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Abstract

We propose a theory of inattention solely based on preferences, absent cogni-
tive limitations or external costs of information. Under disappointment aversion,
agents are intrinsically information averse. In a consumption-savings problem,
we study how information averse agents cope with their fear of information, to
make better decisions: they acquire information at infrequent intervals only, and
inattention increases when volatility is high, consistent with the empirical evi-
dence. Adding state-dependent alerts following sharp downturns improves wel-
fare, despite the additional endogenous information costs. Our framework accom-
modates a broad range of applications, suggesting our approach can explain many
observed features of decision under uncertainty.
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1 Introduction

Experiencing the roller coaster of life can be stressful. A natural way to avoid this
stress is to close your eyes for the ride. We propose a theory of inattention building
on this idea. Our unique assumption is a recursive implementation of disappoint-
ment aversion (Gul, 1991), a common model of risk attitude. These preferences imply
information aversion, a fear of information flows: disappointment averse agents op-
timally decide to stay away from some sources of information. Our framework has
rich implications reflecting key observations on information and risk-taking behav-
ior in the lab and in the field, in particular among financial markets participants.
As such, our approach provides a parsimonious, tractable, and empirically appealing
preference-based model of inattention.

Our analysis is constructed around three questions. First, we characterize for-
mally the utility costs of receiving signals in settings where information is not in-
strumental, as documented in the experimental literature. Second, we study how
information averse agents cope with their fear of information flows in order to make
better decisions. To understand the interaction between information and allocation
decisions, we study a problem of consumption and risky savings, where the agent
can choose, at any time, to close her eyes and not observe information around her.
Finally, we look for better ways to tailor the information received by an information
averse agent.

Under disappointment aversion, agents inflate the probabilities of outcomes that
disappoint, i.e. fall below an endogenous reference point which reflects their current
expectations about the future. As information arrives, each piece of news creates
scope for disappointment. The agent therefore prefers to receive less fragmented
information and observe simultaneous bundles of news in which good news can cancel
out bad, disappointing, news. Such information aversion is a direct consequence of
her attitude towards risk.1 As an illustration, consider an investor owning a stock
she has decided to sell exactly a year from now. The investor has a lot of control over
the information structure she faces. She can choose to follow the price of the stock

1Dillenberger (2010) provides a general characterization of the link between attitude towards risk
and attitude towards information.
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at different frequencies: continuously, daily, monthly or not at all until the end of the
year. Observing intermediate signals is of no direct use to her as she will hold on to
the asset anyways. Under expected utility, she would be indifferent between those
information structures. A disappointment averse investor, however, unambiguously
opts not to observe the price at all over the year. This behavior is widely supported by
a number of empirical and experimental findings. Starting with Gneezy and Potters
(1997) and Thaler et al. (1997), experiments have consistently showed that subjects’
valuations of risky outcomes diminish when they are given more frequent and more
detailed information. Galai and Sade (2006) find similar results using field data on
Israeli treasury bills and commercial banks deposits.2

Our first contribution is to characterize the magnitudes and properties of the en-
dogenous costs of information implied by disappointment aversion. Information aver-
sion differs fundamentally from both exogenous information costs and cognitive con-
straints. With one signal, more information is not always more costly; Blackwell
ordering is not respected. We analyze how the frequency of information observations
impacts the valuation of risky lotteries, whose payoffs are determined by the final out-
come of a stochastic process growing with i.i.d. increments, as is natural to assume
for an asset price for instance. We derive a useful representation of these valuations
as a certainty equivalent rate of return depending of the observation frequency, gener-
alizing the standard notion. The certainty equivalent rate of returns decreases with
the frequency of observation (Section 3.2). The magnitude of this effect, however,
varies greatly across characteristics of the process. As the frequency of observation
increases, a disappointment averse agent is extremely averse to frequent small news,
as in a diffusion process, but much less so to infrequent large news, as in a jump
process.

Second, we analyze how information averse agents balance the endogenous util-
ity cost of paying attention to the economic environment with the benefits of making
better informed decisions. We study the interaction of risk-taking and information
decisions through the lens of a standard consumption and savings problem. Going

2See also for example, the experiments of Benartzi and Thaler (1999), Barron and Erev (2003),
Gneezy et al. (2003), Bellemare et al. (2005), Haigh and List (2005), Fellner and Sutter (2009) and
Anagol and Gamble (2011). While some of these were designed to test myopic loss aversion, their
results are also consistent with our dynamic disappointment aversion model.
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back to our illustrative example, assume now our investor manages her wealth in
order to finance her consumption over time, and let her allocate her savings between
a risk-free asset, and a risky asset yielding higher average returns. We show she op-
timally decides to observe the value of her risky portfolio at equally spaced discrete
points in time (Proposition 4). In between observations, she consumes deterministi-
cally from a risk-less portfolio, and allocates the rest of her wealth to the risky asset.
The marginal cost of infrequent observation is due to the loss in expected returns
when more wealth is placed in the risk-free asset, captured by the spread between
the certainty equivalent rate of the risky asset and the risk-free rate, like in the clas-
sic models of Baumol (1952) and Tobin (1956). Novel to their frameworks, and specific
to our approach, the marginal benefit comes from a relief from the stress of receiving
information, formally represented by the sensitivity of the certainty equivalent rate
to the observation interval.

This simple characterization helps understand conditions propice to inattention.
Through the fundamental link between information aversion and risk aversion in our
model, more risk averse investors are also more inattentive as documented in Alvarez
et al. (2012). Periods of high volatility also correspond to more inattention, even
when higher expected returns keep the difference between risk adjusted returns and
the risk-free rate constant. This prediction reflects an increase in the marginal cost of
information as risk increases and is in line with recent empirical evidence: Sicherman
et al. (2014) document investors reduce the monitoring of their portfolios when stock
market volatility increases. We further show the interplay of attention and risk-
taking is far from straightforward: when the agent receives more information, risk-
taking can either decrease or increase. Echoing the basic mechanism of information
aversion, if information increases to the point the agent no longer values the risky
asset above the risk-free one, she exits the risky market, and risk taking decreases
to zero. However, as long as information is infrequent enough that the risky asset
remains attractive relative to the risk-free asset, another important force is present.
If the investor receives more information, even though it is painful and lowers her
valuation of the risky asset, she can nonetheless take advantage of this knowledge of
the evolution of the risky asset to shift her savings away from the risk-free asset and
towards the risky asset. This second force shows the observation of Beshears et al.
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(2012), who document in a field experiment that investors do not reduce their risk-
taking when receiving more information, does not provide a rebuttal for information
aversion.

Third, we ask whether, with the help of a third party, better flow of informations
can be obtained than the simple time-dependent rules our investor rules can do alone.
Observe our framework allows us to consider arbitrary information structures, since
the information costs are completely endogenous. In contrast to Abel et al. (2013), we
find state-dependent rules do help. In particular, we show providing “distress” sig-
nals following sharp market downturns increases welfare. Such a result echoes the
fact extreme bad outcomes take a pregnant place in media, but also suggest financial
institutions can foster more investment by providing such signals. We can go further
and analyze whether delegating actions can avoid all information costs. In our ba-
sic setting, the agent’s optimal consumption reveals information on her wealth, and
delegation can only go so far. However, in settings where some decisions only have a
long-term impact, delegation is a powerful tool to escape information costs.

Together, these results show a simple and parsimonious assumption for prefer-
ences, disappointment aversion, leads to a rich theory of inattention. Not only does
our framework provide a joint explanation for behavior observed in the lab and in
the field, but also points out novel implications, distinct from the standard applied
models on the topic. More than a simple alternative to theories based on exogenous
information costs, on the positive side, our approach implies fundamentally different
normative consequences. When information costs are due to technological limitations,
finding ways to provide more information improves welfare. In contrast, such policies
are not always desirable in our setting. More generally, we show opaqueness might
be a positive feature of many economic activities.

After a review of the related literature, Section 2 introduces our recursive imple-
mentation of disappointment aversion and characterizes the resulting information
aversion. Section 3 derives the notion of certainty equivalent rate in a setting where
information is not instrumental, and shows how it depends on the information en-
vironment. Section 4 analyzes the consumption and savings problem, and the in-
teraction between risk-taking and information decisions. Section 5 considers richer
information structures as well as the potential for delegation. Section 6 briefly out-
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lines applications of the model to other dimensions of risky decisions with endogenous
information choices: leverage, diversification, learning, and agency issues. All math-
ematical proofs are in the online Appendix.3

Related literature

Under disappointment aversion, “bad” outcomes are overweighted relative to positive
ones. This model of preferences incorporates loss aversion, one of the main compo-
nents of the seminal prospect theory of Kahneman and Tversky (1979). In addition
to the large body of work providing direct support to loss aversion, disappointment
aversion has proven useful in understanding risk-taking in financial markets.4 How-
ever, the literature, so far, fails to account for disappointment aversion’s implications
for information choices, our focus. Indeed, while Benartzi and Thaler (1995) point out
the frequency of utility evaluation matters under loss aversion, they determine this
frequency as the result of another behavioral trait: myopia. In contrast, in our setup,
this frequency is a choice of the agent. It results from trading off the utility cost of a
more frequent information flow with the benefits of better informed decision-making.
Our paper provides a framework to formally analyze simultaneously endogenous in-
formation and risk-taking decisions with a single assumption about preferences.

Caplin and Leahy (2001, 2004), who relate inattention to anticipatory feelings, as
well as the optimal expectations model of Brunnermeier and Parker (2005), also pro-
pose preferences in which information can have intrinsic costs. Closer to our analysis,
Pagel (2014), in a contemporaneous paper, considers a consumption-savings problem
under the news-utility theory of Kőszegi and Rabin (2009), who explicitly model flows
of information as costly in the utility function, with time inconsistent dynamics.5

Rather than aim at arbitrary information preferences, our approach is more parsi-
monious: risk aversion implicitly results in information aversion, and both derive
from the same unique parameter. Further, the aforementioned preferences, including

3https://sites.google.com//site/marianneandries/IAappendix.pdf
4Disappointment aversion can explain portfolio choices (Ang et al., 2005), equilibrium aggregate

prices (Routledge and Zin (2010), Bonomo et al. (2011)), and the cross-section of expected returns (Ang
et al. (2006), Lettau et al. (2013).

5Hsiaw (2013) considers reference point goal setting as a solution to time inconsistency, with impli-
cations for optimal stopping times.
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loss aversion as in Kőszegi and Rabin (2009), do not cause an unambiguous dislike
for information: signals may be perceived as a benefit, whereas they always come
at a utility cost under disappointment aversion (see Proposition 1). Disappointment
averse preferences also have the appeal over standard loss aversion to be axiomati-
cally funded. They have been broadly, and successfully, implemented in the finance
literature. Our model is dynamically time consistent and the relative simplicity of
our framework allows for a formal analysis of the implicit information costs, and can
be readily applied to other optimal decisions problems.

We contribute to the literature on the optimal inattentive behavior of consumers
or firms by introducing endogenous observation costs that derive from agents’ pref-
erences for risk. Our preference-based framework provides an alternative to the two
main approaches in this literature: cognitive limitations represented by entropy con-
straints, and exogenous fixed costs of information.

Our endogenous cost structure differs from that implied by the entropy constraints
of rational inattention, developed by Sims (1998) and Sims (2006). Intuitively, more
than the quantity of information, the structure of the flow of information is the source
of cost in our setting, which makes it particularly well suited for analyzing the ob-
served discreteness of information acquisition. Discreteness only arises in particular
situations under rational inattention whereas it is a generic feature of our model.6

Closer to our analysis is the literature using exogenous fixed costs of observa-
tion, which also imply optimal observation at discrete points in time. Duffie and Sun
(1990) solve a portfolio problem similar to ours, assuming observations and transac-
tions must be synchronized, and come at a fixed cost. Abel et al. (2007) derive optimal
inattention periods and portfolio decisions under exogenous monetary costs of infor-
mation. Abel et al. (2013) add transaction costs, Alvarez et al. (2012) durable con-
sumption. Gabaix and Laibson (2002) show slow portfolio readjustment, as a result
of inattention, can have a profound impact on equilibrium asset prices.7 In those mod-
els, the benefit of information is similar to our setting’s and therefore optimal policies
exhibit some similarities. However, our endogenous information costs yield additional

6Matejka and Sims (2010) provides a characterization of these situations in the context of a tracking
problem and Matějka (2010) is an application to a price-setting problem.

