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Abstract

A portion of the global wealth portfolio is directed towards a safe and liquid reserve asset,

which recently has been the US Treasury bond. Our model links the determination of reserve

asset status to relative fundamentals and relative debt sizes, by modeling two countries that

issue sovereign bonds to satisfy investors’ reserve asset demands. A sovereign’s debt is more

likely to be the reserve asset if its fundamentals are strong relative to other possible reserve

assets, but not necessarily strong on an absolute basis. Debt size can enhance or detract from

reserve asset status. If global demand for the reserve asset is high, a large-debt sovereign which

offers a savings vehicle with better liquidity is more likely to be the reserve asset. If demand for

the reserve asset is low, then large debt size is a negative as it carries more rollover risk, leading

to a riskier vehicle for saving. When global demand is high, countries may make fiscal/debt-

structuring decisions to enhance their reserve asset status. These actions have a tournament

feature, and are self-defeating: countries may over-expand debt size to win the reserve asset

tournament. Coordination can generate benefits. We use our model to study the benefits of

“Eurobonds” – i.e. a coordinated common Europe-wide sovereign bond design. Eurobonds

deliver welfare benefits only when they make up a sufficiently large fraction of countries’ debts.

Small steps towards Eurobonds may hurt countries and not deliver welfare benefits.
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1 Introduction

US government debt has been the world’s reserve asset for over half a century. German government

debt is the reserve asset within Europe. US and German debt appear to have high valuations relative

to the debt of other countries with similar fundamentals, measured in terms of debt or deficit to

income ratios. Moreover, as fundamentals in the US and Germany have deteriorated, these high

valuations have persisted. Finally, as evident in the financial crises over the last five years, during

times of turmoil, the value of these countries’ bonds rise relative to the value of other countries’

bonds in a “flight to quality.” That is, reserve assets have a negative “β”.

This paper develops a model that helps understand these facts and think about what drives

the value of a reserve asset. We study a model with many investors and two countries, each which

issues government bonds. The investors have a pool of savings that they must invest in government

bonds – there are no alternative savings vehicles. Thus the bonds of one, or possibly both of the

countries, will hold these savings and serve as a reserve asset. However, the debts are subject to

rollover risk. The countries differ in their fundamentals, which measures their ability to service

their debt and factors into their rollover risk; and debt size, which proxies for the financial depth or

liquidity of the country’s debt market. Our model links fundamentals and debt size to the valuation

and equilibrium determination of the reserve asset.

An important assumption is that there are no savings vehicles other than the countries’ sovereign

debts. That is, all savings needs are satisfied by sovereign debt that is subject to rollover risk. There

is no “gold” in the model, nor are there any corporations/banks that are able to honor commitments

of repaying debts. Alternatively, the model can be interpreted as one where such vehicles do exist,

but their supplies are small relative to the reserve asset needs of investors. Thus, substantially all

of the world’s reserve asset needs must be satisfied by debt that is subject to rollover risk.

In the model, an investor’s valuation of a bond depends on the number of other investors who

purchase that bond. If only a few investors demand a country’s bond, the bond auction fails and

the country defaults on the bond. For a country’s bonds to be safe, the number of investors who
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invest in the bond must exceed a threshold, which is decreasing in the country’s fundamentals (e.g.,

the fiscal surplus) and increasing in the size of the debt . Our modeling of rollover risk is similar to

Calvo [1988] and Cole and Kehoe [2000]. Investor actions are complements – as more investors invest

in a country’s bonds, other investors are incentivized to follow suit. Valuation has a coordination

aspect which we consider to be an important feature of the economics of a reserve asset.

Besides the above strategic complementarity, the model also has a strategic substitutability force,

as is common in models of competitive financial markets. Once the number of investors who invest in

the bonds exceeds the threshold required to rollover debts, then investor actions become substitutes.

Beyond the threshold, more demand for the bond that is in fixed supply drives up the bond price,

leading to lower returns. Our model links the debt size to this strategic substitutability: for the

same investor demand, a smaller debt size leads to a smaller return to investors. In other words,

countries with lower financial depth are at a disadvantage in accommodating investors’ demand for

a reserve asset.

The model predicts that relative fundamentals more so than absolute fundamentals are an im-

portant component of debt valuation. Relative fundamentals matter because of the coordination

aspect of valuation. Investors expect that other investors will invest in the country with better

fundamentals, and thus relative valuation determines which country’s bonds to be the reserve as-

set. This prediction helps understanding the observations we have made regarding the valuation

of US debt in a time of deteriorating fiscal fundamentals. In short, all countries’ fiscal conditions

have deteriorated along with the US, so that US debt has maintained and perhaps strengthened its

reserve asset status. The same logic can be used to understand the value of the German Bund (as

a reserve asset within Europe) despite deteriorating German fiscal conditions. The Bund has re-

tained/enhanced its value because of the deteriorating fiscal conditions of other Euro area countries.

We show that this logic also endogenously generates the negative β of the reserve asset. Starting

from a case where the characteristics of one country’s debt are so good that it is almost surely the

reserve asset, a decline in world absolute fundamentals further reinforces the reserve asset status of

that country and increases its value. However if parameters are such that the two country’s debts
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are closer competetitors for reserve asset status, the β of the debts may be positive.

The model also predicts that debt size is an important determinant of reserve asset status. If the

global demand for reserve assets is high, then large debt size enhances reserve asset status. Consider

an extreme example with a large debt country and a small debt country – in fact, infinitesimally

small. If investors coordinate on this small debt as the reserve asset, then the return on the reserve

asset will be infinitesimal. That is the quantity of world demand concentrating on a small float

of bonds will drive bond prices up to a point that investors’ incentives in equilibrium will be to

coordinate investment in the large debt. On the other hand, if global demand for reserve assets

is low, then investors will be concerned that the large debt may not attract sufficient demand to

rollover the debt. That is, when funding conditions are tight, rollover risk for a large debt size is

high. In this case, investors will tend to coordinate on the small debt size as the reserve asset.

Our model offers some guidance on when the US may lose its reserve asset status. Many

academics have argued that we are and have been in a global savings glut, which in the model will

correspond to a high global demand for reserve assets. In this case, the US is likely to continue its

reserve asset status unless US fiscal fundamentals deteriorate significantly relative to other countries,

or if another sovereign debt can compete with the US Treasury in terms of size. Eurobonds seem

like the only possibility of the latter, although there is considerable uncertainty whether such bonds

will exist and will have better fundamentals than the US debt. However, if the savings glut ends

and the world moves to a low demand for reserve assets, then our model predicts that an alternative

high fundamentals country with a relatively low supply of debt may become the reserve asset. The

German Bund is a leading example of such an asset.

We use our model to investigate the benefits of creating “Eurobonds.” We are motivated by the

Eurobond proposals that have been floated over the last few years (see Claessens et al. [2012], for a

review of various proposals). A shared feature of the many proposals is to create a common Europe-

wide reserve asset. Each country receives proceeds from the issuance of the “common bond” which

is meant to serve as the reserve asset, in addition to proceeds from the sale of an individual country-

specific bond. By issuing a common Euro-wide reserve asset, all countries benefit from investors’
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need for a reserve asset, as opposed to just one country (Germany) which is the de-facto reserve

asset in the absence of a coordinated security design. Our model, in which the determination of the

reserve asset is endogenous, is well-suited to analyze these issues formally. Suppose that countries

issue α share of common bonds and 1− α share as individual bonds. We ask, how does varying α

affect welfare, and the probability of safety for each country? Our main finding is that welfare is only

unambiguously increased for α above a certain threshold. Above this threshold, the common-bond

structure enhances the safety of both common bonds and individual bonds, and all these bonds

develop some reserve asset status. Thus, a higher α makes both countries safer. However, below

the threshold, welfare can be increasing or decreasing, depending on the assumed equilibrium; and

one country may be made worse off while another may be made better off by increasing α. Thus

we conclude that a successful Eurobond proposal requires a significant amount of coordination and

volume / size of said Eurobonds.

We use our model to study incentives to change debt size, when doing so may enhance reserve

asset status. We study a case where two countries have a “natural” debt size, determined for example

by their GDP, but can deviate from its natural debt size by some adjustment cost. Two interesting

cases emerge. When countries are roughly symmetric – similar natural debt size – and when global

demand for reserve assets is high, countries will engage in a rat race to become the reserve asset.

Starting from the natural debt sizes, and holding fixed the size decision of one country, the other

country will have an incentive to increase its debt size since the larger debt size can confer a reserve

status. But then the first country will have an incentive to respond in a similar way, and so on so

forth. In equilibrium, both countries will expand in a self-defeating manner beyond their natural

debt size. This prediction of the model can help to shed some light on the expansion of relatively

safe stocks of debt in the US (GSE debt) and Europe (sovereign debt) in the build-up to the crisis.

These expansions have ultimately ended badly. The model identifies a second case, when countries

are asymmetric and one country is the natural “top dog.” In this case, the larger debt country

will have an incentive to reduce debts to the point that balances rollover risk and retaining reserve

asset status, while the smaller country will have an incentive to expand its debt size. The model is
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suggestive that asymmetry leads to better outcomes than symmetry.

LITERATURE REVIEW There is a literature in international finance on the reserve currency

through history. Historians identify the UK as the provider of the reserve asset in the pre-World

War 1 period, and the US as the provider of the reserve asset post-World War 2. There is some

disagreement about the interwar period, with some scholars arguing that there was a joint reserve

asset in this period. Eichengreen [1998, 2005, 2011] discusses this history.

A reserve currency fulfills three roles: an international store of value, a unit of account, and a

medium of exchange (Krugman [1984], Frankel [1992]). Our paper concerns the store of value role,

which is why we present a model of the “reserve asset” rather than the “reserve currency.” There

is a broader literature in monetary economics on the different roles of money (e.g., Kiyotaki and

Wright [1989], Banerjee and Maskin [1996], Lagos [2005], Freeman and Tabellini [1998], Doepke

and Schneider [2013]), and our analysis is most related to the branch of the literature motiving

money as a store of value. Samuelson [1958] presents an overlapping generation model where money

serves as a store of value, allowing for intergenerational trade. Diamond [1965] presents a related

model but where government debt satisfies the store of value role. In this class of models, there is

a need for a store of value, but the models do not offer guidance on which asset will be the store of

value. For example, it is money in Samuelson [1958] and government debt in Diamond [1965]. In

our model, the reserve asset arises endogenously. We are unaware of other work on the endogenous

determination of the reserve asset as a store of value.

Our paper also belongs to a growing literature on safe asset shortages. Theory work in this

area explores the macroeconomic and asset pricing implications of safe asset shortages (Holmstrom

and Tirole [1998], Caballero et al. [2008], Caballero and Krishnamurthy [2009], Maggiori [2013], Ca-

ballero and Farhi [2015]). There is also an empirical literature documenting safe asset shortages and

their consequences (Krishnamurthy and Vissing-Jorgensen [2012, 2015], Greenwood and Vayanos

[2014], Bernanke et al. [2011]). Our analysis presumes that there is a macroeconomic shortage of

safe assets (stores of value) and endogenously determines the characteristics of government debt
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supply that satisfies the safe asset demand.

The element of rollover risk in our model is in the spirit of Calvo [1988] and Cole and Kehoe

[2000]. Rollover risk is also an active research area in the corporate finance literature, with prominent

contributions by Diamond [1991], and more recently, He and Xiong [2012b,a], and He and Milbradt

[2014]. We utilize the global games technique (Carlsson and van Damme [1993]; Morris and Shin

[1998]; and others) to link the country’s relative fundamental to the determination of reserve asset.

Relative to the global games literature, our setting features strategic substitution (in fact, a large

country size alleviates the strategic substitution effect).

2 Model

2.1 The Setting

Consider a two-period model with two countries, indexed by i, and a continuum of homogeneous

risk-neutral investors, indexed by j. At date 0 each investor is endowed with one unit of consumption

good, which is the numeraire in this economy. Investors invest in the bonds offered by these two

countries to maximize their expected date 1 consumption, and there is no other storage technology

available. This latter restriction is important to the analysis as will be clear.

There is a large country, called country 1, and a small country, called country 2. We normalize

the size of the large country to be one (i.e., s1 = 1), and denote the size of the small country by

s2 ≡ s ∈ (0, 1]. Each country sells bonds at date 0 promising repayment at date 1. The country size

determines the total face value (in terms of promised repayment) of bonds that each country sells:

the large (small) country offers 1 (s) units of sovereign bonds. Hence the aggregate bond supply is

1 + s. All bonds are zero coupon bonds.

The aggregate measure of investors, which is also the aggregate demand for bonds, is 1 + f ,

where f > 0 is a constant parameterizing the aggregate savings need. To save, we assume that

investors place market orders to purchase sovereign bonds. In particular, since purchases are via

7



market orders, the aggregate investor demand does not depend on the equilibrium price.1 Denote

by pi the equilibrium price of the bond issued by country i. Since there is no storage technology

available to investors, all savings of investors go to buy these sovereign bonds. This implies via the

market clearing condition that

s1p1 + s2p2 = p1 + sp2 = 1 + f.

Country i has fundamentals denoted θi. Purely as a matter of notation we write the surplus

as proportional to country size, i.e., for country i it is siθi. We assume that each country has

an existing debt obligation, assumed to be equal to the country size si.2 The country has total

resources consisting of fundamentals siθi and the proceeds from newly issued bonds sipi,

siθi + sipi.

We assume that a country defaults if and only if

siθi + sipi︸ ︷︷ ︸
total funds available

< si︸︷︷︸
debt obligations

.

which we rewrite as,

sipi < si(1− θi).

If the country defaults at date 0, there is zero recovery and any investors who purchased the

bonds of that country receive nothing.3 If the country does not default, then each investor in that
1Market orders avoid the thorny theoretical issue of investors using the information aggregated by the market

clearing price to decide which country to invest in, a topic extensively studied in the literature of Rational Expectation
Equilibrium.

2One can think of the timing, as discussed in the text, as si is past debts that must be rolled over. This is a
rollover risk interpretation, where we take the past debt as given. Here is another interpretation. The bonds are
auctioned at date 0 with investors anticipating repayment at date 1. The date 0 proceeds of sipi are used by the
country in a manner that will generate siθi + sipi at date 1 which is then used to repay the auctioned debt of si.

3For the situation of positive recovery, see Section 3.6.
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country receives one at date 1. For simplicity, there is no default possibility at date 1, e.g., this

assumption can be justified by a sufficiently high fundamental in period 1.

We note that our model of sovereign debt features a multiple equilibrium crisis, in the sense of

Calvo [1988] and Cole and Kehoe [2000]. If investors conjecture that other investors will not invest

in the debt of a given country, then pi is low which means the country is more likely to default,

which rationalizes the conjecture that other investors will not invest in the debt of the country.

The “fundamentals” of θi increase a country’s surplus thus giving the country more cushion

against default. For most of our analysis we refer to θi as the country’s fiscal surplus, which then

increases the funds available to the country to rollover its debt. But there are other interpretations

which are in keeping with our modeling. For the case of foreign currency denominated debt, θi

can include both the fiscal surplus and the foreign reserves of the country. For the case where the

debt is denominated in domestic currency, θi can include resources the central bank may be willing

to provide to forestall a rollover crisis. In this case, such resources, provided via monetization of

debt, may be limited by central bank concerns over inflation or a devalued exchange rate (and

its potential negative effects on the country’s real surplus). Finally, θi can also be interpreted to

include reputational costs associated with defaulting on debts, in which case the default equation,

sipi < si(1− θi), can be read as one where default is driven by unwillingness-to-pay.

We follow the global games approach to link equilibrium selection to fundamentals. We assume

that there is a publicly observable world-level fundamental index θ lying in the interval (0, 1). Our

analysis focuses on a measure of relative strength between country 1 and country 2, which we denote

by δ̃. Specifically, conditional on the relative strength δ̃, the fundamentals of these two countries

satisfy

1− θ1 = (1− θ) exp
(
−δ̃
)

; (1)

1− θ2 = (1− θ) exp
(

+δ̃
)
. (2)

Recall that 1 − θi is the funding need of a country. Given δ̃, the higher the θ, the greater the
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surplus of both countries and therefore the lower their funding need. And, given θ, the higher the

δ̃, the better are country 1 fundamentals relative to country 2, and therefore the lower is country

1’s relative funding need.4 Finally, the above specification implies that the funding need for each

country is always positive.

We assume that the relative strength of country 1, has a support

δ̃ ∈
[
−δ, δ

]
(3)

We do not need to take a stand on the distribution over the interval
[
−δ, δ

]
. For much of the analysis

we set δ < ln 1+f
s(1−θ) , which ensures that for the worse case scenario, financing need of either country

exceeds the total savings 1 + f . This gives us the usual dominance regions when the fundamentals

take extreme values.

As we will use the global games technique to pin down the unique threshold strategy equilibrium,

we assume that the country 1 relative strength δ̃ is not publicly observable. Instead, each investor

j ∈ [0, 1] receives a private signal

δj = δ̃ + εj ,

where εj ∼ U [−σ, σ] and εj are independent across all investors j ∈ [0, 1]. Following the global

games literature a la Morris and Shin [2003] we will focus on the limit case where noise σ → 0.

Finally, note that although we do not need to take a stand on the distribution of δ̃, for much of

the analysis, it will make most sense to think of a distribution that places all of the mass around

some point δ0 and almost no mass on other points. This will correspond to a case where investor-j is

almost sure that fundamentals are δ0, but is unsure about what other investors know, and whether

other investors know that investor-j knows fundamentals are δ0. That is, we will focus on a limiting

case where there is no fundamental uncertainty and only strategic uncertainty.

4The scale of 1 − θ and exponential noises eδ̃ in (1) and (2) help in obtaining a simple close-form solution. The
Appendix A.1 considers an additive specification θi = θ + (−1)i δ̃ and solves the case for σ > 0; we show that the
main qualitative results hold in that setting.
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2.2 Equilibrium Characterization and Properties

We focus on symmetric threshold equilibria in this section. More specifically, we assume that all

investors adopt the same threshold strategy in which each investor purchases country 1 bonds if

and only if his private signal about country 1’s relative strength is above a certain threshold, i.e.

δj > δ∗; otherwise he purchases country 2 bonds. The corner portfolio decisions are for simplicity

and are consistent with risk neutrality. Later on we show that this is indeed the unique equilibrium

under a monotone strategy assumption given some parameter restrictions.

