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Abstract

Thanks to the availability of new historical census sources and advances
in record linking technology, economic historians are becoming big data ge-
nealogists. Linking individuals over time and between databases has opened
up new avenues for research into intergenerational mobility, assimilation, dis-
crimination, and the returns to education. To take advantage of these new
research opportunities, scholars need to be able to accurately and efficiently
match historical records and produce an unbiased dataset of links for down-
stream analysis. I detail a standard and transparent census matching tech-
nique for constructing linked samples that can be replicated across a variety of
cases. The procedure applies insights from machine learning classification and
text comparison to the well known problem of record linkage, but with a focus
on the sorts of costs and benefits of working with historical data. I begin by
extracting a subset of possible matches for each record, and then use training
data to tune a matching algorithm that attempts to minimize both false pos-
itives and false negatives, taking into account the inherent noise in historical
records. To make the procedure precise, I trace its application to an example
from my own work, linking children from the 1915 Iowa State Census to their
adult-selves in the 1940 Federal Census. In addition, I provide guidance on a
number of practical questions, including how large the training data needs to
be relative to the sample.
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1 Introduction

Thanks to the availability of new historical census sources and advances in record

linking technology, economic historians are becoming big data genealogists. Linking

individuals over time and between databases has opened up new avenues for research

into intergenerational mobility, assimilation, discrimination, and the returns to ed-

ucation. To take advantage of these new research opportunities, scholars need to be

able to accurately and efficiently match historical records and produce an unbiased

dataset of links for downstream analysis.

The problems in record linkage facing economic historians are distinct from those

faced by users of modern datasets. Where uniquely identifying variables such as

social security numbers are available, it is mostly a question of getting access to

restricted use files.1 But such variables are rarely found in historical data. Instead,

economic historians have access to other variables that can be combined to try and

uniquely identify individuals, such as first and last names, year of birth, state of

birth, and parents’ place of birth. Unfortunately, historical data are also not as clean

as modern data, and these variables may be mismeasured, including transcription

errors, spelling mistakes, name changes, or name shortening.

In this paper, I detail a transparent census matching technique for constructing

linked samples that can be replicated across a variety of cases. The procedure applies

insights from machine learning classification and text comparison to the well known

problem of record linkage, but with a focus on the sorts of costs and benefits of

working with historical data. The method begins by cross matching two census-like

datasets and extracting a wide subset of possible matches for each record. I then

build a training dataset on a small share of these possible links and use the training

data to tune a matching algorithm. The algorithm attempts to minimize both false

positives and false negatives, taking into account the inherent noise in historical

records. To make the procedure precise, I trace its application to an example from

my own work, linking children from the 1915 Iowa State Census to their adult-selves

1For example, Chetty et al. (2014) use tax payer IDs to link tax payer records over time and
social security numbers to match dependents to heads of household across and within samples.
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in the 1940 Federal Census. Using my linking procedure, I am able to match nearly

60% of the sons in my data ahead to 1940.2 The procedure follows many of the

central ideas outlined by Goeken et al. (2011) regarding the Minnesota Population

Center linkage project that ultimately built the IPUMS linked samples, but with

an extension of the method to other linking procedures and more detail on the

utilized record comparison characteristics included. The procedure I outline in this

paper can be fully and transparently implemented with software commonly used by

empirical social scientists—either Stata or R, for example.

In addition, I provide guidance on a number of practical questions for social

scientists undertaking historical record linkage. First, I show how many records

need to be manually coded as matches and non-matches by the researcher before

tuning the match algorithm. Fortunately, the procedure is quite accurate even with

a relatively small training data set. Then, I run a horse race between potential

classification models—including probit and logit models, and random forests—and

show that the probit model, familiar to all social scientists has the best out of sample

performance.

The linking of historical records by scholars is not new. Thernstrom (1964, 1973)

matched generations in Boston and Newburyport, MA to study intergenerational

mobility. The Minnesota Population Center, taking advantage of the 1880 com-

plete count census, provides linked data from each census between 1850 and 1920 to

1880.3 Joseph Ferrie linked records between the 1850 and 1860 Federal Censuses,

exploring various dimensions of economic mobility (Ferrie 1996). However, no stan-

dard method for linking these records has emerged, however. Each scholar alters

the process slightly based on the data at hand and the tools available.

In April 2012, the US Census Bureau released the full, un-anonymized 1940

Federal Census, opening many new possibilities for historical research. By law, the

complete census, which includes the names of all respondents, must be sealed for

2I will also show that these matches are not just made but made accurately and that the
algorithm is able to replicate the careful manual matching work done by a trained RA.

3See https://usa.ipums.org/usa/linkeddatasamples.shtml

3

https://usa.ipums.org/usa/linked data samples.shtml


72 years after its completion.4 The 1940 census was the first nationwide survey

to include questions on educational attainment and annual income.5 The data in

the 1940 census has been used by researchers in the past to measure the returns to

education, to quantify racial and gender discrimination, and to answer many other

research questions. These analyses have all been possible through the use of an

anonymized 1% 1940 Census sample collected by IPUMS (Ruggles et al. 2010).

What specifically changed for researchers in April 2012? The full census allows

for the matching of individuals from other datasets—other federal and state cen-

suses, enlistment records, legal records, etc—by name to the 1940 Census. With

such matched records, it is possible to conduct research that follows individuals

over time or across generations— intergenerational mobility, stability of income

over time, long run effects of exposure in childhood to pandemics, etc. But how can

a researcher merge a list of names from one set of records into another, such as the

1940 census?

Any matching procedure should aspire to three important criteria: it should be

efficient, accurate, and unbiased. I define these terms in the record linkage context:

• Efficient: A high share of the records to be searched for are found and matched.

The match rate will naturally vary across applications and source or target

databases, but generally, a procedure that requires thousands of records to

match only a handful would be quite inefficient and not very useful for econo-

metric analysis. An efficient match process will have a low share of type I

errors. In the machine learning context, one measure of efficiency is the true

positive rate or TPR. This records the ratio of true positives with the total

number of positive: TPR = TP
TP+FN .

