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We propose a method for solving and estimating linear rational expectations models that
exhibit indeterminacy and we provide step-by-step guidelines for implementing this
method in the Matlab-based packages Dynare and Gensys. Our method redefines a subset
of expectational errors as new fundamentals. This redefinition allows us to treat
indeterminate models as determinate and to apply standard solution algorithms. We
prove that our method is equivalent to the solution method proposed by Lubik and
Schorfheide (2003, 2004), and using the New-Keynesian model described in Lubik and
Schorfheide (2004), we demonstrate how to apply our theoretical results with a practical
exercise.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that linear rational expectations (LRE) models can have an indeterminate set of equilibria under realistic
parameter choices. Lubik and Schorfheide (2003) provided an algorithm that computes the complete set of indeterminate
equilibrium, but their approach has not yet been implemented in standard software packages and has not been widely
applied in practice. In this paper, we propose an alternative methodology based on the idea that a model with an
indeterminate set of equilibria is an incomplete model. We propose to close a model of this kind by treating a subset of the
non-fundamental errors as newly defined fundamentals.

Our method builds on the approach of Sims (2001) who provided a widely used computer code, Gensys, implemented in
Matlab, to solve for the reduced form of a general class of linear rational expectations (LRE) models. Sims's code classifies
models into three groups: those with a unique rational expectations equilibrium, those with an indeterminate set of rational
expectations equilibria, and those for which no bounded rational expectations equilibrium exists. By moving non-
fundamental errors to the set of fundamental shocks, we select a unique equilibrium, thus allowing the modeler to apply
standard solution algorithms. We provide step-by-step guidelines for implementing our method in the Matlab-based
software programs Dynare (Adjemian et al., 2011) and Gensys (Sims, 2001).

Our paper is organized as follows. In Section 2, we provide a brief literature survey and in Section 3 we review solution
methods for indeterminate models. In Section 4, we discuss the choice of which expectational errors to redefine as
ics, UCLA, Box 951477 Los Angeles, CA 90095-1477, USA.
Farmer), vkhramov@imf.org (V. Khramov), gnicolo@ucla.edu (G. Nicolò).

www.sciencedirect.com/science/journal/01651889
www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2015.02.012
http://dx.doi.org/10.1016/j.jedc.2015.02.012
http://dx.doi.org/10.1016/j.jedc.2015.02.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.02.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.02.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.02.012&domain=pdf
mailto:rfarmer@econ.ucla.edu
mailto:vkhramov@imf.org
mailto:gnicolo@ucla.edu
http://dx.doi.org/10.1016/j.jedc.2015.02.012
http://dx.doi.org/10.1016/j.jedc.2015.02.012


R.E.A. Farmer et al. / Journal of Economic Dynamics & Control 54 (2015) 17–3618
fundamental and we prove that all possible alternative selections have the same likelihood. Section 5 compares our method
to the work of Lubik and Schorfheide (2003) and establishes an equivalence result between the two approaches. In
Section 6, we apply our method to the New-Keynesian model described in Lubik and Schorfheide (2004) and we show how
to apply our method using Gensys to simulated data. Section 7 provides step-by-step guidelines for implementing our
method in the popular software package, Dynare,1 and Section 8 provides a brief conclusion.

2. Related literature

Blanchard and Kahn (1980) showed that a LRE model can be written as a linear combination of backward-looking and
forward-looking solutions. Since then, a number of alternative approaches for solving linear rational expectations models
have emerged (King and Watson, 1998; Klein, 2000; Uhlig, 1999; Sims, 2001). These methods provide a solution if the
equilibrium is unique, but there is considerable confusion about how to handle the indeterminate case. Some methods fail in
the case of a non-unique solution, for example, Klein (2000), while others, e.g. Sims (2001), generate one solution with a
warning message.

All of these solution algorithms are based on the idea that, when there is a unique determinate rational expectations
equilibrium, the model's forecast errors are uniquely defined by the fundamental shocks. These errors must be chosen in a
way that eliminates potentially explosive dynamics of the state variables of the model.

McCallum (1983) has argued that a model with an indeterminate set of equilibria is incompletely specified and he
recommends a procedure, the minimal state variable solution, for selecting one of the many possible equilibria in the
indeterminate case. Farmer (1999) has argued instead that we should exploit the properties of indeterminate models to help
understand data. Farmer and Guo (1995) took up that challenge by studying a model where indeterminacy arises from a
technology with increasing returns-to-scale, and Lubik and Schorfheide (2004) developed methods for distinguishing
determinate from indeterminate models which they applied to a New-Keynesian monetary model. There is a growing body
of the literature (see, for example, Belaygorod and Dueker, 2009; Bhattarai et al., 2012; Fanelli, 2012; Castelnuovo and
Fanelli, 2015; Hirose, 2011; Zheng and Guo, 2013; Bilbiie and Straub, 2013), that directly tackles the econometric challenges
posed by indeterminacy. This literature offers the possibility for the theoretical work, surveyed in Benhabib and Farmer
(1999), to be directly compared with conventional classical and new-Keynesian approaches in which equilibria are assumed
to be locally unique.

The empirical importance of indeterminacy began with the work of Benhabib and Farmer (1994) who established that a
standard one-sector growth model with increasing returns displays an indeterminate steady state and Farmer and Guo
(1994) who exploited that property to generate business cycle models driven by self-fulfilling beliefs. More recent New-
Keynesian models have been shown to exhibit indeterminacy if the monetary authority does not increase the nominal
interest rate enough in response to higher inflation (see, for example, Clarida et al., 2000; Kerr and King, 1996). Our
estimation method should be of interest to researchers in both literatures.

3. Solving LRE models

Consider the following k-equation LRE model. We assume that XtARk is a vector of deviations from means of some
underlying economic variables. These may include predetermined state variables, for example, the stock of capital, non-
predetermined control variables, for example, consumption; and expectations at date t of both types of variables.

We assume that zt is an l� 1 vector of exogenous, mean-zero shocks and ηt is a p� 1 vector of endogenous shocks.2 The
matrices Γ0 and Γ1 are of dimension k� k, possibly singular, Ψ and Π are, respectively, k� l and k� p known matrices.

Using the above definitions, we will study the class of linear rational expectations models described by

Γ0Xt ¼Γ1Xt�1þΨ ztþΠηt : ð1Þ
Sims (2001) shows that this way of representing a LRE is very general and most LRE models that are studied in practice by
economists can be written in this form. We assume that

Et�1 ztð Þ ¼ 0 and Et�1 ηt
� �¼ 0: ð2Þ

We define the l� l matrix Ωzz:

Et�1 ztzTt
� �¼Ωzz; ð3Þ

which represents the covariance matrix of the exogenous shocks. We refer to these shocks as predetermined errors, or
equivalently, predetermined shocks. The second set of shocks, ηt, has dimension p. Unlike the zt, these shocks are
endogenous and are determined by the solution algorithm in a way that eliminates the influence of the unstable roots of the
1 Dynare is a Matlab-based software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium
(DSGE). Visit www.dynare.org for details.

2 Sims (2001) allows zt to be autoregressive with non zero conditional expectation. We assume, instead, that zt always has zero conditional mean. That
assumption is unrestrictive since an autoregressive error can be written in our form by defining a new state variable, ~zt and letting the innovation of the
original variable, zt, be the new fundamental shock.

www.dynare.org
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system. In many important examples, the ηi;t have the interpretation of expectational errors and, in those examples,

ηi;t ¼ Xi;t�Et�1 Xi;t
� �

: ð4Þ

3.1. The QZ decomposition

Sims (2001) shows how to write Eq. (1) in the form

S11 S12
0 S22

" #zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{S

~X1;t

~X2;t

" #zfflfflfflffl}|fflfflfflffl{~X t

¼
T11 T12

0 T22

" #zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{T

~X1;t�1

~X2;t�1

" #zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{~X t � 1

þ
~Ψ 1
~Ψ 2

" #zfflfflffl}|fflfflffl{
zt

~Ψ

þ
~Π 1
~Π 2

" #zfflfflfflffl}|fflfflfflffl{~Π

ηt ð5Þ

where the matrices S; T , ~Ψ and ~Π and the transformed variables ~Xt are defined as follows: Let

Γ0 ¼ QSZT ; and Γ1 ¼ QTZT ; ð6Þ
be the QZ decomposition of Γ0;Γ1

� �
where Q and Z are k� k orthonormal matrices and S and T are upper triangular and

possibly complex.
The QZ decomposition is not unique. The diagonal elements of S and T are called the generalized eigenvalues of Γ0;Γ1

� �
and Sims's algorithm chooses one specific decomposition that orders the equations so that the absolute values of the ratios
of the generalized eigenvalues are placed in increasing order that is

tjj
�� ��= sjj

�� ��Z tiij j= siij j for j4 i: ð7Þ
Sims proceeds by partitioning S, T, Q and Z as

