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1 Introduction

The paper proposes a novel theory of cyclical fluctuations in the labor market, which iden-

tifies the source of cyclical fluctuations not in exogenous shocks to productivity or other

fundamentals, but in a strategic complementarity in the optimal solution of the agency

problem faced by different pairs of firms and workers. According to our theory, firms need to

fire non-performing workers with some positive probability in order to provide them with an

ex-ante incentive to exert effort. In order to provide this incentive at the lowest cost, firms

load up the firing probability on the states of the world where the worker’s cost of losing

a job relative to the firm’s cost of losing a worker is highest. When there are aggregate

decreasing returns to scale to the value of unemployment, the states of the world where the

worker’s cost of losing a job is highest are the states with highest unemployment. Therefore,

an individual firm finds it optimal to fire its non-performing workers exactly at the time when

other firms fire their non-performing workers. The strategic complementarity between the

optimal solution to the agency problem of different firms leads to endogenous and stochastic

fluctuations in unemployment, job-destruction and job-finding rates.

We consider an economy populated by risk averse workers and risk neutral firms trading

in a frictional labor market. Unemployed workers spend time searching for vacant jobs,

while firms spend resources to create and maintain vacancies. Unemployed workers and

vacant jobs come together through an aggregate matching function with decreasing returns

to scale. Once matched, firms and workers face an agency problem. In particular, the output

created by a firm-worker pair depends on the effort put in by the worker, but the effort is

not observed by the firm. Foreseeing the agency problem, firms and workers bargain over the

terms of short-term employment contracts. In particular, an employment contract specifies

the wage that the firm pays to the worker in the current period (which is paid out before

current output is observed) and the probability that the firm fires the worker at the beginning

of next period, conditional on the realization of current period’s output and next period’s

state of the world.

In the first part of the paper, we characterize the optimal employment contract. We find

that the optimal contract prescribes that the worker should be fired with probability one

if the current period’s output is low and next period’s state of the world is such that the

cost to the worker from losing the job relative to the cost to the firm from losing the worker

is above some endogenous threshold. In contrast, if the next period’s state of the world is

such that the cost to the worker from losing the job relative to the cost to the firm from

losing the worker is below the threshold, the worker should be fired with probability zero.
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The finding is intuitive. Firing is costly– as it destroys a match that is valuable to both

the worker and the firm– but also necessary– as it gives the worker an ex-ante incentive to

exert effort. However, only the value of the destroyed match that would have accrued to the

worker serves the purpose of providing incentives. The value of the destroyed match that

would have accrued to the firm is “collateral damage.”The optimal contract minimizes the

collateral damage by concentrating firing in states of the economy where the value of the

match to the worker is highest relative to the value of the match to the firm.

In the second part of the paper, we characterize the general equilibrium. Our main finding

is that there exists an equilibrium in which all firms fire their non-performing workers with

probability one in states of the economy when the realization of an inherently meaningless

sunspot falls in some region, and with probability zero in states of the economy when the

realization of the sunspot falls outside of that region. Furthermore, we argue that this

equilibrium is the only one robust to small perturbations in the environment. These findings

imply that, in our model, cyclical fluctuations in the labor market emerge endogenously.

The intuition behind the existence of endogenous cycles is easy to explain. First, notice

that the cost to the worker from losing a job relative to the cost to the firm from losing a

worker is higher in states of the world with higher unemployment. Indeed, since there are

decreasing returns to scale in matching, the worker’s job-finding probability and the worker’s

value of unemployment are lower in states with higher unemployment. Since the value of

unemployment is the worker’s outside option when bargaining over an employment contract,

wages are lower in states with higher unemployment. And, since the employment contract

is such that the worker’s value of a match is proportional to the worker’s marginal utility

and workers are risk averse, the states of the world with lower wages are those where the

worker’s cost from losing a job is higher relative to the firm’s cost from losing a worker.

Next notice that, since cost to a worker from losing a job is higher in states of the world

with higher unemployment, arbitrarily small differences in fundamentals across states of the

world are amplified. Indeed, if the worker’s cost from losing a job is relatively higher in one

state than in another, firms might fire their non-performing workers with probability one in

the first state and with probability zero in the second state. This leads to a significantly

higher unemployment rate in the first than in the second state, which amplifies the difference

in the relative cost of job loss to the worker between the two states of the world and reinforces

the firms’incentives to fire non-performing workers in the first state but not in the second.

Clearly, the amplification mechanism is so strong that it does not even require any initial

difference between the fundamentals in the two states. If other firms fire their non-performing
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workers in the first state but not in the second state of the world, an individual firm finds it

optimal to behave exactly like the others.

In the last part of the paper, we calibrate the model to match some basic features of the US

labor market, such as the average rate at which unemployed workers become employed (UE

rate), the average rate at which employed workers become unemployed (EU rate). We use the

calibrated model to measure the magnitude of “agency business cycles”, i.e. the endogenous

labor market fluctuations caused by the firms’coordinated firing of non-performing workers.

We find that agency business cycles can account for more than 50% of the cyclical volatility

of the unemployment rate that is observed in the data, for approximately 40% of the cyclical

volatility of the UE rate, and for all of the volatility of the EU rate. Moreover, we find that

the fluctuations in the unemployment, UE and EU rates are uncorrelated from fluctuations

in labor productivity. Thus, agency business cycles can account for a large fraction of the

volatility of the US labor market and they offer a natural explanation for the low empirical

correlation between unemployment and labor productivity.

We then show that agency business cycles and cyclical fluctuations in the US labor market

have the same structure. According to our theory, a recession starts when the realization of

the sunspot induces firms to coordinate on firing their non-performing workers. The increase

in the EU rate drives the unemployment rate up. In turn, the increase in the unemployment

rate leads to a decline in the UE rate, because of decreasing returns to matching. Once

the firms stop firing non-performing workers, the lower UE rate causes a slow decline in the

unemployment rate. We find that these predictions of the model are consistent with the

data. In the data as in the model, the EU rate leads the unemployment rate by a quarter,

while the UE rate and the unemployment rate coincide. In the data as in the model, the

unemployment rate moves faster during recessions than during recoveries.

The main contribution of the paper is to advance a novel theory of cyclical fluctuations

in the labor market. According to our theory, labor market fluctuations are not driven by

exogenous shocks to current productivity (as in the real business cycle theory of Kydland

and Prescott, 1982, or in Mortensen and Pissarides, 1994), by shocks to future productivity

(as in the Pigovian business cycle models of Beaudry and Portier 2004 and Jaimovich and

Rebelo 2009), by monetary shocks (as in New Keynesian models), or by shocks to any

other fundamental. Instead, in our model, labor market fluctuations emerge from the firms’

incentive to coordinate on firing non-performing workers in the same states of the world. Our

theory is also different from existing theories of non-fundamental fluctuations. For one thing,

the source of non-fundamental fluctuations in our theory is different than in the existing
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literature, which has stressed increasing returns in production (e.g., Benhabib and Farmer

1994, and Mortensen 1999), increasing returns to matching (e.g., Diamond 1982), demand

externalities (e.g., Heller 1986 and Cooper and John 1988), and shopping externalities (e.g.,

Kaplan and Menzio 2014). Moreover, the nature of non-fundamental fluctuations in our

theory is different than in the existing literature. Indeed, according to our theory, labor

market fluctuations are not the result of exogenous changes in equilibrium selection (as in

the multiple equilibria models of Benhabib and Farmer 1994 and Kaplan and Menzio 2014),

and they are not deterministic (as in the limit cycle models of Diamond and Fudenberg 1989

and Mortensen 1999). Instead, labor market fluctuations emerge in our model because the

equilibrium is inherently stochastic.

Finally, our theory proposes a novel view of recessions. In the Real Business Cycle theory,

as well as in other fundamental and non-fundamental theories of cyclical fluctuations, a

recession is a “rainy day,”in the sense that it is a time when the value of market activities

relative to the value of home activities is low. For this reason, during a recession, non-

employment increases. In our theory, a recession is a time when the value of being employed

relative to the value of being unemployed is high. And, according to our theory, it is at exactly

such a time that firms find it optimal to coordinate on firing non-performing workers, which

leads to a decline in economic activity. Consistently with our theory, the data seems to

suggest that recessions are times when the value added from being employed is particularly

high. Indeed, we construct time series for the value of employment and unemployment using

data on the UE rate, EU rate and on wages and we find that the value added from being

employed is clearly countercyclical.