• Accurate: A high share of the records matched are true matches and not false

positives. Ideally, this rate would be close to 100%, but naturally the higher the

bar for declaring two records matched, the less efficient it will be. An accurate

4The 72 year seal is driven by privacy concerns. When the law was first passed, life expectancies
were such that few census subjects would be alive 72 years later. That is less true today, but the
privacy law remains in effect. The 1950 census will be unsealed in April 2022.

5In 1915, the Iowa State Census compiled similar data; see Goldin and Katz (2000).
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match process will have a low share of type II errors. In machine learning,

accuracy could be measured with the positive predictive value or PPV. This

measures the ratio of the true positives to all of the records identified as

matches by the algorithm: PPV = TP
TP+FP .

• Unbiased: A match procedure will generate a dataset for downstream analysis.

To what extent is this final dataset representative of the records that the re-

searcher attempted to link in the first place? Improvements in either efficiency

and accuracy will necessarily decrease the bias in the resulting dataset. But

non-random variation in either error rate will generate bias. One manifesta-

tion of bias would be an unrepresentative linked sample. Using spouse names

to create links, for example, would increase the match rate among married

people and over-represent them in final analysis; similarly matching on county

or state of residence would bias against including interstate migrants in the

sample (Goeken et al. 2011).

Manual matching is one option for record linkage. Scholars can hire research

assistants to search for each name in one dataset in the 1940 census, either via the

index file or through a commercial provider like Ancestry.com. With dutiful RAs,

this process could be quite efficient with assistants tracking down as many links as

possible. And with skilled RAs, the process could be highly accurate. However, this

method is costly and time-consuming.6 Perhaps more importantly, it is inconsistent,

certainly across projects but perhaps within a project as well. Different RAs will

use different internal heuristics or decision rules in matching or not-matching close

hits. While a clear set of rules can reduce such problems, a complete decision tree

is impractical if not impossible.

Researchers would be better off using a formalized matching algorithm that made

consistent choices between potential matches in all scenarios. Goeken et al. (2011)

6I have found RAs can search for approximately one record per minute on Ancestry.com. With
a match rate of 50%, generating a database of 1000 matched records will cost $2000/60 × .5 × w,
where w is the RA’s wage (or double that for double entry). Search time costs will certainly vary
by researcher and project.
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describe the method used by the Minnesota Population Center for IPUMS.7 The

process makes use of the Freely Extensible Biomedical Record Linkage (FEBRL)

software from Peter Christen and Tim Churches.8 This method also relies on highly

trained researchers to identify and approve of huge numbers of links between different

censuses. The matches are made initially by FEBRL, comparing records by first

name, last name, year of birth, state of birth, race,and gender. A subset of these

possible matches are then completed by researchers, identifying true and false links

on a training data set. Then, IPUMS uses a standard machine learning technique,

Support Vector Machines (SVMs), trained on name and age similarity scores, to

classify matched records as links or non-links.

The method I propose in this paper deviates from the IPUMS strategy in a few

ways. Primarily, the tools used are all available in Stata and R and should be more

familiar to most economists and other social scientists than either FEBRL or SVMs.

This should make implementation of the procedure in different datasets easier. The

FEBRL system used to collect possible matches was not designed specifically for

historical data work. Finally, the method can be easily modified for use with different

datasets that contain alternative potential matching variables.

2 Procedure

To fix ideas, I will describe the process used to locate matches between a smaller list

of records and a full list of records in a 100% census. For example, in Feigenbaum

(2014), I match a list of boys from the Iowa 1915 State Census into the 1940 Federal

census. Other examples that could potentially use this method include Aizer et al.

(2014) which linked the male children of recipients of a Progressive era welfare

program for poor families into the 1940 Census, WWII enlistment records, and

7Mill (2012) proposes another alternative record linking procedure, one that is a fully automated
learning algorithm that does not require even a training dataset. Using an EM maximization
process, the algorithm endevours to split the data into a set of matched and a set of unmatched
records. One key strength of this method is that it does not require any training data and thus
suffers from no human-induced bias in determining which records are or are not matches. However,
the Bayesian learning process employed is constrained by independence between parameters.

8http://sourceforge.net/projects/febrl/
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death records or Collins and Wanamaker (2014) which linked black and white census

respondents from the IPUMS sample of the 1910 census to the 1930 census.

The size of the first set of records can vary from project to project. The list of

sons from Iowa 1915 was approximately 5500 observations. In other cases, it will

be much larger: Collins and Wanamaker (2014) started with nearly thirty thousand

observations of men from southern states in 1910.

Extracting Possible Matches

Call the first set of records X1. What variables does it need to contain to ensure

a good (and unbiased match)? To begin with, first and last names for each record.

Without names matching would be unlikely to work with any method. In addition,

an age or year of birth,9 gender, and a state of birth will be improve match quality.

Mother and father state of birth have proven to be valuable matching variables in

past work. However, in the 1940 complete count census, these questions were not

asked of all respondents.10

I prefer not to use reported race in my matching algorithm. As documented by

Mill and Stein (2012), individuals change their reported race in the census with some

frequency. To the extent that changing a respondent’s reported race is endogenous

to whatever process the researcher ultimately hopes to study, then conditioning

matches on race will likely bias the final sample. However, it may be useful to use

race in both datasets as an outcome of interest in assessing match quality of the

final data.11

Call the second set of records to be matched into X2. The records in X2 should

include first name, last name, and any of the other variables to be used for matching

9Of course, assuming that the year the records were compiled is known, year of birth and age
are substitutes.

10Only those respondents entered on the 14th or 29th line of each enumeration page were asked
additional questions. This is roughly 5% of the population. Mother and father place of birth were
among these supplementary questions. See http://www.archives.gov/research/census/1940/

general-info.html#questions. For this subsample, parent’s place of birth, if it is available in the
original list of records, can be used in testing the accuracy of the match algorithm and to compare
between different possible match algorithms. But it would significantly reduce the sample size to
require these variables in the record linking.