Deriving the equilibrium threshold. In equilibrium, the marginal investor who receives the

threshold signal δj = δ∗ must be indifferent between investing his money in either country. Based

on this signal, the marginal investor forms belief about other investors’ signals and hence their

strategies. Denote by x the fraction of investors who receive signals that are above his own signal

δj = δ∗, and as implied by threshold strategies will invest in country 1. It is well-known (e.g., Morris

and Shin [2003]) that in the limit of diminishing noise σ → 0, the marginal investor forms a “diffuse”

view about other investors’ strategies, in that he assigns a uniform distribution for x ∼ U [0, 1].

Combined with the cutoff strategy, the fraction of investors who purchase the bonds of country

1 is equal to the fraction of investors deemed more optimistic than the marginal agent, x. Thus, the

total funds going to country 1 and 2 are (1 + f)x and (1 + f) (1− x), respectively. The resulting

bond prices are thus

p1 = (1 + f)x and p2 =
(1 + f)x

s
.

We now calculate the expected return from investing in bond i, Πi.

Expected return from investing in country 1. Given x and its fundamental θ1, country 1

does not default if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ1 ≥ 0⇒ x ≥ 1− θ1

1 + f
. (4)

11



This is intuitive: country 1 does not default only when there are sufficient investors who receive

favorable signals about country 1 and place their funds in country 1’s bonds accordingly. The

survival threshold 1−θ1
1+f is lower when the country 1 fundamental, θ1, is higher and when the total

funds available for savings, f , are higher.

Of course, the country 1 fundamental 1− θ1 = (1− θ) e−δ̃ in (1) is uncertain. We take the limit

as σ → 0, so that the signal is almost perfect and the threshold investor who receives a signal δ∗

will be almost certain that5

1− θ1 = (1− θ) e−δ∗ . (5)

Hence, in the limiting case of σ → 0, plugging (5) into (4) we find that the large country 1 survives

if and only if

x ≥ 1− θ1

1 + f
=

(1− θ) e−δ∗

1 + f
. (6)

Here, either higher average fundamentals θ or a higher threshold δ∗ make country 1 more likely to

repay its debts.

Now we calculate the investors’ return by investing in country 1. Conditional on survival, the

realized return is
1

p1
=

1

(1 + f)x
;

while if default occurs the realized return is 0. From the point of view of the threshold investor with

signal δ∗, the chance that country 1 survives is simply the integral w.r.t. to the uniform density dx

from (1−θ)e−δ∗

1+f to 1:

Π1 =

ˆ 1

(1−θ)e−δ∗

1+f

1

(1 + f)x
dx =

1

1 + f

(
ln

1 + f

1− θ
+ δ∗

)
.

5In equilibrium, θ1 depends on the realization of x, which is the fraction of investors with signals above δ∗. Given
that the signal noise εj is drawn from a uniform distribution over [−σ, σ], we have

x = Pr
(
δ̃ + εj > δ∗

)
=
δ̃ + σ − δ∗

2σ
⇒ δ̃ = δ∗ + (2x− 1)σ.

which implies that θ1 = θ + (1− θ)
(

1− e−δ
∗−(2x−1)σ

)
. Taking σ → 0 we get (5).
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The higher the threshold δ∗, the greater the chance that country 1 survives, and hence the higher

the return by investing in country 1 bonds.

Expected return from investing in country 2. Denote the measure of investors that are

investing in country 2 by x′ ≡ 1− x, that is the fraction of investors that are more pessimistic than

the marginal agent, which again follows a uniform distribution over [0, 1]. If the investor instead

purchases country 2’s bonds, he knows that country 2 does not default if and only if

sp2 − s+ sθ2 = (1 + f)x′ − s+ sθ2 ≥ 0⇔ x′ ≥ s (1− θ2)

1 + f
, (7)

Country 2 survives if the fraction of investors investing in country 2, x′, is sufficiently high. The

threshold is lower if the country is smaller, fundamentals are better, and the total funds available

for savings are higher.

Similar to the argument in the previous section, in the limiting case of almost perfect signal

σ → 0, country 2 fundamental θ2 in (7) is almost certain from the perspective of the threshold

investor with signal δ∗ (recall (2)):

1− θ2 = (1− θ) eδ∗ . (8)

Plugging equation (8) into equation (7), we find that country 2 survives if and only if

x′ ≥ s (1− θ) eδ∗

1 + f
. (9)

Relative to (6), country size s plays a role. All else equal, the lower size s and the smaller country

2, the more likely that the country 2 survives.

Given survival, the investors’ return of investing in country 2, conditional on x′, is

1

p2
=

s

(1 + f)x′
; (10)

while the return is zero if country 2 defaults. As a result, using (10), the expected return from
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investing in country 2 is

Π2 =

ˆ 1

s(1−θ)eδ∗

1+f

s

(1 + f)x′
dx′.

=
1

1 + f
· s︸︷︷︸
payout

 − ln s︸ ︷︷ ︸
survival prob.

+ ln
1 + f

1− θ
− δ∗︸ ︷︷ ︸

country 2 fundamental


Here, “country 2 fundamental” essentially comes from turning off the size effect by setting s = 1.

Then, we see that this term is the same as for country 1.

We decompose the source of the country 2 return in three parts. The third part “country 2 fun-

damental” is the most transparent: for the threshold investor who observes aggregate fundamental

θ and receives a signal δ∗ about the relative strength between country 1 and country 2, ln 1+f
1−θ − δ

∗

represents the country 2 fundamental – that is, when setting s = 1, this is what remains, analogous

to country 1. The first part, “payout”, and the second part, “survival prob”, are affected by country

size. The first part s indicates that the total bond payment is of size s; all else equal, the smaller the

country size the lower the return, as can be seen in (10). The second part − ln s, which is decreasing

in s, captures the effect of a country’s size on its survival probability. This is because all else equal,

a smaller country is more likely to survive for a given absolute amount of investment in its bonds,

driving up the total return, as can be seen in (9).

Expected return of investing in country 1 versus country 2. Figure 1 plots the return

to investing in each country as a function of x (x′) which is the measure of investors investing in

country 1 (country 2), from the perspective of the marginal investor with δ∗ = δ̃ = 0 so θ1 = θ2 = θ.

Consider the solid green curve first which is the return to investing in country 1. For x below the

default threshold 1−θ
1+f , the return is zero. This default threshold is relatively high, since country 1

is large and hence it needs a large number of investors to buy bonds to ensure a successful auction.

Across the threshold 1−θ
1+f , investor actions are strategic complements – i.e., if a given investor knows

that other investors are going to invest in country 1, the investor wants to follow suit. Past the
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Figure 1: Returns of the marginal investor when investing in country 1 (country 2) as a
function of x (x′). The return to investing in country 1 is in green solid line, while the return to
investing in country 2 is in red dashed line. The figure assumes δ∗ = 0 so that the marginal investor
believes that both countries have the same fundamentals. The bonds issued by the large country 1
only pay when x > 1−θ

1+f while country 2’s bonds only pay when x′ > s(1−θ)
1+f . The return to country

1’s bonds falls to 1
1+f when x = 1, while for country 2’s bonds the return falls more rapidly to s

1+f

when x′ = 1.

threshold, the return falls as the face value of bonds is constant and investors’ demand simply bids

up the price of the bonds. In this region, investor actions are strategic substitutes. The marginal

investor’s expected return from investing in country 1 is the integral of shaded area beneath the

green solid line.

The dashed red curve plots the return to investing in country 2, as a function of x′ which is the

measure of investors investing in country 2. The default threshold for country 2, which is s(1−θ)
1+f , is

lower than for country 1 ( 1−θ
1+f ) because country 2 only needs to repay a smaller number of bonds.

When δ∗ = 0, i.e., the marginal investor with signal δ∗ = 0 believes that both countries share the

same fundamentals, the threshold return to investing in country 2 is 1
1−θ . This is the same as the

threshold return to investing in country 1, as shown in Figure 1. While country 2 has a lower
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default threshold which implies a smaller strategic complementarity effect, past the threshold the

return to investing in country 2 falls off quickly. That is, the strategic substitutes effect is more

significant for country 2 than country 1. This is because country 2 has a small bond issue and hence

an increase in demand for country 2 bonds increases the bond price (decreases return) more than

the same increase in demand for country 1 bonds. We see this most clearly at the boundary where

x = x′ = 1, where the return to investing in the large country 1 is 1
1+f , while the return to investing

in country 2 is s
1+f .

To sum up, because the large country auctions off more bonds, it needs more investors to

participate to ensure no-default. However, the very fact that the large country sells more bonds

makes the large country a deeper financial market that can offer a higher return on investment.

This tradeoff – size features more rollover risk but provides a more liquid savings vehicle – is at the

heart of our analysis.

Equilibrium threshold δ∗ The equilibrium threshold δ∗ is determined by the indifference con-

dition for the threshold investor between investing in these two countries, i.e.,

0 = Π1 −Π2 =
1

1 + f

(
ln

1 + f

1− θ
+ δ∗

)
− s

1 + f

(
− ln s+ ln

1 + f

1− θ
− δ∗

)
.

Solving for the equilibrium threshold signal δ∗ yields (recall that s ∈ (0, 1])

δ∗ = −1− s
1 + s︸ ︷︷ ︸

negative, liquidity

× z +
−s ln s

1 + s︸ ︷︷ ︸
positive, rollover risk

. (11)

where we define

z ≡ ln
1 + f

1− θ
> 0.

Here, z measures aggregate funding conditions, which is greater if either more aggregate funds f

are available or there is a higher aggregate fundamental θ. The “savings glut” which many have

argued to characterize the world economy for the last decade is a case where z is high.
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From (11) we see that there are two effects of size. The first term is negative (for s ∈ (0, 1)) and

reflects the liquidity or market depth benefit that accrues to the larger country, making country 1

safer all else equal. The second term is positive and reflects the rollover risk for country 1, whereby

a larger size makes country 1 less safe. The benefit term is modulated by the aggregate funding

condition z. We next discuss implications of our model based on the equation (11).

3 Model Implications

3.1 Determination of the reserve asset

The equilibrium threshold δ∗ tells us which of country 1 and country 2 will not default and thus

which country’s debt will serve as the reserve asset. Consider the case where the distribution of

δ̃ places all of the mass around some point δ0 and almost no mass on other points. This will

correspond to a case where investor-j is almost sure that fundamentals are δ0, but is unsure about

what other investors know, and whether other investors know that investor-j knows fundamentals

are δ0. If δ0 > δ∗ then country 1 debt is the reserve asset, while if δ0 < δ∗ then country 2 debt is

the reserve asset. Given that all investors know almost surely the value of δ0, investors are then

almost sure which country is the reserve asset. Mapping this interpretation to thinking about the

world, the model says today may be a day that US Treasury bonds are almost surely the reserve

asset, i.e., δ0 >> δ∗. But there may be a news story out that questions the fundamentals of the

US (e.g., negotiations regarding the debt limit), and while investor-j may know that it is still the

case thatδ0 >> δ∗, the failure of common knowledge establishes the lower bound δ∗at which the US

Treasury bond will cease to be the reserve asset.

The following proposition gives the properties of the equilibrium threshold δ∗ (s, z), as a function

of country 2’s relative size s and the aggregate funding condition z.

Proposition 1 We have the following results for the equilibrium threshold δ∗ (s, z).

1. The equilibrium threshold δ∗ (s, z) is decreasing in the aggregate funding conditions z = ln 1+f
1−θ ,

17



0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

s

δ
*

z=1

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

s

δ
*

z=0.2

Figure 2: Equilibrium threshold δ∗ as a function of country 2 size s. The left panel is for the case of
strong aggregate funding conditions with z = 1, and the right panel is for the case of low aggregate
funding conditions with z = 0.2.

i.e., ∂
∂z δ
∗ (s, z) < 0. Hence, country 1’s bonds can be the reserve asset for worse values of

country 1 fundamentals δ̃, if the aggregate fundamental θ or aggregate saving f is higher.

2. The equilibrium threshold δ∗ (s, z) ≤ 0 for all s ∈ (0, 1], if and only if z ≥ 1. Hence, when the

aggregate funding z ≥ 1, the bonds issued by the larger country 1 can be the reserve asset for

worse values of country 1 fundamentals δ̃.

3. When s→ 0 the equilibrium threshold δ∗ (s, z) approaches its minimum, i.e., lims→0 δ
∗ (s, z) =

infs∈(0,1] δ
∗ (s, z) = −z < 0. This implies that all else equal, country 1 is the reserve asset

over the widest range of fundamentals when country 2 is smallest.

Proof. Result (1.) follows because of ∂
∂z δ
∗ (s, z) = −1−s

1+s < 0. To show result (2.), note that when

z = 1 we have δ∗ (s, z = 1) = s−s ln s−1
1+s < 0 for s ∈ (0, 1]. This inequality can be shown by observing

1) [s− s ln s− 1]
′
> 0 and 2) [s− s ln s− 1]s=1 = 0. Result (3.) holds because

δ∗ (s, z) = −1− s
1 + s

z +
−s ln s

1 + s
> −1− s

1 + s
z > −z,

where the last inequality is due to −1−s
1+sz being increasing in s for z > 0.

We illustrate these effects in Figure 2. The left panel of Figure 2 plots δ∗ as a function of s for

the case of z = 1, which corresponds to strong aggregate funding conditions with abundant savings
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and/or good fundamentals. In this case, the equilibrium threshold δ∗ (s) is always negative, and is

monotonically increasing in the small country size s. For small s close to zero, the large country

is safest for bad possible values of its fundamental, because in this case country 2 does not exist

as an investment alternative. Then because all investors have no choice but to invest in country 1,

the bonds issued by country 1 have minimum rollover risk. If we assume that the aggregate savings

1 + f are enough to cover country 1’s financing shortfall 1 − θ1

(
δ̃
)
even for the worst realization

of δ̃ = −δ then country 1 will always be the reserve asset in this case. This s = 0 case offers one

perspective on why Japan has been able to sustain a large debt without suffering a rollover crisis.

Since many of the investors in Japan are so heavily invested in Japanese government, eschewing

foreign alternative investments, Japan’s debt is safe.

The right panel in Figure 2 plots δ∗ for a case of weak aggregate funding conditions (z = 0.2),

with insufficient savings and/or low fundamentals. Consistent with the first result in Proposition 1

we see that in this case the large country can be at a disadvantage. For medium levels of s (around

0.4), investors are concerned that there will not be enough demand for the large country bonds,

exposing the large country to rollover risk. As a result, investors coordinate on the small country’s

debt as the reserve asset even if the small country has worse fundamentals. For small s, the size

disadvantage of the small country becomes a concern, and large country can be the reserve asset

even with poor fundamentals (the third result in Proposition 1). For s large, we are back in the

symmetric case. Comparing the right panel with z = 1 to the left panel with z = 0.2 highlights

that the large country’s debt size is a clear advantage only when the aggregate funding conditions

are strong; as the pool of savings shrink, and in equilibrium interest rates rise, the large debt size

triggers rollover risk fears so that investors coordinate on the small country as the reserve asset.

3.2 Relative fundamentals

Our model emphasizes relative fundamentals as being a central ingredient in debt valuation. To

clarify this point, consider a standard model without coordination elements and without the reserve

asset saving need. In particular, suppose that the world interest rate is R∗ and consider any two
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countries in the world with surpluses given by θ1 and θ2. Suppose that investors purchase these

countries’ bonds for pisi and receive repayment of si min (θi, 1). Then,

p1 =
E [min (θ1, 1)]

1 +R∗
and p2 =

E [min (θ2, 1)]

1 +R∗
,

so that bond prices depend on fundamentals, but not particularly on relative fundamentals θ1− θ2.

In contrast, in our model when the country 1’s relative fundamentals are high δ̃ > δ∗, bonds issued

by country 1 attract all the savings so that

p1 = 1 + f and p2 = 0. (12)

Similarly, if the country 1’s relative fundamentals are low δ̃ < δ∗, investors only invest in bonds

issued by country 2 so that

p1 = 0 and p2 = 1 + f. (13)

Valuation in our model becomes sensitive to relative fundamentals, as investors are endogenously

coordinating to buy bonds issued by relatively stronger country. In Section 3.6 we show that these

forces also explain why the reserve asset carries a negative β.

The importance of relative fundamentals helps us to understand why, despite deteriorating US

fiscal conditions, US Treasury bond prices have continued to be high: In short, all countries’ fiscal

conditions have deteriorated along with the US, so that US debt has maintained and perhaps

strengthened its reserve asset status. The same logic can be used to understand the value of the

German Bund (as a reserve asset within Europe) despite deteriorating German fiscal conditions.

The Bund has retained/enhanced its value because of the deteriorating general European fiscal

conditions.

Remark 2 We have analyzed a case where θ reflects the overall fundamentals of the global economy,

and the relative fundamental δ̃ is “almost perfectly” observable by investors, thus discussing safety

of the two countries in terms of the realization of δ̃. In practice, it is common knowledge that the
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US or Germany have stronger fundamentals than many other countries. We can easily modify our

model to capture this effect, by specifying the surpluses of countries to be

1− θ1 = (1− θ) exp
(
−δ̃ −∆

)
, and 1− θ2 = (1− θ) exp

(
+δ̃ + ∆

)
,

where ∆ is a component of the relative fundamental that is common knowledge. The equilibrium

threshold now becomes

δ∗ = −1− s
1 + s

z +
−s ln s

1 + s
−∆.

Consistent with intuition, common knowledge that a country has better fundamentals makes the

country’s debt more likely to be the reserve asset.

3.3 Size and aggregate funding conditions

Our model highlights the importance of debt size in determining reserve asset status, and its in-

teractions with the aggregate funding conditions. In the high savings regime, which the literature

on the global savings glut has argued to be true of the world in recent history (see, e.g., Bernanke

[2005], Caballero et al. [2008]7, and Caballero and Krishnamurthy [2009]), higher debt size increases

reserve asset status. The US is the world reserve asset in part because it has maintained large debt

issues that can accommodate the world’s reserve asset demands.

These predictions of the model also offer some insight into when the US Treasury bond may be

displaced as reserve asset. If the world continues in the high savings regime, the US will only be

displaced if another country can offer a large debt size and/or good relative fundamentals. This

seems unlikely in the foreseeable future. On the other hand, if the world switches to the low savings

regime, it is possible that another country with a smaller debt size and good fundamentals, such as

the German Bund, will take on the reserve asset role.

