. However, in most economic applications

the polynomial rate of growth does not seem to be restrictive. For example, when the candidate

variables are lags of a fixed set of covariates, the increase is linear with respect to the sample size.

Furthermore, even when other explanatory variables apart from lags are included, the number of

regressors does not grow exponentially fast (Stock and Watson 2002b, Bernanke et al. 2005).

Traditionally, one chooses the set of explanatory variables using an information criterion or

some sequential testing procedure. Although these approaches work well in small dimensions, the

total number of models to evaluate gets exponentially large as the number of candidate variables

increases. Moreover, if the number of covariates is larger than the number of observations, sequential

testing fails to recover the true model structure.

A successful approach to estimate models in large dimensions is to use shrinkage methods.

The idea is to shrink to zero the irrelevant parameters. Therefore, under some conditions, it is

possible to handle more variables than observations. Among shrinkage methods, the Least Absolute

Shrinkage and Selection Operator (LASSO), introduced by Tibshirani (1996), and the adaptive

LASSO (adaLASSO), proposed by Zou (2006), have received particular attention. It has been

shown that the LASSO can handle more variables than observations and the most parsimonious

subset of relevant variables can be selected (Efron et al. 2004, Zhao and Yu 2006, Meinshausen

and Yu 2009). As noted in Zhao and Yu (2006) and Zou (2006), for attaining model selection
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consistency, the LASSO requires a rather strong condition denoted “Irrepresentable Condition” and

does not have the oracle property. Zou (2006) proposes the adaLASSO to amend these deficiencies.

The adaLASSO is a two-step methodology which, broadly speaking, uses a first-step estimator to

weight the relative importance of the regressors. In the original framework, the number of candidate

variables was smaller than the sample size, the number of relevant covariates was fixed, and the

results were derived for a fixed design regression with independent and identically distributed (IID)

errors. Huang et al. (2008) extended these results to a high-dimensional framework with IID errors.

Recently, Fan et al. (2012) proposed a robust version of shrinkage estimators in order to deal with

heavy tailed data. They also show that the adaLASSO is a one-step implementation of folded

concave penalized least-squares.

We demonstrate that the adaLASSO can be applied to time-series models in a framework much

more general than the one currently available in the literature. First, we allow the errors to be

non-Gaussian and conditionally heteroskedastic, which is of great importance when financial or

macroeconomic data are considered. Second, the number of variables (candidate and relevant

ones) increase with the number of observations, which means that the dimension of the model may

increase as we gather information, e.g., the number of lags in an autoregressive process (Nardi and

Rinaldo 2011). Finally, the number of candidate covariates can grow at a polynomial rate with the

sample size. Under flexible conditions, we show that the adaLASSO is model selection consistent

(asymptotically chooses the most parsimonious model) and enjoys the oracle property. These

findings allow the adaLASSO to be applied in a general time-series setup. Geometric increase in

the number of candidate variables is also achieved under stronger conditions on the errors and data

generating process of the covariates. Although very complicated at first sight, our conditions for

model selection consistency and oracle results can be simplified dramatically as long as the error

structure becomes more restrictive. Finally, in a recent paper Audrino and Camponovo (2013)

proved very useful asymptotic results for the estimates of relevant and non-relevant variables in a

very general time-series setting, which allows for much more general hypothesis tests. However,

they consider only the case where there are less variables than observations and the number of

included variables is fixed. Therefore, our results are more general and nests previous findings in

the literature.
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Our theoretical results are illustrated in a simulation experiment as well as in an economic

application. In the simulation experiment we consider a model with fat-tailed GARCH errors and

highly correlated candidate regressors. The outcome of the simulations is quite promising, pointing

that the adaLASSO with properly chosen initial weights (first step) works reasonably well even

in very adverse situations which are common in macroeconomics and finance. We also consider

quarterly US inflation forecasting using many predictors. The models estimated by the adaLASSO

procedure delivered forecasts significantly superior than traditional benchmarks.

Our results render a number of possible applications. Forecasting macroeconomic variables with

many predictors as in Stock and Watson (2002a,b, 2012) and Bai and Ng (2008) is one of them.

The construction of predictive regressions for financial returns can be also considered (Rapach

et al. 2010). In this case, handling non-Gaussian conditional heteroskedastic errors is of great

importance. Other applications include the selection of factors in approximate factor models, as

in Bai and Ng (2002), Cheng and Hansen (2012), and Cheng et al. (2013); variable selection in

non-linear models (Rech et al. 2001); forecast combination of many forecasters (Issler and Lima

2009, Samuels and Sekkel 2013); time-series network models (Barigozzi and Brownlees 2013, Lam

and Souza 2014a,b); and forecasting large covariance matrices as in Callot et al. (2014). Finally,

instrumental variable estimation in a data rich environment with dependent data is also a potential

application; see Belloni et al. (2012).

Most advances in the shrinkage methods literature are valid only in the classical IID framework,

often with fixed design. Recently, a large effort has been given to adapt LASSO-based methods to

the time-series case; see, for example, Wang et al. (2007a) and Hsu et al. (2008). These authors con-

sider only the case where the number of candidate variables is smaller than the sample size. Nardi

and Rinaldo (2011) considered the estimation of autoregressive (AR) models when the number of

regressors increases with the sample size. However, their work differs from ours in many directions.

The most significant one being that their focus is only on AR models with restrictive assumptions

on the error term. Audrino and Knaus (2012) adapted the results of Nardi and Rinaldo (2011)

to the case of realized volatility forecasting with the heterogenous AR (HAR) model proposed

by Corsi (2009). Our results are useful in this setting as realized volatility data are conditionally

heteroskedastic and non-Gaussian. Furthermore, our results allow for the inclusion of external vari-

ables as potential predictors. Wang et al. (2007b) considered regression models with autoregressive
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errors. Notwithstanding, in their case the number of regressors was kept fixed. Song and Bickel

(2011) and Kock and Callot (2012) studied the estimation of vector AR (VAR) models. The former

used LASSO and group-LASSO for estimating VARs where the number of candidate variables were

a function of the sample size. However, the number of relevant variables was fixed. Kock and Callot

(2012) relaxed this assumption but assumed the errors to be independent and normally distributed.

As a direct consequence of the VAR dynamics, in Kock and Callot (2012) all the covariates were

Gaussian. Barigozzi and Brownlees (2013) also assumed normality and homoskedasticity of the

errors. Although, our model is nested in the VAR specification, we show the oracle property under

a more general setting as the above authors do not consider the inclusion of exogenous regressors.

On the other hand, Kock and Callot (2012) derive non-asymptotic oracle inequalities which are not

discussed here. All our results are asymptotic. Kock (2012) considered adaLASSO estimation in

stationary and non-stationary AR models with a fixed number of variables.

It is important to make the following remarks. First, the adaLASSO is a two-step procedure

and there is no agreement in the literature how to choose the first-step estimator. In this paper

we use the LASSO as a possible solution (Zou and Hastie 2005)1. We show that, under regularity

conditions, the LASSO can be used as an initial estimate, at a cost of possibly reducing the pool of

candidate variables. Our simulation results indicate that the LASSO works quite well. Second, all

the hyper-parameters in the estimation procedure (such as the penalty term) are selected via the

Bayesian Information Criterion (BIC) which delivers superior results, both in terms of accuracy and

computing time, than cross-validation methods. Finally, similar to other papers in the literature,

all our asymptotic results are derived under pointwise convergence as shrinkage estimators suffer

from lack of uniformity; see, for example, Leeb and Pötscher(2008, 2009).

The paper is organized as follows. In Section 2 we introduce the notation and assumptions. In

Section 3 we present the main results. The case where the number of candidate variables grows

exponentially with the sample size is discussed n Section 4. In Section 5 we discuss the selection of

the weights for the adaLASSO procedure and in Section 7 we describe how our set of assumptions

can be satisfied in some special cases. In Section 8 we present simulation results, followed by the

real data application in Section 9. Finally, Section 10 concludes. All the proofs are postponed to

the appendix. In the Appendix we also discuss how to satisfy the main assumptions of the paper.

1Other pre-estimators have been considered (Elastic-net, Ridge, OLS) but the LASSO delivered robust results.
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2. Definition, Notation and Assumptions

Consider the following linear model

yt = α0 + θ′xt + ut, (1)

where xt = (x1t, . . . , xnT t)
′ is a nT -vector of covariates, possibly containing lags of yt, and ut is

a martingale difference process. We are interested in estimating the parameter vector θ when nT

is large, possibly larger than the sample size T , but only a small number of elements of θ is non-

zero (θ is sparse). We assume, without loss of generality, that α0 is zero. Model (1) encompasses

many linear specifications, such as sparse AR and AR distributed lag (ARDL) models, or simple

predictive regressions. Equation (1) may also be a reduced-form for first-stage estimation in a

two-stage least squares environment where xt includes a set of instruments and yt is an endogenous

variable. Another possibility is to consider xt as a set of individual forecasts, in which equation (1)

represents a forecast combination problem.

The number of candidate covariates is n ≡ nT , the number of non-zero parameters is s ≡ sT

and the number of irrelevant variables is n − s. The omission of the dependence on T is just

aesthetic. For any t, xt = [xt(1)
′,xt(2)

′]′ and X = [X(1),X(2)], where X(1) is the (T × s) matrix

with the relevant variables and X(2) is the [T × (n − s)] matrix with the irrelevant ones. Write

θ = [θ(1)′,θ(2)′]′ where θ(1) ∈ R
s and θ(2) ∈ R

n−s. θ0 is the true parameter vector, where

θ0 = [θ0(1)
′,0′]′, with θ0(1) 6= 0. The parameters are assumed ordered to simplify the exposition.

We make the following assumption about the processes {xt}, {yt}, and {ut}:

Assumption (DGP). Write zt = (yt,x
′
t, ut)

′.

(1) {zt} is a zero-mean weakly stationary process.

(2) E(ut|Ft) = 0, t = 1, 2, . . . , where Ft = σ {xt,zt−1,zt−2, . . . }.

(3) With probability converging to one,

max
1≤i≤n

T−1
T∑

t=1

[
x2it − E(x2it)

]
→ 0, T → ∞.

(4) For some finite, positive constant cm and some m ≥ 1,

E |xitut|m ≤ cm, ∀ i ∈ {1, . . . , n} and ∀ t.
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Assumptions DGP(1) and DGP(2) are standard in time series regressions. Note that DGP(2)

does not rule out conditional heteroskedasticity, such as GARCH effects. Furthermore, xt may

also contain lagged values of yt. Assumption DGP(3) defines a tail condition on the marginal

distributions of x1t, . . . , xnt, and DGP(4) is a moment condition on the process {utxjt}. The

possible number of candidate variables n depends both on DGP(3) and DGP(4), i.e., on the tail

assumptions on xt and ut.

Remark 1. DGP(3) is a condition on the concentration properties of the variances of the covariates

(recall that E(xit) = 0), and has a substantial effect on the number of candidate variables. It is

well understood in the literature that tail conditions on the error process {ut} are determinant of

the number of candidate variables. What is less understood is how the total number of candidate

variables depends on tail conditions and “memory” properties of the regressors. In Appendix A.1

we show that DGP(3) is satisfied under different sets of assumptions and how it can influence the

possible number of candidate variables.

Remark 2. Sufficient conditions for DGP(4) to be satisfied are easily derived. Let cm,1 and cm,2

be two positive and finite constants. Assume that E
(
u2mt |Ft

)
≤ cm,1, ∀ t and E

(
x2mit

)
≤ cm,2,

∀ t and ∀ i ∈ {1, . . . , n}. Therefore, by the law of iterated expectations DGP(4) is satisfied with

cm = cm,1cm,2. Alternatively, assume there exist ρ > 0 and γ > 1/ρ such that E
[
u
2m(1+ρ)
t

]
≤ cm,2,

∀ t and E

[
x
2m(1+γ)
it

]
≤ cm,1 ∀ t and ∀ i ∈ {1, . . . , n}, then DGP(4) follows after simple application

of the Hölder’s inequality with cm = c
1/(1+ρ)
m,1 c

1/(1+γ)
m,2 .

Assumption (DESIGN). The following conditions hold jointly.

(1) The true parameter vector θ0 is an element of an open subset Θn ∈ R
n that contains the

element 0.

(2) There exists θmin > 0 such that mini=1,...,s |θ0,i| > θmin.