7Lynch (1996) also studies the equilibrium implications of infrequent transactions, without an ex-
plicit motivation by inattention.
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insights on the determination of attention policies, and how attention varies with the
environment. Further, our preference-based approach makes possible the comparison
of richer information structures, without introducing ad-hoc assumptions about the
different costs. At a deeper level, technological or cognitive limitations to information
acquisition differ fundamentally from our model, where agents desire to stay away
from information. From a normative point of view, our approach shifts the emphasis
from a view where facilitating information acquisition is key, to one where helping
agents stay away from information or, in a more subtle way, where shaping the infor-
mation flows they receive are useful policies.

2 Disappointment aversion and information aver-
sion

We introduce the preferences we use along the paper, a recursive implementation of
the disappointment aversion model. Our choice of preferences is strongly supported
by the recent macro and finance literature, in which they have been utilized to ex-
plain both portfolio choices and asset prices.8 We detail how these preferences result
in an unambiguous aversion to information flows, the basic force of our model of inat-
tention.

2.1 Dynamic disappointment aversion

Under loss aversion, one of the main components of the seminal prospect theory
model of Kahneman and Tversky (1979), agents value outcomes relative to a ref-
erence point, and losses relative to the reference point create more disutility than
comparable gains. Disappointment aversion, introduced by Gul (1991), provides a
fully axiomatized model of preferences in which agents display such a micro-founded
attitude towards risk. For the sake of simplicity, we focus on a piecewise linear spec-

8See, among others, Ang et al. (2005), Routledge and Zin (2010), Bonomo et al. (2011), Ang et al.
(2006), Lettau et al. (2013).
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ification.9 For a static lottery with payoff distributed according to F , the certainty
equivalent µθ(F ) is given by

µθ (F ) =

∫
xdF (x) + θ

∫
x≤µθ(F )

xdF (x)

1 + θ
∫
x≤µθ(F )

dF (x)
, (1)

where θ ≥ 0 is the coefficient of disappointment aversion.10 µθ(F ) is a weighted aver-
age of the potential payoffs, where disappointing payoffs receive a higher weight by
a factor (1 + θ). What defines a payoff as disappointing is wether or not it is below
the reference point, or “fair value”, the certainty equivalent itself: equation (1) is a
fixed point problem in the certainty equivalent µθ (F ) (which always admits a unique
solution). In this simple specification, the only source of risk aversion comes from the
kink at the reference point, and the concavity it entails.

We are interested in the effect of the information flow on the valuation of risky
outcomes. To consider this question, we extend these preferences to a dynamic set-
ting. For now, we add intermediate signals; we include intermediate consumption
in Section 4. Consistent with the framework of Epstein and Zin (1989) and Weil
(1989), and the axiomatization of Kreps and Porteus (1978), we assume a recursive,
and time-consistent, dynamic implementation of disappointment aversion. Given cer-
tainty equivalent continuation values µθ (st+1) in each possible state st+1 at date t+ 1

and transition c.d.f F (st+1|st), the certainty equivalent for state st at date t is given
by

µθ (st) =

∫
µθ (st+1) dF (st+1|st) + θ

∫
µθ(st+1)≤µθ(st)

µθ (st+1) dF (st+1|st)
1 + θ

∫
µθ(st+1)≤µθ(st)

dF (st+1|st)
. (2)

What are the stages t, t+ 1, . . .? Each step of the recursion corresponds to a poten-
tial arrival of news. The instant before a piece of information is revealed, our agent
fears receiving disappointing news, and adjust downwards her valuation of the lottery
accordingly. While in all generality, the timing of information arrival need not coin-

9The link with information aversion is robust to adding strict concavity on both sides of the reference
point as in the more general case of Gul (1991).

10We always assume θ ≥ 0, even though Gul (1991)’s framework allows for negative θ, i.e. risk
seeking.
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cide with clock time, we assume they do in most of our applications, as is implicitly
assumed in most standard applied models.

If one considers the certainty equivalent of Equation (2) as a form of distorted
expectation, the corresponding law of iterated expectations is violated. Given the total
information revealed, the composition of when the agent observes the information
affects the valuation of risky payoffs. Our modeling choice for a recursive dynamic
implementation thus determines attitudes towards information. We analyze how in
the next section.

2.2 Attitudes towards information

To clarify attitudes towards information, we analyze the valuation of a final random
payoff X, with distribution F , under two different information plans. In the first, no
information is received until the payoff is realized, and the ex-ante valuation is µθ (F )

as in Equation (1). In the second, the agent receives an intermediate signal i ∈ I,
with distribution α, and updates her belief on the distribution of X, from F to Fi. We
note her ex-ante valuation under this information plan, derived from Equation (2),
µθ ({Fi, α (i)}).

For expected utility agents, the valuations under the two information plans, F and
{Fi, α (i)}, are strictly equal. This equality, however, typically does not obtain for more
general preference specifications. Dillenberger (2010) characterizes an equivalence
between a static property of preferences, negative certainty independence, and the
preference for information plans without intermediate information.11 Our dynamic
disappointment aversion model satisfies negative certainty independence and there-
fore implies an unambiguous aversion to receiving the intermediate signals. From
Dillenberger (2010), we obtain the following proposition:

Proposition 1. An agent with dynamic disappointment, as specified in Equation 2,
11Cerreia-Vioglio et al. (2014) provides a general representation of preferences satisfying negative

certainty independence together with additional axioms, cautious expected utility. Their results pro-
vides a framework for potential extensions of our analysis to other models of preferences.
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prefers not to observe intermediate signals:

∀F, {Fi, α (i)}i∈I s.t. F =

∫
i∈I

Fidα (i) ,

µθ ({Fi, α (i)}) ≤ µθ (F ) .

We call information aversion this dislike for receiving intermediate information.12

Information aversion is generic: for most cases of partial information, agents
strictly prefer not to receive the signal. The following corollary characterizes the
particular cases for which there is indifference.

Corollary 1. Agents are indifferent to receiving intermediate information, µθ ({Fi, α (i)}) =

µθ (F ), if and only if

∀i,

µθ (Fi) = µθ (F ) or

Fi is degenerate

Receiving intermediate information is costless if and only if each potential signal
either fully reveals the final payoff (the intermediate signal is degenerate), or it leaves
the valuation for the risky payoff unchanged (e.g. no information, F = Fi). Our
model of preferences thus results in endogenous information costs that obey a “hump-
shaped” type structure, where no information or full information have zero costs, but
partial information has a strict positive cost.13

A useful insight from this corollary is that neither the standard informativeness
constraints nor the exogenous information costs typically used in the inattention lit-
erature can quantify the endogenous information costs in our framework.

Corollary 2. For any level of mutual entropy, there exist intermediate signals infor-
mation plans with that level of mutual entropy and the same valuation µθ (F ) as the
one-shot lottery.

12Myopic loss aversion, as in Benartzi and Thaler (1995), or the news-utility theory of Kőszegi and
Rabin (2009), can appear similar to information aversion. Note, however, the unambiguous dislike for
information of Proposition 1 is not satisfied under those models.

13Observe this distinguishes information aversion from preferences for a late resolution of uncer-
tainty. For instance, in our framework, a fully revealing early signal is preferred to a partial late
signal.
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Corollary 3. Information costs under our model of preferences are not monotone in
Blackwell ordering.

It is thus worthwhile exploring, under our information aversion framework, both
the valuation of risk and the link between information and risk-taking decisions.

3 Attention and the cost of information

Starting with Gneezy and Potters (1997) and Thaler et al. (1997), experiments going
beyond two-stage lotteries have consistently showed subjects’ valuations of risky out-
comes diminish when they are given more frequent and more detailed information,
absent any exogenous costs of information. This finding is hard to reconcile with the
standard information literature. In this section, we analyze how the frequency of
information observation as well as the distribution of the lottery’s payoffs affect its
valuation when agents are information averse as in our model of preferences. This
analysis provides a theoretical justification for the aforementioned experimental ev-
idence as well as additional predictions on the structure of information costs in our
approach.

3.1 The certainty equivalent rate

To fully isolate the costs of information in our framework, and stay close to the exper-
imental evidence, we consider a lottery that cannot be affected by any intermediate
decision of the agent. We determine the valuation, at date t = 0 of a lottery with pay-
offs at date t = τ , determined by the time τ value of an exogenous stochastic process
X = {Xt}t∈[0,∞], with i.i.d. growth.14 We assume the process X has an instantaneous
expected growth rate g, and finite quadratic variation. The agent observes Xt at reg-
ular intervals of length T . We analyze how the valuation of the lottery depends on
this observation interval.

This thought experiment is not only in the spirit of the lab experiments mentioned
above, but it also echoes many real-life situations. For instance, one can think of an

14We focus on a framework with geometric growth, as is standard for asset prices. Most of our results
have straightforward equivalents for the case of arithmetic growth.
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investor owning a stock and deciding how often to check its price before selling it, of
the manager of an R&D project deciding on how often to monitor her employees, or of
an individual deciding how often to check the evolution of her health using medical
testing. For all those situations, while the potential benefits of being attentive are
clear, substantial evidence of inattention is present.15 This section assumes away
potential benefits and characterizes the cost of attention arising from information
aversion. We consider the tradeoff with benefits in Section 4.

For a risk-neutral agent, the value at time t = 0 of the lottery with payoff Xτ is
V0 (τ) = X0 exp (gτ), independent of the observation interval T . Under expected utility,
a simple application of the law of iterated expectations proves the certainty equiva-
lent does not depend on the observation interval either. In contrast, under our model
of preferences, we show the frequency of observation does matter. Taking advantage
of the fact the certainty equivalent is homogenous of degree 1, and growth is i.i.d., we
can separate the distinct roles of the observation interval and of the horizon:16

V0 (τ, T ) = X0 exp (v (T ) τ) , (3)

where exp(v(T )T ) = µθ

(
XT

X0

)
. (4)

We define v (T ) as the certainty equivalent rate, which encodes the role of the ob-
servation interval. It corresponds to the risk adjusted rate of return, standard to the
finance literature, and takes into account the valuation of the lottery depends on the
frequency of observation, when agents are information averse. v(T ) is the sum of two
element: the expected growth rate g, and a risk adjustment that depends on the in-
formation flow, is always negative due to risk aversion, and is independent of g; we
focus on this component by analyzing martingale processes hereafter. The following
proposition gathers some general properties of the certainty equivalent rate.

Proposition 2. For information averse agents, the certainty equivalent rate v(T ) ver-
ifies the following properties

• −Tv(T ) is subadditive
15For instance, Oster et al. (2013) provides evidence in the context of testing for Huntington disease.
16For instance, with two observations, we have: V0(2T, T ) = X0µθ(XT /X0)µθ(X2T /XT ) =

X0(µθ(XT /X0))2.
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• limT→∞ v(T ) = g

• limT→0 Tv(T ) = 0

• v(T ) is decreasing in the disappointment aversion θ for all T

These properties inform us on the structure of information costs. In the language
of cost functions (see e.g. Tirole (1988)), −v(T ) is an average cost function, −Tv(T )

being the cost function. The subadditivity of information costs results from informa-
tion aversion, and provides a justification for the experimental evidence: given a time
horizon τ , the agent always prefers to observe a unique signal rather than to split
the information over time. The first limit property shows the average cost of informa-
tion vanishes as the observation interval becomes large. The second limit property
shows information costs disappear altogether when the lottery becomes short-lived,
as there is no more information to be had. Finally, at all frequencies, information
costs increase with the agent’s information aversion, as represented by θ.

To further analyze the properties of the certainty equivalent, we now turn to par-
ticular distributional assumptions. These examples allow us to derive more precise
implications on the behavior of information costs, and to analyze the specific role of
the distribution of information.

3.2 Role of the distribution of information

We characterize the certainty equivalent rate for two fundamental cases, central to
the asset pricing literature, geometric Brownian motions and Poisson jumps, and com-
pare their properties.