The size effect also offers a perspective on the period prior to World War 1 when the UK consol

bond was the world’s reserve asset. Despite the fact that the GDP of the US had caught up the

GDP of the UK by 1870, the UK offered the reserve currency of the world. Our model provides one
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explanation for this puzzle. In 1890, the UK Debt/GDP ratio was 0.43, while the US Debt divided

by UK GDP was about 0.10. The higher float of UK debt was perhaps one reason that the UK

remained the reserve asset during a period when its fundamentals were likely worse. Debt stocks

of both US and UK rise quickly in World War 1, with UK Debt/GDP reaching 1.40 by 1920, and

US debt/UK GDP reaching 0.80 by 1920. Our model suggests that as the UK debt size grew, size

turned from a liquidity advantage to a rollover risk concern. At the same time, the rise in the US

debt as a liquid and sizeable alternative allowed the US debt to replace the UK debt as reserve asset

to the world.

The size effect of our model also identifies a novel contagion channel. In the high savings regime,

increasing the debt size of the large debt country reduces δ∗ and thus increases the probability of

default and expected bond yield of the smaller country.6 We can see this from Figure 2, left panel

with z = 1. Suppose that we decrease the relative size of country 2, s, away from 1; it is equivalent to

increasing the size of the large country’s debt. We see that the default probability of small country,

which is just one minus the default probability of the large country, goes up; this comparative

static result will be derived formally in equation (44) later. Linking this observation to data, from

2007Q4 to 2009Q4, the supply of US Treasury bonds increased by $2.7 trillion (the money stock

increased another $1.3 trillion). Our model suggests that this increase should have increased default

probabilities of other country’s debts. That is, our model suggests a causal link from the increase

in US Treasury bond supply/Fed QE and the eruption of the European sovereign debt crisis in

2010. Intuitively, the expansion of US debt supply created safe “parking spots” for funds that may

otherwise have been invested in European sovereign debt.

The sovereign debt contagion channel is a novel prediction for which there is no systematic

empirical evidence. However, there is a closely related contagion channel for which there is evidence.

Let us reinterpret the small country debt of the model as the short-term debt issued by a private

bank that can be used to store value, but is subject to a coordination/rollover problem (i.e., bank
6The yield on the large country debt is ambiguous because the direct effect of increasing debt size, for fixed f ,

would cause yields to rise, but since the probability of default falls, there is a countervailing effect that reduces bond
yields.
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runs). Then our model suggests that as the supply of country 1 sovereign debt rises, the safety of

the private bank debt should fall. Krishnamurthy and Vissing-Jorgensen [2012] provide evidence

of this sort of crowding out, documenting a positive relation between the supply of US government

debt and the yields on private short-term bank debt.7

3.4 Switzerland, Denmark and gold

There are no savings vehicles in the model other than the countries’ sovereign debts. That is,

all savings needs must be satisfied by sovereign debt that is subject to default risk. There is no

“gold” in the model, nor are other companies, banks or other governments that are able to honor

commitments to repay debts. In practice such assets do exist. Switzerland and Denmark have been

prominent in the news recently because of safe-haven flows into these countries, perhaps because

these countries can commit to repay their relatively small outstanding supply of bonds. It is easy

to accommodate this possibility into the model.

Suppose that there exists a quantity of full-commitment sovereign bonds. The supply of these

bonds is s, that is, these bonds pay in total s at the final date. Investors invest f − f̂ in these

bonds, with a return of s

f−f̂
. Let us focus on the symmetric case with s = 1 and δ∗ = 0. Investing

in sovereign bonds of country 1 or country 2 depending on the signal δ̃ gives a return of 1
1+f̂

as

the small noise assumption implies that investors are perfectly able to pick the “winner”. Thus in

equilibrium it must be that the full-commitment bond also offers a return of 1
1+f̂

, which then implies

that
s

f − f̂
=

1

1 + f̂
⇒ f̂ =

f − s
1 + s

.

We assume that the supply of full-commitment bonds s satisfies s < f so that f̂ > 0. We then can
7The model is suggestive of further links between government debt and private bank debt. We would expect

that the yields on non-government-backed private bank debt (e.g., large time deposits) would especially rise relative
to government-backed bank debt (e.g., checking deposits). Government-backed bank debt would rise in safety with
increases in US government debt, if such increases lead to an increase in the reserve status of US government debt.
Plausibly, banks would respond by increasing the supply of government-backed debt relative to non-government-
backed debt. Krishnamurthy and Vissing-Jorgensen [2012] confirm this prediction in the data. The model also
suggests a motive for increasing the backing of bank deposits during periods of rising US government debt, to avoid
a contraction of the banking system. To investigate these issues thoroughly our model needs to be extended to
accommodate a banking system with many banks, which we intend to do in future work.
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solve our model following exactly the same steps, only with f redefined as f̂ . Thus, the model can

be interpreted as one where alternative savings vehicles do exist, but their supplies are such that

substantially most of the world’s reserve asset needs must still be satisfied by debt that is subject

to rollover risk.8

Denmark and Switzerland have recently restricted their supplies of safe bonds. The result has

been that the prices of their bonds have risen, with interest rates in both countries falling below

zero. We can also see this in our model. Reducing s causes f̂ to rise, and hence the price of safe

bonds rises.

3.5 Non-monotone strategies and joint safety equilibria

We have restricted the agents’ strategy space to the so-called “cut-off” strategies, i.e., invest in

country 1 if δi is above certain threshold; otherwise invest in country 2. This section discusses

potential equilibria once this strategy space is relaxed.

Denote the probability (or fraction) of investment in country 1 by an agent with signal δi by

φ (δi) ∈ [0, 1]; the agent’s strategy is called monotone if φ (δi) is monotonically increasing in his

signal δi of the country 1’s fundamental. Within the monotone strategy space, we are able to prove,

under some parameter restrictions, that the equilibrium with cut-off strategies constructed above

will survive as the unique equilibrium via the iterated deletion of dominated strategies.9

Proposition 3 Under certain parameter restrictions, the equilibrium with cut-off strategies con-

structed Eq. (11) is the unique equilibrium within the monotone strategy space.

The parameter restrictions are given in Appendix A2. The key restriction is that z is small
8The total government debt of Switzerland in early 2015 was $127bn. Central bank liabilities were nearer $500bn,

having grown significantly with the Europe crisis and the Swiss decision to maintain their exchange rate vis-a-vis the
Euro. Total government debt in Denmark was $155bn. Total central bank holdings of gold are approximately $1.2tn,
although this amount is largely backing for government liabilities, rather than privately investable gold. It is difficult
to get a clear sense of the quantity of gold held privately as an investment, but it is likely not larger than the central
bank holdings of $1.2tn. The most liquid gold investment are gold ETFs. Total capitalization of US gold ETFs was
$39bn in early 2015. As a comparison, the total supply of Treasury bonds plus central bank liabilities (reserves, cash,
repos) in early 2015 was over $16tn.

9The argument is similar to standard global games result, with the caveat that we do not have global strategic
complementarity.
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enough. For a high z, there are other equilibria. In particular, if we allow agents to choose among

non-monotone strategies, i.e. φ (δi) is non-monotone, then for a higher z it is possible to construct

equilibria where both countries are safe for some values of the relative fundamental signal δ̃ (while

one country fails if δ̃ is too low or too high). In Appendix A.3 we construct a non-monotone

equilibrium in which agent are using “oscillating strategies.”

Under this oscillating strategy, agents invest in country 2 for low δi, then invest in country 1 given

better signals, but go back to investing in country 2 for even higher signals. This strategy profile is

driven by the strategic substitutes effect in our model, as it serves to equalize returns from investing

when both countries are safe. Indeed, in the constructed equilibria with non-monotone strategies,

non-monotonicity occurs only in the region where both countries are safe given the realization of

fundamental δ̃ and equilibrium investment strategies. In this region, knowing that both countries

will be safe, investors who are indifferent oscillate between investing in country 1 and country 2

depending on their private signal realizations. Note that the fundamental δ̃ is no longer payoff

relevant for safe countries (recall that without default the payoff of bonds is capped at one). Hence,

the private signal is no longer payoff relevant, and this oscillation can be viewed as a randomization

scheme to equalize returns. This is because every agent (say with a signal δi) in this region knows

that other agents whose private signals span an interval of 2σ are investing in both countries in the

right (no-arbitrage) proportion, leading to equalized returns in both countries.

Though seemingly exotic, it is interesting that equilibria with non-monotone strategies lead to

the economically plausible situation that when funding conditions in the world are plentiful (high

z), both countries may be safe and there is a possibility of a joint reserve asset. This possibility

cannot emerge in the case we have analyzed where agents play monotone threshold strategies.

We stress that all key qualitative properties in Proposition 1 derived under the threshold strategy

equilibria are robust to considering the non-monotone strategy equilibria, with minor modifications.

The next proposition summarizes the results parallel to Proposition 1.

Proposition 4 We have the following results for the equilibrium with oscillating strategies.
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1. The survival region of the larger country 1 (hence the lowest value of fundamentals such that

country 1 bonds are the reserve asset) increases with the aggregate funding conditions z. How-

ever, a higher z also increases the survival region of the smaller country 2.

2. For sufficiently favorable aggregate funding conditions z ≥ z where z is derived in the appendix,

the equilibrium with oscillating strategies exists. In this class of equilibria, the bonds issued by

the larger country 1 are the reserve asset for a wider range of fundamentals than the bonds

issued by the smaller country 2.

3. All else equal, the larger country 1 is the reserve asset for the lowest level of fundamentals

when the size of country 2 goes to zero, i.e. s→ 0.

Regarding the first result, recall that in the monotone threshold equilibria studied in the main

text, a higher z increases the survival region of the larger country 1 and at the same time decreases

the survival region of the smaller country 2. This is because only one country survives in the

monotone threshold equilibria. In contrast, in the oscillating non-monotone strategy equilibria,

both counties may survive, and thus improved aggregate funding conditions makes both countries

safer. The second result of Proposition 4 reinforces that in Proposition 1, i.e., under sufficiently

favorable aggregate funding conditions so that the non-monotone strategy equilibrium exists, the

bonds of the larger country are more likely to be the reserve asset than the bonds of the smaller

country. The third result is identical to that of Proposition 1.

3.6 Negative β of the reserve asset

At the height of the US financial crisis, in the aftermath of the Lehman failure, the prices of US

Treasury bonds increased dramatically in a flight to quality. Over a period in which the expected

liabilities of the US government likely rose by several trillion dollars, the value of US government

debt went up. We compute that from September 12, 2008 to the end of trading on September

15, 2008 the value of outstanding US government debt rose by just over $70bn. Over the period

from September 1, 2008 to December 31, 2008, the value of US government debt outstanding as of
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September 1 rose in value by around $210bn. These observations indicate that US Treasury bonds

are a “negative β” asset. In this section, we show that the reserve asset is naturally a negative β

asset, and this β is closely tied to the strength of an asset’s reserve position.

To make these points we introduce a positive recovery value in default, li > 0. In our baseline

model with zero recovery, the price of the reserve asset is equal to 1+f
si

regardless of shocks which

does not allow us to derive predictions for the β, which is the sensitivity of price to shocks. Suppose

that country i’s debt recovery per unit of face value, given default, is li > 0. This says that the total

payouts from the defaulting country 1 or country 2 are l1 or sl2, respectively. For simplicity, we do

not allow li to be dependent on the country’s relative fundamental δ̃. However, li may depend on

the average fundamental θ, to which we will introduce shocks later when calculating the β of the

assets.

When recovery is strictly positive, there is a strong strategic substitution force that pushes

investors to buy the defaulting country’s debt if nobody else is doing so. This is because an

infinitesimal investor would earn an unbounded return if she is the only investor for the defaulting

country’s bonds, given a strictly positive recovery. But this implies that threshold strategies are no

longer optimal in any symmetric equilibrium, especially when the signal noise σ vanishes. To see

this, given the conjectured threshold signal δ∗, an investor with a signal δj = δ̃ + εj 6= δ∗ knows

that other investors—who follow the conjectured threshold strategies—are solely investing in the

surviving country. But then she will strictly prefer to invest in the defaulting country for an infinite

return.

Similar to the way we deal with strategic substitutability in the joint survival equilibria studied

in the previous section, we focus on the strategy space of oscillation strategies to construct an

equilibrium for the case of positive recovery. The basic idea, in the spirit of global games, is as

follows. Suppose that the relative fundamental of country 1, i.e., δ̃, is sufficiently high so that country

1 survives for sure, irrespective of investors’ strategies. This corresponds to the upper dominance

region in global games. Then, investors given their private signals will follow an oscillation strategy

so that on average there are 1
1+l2s

( l2s
1+l2s

) measure of investors purchasing the bonds issued by
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country 1 (2). This way, the defaulting country 2 pays out l2s while the safe country 1 pays out 1,

and each investor receives the same return of

1

(1 + f) 1
1+l2s

=
l2s

(1 + f) l2s
1+l2s

=
1 + l2s

1 + f
.

When δ̃ is relatively high but below that upper dominance region, we postulate that this oscillation

strategy prevails in equilibrium, so that country 1 is the only safe country. When δ̃ is relatively low

but above the lower dominance region, investors follow an oscillation strategy so that on average

there are l1
l1+s ( s

l1+s) measures of investors purchasing the bonds issued by country 1 (2). This way,

defaulting country 1 pays out l1 while the surviving country 2 pays out s, and each investor receives

the same return of
l1

(1 + f) l1
l1+s

=
s

(1 + f) s
l1+s

=
l1 + s

1 + f
.

Again, for δ̃ being relatively low but above the lower dominance region, we postulate that this

oscillation strategy prevails in equilibrium so that country 2 is the safe country.

Similar to how equilibrium is determined in global games, given that these two oscillating strate-

gies prevail for high and low δ̃, there will be an endogenous switching threshold δ∗, such that it is

optimal for investors with private signals above δ∗ to follow the oscillation strategies in which coun-

try 1 survives, while it is optimal for investors with private signals below δ∗ to follow the oscillation

strategies in which country 2 survives. In the appendix we show how these two oscillation strategies

paste at the switching threshold δ∗, and prove that the proposed investment strategies as a function

of private signals are indeed optimal given the other investors’ strategies. The closed-form solution

for δ∗ is given by

δ∗ =
[(1− l2) s− (1− l1)] z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

(1− l1) + s (1− l2)
. (14)

When setting l1 = l2 = 0, we recover δ∗ = −(1−s)z−s ln(s)
1+s , which coincides with the equilibrium

threshold in the baseline model with zero recovery.
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3.6.1 Default Recovery and Equilibrium Prices

We summarize the equilibrium with positive default recovery for the case where signal noise σ → 0.

For relative fundamental δ̃ ∈ [δ, δ∗) where the endogenous threshold δ∗ is given by (14), l1(1+f)
l1+s

investors purchase bonds issued by country 1 and s(1+f)
l1+s purchase bonds issued by country 2. As a

result, the price of each bond is given by

p1 =
l1 (1 + f)

l1 + s
, and p2 =

1 + f

l1 + s
.

On the other hand, when the relative fundamental δ̃ ∈ (δ∗, δ], 1+f
1+l2s

investors purchase bonds issued

by country 1 and l2s(1+f)
1+l2s

purchase bonds issued by country 2. The resulting prices are

p1 =
1 + f

1 + l2s
, and p2 =

l2 (1 + f)

1 + l2s
.

Compared to the results with zero default recovery that we have derived in earlier section, this

extension with a positive recovery allows us to not only determine the endogenous threshold of the

reserve asset status, but also the endognenous bond prices for both countries (in the zero recovery

case, the prices are either zero or (1 + f) /si ) by equalizing the returns across both countries.

As bond prices of the two countries are linked via the cash-in-the-market pricing, the defaulting

country’s recovery can affect the price of the reserve asset.

To illustrate this point, we fix a realization of relative fundamental δ > δ∗ so that the country

1’s bonds are the reserve asset. Figure 3 plots the endogenous bond prices as a function of l1 (left

panel) and l2 (right panel). Note that both recovery parameters affect the endogenous threshold

δ∗, so that δ∗ may be below the realized relative fundamental δ for some values of li. This explains

the discrete jump of bond prices in Figure 3 when l1 = 0.25 and l2 = 0.25, as in these case the

jump corresponds to country 1 being the reserve asset. The solid line represents p1, whereas the

dashed-line represents p2.

As shown in the left panel of Figure 3, both bond prices are unaffected by l1 in the region that
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Figure 3: Bond prices p1 (solid) and p2 (dashed) when the default recoveries li’s vary. Here, the
parameters are set to z = 1, s = 0.9, f = 0.1 and δ = −0.02.

country 1’s bonds are the reserve asset. This is intuitive: we are in a situation where country 1

survives, hence its hypothetical recovery value does not matter. However, in the region where l1 is

low and δ∗ > δ, country 1 is not the reserve asset and its bond price is increasing in l1. In contrast,

through the cash-in-the-market pricing effect, the bond’s of country 2 are decreasing in l1 in this

region. In the right panel, when the recovery of country 2, i.e., l2, decreases, then p2 drops and p1

rises if country 1 is the reserve asset.

The above comparative statics with respect to li suggest that in our model the reserve asset will

behave as a negative beta asset. To see this, suppose that aggregate fundamentals deteriorate–say

θ falls– leading to lower recovery for both bonds in case of default. However, as shown above, the

drop in the reserve asset’s recovery, l1, has no impact on the equilibrium bond prices as long as

country 1 remains the reserve asset. In contrast, the worse recovery of country 2 pushes investors

into a flight to quality, and country 1’s bond price goes up. Combining both effects, country 1’s

bonds gain when the aggregate fundamental deterioriates, which makes it a negative beta assset.

The next section develops this point fully.
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3.6.2 Negative Beta Asset

Suppose that θ, which proxies for the aggregate fundamental for both countries, is subject to shocks.

For convenience, suppose that θ̃ is drawn from the following uniform distribution

θ̃ ∼ U
[
θ, θ
]
,

and recall z
(
θ̃
)

= ln 1+f

1−θ̃ . Also, suppose that

li = lθ̃, i ∈ {1, 2}

where l > 0 is a positive constant, so that recovery is increasing in the funadamental shock. Using

(14), we calculate the threshold δ∗ (θ) as a function of the realization of θ̃ = θ, to be

δ∗ (θ) =
[(1− lθ) s− (1− lθ)] z (θ)− (s+ lθ) ln (s+ lθ) + (1 + slθ) ln (1 + lθs) + lθ ln (lθ)− slθ ln (lθ)

(1− lθ) + s (1− lθ)

Note that d
dθδ
∗ (θ) < 0; that is, a higher θ, by reducing rollover risk, makes country 1 safer.

In this exercise we consider a distribution so that the relative fundamental δ is almost surely,

δ > δ∗ (E [θ]) .

This implies that ex ante country 1 bonds are more likely to be the reserve asset. Also, define θ̂ (δ)

so that δ∗
(
θ̂
)

= δ holds; this is the critical value of fundamental θ = θ̂ so that country 1’s bonds

lose the reserve asset status. We choose δ so that θ̂ > θ, which implies that with strictly positive

probability, country 1 defaults given a sufficiently low fundamental.