(3) a. Write Ω11 = E[xt(1)xt(1)
′]. There exist constants 0 < φmin < 1 such that

inf
α′α=1

α′Ω11α > 2φmin.

b. Let Ω̂11 = X(1)′X(1)/T denote the scaled Gram matrix of the relevant variables,

max
1≤i,j≤s

[∣∣∣Ω̂11 −Ω11

∣∣∣
]
i,j

≤ φmin

s
,
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with probability converging to one as T → ∞

Assumption DESIGN(1) is standard. DESIGN(2) controls the lower bound of the non-zero

parameters and is traditionally referred as beta-min condition; see, for example, Bülhmann and

van der Geer (2011). We define lower bounds on θmin on Theorem 1. This lower bound can

decrease with T and lower bounds on φmin. DESIGN(3) imposes a lower bound, φmin, on the

minimal eigenvalue of the covariance matrix of the relevant variables, that may depend on T .

In practice, quantifying the rate in which φmin decreases is difficult and problem specific and it is

frequently assumed constant, e.g., Theorems 3 and 4 in Kock and Callot (2012) assume φmin > c > 0

in a VAR(p) model with Gaussian innovations.

Condition DESIGN(3) explicitly defines how the compatibility constant depends on the number

of variables in the true active set. In general, this dependence is implicit and appears in the oracle

bounds. DESIGN(3) part (a) is related to the restricted eigenvalue condition (Bickel et al. 2009).

If the restricted eigenvalue condition is satisfied for any constant L > 0 and S = {1, . . . , s} with

compatibility constant φ(L,S, s) ≥ 2φmin, then Lemma 6.25 in Bülhmann and van der Geer (2011)

implies that DESIGN(3) part (a) is also satisfied. Condition DESIGN(3) part (b) can be satisfied

by imposing conditions on the dependence and tail structures of the variables in the active set. In

Appendix A.2 we show sufficient conditions for satisfying DESIGN(3) part (b).

The adaLASSO estimator of the (n× 1) parameter vector θ is given by

θ̂ = argmin
θ

‖Y −Xθ‖22 + λ
n∑

i=1

wi|θi|, (2)

where Y = (y1, . . . , yT )
′, X is the (T × n) data matrix, wi = |θI,i|−τ , τ > 0, and θI,i is an initial

parameter estimate. When wi = 1 (i = 1, . . . , n), (2) becomes the usual LASSO.

The minimization problem in (2) is equivalent to a constrained concave minimization problem

and necessary and (almost) sufficient conditions for existence of a solution can be derived from the

Karush-Kuhn-Tucker conditions (Zhao and Yu 2006, Zou 2006). The necessary condition for the

model selection consistency for the LASSO (wi = 1, i = 1, . . . , n) is denoted the “Irrepresentable

Condition” which is known to be easily violated in the presence of highly correlated covariates

(Zhao and Yu 2006, Meinshausen and Yu 2009). The adaLASSO overcomes the “Irrepresentable

Condition”, by using weighted ℓ1-penalty where the weights diverge for the zero parameters and do

not diverge for the non-zero parameters. Zou (2006) suggest using the inverse of the OLS estimator
8



of the parameters as the weight. Nonetheless, such estimator is not available when the number of

candidate variables is larger than the number of observations. Huang et al. (2008) introduce the

notion of zero-consistent estimator, i.e., there exists an estimator that is arbitrarily small for the

zero parameters as T increases, and converge to a non-zero constant for the non-zero parameters.

We use a similar assumption here.

Assumption (WEIGHTS). The weights w1, . . . , wn satisfy:

(1) There exist 0 < ξ < 1, and a sufficiently large, positive constant cw(2), such that

min
i=s+1,...,n

T−ξ/2wi > cw(2)

√
s

φ
,

with probability converging to one as T → ∞.

(2) There exists wmax < T ξ/2 such that

s∑

i=1

w2
i < sw2

max,

with probability converging to one as T → ∞.

Assumption WEIGHTS(1) requires that the weights associated with the non-relevant variables

{xjt : j = s+1, . . . , n} to diverge at some rate, while WEIGHTS(2) restricts the weights associated

with the relevant variables to be bounded by above by a non-decreasing sequence wmax. This

requirement is the most difficult to be satisfied in practice. In the case when the number of

candidate variables n is smaller than the number of observations T , we can estimate the weights

using OLS.

Huang et al. (2008) show that if the variables with zero and non-zero coefficients are only weakly

correlated (partial orthogonality condition), the marginal regressions of yt on xit, i = 1, . . . , n,

give reasonable weights. This condition, however, is not realistig in a time series setting, in which

lags of the dependent and the independent variables are in the pool of candidate variables. If

the correlation matrix of regressors is Toeplitz, than the “Irrepresentable Condition” is valid and

LASSO may perform reasonably well (Nardi and Rinaldo 2011, Audrino and Knaus 2012)2.

2Under week regularity conditions, the “Irrepresentable Condition” yield oracle bounds (Van De Geer and Bühlmann
2009, Section 6).
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Assumption REG imposes constraints on the rate of increase of number of candidate variables

in terms of λ. These bounds involve m, φmin, ξ, and wmax, defined in Assumptions DGP(4),

DESIGN(3), WEIGHTS(1) and WEIGHTS(2), respectively.

Assumption (REG). The regularization parameter λ and the number of candidate variables n

satisfy:
n1/mT (1−ξ)/2

λ
→ 0 and

s1/2wmax

φmin

λ√
T

→ 0,

as T → ∞.

This assumption is satisfied if we take λ ∝
√
T×n1/mT−ξ(1/2−1/m), assume that s1/2wmax/φmin =

O(nb/m) for some b > 0, and impose n = o
[
T ξ(m−2)/2(b+1)

]
. If we further assume an oracle

bound of the form of Proposition 1 in Section 5, we may take ξ = αm(b + 1)/(m + 2b), for any

0 < α < 1 − 2 logT (s/φmin). Combining the bounds, n = o
[
Tαm(m−2)/(2m+4b)

]
. Improving these

rates is possible, but have no impact on the main results of the paper.

The imposition on the number of candidate variables to be polynomial on T is a consequence of

|utxit| having polynomially decreasing tails. When stronger bounds are imposed on xit and ut, it

is possible to allow the number of candidate variables to grow at a faster rate. This condition only

imposes an upper-bound on the rate of increase of candidate variables, which is further retracted

by DGP(3) and DESIGN(3).

3. Main Results

In this section we present the main results of the paper: model selection consistency and oracle

property. We follow the standard practice in the literature and show sign consistency, which implies

model selection consistency.

Definition (Sign Consistency). We say that θ̂ is sign consistent to θ if

Pr
[
sign(θ̂) = sign(θ)

]
→ 1, element-wise as T → ∞,

where sign(x) = I(x > 0)− I(x < 0), and the identity is taken element-wise.

Next theorem is the main result in the paper and shows that, under the previous assumptions,

the adaLASSO consistently selects the correct subset of variables.
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Theorem 1. Under Assumptions DGP, DESIGN, WEIGHTS and REG, and If

θmin >
λ

T 1−ξ/2

s1/2

φmin
,

then

Pr
[
sign(θ̂) = sign(θ0)

]
→ 1, as T → ∞.

In Theorem 2 we show that the adaLASSO estimator for time-series has the oracle property, in

the sense that it converges to the same distribution as the OLS estimator as T → ∞. The relevance

of this result is that one can carry out inference about the parameters as if one had used OLS in

the model with only the relevant variables included.

Theorem 2 (Oracle Property). Let θ̂ols(1) denote the OLS estimator of θ0(1). Under Assumptions

DGP, WEIGHTS, DESIGN, and REG, if θmin > (λ/T 1−ξ/2)(s1/2/φmin) we have

√
Tα′

[
θ̂(1)− θ0(1)

]
=

√
Tα′

[
θ̂ols(1)− θ0(1)

]
+ op(1).

for any s-dimensional vector α with Euclidean norm 1.

4. Exponentially large number of covariates

Conditions in the previous section imply that the number of candidate variables n may increase

at a polynomial rate. Under stronger assumptions, n may increase sub-exponentially fast with T .

Note that the actual rate of increase also depends on the distribution of the candidate variables

themselves. In this section we introduce new assumptions and restate the main results.

Assumption (DGP(5)). The processes {xit}, i = 1, . . . , n, and {ut} are such that

Pr(|xit| > c) ≤ b1i exp(−b2ic) and Pr(|ut| > c) ≤ b3 exp(−b4c),

for all i = 1, . . . , n and every t, and for positive constants c, b1i, b2i, b3, and b4.

Assumption DGP(5) requires that the marginal distribution of the candidate variables and error

term have exponential tails, which is more general then the IID Gaussian innovations. It is satisfied

when the dynamics of xt is driven by stationary vector autoregressions (VAR) with Gaussian
11



innovations as in Kock and Callot (2012). Alternatively, if xt admits an infinite-order vector

moving average, VMA(∞), decomposition with bounded conditional variances, Lemma 9 in the

appendix shows conditions under which it has sub-exponential tails. Same arguments hold for ut.

Assumption REG incorporates the new rate of increase in the number of irrelevant covariates.

The biggest change is that it allows n to increase sub-exponentially with T , instead of polynomially.

Assumption (REG’). The regularization parameter λ and the number of candidate variables n

satisfy:
(log n+ α log T )5/2T (1−ξ)/2

λ
→ 0 and

s1/2wmax

φmin

λ√
T

→ 0,

as T → ∞, for some α > 0.

The term α log T simplifies the calculation of finite sample bounds and can be dropped if log n >

α log T , which is often the case for T sufficiently large. The assumption is satisfied if we take

λ = log T (log n+ ξ log T )5/2T (1−ξ)/2, s1/2wmax/φmin = O
[
(log n+ ξ log T )b/2

]
for some b > 0, and

impose log n = o
[
(T/ log T )2ξ/(b+5)

]
. If we further assume that an oracle bound of the form of

Proposition 1 holds than, if (s/φmin) = O
{
(log n)[b+10(1−ξ)]/6ξ

}
, the rate in which n increases

remain unchanged. As in the previous case, improving the bounds has no impact on the main

results of the paper.

This rate of increase in the total number of candidate variables is only an upper bound. The

total number of variables is further constrained by DGP(3) and DESIGN(3), that depends on the

distribution of the covariates.

Theorem 3. Under Assumptions DGP(1-3), DGP(5), WEIGHTS, DESIGN and REG’, if θmin >

(λ/T 1−ξ/2)(s1/2/φmin),

P
[
sign(θ̂) = sign(θ0)

]
→ 1, as T → ∞.

Furthermore,
√
Tα′

[
θ̂(1)− θ0(1)

]
=

√
Tα′

[
θ̂ols(1)− θ0(1)

]
+ op(1).

for some s-dimensional vector α with Euclidean norm 1.

5. Initial weights

The choice of initial weights is critical and, often, the hardest condition to be satisfied. In this

section we show that under a stronger set of conditions, one can use the LASSO as the initial
12



estimator to construct the weights. Furthermore, sufficient conditions for the consistency of the

LASSO estimator also imply DESIGN(3). In this section we relate oracle bounds on the ℓ1 norm

of the LASSO estimates to condition WEIGHTS.

Oracle inequalities for the LASSO estimator have been derived under different assumptions on

the design matrix. Van De Geer and Bühlmann (2009) study how these different assumptions relate

to each other, in particular, they show that the restricted eigenvalue condition of Bickel et al. (2009)

imply the compatibility condition, used for deriving oracle bounds. If the scaled Gramm matrix

Ω̂ = X ′X/T , is sufficiently close to its expectation, then ℓ1 oracle bounds follow after conditions

on the smallest eigenvalue of Ω = E(xtx
′
t).

For any vector v = (v1, . . . , vn)
′ ∈ R

n and S ⊆ {1, . . . , n}, vS = (vi, i ∈ S)′, vSc = (vi, i 6∈ S)′,

and ‖vS‖1 =
∑

i∈S |vi|. We say the restricted eigenvalue condition is satisfied for some 1 ≤ s ≤ n if

φT (s) = min
S⊆{1,...,n},|S|≤s

min
v∈Rn\{0},‖vSc‖1≤3‖vS‖1

v′Ω̂v

vS
′vS

> 0.

First, verify that if Ω̂ is positive definite, than the restricted eigenvalue condition is satisfied.

Alternatively, it suffices to impose conditions on the population covariance matrix Ω and approxi-

mation rate between Ω̂ and Ω.

Lemma 1. Assume that

φ0 =
1

2
min

S⊆{1,...,n},|S|≤s
min

v∈Rn\{0},‖vSc‖1≤3‖vS‖1

v′Ωv

vS
′vS

> 0,

and that,

max
ij

|[Ω̂ −Ω]ij | <
φ0
16s

,

with probability converging to one as T → ∞. Then, the restricted eigenvalue condition is satisfied

with φT (s) = φ0, and DESIGN(3) is satisfied with φmin = φ0/16.