S¼
S11 S12
0 S22

" #
; T ¼

T11 T12

0 T22

" #
; ð8Þ

Q ¼
Q11 Q12

Q21 Q22

" #
; Z ¼

Z11 Z12

Z21 Z22

" #
; ð9Þ

where the first block contains all the equations for which tjj
�� ��= sjj

�� ��o1 and the second block, all those for which tjj
�� ��= sjj

�� ��Z1.
The transformed variables ~Xt are defined as

~Xt ¼ ZTXt ; ð10Þ
and the transformed parameters as

~Ψ ¼QTΨ and ~Π ¼QTΠ: ð11Þ

3.2. Using the QZ decomposition to solve the model

The model is said to be determinate if Eq. (5) has a unique bounded solution. To establish existence of at least one
bounded solution we must eliminate the influence of all of the unstable roots; by construction, these are contained in the
second block:

~X2;t ¼ S�1
22 T22

~X2;t�1þS�1
22

~Ψ 2ztþ ~Π2ηt
� 	

; ð12Þ

since the eigenvalues of S�1
22 T22 are all greater than or equal to one in absolute value. Hence a bounded solution, if it exists,

will set

~X2;0 ¼ 0; ð13Þ
and

~Ψ 2ztþ ~Π2ηt ¼ 0: ð14Þ
Since the elements of ~X2;t are linear combinations of X2;t , a necessary condition for the existence of a solution to Eq. (14) is
that there are at least as many non-predetermined variables as unstable generalized eigenvalues. A sufficient condition is
that the columns of ~Π2 in the matrix,

~Ψ 2
~Π 2

h i
; ð15Þ
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are linearly independent so that there is at least one solution to Eq. (14) for the endogenous shocks, ηt, as a function of the
fundamental shocks, zt. In the case that ~Π 2 is square and non-singular, we can write the solution for ηt as

ηt ¼ � ~Π
�1
2

~Ψ 2zt : ð16Þ
More generally, Sims' code checks for existence using the singular value decomposition of (15).

To find a solution for ~X1;t we take Eq. (16) and plug it back into the first block of (5) to give the expression

~X1;t ¼ S�1
11 T11

~X1;t�1þS�1
11

~Ψ 1� ~Π 1
~Π

�1
2

~Ψ 2

� 	
zt : ð17Þ

Even if there is more than one solution to (14) it is possible that they all lead to the same solution for ~X1;t . Sims provides a
second use of the singular value decomposition to check that the solution is unique. Eqs. (13) and (17) determine the
evolution of ~Xt

n o
as functions of the fundamental shocks ztf g and, using the definition of ~Xt

n o
from (10), we can recover the

original sequence Xtf g.

3.3. The indeterminate case

There are many examples of sensible economic models where the number of expectational variables is larger than the
number of unstable roots of the system. In that case, Gensys will find a solution but flag the fact that there are many others.
We propose to deal with that situation by providing a statistical model for one or more of the endogenous errors.

The rationale for our procedure is based on the notion that agents situated in an environment with multiple rational
expectations equilibria must still choose to act. And to act rationally, they must form some forecast of the future and,
therefore, we can model the process of expectations formation by specifying how the forecast errors covary with the other
fundamentals.

If a model has n unstable generalized eigenvalues and p non-fundamental errors then, under some regularity assumptions,
there will be m¼ p�n degrees of indeterminacy. In that situation we propose to redefine m non-fundamental errors as new
fundamental shocks. This transformation allows us to treat indeterminate models as determinate and to apply standard
solution and estimation methods.

Consider model (1) and suppose that there are m degrees of indeterminacy. We propose to partition the ηt into two
pieces, ηf ;t and ηn;t , and to partition Π conformably so that

Γ0
k�k

Xt
k�1

¼Γ1
k�k

Xt�1
k�1

þΨ
k�l

zt
l�1

þ Π f
k�m

Πn
k�n

" # ηf ;t
m�1
ηn;t
n�1

2
64

3
75: ð18Þ

Here, ηf ;t is an m� 1 vector that contains the newly defined fundamental errors and ηn;t contains the remaining n non-
fundamental errors.

Next, we re-write the system by moving ηf ;t from the vector of expectational shocks to the vector of fundamental shocks:

Γ0
k�k

Xt
k�1

¼Γ1
k�k

Xt�1
k�1

þ Ψ
k�l

Π f
k�m

" #
~zt

lþmð Þ�1
þΠn

k�n
ηn;t
n�1

; ð19Þ

where we treat

~zt
lþmð Þ�1

¼
zt
l�1
ηf ;t
m�1

2
64

3
75; ð20Þ

as a new vector of fundamental shocks and ηn;t as a new vector of non-fundamental shocks. To complete this specification,
we define ~Ω:

~Ω
lþmð Þ� lþmð Þ

¼ Et�1

zt
l�1
ηf ;t
m�1

2
64

3
75 zt

l�1
ηf ;t
m�1

2
64

3
75
T0

B@
1
CA�

Ωzz
l�l

Ωzf
l�m

Ωfz
m�l

Ωff
m�m

0
BB@

1
CCA; ð21Þ

to be the new covariance matrix of fundamental shocks. This definition requires us to specify m mþ1þ2lð Þ=2 new variance
parameters, these are the m mþ1ð Þ=2 elements of Ωff, and m� l new covariance parameters, these are the elements of Ωzf .
By choosing these new parameters and applying Sims' solution algorithm, we select a unique bounded rational expectations
equilibrium. The diagonal elements of ~Ω that correspond to ηf have the interpretation of a pure ‘sunspot’ component to the
shock and the covariance of these terms with zt represents the response of beliefs to the original set of fundamentals.

Our approach to indeterminacy is equivalent to defining a new model in which the indeterminacy is resolved by
assuming that expectations are formed consistently using the same forecasting method in every period. For example,
expectations may be determined by a learning mechanism as in Evans and Honkapohja (2001) or using a belief function as
in Farmer (2002). For our approach to be valid, we require that the belief function is time invariant and that shocks to that
function can be described by a stationary probability distribution. Our newly transformed model can be written in the form
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of Eq. (1), but the fundamental shocks in the transformed model include the original fundamental shocks zt, as well as the
vector of new fundamental shocks, ηf ;t .

4. Choice of expectational errors

Our approach raises the practical question of which non-fundamentals should we choose to redefine as fundamental.
Here we show that, given a relatively mild regularity condition, there is an equivalence between all possible ways of
redefining the model.

Definition 1 (Regularity). Let ε be an indeterminate equilibrium of model (1) and use the QZ decomposition to write the
following equation connecting fundamental and non-fundamental errors:

~Ψ 2ztþ ~Π2ηt ¼ 0: ð22Þ
Let n be the number of generalized eigenvalues that are greater than or equal to 1 and let p4n be the number of non-
fundamental errors. Partition ηt into two mutually exclusive subsets, ηf ;t and ηn;t such that ηf ;t [ ηn;t ¼ ηt and partition ~Π 2

conformably so that

~Π 2
n�p

ηt
p�1

¼ ~Π 2f
n�m

~Π 2n
n�n

" # ηf ;t
m�1
ηn;t
n�1

2
64

3
75: ð23Þ

The indeterminate equilibrium, ε, is regular if, for all possible mutually exclusive partitions of ηt, ~Π 2n has full rank.

Regularity rules out situations where there is a linear dependence in the non-fundamental errors and all of the
indeterminate LRE models that we are aware of, that have been studied in the literature, satisfy this condition.

Theorem 1. Let ε be an indeterminate equilibrium of model (1) and let P be an exhaustive set of mutually exclusive partitions of
ηt into two non-intersecting subsets, where

pAPjp¼ ηf ;t
m�1

;ηn;t
n�1

 !T
8<
:

9=
;:

Let p1 and p2 be elements of P and let ~Ω1 be the covariance matrix of the new set of fundamentals, zt ;ηf ;t
h i

associated with
partition p1. If ε is regular then there is a covariance matrix ~Ω2, associated with partition 2 such that the covariance matrix

Ω¼ E

zt
ηf ;t
ηn;t

2
64

3
75

zt
ηf ;t
ηn;t

2
64

3
75
T0

BB@
1
CCA; ð24Þ

is the same for both partitions. p1 and p2, parameterized by ~Ω1 and ~Ω2, are said to be equivalent partitions.

Proof. See Appendix A.

Corollary 1. The joint probability distribution over sequences Xtf g is the same for all equivalent partitions.

Proof. The proof follows immediately from the fact that the joint probability of sequences Xtf g, is determined by the joint
distribution of the shocks. □

The question of how to choose a partition pi is irrelevant since all partitions have the same likelihood. However, the
partition will matter, if the researcher imposes zero restrictions on the variance covariance matrix of fundamentals.

Why does this matter? Suppose that the researcher choose one of two possible partitions, call this p1, by specifying one
of two expectational errors from the original model as a new fundamental. Under partition p1; the covariance parameters of
the second expectational error with the fundamentals will be complicated functions of all of the parameters of the model.