2 Environment and Definition of Equilibrium

2.1 Environment

Time is discrete and continues forever. The economy is populated by a measure 1 of identical

workers. Every worker has preferences described by
∑
βt [υ(wt)− cet], where β ∈ (0, 1) is

the discount factor, υ(wt) is the utility of consuming wt units of output in period t, and

−cet is the disutility of exerting et units of effort on the job in period t. We assume that the
utility function υ(w) is strictly increasing and strictly concave, with a first derivative υ′(w)

such that υ′(w) ∈ [υ′, υ′], and a second derivative υ′′(w) such that −υ′′(w) ∈ [υ′′, υ′′], with

υ′ > υ′ > 0 and υ′′ > υ′′ > 0.. We assume that the worker’s effort on the job, et, can only

take on the values 0 and 1. Every worker is endowed with one, indivisible unit of labor.
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The economy is also populated by a positive measure of identical firms. Every firm has

preferences described by
∑
βtπt, where β is the discount factor and πt are the firm’s profits

in period t. Every firm operates a constant returns to scale production technology that turns

one unit of labor (i.e. one employee) into yt units of output, where yt is a random variable

that depends on the employee’s effort et. In particular, yt takes the high value yh with

probability ph(e) and the low value y` with probability p`(e) = 1 − ph(e), with yh > y` ≥ 0

and 0 < ph(0) < ph(1) < 1 and 0 < p`(1) < p`(0) < 1. Moreover, every firm operates a

constant return to scale recruitment technology that turns k > 0 units of output into a job

vacancy.

Every period t = 1, 2, . . .. is divided into five stages: sunspot, separation, matching,

bargaining and production. In the first stage, a random variable, zt, is independently drawn

over time from an identical uniform distribution with support [0, 1]. The random variable is

aggregate, in the sense that it is publicly observed by all market participants. The random

variable is a sunspot, in the sense that it does not directly affect technology, preferences

or any other fundamentals, although it may serve to coordinate the behavior of market

participants.

In the second stage, some of the employed workers become unemployed. An employed

worker leaves his job for exogenous reasons and becomes unemployed with some probability

δ ∈ (0, 1). In addition, an employed worker is fired from his job and becomes unemployed

with some probability s(yt−1, zt), where s(yt−1, zt) is determined by the worker’s employment

contract and is allowed to depend on the worker’s performance on the job in the previous

period, yt−1, and on the realization of the sunspot in the current period, zt. For the sake of

simplicity, we assume that a worker who becomes unemployed in period t can search for a

new job only starting in period t+ 1.

In the third stage, firms create vt vacant jobs at the unit cost k. Then, the work-

ers who were unemployed at the beginning of the period, ut−1, and the vacant jobs, vt,

search for each other. The outcome of the search process is described by a decreasing re-

turn to scale matching function, M(ut−1, vt), which gives the measure of bilateral matches

formed between unemployed workers and vacant firms. We denote as tht the vacancy-

to-unemployment ratio, vt/ut−1, and we refer to it as the tightness of the labor market.

We denote as λ(θt, ut−1) the probability that an unemployed worker meets a vacancy, i.e.

λ(θt, ut−1) = M(ut−1, θtut−1)/ut−1. Similarly, we denote as η(θt, ut−1) the probability that a

vacancy meets an unemployed worker, i.e. η(θt, ut−1) = M(ut−1, θtut−1)/θtut−1. We assume

that the job-finding probability λ(θt, ut−1) is strictly increasing in θt and strictly decreasing
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in ut−1. That is, the higher is the vacancy-to-unemployment ratio, the more likely it is

for an unemployed worker to find a match. However, for a given vacancy-to-unemployment

ratio, the higher is unemployment, the less likely it is for an unemployed worker to find a

match. Similarly, we assume that the job-filling probability η(θt, ut−1) is strictly decreasing

in both θt and ut−1. As it is well-known, when the matching function features constant

returns to scale, the job-finding and the job-filling probabilities are only functions of the

vacancy-to-unemployment ratio. In contrast, when the matching function has decreasing re-

turns to scale, the job-finding and the job-filling probabilities are also (decreasing) functions

of unemployment.

In the fourth stage, every matched pair of firm and worker bargains over a one-period

contract. Specifically, the contract specifies the effort, et, that the worker should exert in the

current period, over the wage, wt, that the worker will be paid in the current period, and

over the probability, s(yt, zt+1), with which the worker will be fired at the separation stage

of next period conditional on a realization of current period’s output yt and of next period’s

sunspot zt+1. We assume that the outcome of the contractual bargain between the firm and

the worker is given by the Axiomatic Nash Bargaining Solution.

In the last stage, production and consumption take place. An unemployed worker home-

produces and consumes b units of output. An employed worker privately chooses an effort

level, et, and consumes wt units of output. Then, the output of the employed worker, yt, is

realized.

A few comments about the environment are in order. We assume that the employment

contract specifies a wage that is independent of the current realization of output (formally

because it is paid out before output is observed) and that the employment contract is rene-

gotiated in every period. The first assumption rules out the current wage as an instrument

to reward/punish the worker’s performance. The second assumption rules out future wages

as an instrument to reward/punish the worker’s performance. As a result, firing is the only

tool available to the firm to provide the worker with an incentive to exert effort. While these

assumptions are very strong, they provide the simplest example of a contractual environment

in which firing occurs along the equilibrium path. As we know from the literature, there

are more complicated and less restrictive contractual environments that deliver equilibrium

firing (see, e.g., Clementi and Hopenhayn, 2006).

We assume that the matching function has decreasing returns to scale. From the theo-

retical point of view, there are several way to justify the assumption. For example, a simple

urn-ball matching process with finite balls (i.e., unemployed workers) and finite urns (i.e.,
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vacant jobs) displays decreasing returns to scale (see, e.g., Burdett, Shi and Wright, 2001).

From the empirical point of view, there is no consensus on whether the matching function

has increasing, constant or decreasing returns to scale. In their survey of the empirical lit-

erature, Petrongolo and Pissarides (2001) report of studies that find the returns to scale to

be significantly increasing, decreasing or approximately constant. Furthermore, estimates

of the matching function are likely to be biased, as they typically assume that the number

of employed workers and the number of vacant jobs are the only input into search, while

it is well-know that a significant fraction of vacancies are filled by workers who are either

already employed or out of the labor force. For these reasons, we consider the assumption

of decreasing returns to matching not unreasonable.

We assume that workers have no access to capital markets. The assumption is made for

the sake of simplicity. Indeed, as long as workers are not perfectly insured, there is some

variation in their marginal utility of consumption across different states of the world and the

theoretical predictions of the model would remain unchanged.

2.2 Definition of equilibrium

Let u denote the unemployment rate at the bargaining stage in the current period. Let

W (x, u) and U(u) denote, respectively, the lifetime utility of a worker who, at the production

stage, is employed under the contract x and the lifetime utility of a worker who, at the

production stage, is unemployed. Denote as F (x, u) the difference between W (x, u) and

U(u). Let G(x, u) denote the present value of profits for a firm that, at the production

stage, employs a worker under the contract x. Let x(u) = (e(u), w(u), s(y, ẑ, u)) denote the

contract that a firm and a worker agree upon during the bargaining stage. Finally, let θ̂(ẑ)

denote the tightness of the labor market at the next matching stage given that the realization

of next period’s sunspot is ẑ, and let û(ẑ) denote the unemployment rate at the beginning

of the next bargaining stage given ẑ.

The lifetime utility of an unemployed worker, U(u), is given by

U(u) = υ(b) + βEẑ

[
U(û(ẑ)) + λ(θ̂(ẑ), u) (W (x(û(ẑ)), û(ẑ))− U(û(ẑ))))

]
(1)

In the current period, the worker home produces and consumes b units of output. In the

next period, the worker does finds a job with probability λ(θ̂(ẑ), u) and does not with the

complementary probability 1−λ(θ̂(ẑ), u). In the first case, the worker’s continuation lifetime

utility is W (x(û(ẑ)), û(ẑ)). In the second case, the worker’s continuation lifetime utility is

U(û(ẑ)).
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The lifetime utility of a worker employed at an arbitrary contract x = (e, w, s), W (x, u),

is given by

W (x, u) = υ(w)− ce+
+βEy,ẑ [U(û(ẑ)) + (1− δ)(1− s(y, ẑ)) (W (x(û(ẑ)), û(ẑ))− U(û(ẑ))) |e] .

(2)

In the current period, the worker consumes w units of output and exerts effort e. With

probability ph(e), the worker’s output in the current period is yh. In this case, the worker

keeps his job in the next period with probability (1 − δ)(1 − s(yh, ẑ)) and his continuation

lifetime utility isW (x(û(ẑ)), û(ẑ)). With probability p`(e), the worker’s output in the current

period is y`. In this case, the worker keeps his job with probability (1−δ)(1−s(y`, ẑ)) and his

continuation lifetime utility is W (x(û(ẑ)), û(ẑ)). If the worker loses his job, his continuation

lifetime utility is U(û(ẑ)).