Next result relates the restricted eigenvalue condition to the ℓ1 bounds on the estimated param-

eters using the LASSO.

Lemma 2. Denote ET (λ0) =
{
2maxi=1,...,n T

−1/2
∣∣∣
∑T

t=1 xitut

∣∣∣ < λ0

}
, and assume that the re-

stricted eigenvalue condition holds with probability converging to one. Then, inside ET (λ0),

‖θ̂ − θ0‖1 ≤ 4
λ

T

s

φT (s)
,
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for any λ > 2
√
Tλ0, with probability converging to one.

Furthermore, for α > 0, either assume:

(a) DGP(1), DGP(2), DGP(4), and let λ ≥ n1/mT (1−ξ)/2+α/m, or

(b) DGP(1), DGP(2), DGP(5), and let λ ≥ c′(log nα log T )5/2T 1−ξ)/2 for c′ > 0 sufficiently

large,

then, Pr{ET [λT (1−ξ)/2]} ≥ 1− c1T
−α, for some c1 > 0.

Assumption WEIGHTS is intimately related to finite sample oracle inequalities for the LASSO.

Kock and Callot (2012) consider the LASSO as the initial estimator and derive finite sample, oracle

inequalities, bounding the ℓ1 distance between the true and estimated parameters, which is directly

applicable to our problem if we impose more restrictive assumptions. Proposition 1 shows the

relationship between ℓ1 oracle inequalities and assumption WEIGHTS.

Proposition 1. Let θ̂I = (θ̂I,1, . . . , θ̂I,n)
′ denote an initial estimate of θ0 and let the weights

wi = |θ̂I,i|−τ . Assume that w
1/τ
max > 2/θmin and θmin > 2c1(λ/T )(s/φmin). Then, if

n∑

i=1

|θ̂I,i − θ0,i| ≤ c1
λ

T

s

φmin
,

for some c1 > 0, with probability converging to one, Assumption WEIGHTS hold whenever

λ ≤ c2T
1−ξ/2τ

(
φmin

s

)1+1/2τ

,

for some small c2 ≤ min(.25, cw(2)/c1) and all T sufficiently large.

Note that there is no contradiction is assuming that (2/θmin)
τ < wmax < T ξ/2 and θmin >

2c1(λ/T )(s/φmin), as far as 0.5T
−ξ/2τ > 2c1(λ/T )(s/φmin), which is satisfied by the assumption on

λ. Conditions on the rate of increase in λ, in REG, are not violated.

6. Selection of hyper-parameters

The selection of the regularization parameter λ and the weighting parameter τ is critical. Tradi-

tionally, one employs cross-validation and selects (λ, τ) within a grid that maximizes some predictive

measure. In a time-dependent framework cross-validation is more complicated. An alternative ap-

proach that has received more attention in recent years is to choose the (λ, τ) using information

criteria, such as the BIC. Zou et al. (2007), Wang et al. (2007a) and Zhang et al. (2010) study such
14



method. Zou et al. (2007) show that the number of effective parameters is a consistent estimator

of the degrees of freedom of the model. Wang et al. (2007a) show that this method works in the

AR-LASSO framework. Finally, Zhang et al. (2010) study a more general criterion (Generalized

Information Criterion) and show that the BIC is consistent in selecting the regularization param-

eter, but not asymptotically loss-efficient. We adopt the BIC to select all the hyper-parameters of

the adaLASSO procedure. Although we do not derive theoretical results for consistency of such

methods, we conjecture that the same properties derived in Zhang et al. (2010) should hold in our

framework. Furthermore, the method performs well in Monte Carlo simulations presented in the

next section.

7. Examples

7.1. Regression with exogenous variables and GARCH errors. In this section we check

under which conditions the requires assumptions hold for a linear regression model with weakly

exogenous regressors and GARCH errors defined as

yt = θ′xt + ut

ut = h
1/2
t ǫt

ht = π0 + π1ht−1 + π2u
2
t−1.

(3)

where E(ut|xt) = 0 and {ǫt} ∼ iid(0, 1), with E(ε2mt ) <∞.

Furthermore, consider the following set of assumptions.

Assumption (EXAMPLE 1). The GARCH process is such that:

(1) The parameters of the GARCH model satisfy the restrictions: π0 > 0, π1 ≥ 0, and π2 ≥ 0;

and E
[
(π1 + π2ǫ

2
t−1)

m
]
<∞.

(2) xt ∈ R
n is a stable and invertible, finite-order, vector ARMA (VARMA) process

A(L)xt = M(L)vt,

such that:

(a) The process {vt} is a martingale difference sequence, where E(vtv
′
t|Fv,t−1) = Σ and

Fv,t = σ{vt−1,vt−2, . . . }, and E(v2mjt ) <∞.
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(b) The matrix operators M(z) and A(z) are left co-prime. Moreover, detM (z) 6= 0 and

detA(z) 6= 0 for z ∈ C, |z| ≤ 1.

(c) There exists a constant ρ > 0 such that ρ−1 ≤ ρmin(Σ) < ρmax(Σ) ≤ ρ.

Under the specification above, xt admits a canonical VMA(∞) representation as in Appendix A

(Lütkepohl 2007, Chapter 11). The coefficients of this representation converge to zero exponentially

fast 3, i.e., log ζi,r ∝ −rζ , and also xt has 2m moments. Finally, let ρmax(B) and ρmin(B) denote

the minimum and maximum eigenvalues of the square matrix B.

This condition implies that the eigenvalues of E(x1x
′
1) are bounded. It implies that 0 <

ρmin (Ψ0Ψ
′
0) /ρ ≤ ρmin[E(x1x

′
1)] ≤ ρmax[E(x1x

′
1)] ≤ ρ

∑∞
j=0 ρmax(ΨjΨ

′
j) <∞. The last inequality

follows because the operator norm of Ψj decreases geometrically and the first one follows because

one can always construct the VMA decomposition with Ψ0 = I. The remaining inequalities follow

trivially.

Note that, if π1 + π2 < 1 and under Assumption EXAMPLE 1, Assumption DGP(1) holds. In

addition, Assumption DGP(2) is trivially satisfied. Under EXAMPLE 1(1), E
(
u2mt

)
< ∞ by the

results in He and Teräsvirta (1999) and Ling and McAleer (2002). Therefore, Assumption DGP(4)

is valid under Example 1. Assumption DESIGN(1) is satisfied by hypothesis as well as Assumption

DESIGN(2).

If conditions of Lemma 1 are satisfied, then DGP(3) and DESIGN(3) are also satisfied. It follows

from EXAMPLE 1, and the results of Appendix A.3 that setting p = 1, we can take s = o(T δ/2)

and n = o[T (1−δ)(m−1)/2 ] for some 0 < δ < 1. These conditions are sufficient to satisfy WEIGHTS,

DGP(3), and DESIGN(3). Moreover, the LASSO can be used as the initial estimator.

7.2. Autoregressive distributed lag models with GARCH errors. In Medeiros and Mendes

(2015) the authors consider the ARDL(p, q)−GARCH(1, 1)

yt =

p∑

i=1

φ0iyt−i +

q∑

i=0

β′
0izt−i + εt = θ′

0xt + ut, (4)

where

ut =
√
htεt, εt

iid∼ N(0, 1), ht = α0 + α1u
2
t−i + β1ht−i. (5)

3In fact, the operator norm of Ψj , the jth MA coefficient, decreases exponentially fast.
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Under the set of assumptions below, Assumptions DGP, DESIGN and WEIGHTS are satisfied,

using the LASSO an initial estimator. Assuming that τ = 1 and p = O(T 1/8) and s = O(1), then

the number of candidate variables can be n = o[T (m−1)/8] and ξ < .25(m − 1)/(m− 2).

Assumption (EXAMPLE 2). The DGP is such that

(1) The roots of the polynomial 1−∑p
i=1 φ0iL

i are outside the unity circle.

(2) The vector of exogenous covariates admits a VARMA decomposition A(L)zt = M(L)vt,

vt ∈ R
q, satisfying EXAMPLE 1.

(3) The coefficients of the GARCH model satisfy EXAMPLE 1(1).

(4) Moreover, there exists c > 0 independent of T such that c−1 < mini∈S(θ0i) ≤ maxi∈S θ0i < c,

where S = {j : θ0j 6= 0} ∩ {1, . . . , n}.

(5) Let ‖B‖ denote the operator norm of B and

E(x1x
′
1) =


 ΣY Y ΣY Z

Σ′
Y Z

ΣZZ


 .

a. For some ρ > 0, ρmin(ΣY Y ) > ρ−1.

b. For some 0 < ν < 1, ‖ΣY Z‖2 ≤ ν2ρmin(ΣY Y )ρmin(ΣZZ).

The discussion in the first example implies that EXAMPLE 2(1–4) satisfy Assumptions (A1)–

(A4) in Medeiros and Mendes (2015). We show that under EXAMPLE 2, ΣXX = E(x1x
′
1)

is positive definite. Under (A1)–(A3) in Medeiros and Mendes (2015), ρmin(ΣZZ) > ρ−1, and,

by assumption, ΣY Y ≥ ρ−1. It follows from Kierzkowski and Smoktunowicz (2011, Corollary

2.5) that the smallest eigenvalue of ΣXX is bounded by below by (1 − ν)/ρ > 0, proving the

claim. EXAMPLE 2(5) can be improved using Kierzkowski and Smoktunowicz (2011, Theorem

2.9). A simpler proof is as follows. The matrix ΣXX is positive definite if and only if ΣY Y −

ΣY ZΣ
−1
ZZ

ΣZY > 0. The chain of inequalities follows

ρmin(ΣY Y −ΣY ZΣ
−1
ZZ

ΣZY ) ≥ ρmin(ΣY Y )− ρmax

(
ΣY ZΣ

−1
ZZ

ΣZY

)

≥ ρmin(ΣY Y )− ρmin(ΣZZ)
−1‖ΣY Z‖2

≥ ρmin(ΣY Y )− ρmin(ΣZZ)
−1ν2ρmin(ΣZZ)ρmin (ΣY Y )

≥ (1− ν2)/ρ > 0.
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8. Simulation

Consider the following data generating process (DGP):

yt = φyt−1 + β′xt−1(1) + ut, (6)

ut = h
1/2
t εt, εt

iid∼ t
∗(5) (7)

ht = 5× 10−4 + 0.9ht−1 + 0.05u2t−1 (8)

xt =


xt(1)

xt(2)


 = A1


xt−1(1)

xt−1(2)


+A4


xt−4(1)

xt−4(2)


+ vt, vt

iid∼ t
∗(5), (9)

where φ = 0.6 and the typical element of β is given by βi =
1√
s
(−1)i. xt(1) is a (s − 1)× 1 vector

of included (relevant) variables. The vector xt = [xt(1)
′,xt(2)

′]′ ∈ R
(n−1), has n − s irrelevant

variables and follows a fourth-order VAR model with t-distributed errors. Apart from the error

distribution, the DGP for the vector xt is similar to the one considered in Kock and Callot (2012).

The matrices A1 and A2 are block diagonal with each block of dimension 5×5 and typical element

0.15 and −0.1, respectively. All the errors in the model are t-distributed with 5 degrees of freedom.

t∗(5) denotes an standardized t-distribution with 5 degrees of freedom, such that all the errors have

zero mean and unit variance. The vector of candidate variables is wt = (yt−1,x
′
t−1)

′. Furthermore,

εt and vt are mutually not correlated. Note that this is a very adverse setting as the errors are

not normal, fat-tailed, conditionally heteroskedastic and moments of order higher than five do not

exist.

We simulate T = 50, 100, 300, 1000 observations of DGP (6)–(9) for different combinations of

candidate (n) and relevant (s) variables. We consider n = 100, 300, 1000 and s = 5, 10, 15, 20. The

models are estimated by the adaLASSO method with τ and λ selected by the BIC. The initial

weights are estimated using the LASSO procedure.

We start by analyzing the properties of the estimators for the parameter φ in (6)) Figures 1–4

illustrate the distribution of the oracle and adaLASSO estimators for different sample sizes. Several

facts emerge from the plots. Firstly, both bias and variance are very low. For T = 50 and s = 5,

the distribution of the adaLASSO estimator is very close to the distribution of the oracle. For the

other values of s, the adaLASSO distribution presents fat-tails and multi-modality. For T = 100,

the adaLASSO distribution is closer to the oracle one when s = 5 or s = 10. However, there still
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outliers. When T = 300 the number of outliers reduces and the adaLASSO distribution gets closer

to the oracle, specially for s = 5 or s = 10. For T = 1000 the distributions are almost identical.