We are interested in the beta of the bond price of each country with respect to the θ shock, i.e.,

βi (δ) =
Cov

(
pi

(
θ̃; δ
)
, θ̃
)

V ar
(
θ̃
) =

E
[
pi

(
θ̃; δ
)
· θ̃
]
− E

[
θ̃
]
E
[
pi

(
θ̃; δ
)]

V ar
(
θ̃
) , (15)
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Figure 4: β1 = Cov(p1,θ1)
V ar(θ1) for the bonds issued by country 1, as function of country 1’s relative

fundamental δ.

Using the results in Section 3.6.1, we know that

p1 (θ; δ) =


(1+f)lθ
s+lθ if θ<θ̂ (δ) so country 1 defaults;

1+f
1+lθs if θ ≥ θ̂ (δ) so country 1 survives;

and

p2 (θ; δ) =


1+f
s+lθ if θ<θ̂ (δ) so country 2 survives;

(1+f)lθ
1+lθs if θ ≥ θ̂ (δ) so country 2 defaults.

Given these pricing functions, it is straightforward to evaluate betas in (15). We vary country 1’s

relative strength δ and plot the betas for both bonds as a function of δ in Figure 4. We only plot

the β for country 1’s bonds, because β2 = −β1/s in our model.10 As suggested by the intuition

laid out in the previous section, the beta for the country 1’s bonds is negative when the country 1’s

relative fundamental δ is high, i.e., when country 1 enjoys the reserve asset status. Moreover, the

higher country 1’s relative fundamental, the more negative the beta of its bonds.
10This is because cash-in-the-market-pricing implies that p1 + sp2 = 1 + f .
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4 Coordination and Security Design

In this section, we characterize the benefits to coordinating through security design. We are mo-

tivated by the Eurobond proposals that have been floated over the last few years (see Claessens

et al. [2012], for a review of various proposals). A shared feature of the many proposals is to cre-

ate a common Europe-wide reserve asset. Each country receives proceeds from the issuance of the

“common bond” which is meant to serve as the reserve asset, in addition to proceeds from the sale

of an individual country-specific bond. By issuing a common Euro-wide reserve asset, all countries

benefit from investors’ need for a reserve asset, as opposed to just the one country (Germany) which

is the de-facto reserve asset in the absence of a coordinated security design. Our model, in which the

determination of the reserve asset is endogenous, seems well-suited to analyze these issues formally.

We are unaware of other similar models or formal analysis of this issue.

We return to the model with exogenous sizes, fixing s1 = 1 and s2 = s. The two countries issue

a common bond of size α (1 + s) as well as individual country bonds of size (1− α)si, so that total

world bond issuance in aggregate face-value is still (1 + s). Suppose the equilibrium price for the

common bonds is pc. Let si
s1+s2

be the share of proceeds from the common bond issue that flows to

country i, so that country i receives

si
1 + s

pcα (1 + s) = siαpc

from the common bond auction. Country i issues individual bonds of size (1− α) si at endogenous

price pi so that total proceeds from both common and individual bond issuances to country i are,

si(αpc + (1− α)pi).

We model the bond auction as a two-stage game. In the first-stage, countries auction the
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common bonds and investors spend a total of f − f̂ to purchase these bonds, so that in equilibrium,

f − f̂ = (1 + s)αpc (16)

In the second stage, the investors use their remaining funds of 1 + f̂ to purchase individual country

bonds. After both auctions, each country makes its default decision.

Country i avoids default whenever,

si(αpc + (1− α)pi) + siθi > si, (17)

which is a straightforward extension of the earlier default condition to include the common bond

proceeds. We assume that default affects all of the country’s obligations. The country defaults fully

on its individual bonds and defaults on its portion of common bonds, so that investors in common

bonds receive repayments only from any countries that do not default.

We conjecture and verify the following solution.

Proposition 5 There are two equilibria, a “maximum joint safety” equilibrium and a “minimum

joint safety” equilibrium. In both equilibria, the determination of the reserve asset depends on α as

follows:

1. α ∈ [0, α∗]: There exists a threshold δ∗ (α). If δ̃ > δ∗ (α), then country 1 is the reserve asset,

while if δ̃ < δ∗(α) country 2 is the safe asset.

2. α ∈ [αHL, 1]: Both countries satisfy (17) for δ̃ ∈ [δL(α), δH(α)] so that both debts are safe,

whereas for δ̃ outside this interval, one country violates (17) and defaults and the other coun-

try’s debt is the reserve asset.

Furthermore, the two cutoffs α∗ > αHL are defined as follows:

1. In the “maximum joint safety” equilibrium, αHL solves δL (αHL) = δH (αHL);

2. In the “minimum joint safety” equilibrium, α∗ solves δ∗ (α∗) = 0.
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Figure 5: δ∗, δH , δL for the case of s = 0.5 and s = 0.25, as a function of α

Figure 5 illustrates the statement of the proposition for a case of s = 0.5 (left panel) and s = 0.25

(right panel), both for z = 1. Focusing on the left panel, the black solid line plots δ∗ for α ∈ [0, α∗].

We have that δ∗ is less than zero for this case because z = 1 corresponds to the high savings cases

illustrated in earlier graphs. At α = α∗ we have that δ∗ equals zero. The dashed-lines in the figure

indicate the upper/lower bounds of the realizations of δ̃ in order for the economy to be in the joint

safety region where both countries’ debts are reserve assets. We see that this joint safety region

begins at α = αHL, and expands as a function of α. Intuitively, increasing α shares some of the

safety benefits of the large country with the small country and hence allows the small country to

be safer given realizations of δ̃. The two possible equilibria overlap between αHL and α∗.

In the right panel we consider a case of s = 0.25. We note that the joint safety is a possibility

even for α = 0, provided that the δ̃ realizations are sufficiently negative (i.e., country 2 is realized

to have sufficiently strong fundamentals than country 1). It is still the case that increasing α makes

country 2 safer, expanding the joint safety region and increasing δ∗ towards zero. Increasing α

makes country 1 less safe in the minimum joint safety region, while it makes country 1 more safe

(i.e. δL falls) in the maximum joint safety region.

The main result that emerges from our analysis in this section, and which is evident in the figure,

is that increases in α only create Pareto gains (when gains are thought of in terms of increasing

country safety) when α > α∗. In this case, increases in α raise the safety of both country 1 and

country 2. For α < α∗ and in the minimum safety equilibrium, increases in α reduce safety of
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one country while increasing safety of the other country. Common bonds unambiguously increase

welfare only when they are large enough in quantity. That is, a small step towards a fiscal union can

be worse than no step. The rest of this section derives the equilibrium and results in Proposition 5.

4.1 Case 1: Minimum joint safety

We first solve for an equilibrium where only one country is safe. This equilibrium is a small variant

on the equilibrium we have derived so far involving threshold strategies. We will find the largest α

so that this threshold equilibrium can exist, which we call α∗.

We work backwards from the second stage. In the second stage, investors have 1+ f̂ to purchase

individual country bonds. Consider the marginal investor with signal δ∗ who considers that a

fraction x of investors have signals exceeding his. Country 1 does not default if,

αpc + (1− α)p1 + θ1 > 1.

Since, f − f̂ = (1 + s)αpc by (16) and (1− α)p1 = x(1 + f̂), we rewrite this condition as,

f − f̂
(1 + s)

+ x(1 + f̂) + θ1 > 1⇒ x ≥
1− θ1 − 1

1+s(f − f̂)

1 + f̂
.

We again take the limit as σ → 0 and set (1 − θ1) = (1 − θ)e−δ∗ . Additionally, noting that the

return to the marginal investor in investing in country 1 is 1−α
(1+f̂)x

if the country does not default

(and zero recovery in default), we integrate over returns when the country does not default to find,

Π1 =
1− α
1 + f̂

ln

 1 + f̂

(1− θ) e−δ∗ − 1
1+s

(
f − f̂

)
 .

When f̂ = 0, this equation is identical to the previously derived profit equation.

We repeat the same steps for the profits to investing in country 2 and find,
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Π2 =
s (1− α)

1 + f̂
ln

 1 + f̂

s (1− θ) eδ∗ − s
1+s

(
f − f̂

)
 .

We solve for the threshold in the same way as before:

Π1 = Π2 ⇒ δ∗(f̂ , α) (18)

Next we derive f̂ by considering the stage 1 game in which investors make the investment decision

on common bonds before δ̃ realizes. Under the assumed equilibrium where only one country becomes

the reserve asset and does not default, the return to investing in the common bond is,

1

f − f̂

[ˆ δ∗

−δ̄
αs
dδ

2δ̄
+

ˆ δ̄

δ∗
α
dδ

2δ̄

]
.

The denominator in the front is the total amount of funds invested in the common bond, while

the term in parentheses is the repayment on the common bonds in the cases of repayment only by

country 2 and repayment only by country 1, respectively. The returns to keeping one dollar aside

and investing in individual country bonds is,

1

1 + f̂

[ˆ δ∗

−δ̄
(1− α)s

dδ

2δ̄
+

ˆ δ̄

δ∗
(1− α)

dδ

2δ̄

]
.

Again, the denominator in the front is the total amount of funds invested in individual bonds, while

the term in parentheses is the repayment on individual bonds in the cases of repayment only by

country 2 and repayment only by country 1. Note the similarity between these last two expressions.

The similarity arises because along the nodes of country 2 defaulting or country 1 defaulting, the

payoffs, state-by-state, to common bonds and individual bonds are αsi and (1 − α)si. Since the

return from investing in common bonds in stage one of the game and waiting and investing in

individual bonds in stage 2 must be equal, we have that:

α

f − f̂
=

1− α
1 + f̂

37



which we can solve for f̂ to give,

f − f̂ = α (1 + f) (19)

so that

pc =
f − f̂

α (1 + s)
=

1 + f

1 + s
. (20)

We combine equation (18) and (19) to solve for δ∗(α).

We next consider the bound α∗ We have assumed that only one country becomes the reserve

asset, while the other country does not default. However, inspecting (17) we see that as α rises,

since pc > 0, it may be that even a country that receives zero proceeds from selling its individual

bonds will be able to avoid default. That is, the proceeds from the common bond, which is the

reserve asset, provides a default cushion for the weaker country. In this case, it is possible that

neither country defaults on its bonds, invalidating our equilibrium assumption that one country

defaults for sure.

For each realization of δ, define

θdef (δ) ≡ min [θ1 (δ) , θ2 (δ)]

as the fundamental of the country with the worse realization of fundamentals. Take the best value

of this worse realization of fundamentals, which occurs when δ = δ∗, since even at a slightly higher

higher value than this realization one country narrowly beats the other country to become the

reserve asset. Now we have constructed an equilibrium in which the beaten country defaults. But

is this actually an equilibrium? For this realization, the beaten country defaults if,

θdef (δ∗) + αpc < 1 ⇐⇒ α
1 + f

1 + s
< 1− θdef (δ∗) ⇐⇒ α ≤ 1 + s

1 + f
[1− θdef (δ∗ (α))] .
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Then α∗ solves the equation,

α∗ =
1 + s

1 + f
[1− θdef (δ∗ (α∗))] .

Let us investigate the slope δ∗α (0). We see from the graphs that there are situations in which

δ∗α (0) < 0 so that the large country gains when a small fraction of common bonds are issued. The

intuition is the following. Equalizing returns, and realizing that f̂ = f − α (1 + f), we see that

increasing α decreases the available funding for individual bonds. When we look at the returns, we

are comparing

ln

 1 + f̂

(1− θ) e−δ∗ − 1
1+s

(
f − f̂

)
 vs s ln

 1 + f̂

s (1− θ) eδ∗ − s
1+s

(
f − f̂

)


We see there are two effects. In the denominator, a higher α leads to a lower f̂ , which means there

is less money left over for individual bonds as common bonds divert some of the funding. Size

doesn’t matter for the numerator as we are in a “winner takes all” equilibrium for individual bonds.

This is the funding effect. The denominator also changes, however, as α > 0 introduces common

bond proceeds f−f̂
1+s per common bond sold. We see that these common bonds are scaled by the size

of the country as common bonds are issued proportional to country size. Common bond proceeds

make a country safer, all else equal. Thus, this is the safety effect. For small s, most of the common

bond proceeds accrue to the large country. This can lead to a situation in which the large country

becomes even safer, i.e., δ∗ adjusts downward.

4.2 Case 2: Maximum joint safety

We now construct an equilibrium in which both countries can be safe. Given this equilibrium, we

will compute the minimum value of α for which this equilibrium exists. As we show, this minimum

value, denoted αHL, will generally be less than α∗. This overlap implies that at least two equilibria

exist for some parameters of the model, as described in the Proposition.

The possibility that both countries may be safe means that our equilibrium construction using
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threshold strategies is no longer possible. In a region where both countries are known to be safe

(recall we consider the limit where σ → 0), investors must be indifferent between investing in the

two countries, choosing strategies so that in equilibrium the return on both countries’ bonds are

equal. This “joint safety” region prevails for realizations of δ̃ ∈ [δL, δH ]. Outside this interval we

are back to the case where the signals are so strong that only one country survives. We now focus

on deriving the boundary between these regions given by functions δL(α) and δH(α). Given these

functions we can solve for the boundary αHL , which occurs when both thresholds coincide, i.e.,

δL (αHL) = δH (αHL), and the joint safety region vanishes.

We depart from monotone threshold strategies. The construction of equilibrium follows closely

to Appendix A.3. Let us conjecture a non-monotone strategy whereby investment in country 1 and

in country 2 alternate on discrete intervals of length kσ and (2− k)σ, with k ∈ (0, 2). We will

refer to this strategy as the oscillating strategy. The investor strategy is φ (y) ∈ {0, 1} which is

investment in country 1:

φ (y) =



0, y < δL

1, y ∈ [δL, δL + kσ] ∪ [δL + 2σ, δL + (2 + k)σ] ∪ [δL + 4σ, δL + (4 + k)σ] ∪ ...

0, y ∈ [δL + kσ, δL + 2σ] ∪ [δL + (2 + k)σ, δL + 4σ] ∪ [δL + (4 + k)σ, δL + 6σ] ∪ ...

1, y > δH

(21)

In the limit as σ approaches zero, these strategies resemble mixed strategies, so that over any

interval strictly inside [δL, δH ] the probability of investing in each country is such that bond returns

are equalized. For more related discussions on this non-monotone strategy, see Section 3.5.

4.2.1 Fraction of agents in investing in country 1

Consider a region on which all investors know that both countries are safe. In this case, the total

investment in country 1 and 2 has to be
(

1 + f̂
)

1
1+s and

(
1 + f̂

)
s

1+s , respectively, as otherwise

one country will offer strictly higher (expected) returns than the other country. Take an agent with
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signal δ. Let us introduce the function ρ (δ), which is the expected proportion of agents investing

in country 1 given (own) signal δ. Then, given the assumed strategy for all agents and given that

we are in the region where both countries are safe,

ρ(δ) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

kσ

2σ
.

We choose k so that,

ρ(δ) =
1

1 + s
⇐⇒ k =

2

1 + s
(22)

The last equality arises because in equilibrium the proportion must be constant and equal to 1
1+s

in order to have returns equalized across the two safe bonds.

For any value of δ and x, the proportion of agents investing in country 1 is given by

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =



0, δ + 2σx < δL

δ+2σx−δL
2σ δ + 2σx ∈ (δL, δL + kσ)

1
1+s , δH − (2− k)σ > δ > δL + kσ

(23)

We see that ρ (δ, x) is strictly increasing in x in the vicinity of δL, and flat everywhere else. Note

further that

ρ (δL, x) =


x, x ∈

[
0, 1

1+s

]
1

1+s , x ∈
(

1
1+s , 1

] (24)

where we observe that ρ (δL, x) is less than or equal to 1
1+s .

4.2.2 Lower boundary δL

Let Πi (δ) be the expected payoff of investing in country i for a given agent with signal δ. In the

completely safe case, investors were indifferent between both strategies because both paid exactly

the same in all states of the world. This is not the case at δL, as the countries (at least in the
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eyes of the agent) are not always safe. Thus, the country with perceived default risk (at δL this is

country 1) will need to offer a higher return conditional on survival to be attractive to the agent.

To an agent with signal δL, the return from investing only in country 2 (i.e. φ = 0) is given by

Π2 (δL) =

ˆ 1

0

s(
1 + f̂

)
(1− ρ (δL, x))

dx (25)

where we integrate over all x as country 2 is safe regardless of x. Thus, substituting in for ρ (δL, x),

we have

Π2 (δL) =
s

1 + f̂

[ˆ 1
1+s

0

1

1− x
dx+

ˆ 1

1
1+s

1
s

1+s

dx

]
=

s

1 + f̂

[
ln

1 + s

s
+ 1

]
<

1 + s

1 + f̂
(26)

where we used s ln 1+s
s < 1.

Now consider country 1. The minimum proportion of agents investing in country 1 that are

needed to make country 1 safe if the true state of the world is δ solves,

θ1 (δ) + αpc +
(

1 + f̂
)
ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =

1− θ1 (δ)− αpc
1 + f̂

Define xmin (δL) as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (24), we have that,

xmin (δL) =
1− θ1 (δL)− αpc

1 + f̂
(27)

The expected return of investing in country 1 given one’s own signal δL and the strategies φ (y)

of other agents is given by (using (24)),

Π1 (δL) =

ˆ 1

xmin(δL)

1(
1 + f̂

)
ρ(δL, x)

dx =
1

1 + f̂

[
ln

1

1 + s
− lnxmin (δL) + s

]

Indifference requires that Π2 (δL) = Π1 (δL), which implies that

xmin (δL) = exp [s ln s− (1 + s) ln (1 + s)] (28)
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We combine the two equations for xmin (δL), (27) and (28), to find an equation that determines δL:

exp {s ln s− (1 + s) ln (1 + s)} =
1− θ1 (δL)− αpc

1 + f̂
(29)

Plugging in for 1− θ1 (δ) = (1− θ) exp (−δ), we finally have

δL = − ln

{
1

1− θ

[(
1 + f̂

) ss

(1 + s)(1+s)
+ αpc

]}
. (30)

4.2.3 Upper boundary δH

The derivation of the upper boundary δH is analogous. We have

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s , δ − 2σ (1− x) < δH − (2− k)σ

δ+2σx−δH
2σ δ − 2σ (1− x) ∈ [δH − (2− k)σ, δH ]

(31)

so that

ρ (δH , x) =


1

1+s , x < 1
1+s

x, x ∈
[

1
1+s , 1

] (32)

Consider now the agent with signal δH who is considering investing in country 1. In his eyes,

the return from investing only in country 1 (i.e. φ = 1) is given by

Π1 (δH) =

ˆ 1

0

1(
1 + f̂

)
ρ(δH , x)dy

dx =
ln (1 + s) + 1

1 + f̂

where we integrated over all x as country 2 is always safe in the vicinity of δH .