Suppose instead that the researcher chooses the second expectational error to be fundamental, call this partition p2. In
this case, it is the covariance parameters of the first expectational error that will depend on model parameters. Because the
researcher cannot know in advance, which of these specifications is the correct one, we recommend that in practice, the
VCV matrix of the augmented shocks, ~z, should be left unrestricted.

Lubik and Schorfheide (2004) refer to ‘belief shocks’ which they think of as independent causal disturbances that
influence all of the endogenous variables at each date. Their belief shocks are isomorphic to what Cass and Shell (1983) refer
to as ‘sunspots’ and what Azariadis (1981) and Farmer and Woodford (1984, 1997) call ‘self-fulfilling prophecies’.

In Section 5, we prove that Lubik and Schorfheide's representation of a belief shock can be represented as a probability
distribution over the forecast error of a subset of the variables of the model. Farmer (2002) shows how a self-fulfilling belief
of this kind can be enforced by a forecasting rule, augmented by a sunspot shock. If agents use this rule in every period, and
if their current beliefs about future prices are functions of the current sunspot shock, those beliefs will be validated in a
rational expectations equilibrium.
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5. Lubik–Schorfheide and Farmer–Khramov–Nicolò compared

The two papers by Lubik and Schorfheide (Lubik and Schorfheide, 2003, 2004), are widely cited in the literature
(Belaygorod and Dueker, 2009; Zheng and Guo, 2013; Lubik and Matthes, 2013) and their approach is the one most closely
emulated by researchers who wish to estimate models that possess an indeterminate equilibrium. This section compares the
Lubik–Schorfheide method to the Farmer–Khramov–Nicolò technique (which we denote by LS and FKN) and proves an
equivalence result.

We show in Theorem 2 that every LS equilibrium can be implemented as a FKN equilibrium, and conversely, every FKN
equilibrium can be characterized using the LS technique. Because our method can be implemented using standard
algorithms, our method provides an easy way for applied researchers to simulate and estimate indeterminate models using
widely available computer software. And Theorem 2 shows that the full set of indeterminate equilibria can be modeled
using our approach.

5.1. The singular value decomposition

Determinacy boils down to the following question: Does Eq. (14), which we repeat below as Eq. (25), have a unique
solution for the p� 1 vector of endogenous errors, ηt , as functions of the ℓ� 1 vector of fundamental errors, zt?

~Ψ 2
n�ℓ

zt
ℓ�1

þ ~Π 2
n�p

ηt
p�1

¼ 0: ð25Þ

To answer this question, LS apply the singular value decomposition to the matrix ~Π 2. The interesting case is when p4n, for
which ~Π2 has n singular values, equal to the positive square roots of the eigenvalues of ~Π 2

~Π
T
2. The singular values are

collected into a diagonal matrix D11: The matrices U1 and V in the decomposition are orthonormal and m¼ p�n is the
degree of indeterminacy:

~Π 2
n�p

� U1
n�n

D11
n�n

0
n�m


 �
VT

p�p
: ð26Þ

Replacing ~Π 2 in (25) with this expression and premultiplying by U1
T
lead to the equation

UT
1

n�n

~Ψ 2
n�ℓ

zt
ℓ�1

þ D11
n�n

0
n�m


 �
VT

p�p
ηt
p�1

¼ 0: ð27Þ

Now partition

V ¼ V1
p�n

V2
p�m


 �
;

and premultiply (27) by D�1
11 ,

D�1
11

n�n
UT

1
n�n

~Ψ 2
n�ℓ

zt
ℓ�1

þVT
1

n�p
ηt
p�1

¼ 0: ð28Þ

Because p4n this system has fewer equations than unknowns. LS suggest that we supplement it with the following new
m¼ p�n equations:

Mz
m�ℓ

zt
ℓ�1

þ Mζ
m�m

ζt
m�1

¼ VT
2

m�p
ηt
p�1

: ð29Þ

The m� 1 vector ζt is a set of sunspot shocks that is assumed to have mean zero and covariance matrix Ωζζ and to be
uncorrelated with the fundamentals, zt:

E ζt
� ¼ 0; E ζtz

T
t

� ¼ 0; E ζtζ
T
t

h i
¼Ωζζ : ð30Þ

Correlation of the forecast errors, ηt, with fundamentals, zt, is captured by the matrix Mz. Because the parameters of Ωζζ
cannot separately be identified from the parameters of Mζ , LS choose the normalization

Mζ ¼ Im: ð31Þ
Appending Eq. (29) as additional rows to Eq. (28), premultiplying by V and rearranging terms lead to the following

representation of the expectational errors as functions of the fundamentals, zt and the sunspot shocks, ζt:

ηt
p�1

¼ �V1
p�n

D�1
11

n�n
UT

1
n�n

~Ψ 2
n�ℓ

þ V2
p�m

Mz
m�ℓ

� �
zt
ℓ�1

þ V2
p�m

ζt
m�1

: ð32Þ

This is Eq. (25) in Lubik and Schorfheide (2004) using our notation for dimensions and where our Mz is what LS call ~M . More
compactly

ηt
p�1

¼ V1
p�n

N
n�ℓ

zt
ℓ�1

þ V2
p�m

Mz
m�ℓ

zt
ℓ�1

þ V2
p�m

ζt
m�1

; ð33Þ
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where

N
n�ℓ

� �D�1
11

n�n
UT

1
n�n

~Ψ 2
n�ℓ

:

is a function of the parameters of the model.

5.2. Equivalent characterizations of indeterminate equilibria

To define a unique sunspot equilibrium when the model is indeterminate, our method partitions ηt into two subsets;
η¼ ηf ;ηn

n o
. We refer to ηf as new fundamentals. A FKN equilibrium is characterized by a parameter vector θAΘFKN which

has two parts. θ1AΘ1:

θ1 � vec Γ0;Γ1;Ψ ;Ωz
� �T

;

is a vector of parameters of the structural equations, including the variance covariance matrix of the original fundamentals.
And θ2AΘ2

θ2 � vec Ωzf ;Ωff
� �T

;

is a vector of parameters that contains the variance covariance matrix of the new fundamentals and the covariances of these
new fundamentals, ηf, with the original fundamentals, z.

A FKN representation of equilibrium is a vector θFKNAΘFKN where ΘFKN is defined as

ΘFKN � Θ1;Θ2
� �

:

Theorem 1 establishes that there is an equivalence class of models, all with the same likelihood function, in which the
m� 1 vector ηf is selected as a new set of fundamentals and the VCV matrices Ωff and Ωzf are additional parameters. To
complete the model in this way wemust addm mþ1ð Þ=2 new parameters to define the symmetric matrixΩff andm� ℓ new
parameters to define the elements of Ωzf.

In contrast a LS equilibrium is characterized by a parameter vector

ΘLS � Θ1;Θ3
� �

;

where θ3AΘ3 is defined as

θ3 � vec Ωζζ ;Mz
� �T

: ð34Þ

These parameters characterize the additional equation:

Mz
m�ℓ

zt
ℓ�1

þ ζt
m�1

¼ VT
2

m�p
ηt
p�1

; ð35Þ

where Eq. (35) adds the normalization (31) to Eq. (29).
The matrix Ωζζ has m� mþ1ð Þ=2 new parameters; these are the variance covariances of the sunspot shocks and the

matrix Mz has m� ℓ new parameters, these capture the covariances of η with z. To establish the connection between the
two characterizations of equilibrium, we establish the following two lemmas.

Lemma 1. Let ε be a regular indeterminate equilibrium, characterized by θFKN ¼ θ1;θ2
� �

and let pi ¼ fηif ;t ;ηin;tg be an element of
the set of partitions, P. Let θLS ¼ θ1;θ3

� �
be the parameters of a Lubik–Schorfheide representation of equilibrium. There are an

m�mmatrix Gi and an m� ℓmatrix Hi, where the elements of Gi and Hi are functions of θ1 and an m� ℓmatrix Si, respectively:

Si
m�ℓ

¼ Hi

m�ℓ
þMz

m�ℓ

� �
; ð36Þ

such that the sunspots shocks in the LS representation of equilibrium are related to the fundamentals zt and the newly defined
FKN fundamentals, ηif ;t by the equation

ζt
m�1

¼ Gi

m�m
ηif ;t
m�1

� Si
m�ℓ

zt
ℓ�1

: ð37Þ

Proof. See Appendix B.

Lemma 1 connects the LS sunspots to the FKN definition of fundamentals. Lemma 2, described below, provides a way of
mapping between the original fundamental shocks and the newly defined fundamentals under two alternative partitions pi

and pj.