Table 1 shows the average absolute bias and the average mean squared error (MSE) for the

adaLASSO estimator over the Monte Carlo simulations and the candidate variables, i.e.,

Bias =
1

1000n

1000∑

j=1

[
φ̂− 0.6 +

n−1∑

i=1

(
β̂i − βi

)]
and

MSE =
1

1000n

1000∑

j=1

[(
φ̂− 0.6

)2
+

n−1∑

i=1

(
β̂i − βi

)2
]
.

It is clear that both variance and bias are very low. This is explained, as expected, by the large

number of zero estimates. Finally, the bias and MSE decrease with the sample size. The MSE

of the estimators increase with the number of candidate variables as well as with the number of

relevant variables. Finally, it is quite clear that the estimates are very precise in large samples.

Table 2 presents model selection results. Panel (a) presents the fraction of replications where

the correct model has been selected, i.e., all the relevant variables included and all the irrelevant

regressors excluded from the final model (correct sparsity pattern). It is clear the performance of

the adaLASSO improves with the sample size and gets worse as the number of relevant variables

increases. Furthermore, there is a slightly deterioration as the number of candidate regressors

increases. Panel (b) shows the fraction of replications where the relevant variables are all included.

For T = 300 and T = 1000, the true model is included almost every time. For smaller sample

sizes the performance decreases as s increases. Panel (c) presents the fraction of relevant variables

included and Panel (d) shows the fraction of irrelevant variables excluded. It is clear that the

fraction of included relevant variables is extremely high, as well as the fraction of excluded irrelevant

regressors. Panel (e) presents the average number of included variables. Finally, Panel (f) shows the

average number of included irrelevant regressors. As sample size increases, the performance of the

adaLASSO improves. Overall, the results in Table 2 show that the adaLASSO is a viable alternative

to model selection in high-dimensional time series models with non-Gaussian and conditionally

heteroskedastic errors.

Table 3 shows the MSE for one-step-ahead out-of-sample forecasts for both the adaLASSO and

oracle models. We consider a total of 100 out-of-sample observations. As expected, for low values

of s, the adaLASSO has a similar performance than the oracle. For higher values of s the results
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are reasonable only for T = 300 or T = 1000. The performance of the adaLASSO also improves as

the sample size increases.
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Figure 1. Distribution of the adaLASSO and Oracle estimators for the parameter
φ over 1000 Monte Carlo replications. Different combinations of candidate and
relevant variables. The sample size equals 50 observations.

Table 1. Parameter Estimates: Descriptive Statistics.

The table reports for each different sample size, the average absolute bias, Panel (a), and the average mean squared error (MSE),
Panel (b), over all parameter estimates and Monte Carlo simulations. n is the number of candidate variables whereas s is the number
of relevant regressors.

T = 50 T = 100 T = 300 T = 500
s\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Bias ×10−3

5 -0.1102 -0.2046 -0.1727 -0.0282 -0.0232 -0.0091 -0.0226 -0.0062 -0.0066 -0.0188 -0.0063 -0.0020
10 -0.3165 -0.4970 -0.2177 -0.0593 -0.0375 -0.0248 -0.0142 -0.0048 -0.0075 -0.0138 -0.0034 -0.0013
15 -1.0180 -1.0111 -0.4128 -0.0956 -0.0547 -0.1005 -0.0212 -0.0086 -0.0102 -0.0091 -0.0026 -0.0010
20 -1.3864 -0.6249 -0.2784 -0.1002 -0.1201 -0.0916 -0.0279 -0.0074 -0.0072 -0.0084 -0.0027 -0.0007

Panel (b): MSE ×10−3

5 0.0428 0.3666 0.4179 0.0068 0.0049 0.0029 0.0020 0.0007 0.0010 0.0010 0.0003 0.0001
10 0.8712 2.2258 1.1597 0.0279 0.0439 0.0620 0.0042 0.0015 0.0083 0.0018 0.0006 0.0002
15 3.8501 3.4686 1.3496 0.0477 0.2037 0.4073 0.0063 0.0024 0.0247 0.0024 0.0008 0.0002
20 6.8882 3.9529 1.4388 0.0801 0.7102 0.7621 0.0088 0.0032 0.0515 0.0029 0.0010 0.0003
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Figure 2. Distribution of the adaLASSO and Oracle estimators for the parameter
φ over 1000 Monte Carlo replications. Different combinations of candidate and
relevant variables. The sample size equals 100 observations.
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Figure 3. Distribution of the adaLASSO and Oracle estimators for the parameter
φ over 1000 Monte Carlo replications. Different combinations of candidate and
relevant variables. The sample size equals 300 observations.
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Figure 4. Distribution of the adaLASSO and Oracle estimators for the parameter
φ over 1000 Monte Carlo replications. Different combinations of candidate and
relevant variables. The sample size equals 1000 observations.

9. Inflation Forecasting

We consider monthly inflation forecasting with many predictors. The data consists of 131 macroe-

conomic variables and has been obtained from Sydney Ludvigson’s webpage4. The dataset is the

same used in Jurado et al. (2013) and is an update version of the one considered in Ludvigson and

Ng (2009). The observations start in January 1960 and end in December 2011, a total of 624 time

periods. The predictive regression is written as

πt+1 = β0 + βxt + ut+1,

where πt is the monthly inflation at time t (percentage changes of the Consumer Price Index,

CPI, for all items) and xt is the vector of predictors (four lags of inflation plus four lags of 131

predictors. We also include four lagged factors computed as the first four principal components

of the 131 predictors. Apart from the price index data which have been differenced only once, all

the remaining variables were transformed according to Ludvigson and Ng (2009). We consider one

step ahead forecasts computed in a rolling window scheme with 474 observations. The forecasting

period starts in January 2000.

4http://www.econ.nyu.edu/user/ludvigsons/
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Table 2. Model Selection: Descriptive Statistics.

The table reports for each different sample size, several statistics concerning model selection. Panel (a) presents the fraction of
replications where the correct model has been selected, i.e., all the relevant variables included and all the irrelevant regressors
excluded from the final model. Panel (b) shows the fraction of replications where the relevant variables are all included. Panel
(c) presents the fraction of relevant variables included. Panel (d) shows the fraction of irrelevant variables excluded. Panel
(e) presents the average number of included variables. Finally, Panel (f) shows the average number of included irrelevant
regressors.

T = 50 T = 100 T = 300 T = 1000
s\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Correct Sparsity Pattern

5 0.8000 0.6540 0.4160 0.8720 0.9760 0.9430 0.9930 0.9900 1.0000 1.0000 1.0000 1.0000
10 0.7420 0.1790 0.0130 0.4900 0.9870 0.8510 0.9120 0.9090 1.0000 1.0000 1.0000 1.0000
15 0.2670 0.0050 0 0.2370 0.9260 0.3220 0.7530 0.7210 1.0000 0.9990 0.9990 0.9980
20 0.0210 0 0 0.0640 0.5860 0.0230 0.5560 0.5070 1.0000 0.9920 0.9870 0.9860

Panel (b): True Model Included

5 0.9990 0.8880 0.6110 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.8820 0.2370 0.0180 1.0000 0.9990 0.9050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 0.3680 0.0050 0 1.0000 0.9460 0.3760 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 0.0330 0 0 1.0000 0.6440 0.0280 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel (c): Fraction of Relevant Variables Included

5 0.9994 0.9516 0.7866 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9659 0.6678 0.3717 1.0000 0.9999 0.9736 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 0.8114 0.4340 0.2193 1.0000 0.9901 0.7737 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 0.6024 0.3243 0.1587 1.0000 0.9154 0.5193 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel (d): Fraction of Irrelevant Excluded

5 0.9947 0.9893 0.9907 0.9959 0.9998 0.9998 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
10 0.9823 0.9591 0.9807 0.9697 0.9998 0.9983 0.9979 0.9991 1.0000 1.0000 1.0000 1.0000
15 0.9373 0.9444 0.9796 0.9299 0.9989 0.9892 0.9938 0.9969 1.0000 1.0000 1.0000 1.0000
20 0.8987 0.9407 0.9794 0.8852 0.9911 0.9815 0.9871 0.9948 1.0000 0.9998 0.9999 1.0000

Panel (e): Average Number of Included Variables

5 5.4970 7.9040 13.1400 5.3860 5.0470 5.1980 5.0200 5.0250 5.0000 5.0000 5.0000 5.0000
10 11.2510 18.5250 22.7770 12.7230 10.0460 11.4390 10.1920 10.2610 10.0000 10.0000 10.0000 10.0000
15 17.5040 22.3600 23.3820 20.9560 15.1740 22.2900 15.5290 15.8860 15.0000 15.0020 15.0010 15.0040
20 20.1560 23.0770 23.3580 29.1820 20.7920 28.5220 21.0320 21.4570 20.0000 20.0160 20.0270 20.0390

Panel (f): Average Number of Included Irrelevant Variables

5 0.5000 3.1460 9.2070 0.3860 0.0470 0.2020 0.0200 0.0250 0 0 0 0

10 1.5920 11.8470 19.0600 2.7230 0.0470 1.7030 0.1920 0.2610 0 0 0 0
15 5.3330 15.8500 20.0930 5.9560 0.3230 10.6840 0.5290 0.8860 0 0.0020 0.0010 0.0040
20 8.1080 16.5920 20.1850 9.1820 2.4840 18.1360 1.0320 1.4570 0 0.0160 0.0270 0.0390

The forecasting results are shown in Table 4. We consider as benchmark models a linear model

will all the regressors and estimated by reduced rank regression, an autoregressive (AR) model of

order four, and an AR(4) model augmented by four factors. As competitors we include a model with

all the variables plus the factors estimated by the LASSO procedure, the adaLASSO with LASSO

initial weights and adaLASSO with Elastic-Net initial weights. The Elastic-Net is a combination
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Table 3. Forecasting: Descriptive Statistics.

The table reports for each different sample size, the one-step-ahead mean squared error (MSE) for the adaLASSO,
Panel(a), and the Oracle, Panel (b), estimators. n is the number of candidate variables whereas s is the number
of relevant regressors.

T = 50 T = 100 T = 300 T = 500
s\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

MSE - adaLASSO
5 0.0143 0.1299 0.6119 0.0132 0.0129 0.0128 0.0112 0.0106 0.0114 0.0103 0.0104 0.0104
10 0.1068 0.9734 1.8081 0.0140 0.0255 0.0870 0.0110 0.0110 0.0196 0.0113 0.0104 0.0109
15 0.5893 1.7082 2.2456 0.0196 0.0780 0.5545 0.0112 0.0119 0.0360 0.0104 0.0106 0.0107
20 1.0327 2.0361 2.4658 0.0268 0.2507 1.1363 0.0119 0.0118 0.0642 0.0105 0.0105 0.0105

MSE - Oracle
5 0.0122 0.0123 0.0126 0.0113 0.0118 0.0117 0.0112 0.0105 0.0106 0.0102 0.0103 0.0104
10 0.0155 0.0148 0.0145 0.0122 0.0125 0.0122 0.0109 0.0109 0.0114 0.0112 0.0103 0.0108
15 0.0180 0.0179 0.0177 0.0133 0.0134 0.0132 0.0110 0.0116 0.0113 0.0103 0.0104 0.0106
20 0.0235 0.0226 0.0219 0.0147 0.0148 0.0147 0.0116 0.0114 0.0115 0.0104 0.0104 0.0104

LASSO and Ridge regression are the parameters of the model are estimated as

θ̂ = argmin
θ

[
‖Y −Xθ‖22 + αλ

n∑

i=1

|θi|+ (1− α)λ

n∑

i=1

|θi|2
]
.

The table displays the Median Absolute Deviation (MAD), the Mean Absolute Error (MAE), and

Root Mean Squared Error (RMSE) for the full forecasting period. From the inspection of the table

it is clear that the LASSO-based models outperform all the benchmarks, specially when the MAE

is considered.

In order to check if the differences in forecasting performance among different models are sta-

tistically significant or not we ran pairwise Giacomini-White tests for equal predictive ability. The

results are summarized in Table 5. The table shows the p-value of the tests when the column

model is compared to the row model according to the absolute forecasting errors (upper panel)

and squared forecasting errors (lower panel). It is evident from the results that the LASSO-based

models are statistically superior than the benchmark alternatives. The only case where a bench-

mark specification performs similarly to a competitor is then a factor model is compared to the

adaLASSO with respect to the squared errors.