The default condition for country 2 is

sθ2 (δ) + sαpc +
(

1 + f̂
)

[1− ρmax2 (δ)] = s ⇐⇒ [1− ρmax2 (δ)] = s
1− θ2 (δ)− αpc

1 + f̂

where ρmax2 (δ) is the maximum amount of people investing in country 1 so that country 2 does not
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default. Let us assume, and later verify, that at δH , we have [1− ρmax2 (δH)] < s
1+s , that is country

2 would survive even if less than s
1+s of investors invest in it. Define xmax (δH) as the solution to

ρ (δH , xmax) = ρmax2 (δH). Given equation (32), we have that,

1− xmax (δH) = s
1− θ2 (δH)− αpc

1 + f̂
(33)

Then the return to investing in country 2 is,

Π2 (δH) =

ˆ xmax(δH)

0

s(
1 + f̂

)
(1− ρ(δH , x))dy

dx =
s

1 + f̂

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]

Indifference requires Π1 (δH) = Π2 (δH), which implies that

1− xmax (δH) =
s

(1 + s)
1+s
s

(34)

Combining the expressions for xmax (δH) from (33) and (34), we solve,

δH = ln

{
1

1− θ

[
1 + f̂

(1 + s)
1+s
s

+ αpc

]}
(35)

We still need to verify that the optimality of proposed investment strategies for investors with

signal δi ∈ (δL, δH). The argument is exactly the same as in Appendix A.3 and hence omitted here.

4.2.4 α > 0 and stage 1 asset allocation.

Let us now consider the stage 1 asset allocation, that is, the determination of f̂ and pc = f−f̂
α(1+s)

(there are α (1 + s) units of common bonds, and there is f − f̂ money invested in them). Consider

an α > 0. Then, we know that the expected returns from investing in common bonds in stage 1

and investing in individual country bonds in stage 2 have to be equalized. The return to investing
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in individual bounds is

Ri = (only country 2) + (joint survival) + (only country 1) (36)

=

ˆ δL

−δ

(1− α) s

1 + f̂

dδ

δ − δ
+

ˆ δH

δL

(1− α) (1 + s)

1 + f̂

dδ

δ − δ
+

ˆ δ

δH

(1− α)

1 + f̂

dδ

δ − δ
(37)

=
1− α
1 + f̂

[ˆ δL

−δ
s
dδ

δ − δ
+

ˆ δH

δL

(1 + s)
dδ

δ − δ
+

ˆ δ

δH

dδ

δ − δ

]
(38)

and the expected return for common bonds is given by

Rc =
α

f − f̂

[ˆ δL

−δ
s
dδ

δ − δ
+

ˆ δH

δL

(1 + s)
dδ

δ − δ
+

ˆ δ

δH

dδ

δ − δ

]
(39)

Note the similarity between these last two expressions. The similarity arises because along the

states of country 2 defaulting or country 1 defaulting, the payoffs, state-by-state, to common bonds

and individual bonds are αsi and (1− α)si. Thus,

α

f − f̂
=

1− α
1 + f̂

⇐⇒ f − f̂ = α (1 + f) ⇐⇒ 1 + f̂ = (1− α) (1 + f) (40)

and,

αpc =
f − f̂
1 + s

= α
1 + f

1 + s
(41)

We can now solve out for the thresholds. Plugging the expression for αpc into (30) and (35), we

find,

δH = z + ln

{
1

1 + s

[(
1

1 + s

) 1
s

(1− α) + α

]}
(42)

δL = −z − ln

{
1

1 + s

[(
s

1 + s

)s
(1− α) + α

]}
(43)

The next proposition establishes the existence of the oscillating equilibrium.
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Proposition 6 For a given z, define αHL as the solution zHL (αHL) = z where

zHL (α) = ln (1 + s)− 1

2

{
ln

[(
s

1 + s

)s
(1− α) + α

]
+ ln

[(
1

1 + s

) 1
s

(1− α) + α

]}

Then, the oscillating equilibrium exists for α > αHL. Furthermore, we have δ∗ (αHL) = δH (αHL) =

δL (αHL) as well as δ∗α (αHL) < 0.

There is a smooth transition from δ∗ to the oscillating equilibrium as α crosses αHL in that

the thresholds δ∗, δH , δL all coincide at α = αHL. Furthermore, this transition occurs at a point at

which δ∗ (α) is decreasing in α, implying that it occurs at a point at which the large country gains

safety from increasing α.

5 Endogenous Reserve Asset Size

We have thus far taken debt size and country surplus as exogenous, deriving predictions regarding

the reserve asset based on these variables. We now endogenize these variables, assuming that each

country sees a benefit to becoming the reserve asset, but faces costs in choosing debt size and

surplus.

5.1 Incentives and costs of altering debt size and surplus

We suppose that the countries have natural debt sizes of s∗1 and s∗2, which we will think of as

determined by local economic and fiscal conditions. For example, countries with a higher GDP will

naturally have a larger stock of debt outstanding. A country can choose to alter the size of its debt,

but incurs an adjustment cost. If country 1 increases its debt size to S1 it must increase the surplus

θ proportionately, via increases in the tax base, to support the larger debt issue. We assume that

increasing the debt size to Si requires raising the surplus from θi to θi Sis∗i and that countries face an

adjustment cost c(Si − s∗i ) which is increasing and convex in Si − s∗i , with c(0) = 0, c′(0) = 0.

Separately, we suppose that countries can change their surplus without altering debt size (i.e.
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increasing the ratio of tax revenues to outstanding debt). In particular, a country can choose an

increment δi, so that the country’s fundamental becomes (for country 1):

1− θ1 = (1− θ)e−δ̃−δ1

That is, for country 1, choosing δ1 > 0 decreases its funding need 1 − θ1 (we can likewise define a

δ2 that improves country 2’s surplus). This action costs κ(δi).

We solve for δ∗(S1, S2, δ1, δ2) following the same analysis as in Section 2.2. The marginal investor

with signal δ∗ receives the following return from investing in country 1:

Π1 =

ˆ 1

S1(1−θ)e−δ
∗

1+f

S1

(1 + f)x
dx =

S1

1 + f

(
− lnS1 + ln

1 + f

1− θ
+ δ∗ − δ1

)
,

while the return from investing in country 2 is

Π2 =

ˆ 1+f−S2(1−θ)e
δ∗

1+f

0

S2

(1 + f) (1− x)
dx =

S2

1 + f

(
− lnS2 + ln

1 + f

1− θ
− δ∗ + δ2

)
.

Setting Π1 = Π2 and solving, we find that the equilibrium threshold is

δ∗ (S1, S2, δ1, δ2) =
S2 − S1

S1 + S2
z +

S1 lnS1 − S2 lnS2

S1 + S2
− δ1

S1

S1 + S2
+ δ2

S2

S1 + S2
. (44)

where again z ≡ ln 1+f
1−θ measures the strength of savings/fundamentals.

By altering Si and δi a country can alter δ∗. Note that a lower δ∗ helps country 1 in the sense

that country 1 is the reserve asset (and does not default) for a wider range of fiscal fundamentals.

Likewise, a higher δ∗ helps country 2.

5.2 Endogenous debt size

It is clear from equation (44) that increasing δi benefits country-i. Thus, as we would expect a

country that increases its fiscal fundamentals improves its reserve asset position. The analysis here
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is fairly ordinary: the country chooses δi to balance the reserve asset benefit against the cost of

increasing its surplus, κ(δi).

We instead focus our analysis on endogenous debt size, which yields more nuanced results. Let

us set δi = 0. Suppose that country 1 chooses S1 to maximize (focusing again on monotone threshold

strategies),

−δ∗ (S1, S2)︸ ︷︷ ︸
benefit of reserve asset status

− c(S1 − s∗1)︸ ︷︷ ︸
adjustment cost

. (45)

This objective can be understood as follows. The second term is the cost of adjustment. The

first term captures the benefit of adjustment, i.e., the country is able to lower the minimum level of

surplus needed to be the reserve asset, and hence avoid default. For any cdf for δ̃ and an appropriate

renormalization of the cost function, the benefit is linear in −δ∗ (S1, S2). Likewise for country 2,

the objective is

δ∗ (S1, S2)− c(S2 − s∗2)

where country 2 benefits by increasing δ∗ (S1, S2).

Introduce the function h(S1, S2; z), which is defined as the marginal impact of S1 on δ∗ (S1, S2):

h(S1, S2; z) ≡ ∂δ∗ (S1, S2)

∂S1
=

1

(S1 + S2)2
[S1 + S2(lnS1 + lnS2 + 1− 2z)] (46)

Due to symmetry, the (negative) derivative of δ∗ with respect to S2 is

−∂δ
∗ (S1, S2)

∂S2
= h(S2, S1; z) =

1

(S1 + S2)2
[S2 + S1(lnS1 + lnS2 + 1− 2z)] .

As a result, the first order conditions for endogenous debt sizes satisfy,
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Figure 6: Diagram of incentives to alter size of debt

h(S1, S2; z) = c′(S1 − s∗1) and, h(S2, S1; z) = c′(S2 − s∗2).

Next we analyze the property of h(S1 = s∗1, S2 = s∗2; z).

5.3 Equilibrium Characterization and “Phase Diagram”

We illustrate the solution in Figure 6. We first note that if there is no cost of changing size, then

the equilibrium solves

h(S1, S2; z) = h(S2, S1; z) = 0.

The equilibrium is symmetric. Define the solution in this case as S(z) = S1 = S2, and solving we

find that:

1 + lnS(z) = z ⇒ S(z) = ez−1.

On Figure 6 we plot the phase diagram where S1 = s∗1 and S2 = s∗2 are below S(z). The
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solid black curve corresponds to the set of points where h(S1, S2; z) = 0; that is, these are points

S1 and S2 where changing S1 has no effect on δ∗. The dashed red curve corresponds to the set

of points where h(S2, S1; z) = 0; that is, these are points where changing S2 has no effect on δ∗.

These two curves are symmetric around the 45-degree line and cross at the point
(
S(z), S(z)

)
. The

following lemma shows when country sizes are relatively small with max (S1, S2) < S(z), the locus

of h(S1, S2; z) = 0, which is the black curve in the figure, has S1 > S2. This implies that the black

curve lies below the 45-degree line. The result is reversed for the red curve which is the locus of

−∂δ∗(S1,S2)
∂S2

= h(S2, S1; z) = 0 and is symmetric around the 45-degree line.

Lemma 1 When max (S1, S2) < S(z), the locus of h(S1, S2; z) = 0 has S1 > S2..

Proof. We show that for h(S1 = S2 + ε, S2; z) = 0 to hold we must have ε > 0. Using (46) we have:

h(S1 = S2 + ε, S2; z) = ε+ S2(ln(S2 + ε)− lnS2) + 2S2(1 + lnS2 − z) = 0.

When S2 < S(z), the last term 2S2(1 + lnS2 − z) on the LHS is negative. To have h = 0, we must

have that ε > 0, since conditional on S2 the sum of the first two terms is zero when ε = 0 and

increasing in ε. Q.E.D.

Intuitively, for any given level of S2, starting from the 45-degree line country 1 has a strictly

positive incentive to expand its debt size to enhance its reserve asset status, since c′ (0) = 0. This

is due to the size benefit, illustrated in the left panel of Figure 2. This explains why along the solid

black curve with zero expansion incentive we must have S1 > S2. However, country 1 does not want

its debts to become too large, because as illustrated by the right panel of Figure 2, becoming too

large triggers rollover risk fears that may lead investors to coordinate on the smaller country’s debt

as the reserve asset. The black curve with h(S1, S2; z) = 0 balances these two effects.

Now suppose that the initial country sizes (s∗1, s
∗
2) lies to the right of the black curve, i.e.,

h(S1 = s∗1, S2 = s∗2; z) > 0. Then in equilibrium country 1 will choose an S1 < s∗1 (exactly how

much less depends on the cost function). Likewise, for any S1 if s∗2 is above the red curve, then

country 2 will choose an S2 < s∗2. For points inside the solid black and dashed red curves, both
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countries want to expand. The arrows on Figure 6 indicate the direction, as in a phase diagram, in

which countries will change debt size given a natural size of (s∗1, s
∗
2).

There are three regions of interest in Figure 6. Region A (“RAT RACE”) corresponds to a

case where countries’ debts are similar in size – so a roughly symmetric case. We see that in this

case both countries will increase the size of their debts. This is driven by the reserve asset effect:

there is an externality whereby the larger country has a better reserve asset position, and countries

compete to become the reserve asset by increasing their debt sizes. Of course, this competition to

gain reserve asset status is ultimately self-defeating. Take the fully symmetric case where s∗1 = s∗2

and thus δ∗ = 0 in equilibrium. The Nash equilibrium results in countries increasing debt sizes

beyond their natural sizes in a rat race to become the reserve asset, while both would be better off

and save adjustment costs if they coordinate not to expand. Region B and B′ (“TOP DOG”) are

cases with asymmetric country sizes. Take region B (as B′ follows the same logic). Here country

1 is large and country 2 is relatively small. In this case, country 1 is the top dog and not worried

about losing its reserve asset status, and is primarily concerned about rollover risk. In this region

country 1 chooses to contract its debt size, while country 2 expands, hoping to gain some reserve

status.11

5.4 Funding Conditions and Incentives for Expansion

By using the fact that ∂h(·,·;z)
∂z < 0 in (46), we can show that the region A—which is the area inside

the solid black curve and the dashed green curve—expands unambiguously as the aggregate funding

condition z rises. This result has interesting implications, as it suggests that countries, once facing

an environment with better aggregate funding conditions, are drawn into the rate race where they

compete to offer the reserve asset.

This comparative static offers a unique perspective on the expansion of relatively safe debt

supplies in the period preceding the 2007 financial crisis. In the US, the government agencies,
11For natural sizes beyond S(z), i.e. max (S1, S2) > S(z), there is a region (not shown in Figure 6) outside A that

covers the 45-degree line, in which both countries have incentives to shrink. There, the debt sizes are relative large
compared to the aggregate funding conditions, and the rollover risk concerns drive both countries to issue less debt.
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Fannie Mae and Freddie Mac, initiated a program (“Benchmark Notes”) in 1998 whose purpose was

to offer debt that could compete with US Treasury bonds as a large and liquid savings vehicle. Of

course, the expansion of such agency debt stocks ultimately resulted in the bailouts of Fannie Mae

and Freddie Mac by the US government, suggesting that welfare would have been improved without

these programs, or if the US Treasury had coordinated the debt sizes of the Agencies along with

that of the rest of the federal government. In Europe, the expansion of sovereign debt after the

formation of the Euro can similarly be seen as a rat race to serve as the reserve asset within Europe.

This rat race has also ended badly.

The figure offers a further prediction which may be comforting in today’s world of high US

government debt. Suppose that the world economy was in region A prior to the financial crisis, but

has since transitioned to region B, where US government debt is the top dog. This transition is in

keeping with the fact that the amount of US Treasury competitors has fallen since the crisis. The

model suggests that the US then has an incentive to shrink its debt.

6 Conclusion

US government debt is the world’s reserve asset currently because the US has good fundamentals

relative to other possible reserve assets, and given that global demand for a reserve asset is currently

high, the large float of US government debt is the best parking spot for all of this reserve asset

demand. In short, there is nowhere else to go. Our analysis of the economics of the reserve asset

also suggest that there can be gains from coordination, and that Eurobonds can exploit these gains

by coordinating a security design across Europe.
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A Appendix

A.1 Additive Fundamental Structure
We have considered the specification of 1 − θi = (1− θ) exp

(
(−1)i δ̃

)
for country i’s fundamental. We now show

that results are qualitatively similar with the alternative additive specification

θ1 = θ + δ̃, and θ2 = θ − δ̃.

As x = Pr
(
δ̃ + εj > δ∗

)
= δ̃+σ−δ∗

2σ
⇒ δ̃ = δ∗ + (2x− 1)σ, we know that

θ1 = θ + δ̃ = θ + δ∗ + (2x− 1)σ

θ2 = θ − δ̃ = θ − δ∗ − (2x− 1)σ

Given x, the large country 1 survives if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ + δ∗ + (2x− 1)σ ≥ 0⇔ x ≥ 1− θ − δ∗ + σ

1 + f + 2σ

which implies the expected return from investing in country 1 is

Π1 =

ˆ 1

1−θ−δ∗+σ
1+f+2σ

1

(1 + f)x
dx =

1

1 + f
ln

1 + f + 2σ

1− θ − δ∗ + σ
.

For country 2, the bond is paid back if

(1 + f)x′ − s+ sθ2 = (1 + f)x′ − s+ s [θ − δ∗ − (2x− 1)σ] ≥ 0

⇔ x′ ≥ s (1− θ + δ∗ − σ)

1 + f + 2sσ

which implies an expected return of

Π2 =

ˆ 1

s(1−θ+δ∗−σ)
1+f+2sσ

s

(1 + f)x′
dx′ =

s

1 + f
ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)

As a result, the equilibrium threshold δ∗ is pinned by by the indifference condition

ln
1 + f + 2σ

1− θ − δ∗ + σ
= s ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)
.

Letting σ → 0 we obtain

ln
1 + f

1− θ − δ∗ = s ln
1 + f

s (1− θ + δ∗)
. (A.1)

We no longer have close-form solution for δ∗ in (A.1), as δ∗ shows up in both sides. However, the solution is unique
because LHS (RHS) is increasing (decreasing) in δ∗. Finally, to ensure δ∗ < 0 so that the larger country 1 is relatively
safer, we require the same sufficient condition of z = ln 1+f

1−θ > 1 in this alternative specification.

A.2 Uniqueness of the cutoff equilibrium within monotone strategies
Suppose we restrict strategies to be monotone, i.e. φ (y) is an increasing function of y (of course, not necessarily
continuous). Thus, for any x, ρ (x) is increasing and continuous in x, i.e.,

ρ (x) =

ˆ 1

0

φ (δ (x)− (1− 2u)σ) du

as δ (x) is increasing in x. Importantly, we have ρ′ (x) ∈ [0, 1], and we restrict ρ′′ (x) ≥ 0 by monotonicity. Then,
suppose that at xflat we have ρ′ (xflat) = 0. Then, we must have ρ (xflat) = maxx∈[0,1] ρ

′ (x). Further, we have
ρ′ (0) ≥ ρ (0) 2σ

δ−δn
.