Lemma 2. Let ε be a regular indeterminate equilibrium, characterized by θFKN ¼ θ1;θ2
� �

and let pi ¼ ηif ;t ;η
i
n;t

n o
and

pj ¼ ηjf ;t ;η
j
n;t

n o
be two elements of the set of partitions, P. There exist an m�m matrix Gi, an m� ℓ matrix Hi, an m�m

matrix Gj, and an m� ℓ matrix Hj, where the elements of Gi, Hi, Gj and Hj are functions of θ1. The new FKN fundamentals under
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partition pi, ηif ;t , are related to the fundamentals zt and the new FKN fundamentals under partition pj, η
j
f ;t by the equation

ηif ;t
m�1

¼ Gi
� 	�1

m�m

Gj

m�m
ηjf ;t
m�1

� Hj

m�ℓ
� Hi

m�ℓ

� �
zt
ℓ�1

" #
: ð38Þ

Proof. Follows immediately from Eqs. (36) and (37) and the fact that Gi is non-singular for all i. □

Eq. (38) defines the equivalence between alternative FKN definitions of the fundamental shocks, without reference to the
LS definition. The following theorem, proved in Appendix C, uses Lemma 1 to establish an equivalence between the LS and
FKN definitions.

Theorem 2. Let θLS and θFKN be two alternative parameterizations of an indeterminate equilibrium in model (1). For every FKN
equilibrium, parameterized by θFKN , there is a unique matrix Mz and a unique VCV matrix Ωζζ such that θ3 ¼ vec Ωζζ ;Mz

� �T and
θ1;θ3
� �

AΘLS defines an equivalent LS equilibrium. Conversely, for every LS equilibrium, parameterized by θLS, and every
partition piAP, there are a unique VCV matrix Ωff and a unique covariance matrix Ωzf such that θ2 ¼ vecðΩff ;Ωzf ÞT and
θ1;θ2
� �

AΘFKN defines an equivalent FKN equilibrium.

Proof. See Appendix C.

Next, we turn to an example that shows how to use our results in practice.

6. Applying our method in practice: the Lubik–Schorfheide example

In this section we generate data from the model described in Lubik and Schorfheide (2004) and we use our method to
recover parameter estimates from the simulated data. By using simulated data, rather than actual data, we avoid possible
complications that might arise from mis-specification. For the simulated data, we know the true data generation process.

Section 6.1 explains how to implement our method for the case of the New-Keynesian model and in Section 6.2 we
establish two results. First, we take Lubik and Schorfheide's (2004) parameter estimates for the pre-Volcker period, and we
treat these parameter estimates as truth. Using the LS parameters, we simulate data under two alternative partitions of our
model, and we verify that, using the same random seed, the simulated data are identical for both partitions. Second, we
estimate the parameters of the model in Dynare, for the two alternative specifications, and we verify that the parameter
estimates from two different partitions are the same.

6.1. The LS model with the FKN approach

The model of Lubik and Schorfheide (2004) consists of a dynamic IS curve:

xt ¼ Et xtþ1ð Þ�τ Rt�Et πtþ1ð Þð Þþgt ; ð39Þ
a New Keynesian Phillips curve:

πt ¼ βEt πtþ1ð Þþκ xt�ztð Þ; ð40Þ
and a Taylor rule:

Rt ¼ ρRRt�1þ 1�ρR

� �
ψ1πtþψ2 xt�ztð Þ� þεR;t : ð41Þ

The variable xt represents log deviations of GDP from a trend path and πt and Rt are log deviations from the steady state
level of inflation and the nominal interest rate, respectively.

The shocks gt and zt follow univariate AR(1) processes:

gt ¼ ρggt�1þεg;t ; ð42Þ

zt ¼ ρzzt�1þεz;t ; ð43Þ
where the standard deviations of the fundamental shocks εg;t , εz;t and εR;t are defined as σg, σz and σR, respectively. We allow
the correlation between shocks, ρgz, ρgR and ρzR, to be nonzero. The rational expectation forecast errors are defined as

η1;t ¼ xt�Et�1 xt½ �; η2;t ¼ πt�Et�1 πt½ �: ð44Þ

We define the vector of endogenous variables:

Xt ¼ xt ;πt ;Rt ; Et xtþ1ð Þ; Et πtþ1ð Þ; gt ; zt
� T

the vectors of fundamental shocks and non-fundamental errors:

zt ¼ εR;t ; εg;t ; εz;t
� T

; ηt ¼ η1;t ;η2;t
h iT
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and the vector of parameters:

θ¼ ψ1;ψ2;ρR;β; κ; τ;ρg ;ρz;σg ;σz;σR;ρgz;ρgR;ρzR

h iT
:

This leads to the following representation of the model:

Γ0ðθÞXt ¼Γ1ðθÞXt�1þΨ ðθÞztþΠðθÞηt ; ð45Þ

where Γ0 and Γ1 are represented by

Γ0ðθÞ ¼

1 0 τ �1 �τ �1 0
κ �1 0 0 β 0 �κ

ð1�ρRÞψ2 ð1�ρRÞψ1 �1 0 0 0 �ð1�ρRÞψ2

0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0

2
666666666664

3
777777777775
;

and,

Γ1ðθÞ ¼

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 �ρR 0 0 0 0
0 0 0 0 0 ρg 0
0 0 0 0 0 0 ρz

0 0 0 1 0 0 0
0 0 0 0 1 0 0

2
666666666664

3
777777777775
;

and the coefficients of the shock matrices Ψ and Π are given by

Ψ ðθÞ ¼

0 0 0
0 0 0
�1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

2
666666666664

3
777777777775
; ΠðθÞ ¼

0 0
0 0
0 0
0 0
0 0
1 0
0 1

2
666666666664

3
777777777775
:

The last two rows of this system define the non-fundamental shocks and it is these rows that we modify when
estimating the model with the FKN approach.

6.1.1. The determinate case
When the monetary policy is active, ψ1

�� ��41, the number of expectational variables, Et xtþ1ð Þ; Et πtþ1ð Þ� �
, equals the

number of unstable roots. The Blanchard–Kahn condition is satisfied and there is a unique sequence of non-fundamental
shocks such that the state variables are bounded. In this case the model can be solved using Gensys which delivers the
following system of equations:

Xt ¼ G1ðθÞXt�1þG2ðθÞzt ð46Þ
where G1ðθÞ represents the coefficients of the policy functions and G2ðθÞ is the matrix which expresses the impact of
fundamental errors on the variables of interest, Xt.

6.1.2. Indeterminate models
A necessary condition for indeterminacy is that the monetary policy is passive, which occurs when

0o ψ1

�� ��o1: ð47Þ

A sufficient condition is that

0oψ1þ
ð1�βÞ
κ

ψ2o1: ð48Þ
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This condition is stronger than (47) but the two conditions are close, given our prior, which sets3

ð1�βÞ
κ

ψ2 ¼ 0:056:

When (48) holds, the number of expectational variables, Et xtþ1ð Þ; Et πtþ1ð Þ� �
, exceeds the number of unstable roots and

there is 1 degree of indeterminacy. Using our approach, one can specify two equivalent alternative models depending on
choice of the partition pi, for i¼1,2.

Fundamental output expectations: Model 1. In our first specification, we choose η1;t , the forecast error of output, as a new
fundamental. We call this partition p1 and we write the new vector of fundamental shocks

z1;t ¼ εR;t ; εg;t ; εz;t ;η1;t
h iT

:

The model is defined as

Γ0ðθÞXt ¼Γ1ðθÞXt�1þΨ xðθÞ ~z1;tþΠxðθÞη2;t ; ð49Þ
where

Ψ xðθÞ ¼

0 0 0 0
0 0 0 0
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

2
666666666664

3
777777777775

and ΠxðθÞ ¼

0
0
0
0
0
0
1

2
666666666664

3
777777777775
:

Notice that the matrices Γ0 and Γ1 are unchanged. We have simply redefined η1;t as a fundamental shock by moving one of the
columns of Π to Ψ . Because the Blanchard–Kahn condition is satisfied under this redefinition, the model can be solved using
Gensys to generate policy functions as well as the matrix which describes the impact of the re-defined vector of fundamental
shocks on Xt.

Fundamental inflation expectations: Model 2. Following the same logic there is an alternative partition p2 where the new
vector of fundamentals is defined as

~z2;t ¼ εR;t ; εg;t ; εz;t ;η2;t
h iT

:

Here, the state equation is described by

Γ0ðθÞXt ¼Γ1ðθÞXt�1þΨπðθÞ ~z2;tþΠπðθÞη1;t ; ð50Þ
where now

ΨπðθÞ ¼

0 0 0 0
0 0 0 0
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

2
666666666664

3
777777777775

and ΠπðθÞ ¼

0
0
0
0
0
1
0

2
666666666664

3
777777777775
:

Using Gensys, we can find a unique series of non-fundamental shocks η1;t such that the state variables are bounded and the
state variables Xt are then a function of Xt�1 and the new vector of fundamental errors ~z2;t .