Figure 5 reports the cumulative absolute and squared errors for different models. There is

one large error during the forecasting period (December 2008) and all models display large errors.

However, the LASSO-based models continue to deliver the lowest forecasting errors. Figure 6 shows

the number of variables selected by the LASSO and the adaLASSO. As expected the adaLASSO

delivers more parsimonious models.
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Table 4. Forecasting Results: Summary Statistics.

The table reports for each model the Median Absolute Deviation (MAD), the Mean

Absolute Error (MAE), the Root Mean Squared Error (RMSE) and the minimum and

the maximum of the out-of-sample errors.

MAD MAE RMSE Min Max
Benchmark Models:
All Regressors 0.0044 0.0055 0.0077 -0.0140 0.0467
AR(4) 0.0027 0.0027 0.0031 -0.0095 0.0082
AR(4) + 4 Factors 0.0027 0.0028 0.0031 -0.0081 0.0072

LASSO and adaLASSO:
LASSO 0.0016 0.0021 0.0029 -0.0110 0.0100
adaLASSO 0.0014 0.0021 0.0031 -0.0146 0.0101
flexible adaLASSO 0.0015 0.0021 0.0028 -0.0088 0.0102

Table 5. p-values for Giacomini-White Test of Equal Predictive Ability.

The table reports the p-value of the Giacomini-White test for equal predictive ability. The null hypoth-
esis is that the column model has the the same forecasting performance.

Absolute Errors

All Regressors AR(4) AR(4) + 4 Factors LASSO adaLASSO flex. adaLASSO
All Regressors – 0.0000 0.0000 0.0000 0.0000 0.0000

AR(4) – 0.3807 0.0113 0.0047 0.0401
AR(4) + 4 Factors – 0.0088 0.0266 0.0091

LASSO – 0.3713 0.3584
adaLASSO – 0.3248

flex. adaLASSO –

Squared Errors

All Regressors AR(4) AR(4) + 4 Factors LASSO adaLASSO flex. adaLASSO
All Regressors – 0.0003 0.0003 0.0003 0.0003 0.0003

AR(4) – 0.4181 0.0408 0.0121 0.0554
AR(4) + 4 Factors – 0.0108 0.1624 0.0054

LASSO – 0.1900 0.2518
adaLASSO – 0.1749

flex. adaLASSO –

10. Conclusion

We studied the asymptotic properties of the adaLASSO estimator in sparse, high-dimensional,

linear time series model when both the number of covariates in the model and candidate variables

can increase with the sample size. Furthermore, the number of candidate predictors is possibly

larger than the number of observations. The results in this paper extend the literature by providing

conditions under which the adaLASSO correctly selects the relevant variables and has the oracle

property in a time-series framework with a very general error term. As a technical by-product some

conditions in this paper are improvements on the frequently adopted in the shrinkage literature.
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Figure 5. Panel (a): Cumulative absolute errors. Panel (b): Cumulative squared errors.

The main results presented in this paper are based on the assumption that only a few number of

candidate variables are in fact relevant to explain the dynamics of the dependent variable (sparsity).

This is a key difference from the factor models literature. The estimation of factors relies on the

assumption that the loading matrix is dense, i.e., almost all variables are important for the factor

determination. When the loading matrix is sparse, the usual asymptotic results for factor estimation

do not hold anymore. Therefore, penalized estimation based on the adaLASSO and similar methods
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Figure 6. Number of parameters.

are of extreme importance. However, when the structure of the model is dense, then factor models

are a better alternative.

Appendix A. Satisfying assumptions

Let {zt} denote a zero mean, weakly stationary process taking values on R
d (d ∈ N), that admits

the VMA(∞) decomposition

zt =

∞∑

j=0

Ψjǫt−j ,

where ǫt = (ǫ1t, . . . , ǫdt)
′, E(ǫt|Fǫ,t−1) = 0, E(ǫtǫ

′
t|Fǫ,t−1) = Σt, Ψj = diag(ψj1, · · · , ψjd)

5, and let

Fǫ,t = σ{ǫt, ǫt−1, . . . }. In order to ensure E[z1z
′
1] is bounded independently of d, we also require

that the largest eigenvalue of each Σt is bounded independently of d and that
∑∞

j=0 ψ
2
ji < ∞. It

implicitly requires that the correlation matrices Σt are not dense or, at least, that most elements

are sufficiently small, which is standard in the ℓ1 regularization literature. As in C, we characterize

the dependence of the series through ζi,r =
∑∞

j=r |ψij | (i = 1, . . . , d), and it is assumed that they

decrease either polynomially or geometrically with r.

Assume that the set of candidate variables are xt = (z′
t, . . . ,z

′
t−p)

′ for some p < T , usually much

smaller. To simplify the exposition, let xt(1) = (xi,t, x ∈ S), where S denote the active set, i.e.,

5The assumption that Ψj is diagonal is only to simplify our calculations and can be relaxed, i.e., let Γ∆ = I and
ηt = ∆ǫt, then taking Ψ

∗

j = ΨjΓ yield an equivalent representation.
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the set of all included regressors. The number of candidate variables is n = p × d and both may

increase with T . Throughout the section, we use c, cs, c1, c2, . . . as positive and finite constants.

A.1. Satisfying DGP(3). Assumption DGP(3) is equivalent to

p∑

k=0

d∑

j=1

Pr





∣∣∣∣∣∣

T∑

t=p+1

[
z2j,t−p − E(z2j1)

]
∣∣∣∣∣∣
> Tc



→ 0, T → ∞.

We use the triplex inequality (19) and results in Appendix C to find conditions that satisfy

DGP(3) in this setting.

Table 6 shows conditions to satisfy DGP(3). We impose conditions on {ǫit} (i = 1, . . . , d), the

mixingale dependence term ζi,r =
∑∞

j=r |ψij | (i = 1, . . . , d), and the rates of increase of n and p.

Table 6. Conditions on the rate of increase of n and p, the mixingale dependence
terms {ζi,r : i = 1, . . . , n}, and the tail behaviour of ǫit (t = 1, . . . , T , i = 1, · · · , n),
for satisfying DGP(3). The conditions hold for any 0 < δ < 1, some d ≥ 1, and
some u > 0.

Dependence \ Tail E
(
|ǫit|2m

)
<∞ E [exp(u|ǫit|)− 1− u|ǫit||Fǫ,t−1] ≤ f(u)σ2t

ζi,r = 0, r > r0
n = o

[
T δ(m−1)

]

p = o(T )

log n = o
(
T 1/5

)

p = o(T )

ζi,r ∝ r−ζ

n = o

[
T
δ
(

1

m−1
+ 1

ζ

)

−1]

p = o

[
T

δ
2ζ

(

1

m−1
+ 1

ζ

)

−1]
n = o

(
T δζ
)

p = o
(
T δ/2

)

log ζi,r ∝ −rζ
n = o

[
T δ(m−1)

]

p = o
(
T

δ
2+ζ

)
log n = o

(
T

ζ
5ζ+2

)

p = o
(
T

2

2+5ζ

)

The derivations are mechanical and the same method is applied in each of the six combinations

of conditions. The first step is to adapt the triplex inequality to the problem in hand. Assume that

r ∝ T γ1/2 and CT ∝ T γ2/2 in (19),

Pr



∣∣∣∣∣∣

T∑

t=p+1

z2j,t−k − E
(
z2j1
)
∣∣∣∣∣∣
> Tε


 ≤ 2c1T

γ1/2 exp

(
−c2ε

2T 1−γ1−γ2

288

)
+Dk,T + ET ,

Dk,T is the dependence term of (19), and ET its tail term6. We use results in Appendix C.3 to

bound Dk,T and ET . If p = o(r), then r−k > r−p > r/2 for T sufficiently large. If the dependence

6Dk,T = (6/ε)T−1
∑T

t=1
|E(z2j,t−k|Fǫ,t−r)− E(z2j1)| and ET = (15/ε)T−1

∑T
t=1

E[|z2j,t−k|I(z
2
j,t−k > CT )].
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vanishes after r0 lags, i.e., DT = 0 for r > r0, we can set γ1 = 0. If the dependence decreases

polynomially with r then DT ≤ O(T−ζγ1); if the dependence term decreases exponentially with

r then − logDT ≤ O(T ζγ1/2). As for the tail, ET ≤ O
[
T−γ2(m−1)

]
in the polynomial case, and

− logET ≤ O(T γ2/4) in the exponential case.

We optimize the convergence rate choosing the pair (γ1, γ2) that makes all three terms decrease

at the same rate. In the case both dependence (Dk,T ) and tail (ET ) terms decrease exponentially,

we solve the system 1− γ1 − γ2 = γ2/4 and γ2 = 2ζγ1. The RHS of (19) is bounded by

max
0≤k≤p ,1≤j≤d

Pr





∣∣∣∣∣∣

T∑

t=p+1

[
z2j,t−p − E(z2j1)

]
∣∣∣∣∣∣
> Tc



 ≤ c1 exp

(
−c2 T

ζ
5ζ+2

)
,

for positive and finite constants c1 and c2. Therefore,

p∑

k=0

d∑

j=1

Pr





∣∣∣∣∣∣

T∑

t=p+1

[
z2j,t−p − E(z2j1)

]
∣∣∣∣∣∣
> Tc



 ≤

p∑

k=0

d∑

j=1

c2 exp
(
−c4 T

ζ
5ζ+2

)
→ 0,

as T → ∞ if we assume log n = o
[
T ζ/(5ζ+2)

]
.

The remaining terms in Table 6 are derived similarly.

A.2. Satisfying DESIGN(3). Using the union bound on DESIGN(3) part (b),

Pr


max
i,j∈S

∣∣∣∣∣∣

T∑

t=p+1

xitxjt − E(xitxjt)

∣∣∣∣∣∣
≥ Tφmin

s


 ≤ s2max

i,j∈S
Pr



∣∣∣∣∣∣

T∑

t=q+1

xitxjt − E(xitxjt)

∣∣∣∣∣∣
≥ Tφmin

s


 .

Recall that xitxjt = zl1,t−k1zl2,t−k2 where 1 ≤ l1, l2 ≤ d and 0 ≤ k1, k2 ≤ p. While the actual terms

l1, l2, k1, and k2 are unimportant, S may contain terms with lags up to p, which has an influence

on the dependence term as in the previous section. The RHS of the previous display is bounded by

s2 max
0≤k≤p, 1≤i,j≤d

Pr



∣∣∣∣∣∣

T∑

t=p+1

zitzj,t−k − E(zitzj,t−k)

∣∣∣∣∣∣
≥ Tφmin

s


 . (10)

We use (19) and results in Appendix C to find conditions that satisfy DESIGN(3) in this setting.

The first step is to adapt the triplex inequality to the problem in hand. Assume that r ∝ T γ1/2

and CT ∝ T γ2/2 in (19),

(10) ≤ 2c1s
2T γ1/2 exp

[
−c2(φmin/s)

2T 1−γ1−γ2

288

]
+ c3

s3

φmin
Dk,T +

s3

φmin
ET ,
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Dk,T is the dependence term of the triplex inequality, and ET its tail term7. We use results in

Appendix C.3 to bound Dk,T and ET . If p = o(r), then r − k > r − p > r/2 for T sufficiently

large. If the dependence vanishes after r0 lags, i.e., DT = 0 for r > r0, we can set γ1 = 0. If the

dependence decreases polynomially with r then DT ≤ O(T−ζγ1); if the dependence term decreases

exponentially with r then − logDT ≤ O(T ζγ1/2). As for the tail, ET ≤ O
[
T−γ2(m−1)

]
in the

polynomial case, and − logET ≤ O(T γ2/4) in the exponential case.

The derivation of the bounds follow the same steps as in A.1, with the further constraint that

(s/φmin) = o(T δ/2) where 0 < δ = 1−γ1−γ2 < 1. If Dk,T = 0, the condition on s and p are already

satisfied independently of ET . If Dk,T and ET are polynomial, then we need p = o
(
T

1−δ
4ζ

H(d,ζ)
)
and

s = O
{
T

δ
2
∧ 1

4
[(1−δ)H(d,ζ)−δ]

}
, where H(m, ζ) = 2/[1/(m−1)+1/ζ] is the harmonic average of m−1

and ζ. If Dk,T and ET decrease geometrically, then the condition is satisfied for p = o
[
T 1/(2+5ζ)

]
.

Now, let 0 < δ < 1− ν < 1, for some 0 < ν < 1. If Dk,T is polynomial and ET geometric, we need

p = o
[
T (1−ν−δ)/2

]
and s = O

(
T

δ
2
∧ζ 1−ν−δ

2

)
. Finally, if Dk,T is geometric and ET is polynomial,

then p = o(T ν/2) and s = O
[
T

δ
2
∧(1−ν−δ)(d−1)

]
. The previous bounds hold with ν = δ, in which

case 0 < δ < 1/2.