We rule out fundamental uncertainty, and only have strategic uncertainty. That means that each agent who
receives a signal s = δ believes δ to be the true state of the economy, and everyone else being wrong about what they
think is the true state of the economy. Let us assume that ρmin (δ) > ρmax (δ) for all δ. A sufficient condition would
be for example e2z < 4s.

56



What are the strategies the agent might be playing against?

A.2.1 Lower dominance bound δn

Constant slope strategies are wlog. We will use a sequence of arguments to show that constant slope
strategies are optimal. The main argument relies on the fact that without fundamental uncertainty, for any x, x′ with
ρ (x) = ρ (x′) we have the same return as ρmin (δ) , ρmax (δ) are fixed.

1. Consider two ρ0 > ρ̂0 with the same slope φ. Then we know that xflat < x̂flat. As long as x̂flat < 1, ρ̂0
cannot be optimal. In other words, amongst strategies with the same slope (and thus the same ultimate flat
level), at least under ρmin (δ) > ρmax (δ), the strategy that achieves safety of country 1 the fastest dominates
any others.

2. Only linear and flat functions can be optimal. Suppose not.

(a) Consider a function ρ (x) that is strictly convex on [ρ0, ρmin (δ)] . Let x1 be defined by ρ (x1) = ρmin (x)
and define x0 by ρ0 + ρ′ (x1)x0 = ρmin (δ). Then we can find a function

ρ̂ (x) =


ρ0 + ρ′ (x1)x , x < x0

ρ (x− x0 + x1) , 1− x1 + x0 > x > x0

min [ρ (1) + ρ′ (1) (x− x0 + x1) , 1] , 1− x1 + x0 < x

that can be formed by monotone strategies. This function achieves safety of country 1 faster than ρ (x),
mimics the returns of ρ (x) one for one for x ∈ [x0, 1− x1 + x0] and adds some positive returns on
x ∈ [1− x1 + x0, 1]. Thus, ρ̂ (x) is always better than ρ (x) if ρ (x) is strictly convex.

(b) Consider any function ρ (x) that ever has an increase in slope on [ρmin (δ) , 1]. This simply leads to more
investment in country 1, lowering the returns, while not affecting the the safety region of country 1. Let
ρ (x1) = ρmin (δ). Then, we can always find a function

ρ̂ (x) =

{
ρ (x) , x < x1

min [ρ (x1) + ρ′ (x1) (x− x1) , ρ (x)] , x > x1

that can be formed by monotone strategies. Intuitively, we always want to have the minimal slope of
ρ (x) possible on [ρmin (δ) , 1], which is given by ρ′ (x1).

Constant slope strategies. Let us introduce the following family of strategies ρ (x) defined by the constant
slope φ:

ρ0
(
φ
)

=
δ − δn

2σ
φ

ρ (x) = min
{
φ, ρ0

(
φ
)

+ φ · x
}

That is, we assume that everyone that is not dominated plays φ ∈ [0, 1] (possibly interior). Why this family? It
includes φ = 1 which basically means that the agents we are playing against are aggressively investing in country 1.
But this might not be the best strategy to play against – it might pay to have less people investing in country 1 while
it still can survive to boost country 1’s return.

What remains is to show that linear and then flat is the best strategy to play against. Let us call φ = 1 the max
slope strategy. Essentially, a higher slope strategy achieves survival of country 1 faster (i.e. for lower x), but also
funnels more investors into country 1, thus lowering the return on country 1, for high x than necessary for country 1
survival. A lower slope strategy may not achieve survival of country 1 as fast (i.e. a higher x), but also funnels less
investors into country 1, thus boosting the return on country 1 for high x.

For any strategy constant slope strategy, define xflat as the point at which

φ = ρ0
(
φ
)

+ φxflat ⇐⇒ xflat = 1−
ρ0
(
φ
)

φ
= 1− δ − δn

2σ

We see that xflat is slope independent, which is intuitive – it occurs when x is such that the expectation is taken
exclusively over a non-dominanted area.

Let us note that we will only consider φ ≥ ρmin (δ). If this were not the case, country 1 would never surive,
which implies that this strategy can never be incentivizing investment in country 1. Then
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(1 + f) ∆ (δ) =

ˆ 1

0

[
1{ρ(x)≥ρmin(δ)}

1

ρ (x)
− 1{ρ(x)≤ρmax(δ)}

s

1− ρ (x)

]
dx

=

ˆ xflat

xmin

1

ρ0
(
φ
)

+ φx
dx+

ˆ 1

xflat

1

φ
dx−

ˆ xmax

0

s

1− ρ0
(
φ
)
− φx

dx

=
1

φ

[
ln
(
ρ0
(
φ
)

+ φxflat
)
− ln

(
ρ0
(
φ
)

+ φxmin
)]

+ (1− xflat)
1

φ

− s
φ

[
ln
(
1− ρ0

(
φ
))
− ln

(
1− ρ0

(
φ
)
− φxmax

)]
Next, we note that

ρ0
(
φ
)

=
δ − δn

2σ
φ

ρmin (δ) = ρ0
(
φ
)

+ φxmin

1− ρmax (δ) = 1−
(
ρ0
(
φ
)

+ φxmax
)

so that

(1 + f) ∆ (δ) =
1

φ

{
ln
(
φ
)
− ln (ρmin (δ)) +

δ − δn
2σ

− s
[
ln

(
1− δ − δn

2σ
φ

)
− ln (1− ρmax (δ))

]}
Let y ≡ δ−δn

2σ
. Then, we have

(1 + f) ∆φ (δ) = − 1

φ
(1 + f) ∆ (δ) +

1

φ

{
1

φ
+ s

y

1− yφ

}
=

1

φ

{
1

φ
+ s

y

1− yφ
− (1 + f) ∆ (δ)

}
=

1

φ
2

{
1 +

yφ

1− yφ
− φ (1 + f) ∆ (δ)

}
=

1

φ
2

{
1 +

yφ

1− yφ
−
{

ln

(
φ

ρmin (δ)

)
+ y − s ln

(
1− yφ

1− ρmax (δ)

)}}
Note that

{·} = 1 +
yφ

1− yφ
− lnφ+ ln (ρmin (δ))− y + s ln

(
1− yφ

)
− s ln (1− ρmax (δ))

= 1 +
yφ

1− yφ
− lnφ− (z + δ)− y + s ln

(
1− yφ

)
− s (ln s− z + δ)

=

{
1 +

yφ

1− yφ
− lnφ− y + s ln

(
1− yφ

)}
+ (1 + s)

[
− (1− s) z − s ln s

1 + s

]
− (1 + s) δ

=

{
1 +

yφ

1− yφ
− lnφ− y + s ln

(
1− yφ

)}
+ (1 + s) (δ∗ − δ)

We note that the term {·} is strictly positive for y = 0 and thus will be positive for small y > 0. The second term
is positive as we are approaching δ∗ from below via a sequence of δ. Then, we know that for small enough y, for all
δ < δ∗ we have φ = 1 being the optimal strategy to play against.

Plugging in φ = 1 and

ln (ρmin (δ)) = −z − δ
ln (1− ρmax (δ)) = ln s− z + δ
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so that

(1 + f) ∆ (δ; δn) = ln
(
φ
)
− ln (ρmin (δ)) +

δ − δn
2σ

1

φ
− s

[
ln

(
1− δ − δn

2σ
φ

)
− ln (1− ρmax (δ))

]
= z + δ +

δ − δn
2σ

− s
[
ln

(
1− δ − δn

2σ
φ

)
− ln s+ z − δ

]
which is increasing in δ. Let us define

f (δ) ≡ (1 + f) ∆ (δ; δ) = (1− s) z + (1 + s) δ + s ln s

which is increasing in δ. We define δ∞ by

f (δ∞) = 0 ⇐⇒ δ∞ = −1− s
1 + s

z +
−s

1 + s
ln s

and we see that δ∞ = δ∗.

A.2.2 Upper dominance bound δn

Constant slope strategies. Let us introduce the following family of strategies ρ (x) defined by the constant
strategy φ:

ρ1
(
φ
)

=
δ + 2σ − δn

2σ
+
δn − δ

2σ
φ = 1− δn − δ

2σ

(
1− φ

)
ρ (x) = max

{
φ, ρ1

(
φ
)

+
(
1− φ

)
· (x− 1)

}
Let us for the moment again assume that e2z < 4s, so that ρmin (δ) > ρmax (δ). Let us note that we will only consider
φ ≤ ρmax (δ). If this were not the case, country 2 would never surive, which implies that ∆ (δ) ≥ 0 always. Let

ρ1
(
φ
)

+
(
1− φ

)
(xflat − 1) = φ ⇐⇒ xflat =

φ− ρ1
(
φ
)(

1− φ
) + 1 =

δn − δ
2σ

Then

(1 + f) ∆ (δ) =

ˆ 1

0

[
1{ρ(x)≥ρmin(δ)}

1

ρ (x)
− 1{ρ(x)≤ρmax(δ)}

s

1− ρ (x)

]
dx

=

ˆ 1

xmin

1

ρ1
(
φ
)

+
(
1− φ

)
· (x− 1)

dx

−s

[ˆ xflat

0

1

1− φ
dx+

ˆ xmax

xflat

1

1−
[
ρ1
(
φ
)

+
(
1− φ

)
· (x− 1)

]dx]

=
1

1− φ
[
ln
(
ρ1
(
φ
))
− ln

(
ρ1
(
φ
)

+
(
1− φ

)
· (xmin − 1)

)]
− s 1

1− φ
xflat

−s
{

1

1− φ
[
ln
(
1−

[
ρ1
(
φ
)

+
(
1− φ

)
· (xflat − 1)

])
− ln

(
1−

[
ρ1
(
φ
)

+
(
1− φ

)
· (xmax − 1)

])]}
=

1

1− φ
[
ln
(
ρ1
(
φ
))
− ln (ρmin (δ))

]
− s

{
1

1− φ
xflat +

1

1− φ
[
ln
(
1− φ

)
− ln (1− ρmax (δ))

]}
=

1

1− φ
{[

ln
(
1− y

(
1− φ

))
− ln (ρmin (δ))

]
− s

{
y +

[
ln
(
1− φ

)
− ln (1− ρmax (δ))

]}}
where y ≡ δn−δ

2σ
. Then, taking the derivative w.r.t.

(
1− φ

)
, we have

(1 + f) ∆(1−φ)δ =
1

1− φ

{
−
(
1− φ

)
(1 + f) ∆ (δ) +

1

1− y
(
1− φ

) (−y)− s 1

1− φ

}

= − 1

1− φ
×

{ [
ln
(
1− y

(
1− φ

))
− ln (ρmin (δ))

]
+ y

1−y(1−φ)
+ s

1−φ

−s
{
y +

[
ln
(
1− φ

)
− ln (1− ρmax (δ))

]} }
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We want to show that {·} is positive. This implies that we want to pick the highest 1−φ = 1 possible, which in turn
implies φ = 0. We have

{·} = ln
(
1− y

(
1− φ

))
+ z + δ − sy − s ln

(
1− φ

)
+ s [ln s+ δ − z] +

y

1− y
(
1− φ

) +
s

1− φ

=
s

1− φ
+

y

1− y
(
1− φ

) + ln
(
1− y

(
1− φ

))
− sy − s ln

(
1− φ

)
+ (1 + s)

[
(1− s) z + s ln s

1 + s

]
+ (1 + s) δ

=

{
s

1− φ
+

y

1− y
(
1− φ

) + ln
(
1− y

(
1− φ

))
− sy − s ln

(
1− φ

)}
+ (1 + s) (δ − δ∗)

As we are approaching δ∗ from above, we note that δ − δ∗ ≥ 0. We note that {·} is strictly positive for y = 0 and
thus remains positive for small y > 0.

Thus, we set φ = 0 and define

f (δ) = (1 + f) ∆ (δ; δ) = z + δ + s (ln s− z + δ)

Then, we have

f
(
δ∞
)

= 0 ⇐⇒ δ∞ =
− (1− s) z − s ln s

1 + s
= δ∗

A.3 Equilibrium with Non-monotone Strategies and zero recovery
We now construct an equilibrium in which 1) agents take non-monotone strategies, and 2) both countries could be
safe when the ex post realizations of δ̃ fall into an interval [δL, δH ] where δL and δH are endogenously determined.
Given this equilibrium, we will compute the minimum value of z = z for which this equilibrium exists.

The possibility that both countries may be safe means that our equilibrium construction using threshold strategies
is no longer possible. In a region where both countries are known to be safe (recall we consider the limit where σ → 0),
investors must be indifferent between the two countries, choosing strategies so that in equilibrium the return on both
countries’ bonds are equal. This “joint safety” region prevails for realizations of δ̃ ∈ [δL, δH ]. Outside this interval,
i.e., δ̃ ∈ [−δ̄, δL) ∪ (δH , δ̄], we are back in the case where the signal is so strong that only one country is safe.

We will deriving the boundaries δL and δH as functions of z, i.e., δL(z) and δH(z). Given these functions we can
solve for the minimum z , which occurs when δL(z)=δH(z) and the joint safety region vanishes.

We conjecture the following non-monotone strategy whereby investment in country 1 and in country 2 alternates
on discrete intervals of length kσ and (2− k)σ, with k ∈ (0, 2). The investor i’s strategy given his private signal δi
is φ (δi) ∈ {0, 1}:

φ (δi) =


0, δi < δL

1, δi ∈ [δL, δL + kσ] ∪ [δL + 2σ, δL + (2 + k)σ] ∪ [δL + 4σ, δL + (4 + k)σ] ∪ ...
0, δi ∈ [δL + kσ, δL + 2σ] ∪ [δL + (2 + k)σ, δL + 4σ] ∪ [δL + (4 + k)σ, δL + 6σ] ∪ ...
1, δi > δH

(A.2)

As we will show shortly, the non-monotone oscillation occurs only when both countries are safe, where the equilibrium
requires proportional investment in each safe country to equalize returns across two safe bonds. Clearly, k determines
the fraction of agents in investing in country 1 when oscillation occurs, to which we turn next.

A.3.1 Fraction of agents in investing in country 1
Consider the region where all investors know that both countries are safe. In this case, the total investment in country
1 and 2 has to be 1+f

1+s
and s(1+f)

1+s
, respectively, otherwise one country will offer strictly higher returns than the other.

Take an agent with signal δ; introduce the function ρ (δ), which is the expected proportion of agents investing in
country 1 given (own) signal δ. Then, given the assumed strategy for all agents and given that we are in the region
where both countries are safe,

ρ(δ) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

kσ

2σ
.

We choose k so that,

ρ(δ) =
1

1 + s
⇐⇒ k =

2

1 + s
(A.3)
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The last equality arises because in equilibrium the proportion must be constant and equal to 1
1+s

in order that returns
are equalized across the two safe bonds.

Recall that x denotes the fraction of agents with signal realizations above the agent’s private signal δ; and x
follows a uniform distribution on [0, 1]. For any value of δ and x,

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


0, δ + 2σx < δL
δ+2σx−δL

2σ
, δ + 2σx ∈ (δL, δL + kσ)

1
1+s

, δH − (2− k)σ > δ > δL + kσ

(A.4)

We see that ρ (δ, x) is strictly increasing in x in the vicinity of δL, and flat everywhere else. When we evaluate δ at
the marginal agent with signal δ = δL, we have

ρ (δL, x) =


0, x = 0

x, x ∈
(

0, 1
1+s

)
1

1+s
, x > 1

1+s

(A.5)

where we observe that ρ (δL, x) is less than or equal to 1
1+s

.

A.3.2 Lower boundary δL

Let Vφ (δ) be the expected payoff of strategy φ ∈ {0, 1} when given signal δ. In the completely safe region discussed
above (for δ exceeding δL sufficiently), investors were indifferent between both strategies because both paid exactly
the same in all states of the world. This is not the case for agent with the threshold signal δL: as the agent knows
investors with signal below is always investing in country 2, country 1 is perceived default risk. We now calculate the
return of investing in either country, from the perspective of the boundary agent δL.

For the boundary agent δL, the return from investing only in country 2 (i.e. φ = 0) is given by

Π2 (δL) =

ˆ 1

0

s

(1 + f) (1− ρ(δL, x))
dx (A.6)

where we integrate over all x as country 2 is safe regardless of x. Thus, plugging in, we have

Π2 (δL) =
s

1 + f

[ˆ 1
1+s

0

1

1− xdx+

ˆ 1

1
1+s

1
s

1+s

dx

]
=

s

1 + f

[
ln

1 + s

s
+ 1

]
<

1 + s

1 + f
. (A.7)

where we used s ln 1+s
s
< 1. Here, we see that payoff to investing in country 2 is lower than the expected payoff that

would have realized if both countries were safe. This reflects the strategic substitution effect: because more people
(in expectation) invest in the safe country 2, the return in country 2 is lower.

Now we turn to investment return for country 1. Since country 1 has default risk, we need to calculate the cutoff
x = xmin so that country 1 becomes safe if there are x > xmin measure of agents receiving better signals. To derive
xmin, we first solve for ρmin1 (δ), which is the minimum proportion of agents investing in country 1 that are needed
to make country 1 safe given fundamental δ. We have

θ1 (δ) + (1 + f) ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =
1− θ1 (δ)

1 + f

Define xmin as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (A.5), we have that,

xmin =
1− θ1 (δL)

1 + f
. (A.8)

The expected return of investing in country 1 given one’s own signal δL and the conjectured strategies φ (·) of everyone
else is given by,

Π1 (δL) =

ˆ 1

xmin

1

(1 + f) ρ(δL, x)
dx =

1

1 + f

[ˆ 1
1+s

xmin

1

x
dx+

ˆ 1

1
1+s

1

1/ (1 + s)
dx

]

=
1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
. (A.9)

The the boundary agentδL must be indifferent between investing in either country, i.e., Π2 (δL) = Π1 (δL).
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Plugging in (A.6) and (A.9), we have

s

1 + f

[
ln

1 + s

s
+ 1

]
=

1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
⇐⇒ xmin =

ss

(1 + s)1+s
. (A.10)

We combine our two equations for xmin, (A.8) and (A.10), and use 1− θ1 (δL) = (1− θ) exp (−δL), to obtain:

ss

(1 + s)1+s
=

(1− θ) exp (−δL)

1 + f
.