11Mill (2012) uses race as well as county of residence between multiple census waves in such a
way.
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that were also included in X1, often gender, state of birth and year of birth (or

age).12 1940 complete count census available from Minnesota Population Center

and IPUMS (via NBER) has these variables and more, but other censuses do as

well (complete counts of 1880 and 1850 are both available via IPUMS, for example).

To this point, I have listed gender as one of the variables used in the census record

linking. However, given the frequency with which women change their surnames

in marriage, the task of linking women across censuses is much more difficult than

linking men. While this will mean that there are important questions that I cannot

answer, I focus here on linking only men. Thus, as a preliminary step, imagine

limiting both X1 and X2 to only male observations.

The first step is to extract records in X2 that could be matched with records

in X1. What defines which records could be matched? In an extreme case, the

entire Cartesian product of X1 and X2 has X1 ×X2 observations. The matching

algorithm could compare each of these potential matches, but even with a smaller

original list (for example, the sons in Iowa in 1915), matching it with any complete

census index would result in a huge database, full of potential matches that are

clearly not matches.13

To limit the comparison to links that have some non-trivial likelihood of being

matches, I first extract the records in X2 with the attributes sufficiently similar to

the attributes of the record in X1. The attributes I focus on are birth year, state of

birth, and names. Similarity of birth year is measured by the absolute difference in

years. An indicator variable for matching or non-matching state of birth is clear to

define as well. How does one measure string similarity for first and last names? I

follow IPUMS, Goeken et al. (2011), and Mill (2012) in relying on the Jaro-Winkler

string distance as a measure of string dissimilarity. Though other string distance

measures, notably Editex and syllable-comparison, show better results in identifying

common English homonyms, the differences between these measures on American

names are less striking. Moreover, algorithms to calculate Jaro-Winkler distances

12And a unique identifier that will be used to merge our final data back into X2 to collect the
variables of interest in any analysis.

13More the 700 billion for the 1915 sons and the full 1940 census.
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are available for most statistical software packages;14 an Editex module only exists

for Python. For more details on the Jaro-Winkler distance and its properties, see

Winkler (1994). Traditionally, strings that match will have a Jaro-Winkler distance

of 1 and strings that are not similar at all will have a distance of 0. However, I use 1

- JW here, so that increases in distance correspond with words that are less similar,

as one would expect for a distance measure.15

Returning toX1 andX2, I limit the set of possible links between the two datasets

to be those records with the same reported state of birth, a year of birth distance

less than 3 years, a first name Jaro-Winkler distance of less than .2, and a last name

Jaro-Winkler distance of less than .2.

Why are these good starting point conditions? The state blocking condition

is the same used by Mill (2012). IPUMS does not use a state blocking condition

explicitly, however, of the 98,317 links between the 1880 census other decennial

censuses, only 21 list different states of birth between matches, 20 of which were

in the link between 1880 and 1850. The state blocking requirement reduces the

complexity of the matching problem and the computing power required to solve it:

string distance measures and matrix Cartesian products are both computationally

expensive. For a given individual, state of birth should only change between censuses

due to random enumerator error.

The birth year limits have been used in past matching work: The IPUMS project

merging various historical census samples into the 1880 complete count census used

a year of birth distance of 7 (Goeken et al. 2011). However, in the final matched

samples produced by IPUMS, no matches were made between records with birth

years differing by more than 3 years. I follow these results and use 3 years as

the distance bound here. As I show in Figure 1, based on data from the IPUMS

matching procedure between 1880 and other censuses, the vast majority of matches

are either 0 or 1 years apart, in either direction.16

14For stata, see my own package: https://github.com/jamesfeigenbaum/jarowinkler-ado.
For R, see the RecordLinkage package.

15Mill (2012) makes the same translation of Jaro-Winkler string distance.
16Why consider any potential matches that do not share the exact birth year? Aside from simple

errors of mis-transcription, there may also be “translation” errors. In many waves, the census asked
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Table 1: IPUMS Linked Samples: Matched Record Name Similarity

Share of Links within Bounds

Linked Years First Name Distance ≤ .2 Last Name Distance ≤ .2 Both Conditions

1850-1880 94.07 99.92 93.99
1860-1880 92.86 99.81 92.68
1870-1880 94.44 99.84 94.30
1880-1900 94.50 99.79 94.31
1880-1910 95.01 99.69 94.72
1880-1920 95.47 99.94 95.41
1880-1930 96.23 99.96 96.19

Share of records matched between the 1880 complete count census and various IPUMS
census samples by the Minnesota Population Center. These samples were built not us-
ing Jaro-Winkler distances but by trained research assistants comparing names (and
other census data) manually. However, no more than 8% of the matched sample in any
given year falls outside the .2 distance bounds for both first and last name Jaro-Winkler
distances. Most linked records outside the bounds are farther apart in Jaro-Winkler
distance in first names. Manual inspection reveals that most of these links match full
names to initials or vice versa.

Sources: IPUMS Linked Representative Samples, 1850-1930: https://usa.ipums.org/
usa/linked_data_samples.shtml

The name distances may be more controversial. The stricter the bounds, the

fewer potential matches will emerge and the quicker the entire matching process

will be. The looser the bounds, however, the less likely it is that good matches will

be lost in this early stage. Figure 2, presents a scatter plot of first and last name

Jaro-Winkler distances for all the matched records between the 1880 census and

other IPUMS samples. Only 6% of the matched sample falls outside the .2 distance

bounds for both first and last name distances. Most of these records outside the

bounds appear to be farther apart in Jaro-Winkler distance in first names. Manual

inspection reveals that most of these links match full names to initials or vice versa.17

In Table 1, I show that for each IPUMS linked sample between 1880 and another

census year, between 92.16% and 95.65% of the records are within these bounds.

respondents not their year of birth but their age. With census enumeration taking place over time
(and the final census day varying slightly throughout the 19th and 20th century), the exact same
respondent enumerated ten years apart may have a different constructed year of birth.