A.3. Satisfying condition WEIGHTS. We show that under stronger assumptions on the co-

variance matrix of the candidate variables and number of covariates, conditions on Lemma 1 are

satisfied. These conditions also imply that DGP(3) and DESIGN(3) are satisfied. Kock and Callot

(2012) show that these conditions are satisfied if the covariates are generated form a Gaussian

VAR. The approach we use here is similar. Assume that the smallest eigenvalue of the population

covariance matrix is bounded away from zero and that φ0 > 16c > 0 in Lemma 1. We show that

Pr


 max
1≤i,j≤n

∣∣∣∣∣∣

T∑

t=p+1

xitxjt − E(xitxjt)

∣∣∣∣∣∣
≥ Tc

s


→ 0,

as T → ∞.

We use the triplex inequality again. The argument is the same as used in A.1 and A.2. The

arguments are as in A.2, and we bound (10) with φmin replaced by a constant c, and s2 replaced by

n2, because we are now dealing with the full empirical covariance matrix of the variables, instead

of only the ones that enter in the model.

7Dk,T = T−1
∑T

t=1
|E(zitzj,t−k|Fǫ,t−r)− E(zi1zj1)| and ET = T−1

∑T
t=1

E[|zitzj,t−k|I(zitzj,t−k > CT )].
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The mechanics is the same as before. We assume that s = o(T δ/2) for some 1 < δ < 1, and

that p = o(r). If Dk,T = 0 and ET is polynomial, p is not constrained and n = o
[
T (1−δ)(1−m)/2

]
.

If ET decreases geometrically, log n = o
[
T (1−δ)/5

]
. If Dk,T and ET decrease geometrically, then

log n = o
[
T ζ(1−δ)/(2+4ζ)

]
and p = o

[
T (1−δ)/(2+4ζ)

]
. If both Dk,T and ET decrease polynomially,

n = o
[
TH(m,ζ)(1−δ)/4

]
and p = o

[
TH(m,ζ)(1−δ)/(4ζ)

]
, where H(m, ζ) = 2/[1/(m − 1) + 1/ζ] is the

harmonic average of m − 1 and ζ. Now, let 0 < δ < 1 − ν < 1, for some 0 < ν < 1 and

assume that s = o(T δ/2). If Dk,T is polynomial and ET geometric, we need p = o
(
T (1−ν−δ)/2

)
and

n = O
[
T ζ(1−ν−δ)/2

]
. Finally, if Dk,T is geometric and ET is polynomial, then p = o(T ν/2) and

n = O
[
T (1−ν−δ)(m−1)/2

]
. The previous bounds hold with ν = δ, in which case 0 < δ < 1/2.

If we add bounded εt to the list, the tail term ET is zero, and the number of variables would

depend only on the dependence term. In any case, the number of variables depend both on the

dependence structure of the covariates and their tail behaviour. For instance, if the tail does

not decrease geometrically, the number of candidate variables cannot increase sub-exponentially.

Similarly, when the dependence term is polynomial, n increases at most polynomially.

Hence, under the previous conditions on the increase rate of n, p, and s, and assuming the

population covariance matrix of all covariates satisfy the restricted eigenvalue condition, the LASSO

can be used as initial estimator and the condition WEIGHTS is satisfied.

Appendix B. Proofs

B.1. Initial weights.

Proof of Lemma 1. The first statement follows directly from Lemma 6 in Kock and Callot (2012)

and the second one from comparing DESIGN(3) and the conditions in the lemma, in a set with

probability one. �

Proof of Lemma 2. The proof follows after Theorem 6.1 in Bülhmann and van der Geer (2011) and

the relationship between restricted eigenvalue condition and compatibility condition. The second

part follows because (a) satisfies conditions of Lemma 4 and (b) satisfies conditions of 5. �

Proof of Proposition 1. The weights are given by |θI,i|−τ , which means that WEIGHTS(1) is equiv-

alent to

max
s+1≤i≤n

|θI,i| ≤
n∑

i=s+1

|θI,i − θ0,i| ≤ T−ξ/2τc
−1/τ
w(2) ,
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because θi,0 = 0 for all q + 1 ≤ i ≤ n. Hence, WEIGHTS(1) is satisfied whenever

T−ξ/2τc
−1/τ
w(2) ≥ c1

λ

T

s

φmin
,

which holds under assumption on λ.

Let x, y ∈ R and 2(x−y)2 ≤ y2, y2 ≤ 2
(
x2 + (x− y)2

)
which means that x2 ≥ y2/2−(x−y)2 > 0.

Moreover, x2τ ≥
(
y2/2− (x− y)2

)τ
. Under the conditions on θmin and the bound on |θI,i − θ0i|,

|θI,i|2τ ≥
(
0.5|θ0i|2 − |θI,i − θ0i|2

)τ
. The left hand side of WEIGHTS(2) is upper bounded by

s−1
s∑

i=1

w2
i ≤ max

1≤i≤s
|θI,i|−2τ ≤

(
0.5 min

1≤i≤s
|θ0,i|2 − max

1≤i≤s
|θI,i − θ0,i|2

)−τ

.

Substituting this bound on WEIGHTS(2),

max
1≤i≤s

|θI,i − θ0,i|2 ≤ 0.5θ2min − w−2/τ
max .

It follows by assumption that (θ2min/2− w
−2/τ
max )1/2 ≥ 1

2θmin ≥ c1(λ/T )(s/φmin). Therefore,

max
1≤i≤s

|θI,i − θ0,i| ≤ c1
λ

T

s

φmin
,

is a sufficient condition for WEIGHTS(2), which is satisfied by the ℓ1 oracle bound. �

B.2. Minimal Eigenvalue. Condition DESIGN(3) imply that the smallest eigenvalue of Ω̂11 is

lower bounded by φmin. We use this result throughout the proofs in this section.

Lemma 3. Let A and B denote two non-negative definite, r-dimensional square matrices. If

max1≤i,j≤r |Aij −Bij | ≤ δ, then

inf
α′α=1

α′Bα > inf
α′α=1

α′Aα− rδ.

Proof. The proof is parallel to Lemma 6.17 in Bülhmann and van der Geer (2011). Let α ∈ R
r\{0}.

α′Aα−α′Bα ≤ |α′(A−B)α| ≤ |α|1|(A−B)α|∞ ≤ |α|21δ ≤ rα′αδ,

where | · |1 and | · |∞ are the ℓ1 and sup norm, respectively. Rearranging the terms,

α′Bα

α′α
≥ α′Aα

α′α
− rδ.
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The result follows by minimizing over α ∈ R
r \ {0}. �

Under condition DESIGN(3), in a set with probability converging to one

inf
α′α=1

α′Ω̂11α > inf
α′α=1

α′Ω11α− s
φmin

s
> φmin.

B.3. Bounding the empirical process. The regularization parameter λ is intrinsically connected

to probability bounds on the event

ET (λ0) =
{
2 max
i=1,...,n

T−1/2

∣∣∣∣∣

T∑

i=1

xitut

∣∣∣∣∣ < λ0

}
.

We derive bounds for the event ET
[
λT−(1−ξ)/2

]
under (i) Assumptions DGP(1)-DGP(2) and

DGP(4) (case i), and (ii) Asumptions DGP(1)–DGP(2) and DGP(5). More precisely, we show that

Pr

(
max

i=1,...,n
T−1/2

∣∣∣∣∣

T∑

i=1

xitut

∣∣∣∣∣ >
λ

2
√
T
T ξ/2

)
≤ c hT (n, ξ),

for some positive constant c. The sequence hT (n, ξ) =
[
n1/mT (1−ξ)/2/λ

]m
in case (i), and hT (n, ξ) =

exp
[
log n− c2λ

2/5T−(1−ξ)/5
]
in case (ii), for some constant c2. Then, under conditions on the lower

bound of λ, we find that Pr
{
ET
[
λT−(1−ξ)/2

]}
≤ 1− cT−α, for some α > 0.

Lemma 4. Under Assumptions DGP(1), DGP(2), DGP(3), and λ ≥ n1/mT (1−ξ)/2+α/m, for some

α > 0,

Pr
{
ET
[
λT−(1−ξ)/2

]}
≥ 1− 2dc

Tα
, (11)

for some positive constant c.

Proof. Write Pr[ET (λ0)] = 1− Pr[Ec
T (λ0)]. Simple application of the union bound and the Markov

inequality yield

Pr[Ec
T (λ0)] ≤

n∑

i=1

Pr

(
2T−1/2

∣∣∣∣∣

T∑

i=1

xitut

∣∣∣∣∣ > λ0

)

≤ 2mn−1
n∑

i=1

E

∣∣∣∣∣
1√
T

T∑

i=1

xitut

∣∣∣∣∣

m (
n1/m

λ0

)m

.
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Under Assumption DGP(2), {utxjt} is a martingale difference process with respect to Ft. Appli-

cation of the Burkhölder-Davis-Gundy inequality and the Cr-inequality, yield

E

∣∣∣∣∣
1√
T

T∑

t=1

utxjt

∣∣∣∣∣

m

≤ C ′
mE

∣∣∣∣∣
1

T

T∑

t=1

(utxjt)
2

∣∣∣∣∣

m/2

≤ Cm
1

T

T∑

t=1

E|utxjt|m.

Under DGP(3) and setting λ0 = λT−(1−ξ)/2

Pr[Ec
T (λ0)] ≤ 2mCmcm

[
n1/mT (1−ξ)/2

λ

]m
≤ 2mCmcm

Tα
,

for λ ≥ n1/mT (1−ξ)/2+α/m. �

Lemma 5. Assume that DGP(1), DGP(2) and DGP(5) hold jointly, and that T is sufficiently

large. Let log n ≥ (log T )2 and, for any α > 0, λ ≥ c′(log n + α log T )5/2T (1−ξ)/2, for c′ > 0

sufficiently large, than

Pr
{
ET
[
λT−(1−ξ)/2

]}
≥ 1− c1

Tα
, (12)

for some positive constant c1.

Proof. Write Pr[ET (λ0)] = 1− Pr[Ec
T (λ0)]. Using the union bound and Lemma 6 gives

Pr[Ec
T (λ0)] ≤

n∑

i=1

Pr

(
2T−1/2

∣∣∣∣∣

T∑

i=1

xitut

∣∣∣∣∣ > λ0

)

≤ c1 exp
(
log n− c2λ

2/5
0

)
.

The use of Lemma 6 is justified because whenever log n > (log T )2, the condition on hT is satisfied

with log(hTT
−1/2)/h

2/5
T > 1/ log T → 0 as T → ∞. Choose c′ > [min(b3, b4, 1/27)/4]

−5/2 and

set λ0 = λT−(1−ξ)/2 with λ = c′(log n + α log T )5/2T (1−ξ)/2. Then Pr(Ec
T ) ≤ c1/T

α. The result

follows. �

In the proof of Lemma 5 we used the following lemma, that defines a sub-exponential bound on

the probability of the empirical process.

Lemma 6. Let {Ft}∞−∞ denote as sequence of increasing σ-fields and let {xtut}Tt=−∞ be a dif-

ference martingale sequence with respect to {Ft}Tt=−∞, for each T . Assume that there exist pos-

itive constants b1, . . . , b4 such that for any c sufficiently large, Pr(ut > c) ≤ b1 exp (−b2c) and
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Pr(xt > c) ≤ b3 exp (−b4c). Then,

Pr

(∣∣∣∣∣
1√
T

T∑

t=1

xtut

∣∣∣∣∣ > hT

)
≤ c1 exp

(
−c2h2/5T

)
, (13)

where c1 and c2 are positive constants, hT is a non-decreasing sequence, and log T/h
2/5
T → 0 as

T → ∞.

Proof. The proof consists in applying the Triplex inequality (19) and optimizing the right hand

side. The second term on the Triplex inequality is zero because E(xtut|Ft) = 0. Take r = 1,

εT = hT /
√
T and CT = hγT , then

Pr

(∣∣∣∣∣
1√
T

T∑

t=1

xtut

∣∣∣∣∣ > hT

)
≤ 2 exp

(
−h2−2γ

T /288
)
+

15
√
T

hT

1

T

T∑

t=1

E[|xtut|I(|xtut| > hγT )].

The expectation in the RHS is bounded by

E|xtut|I(|xtut| > hγT ) ≤
(
E|xtut|2

)1/2 ×
[
Pr
(
|ut| > h

γ/2
T

)
+Pr

(
|xt| > h

γ/2
T

)]1/2
.