Recall z = ln 1+f
1−θ ; we have

δL (z) = −z + (1 + s) ln (1 + s)− s ln s (A.11)

A.3.3 Upper boundary δH

The derivation is symmetric to the above. We have

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s
, δ − 2σ (1− x) < δH − (2− k)σ

δ+2σx−δH
2σ

δ − 2σ (1− x) ∈ (δH − (2− k)σ, δH)

1, δ − 2σ (1− x) > δH

(A.12)

so that

ρ (δH , x) =


1

1+s
, x < 1

1+s

x, x ∈
(

1
1+s

, 1
)

1, x = 1

(A.13)

Consider now the agent with signal δH who is considering investing in country 1. In his eyes, the return from
investing only in country 1 (i.e. φ = 1) is given by

Π1 (δH) =

ˆ 1

0

1(
1 + f̂

)
ρ(δH , x)dy

dx =
1

1 + f
[ln (1 + s) + 1] <

1 + s

1 + f
,

where we integrated over all x as country 1 is always safe in the vicinity of δH .
The default condition for country 2 is

sθ2 (δH) + (1 + f) [1− ρmax2 (δH)] = s ⇐⇒ 1− ρmax2 (δH) = s
1− θ2 (δH)

1 + f

where ρmax2 (δ) is the maximum amount of agents investing in country 1 so that country 2 does not default. Assume,
but later verify, that at δH we have 1 − ρmax2 (δH) < s

1+s
, that is, country 2 would survive even if less than s

1+s
of

investors invest in country 2. Define xmax (δH) as the solution to ρ (δH , xmax) = ρmax2 (δH); (A.13) implies that

1− xmax (δH) = s
1− θ2 (δH)

1 + f
. (A.14)

As a result, the return to country 2 is,

Π2 (δH) =

ˆ xmax(δH )

0

s

(1 + f) (1− ρ(δH , x))dy
dx =

s

1 + f̂

[ˆ 1
1+s

0

1

1− 1
1+s

dx+

ˆ xmax(δH )

1
1+s

1

1− xdx

]

=
s

1 + f

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]
Indifference at the boundary agent δH requires Π1 (δH) = Π2 (δH), which yields 1−xmax (δH) = s

(1+s)
1+s
s

. Combining

this result with (A.14) and 1− θ2 (δH) = (1− θ) exp (δH), we solve,

δH (z) = z − 1 + s

s
ln (1 + s) (A.15)
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A.3.4 Verifying the equilibrium
We now verify the interior agents δ ∈ (δL, δH) have the appropriate incentives to play the conjectured strategy.
We just showed that the investor with signal δ = δL is indifferent; and similar to the argument in the threshold
equilibrium, it is easy to show that agents with δ < δL find it optimal to invest in country 2. Consider an investor
with signal δ = δL + kσ. Regardless of his relative position (as measured by x) in the signal distribution, this agent
knows that a proportion 1

1+s
of investors invest in country 1, thus making it safe for sure. Further, he knows that

a proportion s
1+s

of investors invest in country 2, also making it safe. Therefore, this agent knows that (i) both
countries are completely safe and that (ii) investment flows give arbitrage free prices. He is thus indifferent, and so
is every investor with δL + kσ < δ < δH − (2− k)σ.

We now consider the investors with δ ∈ (δL, δL + kσ)? We know that country 2 will always survive, and thus we
have

Π2 (δ) =

ˆ 1

0

s

(1 + f)
´ δ+2σx

δ−2σ(1−x)
1−φ(y)

2σ
dy
dx.

Note that for any x with x ≥ − δ−δL−kσ
2σ

we are in the oscillating region; for x below we are in the increasing part.

Let ε ≡ δ−δL
2σ
∈
(

0, 1
1+s

)
so that so that δ = δL + 2σε. Thus, we have

1− ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =

1− ε− x, x ∈
(

0, 1
1+s
− ε
)
,

s
1+s

, x ∈
(

1
1+s
− ε, 1

)
.

(A.16)

Then, we have

Π2 (δ) =
s

1 + f

[ˆ 1
1+s
−ε

0

1

1− ε− xdx+

ˆ 1

1
1+s
−ε

1
s

1+s

dx

]
= Π2 (δL) +

s
(
ln (1− ε) + 1+s

s
ε
)

1 + f

For investment in country 1, we know that, since δ > δL, we have ρmin1 (δ) < ρmin1 (δL). First, note that

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

ε+ x, x ∈
(

0, 1
1+s
− ε
)

1
1+s

, x ∈
(

1
1+s
− ε, 1

)
Let xmin (δ) be the measure of investors with higher signals than δ so that country 1 is safe. Since ρmin1 (δ) = 1−θ1(δ)

1+f
,

xmin (δ) is the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin1 (δ) .

Thus, we have

xmin (δ) = xmin (δL + 2σε) = max

{
1− θ1 (δL + 2σε)

1 + f
− ε, 0

}
. (A.17)

The expected investment return from country 1 is

Π1 (δ) =

ˆ
x:ρ(δ,x)≥ρmin1 (δ)

1

(1 + f)
´ δ+2σx

δ−2σ(1−x)
φ(y)
2σ

dy
dx

= Π1 (δL) +
1

1 + f
{lnxmin (δL)− ln [ε+ xmin (δL + 2σε)] + (1 + s) ε}

Thus, to show that Π1 (δL + 2σε) ≥ Π2 (δL + 2σε), we need to show that the following inequality holds for ε ∈(
0, 1

1+s

)
:

gL (ε) ≡ (1 + f) (Π1 −Π2) = lnxmin (δL)− ln [ε+ xmin (δL + 2σε)]− s ln (1− ε) ≥ 0. (A.18)

First, by using lnxmin (δL) = s ln s−(1 + s) ln (1 + s) and xmin
(
δL + 2σ 1

1+s

)
= 0, we know the above inequality

holds with equality at both end points ε = 0 and ε = 1
1+s

, i.e., gL (0) = gL
(

1
1+s

)
= 0. Second, it is easy to show that

there exists a unique ε∗ such that
1−θ1(δL+2σε∗)

1+f
= ε∗, at which point (A.17) binds at zero. We further note that at

ε = 0 we have 1−θ1(δL)
1+f

> 0. Thus, in (A.17) we have ε∗ > 0 and for ε ∈ (0, ε∗) we have xmin (δ) = 1−θ1(δL+2σε)
1+f

−ε > 0,
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and for ε ∈
[
ε∗, 1

1+s

]
we have xmin (δ) = 0. Plugging in and taking derivative with respect to ε, we have

∂

∂ε
ln [ε+ xmin (δL + 2σε)] =


−2σθ′1(δL+2σε)

1−θ1(δL+2σε)
, ε ∈ (0, ε∗)

1
ε

, ε ∈
[
ε∗, 1

1+s

]
Then, for (A.18), we have gL (ε) first rises and then drops:

g′L (ε) =


2σθ′1(δL+2σε)

1−θ1(δL+2σε)
+ s

1−ε > 0 , ε ∈ (0, ε∗) ,

− 1
ε

+ s
1−ε = (1+s)ε−1

1−ε < 0 , ε ∈
[
ε∗, 1

1+s

]
.

Combined with gL (0) = gL
(

1
1+s

)
= 0 we know that gL (ε) > 0,∀ε ∈

(
0, 1

1+s

)
, i.e., Thus, on ε ∈

(
0, 1

1+s

)
the

investors strictly want to invest in country 1.
We now consider the investors with δ ∈ (δH − (2− k)σ, δH)? We know that country 1 will always survive, and

thus we have

Π1 (δ) =

ˆ 1

0

1

(1 + f)
´ δ+2σx

δ−2σ(1−x)
φ(y)
2σ

dy
dx.

Let ε ≡ δH−δ
2σ
∈
(

0, s
1+s

)
so that so that δ = δH − 2σε. Thus, we have

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s
, x ∈

(
0, 1

1+s
+ ε
)
,

x− ε, x ∈
(

1
1+s

+ ε, 1
)
.

(A.19)

Plugging in, we have

Π1 (δ) =
1

1 + f

[ˆ 1
1+s

+ε

0

1
1

1+s

dx+

ˆ 1

1
1+s

+ε

1

x− εdx

]
=

1

1 + f
[1 + (1 + s) ε+ ln (1− ε) + ln (1 + s)] .

For investment in country 2, we know that, since δ < δH , we have 1−ρmax2 (δ) < 1−ρmax2 (δL) ⇐⇒ ρmax2 (δL) <
ρmax2 (δ). First, note that

1− ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =


s

1+s
, x ∈

(
0, 1

1+s
+ ε
)
,

1 + ε− x, x ∈
(

1
1+s

+ ε, 1
)
.

Let xmax (δ) be the measure of investors with higher signals than δ so that country 2 is safe. Since 1 − ρmax2 (δ) =

s 1−θ2(δ)
1+f

, xmax (δ) is the highest x ∈ [0, 1] such that

1− ρ (δ, x) = 1 + ε− x ≤ 1− ρmax2 (δ) .

Thus, we have

xmax (δ) = xmax (δH − 2σε) = min

{
1 + ε− s1− θ2 (δH − 2σε)

1 + f
, 1

}
. (A.20)

The expected investment return from country 2 is

Π2 (δ) =

ˆ
x:ρ(δ,x)≤ρmax2 (δ)

s

(1 + f)
´ δ+2σx

δ−2σ(1−x)
1−φ(y)

2σ
dy
dx

=
s

1 + f

ˆ xmax(δ)

0

1

1− ρ (δ, x)
dx

=
s

1 + f

[ˆ 1
1+s

+ε

0

1
s

1+s

dx+

ˆ xmax(δ)

1
1+s

+ε

1

1 + ε− xdx

]

=
s

1 + f

[
1 + s

s

(
1

1 + s
+ ε

)
− ln [1 + ε− xmax (δ)] + ln

(
s

1 + s

)]
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Differencing, we have

gH (ε) = (1 + f) [Π1 (ε)−Π2 (ε)] = ln (1− ε)− s ln s+ (1 + s) ln (1 + s) + s ln [1 + ε− xmax (δ)]

Finally, we need to pick σ appropriately so that there exists some natural number N > 1 so that 2Nσ = δH − δL.
For this particular choice of σ = σ̂, the limiting case of zero signal noise can be achieved when we take the sequence
of σn = σ̂/n for n = 1, 2, .....

A.3.5 Equilibrium properties
First, with joint safety, the probability of survival for country 1 (or the probability of its bonds being the reserve
asset) is not longer one minus the probability of survival of country 2. Using δ̃ ∼ U

(
−δ, δ

)
, the probability of country

1 survival is

Pr (country 1 safe) =
δ − δL

2δ
=
δ + z − (1 + s) ln (1 + s) + s ln s

2δ
, (A.21)

and the probability of country 2 survival is

Pr (country 2 safe) =
δH + δ

2δ
=
δ + z − 1+s

s
ln (1 + s)

2δ
.

As a result, the bonds issued by country 1 are more likely to be the reserve assets than that issued by country 2 if
the following condition holds:

s ln s− (1 + s) ln (1 + s) +
1 + s

s
ln (1 + s) = s ln s+

(
1

s
− s
)

ln (1 + s) > 0. (A.22)

In the proof of Proposition 7 we show this condition always holds.12

Obviously, the above equilibrium construction requires that δL (z) < δH (z). Since δL (z) in (A.11) is decreasing
in z while δH (z) in (A.15) is increasing in z, this condition δL (z) < δH (z) holds if z > z so that δL (z) = δH (z)
which gives z:

−z + (1 + s) ln (1 + s)− s ln s = z − 1 + s

s
ln (1 + s)⇒ z =

1

2

[(
2 + s+

1

s

)
ln (1 + s)− s ln s

]
Proposition 7 We have the following results for the equilibrium with non-monotone strategies.

1. The lower equilibrium threshold δL (s, z) is decreasing in z, ∂
∂z
δL (z) < 0. Hence, the probability that the larger

country 1 is the reserve asset (given in (A.21)) is higher if the aggregate fundamental θ or aggregate saving f
is higher. However, the probability of country 2’s bonds being the reserve asset is also increasing with z.

2. When the aggregate funding conditions z is sufficiently high so that z > z, the larger country 1 is more likely
to be the reserve asset than the smaller country.

3. All else equal, country 1 has the highest likelihood of survival when country 2 size goes to zero s→ 0.

Proof. The first result is obvious. For the second result we need to show that F (s) ≡ s2 ln s+
(
1− s2

)
ln (1 + s) > 0

holds for s ∈ (0, 1). It is clear that F (0) = 0 while F (1) = 0. Simple algebra shows that

F ′ (s) = 2s ln s− 2s ln (1 + s) + 1,
1

2
F ′′ (s) = ln s− ln (1 + s) + 1− s

1 + s
= ln

(
s

1 + s

)
+ 1− s

1 + s
.

12We have considered survival, which can be either sole survival or joint survival. If we focus on sole survivals only,
i.e., the bonds of country j are the only reserve asset, the condition is exactly the same. This is because

Pr (only country 1 survive) =
−δH + δ

2δ
=
δ − z + 1+s

s
ln (1 + s)

2δ
,

Pr (only country 2 survive) =
δL + δ

2δ
=
δ − z + (1 + s) ln (1 + s)− s ln s

2δ
.

As a result, Pr (only country 1 survive) > Pr (only country 2 survive) if and only if

1 + s

s
ln (1 + s)− (1 + s) ln (1 + s) + s ln s > 0,

which is exactly the same as (A.22).
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Let y = s
1+s

<∈ (0, 1); then because it is easy to show ln y + 1 − y < 0 (due to concavity of ln y), we know that
F ′′ (s) < 0. As a result, F (s) is concave but F (0) = F (1) = 0. This immediately implies that F (s) > 0, which is
our desired result. The third claim follows because − (1 + s) ln (1 + s) + s ln s is decreasing in s.

A.4 Equilibrium with non-monotone strategies and positive recovery
Let us say that s1 = 1, s2 = s and lisi to be the recovery given default of country i, so that it returns lisi

yi
per unit

of dollar invested, where yi is total investment in country i. Then if country 1 survives, to equalize return, we need

l2s

y2
=

1

y1
, y1 + y2 = 1 + f ⇒ y1

y2
=

1

l2s
.

This gives prices equal to

p1 = y1 =
(1 + f)

1 + l2s

p2 =
y2
s

=
(1 + f) l2
1 + l2s

Similarly, if country 2 survives, then

s

y2
=
l1
y1
, y1 + y2 = 1 + f ⇒ y1

y2
=
l1
s

which results in prices

p1 = y1 =
(1 + f) l1
l1 + s

p2 =
y2
s

=
(1 + f)

l1 + s

Let
z = ln

1 + f

1− θ > 0

and fiscal surplus is given by

θ1 = 1− (1− θ) e−δ = 1− (1 + f) e−ze−δ

sθ2 = s
[
1− (1− θ) eδ

]
= s

[
1− (1 + f) e−zeδ

]
Define two constants k1 > 1 and k2 > 1 (which only occurs if s < l1) so that

k1
2− k1

=
1

l2s
⇐⇒ k1 =

2

1 + l2s
> 1

k2
2− k2

=
s

l1
⇐⇒ k2 =

2s

s+ l1
> 1

Then in the country-1-default region, k2σ measure of agents invest in country 2, i.e. play φ = 0, while (2− k2)σ
measure of agents play φ = 1. Similarly in the country-2-default region, , k1σ measure of agents play φ = 1 while
(2− k1)σ measure of agents play φ = 0.

Conjecture the following equilibrium with cut off δ∗

φ (y) =



....

1, y ∈ [δ∗ − 2σ, δ∗ − k2σ]

0, y ∈ [δ∗ − k2σ, δ∗]
1, y ∈ [δ∗, δ∗ + k1σ]

0, y ∈ [δ∗ + k1σ, δ
∗ + 2σ]

1, y ∈ [δ∗ + 2σ, δ∗ + 2σ + k1σ]

....

In other words, two types of equilibria collide at δ∗. I conjecture that marginal investor at δ∗ is indifferent, while
the agents between [δ∗ − k2σ, δ∗] strictly prefer φ = 0, and symmetrically the agents between [δ∗, δ∗ + k1σ] strictly
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prefer φ = 1. Other agents in this economy are indifferent.
Let x denote the fraction of agents with signal realization above the agent’s private signal δj , so that given x,

the true fundamental is
δ (x) = δj − (1− 2x)σ

Further, let ρ (δj , x) be the expected proportion agents investing in country 1 given x. Then, we have

ρ (δj , x) =


1− k2

2
, δ + 2σx < δ∗ + (2− k2)σ

x+ cst, else
k1
2

δ − 2σ (1− x) > δ∗ − (2− k1)σ

where cst is picked so that ρ (δj , x) is continuous in x. We note that the slope is generically x as we are replacing
φ = 0 with φ = 1 marginally. At δj = δ∗, we have

ρ (δ∗, x) =


1− k2

2
, x < 1− k2

2

x, else
k1
2

x > k1
2

and we need
1− k2

2
<
k1
2

Note that if we assume that ρmin (δ) , 1− ρmax (δ) ∈
[
1− k2

2
, k1

2

]
we have a 1-to-1 function between x and ρ that

yields

xmin =
1− θ1 (δ∗)

1 + f
=

1− θ
1 + f

e−δ
∗
⇐⇒ lnxmin = −z − δ∗

1− xmax = s
1− θ2 (δ∗)

1 + f
= s

1− θ
1 + f

eδ
∗
⇐⇒ ln (1− xmax) = ln s− z + δ∗

Note here that we are ignoring fundmanetal uncertainty. Otherwise, we need to take acocunt of the fact that in the
mind of the agent,

ρmin (δ (x)) = e−ze−δ(x) = e−ze−[δj−(1−2x)σ]

is the minimum investment in country 1 needed for it to survive conditional on x. For everything else below, we
assume that ρmin (δ (x)) = ρmin (δj). Next, note that

x = Fraction of people with signal above agent

so that x = 1 is the most pessimistic agent, and x = 0 is the most optimistic. As ρ (δ, x) is increasing in x, we have

x < xmin ⇐⇒ Country 1 fails
x > xmin ⇐⇒ Country 1 survives
x < xmax ⇐⇒ Country 2 survives
x > xmax ⇐⇒ Country 2 fails
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Then, for the boundary agent, the expected return of investing in country 2 is given by

Π2 (δ∗) = Return2 (survival) +Return2 (default)

=

ˆ xmax

0

s

(1 + f) (1− ρ (δ∗, x))
dx+

ˆ 1

xmax

l2s

(1 + f) (1− ρ (δ∗, x))
dx

=

ˆ 1− k2
2

0

s

(1 + f)
(
1−

(
1− k2

2

))dx+

ˆ xmax

1− k2
2

s

(1 + f) (1− x)