Example 1. (Brownian motion) Assume the following law of motion: dXt
Xt

= σdZt, with
{Zt} a standard Brownian motion, and volatility σ. The certainty equivalent rate v(T )

is the unique solution to

exp (v (T )T ) =
1 + θΦ

(√
T
σ

(
v (T )− 1

2
σ2
))

1 + θΦ
(√

T
σ

(
v (T ) + 1

2
σ2
)) < 1,

where Φ is the cumulative normal, and θ is the coefficient of disappointment aversion.

14



The certainty equivalent rate v(T ) is increasing in the observation interval T , de-
creasing in the disappointment aversion θ, and decreasing in the volatility σ.
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Figure 1: Lottery values for a diffusion process: role of observation interval
T , volatility σ and disappointment aversion θ.

Figure 1 illustrates the instantaneous rate v, in the case of a Brownian motion, as
it varies with the parameters.

Example 2. (Poisson jumps) Assume dXt
Xt−

= λσdt − σdNt, where Nt is the counting
variable for a Poisson process with intensity λ, and the jump fraction is σ < 1. The
certainty equivalent rate v(T ) is the unique solution to:

exp (v (T )T ) =
1− θ

1+θ
Γ(k+1,(1−σ)λT )

k!

1− θ
1+θ

Γ(k+1,λT )
k!

,

where Γ(., .) is the upper incomplete gamma function, and k ∈ N is the unique solution
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for:

(v (T )− λσ)T

log (1− σ)
− 1 ≤ k ≤ (v (T )− λσ)T

log (1− σ)
.

The certainty equivalent rate v(T ) is increasing in the observation interval T , de-
creasing in the disappointment aversion θ, and decreasing in the jump size and inten-
sity σ and λ.
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Figure 2: Lottery values for a jump process: role of observation interval T ,
disappointment aversion θ, jump size σ and intensity λ.

Figure 2 illustrates the instantaneous rate v, in the case of jumps, as it varies with
the parameters.

These two fundamental examples allow us to draw insights on the general prop-
erties of information costs. As the fundamental risk of the lottery increases, infor-
mation costs increase at all frequencies. Further, in our two examples, the average
information cost −v(T ) is decreasing in the observation interval: the more frequent
the information, the more the agents want to stay away from the risky lottery. This
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monotonicity property is stronger than the subadditivity of Proposition 2 and we con-
jecture it holds for arbitrary Levy processes. Geometric Brownian motions and jump
processes have similar long-run behavior, and, accordingly, the risk-aversion contri-
bution to the valuation of risk, i.e. the asymptotic behavior of v(T ) as T goes to infinity,
is the same under both processes.

However the local evolutions of diffusions and jumps are sharply distinct, which
is reflected in the information aversion contribution to valuation. For the case of a
Brownian motion, as the period of observation T tends to 0, the instantaneous cer-
tainty equivalent rate v(T ) satisfies:

v(T ) =
−κ (θ)σ√

T
+ o

(
−1/
√
T
)
,

where κ (θ) is positive, increasing in θ, with limit 0 in 0. As the frequency of informa-
tion increases towards its continuous limit, the value of the lottery converges to 0, the
worst possible outcome for the final payoffs, with a faster convergence the higher the
coefficient of disappointment aversion θ, and the underlying risk σ. To understand
this result, keep in mind that, even though the agent’s time horizon does not change
with the frequency of information, she evaluates her utility each time she observes a
signal, and, under Brownian risk, is almost surely disappointed no matter how small
the time interval. As the time interval becomes smaller and smaller, the information
aversion contribution to the valuation of the risky asset dominates more and more,
and, at the continuous information flow limit, mimics an infinite risk aversion. An
alternative way to describe this phenomenon is through the lenses of the myopic risk
aversion of Benartzi and Thaler (1995). The first-order risk aversion effect, inherent
to preferences with kinks, results in agents who are more averse, comparatively, for
small risks than for large risks. A frequent re-evaluation of the lottery value, when
information arrives at small time intervals, corresponds to an accumulation of small
risk taking. Because agents are first-order risk averse, a repetition of small risks is
more costly for their utility than one large risk taking, and the lottery value decreases
as the frequency increases.

In contrast, for the case of a jump process, the certainty equivalent rate has a
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finite limit as the observation interval T tends to 0, given by

v(T ) = −θσλ+O(T ).

This result draws a sharp contrast between jump and diffusion processes. The dif-
ference is intuitive. With continuous information under a diffusion process, in any
interval of time, there is an infinity of disappointing draws localized closely to the
certainty equivalent, and priced with first-order risk aversion. Along the path of the
jump process on the other hand, there is only a finite number of disappointing large
draws, priced far from the kink and first-order risk aversion.

The strong differentiation across distributions in the continuous information limit
is informative in terms of actual predictions. Under both processes, information aver-
sion makes the valuation of risky assets decrease with the frequency of information,
in line with the experimental evidence, however, one should expect more inattention
to signals for which the value moves continuously than to those that display large
sudden jumps. For instance, stock prices are subject to a lot of local variation, and
our model implies, as is observed, that most investors do not monitor these small
variations continuously. However, stock markets are also subject to large variations,
or jumps, and the evidence (e.g. newspapers headlines) suggests investors are willing
to pay attention to such shocks.

The results of this section provide a precise characterization of the costs of infor-
mation flows. In our analysis so far, no informed action could affect, and improve,
the payoff distribution. While this exercise allows us to relate to the experimental
evidence, in practice agents collect information so as to make appropriate choices.
The benefits of information must be accounted for, as highlighted by Beshears et al.
(2012), who show the results of the lab experiments cited above cannot be replicated
in a natural setting. We analyze how agents trade off the endogenous information
costs we just described with the benefits of informed decision-making in the following
section.
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4 Optimal information decisions

When information can help in the decision-making, even information averse agents
potentially choose to access it. In this section we study optimal information decisions,
as well as how they interact with real allocation decisions, in a setup where informa-
tion is instrumental. We consider a fundamental problem: the decision to consume
and save, allocating savings between risky and risk-less assets. We relate the pre-
dictions of our model to the expanding body of evidence on how households manage
and pay attention to their savings. But the insights we draw are not limited to this
particular problem and can apply to any situation where information and risk-taking
decisions interact.

First, we set up the consumption and savings problem, and characterize optimal
decisions and their relation to the empirical literature. Second, we consider how
exogenous shifts in information affect risk-taking. We find a more subtle interaction
than suggested by the analysis of the previous section.

4.1 Consumption and savings problem

We consider a standard consumption and risky savings problem following the classic
setup of Merton (1969). We assume the investor has recursive disappointment averse
preferences and allow her to close her eyes and not observe the value of her portfo-
lio for arbitrary periods of her choice. The basic structure of the optimal policy we
obtain is similar to models in which inattention stems from exogenous fixed costs of
information, e.g. Duffie and Sun (1990) or Abel et al. (2013). We emphasize the dis-
tinct predictions due to our endogenous, preference-based, foundation of the costs of
information flows.

4.1.1 Preferences

We extend our definition of preferences to allow for intermediate consumption. To do
so, we follow Epstein and Zin (1989), with a risk adjustment driven by disappointment
aversion. We focus on a continuous-time setting as in Duffie and Epstein (1992).
Heuristically, the value function Vt for an information structure corresponding to the
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filtration {Ft}t∈[0,∞) and an adapted consumption process {Ct}t∈[0,∞) is the solution to
the recursion

V1−α
t = C1−α

t dt+ (1− ρdt) (µθ [Vt+dt|Ft])1−α .

The parameter α > 0 controls the elasticity of intertemporal substitution between
consumption at different times, ρ > 0 is the rate of time discount. The only source
of instantaneous risk aversion comes from the disappointment aversion operator µθ.
Our modeling choice readily invites comparisons to the commonly used version of the
recursive utility model, in which risk-aversion is determined by the CRRA operator
E (.1−γ)

1
1−γ , γ > 0, and we do so in the analysis that follows.

If the agent consumes deterministically over an interval of length T along which
no information is revealed, the value function recursion takes the simple form:

V1−α
t =

∫ T

0

e−ρτC1−α
t+τ dτ + e−ρT (µθ [Vt+T |Ft])1−α . (5)

4.1.2 Opportunity sets

The opportunity set of the agent is constituted of two elements: allocation decisions
and information decisions.

Investment opportunity set At each date, the agent can use her wealth Wt to
consume or save. She has access to two investment accounts to allocate her savings:
a risk-free asset with constant continuously compounded interest rate r, and a risky
asset with price determined by a stochastic process X, with i.i.d. growth as in Section
3. We still write g the expected growth rate of the price of the risky asset and v(T ) the
certainty equivalent rate. To ensure finite utility, we assume r, g < ρ

1−α . The agent
can rebalance her wealth across assets at all time, at no transaction cost. However,
we do not allow for borrowing, so the agent cannot lever up. If the asset price can drop
to 0, this assumption corresponds to the natural borrowing limit. Note St the number
of shares of the risky asset owned at date t. The agent’s sequence budget constraint
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is

dWt = −Ctdt+ StdXt + r(Wt − StXt)dt (6)

W0 = W, Wt ≥ 0.

Information choice The agent controls the information she receives by choosing
when to open or close her eyes. Precisely, at any time t the agent decides either to
receive no information, or to observe the full value of her risky portfolio, which she
can do at no exogenous cost. In between observations, she makes decisions based on
the last information she collected. Note this assumption does not correspond to lim-
iting the cognitive ability of the agent, nor to assuming non-bayesian updating: the
agent can always choose to access and process the maximal information available in
the economic environment, and her expectations are driven by a standard increasing
probabilistic filtration.

Formally, noting {F̄t} the filtration generated by the process {Xt} appropriately
completed and {Ft} that of the agent, the constraint on information is:

∀t,Ft = F̄τ(t), (7)

τ(t) ≤ t, increasing, càdlàg.

4.1.3 Optimization problem

Given initial wealth W , the agent optimally chooses her filtration {Ft} as in Equation
(7), and her consumption and savings {(Ct, St) Ft−measurable}, in order to maximize
the value function of Equation (5) under the budget constraint of Equation (6).

Because the value function is homogenous of degree 1, and the opportunity set is
linear in the total wealth, and identical at all time, we can rewrite

V(W ) = WV0 ({Ft})

where V0 solely depend on the information choice, and not on the initial value of
wealth. Information acquisition optimally happens at constant time intervals: at each
observation, only the value of wealth changes, while the optimization problem for V0
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remains the same.17 The recursive structure of the opportunity set and preferences
guarantees time consistency in the optimal policy. We note T the optimal length of
time interval, and V0 (T ) the value function for a unit of wealth.

At any time t at which the agent observes her wealth, her optimization problem
simplifies to choosing: i) T , the time until her next observation; ii) {Ct+τ}Tτ=0, her
deterministic consumption per unit of wealth between t and t+T ; and iii) S0 her risky
investment per unit of wealth.

We note C0 =
∫ T

0
e−rτCt+τdτ the amount put in safe assets strictly to finance con-

sumption between t and t+ T .

4.2 Optimal risk-taking and attention decisions

We derive the optimal risk-taking and attention policies. This characterization al-
lows us to better understand the interaction between attention and risk-taking, and,
further, to obtain clear predictions on conditions propice to inattention.

4.2.1 Optimal strategy

Proposition 3. Given the observation interval T , the optimal consumption and sav-
ings strategies are:C0 = 1− exp

[(
− ρ
α

+ 1−α
α
v(T )

)
T
]
, S0 = 1− C0 if v(T ) > r

C0 = 1− exp
[(
− ρ
α

+ 1−α
α
r
)
T
]
, S0 = 0 if v(T ) ≤ r,

(8)

where v(T ) is the certainty equivalent rate, when observing the stochastic process X at
intervals of length T , in the notations of Section 3.

The agent’s investment strategy, for her wealth remaining once her deterministic
consumption is accounted for, is in a corner solution: she is invested either solely in
the risk-free asset, or solely in the risky asset. When v (T ) > r, the portfolio problem,
across observations, is equivalent to having standard isoelastic utility and a deter-
ministic rate of return v(T ), and the optimal consumption takes the simple form of

17This feature arises naturally in our setting, whereas the literature on exogenous cost often needs
to assume costs scale with wealth, e.g. Duffie and Sun (1990).
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Equation (8). In particular, current consumption is increasing in the rate of return
v(T ) if and only if the elasticity of intertemporal substitution 1/α is lower than 1, in
which case the income effect dominates: facing a better opportunity set the agent
consumes more immediately. Conversely, when 1/α > 1 the substitution effect domi-
nates: the agent pushes her consumption towards the future.