The first term on the RHS is bounded because both Pr(xt > c) and Pr(ut > c) decrease expo-

nentially, as for the second term

[
Pr
(
|ut| > h

γ/2
T

)
+ Pr

(
|xt| > h

γ/2
T

)]1/2
≤
[
b1 exp

(
−b2hγ/2T

)
+ b3 exp

(
−b4hγ/2t

)]1/2

≤ b5 exp
(
−b6hγ/2T /2

)
,

where b25 = 2(b1 + b3) and b6 = min(b2, b4).

Therefore,

Pr

(∣∣∣∣∣
1√
T

T∑

t=1

xtut

∣∣∣∣∣ > hT

)
≤ 2 exp

(
−h2−2γ

T /288
)
+ b7

√
T

hT
exp

(
−b6hγ/2T /2

)
,

where b7 ≥ 15b5T
−1
∑T

t=1(E|xtut|2)1/2. Choosing γ = 4/5 optimizes the convergence rate and the

result follows from the assumption on hT and by taking c1 = 2+ b7 and c2 = min(1/288, b6/4). �

B.4. Proof of Theorem 1. Write Ω̂ = X
′
X

T , Ω̂11 =
X(1)′X(1)

T , Ω̂22 =
X(2)′X(2)

T and Ω̂21 = Ω̂
′
12 =

X(2)′X(1)
T . Set ν0 = sign[θ0(1)], where sign(x) = I(x > 0)−I(x < 0). LetW (1) = diag(w1, . . . , ws).

The Karush-Kuhn-Tucker conditions characterize the solution of the optimization problem in

equation (2). These conditions are standard in the LASSO literature and have been used in Zhao
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and Yu (2006), Huang et al. (2008), among many others, to find sufficient conditions for sign

consistency. Proposition 2 provides a lower bound on the probability that the signs of the estimated

and true parameters are equal, and follows the same construction as Zhao and Yu (2006).

Proposition 2. Let W (1) = diag(w1, . . . , ws) and ν0 = sign[θ0(1)]. Then

Pr
[
sign(θ̂) = sign(θ)

]
≥ P (AT ∩ BT ) ,

where

AT =

s⋂

i=1

{
1√
T
|[Ω̂−1

11 X(1)′U ]i| <
√
T |θ0i| −

λ

2
√
T
|[Ω̂−1

11 W (1)ν0]i|
}
, (14a)

BT =

n⋂

i=s+1

{
2| 1√

T
X ′

iM (1)U | < 1√
T
λ
[
wi − |T−1X ′

iX(1)Ω̂
−1

11 W (1)ν0|
]}

, (14b)

where U = Y −Xθ0, M(1) = IT −X(1)(X(1)′X(1))−1X(1)′.

Proof of Proposition 2. The proof follows as in Proposition 1 of Zhao and Yu (2006). �

The sets AT and BT and loosely interpreted as “keeping relevant variables inside the model”

and “leave irrelevant variables outside the model”. Proposition 2 provides a lower bound on the

probability of selecting the correct model:

P
[
sign(θ̂) = sign(θ0)

]
≥ P (AT ∩ BT ) ≥ 1− P (Ac

T )− P (Bc
T ) ,

where Ac
T and Bc

T are the complements of AT and BT respectively. Theorem 1 follows by showing

that At ∩ Bt ⊇ ET [λT−(1−ξ)/2] and claim Lemma 4 to conclude.

Lemma 7. Assume DESIGN and WEIGHTS(2) hold jointly, and that θmin > (λ/T 1−ξ/2)(s1/2/φmin).

Then AT ⊇ ET [λT−(1−ξ)/2].

Proof. Write the event Ac
T

Ac
T =

s⋃

i=1

{
1√
T
|[Ω̂−1

11 X(1)′U ]i| ≥
√
T |θ0i| −

λ

2
√
T
|[Ω̂−1

11 W (1)ν0]i|
}
.
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Simple application of the Cauchy-Schwartz inequality to the left hand side of the inequality above

yields

∣∣∣T−1/2[Ω̂
−1

11 X(1)′U ]i

∣∣∣ = T−1/2 sup
α′α=1

α′Ω̂
−1

11 X(1)′U

≤ sup
α′α=1

(α′Ω̂
−2

11 α)1/2




s∑

j=1

(
T−1/2X ′

jU
)2


1/2

≤ φ−1
min ×




s∑

j=1

(
T−1/2X ′

jU
)2


1/2

. (15)

Similarly,

|[Ω̂−1

11 W (1)ν0]i| = T−1/2 sup
α′α=1

α′Ω̂
−1

11 W (1)ν0

≤
(

inf
α′α=1

α′Ω̂11α

)−1



s∑

j=1

w2
j




1/2

(16)

≤ φ−1
mins

1/2wmax ≤ s1/2T ξ/2

φmin
(17)

Combining (15) and (17), and under the assumption that θmin > (λ/T 1−ξ/2)(s1/2/φmin),

√
T |θ0i| −

λ

2
√
T

∣∣∣T−1/2[Ω̂
−1

11 X(1)′U ]i

∣∣∣ ≥ λ

2
√
T

s1/2T ξ/2

φmin
,

and

Ac
T ⊆





s∑

j=1

(
T−1/2X ′

jU
)2

≥
(

λ

2T (1−ξ)/2
s1/2

)2


 ⊆

{
max

i=1,...,s
2
∣∣∣T−1/2X ′

jU

∣∣∣ ≥ λ

T (1−ξ)/2

}
,

proving the claim. �

Lemma 8. Under Assumptions DGP(3), WEIGHTS and DESIGN, BT ⊇ ET (λT−(1−ξ)/2), for all

T sufficiently large.

Proof. Write

BT =

n⋃

i=s+1

{
2

∣∣∣∣
1√
T
X ′

iM(1)U

∣∣∣∣ ≥
1√
T
λ
[
wi − |T−1X ′

iX(1)Ω̂
−1

11 W (1)ν0|
]}

. (18)
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We will bound the left and right hand side (LHS, RHS) of (18) separately and combine the bounds.

Recall that M(1) = IT −X(1)[X(1)′X(1)]−1X(1)′, which means that

X ′
iM (1)U = X ′

iU −X ′
iX(1)[X(1)′X(1)]−1X(1)′U = Ai +Bi.

The second term on the RHS, Bi, is bounded by

|Bi| =
∣∣X ′

iX(1)[X(1)′X(1)]−1X(1)′U
∣∣

≤
∣∣∣∣∣

T∑

t=1

x2it

∣∣∣∣∣

1/2 ∣∣U ′X(1)[X(1)′X(1)]−1X(1)′U
∣∣1/2

≤
√
T

∣∣∣∣∣
1

T

T∑

t=1

[
x2it − E(x2it)

]
+ max

i=1,...,n
E(x2it)

∣∣∣∣∣

1/2 [∑s
i=1

(
T−1/2X ′

jU
)2

φmin

]1/2

≤ c1

[∑s
i=1

(
T−1/2X ′

jU
)2

φmin

]1/2
,

where c1 = 1 ∨
√

2maxi=1,...,n E(x2it) for all T sufficiently large from DGP(3).

Therefore, the LHS of (18) is bounded by

2

∣∣∣∣
1√
T
X ′

iM(1)U

∣∣∣∣ ≤
2c1√
T

T∑

t=1

xitut +
2c1

φ
1/2
min

√√√√√
s∑

j=1

(
1√
T

T∑

t=1

xjtut

)2

.

As for the RHS, it follows from the Cauchy-Schwarz inequality, WEIGHTS(2), DESIGN(3), and

DGP(3) that

[
T−1X ′

iX(1)Ω̂
−1

11 W (1)ν0

]2
=

{
X ′

iX(1)[X(1)′X(1)]−1W (1)ν0

}2

≤ ν ′
0W (1)(X(1)′X(1))−1W (1)ν0 ×X ′

iXi

≤
∑s

j=1w
2
i

infα′α=1α
′Ω̂11α

×
∑T

t=1 x
2
it

T

≤
(
c1s

1/2T ξ/2

φ
1/2
min

)2

Combining the previous bound with WEIGHTS(1) yield the following bound to the RHS of (18)

λ√
T

(
wi −

∣∣∣T−1X ′
iX(1)Ω̂

−1

11 W (1)ν0

∣∣∣
)
≥ 2c1λ

T (1−ξ)/2

√
s

φmin
.
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Hence,

Bc
T ⊆

{
max
1≤i≤s

2√
T

T∑

t=1

xitut ≥
λ

T (1−ξ)/2

}
∪
{

max
s+1≤i≤n

2√
T

T∑

t=1

xitut ≥
λ

T (1−ξ)/2

√
s

φmin

}

⊆
{

max
1≤i≤n

2√
T

T∑

t=1

xitut ≥
λ

T (1−ξ)/2

}
,

proving the claim. �

Proof of Theorem 1. Combining Proposition 2 with Lemmata 7 and 8 yield

Pr
[
sign(θ̂) = sign(θ)

]
≥ P (AT ∩ BT ) ≥ Pr

{
E
[
λT−(1−ξ)/2

]}
→ 1,

from Assumption REG and Lemma 4. �

B.5. Proof of Theorem 2. Write Q̇T (θ) = −2X ′(Y −Xθ)+λWνθ, where νθ = [sign(θ1), . . . , sign(θn)]
′

and W = diag(w1, . . . , wn). Replacing θ by the adaLASSO estimator and writing U = Y −

X(1)θ0(1), and for any α′α = 1,

√
Tα′

[
θ̂(1)− θ0(1)

]
=

1√
T
α′
[
Ω̂

−1

11 X(1)′U
]
−

√
Tα′Ω̂

−1

11 Ω̂12θ̂(2) +
λ

2
√
T
αΩ̂

−1

11 W (1)νθ(1).

The first term on the RHS equals
√
Tα′

[
θ̂ols(1)− θ0(1)

]
. The proof consists in showing that

the second and third term on the RHS converge to zero in probability. Since Pr[θ̂(2) = 0] → 1

from Theorem 1, the second term vanishes in probability. As for the third term

(
λ

2
√
T
αΩ̂

−1

11 W (1)νθ(1)

)2

≤ λ2
∑s

i=1w
2
i

4T
(
infα′α=1 α′Ω̂11α

)2

≤
(

λ√
T

s1/2wmax

2φmin

)2

→ 0, T → ∞.

The first line follows from the Cauchy-Schwarz inequality, the second from WEIGHTS(2) and

DESIGN(3), and the last one from REG.

B.6. Proof of Theorem 3. The only difference between Theorem (3) and the previous results is

that now the number of variables may increase faster.
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The proof of (a) is identical to the proof of Theorem 1 with Lemma 4 replaced by Lemma 5.

The proof of (b) is identical to the proof of Theorem 2.

Appendix C. Auxiliary Lemmata

This section we show some auxiliary results used in the previous derivation. We start with the

triplex inequality (Jiang 2009, Theorem 1) and expand on how to bound its terms.

Theorem (Triplex Inequality). Let {Ft}∞t=−∞ be an increasing sequence of σ-fields, and xt be a

random variable that is Ft-measurable for each t. Then, for each εT , CT > 0 and positive integers

r and T , we have

Pr

{∣∣∣∣∣

T∑

t=1

[xt − E(xt)]

∣∣∣∣∣ > TεT

}
≤ 2r exp

[
−Tε2T /(288r2C2

T )
]

+ (6/εT )T
−1

T∑

t=1

E |E(xt|Ft−r)− E(xt)|

+ (15/εT )T
−1

T∑

t=1

E |xt| I (|xt| > CT ) , (19)

as long as the RHS exists and is smaller than one.

The first term in the RHS is self explanatory and depends on the dependence window m, the

upper bound CT , and εT . The second term on the RHS is the dependence term and is described in

the framework of ℓ1-mixingale (see, e.g., Chapter 16, Davidson 1994). When {xt} is a martingale

difference process, the dependence term vanishes. We derive bounds for the dependence term under

different dependence assumptions. Finally, the third term on the RHS captures the tail behaviour

of xt and we also derive bounds for it under different tail conditions.