+

ˆ k1
2

xmax

l2s

(1 + f) (1− x)
dx+

ˆ 1

k1
2

l2s

(1 + f)
(
1− k1

2

)dx
=

(
1− k2

2

)
s

(1 + f) k2
2

+
s

1 + f

[
ln

(
k2
2

)
− ln (1− xmax)

]
+

l2s

1 + f

[
ln (1− xmax)− ln

(
1− k1

2

)]
+

(
1− k1

2

)
l2s

(1 + f)
(
1− k1

2

)
=

s

(1 + f)

{(
1− k2

2
k2
2

)
+

[
ln

(
k2
2

)
− ln (1− xmax)

]
+ l2 + l2

[
ln (1− xmax)− ln

(
1− k1

2

)]}
and the expected return of investing in country 1 is given by

Π1 (δ∗) =

ˆ xmin

0

l1
(1 + f) ρ (δ∗, x)

dx+

ˆ 1

xmin

1

(1 + f) ρ (δ∗, x)
dx

=

ˆ 1− k2
2

0

l1

(1 + f)
(
1− k2

2

)dx+

ˆ xmin

1− k2
2

l1
(1 + f)x

dx

+

ˆ k1
2

xmin

1

(1 + f)x
dx+

ˆ 1

k1
2

1

(1 + f) k1
2

dx

=

(
1− k2

2

)
l1

(1 + f)
(
1− k2

2

) +
l1

1 + f

[
ln (xmin)− ln

(
1− k2

2

)]
+

1

1 + f

[
ln

(
k1
2

)
− ln (xmin)

]
+

(
1− k1

2

)
1

(1 + f) k1
2

=
1

1 + f

{
l1 + l1

[
ln (xmin)− ln

(
1− k2

2

)]
+

[
ln

(
k1
2

)
− ln (xmin)

]
+

(
1− k1

2
k1
2

)}
Note that (

1− k1
2

k1
2

)
=

(
1
k1
2

− 1

)
= 1 + sl2 − 1 = sl2(

1− k2
2

k2
2

)
=

(
1
k2
2

− 1

)
=

s+ l1
s
− s

s
=
l1
s

Setting these equal, we have

s

{
l1
s

+

[
ln

(
k2
2

)
− ln (1− xmax)

]
+ l2 + l2

[
ln (1− xmax)− ln

(
1− k1

2

)]}
=

{
l1 + l1

[
ln (xmin)− ln

(
1− k2

2

)]
+

[
ln

(
k1
2

)
− ln (xmin)

]
+ sl2

}
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Plugging in for k1, k2 and

k1
2

=
1

1 + l2s

k2
2

=
s

s+ l1

1− k1
2

=
l2s

1 + l2s

1− k2
2

=
l1

s+ l1
ln (xmin) = −z − δ∗

ln (1− xmax) = −z + δ∗ + ln s

Setting these equal, we have

s

{[
ln

(
k2
2

)
− ln (1− xmax)

]
+ l2

[
ln (1− xmax)− ln

(
1− k1

2

)]}
= l1

[
ln (xmin)− ln

(
1− k2

2

)]
+

[
ln

(
k1
2

)
− ln (xmin)

]
⇐⇒ s

{
− (1− l2) ln (1− xmax) +

[
ln

(
k2
2

)
− l2 ln

(
1− k1

2

)]}
= − (1− l1) ln (xmin) +

[
ln

(
k1
2

)
− l1 ln

(
1− k2

2

)]
⇐⇒ s

{
(1− l2) (z − δ∗ − ln s) +

[
ln

(
s

s+ l1

)
− l2 ln

(
l2s

1 + l2s

)]}
= (1− l1) (z + δ∗) +

[
ln

(
1

1 + l2s

)
− l1 ln

(
l1

s+ l1

)]
Finally, solving for δ∗, we have

δ∗ =
s
{

(1− l2) (z − ln s) +
[
ln
(

s
s+l1

)
− l2 ln

(
l2s

1+l2s

)]}
− (1− l1) z −

[
ln
(

1
1+l2s

)
− l1 ln

(
l1
s+l1

)]
(1− l1) + s (1− l2)

=
s {(1− l2) z − (1− l2) ln s+ ln s− ln (s+ l1)− l2 ln l2 − l2 ln s+ l2 ln (1 + l2s)}

(1− l1) + s (1− l2)

+
− (1− l1) z + ln (1 + l2s) + l1 ln (l1)− l1 ln (s+ l1)

(1− l1) + s (1− l2)

so that finally

δ∗ =
[(1− l2) s− (1− l1)] z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

(1− l1) + s (1− l2)
(A.23)

Plugging in l1 = l2 = 0, we have

δ∗ =
− (1− s) z − s ln (s)

1 + s

just as we had before.
We want to show that from the perspective of δ∗, for an x small enough so that ρ (δ∗, x) = 1− k2

2
, does country

1 default? We know that ρmin (δ∗) = e−ze−δ
∗
, so that

ρmin (δ∗) > 1− k2
2

⇐⇒ ln (ρmin (δ∗)) > ln

(
1− k2

2

)
⇐⇒ − (δ∗ + z) > ln

(
l1

s+ l1

)
⇐⇒ − [2 (1− l2) sz − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2] > [(1− l1) + s (1− l2)] [ln l1 − ln (s+ l1)]

which gives

F ∗1 (l1, l2, s)] ≡ −2 (1− l2) sz − [1 + s (1− l2)] ln l1 + sl2 ln l2 + [1 + s (2− l2)] ln (s+ l1)− (1 + l2s) ln (1 + l2s)

and the default condition is given by F ∗1 (l1, l2, s) ≥ 0. Assume l1 = l2 = l. Then, we have

F ∗1 (l, l, s) = −2 (1− l) sz − [1− (1− 2l) s] ln l + [1 + s (2− l)] ln (s+ l)− (1 + ls) ln (1 + ls)

We can show that F ∗1 (l, l, s) is always positive for small enough recovery l as the term − [1− (1− 2l) s] ln l explodes,
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swamping any negative z effect.13

Next, we want to show that from the perspective of δ∗, for an x large enough so that ρ (δ∗, x) = k1
2
, does country

2 default? We know that 1− ρmax (δ∗) = se−zeδ
∗
, so that

1− ρmax (δ∗) > 1− k1
2

⇐⇒ ln (1− ρmax (δ∗)) > ln

(
1− k1

2

)
⇐⇒ ln s− z + δ∗ > ln

(
l2s

1 + l2s

)
so that

[(1− l1) + s (1− l2)] ln s− 2 (1− l1) z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

> [(1− l1) + s (1− l2)] [ln l2 + ln s− ln (1 + l2s)]

Define

F ∗2 (l1, l2, s) ≡ −2 (1− l1) z − (s+ l1) ln (s+ l1) + (2− l1 + s) ln (1 + l2s) + l1 ln l1 − [s+ (1− l1)] ln l2

and the default condition is given by F ∗2 (l1, l2, s) ≥ 0. Assuming equal recovery l1 = l2 = l, we have

F ∗2 (l, l, s) = −2 (1− l) z − (s+ l) ln (s+ l) + (2− l + s) ln (1 + ls)− [s+ (1− 2l)] ln l

We can show that F ∗2 (l, l, s) is always positive for small enough recovery l as the term − [s+ (1− 2l)] ln l explodes,
swamping any negative z effect.14

Let us consider an interior agent, i.e., δ ∈ [δ∗ − k2σ, δ∗ + k1σ]. Let

δ (ε) = δ∗ + 2εσ

with ε ∈
[
− k2

2
, k1

2

]
. Let us first consider investment in country 1. We have ρmin (δ) as the default boundary, and

actual investment is given by

ρ (δ, x) =


1− k2

2
, δ∗ + ε2σ + 2σx < δ∗ + (2− k2)σ

x+ cst, else
k1
2

δ∗ + ε2σ − 2σ (1− x) > δ∗ − (2− k1)σ

=


1− k2

2
, 2εσ + 2σx < (2− k2)σ

x+ cst, else
k1
2

2εσ − 2σ (1− x) > − (2− k1)σ

which gives

ρ (δ, x) =


1− k2

2
, ε+ x < 1− k2

2

x+ ε, else
k1
2

ε+ x > k1
2

Note that we have cst = ε by imposing continuity (which has to follow from ρ (δ, x) being an integral over strategies

13Taking derivatives w.r.t. l and s, we have

∂lF
∗
1 (l, l, s) = 2sz + s− (1 + s)

l
+

1 + (2− l) s
s+ l

+ 2s ln l − s ln (s+ l)− s ln (1 + ls)

∂sF
∗
1 (l, l, s) =

1 + (2− l) s
s+ l

− l ln (1 + ls) + (2− l) ln (s+ l)− 2 (1− l) z − l − (1− 2l) ln l

14Taking derivatives w.r.t. l and s, we have

∂lF
∗
2 (l, l, s) =

∂sF
∗
2 (l, l, s) =
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φ).15

Let xmin (δ) be the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin (δ)

and we therefore have
xmin (δ) = max {ρmin (δ)− ε, 0}

Similarly, let xmax (δ) be the highest x ∈ [0, 1] such that

1− ρ (δ, x) = 1− ε− x ≥ 1− ρmax (δ)

and thus
1− xmax (δ) = max {1− ρmax (δ) + ε, 0}

The expected return of investing in country 1 is then given by

Π1 (δ) =

ˆ
x:ρ(δ,x)<ρmin(x)

l1
(1 + f) ρ (δ, x)

dx+

ˆ
x:ρ(δ,x)≥ρmin(x)

1

(1 + f) ρ (δ, x)
dx

=

ˆ xmin(δ)

0

l1
(1 + f) ρ (δ, x)

dx+

ˆ 1

xmin(δ)

1

(1 + f) ρ (δ, x)
dx

=

ˆ 1− k2
2
−ε

0

l1

(1 + f)
(
1− k2

2

)dx+

ˆ xmin(δ)

1− k2
2
−ε

l1
(1 + f) (x+ ε)

dx

+

ˆ k1
2
−ε

xmin(δ)

1

(1 + f) (x+ ε)
dx+

ˆ 1

k1
2
−ε

1

(1 + f) k1
2

dx

=
l1

1 + f

[
1− k2

2
− ε

1− k2
2

+ ln (xmin (δ) + ε)− ln

(
1− k2

2

)]

+
1

1 + f

[
ln

(
k1
2

)
− ln (xmin (δ) + ε) +

1− k1
2

+ ε
k1
2

]

=
l1

1 + f

[
1− ε

1− k2
2

+ ln (xmin (δ) + ε)− ln

(
1− k2

2

)]

+
1

1 + f

[
ln

(
k1
2

)
− ln (xmin (δ) + ε) +

1− k1
2

k1
2

+
ε
k1
2

]

= Π1 (δ∗) +
l1

1 + f

[
− ε

1− k2
2

+ ln (xmin (δ) + ε)− lnxmin (δ∗)

]

+
1

1 + f

[
lnxmin (δ∗)− ln (xmin (δ) + ε) +

ε
k1
2

]

= Π1 (δ∗) +
1

1 + f

{
ε

(
1
k1
2

− l1

1− k2
2

)
− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]

}

= Π1 (δ∗) +
1

1 + f
{ε [(1− l1)− s (1− l2)]− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]}

15and cst is picked so that there is continuity at x = 1− k2
2
− ε, i.e.

ρ

(
δ, 1− k2

2
− ε
)

= 1− k2
2

=

(
1− k2

2
− ε
)

+ cst ⇐⇒ cst = ε

ρ

(
δ,
k1
2
− ε
)

=
k1
2

=

(
k1
2
− ε
)

+ cst ⇐⇒ cst = ε
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Similary, investing in country 2 gives

Π2 (δ) =

ˆ xmax(δ)

0

s

(1 + f) (1− ρ (δ, x))
dx+

ˆ 1

xmax(δ)

l2s

(1 + f) (1− ρ (δ, x))
dx

=

ˆ 1− k2
2
−ε

0

s

(1 + f)
(
1−

(
1− k2

2

))dx+

ˆ xmax(δ)

1− k2
2
−ε

s

(1 + f) (1− x− ε)

+

ˆ k1
2
−ε

xmax(δ)

l2s

(1 + f) (1− x− ε)dx+

ˆ 1

k1
2
−ε

l2s

(1 + f)
(
1− k1

2

)dx
=

s

1 + f

[
1− k2

2
− ε

k2
2

+ ln

(
k2
2

)
− ln (1− xmax (δ)− ε)

]

+
sl2

1 + f

[
ln (1− xmax (δ)− ε)− ln

(
1− k1

2

)
+

1− k1
2

+ ε

1− k1
2

]

= Π2 (δ∗) +
s

1 + f

{
ε

(
l2

1

1− k1
2

− 1
k2
2

)
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}

= Π2 (δ∗) +
s

1 + f

{
ε

[
(1− l1)− s (1− l2)

s

]
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}
Let us define

g (ε) ≡ (1 + f) [Π1 (δ)−Π2 (δ)]

= ε [(1− l1)− s (1− l2)]− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]

−s
{
ε

[
(1− l1)− s (1− l2)

s

]
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}
= − (1− l1) [ln (xmin (δ∗ + 2σε) + ε)− lnxmin (δ∗)] + s (1− l2) [ln (1− xmax (δ∗ + 2σε)− ε)− ln (1− xmax (δ∗))]

+ε

{
[(1− l1)− s (1− l2)]− s

[
(1− l1)− s (1− l2)

s

]}
= − (1− l1) [ln (xmin (δ∗ + 2σε) + ε)− lnxmin (δ∗)]

+s (1− l2) [ln (1− xmax (δ∗ + 2σε)− ε)− ln (1− xmax (δ∗))]

Taking the derivative w.r.t. ε, we have many different cases. The issue is if xmin or xmax start binding first.
Regardless, close to ε = 0 we have neither xmin or xmax cornered, so that

ln (xmin (δ∗ + 2σε) + ε) = ln (ρmin (δ (ε))) = −z − δ (ε) = −z − (δ∗ + 2σε)

ln (1− xmax (δ∗ + 2σε)− ε) = ln (1− ρmax (δ (ε))) = s ln s− z + δ (ε) = s ln s− z + (δ∗ + 2σε)

and thus for ε small we have

g′ (ε) = − (1− l1) (−) 2σ + s (1− l2) 2σ = 2σ [(1− l1) + s (1− l2)] > 0

and indeed we have the incentives of the agents aligned with the conjectured strategies, at least around δ∗.
Next, we have to account for all the different cases – that is, we know that at some distance ε that xmin, xmax

start binding at 0, 1, respectively.
Let εmin be the point at which xmin becomes cornered, that is

ρmin (δ) = ε ⇐⇒ e−ze−(δ∗+2σε) = ε ⇐⇒ 2σε+ ln ε = −z − δ∗

Note that ρmin (δ) > 0 so that there is no solution for ε < 0.
Similarly, let εmax be the point at which xmax becomes cornered, that is

1− ρmax (δ) = −ε ⇐⇒ se−zeδ
∗+2σε = −ε ⇐⇒ 2σ (−ε) + ln (−ε) = ln s− z + δ∗

Note that 1− ρmax (δ) ≥ 0 so that there is no solution for ε > 0.
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Positive ε. Consider positive ε. Thus, we only have to worry about xmin cornered. When xmin becomes cornered,
then

∂

∂ε
ln (xmin (δ∗ + 2σε) + ε) =

1

ε
Then, we have

g′ (ε) = − (1− l1)
1

ε
+ s (1− l2) 2σ

The derivative is increasing in ε, and is largest at ε = k1
2

at a value of

g′
(
k1
2

)
= − (1− l1) (1 + l2s) + s (1− l2) 2σ

For small enough σ, this is always negative.

Negative ε. Consider negative ε. Thus, we only have to worry about xmax cornered. When xmax becomes
cornered, then

∂

∂ε
ln (1− xmax (δ∗ + 2σε)− ε) = −1

ε
Then, we have

g′ (ε) = (1− l1) 2σ + s (1− l2)

(
−1

ε

)
The derivative is again increasing in ε, and is largest at ε = − k2

2
at a value of

g′
(
−k2

2

)
= − (1− l2) (s+ l1) + (1− l1) 2σ

For small enough σ, this is always negative.
For s = 1 and l1 = l2 = l, we have symmetric conditions.
The last thing we need to do is to check that

g

(
−k2

2

)
= g (0) = g

(
k1
2

)
= 0

To this end, we can also proof that as σ → 0, indeed one country (which one depending on on which side of δ∗ the
realization of δ falls) will always default. This is equiavlent to the interior assumption for xmax, xmin we made. For
this to hold, we need the following restrictions

1− k1
2
≤ 1− ρmax (δ∗) ≤ k2

2
(A.24)

1− k2
2

≤ ρmin (δ∗) ≤ k1
2

(A.25)

The first line says that as σ → 0, if δ < δ∗ then a proportion k2
2

of investors invests in country 2, and it survives.
However, if δ > δ∗, then only a proportion 1− k1

2
of investors invests in country 2, and it defaults. Similar arguments

hold for country 1, which is summarized by the second line.
This can be rewritten as

ln

(
1− k1

2

)
≤ ln (1− ρmax (δ∗)) ≤ ln

(
k2
2

)
ln

(
1− k2

2

)
≤ ln ρmin (δ∗) ≤ ln

(
k1
2

)
which gives

ln

(
l2s

1 + l2s

)
≤ ln s− z + δ∗ ≤ ln

(
s

s+ l1

)
ln

(
l1

s+ l1

)
≤ −z − δ∗ ≤ ln

(
1

1 + l2s

)
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equivalent to

ln

(
l2

1 + l2s

)
+ z ≤ δ∗ ≤ ln

(
1

s+ l1

)
+ z

ln

(
l1

s+ l1

)
+ z ≤ −δ∗ ≤ ln

(
1

1 + l2s

)
+ z

equivalent to

ln (l2)− ln (1 + l2s) + z ≤ δ∗ ≤ − ln (s+ l1) + z

− ln

(
1

1 + l2s

)
− z ≤ δ∗ ≤ − ln

(
l1

s+ l1

)
− z

equivalent to

ln (l2)− ln (1 + l2s) + z ≤ δ∗ ≤ − ln (s+ l1) + z

ln (1 + l2s)− z ≤ δ∗ ≤ ln (s+ l1)− ln (l1)− z

so that finally

max [ln (l2)− ln (1 + l2s) + z, ln (1 + l2s)− z] ≤ δ∗ ≤ min [− ln (s+ l1) + z, ln (s+ l1)− ln (l1)− z] (A.26)

The first term is binding on the RHS for z > ln (1 + l2s) − 1
2

ln (l2), and the first term is binding on the left hand
side for z < ln (s+ l1)− 1

2
ln (l1).
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