The difference between the lifetime utility of a worker employed under the contract x

and the lifetime utility of an unemployed worker, F (x, u), is given by

F (x, u) = υ(w)− υ(b)− ce+

+βEy,ẑ

{
[(1− δ)(1− s(y, ẑ))− λ(θ̂(ẑ), u)] (W (x(û(ẑ)), û(ẑ))− U(û(ẑ))) |e

}
.

(3)

We denote as V (u) the difference between the lifetime utility of a worker employed at the

equilibrium contract x(u) and the lifetime utility of an unemployed worker, i.e. V (u) =

W (x(u), u) − U(u). We refer to V (u) as the equilibrium gains from trade accruing to the

worker.

The present value of profits for a firm employing a worker under the contract x, G(x, u),

is given by
G(x, u) = ph(e)yh + p`(e)y` − w

+βEy,ẑ [(1− δ)(1− s(y, ẑ))G(x(û(ẑ)), û(ẑ))|e] .
(4)

In the current period, the expected output produced by the worker is ph(e)yh + p`(e)y` and

the wage paid to the worker is w. With probability ph(e), the worker’s current output is yh.

In this case, the firm retains the worker in the next period with probability (1−δ)(1−s(yh, ẑ))

and its continuation profits are G(x(û(ẑ)), û(ẑ)). With probability p`(e), the worker’s current

output is y`. In this case, the firm retains the worker in the next period with probability

(1 − δ)(1 − s(y`, ẑ)) and its continuation profits are G(x(û(ẑ)), û(ẑ)). If the firm does not

retain the worker, its continuation profits are zero. We denote as J(u) the firm’s present value

of profits from employing a worker at the equilibrium contract x(u), i.e. J(u) = G(x(u), u).

We refer to J(u) as the equilibrium gains from trade accruing to the firm.
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The equilibrium contract x(u) is given by the Axiomatic Nash Bargaining Solution of

the bilateral monopoly problem facing a firm and a worker. A contract x is feasible if and

only if it is incentive compatible, in the sense that it gives the worker the incentive to exert

the prescribed level of effort e. A contract x is the Axiomatic Nash Bargaining Solution

if it maximizes, among all contracts that are feasible, the product of the gains from trade

accruing to the worker, F (x, u), and the gains from trade accruing to the firm, G(x, u).

Hence, the contract x(u) solves

max
x=(e,w,s)

F (x, u)G(x, u), (5)

subject to

e ∈ {0, 1} and s(y, ẑ) ∈ [0, 1].

and the worker’s incentive compatibility constraint

c ≤ β(ph(1)− ph(0))Eẑ [(1− δ)(s(y`, ẑ)− s(yh, ẑ))V (û(ẑ))] , if e = 1,

c ≥ β(ph(1)− ph(0))Eẑ [(1− δ)(s(y`, ẑ)− s(yh, ẑ))V (û(ẑ))] , if e = 0.

In the matching stage of next period, the firm faces a cost of k to create an addi-

tional vacant job. The benefit to the firm to create an additional vacancy is given by

η(θ̂(ẑ), u)J(û(ẑ)), i.e., the probability of filling the vacancy, η(θ̂(ẑ), u), times the lifetime

profit from employing an additional worker, J(û(ẑ)). A firm creates infinitely many va-

cancies if η(θ̂(ẑ), u)J(û(ẑ)) > k, it creates no vacancies if η(θ̂(ẑ), u)J(û(ẑ)) < k and it is

indifferent about the number of vacancies it creates if η(θ̂(ẑ), u)J(û(ẑ)) = k. Thus, the equi-

librium vacancy-to-unemployment ratio, θ̂(ẑ), is consistent with the firm’s optimal vacancy

creation strategy if and only if

η(θ̂(ẑ), u)J(û(ẑ)) ≤ k, (6)

and θ̂(ẑ) ≥ 0 with complementary slackness. This conditions imply that the equilibrium

vacancy-to-unemployment ratio is equal to

θ̂(û(ẑ)) = η−1
(

min

{
k

J(û(ẑ))
, 1

}
, u

)
, (7)

where η−1(., u) denotes the inverse of the job-filling probability η(θ, u) with respect to θ.

The unemployment rate at the bargaining stage of next period, û(ẑ), is given by a g(u, ẑ)

such that

g(u, ẑ) = u− uµ(J(g(u, ẑ), u) + (1− u)Ey [δ + (1− δ)s(y, ẑ, u)] , (8)
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where µ(J(g(u, ẑ), u) is defined as λ(θ̂(û(ẑ)), u). The first term on the right-hand side of

(8) is unemployment rate at the bargaining state of the current period, u. The second

term on the right-hand side of (8) is the flow of workers out of unemployment. That is, the

unemployment rate at the bargaining stage of the current period, u, times the probability that

an unemployed worker finds a job during the matching stage of next period, µ(J(g(u, ẑ), u).

The last term on the right-hand side of (8) is the flow of workers into unemployment. That

is, the employment rate at the bargaining stage of the current period, 1 − u, times the

probability that an employed worker becomes unemployed, Ey [δ + (1− δ)s(y, ẑ, u)].

We are now in the position to define a recursive equilibrium for our model economy.

Definition 1: A Recursive Equilibrium is a tuple (V, J, x, g) such that:

(i) The gains from trade accruing to the worker, V , and the gains from trade accruing to the

firm, J , satisfy

V (u) = υ(w(u))− υ(b)− ce(u)+

+βEy,ẑ {[(1− δ)(1− s(y, ẑ, u))− µ(J(g(u, ẑ), u))]V (g(u, ẑ))|e(u)} ,
J(u) = Ey[y|e(u)]− w + βEy,ẑ [(1− δ)(1− s(y, ẑ, u))J(g(u, ẑ))|e(u)] ;

(ii) The employment contract, x, satisfies

maxx F (x, u)G(x, u),

s.t. e ∈ {0, 1} and s(y, ẑ) ∈ [0, 1],

c ≤ β(ph(1)− ph(0))Eẑ [(1− δ)(s(y`, ẑ)− s(yh, ẑ))V (g(u, ẑ))], if e = 1,

c ≥ β(ph(1)− ph(0))Eẑ [(1− δ)(s(y`, ẑ)− s(yh, ẑ))V (g(u, ẑ))] , if e = 0;

(iii) The law of motion for unemployment, g, satisfies

g(u, ẑ) = u− uµ(J(g(u, ẑ), u) + (1− u)Ey [δ + (1− δ)s(y, ẑ, u)] .

In the next two sections, we are going to characterize the properties of the equilibrium

of our model economy. For the sake of exposition, we shall assume that the employment

contract, x(u), always prescribes the worker to exert effort, i.e. e(u) = 1. We shall also

assume that the gains from trade are always positive, i.e. J(u) > 0 and V (u) > 0. It is

straightforward to verify that the first assumption is satisfied as long as y` is suffi ciently low

relative to yh, and that the second assumption is satisfied as long as ph(1)yh + p`(1)y` is

suffi cienly high relative to b.
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3 Optimal Contract

In this section, we characterize the solution to the bargaining problem (5) between the firm

and the worker. For the sake of brevity, we will omit the dependence of F and G from u and

we will use V̂ (ẑ) as shorthand for the worker’s continuation gains from trade V (g(u, ẑ)) and

J(ẑ) as shorthand for the firm’s continuation gains from trade J(g(u, ẑ)). We shall denote

as x∗ = (e∗, w∗, s∗) a solution to (5) and refer to it as an optimal employment contract. We

will characterize the features of the optimal contract in a series of lemmas, which we will

then summarize in Theorem 1. As mentioned above, we will carry out the analysis under

the maintained assumption that the optimal contract requires the worker to exert effort,

i.e. e∗ = 1, and that the worker’s and the firm’s gains from trade are always positive, i.e.

V̂ (ẑ) > 0 and J(ẑ) > 0.

The first lemma states that any optimal employment contract x∗ is such that the worker’s

incentive compatibility constraint holds with equality. The result is intuitive. Providing the

worker with the incentive to exert effort is costly, as it requires severing an employment

relationship that has positive value to both the worker and the firm. For this reason, the

optimal contract provides the worker with the minimum amount of incentives to induce him

to exert effort.