17For data with a large number of first names recorded as initials, a looser distance bound may
be useful.
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Two-Step Match Scores

Call the set of all possible matched data XX. Again, these are the records from our

original data, X1, matched with records from the index file, X2, with matching state

of birth, year of birth difference less than 3, and first and last name Jaro-Winkler

distances less than .2. With the set of possible matches between each record of X1

and X2, now how to decide which of these links (if any) are “good” links, in the

sense that it is very likely that the record in X1 and X2 refer to the same individual.

To do so, we need to compile training data: a set of records for which the researcher

(or research team) have determined that a record is either a match or not a match.

I discuss in more detail in a later section how to generate the training data and how

large it needs to be. For now, consider it simply as a subset of XX called XXT ,

where each record is either described as a match or a non-match.18 One key feature

is that for every unique record in X1, there can be at most one match in the XXT

data.19 However, this one match is not a requirement. If there are no good matches

for a given unique record in X1, then all the links will be marked as non-match.

However, it need not be the case that each record in X2 have a match. Obviously

in the case where X1 is a short list of people—like sons between 3 and 17 in Iowa

in 1915—not every record in the entire 1940 census will be available.

I use the term training data because we will train our match algorithm using

it as an input. However, there is one key way in which the training data in this

context differs from training data more generally. In traditional machine learning

applications, training data is a set of true or correctly classified observations. In

the case of historical census matching, such “truth” does not exist. Instead these

are the matches the researcher would be confident labeling as links or not. These

decisions are clearly not infallible, but any algorithmic approach can (and should)

approximate the best efforts of a trained researcher assessing matches.

Each record, xx ∈ XX matches a record from X1 to a record in X2. In addition

18XXT should be stratified on unique values in X1, such that if one possible match from X1 to
X2 is in XXT , then all possible matches are in the training data.

19Christen (2012) defines this as one-to-one matching.
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to first and last names and year of birth from both original datasets, I create a

number of variables to describe the features of the potential match. In principle,

this set of variables could differ across matching procedures with each new dataset.

However, I found a relatively consistent set of variables to be necessary and sufficient

to produce accurate matches. I list these variables, along with a brief description in

Table 2. Many of these variables are link specific, such as the Jaro-Winkler distance

in first name (fdist) or the absolute birth year distance in years (ydist). Others are

constant for all records containing a given original record, x1 ∈ X1. For example,

hits is the number of potential matches for a given record in X1 that we find in

the entire X2 file. In addition to Jaro-Winkler string distances, which I use to

compute both fdist and ldist, I also use the Soundex system to generate another

pair of important matching variables. These variables indicate whether or not the

soundex scores for the first (or last) names match between the two possible records.

Soundex groups (and other phonetic groupings such as NYSIIS and phonex) have

been used in the past by economic historians and others performing record linkage.

The scores attempt to encode the sound of a word, relying on the first letter and

sound grouping for further letters.20

How were the variables in Table 2 chosen? For model selection, one could imag-

ine using k-fold cross validation or another formal model selection process to pick

variables from the space of all variables that might describe the similarity of two

given records. These techniques are common to machine learning procedures, but

less frequently used in the social sciences. While a more formal method will identify

the variables that are most important to the classification procedure, such efforts

may be unnecessary. Instead, I rely on my experience of constructing matches be-

tween several difference census datasets to specify the variables listed in Table 2.

In the next section, when I walk through the example of matching sons from Iowa

1915 into the 1940 census, I show that the set of variables in Table 2 produces a

20See the National Archives description of Soundex (http://www.archives.gov/research/
census/soundex.html) for a more detailed description of the Soundex method. I use Soundex
because it is commonly used in census linking, but also because there are prebuilt soundex function
in Stata and in the RecordLinkage package in R.
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Table 2: Census Matching Variables

Variable Names Variable Description

Record Variables

fname1 First name of record in X1, including middle initial if available
fname2 First name of record in X2, including middle initial if available
lname1 Last name of record in X1
lname2 Last name of record in X2
yob1 Year of birth in X1
yob2 Year of birth in X2

Constructed Variables

fdist Jaro-Winkler string distance between first names
ldist Jaro-Winkler string distance between last names
ydist Absolute value difference between year of birth in X1 and X2
hits Number of records in X2 matched for given X1 observation
hits2 hits2

exact Indicator if both lname1 ≡ lname2 and fname1 ≡ fname2
exact.all Indicator if lname1 ≡ lname2, fname1 ≡ fname2, and yob1 ≡ yob2
f.start Indicator if the first letter of the first names match
l.start Indicator if the first letter of the last names match
f.end Indicator if the last letter of the first names match
l.end Indicator if the last letter of the last names match
mimatch Indicator if the middle initials match
exact.mult Indicator if more than one hit in X2 for a given record in X1

matches first and last names exactly
exact.all.mult Indicator if more than one hit in X2 for a given record in X1

matches first name, last name, and year of birth exactly
fsoundex Indicator if the soundex codes of the first names match
lsoundex Indicator if the soundex codes of the last names match

If there are any records in X1 with multiple exact matches in X2—that is ex-
actly the same first name string, last name string, and year of birth—then we
will be unable to pick between these possible matches. All possible matches are
equally as likely to be the true match. Instead, we score any record links in XX
with failure if exactmult1 is not 0. Thus, the variable exactmult1 is not used
directly in the prediction algorithm.
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classification method that is both accurate and efficient. More generally, there may

be other variables that could improve the matching fit for other datasets and the

procedure could be easily modified to include them.21

Once the variables describing each potential link have been constructed, we are

ready to estimate the relative importance of these variables in determining links

in the training data, XXT , and to assign links outside of our training data. The

generation of links is a two step procedure. First, I note one special variable in

Table 2, exact.all.mult, which indicates whether there are multiple hits in X2 which

are exact matches on first name, last name, state of birth, and year of birth for a

given record x1 ∈ X1. While somewhat unlikely, there are of course certain common

names for whom this will occur. In most populous states in most year, for example,

there are multiple men named John Smith. When exact.all.mult is 1, it should be

clear that we cannot decide which of these exact matches is correct and we mark all

of these potential matches are non-matches.