Before turning to the optimal attention decision, let us study how attention and
risk-taking interact. Precisely, suppose exogenous changes are imposed on the ob-
servation interval, and consider how they affect investment in the risky asset. From
Proposition 2, as long as expected returns on the risky asset exceed the risk-free rate,
g > r, there exists a threshold for the observation interval over which v(T ) > r so
the agent only invests in the risky asset. If the interval T decreases, the risky asset
becomes less appealing as it involves receiving more and more information, possibly
to the point where the agent can opt to exit the risky market: she reduces her risky
position (to zero) when T decreases. However, as long as T remains high enough that
v(T ) > r, a second opposing force affects her risky position when T varies. If the
observation interval decreases, the risky asset may well become less and less appeal-
ing but the investor spends shorter periods of time without knowing the value of her
portfolio so, in order to finance her consumption between observations she has to put
away a smaller fraction of her wealth in the risk-free asset: she has room to increase
her risky investments. In our setting where investment is in a corner solution, this
second force always dominate. Therefore the observation in field experiments, as in
Beshears et al. (2012), that investors do not reduce their risk-taking when receiv-
ing more information, is consistent with our framework as well. The insight that
more information does not always induce less risk-taking for an information averse
agent extends beyond our particular portfolio problem. While additional information
is painful, if the agent receives it (as an optimal choice, or through external forces),
she may as well take advantage of it and take better actions, potentially by engaging
in more risk-taking.

We now characterize the optimal observation interval T , when the instantaneous
growth rate of the risky investment asset is greater than the risk-free rate, g > r.18

18If g ≤ r, v(T ) ≤ r, ∀T, by a standard risk-aversion argument, and the problem admits C0 = 1, T =∞
as a trivial solution.
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Proposition 4. When g > r, the agent optimally observes her wealth at constant
intervals of length T ∗, where T ∗ is such that v(T ∗) > r, and the solution to:

∂v(T ∗)

∂ log(T )
=

(
ρ

1− α
− v (T ∗)

)[
1−

f
(

ρ
1−α − r, T

∗)
f
(

ρ
1−α − v (T ∗) , T ∗

)] (9)

where f (x, T ) = x/
(
exp

(
1−α
α
xT
)
− 1
)
.

At the optimum, the following approximation obtains:19

∂v(T ∗)

∂ log(T )
≈ 1

2

1− α
α

T ∗
(

ρ

1− α
− v (T ∗)

)
(v (T ∗)− r) . (10)

The right-hand side of Equation (9) represents the opportunity cost incurred when
setting wealth aside for consumption at the risk-free rate r rather than at the superior
risky rate v(T ): it formalizes the benefits of information, and is standard to models
with infrequent transactions à la Baumol-Tobin. In our framework, it is increasing
in the observation interval T both directly, and through the certainty equivalent rate
v(T ).

The novelty of our approach is to make the marginal benefit to inattention, the left-
hand side of Equation (9), endogenous. The downside to receiving more information is
not determined by an ad-hoc exogenous fixed cost, but by the elasticity of the certainty
equivalent rate v (.), with respect to the observation interval T . This quantity reflects
how much the agent lowers the valuation of her risky portfolio, and thus of her wealth,
when faced with more numerous observations.

The approximation of Equation (10) gives rise to interesting interpretations. First,
observe, under the “standard” recursive utility model, with a CRRA certainty equiva-
lent on the continuation value, information benefits increase linearly in T , and there
are no endogenous costs (since v does not depend on T , it has elasticity zero). The
“standard” recursive utility agent would thus simply observe her wealth continuously
in our framework (as long as her certainty equivalent rate v is greater than r), which
makes clear the results we obtain under information aversion are unrelated to the

19Around ρ−(1−α)r
α ≈ 0 and ρ−(1−α)v(T∗)

α ≈ 0 with same order of magnitude.
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question of a preference for early or late resolutions of uncertainty. Second, as demon-
strated in Section 3, the elasticity of the certainty equivalent rate v (.) with respect to
T does not depend on the expected returns g. An increase in expected returns, all else
equal, unambiguously results in a decrease in the optimal length of time interval T ∗,
under either endogenous or exogenous information costs. Third, under exogenously
fixed information costs models, the optimal frequency of observations depends solely
on the level for the certainty equivalent rate v, whereas it depends on both the level
and first derivative in our information aversion framework. Parameter changes that
affect the slope but not the level of v have implications for the optimal frequency of
information that can fully differentiate our endogenous costs model from the existing
exogenous costs literature. To better understand what affects the elasticity of the cer-
tainty equivalent rate, we specialize to the case where the risky asset price follows a
geometric Brownian motion.

4.2.2 The determinants of inattention

Consider the case of Brownian risk, with drift g and volatility σ, as in Section 3. Fig-
ure 3 depicts the behavior of the value function and of the share of wealth allocated
to the consumption account, as functions of the observation frequency, and highlights
the existence and unicity of the optimal time interval between information acquisi-
tion.20

To understand the determinants of inattention, we study the behavior of the unique
optimal observation interval T ∗.

Proposition 5. The optimal attention interval T ∗, in the case of brownian returns, is

• increasing in disappointment aversion θ,

• decreasing in expected returns g,

• increasing in volatility σ,
20The back-of-the envelope calibration of Figure 3 yields an optimal time interval of a little over 1

year, consistent with existing surveys. See for instance the 2003 survey by Unicredit Bank, and the
2004 Bank of Italy Survey of Households Income and Wealth, in Alvarez et al. (2012).
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Figure 3: Utility as a function of T , the time interval between observations.
For parameters values: θ = 0.8, α = 0.5, σ = 15%, g = 10%, r = 1%, ρ = 0.2.

• increasing in volatility even when the certainty equivalent rate remains constant
(through an increase in expected returns g)

The intensity of information aversion affects the attention policy: more disappoint-
ment averse agents stay longer away from information. This prediction is consistent
with the results of Alvarez et al. (2012), who find more risk averse investors check
the value of their portfolios less often. Further, more volatile risky asset prices result
in more inattention in our framework. Two elements drive this result: as volatility
increases, the information flow is more intense, thus more costly; and the risky asset
is less appealing because more risky. The first is specific to our approach; the second
is also present in models of inattention with exogenous costs. Proposition 5 states
inattention increases with the underlying risk even when expected returns increase
together with volatility so as to maintain a constant valuation of the risky asset. This
formal result differentiates our model from those with exogenous information costs.
The stock market provides a natural setting to consider this implication. Sicherman
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et al. (2014) document investors check the value of their investment accounts less of-
ten, when the VIX, an index of stock market volatility, increases. Because increases
in volatility are, empirically, compensated by increases in expected returns, this evi-
dence provides specific support for our approach.

5 Richer information choices

So far, we have considered the decisions of an investor with access to only the simplest
tool to manage her information: choosing when to observe or not the value of her port-
folio. While this setup is likely accurate for many investors managing their wealth,
a finer access to information is possible with either the help of computers or the help
of other agents. In this section, we study how to do so. We start by considering how
the information flow can be better tailored to the agent’s specific preferences. Then
we consider the scope for delegating decisions. The insights we develop here can be
considered both from a positive and a normative point of view: providing a rationale
for information systems used in practice, or suggesting ways to help agents deal with
their information aversion.

5.1 Information delegation

Our framework makes possible the comparison of arbitrary structures of information
flows. Information policies must simply satisfy the following two conditions: the fil-
tration {Ft} must be increasing, to respect Bayesian updating and no-forgetting; it
must be smaller than the maximum information available at date t, F̄t

∀t, Ft ⊆ F̄t, Ft increasing. (11)

Given such a policy, one can determine the optimal allocation policy — consumption
and savings in our model — and derive the value of wealth, including the endogenous
costs of such an information flow. While this seems, at first glance, a straightforward
extension to the problem analyzed in the previous section, it is one that fixed-cost
models of information cannot address in a meaningful way. An investor might be in-
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terested in seeing all her wealth at given intervals of time; and/or in receiving state-
dependent signals telling her when her wealth reaches a certain threshold; and/or in
checking at regular intervals if her wealth has gone up more or less than a certain
percentage. These choices arguably entail different information costs. With exoge-
nous costs models, in the style of Duffie and Sun (1990), these relative information
costs can only be ascribed in an ad-hoc fashion. Under information aversion, on the
other hand, each signal does yield a different cost, endogenously depending on how
informative the signals are and on the risk-taking decisions the agent makes.

Rather than studying all the possible information structures satisfying Equation
(11), we consider wether simple signals can help the investor. In addition to the time-
dependent observations the agent can obtain on her own, and which we studied in
the previous section, we include state-dependent alerts the agent receives when her
risky account falls below a certain threshold. The following proposition shows alerts
following poor performance do help the investor.

Proposition 6. When returns follow a Brownian motion, the agent is strictly better
off if she can add to her regular full wealth observations a state dependent signal she
observes only when her wealth falls below a pre-specified threshold of her choice.

The additional alert in bad times has three distinct effects on the investor. First,
since the agent is information averse, more frequent information comes at a utility
cost. Second, however, the additional information allows her to improve on her post-
signal decision making, i.e. to adjust her consumption and portfolio in response to the
bad news. Third, and more subtle, knowing she may receive additional information
through an intermediate signal also impacts her ex-ante decision making. The signal
acts as a backstop against running down the risky account. Because she knows she
will be alerted before her risky account reaches 0, she can engage in more risk-taking
by financing some of her consumption from the risky rather than the risk-free as-
set. For a low enough threshold and with Brownian returns, this last positive effect
dominates. The utility gains from the increased risk-taking ex-ante are first-order in
the threshold. On the other hand, both the ex-post reallocation gain as well as the
information costs are of similar order as the probability of hitting the threshold; this
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probability is of higher order in the threshold and therefore dominated.21

The result of Proposition 6 highlights an insight that extends beyond our partic-
ular model of consumption and savings. Abel et al. (2013) find time-dependent rules
to be optimal in a setting with fixed observation and transaction costs. In our setting
with endogenous information costs, allowing for rich information structures, adding
state-dependent rules dominates over pure time-dependent rules. Obtaining infor-
mation precisely when it is needed is worth the additional utility cost.

In practice, the alarms we considered in this section are natural to implement: a
broker or bank can easily contact their clients following poor portfolio performance.
More generally, while staying away from news most of the time is valuable, becoming
aware of extreme events is useful. The media representation of news, making large
information arrivals unavoidable, is consistent with our result.

5.2 Decision delegation

To assist an information averse agent, one can go further and delegate allocations,
thus removing the necessity to actively seek information. The investor in our model
might want to ask a portfolio manager to take care of her savings. Delegation seems
like the perfect tool against information aversion: pay somebody, or program a com-
puter, to be fully informed and make all decisions, and you no longer have to look
for information? Though intuitive it turns out to be partly false: delegated manage-
ment cannot always shield the agent from receiving information, in particular in our
consumption-savings model.

Adapting our framework to allow for delegated management is straightforward.
We let decisions be taken according to all the information available, F̄t. Quantities
entering the current flow utility however must be observed by the agent, i.e. in the
agent’s information set Ft: portfolio decisions can be made hidden from the agent,

21This argument generalizes to other distributions where the probability of reaching a threshold
close to 0 decreases fast enough with the threshold.
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consumption cannot. The measurability conditions are

Ct Ft-measurable, (12)

St F̄t-measurable. (13)

These conditions make clear the benefits of delegation to erase information costs are
limited in our framework: to better manage the investor’s wealth, the delegated man-
ager must make consumption adjust with portfolio performance, thus automatically
burdening the agent with information.

There are, however, cases in which delegated management can strongly mitigate
information costs. Consider the following example. An investor whose only objective
is to maximize her wealth at a final date τ , when she consumes, can invest in vari-
ous risky and risk-free assets with observable time-varying expected returns. If she
cannot delegate, the information averse investor will trade off the benefits of active
portfolio management with the costs of information. If she could, on the other hand,
she would delegate all portfolio management decisions and would only observe the
final value of her wealth when she consumes at time τ . Delegation in this example
can fully shield the agent from all information costs.