Lemma 1: Any optimal contract x∗ is such that the worker’s incentive compatibility holds
with equality, i.e.

c = β(ph(1)− ph(0))Eẑ

[
(1− δ)(s∗(y`, ẑ)− s∗(yh, ẑ))V̂ (ẑ)

]
. (9)

Proof: Let ρ ≥ 0 denote the Lagrange multiplier on the worker’s incentive compatibility

constraint, let ν(y, ẑ) ≥ 0 denote the multiplier on the constraint 1 − s(y, ẑ) ≥ 0 and let

ν(y, ẑ) denote the multiplier on the constraint s(y, ẑ) ≥ 0.

The first order condition with respect to the firing probability s(y`, ẑ) is given by

(1− δ)
[
G(x)V̂ (ẑ) + F (x)Ĵ(ẑ)

]
= ρβ(1− δ)(ph(1)− ph(0))V̂ (ẑ) + ν(y`, ẑ)− ν(y`, ẑ), (10)

together with the complementary slackness conditions ν(y`, ẑ) ·(1−s(y`, ẑ)) = 0 and ν(y`, ẑ) ·
s(y`, ẑ) = 0. The left-hand side of (10) is the marginal cost of increasing s(y`, ẑ). This cost

is given by the decline in the product of the worker’s and firm’s gains from trade caused

by a marginal increase in the firing probability s(y`, ẑ). The right-hand side of (10) is the

marginal benefit of increasing s(y`, ẑ). This benefit is given by the value of relaxing the

12



worker’s incentive compatibility and the s(y`, ẑ) ≥ 0 constraints net of the cost of tightening

the s(y`, ẑ) ≤ 1 constraint by marginally increasing the firing probability s(y`, ẑ).

Similarly, the first order condition with respect to the firing probability s(yh, ẑ) is given

by

(1− δ)
[
G(x)V̂ (ẑ) + F (x)Ĵ(ẑ) + ρβ(ph(1)− ph(0))V̂ (ẑ)

]
= ν(yh, ẑ)− ν(yh, ẑ), (11)

together with the complementary slackness conditions ν(yh, ẑ)·(1−s(yh, ẑ)) = 0 and ν(yh, ẑ)·
s(yh, ẑ) = 0. The left-hand side of (11) represents the marginal cost of increasing s(yh, ẑ).

The rigth-hand side of (11) represents the marginal benefit of increasing s(yh, ẑ). Notice

that increasing the firing probability s(yh, ẑ) tightens the worker’s incentive compatibility

constraint and, hence, the term in ρ is now on the left-hand side of (11).

Suppose ρ = 0. First, notice that the left-hand side of (10) is strictly positive as V̂ (ẑ) > 0,

Ĵ(ẑ) > 0 by assumption, and F (x) > 0, G(x) > 0 at the optimum x∗. The right-hand side

of (10) is strictly positive only if ν(y`, ẑ) > 0. Hence, if ρ = 0, the only solution to the

first order condition with respect to the firing probability s(y`, ẑ) is 0. Next, notice that

the left-hand side of (11) is strictly positive and the right-hand side is strictly positive only

if ν(yh, ẑ) > 0. Hence, if ρ = 0, the only solution to the first order condition with respect

to the firing probability s(yh, ẑ) is 0. However, if s(y`, ẑ) = s(yh, ẑ) = 0, the worker’s

incentive compatibility constraint is violated. Therefore, ρ > 0 and the worker’s incentive

compatibility constraint holds with equality. �

The second lemma states that any optimal employment contract x∗ is such that the

worker is never fired when production is successful. This result is also easy to understand. If

the worker is fired with positive probability when production is successful, the value of the

contract to both the worker and the firm is reduced as a valuable relationship is destroyed.

Moreover, if the worker is fired with positive probability when production is successful, the

incentive compatibility constraint becomes tighter as exerting effort increases the probability

that production is successful and reduces the probability that production is unsuccessful.

Overall, firing the worker with positive probability when production is successful has only

costs and no benefits.

Lemma 2: Any optimal contract x∗ is such that the worker is fired with probability zero if
production is successful. That is, for all ẑ ∈ [0, 1],

s∗(yh, ẑ) = 0. (12)
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Proof: The first order condition with respect to s(yh, ẑ) is given by (11) together with the

complementary slackness conditions ν(yh, ẑ)(1− s(yh, ẑ)) = 0 and ν(yh, ẑ)s(yh, ẑ) = 0. The

left-hand side of (11) is strictly positive. The right-hand side of (11) is strictly positive only

if ν(yh, ẑ) > 0. Therefore, the first order condition is satisfied only if ν(yh, ẑ) > 0 and, hence,

only if s(yh, ẑ) = 0. �

The next lemma is one of the central results of the paper. Let φ(ẑ) denote the ratio of

the gains from trade accruing to the worker next period, V̂ (ẑ), and the gains from trade

accruing to the firm next period, Ĵ(ẑ). Then, any optimal contract x∗ prescribes that the

worker should be fired with probability one if production is unsuccessful and the realization

of next period’s sunspot, ẑ, is such that the gains from trade accruing to the worker relative

to those accruing to the firm, φ(ẑ), are strictly higher than some cutoff φ∗. The worker

should be fired with zero probability if production is unsuccessful and the realization of next

period’s sunspot, ẑ, is such that the gains from trade accruing to the worker relative to those

accruing to the firm, φ(ẑ), are strictly lower than the cutoff φ∗.

There is a simple intuition behind this result. Firing is costly– as it destroys a relationship

that is valuable to both the worker and the firm– but also necessary– as it gives the worker

an incentive to perform. However, only the value of the destroyed relationship that would

have accrued to the worker serves the purpose of providing incentives. The value of the

destroyed relationship that would have accrued to the firm is “collateral damage.” The

optimal contract minimizes this collateral damage by concentrating firing in states of the

world where the value of the relationship to the worker is highest relative to the value of the

relationship to the firm.

Lemma 3: Any optimal contract x∗ prescribes that the worker is fired with probability one
(zero) if production is unsuccessful and the realization of the sunspot ẑ is such that φ(ẑ) is

greater (smaller) than φ∗. That is, for all ẑ ∈ [0, 1],

s∗(y`, ẑ) =

{
1, if φ(ẑ) > φ∗,
0, if φ(ẑ) < φ∗.

(13)

Proof : The first order condition with respect to the firing probability s(y`, z) can be written

as

(1− δ)V̂ (ẑ)
[
G(x) + F (x)/φ̂(ẑ)− µβ(ph(1)− ph(0))

]
= ν(y`, ẑ)− ν(y`, ẑ), (14)

together with the complementary slackness conditions ν(y`, ẑ) ·(1−s(y`, ẑ)) = 0 and ν(y`, ẑ) ·
s(y`, ẑ) = 0. The left-hand side of (14) is strictly decreasing in φ̂(ẑ). The right-hand side
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of (14) is strictly positive if ν(y`, ẑ) is strictly positive and it is strictly negative if ν(y`, ẑ)

is strictly positive. Therefore, there exists a φ∗ such that if φ(ẑ) > φ∗, the left-hand side is

strictly negative and the solution to (14) requires ν(y`, ẑ) > 0. In this case, the solution to

the first order condition for s(y`, ẑ) is 1. If φ(ẑ) < φ∗, the left-hand side is strictly positive

and the solution to (14) requires ν(y`, ẑ) > 0. In this case, the solution to the first order

condition for s(y`, ẑ) is 0. �

The cutoff value φ∗ is pinned down by the worker’s incentive compatibility constraint

c = β(ph(1)− ph(0))(1− δ)
[∫

φ(ẑ)>φ∗
V̂ (ẑ)dẑ +

∫
φ(ẑ)=φ∗

s∗(y`, ẑ)V̂ (ẑ)dẑ

]
, (15)

where the above expression makes use of the optimality condition (12) for s∗(yh, ẑ) and of

the optimality condition (14) for s∗(y`, ẑ). Figure 1 plots the right-hand side of (15), i.e. the

worker’s benefit from extering effort on the job, as a function of the cutoff value φ∗. On any

interval [φ∗0, φ
∗
1] where the distribution of the random variable φ(ẑ) has positive density, the

right-hand side of (15) is strictly decreasing. On any interval [φ∗0, φ
∗
1] where the distribution

of φ(ẑ) has no density, the right-hand side of (15) is constant. At any value φ∗0 where the

distribution of φ(ẑ) has a mass point, the right-hand side of (15) can take on an interval of

values as the firing probability s∗(y`, ẑ) for ẑ such that φ(ẑ) = φ∗0 varies between zero and

one.