After removing the set of records with multiple exact matches, the second step is

to run a probit model on the training data, XXT . Using the probit, I calculate the

probability a given record is a match.22 Unlike other—more common—classification

problems, there is a special feature of the census linking problem. Namely, if one

record from X1 is coded as matched to a record in X2, then we do not want that

record from X1 to be coded as matched to any other records in X2.23 There are

some variables generated and used in the matching procedure that account for this

feature, including the total number of potential hits for a given X1 observation.

However, the probit regression does not directly account for this fact. Instead, we

use a second step to ensure records are not double-matched.

21Such variables may include alternative versions of string distance or phonetic classification of
names. If the matching is into the 1930 Census, for example, mother and father state of birth
might be a useful variable to include to improve match accuracy. In my experience, syllable-count
comparisons, string length comparisons, and higher orders of the string distances above are not
useful features to include but this may vary between datasets.

22In section 5, I justify the use of a probit model rather than another machine learning classifier.
The probits are both familiar to social scientists performing record linkage and do extremely well
in out of sample prediction, minimizing both false positives and false negatives.

23The same is true in the reverse; two different records from X1 should not link to the same
record in X2.
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Once we have generated probit scores, we define matches only as those records

xx ∈ XX that meet the three following criteria. First, the score for xx is the highest

score for that record in X1.24 Second, the score of the match is sufficiently large

(more on the parameter in the next section). Third, we require that the score of the

second-best link is sufficiently small, relative to the top score, that we are confident

that the best link is a match. Choosing these hyper-parameters or meta-parameters

has an important role in the matching procedure and is discussed in the next section.

This second stage is important in another way. For many common names in

X1, there might be a variety of possible links in X2 that are all slightly different

(matching Jonny to John and Jon, for example, with exactly matched last names and

years of birth; or, many John Smiths matched to different years of birth). While

the algorithm might prefer the match to one, if this preference is not sufficiently

strong either absolutely or relatively, we should not be comfortable declaring a

match. Rejecting some of these close matches will necessarily increase the rate of

false negatives, but it will also decrease the false positive rate and replicate the

manual matching procedure which should attempt to limit the close judgment calls.

While false negatives will lower our final samples, the biases driven by false positives

are likely to be quite problematic.

After running the second stage, we can limit XX to the records that are coded

as matches and proceed with analysis.25 The match rate—the share of records in

X1 which we are able to link to a record in X2—will vary across datasets. It also

depends on the hyper-parameters, as shown in a different matching context by Mill

(2012). In practice, I have found that the match rates from the procedure outlined

here will be as good if not better than other methods traditionally used in economic

history.

24That is, if “James Feigenbaum” is a record in X1, then the match in XX could only be a
match according to the final algorithm if it is the best link for x1.

25In the interest of speeding up the matching process and conserving memory, XX likely does
not include any variables that we might want to use in analysis, like income, occupation, education,
etc. The true final stage is simply locating the chosen records in X1 and X2 and bringing together
all the variables of interest.
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3 An example: Iowa 1915 to 1940

In Feigenbaum (2014), I measure intergenerational mobility of income, linking fa-

thers from the 1915 Iowa State Census to their sons in the 1940 Federal Census.

I utilize the Iowa State Census sample digitized by Claudia Goldin and Lawrence

Katz for their work on the historical returns to education (Goldin and Katz 2000,

2008). To construct my sample for census matching, I limit the Goldin-Katz sample

to families with boys aged between 3 and 17 in 1915. These sons will be between 28

and 42 when I observe them again in 1940. Of course, I restrict my analysis to sons

in 1915, because name changes make it impossible to locate most daughters in the

1940 Census. This leaves me with a sample of 7,580 boys, each of whom is a son in

1915 Iowa. For each son, I know his first and last name, age in 1915, and state of

birth—exactly the variables I need to match into the 1940 census.

As described above, I start by extracting, for each son, the set of matches in

the 1940 census with a year distance of less than 3, a first name string distance of

less than .2, a last name string distance of less than .2, and a matching state of

birth. This returns a dataset, XX, of 79,047 records. Only 6,889 of the 7,580 boys

are in this sample, suggesting that there are nearly 700 sons for whom no possible

matches can be found in the 1940 census.26 On average, each of these 6,889 sons is

matched to 11.4 records in 1940. However, the distribution of potential matches is

quite skewed. 1,005 of the sons return only one possible match and the median is 6

matches; 37 sons return more than 100 matches.27

With this dataset, I then construct an indicator variable for matched and non-

matched records. For the purposes of demonstrating the procedure in this paper,

I do this for the entire sample. For every son in the Iowa 1915 sample, I indicate

which link, if any, in 1940 is the correct match. The rest of the links are indicated as

incorrect non-matches. Based on both my own speed and the speed several research

26These sons could no longer be living by 1940 or they may have moved out of the country or,
perhaps more likely, the measurement error in recording their names, ages, or state of birth in either
1915 or 1940 was sufficiently severe that they cannot be matched at all.

27John Barile, born in Pennsylvania in 1909 returns 364 possible matches. John is a very common
name, Barile is very close in string distance to a large number of names (Bradley, Bailey, Barnes,
Barrett, and Riley), and Pennsylvania had a large state population in 1909.
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assistants with experience assessing linked records, in an hour, 500 records in X1

could be assessed. Of course, constructing all of these links for every observation

in the full sample obviates one reason for an algorithmic approach; the algorithm

allows us to match large datasets without the time or monetary costs of manually

matching. But it is necessary to have “correct” classifications for all observations

to properly build the matching model in this paper and assess its accuracy.