The key difference with our framework is the horizon at which the consequences
of allocation decisions are realized. In our consumption-savings problem, delegated
decisions concern consumption choices, and are immediately realized. With market-
timing, delegated decisions concern portfolio allocations, and need not immediately
impact consumption. These results provide some guidance as to when delegation
should be observed in practice. Cases where optimal decisions’ implications are quickly
observed, and cannot be bundled over time, limit the scope for delegation, in contrast
to decisions with long-term implications only. Consistent with this argument, the del-
egation of active portfolio management of retirement accounts is common in practice,
while short term consumption and saving decisions are typically made by the agents
themselves.
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6 Extensions

Even in a simple consumption-savings framework, we showed the endogenous in-
formations costs of our model provide novel insights, with broad empirical support.
Besides, our approach has pervasive implications for decision-making under uncer-
tainty, relative to models with exogenous information costs or constraints, of which
this is but one example. We briefly revisit below several classic questions, and stress
the novel tradeoffs when agents are information averse.

6.1 Diversification and the multiplication of information flows

A robust insight of portfolio theory is that diversification is valuable. When presented
with two assets with imperfectly correlated returns, it is optimal to invest in both.
Because our disappointment averse agents are risk-averse, the rationale for diversifi-
cation obtains. However, in our framework, not only does the distribution of the final
payoffs matter, but also the structure of the information flow. It is plausible investing
in a larger number of assets corresponds to more frequent arrivals of information,
which might diminish and even overcome the benefit of diversification.

To characterize the tradeoff between the costs and benefits of diversification in
our model, we study a simple example. Suppose the agent receives at date τ the final
value λX(1)

τ + (1 − λ)X
(2)
τ , where X(1) and X(2) are two arithmetic Brownian motions

with volatility σ and correlation ρ, and λ ∈ [0, 1] can be thought of as a portfolio
share. Let the agent’s observations, at intervals of length T , alternate systematically
between the two processes.

In Figure 4, we consider (a) investing in only one asset (λ = 0), (b) investing in
two perfectly correlated assets (λ = 50%, ρ = 1), and (c) investing equally in two fully
independent assets (λ = 50%, ρ = 0). Investments (a) and (b) share the exact same
payoff structure, but have different information flows, with higher signal frequency
for case (b), and thus a lower valuation. Investments (b) and (c) have same informa-
tion flows, but different risk exposures: the diversified investment (c) yields a higher
value. The most interesting comparison is between (a) and (c). In this particular ex-
ample, when assets are perfectly uncorrelated, the diversification motive dominates
over the information costs: the agent always prefers the diversified portfolio with fre-
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Figure 4: Role of diversification. Certainty equivalent as a function of the obser-
vation interval for (a) a single asset portfolio (red), (b) an equal-weight perfectly cor-
related portfolio (green), (c) and an equal weight independent payoff portfolio (blue).
For arithmetic Brownian motions with volatility σ = 0.1, and for θ = 1.

quent information (c) over the portfolio with one asset and infrequent information
(a).22 The benefits of diversification, however, are greatly diminished by the multipli-
cation of information flows. At higher frequency, in particular, as information costs
increase, the agent is close to indifferent between holding a diversified portfolio with
more information versus holding a single asset.

6.2 Leverage and information decisions

In Section 4, we prohibited the investor from taking on any leverage, which corre-
sponds to the natural borrowing limit under time-dependent rules, since an agent
with levered positions cannot avoid bankruptcy. On the other hand, if the asset price

22This result remains true for arbitrary values of λ.
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follows a geometric brownian motion, and if the agent observed it continuously, she
could take arbitrary levered positions: levering up requires being and keeping in-
formed.

As long as there is a finite (arbitrarily high) borrowing limit, an agent with access
only to time dependent rules would not take any leverage. In the richer informa-
tion filtrations set of Section 5, downturn alerts allow the agent to lever up into the
attractive risky asset, without incurring the dissuasive cost of continuous informa-
tion flows. Even then, though, the agent would not choose to lever up above a given
level: the more levered her portfolio, the higher the threshold she needs to set for her
downturn alerts, and the more frequent, and thus costly, they become.

Information aversion thus yields non-trivial interconnections between leverage de-
cisions and attention decisions. The information costs due to the monitoring of levered
positions are a likely complement to the margin costs emphasized by Mitchell et al.
(2002).

6.3 Learning, information and risk-taking dynamics

Intuitively, for a given signal about a lottery, the information cost is hump-shaped in
the quantity of information (see Corollary 1 and Corollary 3). This non-monotonicity
has potentially rich implications for learning decisions.

As an illustration, take the framework of Section 4, and assume the agent does not
know the growth rate g. She can learn about g by observing her wealth (provided she
invests a given portion of her wealth in the risky asset), and from independent signals
she receives when she observes her wealth. If these signals are very informative,
they are comparatively not very costly, and she would optimally observe them very
fast in order to fully learn the value of g and then adjust her information frequency
down to the optimal one of Section 4. If they are not very informative, they are still
not extremely costly, but observing her wealth is, so she might maintain a very low
frequency dynamics, where only a small part of her wealth is invested in the risky
asset, up to the point she learns g > r, and she switches her whole portfolio to the
risky asset, and increases her observation frequency to the optimal one at steady-
state. Finally, if the signals are in a middle range of informativeness, they might be
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too costly, on their own to be worth observing, and in this intermediate region, the
investor might fully abstain from investing in the risky asset.

This simple example illustrates the complex interconnections between learning,
information and risk-taking, and their dynamics, when agents are information averse.
The existence of no-learning regions would not only affect investment decisions, but
could have broad implications in other areas of decision making where learning is
key, e.g. the decision to engage in medical testing, to collect information and invest in
a new technology etc.

6.4 The supply of information

In practice, information is produced and disseminated by agents or institutions. In
an economy populated by information averse agents, suppliers of information need to
adapt and appropriately tailor the flow of information. As such our model provides
the basis for a theory of optimal opaqueness. While providing an in-depth treatment
of this question is left for future research, we briefly outline a few simple implications.

One way to help information averse agents is to lump news together in bundles
delivered at precise points in time. Such a behavior is consistent with firm’s disclosure
policies organized around scheduled earnings announcement.23 Similarly, monetary
policy is disclosed at precise points in time, at 2:00p.m. following FOMC meetings,
most of which are scheduled in advance. Other macroeconomic announcements, such
as employment numbers, quarterly growth etc., also follow discretely spaced releases.
A more detailed examination of our framework could provide further guidance for the
design of such information release policies.

Agents do not want to receive information too often. However, when they do ob-
serve information (either of their own choice or due to external forces), the result
of Corollary 1 indicates they want it to be as precise and “transparent” as possible.
Ours is a framework in which suppliers sometimes refraining from releasing any in-
formation can be beneficial; but suppliers releasing partial or distorted information
is not.

23Acharya and Lambrecht (2014) provides an alternative theory of earnings target set to manage
investors’ expectations.
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Observe, further, even if this form of opaqueness is intrinsically desired by eco-
nomic agents, it generates asymmetric information, and agency problems are likely
to arise in those situations, e.g. between an investor and her wealth manager. These
potentially counteract the motive for information withholding. To account for infor-
mation aversion, optimal compensation contracts need to provide the necessary in-
centives, while minimizing the information needed to enforce them.

7 Conclusion

Because they run the risk of being disappointed each time they receive a signal, dis-
appointment averse agents are intrinsically information averse. We propose a theory
of inattention solely based on these preferences, absent any cognitive limitations, or
external costs of acquiring information. We start by characterizing the strength and
properties of the endogenous costs of information, implied by this model of prefer-
ences, and find them to differ fundamentally from both the cognitive constraints, and
the exogenous costs commonly used in the inattention literature. We analyze the im-
pact of the frequency of observations on the certainty equivalents of lotteries whose
payoffs correspond to the final value of a stochastic process, and find our model justi-
fies the experimental evidence that shows agents lower the valuation of risky assets
when provided with more information. We then study how agents balance the utility
cost of paying attention to the economic environment with the benefits of making in-
formed decisions, and illustrate this trade-off in the case of a standard consumption-
savings problem. In this setting, we find attention decreases in turbulent times: when
there is more risk, information is more stressful. This endogenous cost-driven result
is unique to our model of inattention, and is supported by the empirical evidence.
We explore how to better tailor information filtrations to address information averse
investors’ specific needs, and emphasize our model is uniquely equipped to analyze
such a fundamental problem. We show state-dependent information strategies can
improve on pure time dependent ones.

More generally, taking the point of view that people might fundamentally want to
stay away from information draws a very different picture of inattention than stan-
dard models. Facilitating the access to information might be detrimental. This insight
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has pervasive implications for decision-making under uncertainty. While we outline
the interconnections between information choices and delegation, leverage, learning,
and the supply of information, many questions remain. We believe the simplicity of
our approach suggest a large avenue for future research, both to further clarify the
theoretical predictions of our model, and to explore its rich empirical implications.
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A Disappointment Aversion and Information Aver-
sion

Proof of Corollary 1 Focus on a setup with three dates: 0, 1, and 2. At date 2, the agent receives a final
outcome X with cumulative distribution function F . The certainty equivalent under disappointment
aversion with linear realized utility and coefficient θ is µθ (F ). Define:

h (µ) =

∫
x≥µ

(x− µ) dF (x) + (1 + θ)

∫
x<µ

(x− µ) dF (x)

The function h is continuous, decreasing in µ. It admits limit +∞ when µ tends to −∞ and −∞ when
µ tends to +∞. There exist as unique zero, the certainty equivalent µθ (F ).

If, at date 1, the agent receives a signal i ∈ {1, N} with probability αi, the agent updates her belief
on the distribution of X from F to Fi. We are interested in comparing the certainty equivalent at
date t = 0 of the compound lottery with date t = 1 signals, µθ ({Fi, αi}) with that of a lottery without
intermediate signal, µθ(F ). Naturally, the distribution of final outcomes is the same for both lotteries:
F =

∑
i αiFi.

For all i ∈ {1, N}, the function

hi (µ) =

∫
x≥µ

(x− µ) dFi (x) + (1 + θ)

∫
x<µ

(x− µ) dFi (x)

admits µθ(Fi) as a unique zero. To simplify notations, we write µθ (Fi) = µi from now on.
Also, keep in mind µθ ({Fi, αi}) is the unique zero of

hs (µ) =
∑
µi≥µ

αi (µi − µ) + (1 + θ)
∑
µi<µ

αi (µi − µ)

We write the certainty equivalent with intermediate signal µθ ({Fi, αi}) = µs.
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Let us compute h (µθ ({Fi, αi})):

h (µs) =

∫
(x− µs) dF (x) + θ

∫
x<µs

(x− µs) dF (x)

=
∑
i

αi

[∫
(x− µs) dFi (x) + θ

∫
x<µs

(x− µs) dFi (x)

]
=
∑
i

αi

[
(µi − µs) + θ

∫
x<µi

(µi − x) dFi (x) + θ

∫
x<µs

(x− µs) dFi (x)

]
h (µs) = θ

∑
µi<µs

αi

[
(µs − µi)

∫
x≥µs

dFi (x) +

∫
µi≤x<µs

(x− µi) dFi (x)

]
(14)

+ θ
∑
µi≥µs

αi

[
(µi − µs)

∫
x<µs

dFi (x) +

∫
µs≤x<µi

(µi − x) dFi (x)

]

Observe all the terms on the right-hand side are positive, so that

h (µθ ({Fi, αi})) ≥ 0

Remember h is decreasing with µθ (F ) as its unique zero. Therefore we can conclude

µθ ({Fi, αi}) ≤ µθ (F )

Let us now analyze under which condition µθ ({Fi, αi}) = µθ (F ), i.e. under which condition h (µθ ({Fi, αi})) =

0. From equation 14, it is straightforward that if i0 is such that µi0 = µs then the positive terms in αi0
are equal to zero. Suppose there is j ∈ {1, N} such that µj 6= µs. If µj < µs, the positive contribution to
h (µθ ({Fi, αi})) of the j term is:

(µs − µj)
∫
x≥µs

dFj (x) +

∫
µj≤x<µs

(x− µj) dFj (x)

The first term is zero iff ∀x ≥ µs, Fj (x) = 0, i.e. in the Fj distribution, all outcomes are below µs.
Supposing that is the case, let us analyze the second term. From µj ≤

∫
xdFj (x), we know the interval

µj ≤ x < µs is not empty. Under these conditions, the second term
∫
µj≤x<µs (x− µj) dFj (x) is null if

and only if x = µj , and the lottery under signal j is degenerate: Fj admits a unique non-zero, µj . A
similar result obtains if µj > µs.