The cutoff value φ∗ is such that right-hand side of (15) equals the worker’s cost c from

extering effort on the job. If, as in the case of c1 in Figure 1, the right-hand side of (15)

equals c for a φ∗ in an interval where the distribution of φ(ẑ) has positive density, the cutoff

value is uniquely determined. If, as in the case of c2 in Figure 1, the right-hand side of (15)

equals c for a φ∗ in an interval where the distribution of φ(ẑ) has a mass point, the cutoff

is uniquely determined and the firing probability s∗(y`, ẑ) for ẑ such that φ(ẑ) = φ∗0 makes

the worker’s incentive compatibility constraint hold with equality. If, as in the case of c3 in

Figure 1, the right-hand side of (15) equals c over an interval [φ∗0, φ
∗
1], the cutoff value φ

∗ can

take on any value between φ∗0 and φ
∗
1, but the selection of φ

∗ is immaterial as the random

variable φ(ẑ) has zero measure over that interval.

The next lemma states that any optimal contract x∗ prescribes a wage such that the ratio

of the gains from trade accruing to the worker and to the firm is equal to the ratio of the

marginal utility of an additional unit of consumption to the worker and to the firm. This

is an important result because it tells us when the gains from trade accruing to the worker

are high relative to the gains from trade accruing to the firm. Specifically, as the worker’s

marginal utility is strictly decreasing in the wage w, the result implies that the gains from
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Figure 1: Cutoff value φ∗

trade accruing to the worker are high relative to those accruing to the firm when the wage

is low. Combining this result with Lemma 3, we can conclude that the optimal contract

prescribes that the worker should be fired only when production is unsuccessful and the

realization of next period’s sunspot is such that the worker’s wage is suffi ciently low.

Lemma 4: Any optimal contract x∗ is such that

V

J
= υ′(w∗), (16)

where V and J are respectively defined as the worker’s and the firm’s gains from trade

evaluated at the optimal contract x∗, i.e. V = F (x∗) and J = G(x∗).

Proof: The first order condition with respect to the wage w is given by

G(x)υ′(w)− F (x) = 0. (17)

The left-hand side of (17) is the increase in the product of the worker’s and firm’s gains

caused by a marginal increase in the worker’s wage w. A marginal increase in w, increases

the worker’s gains from trade by υ′(w) and decreases the firm’s gains from trade by 1.

Therefore, a marginal increase in w, increases the product of the worker’s and firm’s gains

from trade by G(x)υ′(w) − F (x). The first order condition for w states that the effect of a

marginal increase in w is zero. Using V = F (x∗) and J = G(x∗) and the first order condition

for w, we obtain (16). �
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We are now in the position to summarize the characterization of the optimal contract.

Theorem 1: (Optimal Contract) Any optimal contract x∗ is such that: (i) the worker is
paid the wage w∗ given by (16); (ii) if production is successful, the worker is fired with

probability s∗(yh, ẑ) given by (12); (iii) if production is unsuccessful, the worker is fired with

probability s∗(y`, ẑ) given by (13), where the φ∗ in (13) is such that the worker’s incentive

compatibility constraint holds with equality.

4 Sunspots

In the previous section, we characterized the solution x∗ to the bargaining problem between

the firm and the worker, taking as given the distribution of the worker’s relative gains from

trade in the next period, φ(ẑ). In this section, we characterize the equilibrium distribution

of φ(ẑ).

To this aim, we first characterize the relationship between the probability s∗(y`, ẑ) with

which firms fire their non-performing workers and the gains from trade accruing to the worker

relative to those accruing to the firm φ(ẑ). Given s∗(y`, ẑ) = s∗, the unemployment rate in

the next period is given

û(s∗) = u− µ(J(û(s∗)), u) + (1− u)(δ + (1− δ)(1− p(1))s∗). (18)

Given the unemployment rate in (18), the gains from trade accruing to the worker relative

to the gains from trade accruing to the firm are given by

φ(ẑ) =
V (û(s∗))

J(û(s∗))
= υ′(w(û(s∗))). (19)

We conjecture that the unemployment rate in (18) is strictly increasing in the firing prob-

ability s. We also conjecture that the wage function w(û) on the right hand side of (19)

is strictly decreasing in the unemployment rate û. These conjectures are natural, and we

shall verify them in the next section. Intuitively, a higher firing probability tends to increase

the unemployment rate. A higher unemployment rate leads to additional congestion in the

labor market and, in turn, to a lower value of unemployment and a lower wage. Given these

conjectures, the gains from trade accruing to the worker relative to the firm are strictly

increasing in the firing probability s∗. The properties of the map from s∗ to φ are illustrated

by the solid line in Figure 2.
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Figure 2: Sunspot

Next, we characterize the relationship between the relative gains from trade accruing

to the worker and to the firm, φ(ẑ), and the probability with which firms fire their non-

performing workers, s∗(y`, ẑ). As established in Lemma 3, for any distribution of the ran-

dom variable φ(ẑ), there exists a φ∗ such that firms fire their non-performing workers with

probability zero if φ(ẑ) < φ∗, with a probability between zero and one if φ(ẑ) = φ∗, and with

probability one if φ(ẑ) > φ∗. That is,

s∗(y`, ẑ) =


0, if φ(ẑ) < φ∗,
∈ [0, 1], if φ(ẑ) = φ∗,
1, if φ(ẑ) > φ∗,

(20)

where φ∗ satisfies the worker’s incentive compatibility constraint (15). The properties of the

map from φ(ẑ) to s∗(y`, ẑ) are illustrated by the dashed line in Figure 2.

Since in any equilibrium the firing probability s∗(y`, ẑ) can take at most three values and

the relative gains from trade φ(ẑ) are a strictly increasing function of s∗(y`, ẑ), it follows

that, in any equilibrium, s∗(y`, ẑ) can also take at most three values. This is evident from

Figure 2. In particular, with some probability π0, the realization of the sunspot ẑ is such

that φ(ẑ) = φ0 < φ∗ where φ0 = υ′(w(û(0))).With some probability π1, the realization of the

sunspot ẑ is such that φ(ẑ) = φ1 = φ∗ where φ1 = υ′(w(û(s1))). And with some probability

π2, the realization of the sunspot is such that φ(ẑ) = φ2 > φ∗ where φ2 = υ′(w(û(1))).

Moreover, in any equilibrium, the worker’s incentive compatibility constraint must hold

with equality.
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Qualitatively, there are three types of equilibria that can emerge. The first type of

equilibrium is such that π1 = 1 and π0 = π2 = 0. In this type of equilibrium, there are

no realizations of the sunspot for which firms fire all of their non-performing workers, nor

realizations of the sunspot for which firms do not fire any of their non-performing workers.

For all realizations of the sunspot, firms fire their non-performing workers with probability

s∗1. Since firms do not use the sunspot to coordinate on their firing decisions, we refer to this

as the no-coordination equilibrium. In a no-coordination equilibrium, the worker’s incentive

compatibility constraint is

c = β(ph(1)− ph(0))(1− δ)s∗1V (û(s∗1)). (21)

The incentive compatibility constraint (21) implicitly pins down the probability with which

firms fire their non-performing workers. Specifically, the firing probability is given by

s∗1 =
c

β(ph(1)− ph(0))(1− δ)V (û(s∗1))
. (22)

The second type of equilibrium is such that π1 ∈ (0, 1). In this equilibrium, there is a pos-

itive measure of realizations of the sunspot for which firms fire their non-performing workers

with probability s∗1. However, for some particular realizations of the sunspot, firms coordi-

nate on either firing all of their non-performing workers or none of them. Since firms use

the sunspot to coordinate only with some probability, we refer to this as a partial coordina-

tion equilibrium. In a partial coordination equilibrium, the worker’s incentive compatibility

constraint is

c = β(ph(1)− ph(0))(1− δ) [π1s
∗
1V (û(s∗1)) + π2V (û(1))] . (23)

The incentive compatibility constraint (23) can be used to pin down the probability with

which firms fire their non-performing workers when they do not use the sunspot as a coor-

dination device. Specifically, this firing probability if given by

s∗1 =
c− β(ph(1)− ph(0))(1− δ)π2V (û(1))

β(ph(1)− ph(0))(1− δ)π1V (û(s∗1))
. (24)

The third type of equilibrium is such that π1 = 0, π0 ∈ (0, 1) and π2 ∈ (0, 1). In this

type of equilibrium, firms use every realization of the sunspot to either coordinate on firing

their non-performing workers with probability one or on firing them with probability zero.