6.2. Simulation and estimation using the FKN approach

In this section, we simulate data from the New-Keynesian model using the parameter estimates of Lubik and Schorfheide
(2004) for the case when the model is indeterminate. In light of Theorem 2 and Lemma 2, data generated from the two
partitions is identical, a result that we verify computationally. In Section 6.2.2, we use our simulated data to estimate model
parameters under the two representations and we confirm that the posterior modes from each representation are, in most
cases, equal to two decimal places and that all of the estimates lie well within the 90% probability bounds of the alternative
specification.4 These results demonstrate how to apply our theoretical results from Sections 4 and 5 in practice.
3 We thank one of the referees for pointing that the Taylor principle must be modified, when the central bank responds to the output gap as well as to inflation.
4 The estimates are not identical because of sampling error that arises from the use of a finite number of draws when we approximate posterior

distributions with the Metropolis–Hastings algorithm. We did not see an obvious way of setting the same random seed within Dynare and hence we used
different draws for each specification.
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6.2.1. Simulation
In this section, we generate data for the observables, yt ¼ xobs;t ;πobs;t ;Robs;t

� �
, in two different ways. These variables are

defined as
1.
in S

con
ma
xobs;t the percentage deviations of (log) real GDP per capita from an HP-trend;

2.
 πobs;t the annualized percentage change in the Consumer Price Index for all Urban Consumers;

3.
 Robs;t the annualized percentage average Federal Funds Rate.
As described in Lubik and Schorfheide (2004), the measurement equation is given by

yt ¼
0
πn

πnþrn

2
64

3
75þ 1 0 0 0 0 0 0

0 4 0 0 0 0 0
0 0 4 0 0 0 0

2
64

3
75Xt : ð51Þ

where πn and rn are annualized steady-state inflation and real interest rates expressed in percentages, respectively. The
parameter values that we use to run the simulation of the New-Keynesian model in Lubik and Schorfheide (2004) are the
posterior estimates that the authors report for the pre-Volcker period and that we reproduce in Table 2. We feed the model
with shocks using the FKN method for two alternative partitions.

We take the LS estimates of the standard deviation of the sunspots shock, σζ , and them� ℓmatrixMz and we treat these
estimates as the truth. By applying Lemma 1 to the LS parameters, we obtain corresponding values5 for the standard
deviation of the newly defined fundamental, ηif ;t , under two partitions, pi, iAf1;2g:

Ωi
ff

m�m
¼ Gi

m�m

� 	�1
σ2
ζ

m�m

þ Si
m�ℓ

Ωzz
ℓ�ℓ

Si
� 	T
l�m

2
4

3
5 Gi
� 	T
m�m

 !�1

; ð52Þ

and for the covariance of the fundamentals zt with the newly defined fundamental ηif ;t ,

Ωi
fz

m�ℓ

¼ Gi
� 	�1

m�m

Si
m�ℓ

Ωzz
ℓ�ℓ

: ð53Þ

The details on the construction of the matrices Gi, Hi and Si are described in Appendix D.
Having defined the new vector of fundamentals ~z i;t ¼ εR;t ; εg;t ; εz;t ;ηi;t

h iT
we construct the following variance–covariance

matrix:

Ωi

ℓþmð Þ� ℓþmð Þ
� E ~zi;t ~z

T
i;t

� 	
: ð54Þ

Next, we perform of the Cholesky decomposition of the matrix Ωi ¼ Li Li
� 	T

, where Li is a lower triangular ℓþmð Þ �
ℓþmð Þ matrix. After defining a ℓþmð Þ � 1 vector of shocks ut such that EðutÞ ¼ 0 ℓþmð Þ�1 and EðutuT

t Þ ¼ I ℓþmð Þ, we rewrite ~z i;t
as ~zi;t ¼ Liut .

The purpose of the Cholesky decomposition is to simplify the estimation procedure in Dynare6 which we use to estimate
the ℓþmð Þ � ℓþmð Þ�1½ � parameters of the matrix Li rather than the variance–covariance terms of the matrix Ωi. Eq. (55)
reports the matrix Ωi for i¼ 1;2:

Ω1 ¼

0:05 � � �
0 0:07 � �
0 0:04 1:27 �

�0:03 0:10 0:11 0:17

2
6664

3
7775; Ω2 ¼

0:05 � � �
0 0:07 � �
0 0:04 1:27 �

�0:01 0:13 �2:37 4:60

2
6664

3
7775; ð55Þ

and Eq. (56) is the corresponding Cholesky decomposition Li for i¼ 1;2:

L1 ¼

0:23 0 0 0
0 0:27 0 0
0 0:15 1:11 0

�0:14 0:37 0:04 0:10

2
6664

3
7775; L2 ¼

0:23 0 0 0
0 0:27 0 0
0 0:15 1:11 0

�0:05 0:04 �2:12 0:26

2
6664

3
7775: ð56Þ

Given a draw of ut, we obtain the new vector of fundamentals ~z i;t ¼ Liut for partition pi and we construct the
corresponding draws of the vector ~zj;t ¼ εR;t ; εg;t ; εz;t ;ηj;t

h iT
. Using Lemma 2, Eq. (38), which we reproduce below as Eq. (57),
5 We derive both Eqs. (52) and (53) from the result in Lemma 1 and by recalling that the vector of sunspot shocks ζt is now a scalar which, as described
ection 5.1, has the following properties, E ζt

� ¼ 0, E ζtzTt
� ¼ 0 and E ζtζ

T
t

h i
¼ σ2

ζ .
6 In particular, the estimation of the ℓþmð Þ � ℓþmð Þ�1½ � elements of the lower triangular matrix Li substantially reduces issues related to the
vergence of the posterior estimates relative to the case of performing the estimation exercise by estimating the elements of the variance-covariance
trix Ωi.
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we derive the non-fundamental shock which is included as fundamental under partition pj for ja i:

ηjf ;t
m�1

¼ Gj
� 	�1

m�m

Gi

m�m
ηif ;t
m�1

� Hi

m�ℓ
� Hj

m�ℓ

� �
zt
ℓ�1

" #
: ð57Þ

By feeding the two alternative models with the corresponding new vectors of fundamentals ~z1;t and ~z2;t , using the same
random seed, we obtain identical simulated data.7

6.2.2. Estimation results
Next, we estimate the parameters of the model on the simulated data and we demonstrate that the posterior estimates of

the model parameters are equivalent under two alternative model specifications. Table 1 reports the prior distributions of
the parameters used in our estimation. With the exception of priors over the elements of Li, the prior distributions for the
other parameters are the same as in Lubik and Schorfheide (2004).8

Table 2 compares the posterior estimates of the model parameters. While the first column reports the parameter values
used to simulate the data, columns two and three are the estimates for two alternative partitions p1 and p2. Partition p1
treats η1;t as fundamental and partition p2 treats η2;t as fundamental. We used a random walk Metropolis–Hastings
algorithm to obtain 150,000 draws from the posterior mean and we report 90% probability intervals of the estimated
parameters.9

Compare the mean parameter estimates across the three columns. Fifteen of these parameters are common to all three
specifications; these are the parameters: ψ1;ψ2;ρR;πn; rn; κ; τ�1;ρg ;ρz; L11; L22; L33; L21; L31 and L32. The remaining four
parameters reported in columns 2 and 3, Li41; L

i
42; L

i
43, and L44

i
represent the elements of the Li matrix that are not comparable

across specifications.
Our results show not only that under both models the posterior point estimates are remarkably close to the parameter

values which we use to simulate the data, but also that both the posterior point estimates and the probability intervals are
statistically indistinguishable when comparing the two alternative models. This correspondence in parameter estimates
across specifications is a consequence of Theorems 1 and 2 of our paper.

7. Implementing our procedure in Dynare

This section provides a practical guide to the user who wishes to implement our method in Dynare. Consider the New-
Keynesian model described in Section 6, which we repeat below for completeness:

xt ¼ Et ½xtþ1��τðRt�Et ½πtþ1�Þþgt ; ð58Þ

πt ¼ βEt ½πtþ1�þκxtþzt ; ð59Þ

gt ¼ ρggt�1þεg;t ; ð60Þ

zt ¼ ρzzt�1þεz;t ; ð61Þ

The model is determinate when monetary policy is active, ψ1

�� ��41. In this case Dynare finds the unique series of non-
fundamental errors that keeps the state variables bounded and Table 3 reports the code required to estimate the model in
this case.

In the case of the indeterminate models described in Section 6.1.2, running Dynare with the code from Table 3 produces
an error with a message “Blanchard–Kahn conditions are not satisfied: indeterminacy.” For regions of the parameter space
where the code produces that message, we provide two alternative versions of the model that redefine one of the non-
fundamental shocks as new fundamental. Following the notation in Section 6.1.2, we refer to these cases as Model 1, where
η1;t ¼ xt�Et�1½xt � is a fundamental shock, and Model 2, where it is η2;t ¼ πt�Et�1½πt � and we present the Dynare code to
estimate the two indeterminate cases.