We have thus proven the result:

µθ ({Fi, αi}) = µθ (F )

⇔ ∀i,

µθ (Fi) = µθ (F ) or

Fi is degenerate
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Proof of Corollary 2 We prove using this result that for any level of mutual entropy at the
first stage of the lottery, there exists a compounded lottery that provides as much utility as one-shot
resolution. Indeed, consider the lottery that reveals the final outcome with probability p or nothing
with probability 1− p. Clearly, such lottery satisfies the conditions above and is equivalent to one-shot
resolution. One can choose p to attain any level of mutual entropy between the first stage outcome and
the final outcome.

Proof of Corollary 3 is immediate.

B Certainty Equivalent Rate
To be consistent with the notations in the body of the paper, note the value, at time t = 0, of the lottery
with payoff Xτ , and observation at intervals of length T ,

V0 (τ, T ) = X0 exp (v (T ) τ) ,

where v (T ) is the certainty equivalent rate.

B.1 Proof of Proposition 2
By definition, we have

exp (v (T )T ) = µθ

(
XT

X0

)
.

We can rewrite
XT

X0
= exp (gT ) exp (xTT ) ,

where
E (exp (xTT )) = 1.

Then
exp ((v (T )− g)T ) = µθ (exp (xTT )) .

Let’s simply consider the case g = 0 (we can simply shift v by g if it’s non-zero), and analyze

exp (v (T )T ) = µθ (exp (xTT )) .

Using the notations of Appendix A, v (T ) is the unique zero to the decreasing function h such that:

h (v) =

∫
xT≥v

(exp (xTT )− exp (vT )) dF (xT ) + (1 + θ)

∫
xT<v

(exp (xTT )− exp (vT )) dF (xT ) ,
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h (v) = 1− exp (vT ) + θ

∫
xT<v

(exp (xTT )− exp (vT )) dF (xT ) .

h is decreasing in θ, so its zero is also decreasing in θ: this proves v(T ) is decreasing in θ, the coefficient
of disappointment aversion.

The first term 1 − exp (vT ) is a straightforward decreasing in v function whose zero is v = 0. The
last term

∫
xT<v

(exp (xTT )− exp (vT )) dF (xT ) is also decreasing in v and strictly negative when xT is
not degenerate. Therefore, v(T ) < 0.

Limit in T → +∞. If f(T ) = exp(vT )− θ
∫
xT<v

(exp (xTT )− exp (vT )) dF (xT ) has limit zero, then
v(T ) as well. By the central limit theorem, as T becomes large, xT approaches a normal N (− 1

2σ
2, σ

2

T ),
and we find

f (T ) ∼ exp(vT )(1 + θΦ((
v

σ
+

1

2
σ)
√
T ))− θΦ((

v

σ
− 1

2
σ)
√
T ),

where Φ is the cumulative distribution function of a standard normal distribution. Remember v < 0,
and thus f(T ) converges to zero as T becomes large. This proves

v (T ) −→
+∞

0

Subadditivity Observe from Corollary 1:

v (x+ y) >
x

x+ y
v (x) +

y

x+ y
v (y)

∀(x, y) > 0,

which is the definition for −Tv(T ) subadditive.

Limit in T → 0 Observe, ∀v,
h(v) > h̄(v),

where

h̄ (v) = 1− exp (vT ) (1 + θFT (v)).

Because h̄ is, like h, decreasing in v, its unique zero, v̄ is such that:

v̄ (T ) ≤ v (T ) < 0

∀T > 0.
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h̄ is increasing in T , so v̄ is increasing in T . It thus admits a limit in 0 (infinite or not). If the limit is
infinite, because we have

exp (v̄(T )T ) =
1

1 + θFT (v̄(T ))
,

then v̄(T )T → 0 as the right-hand side converges to 1. If the limit is finite, then we obtain immediately
v̄(T )T → 0.

Using the fact that v̄ (T )T ≤ v (T )T < 0 we obtain v̄(T )T −→
0

0.

B.2 Brownian motion Example
Assume

dXt

Xt
= σdZt,

and, without loss of generality X0 = 1, so the log payoff when τ = T is log (XT ) = − 1
2σ

2T + σ
√
Tε,

where ε is distributed N (0, 1). The certainty equivalent of payoff XT is thus given by

V0 (T, T ) =
1 + θ

∫
XT<V (T )

XT dF (XT )

1 + θ
∫
XT<V (T )

dF (XT )
.

Expanding, we get

exp (v (T )T ) =
1 + θ

∫
ε<(v(T )+ 1

2σ
2)
√
T
σ

exp
(
− 1

2σ
2T + σ

√
Tε
)

exp(− 1
2 ε

2)√
2π

dε

1 + θ
∫
ε<(v(T )+ 1

2σ
2)
√
T
σ

exp(− 1
2 ε

2)√
2π

dε

=
1 + θ

∫
ε−σ
√
T<(v(T )− 1

2σ
2)
√
T
σ

exp
(
− 1

2 (ε−σ
√
T)

2
)

√
2π

dε

1 + θ
∫
ε<(v(T )+ 1

2σ
2)
√
T
σ

exp(− 1
2 ε

2)√
2π

dε

and, finally,

exp (Tv (T )) =
1 + θΦ

(√
T
σ

(
v (T )− 1

2σ
2
))

1 + θΦ
(√

T
σ

(
v (T ) + 1

2σ
2
)) < 1,

where Φ is the cumulative distribution function of a standard normal distribution.
Continuous information limit. We show

√
Tv (T )→ −κσ where κ is the unique solution to

κ+ θκΦ (−κ) = θΦ′ (−κ)
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Because v is increasing, it thus admits a limit (finite or not) in zero, and therefore, so does v(T )
√
T .

Suppose
√
Tv (T )→ −∞ (and Tv (T )→ 0 from the proof of Proposition 2), then

exp (Tv (T )) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
))

becomes

1 + Tv (T ) =

(
1 + θΦ

(
1

σ

√
T

(
v (T )− 1

2
σ2

)))(
1− θΦ

(
1

σ

√
T

(
v (T ) +

1

2
σ2

)))
= 1 + θ

[
Φ

(
1

σ

√
T

(
v (T )− 1

2
σ2

))
− Φ

(
1

σ

√
T

(
v (T ) +

1

2
σ2

))]
= 1− θσ

√
T√

2π
exp

(
− 1

2σ2
T (v (T ))

2

)
which yields a contradiction.

Therefore v(T )
√
T has a finite (negative) limit in zero, let’s write

√
Tv (T ) → −κσ, where κ ≥ 0.

Then,

1 + Tv (T ) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
))

=
1 + θΦ (−κ)− θ σ

√
T

2
√

2π
exp

(
−κ

2

2

)
1 + θΦ (−κ) + θ σ

√
T

2
√

2π
exp

(
−κ2

2

)
=

1− θ σ
√
T

2(1+θΦ(−κ))
√

2π
exp

(
−κ

2

2

)
1 + θ σ

√
T

2(1+θΦ(−κ))
√

2π
exp

(
−κ2

2

)
and

κ =
θ

(1 + θΦ (−κ))
√

2π
exp

(
−κ

2

2

)
so

κ+ θκΦ (−κ) = θΦ′ (−κ) .

We can show there is a unique solution for κ. Indeed, defining

g (κ) = κ+ θκΦ (−κ)− θΦ′ (−κ) ,
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we obtain the following properties:

g (0) < 0

g (κ)→+∞ +∞

g′ (κ) = 1 + θ (Φ (−κ)− κΦ′ (−κ) + κΦ′ (−κ)) > 0.

These conditions guarantee the existence and uniqueness of κ > 0 solution.

Role of observation interval T . From Proposition 2, we know v is increasing in T . However,
the exact form of the derivative of v with respect to T is of interest for later results, and we derive it
here.

Write 1
σ

√
Tv (T ) = g (T, σ), then

exp (Tv (T )) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
)) .

becomes

exp
(
σ
√
Tg (T, σ)

)
=

1 + θΦ
(
g (T, σ)− 1

2σ
√
T
)

1 + θΦ
(
g (T, σ) + 1

2σ
√
T
) .

Let us write z = 1
2σ
√
T , then g(T, σ) = g(z) with

2zg (z) = log (1 + θΦ (g (z)− z))− log (1 + θΦ (g (z) + z))

Differentiating, we obtain

2g (z) + 2zg′ (z) = θ

(
(g′ (z)− 1) Φ′ (g (z)− z)

1 + θΦ (g (z)− z)
− (g′ (z) + 1) Φ′ (g (z) + z)

1 + θΦ (g (z) + z)

)
= −2θ

Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

.

Let us define the function u by

u (x) = log (1 + θΦ (x)) .
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We have

u′ (x) =
θΦ′ (x)

1 + θΦ (x)
> 0

u′′ (x) =
−θΦ′ (x) [x (1 + θΦ (x)) + θΦ′ (x)]

(1 + θΦ (x))
2

[x (1 + θΦ (x)) + θΦ′ (x)]
′

= (1 + θΦ (x)) > 0.

So u′′ is positive then negative, and u is increasing convex then concave with a unique inflection point
x∗. Observe

u′ (g (z) + z) = u′ (g (z)− z) ,

so, ∀z, g (z)− z ≤ x∗ ≤ g (z) + z. Because u is convex between g (z)− z and x∗,

u (x∗)− u (g (z)− z) ≥ (x∗ − (g (z)− z))u′ (g (z)− z) .

Because u is concave between g (z) + z and x∗,

u (g (z) + z)− u (x∗) ≥ ((g (z) + z)− x∗)u′ (g (z) + z) .

Putting these results together,

u (g (z) + z)− u (g (z)− z) ≥ ((g (z) + z)− x∗)u′ (g (z) + z) + (x∗ − (g (z)− z))u′ (g (z)− z)

u (g (z) + z)− u (g (z)− z) ≥ 2zu′ (g (z) + z) ,

and finally

−2zg (z) ≥ 2zu′ (g (z) + z)

which proves g′ (z) positive for all z.
We have

v (T ) =
σ√
T
g

(
1

2
σ
√
T

)
so

v′ (T ) =
σ

2T
√
T

(zg′ (z)− g) ,

and v′ is positive for all T .
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Observe further:

Tv′ (T ) + v =
σ

2
√
T

(zg′ (z) + g) < 0,

so Tv(T ) is decreasing everywhere.
Besides

Tv′ (T ) =
σ

2
√
T

(zg′ (z)− g) ,

so

2
√
T
d(Tv′ (T ))

dσ
=

(
zg′ (z)− g + zσ

dz

dσ
g′′
)
,

2
√
T
d(Tv′ (T ))

dσ
=
(
zg′ − g + z2g′′

)
.

Use

g + zg′ = −u′(z + g)

to find

2g′ + zg′′ = −(1 + g′)u′′(z + g),

and therefore

zg′ − g + z2g′′ = −(1 + g′)u′′(z + g)− (g + zg′).

The right hand side of this equality is always positive, so we find

d(Tv′ (T ))

dσ
≥ 0.

We also find:

2
√
T

σ
Tv′ (T )) = (−u′(g + z)− 2g) ,

so

2
√
T

σ

d(Tv′ (T ))

dσ
= −dg

dθ

(
du′(g + z)

dθ
+ 2

)
.
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We have du′

dθ > 0 and dg
dθ < 0 (like dv

dθ < 0), so

d(Tv′ (T ))

dθ
≥ 0.