Naturally, we refer to this as a pure coordination equilibrium. In a perfect coordination

equilibrium, the worker’s incentive compatibility constraint reads

c = β(ph(1)− ph(0))(1− δ)π2V (û(1)). (25)
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The incentive compatibility constraint (25) implicitly pins down the probability of a real-

ization of the sunspot for which firms fire all of their non-performing workers, π2, and the

probability of a realization of the sunspot for which firms fire none of their non-performing

workers, π0 = 1− π2. In particular, the probability π2 is given by

π2 =
c

β(ph(1)− ph(0))(1− δ)V (û(1))
. (26)

The above results are summarized in the following theorem.

Theorem 2: (Sunspots). Assume that the unemployment rate û(s∗(y`, ẑ)) is strictly increas-

ing in the probability s∗(y`, ẑ) with which firms fire non-performing workers and that the

wage w(u) is strictly decreasing in the unemployment rate u. Then, there are three types of

equilibria: (i) no-coordination equilibrium where φ(ẑ) = φ∗ with probability π1 = 1; (ii) par-

tial coordination equilibrium where φ(ẑ) = φ∗ with probability π1 ∈ (0, 1), φ(ẑ) = φ0 < φ∗

with probability π0 and φ(ẑ) = φ2 > φ∗ with probability π2; (iii) perfect coordination equilib-

rium where φ(ẑ) = φ0 < φ∗ with probability π0 ∈ (0, 1) and φ(ẑ) = φ2 > φ∗ with probability

π2 ∈ (0, 1).

Both in a partial coordination equilibrium and in a perfect coordination equilibrium,

the labor market features aggregate uncertainty, even though there is no uncertainty about

technology, preferences, policy or any other fundamental of the economy. The cause of ag-

gregate uncertainty is instead a strategic complementarity in the firing decision of different

firms. Specifically, if other firms are more likely to fire their workers in some states of the

world, then an individual firm finds it optimal to concentrate the probability with which it

fires its non-performing workers exactly in those states of the world. This is because, in the

states of the world where other firms are more likely to fire their workers, the unemployment

rate is higher, the value to a worker of being unemployed is lower and, hence, the cost to

a worker of losing his job is higher. The strategic complementarity in the firing decision of

different firms opens the door to coordination, which materializes– in the form of aggregate

uncertainty– in both the partial coordination and the perfect coordination equilibria. How-

ever, the strategic complementarity in the firing decision of different firms is not suffi cient

to generate aggregate uncertainty, as exemplified by the no coordination equilibrium.

The emergence of aggregate uncertainty in the absence of any fundamental uncertainty

is just an extreme illustration of the amplification power of the strategic complementarity in

the firing decisions of different firms. Indeed, in an environment with aggregate fundamental

uncertainty, firms could use fundamental fluctuations, rather than sunspots, as a coordina-

tion device. Imagine, for instance, an environment in which aggregate labor productivity is
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uncertain. In such an environment, an individual firm would find it optimal to concentrate

the probability of firing its non-performing workers in the states of the world where the

realization of labor productivity is lowest, as those are the states of the world where the

unemployment rate is highest and the cost to the worker from losing a job is highest. As

this is true for each firm, arbitrarily small variations in the realized labor productivity would

lead to large changes in firing rates and unemployment. In the language of Cass and Shell

(1983), the strategic complementarity would manifest itself as a mechanism of amplification

of intrinsic uncertainty, rather than as a source of extrinsic uncertainty.

We now briefly turn to the issue of equilibrium selection. Consider the no-coordination

equilibrium. The equilibrium is such that the distribution of the worker’s relative gains from

trade, φ(ẑ), is degenerate at φ∗, the value for which firms are indifferent between firing their

non-performing workers with any probability between zero and one. Yet, the equilibrium

requires firms to break the indifference in a particular way, i.e. by choosing, for any realization

of the sunspot ẑ, the firing probability s∗1 that makes the worker’s relative gains from trade

equal to φ∗. This observation suggests that the no-coordination equilibrium is fragile to

small perturbations of the environment. Imagine, for example, adding to the unemployment

benefit b a random component drawn from an atomless distribution with an arbitrarily small

support. In this case, even if all the firms were to fire workers with the prescribed probability

s∗1, the distribution of the worker’s relative gains from trade, φ(ẑ), would not be degenerate.

Consequently, in all states of the world in which φ(ẑ) < φ∗, an individual firm would want to

fire the worker with probability zero rather than s∗1. In all the other states of the world, those

in which φ(ẑ) > φ∗, an individual firm would want to fire the worker with probability one

rather than s∗1. The no-coordination equilibrium would cease to exist. The same is true for

a partial coordination equilibrium. In contrast, a perfect coordination equilibrium is robust

to small perturbations of the environment. This is because, for every realization of ẑ, the

firm has a strict preference for the firing probability it chooses in equilibrium.

Based on the above argument, it is natural to restrict attention to the perfect coordination

equilibrium. In this type of equilibrium, there is a measure πG = π0 of realizations of the

sunspot for which firms fire their non-performing workers with probability zero and a measure

πB = π2 of realizations of the sunspot for which firms fire their non-performing workers with

probability one, where G and B are mnemonic for Good and Bad. That is, the equilibrium

looks like an equilibrium in which there is a sunspot z′ that can only take two values, G and

B. Moreover, the probability of the two different realization of the sunspot z′ is endogenously

determined by the worker’s incentive compatibility constraint, and it is given by (26).
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5 Perfect Coordination Equilibrium

In this section, we prove the existence of a perfect coordination equilibrium. The gist of

the proof is showing that a perfect coordination equilibrium is the fixed point of a mapping

that satisfies the conditions of Schauder’s theorem. In the process of proving the existence

of the equilibrium, we will characterize several features of the equilibrium objects, i.e. the

properties of the law of motion for unemployment, the wage, and the worker’s and firm’s

gains from trade.

5.1 Preliminaries

Consider the function ω(u, i) = (i − 1)V +(u) + iJ+(u), with u ∈ [0, 1] and i ∈ {0, 1}. The
function V +(u) denotes the worker’s expected gains from employment at the end of the

production stage given that the unemployment rate is u. We refer to V +(u) as the worker’s

continuation gains from trade. Similarly, the function J+(u) denotes the firm’s expected

gains from employment at the end of the production stage given that the unemployment

rate is u. We refer to J+(u) as the firm’s continuation gains from trade. With a slight abuse

of notation we will sometime describe the function ω as (V +, J+).

Let Ω denote the set of bounded and continuous functions ω : [0, 1] × {0, 1} → R such
that: (i) for all u0, u1 ∈ [0, 1] with u0 < u1, the difference V +(u1)− V +(u0) is greater than

DV+(u1 − u0) and smaller than DV+(u1 − u0); (ii) for all u0, u1 ∈ [0, 1] with u0 < u1, the

difference J+(u1)− J+(u0) is greater than DJ+(u1 − u0) and smaller than DJ+(u1 − u0). In
other words, Ω is the set of bounded continuous functions ω = (V +, J+) such that V + and

J+ have bounded “derivatives.”The bounds on the derivatives are given numbers such that

DV+ > DV+ > 0, DJ+ > 0 ≥ DJ+ , and DV+ > υ′(DJ+ − DJ+). Following Lemma A.1 in

Menzio and Shi (2010), it is straightforward to verify that Ω is a non-empty, bounded, closed

and convex subset of the space of bounded continuous functions on [0, 1] × {0, 1} with the
sup norm.

In the remainder of this section, we show that the conditions for a perfect coordination

equilibrium implicitly define an operator T that takes an arbitrary pair of continuation

gains from trade ω = (V +, J+) in Ω and returns an updated pair of continuation value

functions Tω = (V +′, J+′) in Ω. Then we show that the operator T satisfies the conditions

for Schauder’s fixed point theorem and, hence, there exists an ω∗ = (V +∗, J+∗) such that

Tω∗ = ω∗. Finally, we show that the equilibrium objects associated with the fixed point

ω∗ constitute a perfect coordination equilibrium. Throughout the analysis, we use a few
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additional pieces of notation. In particular, we use V , V , J and J to denote lower and

upper bounds on the worker’s and firm’s gains from trade constructed as in (31). Also, we

use µu and µu to denote the minimum and the maximum of the (absolute value) of the

partial derivative of the job-finding probability µ(J, u) with respect to i = u. That is, µu
denotes min |∂µ(J, u)/∂u| for (J, u) ∈ [J, J ] × [0, 1], and µu denotes max |∂µ(J, u)/∂u| for
(J, u) ∈ [J, J ]× [0, 1]. Similarly, we use µJ and µJ to denote the minimum and the maximum

on the (absolute value) of the partial derivative of µ(J, u) with respect to J .