Tables 4 and 5 present the amended code for these cases. In Table 4, we show how to change the model by redefining η1;t
as fundamental and Table 5 presents an equivalent change to Table 3 in which η2;t becomes the new fundamental. We have
represented the new variables and new equations in that table using bold typeface.
7 The code is available in the online Appendix and the results are obtained simulating the data by using both Gensys and Dynare.
8 The only difference with respect to Lubik and Schorfheide (2004) is that we use a flatter prior for the parameter κ. While the authors set a gamma

distribution with mean 0.5 and standard deviation 0.2, our prior sets the standard deviation to 0.35, leaving the mean unchanged. Choosing a flatter prior
avoids facing an issue in the convergence of the parameter which arises with a relatively tight prior as in Lubik and Schorfheide (2004). Also, Table 1
reports the mean, the standard deviation and the 90% probability interval for each parameter. Note that we were unable to replicate the probability
intervals in Lubik and Schorfheide (2004) and we report the 5th and the 95th percentiles of each distribution. However, the differences with Lubik and
Schorfheide (2004) in the values for the probability intervals are small.

9 To run the estimation exercise, we consider a sample of 1000 observations from the simulated data, run 6 chains of 50,000 draws each and we finally
discard half of the draws. The acceptance ratio for all the chains is between 25% and 33%.



Table 1
Prior distribution for DSGE model parameters.

Name Range Density Mean Std. Dev. 90% interval

ψ1 Rþ Gamma 1.1 0.50 [0.42,2.03]
ψ2 Rþ Gamma 0.25 0.15 [0.06,0.53]
ρR ½0;1Þ Beta 0.50 0.20 [0.17,0.82]
πn Rþ Gamma 4.00 2.00 [1.36,7.75]
rn Rþ Gamma 2.00 1.00 [0.68,3.87]
κ Rþ Gamma 0.50 0.35 [0.09,1.17]
τ�1 Rþ Gamma 2.00 0.50 [1.25,2.88]
ρg ½0;1Þ Beta 0.70 0.10 [0.54,0.85]
ρz ½0;1Þ Beta 0.70 0.10 [0.54,0.85]
L11 Rþ Inverse 0.2 0.15 [0.07,0.44]

Gamma
L22 Rþ Inverse 0.3 0.2 [0.12,0.64]

Gamma
L33 Rþ Inverse 1 0.3 [0.61,1.55]

Gamma
L21 Normal 0 0.1 [�0.16,0.16]
L31 Normal 0 0.1 [�0.16,0.16]
L32 Normal 0.15 0.1 [�0.01,0.31]

L141 Normal 0 0.2 [�0.32,0.32]

L142 Normal 0.3 0.2 [�0.02,0.62]

L143 Normal 0 0.2 [�0.32,0.32]

L144 Normal 0.1 0.2 [�0.22,0.42]

L241 Normal 0 0.2 [�0.32,0.32]

L242 Normal 0 0.2 [�0.32,0.32]

L243 Normal �2 0.5 [�2.82,�1.18]

L244 Normal 0.3 0.2 [�0.02,0.62]

Table 2
Posterior means and probability intervals.

L&S (prior 1) Mean FKN – Model 1 FKN – Model 2

Mean 90% interval Mean 90% interval

ψ1 0.77 0.77 [0.73,0.81] 0.77 [0.73,0.81]
ψ2 0.17 0.21 [0.08,0.33] 0.22 [0.08,0.35]
ρR 0.60 0.61 [0.59,0.63] 0.61 [0.59,0.63]

πn 4.28 4.44 [4.17,4.71] 4.43 [4.16,4.70]
rn 1.13 1.18 [1.10,1.25] 1.17 [1.10,1.25]
κ 0.77 0.67 [0.47,0.89] 0.71 [0.51,0.91]
τ�1 1.45 1.63 [1.41,1.85] 1.61 [1.39,1.82]
ρg 0.68 0.66 [0.62,0.70] 0.66 [0.62,0.70]
ρz 0.82 0.83 [0.81,0.84] 0.83 [0.81,0.85]

L11 0.23 0.23 [0.22,0.24] 0.23 [0.22,0.24]
L22 0.27 0.25 [0.21,0.29] 0.25 [0.21,0.29]
L33 1.11 1.14 [0.90,1.37] 1.10 [0.87,1.30]
L21 0 �0.01 [�0.03,0.009] �0.01 [�0.03,0.009]
L31 0 0.02 [�0.09,0.14] 0.003 [�0.09,0.09]
L32 0.15 0.14 [0.01,0.27] 0.14 [0.04,0.25]

L141 �0.14 �0.15 [�0.18,�0.13] � –

L142 0.37 0.36 [0.34,0.37] – –

L143 0.04 0.02 [�0.02,0.07] – –

L144 0.10 0.10 [�0.20,0.42] – –

L241 �0.05 – – �0.07 [�0.25,0.11]

L242 0.04 – – 0.03 [�0.17,0.22]

L243 �2.12 – – �2.09 [�2.16,�2.01]

L244 0.26 – – 0.30 [�0.02,0.62]
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Table 3
Determinate model.

Variable definitions var x;R; pi; g; z;
varexo e_R; e_g; e_z;

Parameter definitions parameters tau; kappa; rho_R; rho_g; rho_z;psi1psi2;

Model equations model(linear);
x¼ x þ1ð Þ�taun R�pi þ1ð Þð Þþg;
pi¼ 0:97npi þ1ð Þþkappanðx�zÞ;
R¼ rho_RnR �1ð Þþ 1�rho_Rð Þn
psi1npiþpsi2nðx�zÞð Þþe_R;
g¼ rho_gngð�1Þþe_g;
z¼ rho_znzð�1Þþe_z;
end;

Table 4
Indeterminate model 1. η1;t ¼ xt�Et�1 xt½ � is new fundamental.

Variable definitions var x;R;pi; g; z; xs;
varexo e_R; e_g; e_z; sunspot;

Parameter definitions parameters tau; kappa; rho_R; rho_g; rho_z; psi1
psi2; sigmag; sigmaz; sigmaR;

Model equations model(linear);
x¼ xs�taun R�pi þ1ð Þð Þþg;
pi¼ 0:97npi þ1ð Þþkappanðx�zÞ;
R¼ rho_RnR �1ð Þþ 1�rho_Rð Þn
psi1npiþpsi2nðx�zÞð Þþe_R;
g¼ rho_gngð�1Þþe_g;
z¼ rho_znzð�1Þþe_z;
x�xs �1ð Þ ¼ sunspot;
end;

Table 5
Indeterminate model 2. η2;t ¼ πt�Et�1 πt½ � is new fundamental.

Variable definitions var x;R;pi; g; z;pis;
varexo e_R; e_g; e_z; sunspot;

Parameter definitions parameters tau; kappa; rho_R; rho_g; rho_z; psi1
psi2; sigmag; sigmaz; sigmaR;

Model equations model(linear) ;
x¼ xðþ1Þ�taun R�pi þ1ð Þð Þþg;
pi¼ 0:97npisþkappanðx�zÞ;
R¼ rho_RnR �1ð Þþ 1�rho_Rð Þn
psi1npiþpsi2nðx�zÞð Þþe_R;
g¼ rho_gngð�1Þþe_g;
z¼ rho_znzð�1Þþe_z;
pi�pis �1ð Þ ¼ sunspot;
end;
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The following steps explain the changes in more detail. First, we define a new variable, xs� Et xtþ1
� 

and include it as one
of the endogenous variables in the model. This leads to the declaration

var x; R; pi; xs; ð62Þ
which appears in the first line of Table 4. Next, we add an expectational shock, which we call sunspot, to the set of
fundamental shocks, e_R, e_g and e_z. This leads to the Dynare statement

varexo e_R; e_g; e_z; sunspot; ð63Þ
which appears in row 2. Then we replace x þ1ð Þ by xs in the consumption-Euler equation, which becomes

x¼ xs�taun R�pi þ1ð Þð Þþg; ð64Þ
and we add a new equation that defines the relationship between xs , x and the new fundamental error:

x�xs �1ð Þ ¼ sunspot; ð65Þ
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Similar steps apply in the case of Model 2, but with η2;t taking the role of η1;t . Note that, by substituting expectations of
forward-looking variables xðþ1Þ in Model 1, and piðþ1Þ in Model 2, with xs and pis, respectively, we decrease the number of
forward-looking variables by one. Since these variables are no longer solved forwards, we must add an equation – this
appears as Eq. (65) – to describe the dynamics of the new fundamental shock.

How can a researcher know, in advance, if his model is determinate. The answer provided by Lubik and Schorfheide
(2004) is that determinate and indeterminate models are alternative representations of data that can be compared either by
likelihood ratio tests or by Bayesian model comparison.