Finally

2

σ
Tv′ (T )) =

1√
T

(zg′ − g) ,

so

2

σ

d(Tv′ (T ))

dT
= − 1

2T
√
T

(zg′ − g) +
1√
T
zz′g′′,

which becomes

2

σ

d(Tv′ (T ))

dT
= − 1

2T
√
T

(
zg′ − g − z2g′′

)
.

if z2g′′ ≤ 0, then d(Tv′(T ))
dT ≤ 0;

if z2g′′ ≥ 0, then, because:

2g′ + zg′′ = −(1 + g′)u′′(z + g),

i.e.

zg′′ = z(1− g′2)u′(z + g)− 2g′,

and we have

zg′ − g − z2g′′ = 3zg′ − g − z2(1− g′2)u′(z + g).

Remember g + u′(z + g) ≤ 0, so, if z2(1− g′2) ≤ 1, d(Tv′(T ))
dT ≤ 0. Finally, if z2(1− g′2) ≥ 1, then

(z(1− g′2)u′(z + g)− 2g′)′ = (1− z2(1− g′2))(1− g′2)u′(z + g)− 2g′′ ≤ 0.

So 3zg′−g−z2(1−g′2)u′(z+g) is increasing as long as g′′ ≥ 0. In z = 0, i.e. T = 0, v(T ) = −κσ/
√

(T ), and
thus g(0) = −κσ, g′(0) = 0 and g′′(0) ≥ 0. As long as g′′ stays positive, 3zg′ − g − z2(1 − g′2)u′(z + g) ≥
κσ > 0. At any further point where g′′ turns from negative to positive, because g′′ is smooth, it is
precisely equal to zero at the turning point, and therefore 3zg′ − g − z2(1 − g′2)u′(z + g) is increasing
from zg′ − g ≥ 0 as long as g′′ stays positive. We find zg′ − g − z2g′′ to be always positive and therefore
d(Tv′(T ))

dT ≤ 0 for all z.
(we use these results later in Appendix C).
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Role of the volatility σ. We have

v (σ) =
σ√
T
g

(
1

2
σ
√
T

)
,

so

√
Tv′ (σ) = g (z) + zg′ (z)

= −θ Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

< 0.

B.3 Jumps Example
We conduct the same calculation for the case of a pure jump process. Write Nt the counting variable
for a Poisson jump process with intensity λ. Define the process {Xt} by the stochastic differential
equation:

dXt

Xt−
= λσdt− σdNt,

where σ < 1, and without loss of generality X0 = 1. The value of Xt decreases geometrically at each
jump. The drift term compensates for the average decrease, so that {Xt} is a martingale. Solving this
S.D.E. with initial condition X0 = 1, we obtain

Xt = exp (λσt+ log (1− σ)Nt) .

We are interested in the certainty equivalent of a lottery paying XT for various values of T .

Preliminaries A few standard results on Poisson jump processes that will be useful:

P [Nt = k] =
(λt)

k

k!
e−λt

P [Nt = 0] = e−λt

P [Nt ≤ k] = e−λt
k∑
i=0

(λt)
i

i!
=

Γ (k + 1, λt)

k!

E [exp(uNt)] = exp (λt (eu − 1))

E [exp (log (1− σ)Nt)] = exp (−λσt) ,

where Γ(., .) is the incomplete gamma function.
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Further, we can express the certainty equivalent in a more convenient way:

V =
E[y] + θE [y1y≤V ]

1 + θP[y ≤ V ]

V =
(1 + θ)E[y]− θE [y1y>V ]

(1 + θ)− θP[y > V ]
.

Certainty equivalent If the certainty equivalent is between the points of the distribution cor-
responding to k and k + 1 jumps, we can compute it exactly. This corresponds to the condition:

(1− σ)k+1 ≤ V exp(−λσT ) ≤ (1− σ)k.

Then, we get immediately

exp (−λσT )V =
(1 + θ) exp (−λσT )− θE

[
(1− σ)

Nt 1NT≤k

]
(1 + θ)− θP [NT ≤ k]

.

Note that

E
[
(1− σ)

Nt 1NT≤k

]
= e−λT

k∑
i=0

(1− σ)i
(λT )

i

i!

= e−λT+(1−σ)λT e−(1−σ)λT
k∑
i=0

((1− σ)λT )
i

i!

= e−λσT
Γ (k + 1, (1− σ)λT )

k!
.

Therefore,

exp (−λσT )V =
exp (−λσT )

[
(1 + θ)− θΓ(k+1,(1−σ)λT )

k!

]
(1 + θ)− θΓ(k+1,λT )

k!

V =
1− θ

1+θ
Γ(k+1,(1−σ)λT )

k!

1− θ
1+θ

Γ(k+1,λT )
k!

.

As the certainty equivalent is unique, there is a unique k so that the corresponding V falls in the right
interval.

Remark 1. In matlab, the incomplete gamma function is defined such that Γ(k+1, x)/k! = gammainc(x, k+

1).
Remark 2. At the points where we go from one k to the next, we have V = (1− σ)k exp (λσT ).
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Continuous information limit. We prove

v (T )→ −σλ.

In the limit where T gets close to 0, the certainty equivalent falls in the region between 0 and 1 jumps.
We guess and verify this result and obtain the limiting behavior of V as T converges to 0. In this case
we have

V =
1− θ

1+θ exp (− (1− σ)λT )

1− θ
1+θ exp (−λT )

,

which clearly converges to 1 as T converges to 0 so the guess is indeed verified. In the limit, we get:

V ≈
1− θ

1+θ (1− (1− σ)λT )

1− θ
1+θ (1− λT )

≈ 1 + θ (1− σ)λT

1 + θλT
≈ 1− θσλT

V ≈ exp (−θσλT ) .

In particular it tells us that V 1/T admits the finite limit exp (−σλ) as T → 0.

Role of the shock size σ. Let’s show v is decreasing in σ.
If (v(T )−λσ)T

log (1−σ) /∈ N, then for any σ > 0, k(σ) = k(σ + ε) for |ε| sufficiently small, and V is decreasing
in σ simply because Γ(x, y) is decreasing in y.

If (v(T )−λσ)T
log (1−σ) ∈ N, observe we can equivalently use k = (v(T )−λσ)T

log (1−σ) , or k = (v(T )−λσ)T
log (1−σ) − 1. Because

(v(T )−λσ)T
log (1−σ) is increasing in σ, k = (v(T )−λσ)T

log (1−σ) remains valid for σ + ε and k = (v(T )−λσ)T
log (1−σ) − 1 remains

valid for σ − ε, for any ε > 0 sufficiently small. Once more, we find V is decreasing in σ simply because
Γ(x, y) is decreasing in y.

Role of the shock intensity λ. Let’s show v is decreasing in λ.
If (v(T )−λσ)T

log (1−σ) ∈ N, observe we can equivalently use k = (v(T )−λσ)T
log (1−σ) , or k = (v(T )−λσ)T

log (1−σ) − 1. Because
(v(T )−λσ)T

log (1−σ) is increasing in λ, k = (v(T )−λσ)T
log (1−σ) remains valid for λ + ε and k = (v(T )−λσ)T

log (1−σ) − 1 remains
valid for λ − ε, for any ε > 0 sufficiently small. We can thus simply look at the derivative of V with
respect to λ, keeping k as exogenous. We find dV/dλ of same sign as (1− σ)k+1 − V exp(−λσT ), which,
by definition of k proves V decreasing in λ.
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C Consumption-savings model - Proof of Proposi-
tion 3 and Proposition 4

C.1 General case
Without loss of generality, let the initial wealth be 1. Given C0 the optimal amount set aside to finance,
at the risk-free rate, consumption between t and t + T , then, the optimal deterministic consumption
Ct + τ for τ ∈ [0, T ] is given by:

max
{Ct+τ}

∫ T

0

e−ρτC1−α
t+τ dτ s.t.

∫ T

0

e−rτCt+τdτ = C0.

This straightforward optimization problem has solution:

∀τ, Ct+τ = C0

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

−1

e
r−α
α τ ,

and

∫ T

0

e−ρτC1−α
t+τ dτ = (C0)

1−α

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α

.

The wealth remaining, after C0 is set aside, is 1− C0, out of which S0 is invested in the risky asset.
Then:

Vt+T = V0Wt+T = V0(S0
XT

X0
+ (1− C0 − S0)erT ),

and

µθ(Vt+T ) = V0(S0µθ(
XT

X0
) + (1− C0 − S0)erT ),

µθ(Vt+T ) = V0(S0e
v(T )T + (1− C0 − S0)erT ),

which yields the clear corner solution:

S0 = 0, if v(T ) < r,
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and

S0 = 1− C0, if v(T ) > r.

From now on, assume v(T ) > r (we’ll verify it is the case at the optimum). Then:

V1−α
0 = (C0)

1−α

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α

+ exp (−ρT ) (V0V (T, T ))
1−α

(
(C0)

−1 − 1
)1−α

 ,
and

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T, T ))
1−α

) 1
α

so

V1−α
0 =

(C0)−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α−1

×

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α


+ exp (−ρT ) (V0V (T, T ))1−α

(C0)−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

−
1− exp

(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

1−α
V1−α

0 =

(C0)−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α−1

×

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+ exp (−ρT ) (V0V (T, T ))1−α
(

exp (−ρT ) (V0V (T, T ))1−α
) 1−α

α


V1−α

0 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T, T ))1−α
) 1
α

α

V
1−α
α

0 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T, T ))1−α
) 1
α
,

56



and finally

V
1−α
α

0 =

(
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1− exp

(
− ρ
αT
)

(V (T, T ))
1−α
α

.

This is the optimal value function. Also,

V1−α
0 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T, T ))
1−α

) 1
α

α

=

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α

V
1−α
α

0 = (C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α


(C0)

−1
=

1

1−
(

exp
(
− ρ
α

) (
ev(T )

) 1−α
α

)T
C0 = 1−

(
exp

(
− ρ
α

)(
ev(T )

) 1−α
α

)T
.

This is the optimal investment in the cash account.
Finally, let us turn to the fist order condition for the optimal observation interval ∂V0∂T = 0. We have

V
1−α
α

0

(
ρ+ (α− 1) r

α

)
=

1− exp
(
−ρ+(α−1)r

α T
)

1− exp
(
−ρ+(α−1)v

α T
) ,

so

∂V0

∂T
= 0

⇔ ∂

∂T

log
(

1− exp
(
−ρ+(α−1)r

α T
))

− log
(

1− exp
(
−ρ+(α−1)v

α T
))

 = 0

⇔


(r− ρ

1−α ) exp( 1−α
α (r− ρ

1−α )T)
1−exp( 1−α

α (r− ρ
1−α )T)

− (v− ρ
1−α ) exp( 1−α

α (v− ρ
1−α )T)

1−exp( 1−α
α (v− ρ

1−α )T)

= v′ (T )T
exp

(
1−α
α

(
v − ρ

1−α

)
T
)

1− exp
(

1−α
α

(
v − ρ

1−α

)
T
) .
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Re-organizing the terms yields, at the optimum T ∗:

∂v(T ∗)

∂ log(T )
=

(
ρ

1− α
− v (T ∗)

)1−
f
(

ρ
1−α − r, T

∗
)

f
(

ρ
1−α − v (T ∗) , T ∗

)


where f (x, T ) = x/
(
exp

(
1−α
α xT

)
− 1
)
.

A second order approximation around x ≈ 0 and y ≈ 0 with same order of magnitude yields:

1− f(x)

f(y)
≈ 1−

1 + 1
2

1−α
α yT

1 + 1
2

1−α
α xT

,

1− f(x)

f(y)
≈ 1

2

1− α
α

(x− y)T.

C.2 Case of a Brownian motion
Optimal investment in the cash account C0. We prove C0 is increasing in T , σ and θ.

C0 = 1− exp

[(
− ρ
α

+
1− α
α

v (T )

)
T

]
.

Let us start with the role of the observation interval T .

dC0
dT

=

[(
ρ

α
− 1− α

α
(v (T ) + v′ (T )T )

)]
exp

[(
− ρ
α

+
1− α
α

v (T )

)
T

]
.

Using the notations and results of Appendix B,

v (T ) = µ+
σ√
T
g

(
1

2
σ
√
T

)
,

and

v′ (T ) =
σ

2T
√
T

(zg′ (z)− g) ,

so

(v (T )− µ) + v′ (T )T =
σ

2
√
T

(zg′ (z) + g)

= − σ

2
√
T
θ

Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

< 0.