5.2 Wage

Take an arbitrary pair of value functions ω = (V +, J+) in Ω. Then, for any unemployment

rate u, the equilibrium wage function w(u) takes a value w such that

υ(w)− υ(b)− c+ V +(u) = υ′(w)
[
E[y|e = 1]− w + J+(u)

]
. (27)

For any unemployment rate u, there is a unique wage that satisfies (27). In fact, the right-

hand side of (27) is strictly increasing in w, as the worker’s gains from trade υ(w)− υ(b)−
c + V +(u) are strictly increasing in w. The left-hand side of (27) strictly decreasing in

w, as the worker’s marginal utility of consumption υ′(w) and the firm’s gains from trade

E[y|e = 1] − w + J+(u) are both strictly decreasing in w. Therefore, there exists a unique

wage w that solves (27) for any unemployment rate u.

The next lemma proves that the equilibrium wage function w(u) is strictly decreasing

in the unemployment rate u. There is a simple explanation behind this result. Given the

bounds on the derivatives of the value functions V+ and J+, an increase in the unemployment

rate leads to a larger increase in the worker’s gains from trade (the left-hand side of (27))

than in the product of the firm’s gains from trade and the worker’s marginal utility (the

right-hand side of (27)) for any fixed wage w. Therefore, an increase in the unemployment

rate requires the equilibrium wage to fall in order to satisfy equation (27). The next lemma

also establishes that the “derivative”of the wage function is bounded.

Lemma 5: For all u0, u1 ∈ [0, 1] with u0 < u1, the wage function w(u) is such that

Dw(u1 − u0) ≤ w(u0)− w(u1) ≤ Dw(u1 − u0), (28)

where the bounds Dw and Dw are defined as

Dw =
DV+/υ

′ −DJ+

2 + Jυ′′/υ′
, Dw = DV+/υ

′ −DJ+. (29)
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Proof : In Appendix A.

The next lemma proves that the equilibrium wage function w is continuous with respect to

the value functions V + and J+. Specifically, consider two pairs of value functions ω0 = (V +
0 ,

J+0 ) and ω1 = (V +
1 , J

+
1 ) with ω0, ω1 in Ω. Denote as w0 the wage function computed using

ω0 in (27). Similarly, denote as w1 the wage function computed using ω1 in (27). Then, if

the distance between ω0 and ω1 goes to zero, so does the distance between w0 and w1.

Lemma 6: For any κ > 0 and any ω0, ω1 in Ω such that ||ω0- ω1|| < κ, we have

||w0 − w1|| < αwκ, αw = 1 + 1/υ′. (30)

Proof : In Appendix A.

5.3 Gains from trade to worker and firm

Given the value functions V + and J+ and the equilibrium wage function w computed using

(27), the equilibrium gains from trade accruing to the firm and to the worker, J and V , are

respectively given by
J(u) = E[y|e = 1]− w(u) + J+(u),

V (u) = υ(w(u))− υ(b)− c+ V +(u)
(31)

The next lemma proves that the equilibrium gains from trade accruing to the firm are

strictly increasing in the unemployment rate. This finding is intuitive. An increase in the

unemployment rate leads to a larger decline in the equilibrium wage w(u) than in the firm’s

continuation gains from trade J+(u). Similarly, the lemma proves that the equilibrium gains

from trade accruing to the worker are strictly increasing in the unemployment rate. This

finding is also intuitive. An increase in the unemployment rate increases the equilibrium gains

from trade accruing to the firm and lowers the equilibrium wage. Since the equilibrium gains

from trade accruing to the worker are proportional to the product between the worker’s

marginal utility and the firm’s gains from trade, the result follows. Finally, the lemma

establishes that the equilibrium gains from trade accruing to the firm and the worker have

bounded derivatives.

Lemma 7: For all u0, u1 ∈ [0, 1] with u0 < u1, the equilibrium gains from trade accruing to

the firm, J(u), and to the worker, V (u), are such that

DJ(u1 − u0) ≤ J(u1)− J(u0) ≤ DJ(u1 − u0),
DV (u1 − u0) ≤ V (u1)− V (u0) ≤ DV (u1 − u0),

(32)
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where the bounds are defined as

DJ = Dw +DJ+ > 0, DJ = Dw +DJ+ ,

DV = υ′(Dw +DJ+) > 0, DV = υ′(Dw +DJ+) + υ′′DwJ.
(33)

Proof : In Appendix B.

The next lemma proves that the firm’s and worker’s gains from trade are continuous with

respect to the choice of the functions V + and J+. Specifically, consider two pairs of value

functions ω0 = (V +
0 , J

+
0 ) and ω1 = (V +

1 , J
+
1 ) with ω0, ω1 in Ω. Denote as w0 the equilibrium

wage computed using ω0, and as J0 and V0 the equilibrium gains from trade computed using

ω0 and w0 in (31). Similarly, denote as w1 the equilibrium wage computed using ω1, and

as J1 and V1 the equilibrium gains from trade computed using ω1 and w1 in (31). Then, if

the distance between ω0 and ω1 goes to zero, so does the distance between J0 and J1 and

between V0 and V1.

Lemma 8: For any κ > 0 and any ω0, ω1 in Ω such that ||ω0- ω1|| < κ, we have

||J0 − J1|| < αJκ, αJ = 1 + αw,

||V0 − V1|| < αV κ, αV = 1 + υ′αw.
. (34)

Proof : In Appendix B.

5.4 Law of motion for unemployment

Given the value functions V + and J+, the equilibrium wage function, w, is given by (27)

and the equilibrium gains from trade accruing to the firm, J , are given by (31). Given

J , the equilibrium law of motion for unemployment, g(u, ẑ′), is such that– for any current

unemployment u and any realization of the sunspot ẑ′– next period’s unemployment takes

on a value û such that

û = u− uµ(J(û), u) + (1− u)[δ + (1− δ)p`(1)s(y`, ẑ
′)], (35)

Since we are looking for a perfect coordination equilibrium, the firing probability s(y`, ẑ′)

equals zero if ẑ′ = G and one if ẑ′ = B.

Next period’s unemployment is uniquely determined by (35). In fact, the left-hand side

of (35) equals zero for û = 0, it is strictly increasing in û and it equals one for û = 1. The

right-hand side of (35) is strictly positive for û = 0 and it is strictly decreasing in û, as the
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worker’s job finding probability µ is strictly increasing in the firm’s gains from trade J , and

J is strictly increasing in û. Therefore, there exists one and only one û that satisfies (35).

Next period’s unemployment is strictly increasing in the current unemployment u. In

fact, the left-hand side of (35) is independent of u. The right-hand side of (35) is strictly

increasing in u, as its derivative with respect to u is greater than (1 − δ)ph(1) − µ, which
we assume to be strictly positive. Therefore, the û that solves (35) is strictly increasing in

u. Moreover, next period’s unemployment is strictly higher if the realization of the sunspot

ẑ′ is B rather than G and, more generally, strictly increasing in the probability with which

firms fire non-performing workers. To see this, it is suffi cient to notice that the left-hand

side of (35) is independent of the firing probability, while the right hand side is strictly

increasing in it. The properties of the equilibrium law of motion for unemployment, g(u, ẑ′),

are illustrated in Figure 3.

The next lemma proves that the equilibrium law of motion for unemployment g(u, ẑ′) is

continuous in u and that its derivative is bounded.

Lemma 9: For all u0, u1 ∈ [0, 1] with u0 < u1, the equilibrium law of motion for unemploy-

ment g(u, ẑ′) is such that

Dg(u1 − u0) < g(u1, ẑ
′)− g(u0, ẑ

′) ≤ Dg(u1 − u0), (36)

where the bounds Dg and Dg are defined as

Dg = 0, Dg = 1− δ + µu. (37)

Proof : In Appendix C.

Next, we prove that the equilibrium law of motion for unemployment, g(u, ẑ′), is continu-

ous with respect to V + and J+. Formally, we consider two pairs of value functions ω0 = (V +
0 ,

J+0 ) and ω1 = (V +
1 , J

+
1 ) with ω0, ω1 in Ω. We denote as J0 the firm’s equilibrium gains from

trade computed using ω0 in (31), and as g0 the equilibrium law of motion for unemployment

computed using J0 in (35). Similarly, we denote as J1 the firm’s equilibrium gains from

trade computed using ω1 in (31), and as g1 the equilibrium law of motion for unemployment

computed using J1 in (35). Then, we show that, if the distance between ω0 and ω1 goes to

zero, so does the distance between g0 and g1.