I then randomly partition the data into two equal parts, sampling at the x1

record level so as to keep all possible matches for a given son in Iowa in the same

data partition. One partition will be the training data, where I will fit my probit

model. The other partition will be held back to test the accuracy of my algorithm

out of sample.28

There are many possible variables that could describe how likely a given matched

pair of records are to be a true match. I focus first on the set of variables listed in

Table 2. As described previously, I run a probit regression on the dummy variable

indicating whether or not the record was declared a match or not-match in the

human review process on these variables. I rely on the caret package in R, a

standard package used in machine learning to train my probit model. The model

is trained with bootstrap sampling from the training data, taking 25 samples to

estimate the final probit coefficients.29

The results of this regression are presented in Table 3. I show both the probit

that I use and an alternative logit model. The parameters presented are the direct

model coefficients, not marginal effects as is common in a probit model.

Using the coefficients estimated in the probit in Table 3, I calculate the predicted

score. These scores run from 0 to 1; higher values suggest a stronger likelihood of

the records being true matches.30 Following the method described earlier, I define

matches only as those records that meet the three following criteria. First, for a

given son in the Iowa 1915 sample, the score is the highest score of all matches.

28In section 4, I show that in fact, training on 50% of the data is overkill and that the method
yields accurate predicted matches using a much smaller share of data for calibration.

29The model parameters are largely the same when using k-fold cross validation to choose pa-
rameters or simply running one probit regression on the full sample of training data.

30As these scores are based on predictions from a probit model, the scores are simply Φ(X ′β̂).
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Table 3: Iowa 1915 to 1940 Census Linking Model

Probit Logit

First and Last name match 0.632∗∗∗ 1.129∗∗∗

(0.086) (0.168)
First name distance, Jaro-Winkler −6.071∗∗∗ −11.543∗∗∗

(0.525) (0.994)
Last name distance, Jaro-Winkler −10.285∗∗∗ −19.145∗∗∗

(0.487) (0.954)
Absolute Value Difference in Year of Birth is 1 −0.708∗∗∗ −1.308∗∗∗

(0.044) (0.083)
Absolute Value Difference in Year of Birth is 2 −1.562∗∗∗ −2.893∗∗∗

(0.065) (0.126)
Absolute Value Difference in Year of Birth is 3 −2.316∗∗∗ −4.370∗∗∗

(0.102) (0.208)
First name Soundex match 0.153∗∗∗ 0.294∗∗∗

(0.054) (0.100)
Last name Soundex match 0.698∗∗∗ 1.341∗∗∗

(0.069) (0.135)
Hits −0.064∗∗∗ −0.123∗∗∗

(0.002) (0.005)
Hits-squared 0.0003∗∗∗ 0.001∗∗∗

(0.00002) (0.00004)
More than one match for first and last name −1.690∗∗∗ −3.217∗∗∗

(0.093) (0.183)
First letter of first name matches 0.871∗∗∗ 1.593∗∗∗

(0.130) (0.245)
First letter of last name matches 0.886∗∗∗ 2.003∗∗∗

(0.148) (0.356)
Last letter of first name matches 0.147∗∗∗ 0.312∗∗∗

(0.053) (0.101)
Last letter of last name matches 0.649∗∗∗ 1.239∗∗∗

(0.070) (0.139)
Middle Initial matches, if there is a middle initial 0.537∗∗∗ 0.908∗∗∗

(0.097) (0.186)
Constant −1.479∗∗∗ −3.087∗∗∗

(0.225) (0.480)

Observations 38,091 38,091
Log Likelihood −2,440.877 −2,444.649
Akaike Inf. Crit. 4,915.753 4,923.298
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Figure 3: Match Algorithm Quality and Hyper-Parameter Values

Second, the score of the match is sufficiently large. Third, that the score of the

second-best link for the Iowa 1915 son is sufficiently small, relative to the top score,

that we are confident that the best link is a match.

Clearly, at this point we cannot proceed unless we define the two meta-parameters

referenced above: the absolute threshold for declaring a match and the relative

threshold for declaring a match better than the next best alternative. How to pick

these meta-parameters? I attempt to minimize false positives and false negatives.

To make this concrete, I use two standard machine learning assessment measures,

the true positive rate (TPR) and the positive prediction rate (PPR). The TPR is

the ratio of true positive to total positive matches in our training data. The PPR

is the ratio of the true positives to the total matches made by the algorithm.

Call the first meta-parameter b1 and the second b2. Clearly, b1 will take a value

between 0 and 1, matching the range of our scores. In theory, b2 should range

from 1 to ∞ (it is the ratio of two scores between 0 and 1). I search over the

grid of possible values of b1 and b2 for the maximums of TPR and PPV, calculated

from the same training data we used to generate the probit coefficients previously.

Figure 3 presents a graphical representation of these grid searches. Clearly, as we

change parameters to increase PPV, TPR tends to fall. This makes sense: the

more restrictive we are on matching matches, the fewer false matches we will find,

but fewer true matches will be found as well. One solution is to maximize some
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Table 4: Table Summary

Hyper-Parameters Algorithm Quality

Relative Weight on PPV b1 b2 PPV TPR

0.500 0.050 1.125 0.784 0.931
0.750 0.090 1.300 0.831 0.897
1 0.140 1.375 0.858 0.875
1.250 0.200 1.975 0.912 0.815
1.500 0.200 1.975 0.912 0.815

The utility function in PPV and TPR is defined as TPR + γPPV where γ is the
relative weight on PPV in column 1. The algorithm quality metrics, PPV and
TPR, are calculated with respect to the training partition of the data.

utility function with two arguments, PPV and TPR. The simplest function would

be a weighted sum of the two values. Choosing weights is subjective and may vary

between projects, depending on the costs of including false positives relative to

the benefits of finding more true positives. In Table 4, I show the optimal hyper-

parameters under various weighting schemes. In the analysis that follows, I use a

weight of 1 and thus select b1 = 0.14 and b2 = 1.375.