As long as ρ− (1− α)µ > 0, and 1− α > 0, C0 is increasing everywhere in T .
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We turn to the role of the volatility σ and the disappointment aversion θ.

dC0
dσ

= −1− α
α

v′ (σ) exp

[(
− ρ
α

+
1− α
α

v (σ)

)
T

]
.

If 1− α > 0, C0 increasing everywhere in σ. The same result is valid for the dependence on θ.

Optimal value V0. Let us show V0 has a maximum in T ∗, v (T ∗) > r, and V0 decreasing in σ and
θ.

Recall

V
1−α
α

0

(
ρ

α
− 1− α

α
r

)
=

1− exp
(
− ρ
α + 1−α

α r
)
T

1− exp
(
− ρ
α + 1−α

α v (T )
)
T
.

Observe:

1. In θ = 0, (
1− exp

(
− ρ
α + 1−α

α r
)
T

1− exp
(
− ρ
α + 1−α

α µ
)
T

)
=

(
1− exp (−xT )

1− exp (−x+ y)T

)
,

where x = ρ
α −

1−α
α r and y = 1−α

α (µ− r) < x. We have

(
1− exp (−xT )

1− exp (−x+ y)T

)′
∝ (1− exp (−xT )) y + x (exp (−yT )− 1) .

In zero,

(1− exp (−xT )) y + x (exp (−yT )− 1) ∼ 1

2
xT 2y (y − x) < 0.

and

[(1− exp (−xT )) y + x (exp (−yT )− 1)]
′

= xy (exp (−xT )− exp (−yT )) < 0.

Therefore V
1−α
α

0 |θ=0 is decreasing in T . The agent optimally choses T = 0 and is fully invested
in the risky asset.

2. v is increasing in T , and converges to µ in +∞. For µ > r, there is a unique T̂ ≥ 0, such that
v(T̂ ) > r, ∀T > T̂ . Above T̂ ,

V
1−α
α

0 >
1(

ρ
α −

1−α
α r

) ,
where the right-hand side of the inequality is the value if all wealth is invested in the risk-free
asset.
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3. In T = +∞, V
1−α
α

0 → 1

( ρα−
1−α
α r)

.

4. V0 is a continuous function of T and thus admits a maximum at an optimal value T ∗ satisfying
T ∗ ≥ T̂ .

5. Differentiating with respect to σ yields

dV
1−α
α

0

dσ
=

1− α
α

v′ (σ) exp

[(
− ρ
α

+
1− α
α

v (σ)

)
T

] (
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1− exp

[(
− ρ
α + 1−α

α v (σ)
)
T
] .

If 1− α > 0, V0 is decreasing everywhere in σ. The same result applies to θ.

Optimal time period T ∗. Let’s show T ∗ is increasing in σ and decreasing in θ, keeping v(T )

constant.
At the optimum

∂v(T ∗)

∂ log(T )
=

(
ρ

1− α
− v (T ∗)

)1−
f
(

ρ
1−α − r, T

∗
)

f
(

ρ
1−α − v (T ∗) , T ∗

)


where f (x, T ) = x/
(
exp

(
1−α
α xT

)
− 1
)
.

The right-hand side is kept constant when v(T ) is kept constant, and is increasing in T . Indeed,
since ρ

1−α − r << 1 and ρ
1−α − v(T ) << 1, the derivative of the right-hand side is approximated by:

((
ρ

1− α
− v
)

1

2

1− α
α

(v − r)T
)′

=
1

2

1− α
α

[
(v − r)( ρ

1− α
− v − Tv′) + Tv′(

ρ

1− α
− v)

]
,

and, in Appendix B, we show v + Tv′ ≤ 0 when µ = 0, i.e. v + Tv′ ≤ µ ≤ ρ
1−α , and the right-hand side

derivative is positive.
As we have shown in Appendix B, the left-hand side ∂v(T∗)

∂ log(T ) is decreasing everywhere in T , and
increasing in σ and in θ. The optimal T ∗ holding v(T ) constant is therefore increasing in σ and in θ.

D Richer information choices - Proof of Proposition
6

We take the set-up of the optimal frequency problem, with T ∗ the optimal frequency. We want to
analyze if the investor would be better off if she received an intermediate signal when her wealth
fell below a given threshold. We can represent this problem by comparing two two-period set-ups,
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where, for simplicity, the rate of time discount and the risk-free rate are both set to 0. The agent has
preferences as in Equation 5.

• At time 0: the agent’s initial wealth is normalized to 1. She invests a fraction of her wealth in a
risky account, at price P0, and the rest in the risk-free asset.

• At time 1: the risky asset trades at price P1 = P0 exp(g − 1
2σ

2 + σε1), where ε1 ∼ N (0, 1). We
assume g and σ such that µθ(P1

P0
) > 1 (the agent is better off investing in the risky asset rather

than the risk-less one, even over half the total horizon). The agent consumes some of her wealth.
She can opt to receive an alert signal if P1

P0
falls below a threshold δ.

• At time 2: the risky asset is worth P2 = P1 exp(g − 1
2σ

2 + σε2), where ε2 ∼ N (0, 1) independent
of ε1. Naturally, µθ(P2

P1
) = µθ(

P1

P0
) > 1, and µθ(

P2

P0
) > (µθ(

P2

P1
))2 > 1. The agent consumes all her

remaining wealth.

SOME USEFUL RESULTS:

1. For X and Y independent, µθ(XY ) ≥ µθ(X)µθ(Y ) (This is a direct consequence of Proposition 1)

2. For all X and Y , µθ(X + Y ) ≥ µθ(X) + µθ(Y )

PROOFS

1. This is a direct consequence of Proposition 1

2. First, observe µθ(X) ≤ E(X) so −µθ(X) ≥ −E(X) = E(−X) ≥ µθ(−X). From there, if Y = αX

for any α, we easily get µθ(X + Y ) ≥ µθ(X) + µθ(Y ). We now just need to prove the inequality is
true for X and Y independent. Since µθ(X) + µθ(Y ) = µθ(µθ(X) + Y ), the inequality is again a
direct consequence of Proposition 1.

In the “no signal” set-up, the agent does not observe her wealth until time 2.
At time 0, she allocates her wealth W0 between her intermediate consumption C1, and her savings

S0. Her wealth has value V0. She optimally invests all her savings S0 in the risky asset because
max0≤x≤1 µθ(x

P2

P0
+ (1 − x)P2

P1
) = µθ(

P2

P0
) (the agent does not set some wealth aside in the risk-free rate

between time 0 and time 1 to invest it in the risky asset at time 1). Indeed, from “useful result” number
2, we have, for x ∈ [0, 1],

µθ(x
P2

P0
+ (1− x)

P2

P1
) + (1− x)µθ(

P2

P1
(
P1

P0
− 1)) ≤ µθ(

P2

P0
),

and, from “useful result” number 1, and µθ(P1

P0
) ≥ 1,

(1− x)µθ(
P2

P1
(
P1

P0
− 1)) ≥ (1− x)µθ(

P2

P1
)(µθ(

P1

P0
)− 1) ≥ 0,

which proves max0≤x≤1 µθ(x
P2

P0
+ (1− x)P2

P1
) = µθ(

P2

P0
).
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Her optimization problem is:

V 1−α
0 = max

0≤S0≤1
(1− S0)1−α + S1−α

0 µθ(
P2

P0
)1−α,

which has solution S0 =
µθ(

P2
P0

)
1−α
α

1+µθ(
P2
P0

)
1−α
α

, C1 = 1− S0 = 1

1+µθ(
P2
P0

)
1−α
α

, and V 1−α
0 = (1 + µθ(

P2

P0
)

1−α
α )α.

In the “intermediate information” set-up:

• At time 0 The agent allocates her wealth W0 = 1 between her risky savings S̃0 and the risk-free
rate. Her wealth has value Ṽ0.

• At time 1, if P1

P0
≤ δ: The agent receives a “bad” signal and observes her wealth W̃1 = S̃0

P1

P0
+(1−

S̃0), chooses C̃1 and allocates the rest to the risky asset because µθ(P2

P1
) > 1. Her optimization

problem is:

(Ṽ1 |signal)
1−α = max

0≤C̃1≤S̃0
P1
P0

+(1−S̃0)

C̃1−α
1 + (S̃0

P1

P0
+ (1− S̃0)− C̃1)1−αµθ(

P2

P1
)1−α,

which has solution C̃1 |signal=
S̃0

P1
P0

+(1−S̃0)

1+µθ(
P2
P1

)
1−α
α

and (Ṽ1 |signal)
1−α = (S̃0

P1

P0
+(1−S̃0))1−α(1+µθ(

P2

P1
)

1−α
α )α.

Naturally, Ṽ1 |signal≥ 0.

• At time 1, if P1

P0
> δ: The agent receives no signal, and thus knows her wealth W̃1 > S̃0δ+(1−S̃0).

Her optimization problem is:

(Ṽ1 |no signal)
1−α = max

0≤C̃1≤S̃0δ+(1−S̃0)
C̃1−α

1 + µθ[(S̃0
P1

P0
+ (1− S̃0)− C̃1)(

P2

P1
)]1−α,

where, here, we use the result that the agent sets aside some wealth in the risk-free rate between
time 0 and time 1 only to consume at time 1 and not to invest in the risky asset at time 1 (see
proof above).

The agent optimization problem at time 0 is therefore:

Ṽ0 = max
0≤S̃0≤1

µθ(Ṽ1).

Because Ṽ1 |signal≥ 0, we have Ṽ0 ≥ P (no signal)
1+θP (signal) max0≤S̃0≤1 Ṽ1 |no signal, where P (no signal) = 1 −

P (signal) is the probability of not receiving an intermediate signal. Naturally, max0≤S̃0≤1 Ṽ1 |no signal≥
Ṽ1 |no signal (S̃0 = S0

1−δ ), where S0 is the optimal risky investment in the framework without intermediate
information. Notice, when S̃0 = S0

1−δ , then S̃0δ+ (1− S̃0) = 1−S0, and therefore Ṽ1 |no signal (S̃0 = S0

1−δ ) is
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greater than the valuation under C̃1 −C1, where C1 = 1− S0 is the optimal intermediate consumption
in the framework without intermediate information.

We have:

(Ṽ1 |no signal)
1−α(S̃0 =

S0

1− δ
) ≥ C1−α

1 + µθ[(S̃0
P1

P0
− δS̃0)(

P2

P1
)]1−α,

and thus

(Ṽ1 |no signal)
1−α(S̃0 =

S0

1− δ
) ≥ C1−α

1 + µθ[S0
P2

P0
+ δS̃0

P2

P1
(
P1

P0
− 1)]1−α.

From “useful results” number 1 and 2,

(Ṽ1 |no signal)
1−α(S̃0 =

S0

1− δ
) ≥ V 1−α

0 + (δS̃0)1−α[µθ(
P1

P0
)(µθ(

P1

P0
)− 1)]1−α.

Finally, we have

Ṽ 1−α
0 ≥ (

P (no signal)
1 + θP (signal)

)1−α[V 1−α
0 + (δS̃0)1−α[µθ(

P1

P0
)(µθ(

P1

P0
)− 1)]1−α].

Because P (no signal) = 1 − P (signal), the loss in Ṽ0 relative to V0 depends on P (signal), i.e. on
1

− log(δ) exp(−(log(δ))2, for the case of log-normal returns we consider, and δ << 1. On the other hand,
the gain in Ṽ0 relative to V0 is the new term δS̃0[µθ(

P1

P0
)(µθ(

P1

P0
)− 1)]. For δ << 1, 1

− log(δ) exp(−(log(δ))2

is dominated by exp(log(δ)) = δ, and we have Ṽ0 > V0. The agent is strictly better off receiving inter-
mediate signals when the intermediate price P1 falls, relative to P0, below an incremental threshold
δ << 1. This result shows the gain is actually first order in an increase in the threshold away from
0. This argument generalizes to the continuous-time case by noticing that we can obtain a similar
bound on the cumulative probability of the Brownian motion hitting the threshold over a finite time
interval, making the information cost and the ex post value of reoptimizing negligible compared to the
first-order gains from an increase in risky savings.
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