C.1. Tail behaviour. Next series of results will deal with the tail behaviour of the elements xt

under different conditions. For the sake of simplicity, and without of generality, consider xt scalar

and denote it xt. Lemma 9 provides sufficient condition so that the tail decreases exponentially. We

assume that xt admits an MA(∞) representation where the innovations have bounded conditional

variances, and impose conditions on the coefficients and innovation process. Lemma 10 follows a

different direction and derives a polynomial bound assuming that |xt| has up to p moments.
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Lemma 9. Let {xt}∞t=−∞ denote a second order, stationary process that admits an MA(∞) decom-

position. Write xt =
∑∞

j=0 θjǫt−j , where {ǫt}∞t=−∞ satisfy one of the following settings:

(1) is an independent and identically distributed sequence (i.i.d.) of random variables, with

mean zero, and |θ|1 =
∑∞

j=0 |θj| <∞. Furthermore, ǫ1 has a cumulant generating function

K(u) = logE [exp (uǫ1)] that is continuously differentiable at zero.

(2) {ǫt,Fǫ,t−1}∞−∞ is a martingale difference sequence, where Fǫ,t−1 = σ{ǫt−1, ǫt−2, . . . }, |θ|22 =
∑∞

j=0 |θj|2 <∞, and E(ǫ2t |Fǫ,t−1) = σ2t <∞ . Furthermore, each ǫt satisfies

E
[
exp (u|ǫt|)− 1− u|ǫt|

∣∣Fǫ,t−1

]
≤ f(u)E

(
ǫ2t |Fǫ,t−1

)
,

for any positive u and f(u).

Then there exist positive constants b1 and b2 such that Pr(|xt| > c) < b1 exp (−b2c). Moreover, the

tail condition in the triplex inequality is bounded by

15

εT
T−1

T∑

t=1

E |xt| I (|xt| > CT ) ≤
15b1

√
E|xt|2

εT
e−b2CT /2.

Proof. The Markov inequality yield, for some u > 0,

Pr(|xt| > c) = Pr [exp (u|xt|) > exp(uc)] ≤ exp (−uc) exp {logE[exp(u|xt|)]} .

Under setting (1),

exp {logE [exp(±uxt)]} = exp




∞∑

j=0

logK(±θju)




≤ exp




∞∑

j−1

sup
|ν|≤u|θ|1

|K ′(ν)||uθj |




≤ 2 exp

[
|θ|1|u| sup

|ν|≤|u||θ|1
|K ′(ν)|

]
,

where K ′(u) = dK(u)/du, b1 = 2exp
[
|θ|1|b2| sup|ν|≤|b2||θ|1 |K ′(ν)|

]
and b2 = u.
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Under setting (2),

E[exp(u|xt|)] ≤ E


exp


u

∞∑

j=0

|θjzt−j |






= E


exp


u

∞∑

j=1

|θjzt−j |


 exp {logE [exp (u|θ0ǫt|) |Fǫ,t−1]}




≤ E


exp


u

∞∑

j=1

|θjzt−j |


 exp

{
E
[
exp(u|θ0ǫt|)− 1− u|θ0ǫt|

∣∣Fǫ,t−1

]}



≤ exp
[
f(u)θ20σ

2
t

]
E


exp


u

∞∑

j=1

|θjzt−j |






≤ · · · ≤ exp


f(u)

∞∑

j=0

θ2jσ
2
t−j


 ≤ exp

[
f(u)σ2max|θ|22

]
,

where σ2max = maxt σ
2
t . We may choose b2 = u and b1 = exp

[
f(b2)σ

2
max|θ|22

]
. A tighter bound may

be obtained by minimizing the right hand side inf0<u<u0
exp[f(u)σ2max|θ|22 − CTu].

The tail bound follows after the Cauchy-Schwarz inequality. �

The key assumptions are on the innovation process {ǫt}. The first one requires that the cumulant

generating function of the innovations, K(u), is continuously differentiable at zero. This condition

is satisfied, for instance, by Gaussian innovations. As for the second condition, assume each ǫt

satisfy the Bernstein moment condition: for all k ≥ 2,

E

(
|ǫt|k

∣∣Fǫ,t−1

)
≤ k!bk−2E

(
ǫ2t |Ft−1

)

2
,

for some b > 0. Then, for all 0 < u < 1/b, E
[
exp (u|ǫt|)− 1− u|ǫt|

∣∣Fǫ,t−1

]
≤ f(u)E(ǫ2t |Ft−1) with

f(u) = u2/2(1 − ub) 8.

It is usually the case that the moment generating function does not exist. In such situations we

require a polynomial bound on the tail term of the triplex inequality.

Lemma 10. Assume there exist positive cp and p > 1 such that E|xt|p < cp for all t. Then,

E[|xt|I(|xt| > Ct)] ≤ cpC
−(p−1)
T . Moreover, the tail condition in the triplex inequality is satisfied

8Under this condition a Bernstein-type bound may be derived, i.e., Pr(|xt| > c) ≤ b1 exp
[

−c2/2(|θ|22σ
2
max + cb)

]

.

42



with

15

εT
T−1

T∑

t=1

E [|xt| I (|xt| > CT )] ≤
15cp

εTC
p−1
T

.

Proof. It follows after simple application of the Holder inequality:

E[|xt|I(|xt| > Ct)] ≤ E(|xt|p)1/p Pr(|xt| > Ct)
(p−1)/p

≤ E(|xt|p)1/pE(|xt|p)(p−1)/p/C
p(p−1)/p
t

= E(|xt|p)C−(p−1)
t .

�

The assumption that E(|xt|p) is bounded is not restrictive and, whenever xt can be written as

an MA(∞) process, we are only required that |θ|1 < ∞ and E|ǫs|p < ∞ for all s. Under these

conditions, E (|xt|p) ≤ |θ|p−1
1

∑∞
j=0 |θj|E|ǫt−j |p ≤ |θ|p1 maxt E|ǫt|p.9 In this case, cp = |θ|p1 maxt E|ǫt|p

in the previous lemma.

C.2. Dependence term. Bounds on the dependence term are derived under mixing and mixingale

assumptions. We further extend the results to the processes {x2it}∞t=−∞, and {x1,tx2,t}∞t=−∞ where

xt = (x1,t, x2,t)
′ admits a VMA(∞) decomposition.

Lemma 11. (1) Assume the pairs {xt,Ft}∞−∞ form an ℓ1-mixingale sequence with mixingale

coefficients {ζr}∞−∞
10, then

6

εT T

T∑

t=1

E

∣∣∣E(xt|Ft−r)− E(xt)
∣∣∣ ≤ 6 c1

εT
ζr,

where c1 is some positive constant.

(2) Assume {xt}∞t=−∞ is strong mixing with mixing coefficients {αr}∞0 , and each E|xit|p < ∞.

Then

6

εT T

T∑

t=1

E

∣∣∣E(xt|Ft−r)− E(xt)
∣∣∣ ≤ 36 c1

εT
α1−1/p
r ,

9Write
∑

j |θjǫt−j | =
∑

j |θj |
1−1/p(|θj |

1/p|ǫt−j |) and use the Hölder inequality to find
∑

j |θjǫt−j | ≤

|θ|p−1

1

∑

j |θj ||ǫt−j |
p.

10
E|E(xt|Ft−r)− E(xt)| ≤ atζr, r = ±1,±2, . . . .
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for some positive constant c1. If, instead, {xt} is uniform mixing, the inequality holds with

α
1−1/p
r replaced by φ

1−1/p
r /3.

Proof. Result for mixingale follows from the definition of a mixingale process. Result for strong

(uniform) mixing follows after direct application of Theorems 14.2 (Theorem 14.4) in Davidson

(1994). �

The terms αr and φr are respectively the strong and the uniform mixing coefficients. Conditions

on the rate of decrease of the mixing coefficients yield polynomial or exponential bounds on the

second term, i.e., if αr = O(e−α r) then α
1−1/p
r /εT ≤ c e−[α(p−1)/p] r/εT for some positive c. Similarly,

αr = O(r−α) yield α
1−1/p
r /εT ≤ c r−[α(p−1)/p]/εT . If the process is strong (uniform) mixing with size

−α (−φ), Theorem 14.1 in Davidson (1994) shows that the process {x2t } is also strong (uniform)

mixing with the same size. Similar results also hold for the mixingale case.

C.3. Processes admitting a VMA(∞) decomposition. Assume xt = (x1,t, x2,t)
′ is a second

order stationary process that admits the MA(∞) decomposition

xt =


 x1,t

x2,t


 =

∞∑

j=0


 θ1,jǫ1,t−j

θ2,jǫ2,t−j


 =

∞∑

j=0

Θjǫt−j, (20)

where E[ǫt|Fǫ,t−1] = 0, E[ǫtǫ
′
t|Fǫ,t−1] = Σt, with [Σt]i,i = σ2it and [Σt]i,j = ρt, and Fz,t =

σ{ǫt, ǫt−1, . . . }.

We may also write

xit =

∞∑

j=0

θi,jǫi,t−j i = 1, 2,

which means that the marginal tail bounds on Lemmata 9 and 10 hold. It also follows that each

xit is a mixingale process with ζr =
∑∞

j=r |θi,j| (see, e.g., Davidson 1994, Example 16.2) , which

means that the dependence term may also be bounded as in part 1 of Lemma 11.

Lemma 12. Let {xt} satisfy (20), with
∑∞

j=r |θi,j| ≤ ζi,r. Then, for i, j ∈ {1, 2}, t = 1, . . . , T , and

constants ci,j(t) <∞,

(1) [E|E(xtx
′
t|Fǫ,t−r)− E(xtx

′
t)|]i,j ≤ ci,j(t)ζi,rζj,r,

(2)
[
E|E(xtx

′
t−k|Fǫ,t−r)− E(xtx

′
t−k)|

]
i,j

≤ ci,j(t)ζi,rζi,r−k,

(3) If E
(
ǫit

2p
)
< ci,2p, then E [|xitxjt||I(|xitxjt > CT )] ≤ √

ci,2pcj,2p/C
p−1
T .
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(4) If E [exp(u|ǫit|)− 1− u|ǫit||Fǫ,t−1] ≤ f(u)σ2it then E [|xitxjt||I(|xitxjt > CT )] ≤ b1 exp
(
−b2C1/2

T

)
,

for positive constants b1 and b2.

Proof. (1) Write xt = vt + wt where vt =
∑r−1

j=0 Θjǫt−j and wt =
∑∞

j=r Θjǫt−j . Expand the

product xtx
′
t = vtv

′
t + vtw

′
t +wtv

′
t +wtw

′
t. The last term is measurable with respect to Fǫ,t−r,

E[vt|Fǫ,t−r] = 0, and the first term is such that E(vtv
′
t|Fǫ,t−r) =

∑r
j=0ΘjΣt−jΘ

′
j = E(vtv

′
t). Then

E(xtx
′
t|Fǫ,t−r)− E(xtx

′
t) = wtw

′
t − E(wtw

′
t). It follows that

E
∣∣wtw

′
t − E[wtw

′
t]
∣∣ = E

∣∣∣∣∣∣

∞∑

i=r

∞∑

j=r

Θi (ǫt−iǫt−j − Eǫt−iǫt−j)Θj

∣∣∣∣∣∣

≤
∞∑

i=r

∞∑

j=r

|Θi|E |ǫt−iǫt−j − Eǫt−iǫt−j | |Θj|.

Therefore,

[E
∣∣wtw

′
t − E[wtw

′
t]
∣∣]i,j ≤ ci,j(t)

∞∑

k=r

|θi,k|
∞∑

k=r

|θj,k| ≤ ci,j(t)ζi,mζj,r,

where ci,j(t) = maxr,s≥r E |ǫi,t−rǫj,t−s − E(ǫi,t−rǫj,t−s)|.

(2) Write xt−k = vt(k) +wt(k) where vt(k) =
∑r−1

j=k Θj−kǫt−j and wt(k) =
∑∞

j=r Θj−kǫt−j . It

follows that for all r ≥ k, wt(k) is Fǫ,t−r-measurable. Applying the same rational used in the first

part of the proof, we find that for r ≥ k

E[xtx
′
t−k|Fǫ,t−r]− E[xtx

′
t−k] = wt(0)wt(k)

′ − E[wt(0)w
′
t(k)].

Moreover,

E
∣∣wt(0)wt(k)

′ − E[wt(0)w
′
t(k)]

∥∥ ≤ ci,j(t)ζi,rζi,r−k,

where ci,j(t) = maxr,s≥r E |ǫi,t−rǫj,t−s − E(ǫi,t−rǫj,t−s)|.

(3) Follows after Lemma 10 and the Cauchy-Schwarz inequality.

(4) Write

E[|xy|I(|xy| > c)] ≤ (E|x|4E|y|4)1/4
[
P (|x| > c1/2) + P (|y| > c1/2)

]1/2
.

Now, apply this inequality with x = xit and y = xjt, and use the same arguments of Lemma 9 Part

(2). Finally, combine the exponential bounds. �
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