With these hyper-parameters selected, I can return to my matched dataset,

identify the links (and the non-links) and proceed to my other analysis. We can

see from Table 4 that the PPV is 85.8% and the TPR is 87.5%. But these are

the in-sample results and reflect only how well my model is tuned to the data I

built it with. How does the algorithm do out of sample, predicting matches and

non-matches on the data that I held back from the training? To test this, I create

predictions on the test set, using the probit coefficients listed in Table 3 and the

hyperparameters b1 = 0.14 and b2 = 1.375. Table 5 presents a confusion matrix,

listing the counts of true and false positives and the true and false negatives, as well

as the PPV and TPRs from applying the algorithm to the test data. This out-of-

sample prediction is a much more difficult test for the record linking algorithm than

the in-sample predictions made in Table 4. However, the algorithm does extremely

well. The TPR is 86.4%, less than one percentage point worse on the test data

relative to the training data. The PPV is 87.3% which is, in fact, slightly higher
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Table 5: Out of Sample Predictions

True Status

Algorithm Prediction Not Matched Matched

Not Matched 35,608 295
Matched 272 1,869

The True Positive Rate is the number of true positives over the total number of
matches, which is the sum of the true positives and the false negatives. This
rate indicates the efficiency of the algorithm: how many of the matches in the
full data were identified by the algorithm. The out-of-sample TPR is 86.4%.

The Positive Predictive Value is the number of true positives over the total num-
ber of positives, which is the sum of the true positives and the false positives.
This rate indicates the accuracy of the algorithm: how many of the matches
made by the algorithm are in fact matches in the true data. The out-of-sample
PPV is 87.3%.

than in the training data. The interpretation is that of the matches identified by

the algorithm, 87.3% were coded by RAs as a match and that of the matches coded

by RAs, 86.4% were identified by the matching algorithm.

Rather than using the TPR and PPV, economic historians undertaking match-

ing procedures typically judge a link between two censuses on its matching rate.

Matching rates vary in the literature between different samples and procedures, but

are often between 20% and 50%. Of the original 7,580 boys in my Iowa sample,

I match 4,349 uniquely and accurately with my matching algorithm, for a match

rate of 57.37%. While the algorithm is far from perfect—neither the PPV nor TPR

hits 100%, nor does the match rate—the improvements are large. For samples that

begin relatively small, an increase in the match rate would be even more important

to the potential analysis.

4 How Much Training Data is Enough?

In Table 3, I estimate a set of coefficient values that do well in locating matches

between the Iowa 1915 State Census and the 1940 Federal Census. The coefficients

were estimated using only half of the full dataset, the training data. In Table 5,

I evaluated the predictions on the other half of the data—data that had not been
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used to tune the parameter. This suggested that the record linking procedure and

coefficients were very able to identify matches out of sample. In future matching

projects, one could simply calculate the variables described in Table 2 and apply the

coefficients to an entirely new sample. Given the good out-of-sample performance

of the algorithm, this is likely to produce reasonably good matches. However, one

might also create training data based on a subsample of the new data in question

and follow the steps outlined above to generate a new project specific matching

algorithm and hyper-parameters. Naturally, there are benefits and costs to either

choice. Using the matching algorithm presented here will save time and research

funds because no manual training data will be necessary. The major cost is common

to any use of out-of-sample predictions: less accuracy. This cost is likely to be

especially high when matching between datasets that are very different than the

two I built the algorithm with in the first place. In this case, out of sample has

two very different meanings. The algorithm was tested on data held back from its

training, but it was not tested on data that was of the same type as the training

data but built from a wholly different set of censuses.

If a researcher is going to use training data specific to the datasets to be used,

one important practical question is how big should the training data be? How many

records need to be manually adjudicated? The traditional empirical adage that more

data is usually better applies here, but I suggest a more exact answer. To do this,

I randomly subset the data used in the previous section, train a match algorithm,

and test how much the algorithm changes and, more importantly, how much the

measures of accuracy and efficiency change as the subset of data used for training

grows.

The procedure is straightforward. Let the share of the full data set sampled be

π. I start by drawing a π% random sample of my data, blocking at the unique X1

observation level.31 I call this π-share sample the training data in each iteration. I

then train the match algorithm on my training data and apply the algorithm to the

test data—here the test data is the 1− π share not sampled. Normally, it would be

31That is, I include all possible links for a given record in the X1 data to the X2 data.
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Figure 4: Algorithm Efficiency and Accuracy increases as the size of the training
data set increases, but most gains are realized with no more than 20% of the data
used in training.

impossible to measure the error rates on the non-training sample. However, because

in reality I have matches for the entire sample, I can compare the predictions based

on the π% sample with the test data and record a measure of efficiency (TPR) and

accuracy (PPV). I draw 100 random samples at each π% size of my data from 1% to

90%.32 I graph the resulting TPR and PPV in Figure 4, along with 95% confidence

intervals.

The speed of convergence to the full-sample results is quite rapid. With less than

20% of the full sample trained—on average, a mere 1,378 records in the original X1

data—the algorithm identifies links with a TPR of nearly 87% and a PPV of 86%.

These TPR and PPV results are approximately as large as the corresponding rates

when the algorithm had 50% or more of full data to train with. This implies that,

in fact, the answer to “how much training data is required?” is quite small relative

to the overall size of the project.

How long does it take to create training data based on 1400 or so observations?

Based on records from my Iowa matching project, RAs can assess the links for about

500 X1 records per hour. Thus, in less than 3 hours of work (6 with double en-

try), training data can be constructed which—once used in the matching procedure

32As the training set grows very large, the testing set naturally shrinks and the TPR and PPV
rates become noisier, with so little of the data left to test on.
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outlined above—generate a final matched sample with a nearly 90% efficiency and

match accuracy.

5 Machine Learning Method Selection

I use a probit model to assign scores to each potential match. However, there

are many different classification techniques in the machine learning toolbox. Why

probit? For one, probit regression is a well-understood concept among economic

historians and other social scientists who might want to create census links. Beyond

simple familiarity, I have found that the probit model, while perhaps simple when

compared to newer methods in machine learning, performs extremely well out of

sample. In this section, I will compare the results from the probit model to another

possible classifier—random forests—on the Iowa 1915 to 1940 data. The random

forests model drubs the probit model on in-sample prediction.33 However, in a

classic sign that it is overfitting the training data, the performance on the test

data—data that was held back and not trained on—of the random forest classifier

is much worse. Given that probit models are familiar, easily applied in standard

statistical software, and high-performing, they make an ideal choice to use in record

linking procedures.