The Lubik–Schorfheide approach assumes that the researcher can identify, a priori, determinate and indeterminate
regions of the parameter space. For models where that is difficult or impossible, Fanelli (2012) and Castelnuovo and Fanelli
(2015) propose an alternative method that may be used to test the null hypothesis of determinacy.

8. Conclusion

Our paper provides a method to solve and estimate indeterminate linear rational expectations models using standard
software packages. Our method transforms indeterminate models by redefining a subset of the non-fundamental shocks
and classifying them as new fundamentals. Our approach to handling indeterminate equilibria is more easily implementable
than that of Lubik and Schorfheide and, one might argue, is also more intuitive. We illustrated our approach using the
familiar New-Keynesian monetary model and we showed that, when monetary policy is passive, the New-Keynesian model
can be closed in one of the two equivalent ways.

Our procedure raises the question of which non-fundamental shocks to reclassify as fundamental. Our theoretical results
demonstrate that the choice of parameterization is irrelevant since all parameterizations have the same likelihood function.
We demonstrated that result in practice by estimating a model due to Lubik and Schorfheide (2004) in two different ways
and recovering parameter estimates that are statistically indistinguishable between the two. We caution that, in practice, it
is important to leave the VCV matrix of errors unrestricted for our results to apply. Our work should be of interest to
economists who are interested in estimating models that do not impose a determinacy prior.
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Appendix A
Proof of Theorem 1. Let A1 and A2 be two orthonormal row operators associated with partitions p1 and p2, respectively:

zt
η1f ;t
η1n;t

2
664

3
775¼ A1

zt
ηt

" #
;

zt
η2f ;t
η2n;t

2
664

3
775¼ A2

zt
ηt

" #
: ðA:1Þ

We assume that the operators,Ai have the form

Ai ¼
I
l�l

0

0 ~A
i

p�p

2
64

3
75; ðA:2Þ

where ~A
i
is a permutation of the columns of an Ip identity matrix. Premultiplying the vector zt ;ηt

� T by the operator Ai

permutes the rows of ηt while leaving the rows of zt unchanged. Define matricesΩff andΩzf for iA 1;2f g to be the new terms
in the fundamental covariance matrix:

E
zt
ηif ;t

" #
zt
ηif ;t

" #T0
@

1
A¼

Ωzz Ωzf

Ωfz Ωff

" #
:

Next, use (22) and (23) to write the non-fundamentals as linear functions of the fundamentals:

ηin;t ¼Θi
zztþΘi

f η
i
f ;t ; ðA:3Þ

where

Θi
z � � ~Π

i
2n

� 	�1
~Ψ 2; and Θi

f � � ~Π
i
2n

� 	�1
~Π
i
2f ; ðA:4Þ
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and define the matrix

Di ¼

I
l�l

0
l�m

0
m�l

I
m�m

Θi
z

p�mð Þ�l
Θi

f
p�mð Þ�m

2
666664

3
777775: ðA:5Þ

Using this definition, the covariance matrix of all shocks, fundamental and non-fundamental, has the following
representation:

E

zt
ηif ;t
ηin;t

2
664

3
775

zt
ηif ;t
ηin;t

2
664

3
775
T0

BB@
1
CCA¼Di

Ωzz Ωzf

Ωfz Ωff

" #
DiT : ðA:6Þ

We can also combine the last two row blocks of Di and write Di as follows:

Di ¼
I
l�l

0
l�m

Di
21

p�l
Di
22

p�m

2
64

3
75; ðA:7Þ

where

Di
21 ¼

0
m�l

Θi
z

p�mð Þ�l

2
664

3
775; Di

22 ¼
I

m�m

Θi
f

p�mð Þ�m

2
664

3
775: ðA:8Þ

Using (A.1) and the fact that Ai is orthonormal, we can write the following expression for the complete set of shocks:

zt
ηt

" #
¼ AiT

zt
ηif ;t
ηin;t

2
664

3
775: ðA:9Þ

Using Eqs. (A6) and (A9), it follows that

E
zt
ηt

" #
zt
ηt

" #T0
@

1
A¼ BiWiBiT ; for all piAP; ðA:10Þ

where

Wi �
Ωzz Ωzf

Ωfz Ωff

" #
; ðA:11Þ

and

Bi � AiTDi ¼
I 0

0 ~A
i

" #
I 0

Di
21 Di

22

" #
¼

I 0
Bi
21 Bi

22

" #
: ðA:12Þ

Using this expression, we can write out Eq. (A.10) in full to give

E
zt
ηt

" #
zt
ηt

" #T0
@

1
A¼

I 0
Bi
21 Bi

22

" #
Ωzz Ωzf

Ωfz Ωff

" #
I BiT

21

0 BiT
22

" #
: ðA:13Þ

We seek to establish that for any partition pi, parameterized by matrices Ωff ; and Ωzf that there exist matrices Ωff and Ωzf

for all partitions pjAP; ja i, such that

Ω¼ E
zt
ηt

" #
zt
ηt

" #T0
@

1
A¼ BiWiBiT ¼ BjWjBjT : ðA:14Þ

To establish this proposition, we write out the elements of (A.13) explicitly. Since Wi and Bi are symmetric we need to
consider only the upper-triangular elements which give three equations in the matrices of Ωzf and Ωff :

Ω11 ¼Ωzz;

Ω12 ¼Ωi
zzB

iT
21þΩzf B

iT
22;

Ω22 ¼ Bi
21Ω

i
zzB

iT
21þ2Bi

21Ωzf B
iT
22þBi

22Ωff B
iT
22: ðA:15Þ
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The first of these equations defines the covariance of the fundamental shocks and it holds for all i; j. Now define

a¼ vec Ωzzð Þ; xi ¼ vec Ωzf
� �

; yi ¼ vec Ωff
� �

: ðA:16Þ

Using the fact that

vec ABCð Þ ¼ CT � A
� 	

vec Bð Þ; ðA:17Þ

we can pass the vec operator through Eq. (A.15) and write the following system of linear equations in the unknowns xj and
yj:

Si
xi

yi

" #
þTia¼ Sj

xj

yj

" #
þTja; ðA:18Þ

Sk ¼
Bk
22 � I

� 	
0

Bk
22 � Bj

21

� 	
Bk
22 � Bk

22

� 	
2
64

3
75; Tk ¼

Bk
21 � I

� 	
Bk
21 � Bk

21

� 	
2
64

3
75; kA i; j

� �
: ðA:19Þ

It follows from the assumption that the equilibrium is regular that Sj has full rank for all j hence for any permutation pi;

parameterized by xi; yi
� �

we can find an alternative permutation pj with associated parameterization xj; yj
� �

:

xj

yj

" #
¼ Sj
� 	�1

Si
xi

yi

" #
þ Ti�Tj
h i

a

 !
; ðA:20Þ

that gives the same covariance matrix ~Ω for the fundamental and non-fundamental shocks. □

Appendix B
Proof of Lemma 1. We seek to characterize the full set of solutions to the equation

~Ψ 2
n�ℓ

zt
ℓ�1

þ ~Π 2
n�p

ηt
p�1

¼ 0: ðB:1Þ

Let U1;V and D11 characterize the singular value decomposition of ~Π 2:

~Π 2
n�p

� U1
n�n

D11
n�n

0
n�m


 �
VT

p�p
; ðB2Þ

where we partition the matrix V as

V ¼ V1
p�n

V2
p�m


 �
;

Let θFKN characterize a regular indeterminate equilibrium for some partition pi and we partition ηt into two mutually
exclusive subsets, ηif ;t and ηin;t , such that ηif ;t [ ηin;t ¼ ηt . From Appendix A, Eq. (A.3), we write the non-fundamentals ηin;t as
functions of the fundamentals and where Θz

i
and Θf

i
are functions of θ1:

ηin;t
n�1

¼ Θi
z

n�ℓ
zt
ℓ�1

þ Θi
f

n�m
ηif ;t
m�1

: ðB3Þ

Eq. (B.3) connects the non-fundamental shocks ηin;t to the fundamental shocks ½zt ;ηif ;t � in the FKN equilibrium. Eq. (33)
reproduced below as (B.4), characterizes the additional equations that define an LS equilibrium:

ηt
p�1

¼ V1
p�n

N
n�ℓ

zt
ℓ�1

þ V2
p�m

Mz
m�ℓ

zt
ℓ�1

þ V2
p�m

ζt
m�1

; ðB:4Þ

where N � �D�1
11 UT

1
~Ψ 2. To establish the connection between the LS and FKN representations we split the equations of (B.4)

into two blocks:

ηin;t
n�1

¼ Vi
1;n

n�n
N
n�ℓ

zt
ℓ�1

þVi
2;n

n�m
Mz
m�ℓ

zt
ℓ�1

þVi
2;n

n�m
ζt
m�1

ðB5Þ

ηif ;t
m�1

¼ Vi
1;f

m�n
N
n�ℓ

zt
ℓ�1

þVi
2;f

m�m
Mz
m�ℓ

zt
ℓ�1

þVi
2;f

m�m
ζt
m�1

ðB:6Þ

where for j¼1,2, the matrices Vi
j;f and Vi

j;n are composed of the row vectors of Vj which, according to partition pi , correspond
to the non-fundamental shocks included as fundamental, ηif ;t , and those that are still non-fundamental, ηin;t .
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Using (B.3) to replacing ηin;t in (B.5) and combining with (B.6)

Θi
f

n�m

Im

2
4

3
5ηif ;t
m�1

¼ Vi
1

p�n
N
n�ℓ

zt
ℓ�1

�
Θi

z
n�ℓ

0
m�ℓ

2
64

3
75 zt
ℓ�1

þ Vi
2

p�m
Mz
m�ℓ

zt
ℓ�1

þ Vi
2

p�m
ζt
m�1

; ðB:7Þ

where

Vi
j

p�n
�

Vi
j;n

n�n

Vi
j;f

m�n

2
664

3
775:

Premultiplying (B.7) by Vi
2

� 	T
and exploiting the fact that V is orthonormal, leads to the equation

Gi

m�m
ηif ;t
m�1

¼ Hi

m�ℓ
zt
ℓ�1

þMz
m�ℓ

zt
ℓ�1

þ ζt
m�1

; ðB:8Þ

where

Gi

m�m
� Vi

2

� 	T
m�p

Θi
f

n�m

Im

2
4

3
5

p�m

; and Hi

m�ℓ
� Vi

2

� 	T
m�p

Vi
1

p�n
N
n�ℓ

� Vi
2

� 	T
m�p

Θi
z

n�ℓ

0
m�ℓ

2
64

3
75

p�l

: ðB:9Þ

Rearranging (B.8) and defining

Si
m�ℓ

� Hi

m�ℓ
þMz

m�ℓ
ðB:10Þ

gives

ζt
m�1

¼ Gi

m�m
ηif ;t
m�1

� Si
m�ℓ

zt
ℓ�1

; ðB:11Þ

which is the expression we seek. □

Appendix C
Proof of Theorem 2. Let θFKN ¼ θ1;θ2
� �

characterize an FKN equilibrium. From (B.8), which we repeat below omitting the
superscript i to reduce notation

G
m�m

ηf ;t
m�1

¼ H
m�ℓ

zt
ℓ�1

þMz
m�ℓ

zt
ℓ�1

þ ζt
m�1

: ðC:1Þ

Post-multiplying this equation by zt
T
and taking expectations give

G
m�m

Ωfz
m�ℓ

¼ H
m�ℓ

Ωzz
ℓ�ℓ

þMz
m�ℓ

Ωzz
ℓ�ℓ

¼ S
m�ℓ

Ωzz
ℓ�ℓ

; ðC:2Þ

which represents m� ℓ linear equations in the m� ℓ elements of vec Mzð Þ as functions of the elements of H, G and Ωzz

(these are functions of θ1), and Ωfz (these are elements of θ2). Applying the vec operator to (C.2), using the algebra of
Kronecker products, and rearranging terms gives the following solution for the parameters vec Mzð Þ:

vec Mzð Þ
m�ℓð Þ�1

¼ Ωzz � Imð Þ�1

m�ℓð Þ� ℓ�mð Þ
Iℓ � Gð Þ

m�ℓð Þ� ℓ�mð Þ
vec Ωfz
� �

m�ℓð Þ�1
� Iℓ � Hð Þ

m�ℓð Þ�ℓ2
vec Ωzzð Þ

ℓ2�1

" #
: ðC:3Þ

Using Eq. (C.3) we can construct an expression for the elements of S as functions of θ1 and θ2. Post-multiplying Eq. (B.11) by
itself transposed, and taking expectations, we have

Ωζζ
m�m

¼ G
m�m

Ωff
m�m

GT

m�m
� G

m�m
Ωfz
m�ℓ

ST
ℓ�m

� S
m�ℓ

Ωzf
ℓ�m

GT

m�m
þ S

m�ℓ
Ωzz
ℓ�ℓ

ST
ℓ�m

¼ G
m�m

Ωff
m�m

GT

m�m
� S

m�ℓ
Ωzz
ℓ�ℓ

ST
ℓ�m

ðC:4Þ

where the last equality is obtained using (C.2). The terms on the RHS of (C.4) are all functions of the known elements of θ1
and θ2. Since the matrix Ωζζ is symmetric, this gives m� mþ1ð Þ=2 equations that determine the parameters of vec Ωζζ

� �
.

This establishes that every θFKNAΘFKN defines a unique parameter vector θLSAΘLS. To prove the converse, solve Eq. (C.3) for
vec Ωfz
� �

as a function of θ1 and the elements of Mz and apply the vec operator to (C.4 ) to solve for vec Ωff
� �

in terms of θ1
and vec Ωζζ

� �
. □
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Appendix D

To run the simulation of the New-Keynesian model in Lubik and Schorfheide (2004) under indeterminacy, we need to
compute the matrices Gi, Hi and Si. We proceed as follows. First, we apply the QZ decomposition to the representation of the
model:

Γ0ðθÞXt ¼Γ1ðθÞXt�1þΨ ðθÞztþΠðθÞηt ; ðD:1Þ
where Γ0ðθÞ, Γ1ðθÞ, Ψ ðθÞ and ΠðθÞ are described in Section 3. Let

Γ0 ¼ QSZT ; and Γ1 ¼ QTZT ; ðD2Þ
be the QZ decomposition of Γ0;Γ1

� �
where Q and Z are k� k orthonormal matrices and S and T are upper triangular and

possibly complex. The resulting transformed parameters are

~Ψ ¼QTΨ ; and ~Π ¼QTΠ; ðD:3Þ
which then allow us to define the equation connecting fundamental and non-fundamental errors

~Ψ 2
n�ℓ

zt
ℓ�1

þ ~Π 2
n�p

ηt
p�1

¼ 0; ðD:4Þ

where ~Ψ 2 and ~Π 2 are described in Section 3. For the New-Keynesian model in Lubik and Schorfheide (2004) the degree of
indeterminacy m¼ p�nð Þ equals 1 since the number of non-fundamental shocks is p¼2, while the number of generalized
eigenvalues that are greater than or equal to 1 is n¼1.

Second, we follow Lubik and Schorfheide (2004) and apply the singular value decomposition as described in Section 5:

~Π 2
n�p

� U1
n�n

D11
n�n

0
n�m


 �
VT

p�p
: ðD:5Þ

and we compute

N
n�ℓ

� �D�1
11

n�n
UT

1
n�n

~Ψ 2
n�ℓ

: ðD:6Þ

Third, we partition ηt into two mutually exclusive subsets, ηf ;t and ηn;t such that ηf ;t [ ηn;t ¼ ηt and partition ~Π 2

conformably so that

~Π 2
n�p

ηt
p�1

¼ ~Π
i
2f

n�m

~Π
i
2n

n�n

" # ηif ;t
m�1

ηin;t
n�1

2
664

3
775: ðD:7Þ

For the New-Keynesian model we are considering that there are two possible partitions i¼ f1;2g for which we include the
non-fundamental shock η1;t ¼ xt�Et�1 xt½ � or η2;t ¼ πt�Et�1 πt½ �, respectively, as fundamental shock. We then compute the
matrices Θz

i
and Θf

i
as defined in (A.4) and which we report here:

Θi
z � � ~Π

i
2n

� 	�1
~Ψ 2; and Θi

f � � ~Π
i
2n

� 	�1
~Π
i
2f ðD:8Þ

Fourth, we partition

V ¼ V1
p�n

V2
p�m


 �
; ðD:9Þ

and define the matrices

Vi
j

p�n
�

Vi
j;n

n�n

Vi
j;f

m�n

2
664

3
775; ðD:10Þ

where the matrices Vi
j;f and Vi

j;n are composed of the row vectors of Vj which, according to partition pi, correspond to the
non-fundamental shocks included as fundamental, ηif ;t , and those that are still non-fundamental, ηin;t .

Finally, we use the definitions of Gi and Hi:

Gi

m�m
� Vi

2

� 	T
m�p

Θi
f

n�m

Im

2
4

3
5

p�m

and Hi

m�ℓ
� Vi

2

� 	T
m�p

Vi
1

p�n
N
n�ℓ

� Vi
2

� 	T
m�p

Θi
z

n�ℓ

0
m�ℓ

2
64

3
75

p�l

: ðD:11Þ

for each partition i¼ f1;2g. Therefore, we obtain the matrix

Si
m�ℓ

¼ Hi

m�ℓ
þMz

m�ℓ
; ðD:12Þ
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where the m� ℓ matrix Mz captures the correlation of the forecast errors with the fundamentals in Lubik and Schorfheide
(2004) as explained in Section 5.1.

Appendix E. Supplementary data

Supplementary data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.jedc.
2015.02.012.
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