I begin by splitting the set of potential matches in the 1940 census for the sons

of the Iowa 1915 census into a training and testing set. Each set contains 50% of

the sons from 1915. I sample at the son level, rather than the potential match

level, because matches are only identified relative to other potential matches for a

given son. I will use the training data to train a variety of prediction models. Once

these models are fit, I will apply the predictions to the testing data and assess the

accuracy of each model, based on both the PPV and the TPR.

Random forest classifiers may be best thought of as an advancement of simple

decision trees. In the record linkage case, a decision tree could be used to split

records into matches and non-matches. At the first node, the tree might split at

33That is, classification of the records on which the classifier was originally trained.
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some critical value of first name string distance and at the second on a critical value

of last name distance. Later nodes could split based on matching first or last name

soundex results, whether or not middle initials match, etc. In Figure 5, I show

one possible decision tree with 2 levels. At the first node, the records are split on

the Jaro-Winkler string distance in last name. Records with a last name distance of

more than 0.047 are sent in one direction (and ultimately classified as non-matches),

while records with relatively close last names (≤ 0.047) go to a second node. At

this second node, records are classified based on the Jaro-Winkler string distance

in first name. Records with small first name distances are coded as matches and

the rest are coded as non-matches. For such a painfully simple model, the tree does

reasonably well. Of the 1844 records in the matched node, 47% are matches; the

non-match nodes are reasonably accurate as well.34 However, this was only one of

the many trees that could be grown to classify the census data. Further, this tree

has only two levels of decisions—it might be possible to extract more precision by

using additional variables.

Random forests consist of the averaging of many different decision trees grown

to much greater depth than the tree in Figure 5. The randomness is introduced

in two ways. First, the trees are trained on bootstrapped samples of the training

data. This induces natural variation in both the optimal splitting variables and in

the critical values to split at. Second, the features available to split at each level are

a random subset of all features in the data.35 Within this sample of the training

data and with these feature constraints at each node, the optimal decision tree is

tuned. By averaging over each tree’s prediction, the random forest algorithm can

generate a classification or a score. In my case, this is a score from 0 to 1 and can

be interpreted as the likelihood that a given record is in fact a match. As with

the probit model, I then compare the scores for a record in X1 across all possible

matches and identify as matched only those records that are the highest score at

34Obviously, I have yet to utilize the special one-to-one matching feature of my data and these
results are not directly comparable to those presented previously.

35Where p is the number of features or independent variables, usually only
√
p or p/3 features

are considered at each node. This avoids high correlation across trees, which might arise if certain
features are very powerful predictors.
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Example Record Linkage Decision Tree

Figure 5: Example Decision Tree based on first and last name Jaro-Winkler String
Distance

the X1 level, sufficiently large, and sufficiently larger than the next best record.36

I use the same set of independent variables or features in each model, those

listed in Table 2. While feature discovery is relatively standard in the machine

learning literature, it is much less frequently used in the social sciences. I follow this

convention and specify the features in advance.

Table 6 gives the optimal metaparameters for each model, as well as the PPV and

TPR in the training data and the testing data. The training results for the probit

model replicate the results from Table 4. Again, I have chosen the hyper-parameters

to maximize the sum of the TPR and the PPV. The logit results are statistically

indistinguishable from the probit results—any minor differences in the accuracy or

efficiency measures often flip with different random draws of the training data. The

random forest classifier, however, is rather different. First, it is quite clear that

the random forest out-performs the probit on the training data. The random forest

36As before, the metaparameters used to distinguish how large of a score is needed, both abso-
lutely and relatively, to be a match are generated by maximizing the sum of the TPR and the PPV
in the training data. The metaparameters for the random forest are different from those of the
probit or logit models.

27



Table 6: Comparing Matching Algorithms

Hyper-Parameters Training Data Testing Data

Model b1 b2 TPR PPV TPR PPV

Probit 0.13 1.3 0.881 0.854 0.879 0.858
Logit 0.11 1.4 0.874 0.861 0.873 0.862
Random Forest 0.30 1.5 0.973 0.947 0.756 0.868

All models fit on the same training data with the same set of features described in
Table 2. Training data is a 50% random sample of the full Iowa sons linked data
from 1915 to 1940. Hyper-parameters are optimized using an equal weighting
scheme on both the TPR and PPV in the training data.

scores a TPR of 97%, suggesting that the model locates nearly all of the matches

identified by a research assistant. The PPV is similarly high at nearly 95%—very

few of the records suggested by the algorithm were incorrect.

However, the results on the testing data are much less promising for the random

forest method. Again, the testing data is the half of the full sample that was held

back during training of the models and is an accurate assessment of the various

model’s out of sample properties. The random forest model has a TPR on the test

data of only 75.6%. Thus, many of the actual matches coded manually are not

identified by the algorithm. The PPV for the random forest model is similar the

the PPV for the probit and logit models. Thus, the random forest is no more or

less accurate than the probit model, but it is much less efficient, tagging many true

matches as non-matched. Given these results—as well as the simplicity of imple-

menting a probit classifier37—I suggest using the probit model when implementing

the record linkage procedure outlined in this paper.

6 Conclusion

In this paper, I detail a transparent census matching technique for constructing

linked samples that can be replicated across a variety of cases. The procedure

applies insights from machine learning classification and text comparison to the well

37Easily done in Stata, R, etc. Random forest packages exist for these statistical programs and
for others but are not often used by economists.
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known problem of record linkage, but with a focus on the sorts of costs and benefits

of working with historical data. Using tools readily available to economists and other

social scientists in Stata or R, the method can automate the linking of records with

minimal manual matching work and high levels of efficiency and match accuracy.
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