Lemma 10: For any κ > 0 and any ω0, ω1 in Ω such that ||ω0- ω1|| < κ, we have

||g0 − g1|| < αgκ, αg = µJαJ . (38)

Proof : In Appendix C.
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5.5 Updated value functions

Given the value functions V + and J+, the equilibrium wage function, w, is given by (27).

The equilibrium gains from trade accruing to the firm and to the worker, J and V , are given

by (31). The equilibrium law of motion for unemployment, g, is given by (35). In turn, given

J , V and g, we can construct an update, V +′, for the continuation gains from trade accruing

to the worker as

V +′(u) = βEẑ′ {[(1− δ)(1− p`(1)s(y`, ẑ
′))− µ(J(g(u, ẑ′)), u)]V (g(u, ẑ′))} (39)

We can also construct an update, J+′, for the ex-wage gains from trade accruing to the firm

as

J+′(u) = βEẑ′ [(1− δ)(1− p`(1)s(y`, ẑ
′))J(g(u, ẑ′))] (40)

As we are looking for a perfect coordination equilibrium, the firing probabilities s(y`, B)

and s(y`, G) in (39) and (40) are set respectively equal to 1 and 0. Similarly, as we are

looking for a perfect coordination equilibrium, the probability πB that the realization of the

sunspot ẑ′ is B is set equal to

πB =
c

β(ph(1)− ph(0))(1− δ)V (g(u,B))
. (41)

Notice that the probability that the realization of the sunspot is B is endogenous as it needs

to satisfy the worker’s incentive compatibility constraint. In particular, the higher is the

current unemployment rate u, the higher is next period’s unemployment rate g(u,B), the

higher are next period’s gains from trade accruing to the worker V (g(u,B)) and, ultimately,

the lower is the probability that the realization of the sunspot is B.

In the next lemma, we prove that the update of worker’s continuation value, V +′, is

strictly increasing in the unemployment rate. This finding is intuitive. An increase in the

unemployment rate causes congestion in the labor market and, for this reason, leads to a

decline in the worker’s job finding rate and in the worker’s value of unemployment. In turn,

the decline in the worker’s value of unemployment tends to increase the worker’s gains from

trade (which is only partly mitigated by a decline in the equilibrium wage).

Lemma 11: For all u0, u1 ∈ [0, 1] with u0 < u1, the updated continuation gains from trade

to the worker, V +′, and the firm, J+′, are such that

D′V+(u1 − u0) < V +′(u1)− V +′(u0) ≤ D
′
V+(u1 − u0),

D′J+(u1 − u0) < J+′(u1)− J+′(u0) ≤ D
′
J+(u1 − u0).

(42)
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where the bounds D′V+ and D
′
V+ are defined as

D′V+ = βV (µ
u
− µJDJDg)−

2cDVDgV

(ph(1)− ph(0))(1− δ)V 2 ,

D
′
V+ = β

[
V µu + (1− δ)DVDg

]
,

(43)

and the bounds D′J+ and D
′
J+ are defined as

D′J+ = − 2cDVDgJ

(ph(1)− ph(0))(1− δ)V 2 ,

D
′
J+ = β(1− δ)DJDg

(44)

Proof : In Appendix D.

The next lemma shows that, under some parametric conditions, there exists a fixed point

for the derivatives of the continuation gains from trade, i.e. DV+, DV+, DJ+, DJ+ such

that D′V+ = DV+, D
′
V+ = DV+, D′J+ = DJ+, and D

′
J+ = DJ+, such that the conditions

DV+ > DV+ > 0, DJ+ > 0 ≥ DJ+ andDV+ > υ′(DJ+−DJ+) are satisfied. The key parametric

condition requires the negative effect of unemployment on the job-finding probability to be

suffi ciently strong compared to the positive effect of the firm’s gains from trade on the job-

finding probability. Intuitively, the condition guraantees that the next period’s job-finding

rate is decreasing in the current period’s unemployment rate. In turn, when the discount

factor β and the disutility of effort c are small enough, this guarantees that the derivative

of the worker’s continuation gains from trade is positive and suffi ciently larger than the

derivative of the firm’s continuation gains from trade.

Lemma 12: Assume µu − µJ(1 − δ + µu) > 0. Then there exist β∗ > 0 and c∗ > 0 such

that, if β ∈ (0, β∗) and c ∈ (0, c∗), there are bounds DV+, DV+, DJ+, DJ+ such that:

(i) D′V+ = DV+, D
′
V+ = DV+, D′J+ = DJ+, and D

′
J+ = DJ+; (ii) DV+ > DV+ > 0,

DJ+ > 0 ≥ DJ+ and DV+ > υ′(DJ+ −DJ+).

Proof : In Appendix D.

In the last lemma, we prove that the updated continuation value functions, V +′ and J+′,

are continuous with respect to the original value functions V + and J+. Specifically, consider

two arbitrary functions ω0 = (V +
0 , J

+
0 ) and ω1 = (V +

1 , J
+
1 ) with ω0, ω1 in Ω. Denote as V +′

0

and J+′0 the continuation value functions computed using V +
0 , J

+
0 and g0 in (39) and (40).

Similarly, denote as V +′
1 and J+′1 the continuation value functions computed using V +

1 , J
+
1

and g1 in (39) and (40). Then, if the distance between ω0 and ω1 goes to zero, so does the

distance between V +
0 and V +

1 and between J+0 and J
+
1 .
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Lemma 13: For any κ > 0 and any ω0, ω1 in Ω such that ||ω0- ω1|| < κ, we have ||V +′
0 −

V +′
1 || < αV ′+κ and ||J

+′
0 − J+′1 || < αJ ′+κ, where

αV ′+ =

[
2cV

(ph(1)− ph(0))(1− δ)V 2 + 1

] (
αV +DV αg

)
+ V µJ

(
αJ +DJαg

)
,

αJ ′+ =
2cJ

(
αV +DV αg

)
(ph(1)− ph(0))(1− δ)V 2 +

(
αJ +DJαg

)
.

(45)

Proof : In Appendix D.

5.6 Existence

In the previous subsections, we have taken a pair of continuation gains from trade V + and

J+ and, using the conditions for a perfect coordination equilibrium, we have constructed an

updated pair of continuation gains from trade V +′ and J+′. We denote as T the operator

that takes ω(u, i) = (1− i)V +(u) + iJ+(u) and returns ω′(u, i) = (1− i)V +′(u) + iJ+′(u).

The operator T has three key properties. First, the operator T maps functions that

belong to the set Ω into functions that also belong to the set Ω. In fact, for any ω =

(V +, J+) ∈ Ω, ω′ = (V +′, J+′) is bounded and continuous and, as established in Lemma

12, it is such that: (i) for all u0, u1 ∈ [0, 1] with u0 < u1, the difference V +′(u1) − V +′(u0)

is greater than DV+(u1 − u0) and smaller than DV+(u1 − u0); (ii) for all u0, u1 ∈ [0, 1]

with u0 < u1, the difference J+′(u1) − J+′(u0) is greater than DJ+(u1 − u0) and smaller

than DJ+(u1 − u0). Second, the operator T is continuous, as established in Lemma 13.

Third, the family of functions T (Ω) is equicontinuous. To see that this is the case, let

||.||E denote the standard norm on the Euclidean space [0, 1] × {0, 1}. For any ε > 0, let

κε = min{(max{DV+, DJ+, |DJ+|})−1, 1}. Then, for all (u0, i0), (u1, i1) ∈ [0, 1]×{0, 1} such
that ||(u0, i0)− (u1, i1)||E < κε, we have

|(Tω)(u0, i0)− (Tω)(u1, i1)| < ε, for all ω ∈ Ω. (46)

Since T : Ω −→ Ω, T is continuous and T (Ω) is equicontinuous, the operator T satisfies

the conditions of Schauder’s fixed point theorem (see Theorem 17.4 in Stokey, Lucas and

Prescott 1989). Therefore there exists a ω∗ = (V +∗, J+∗) ∈ Ω such that Tω∗ = ω∗.

Now, we compute the equilibrium wage function w∗ using V +∗ and J+∗ in (27). We

compute the equilibrium gains from trade V ∗ and J∗ using w∗, V +∗ and J+∗ in (31). We

compute the equilibrium law of motion for unemployment g∗ using J∗ in (35). Finally, we
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construct the equilibrium employment contract x∗(u) as the effort e∗ = 1, the wage function

w∗ and the firing probabilities s∗(yh, ẑ′) = 0, s∗(y`, G) = 0 and s∗(yh, B) = 1.

The tuple (V ∗, J∗, x∗, g∗) constitute an equilibrium. Indeed, if we substitute (39) and (40)

into (31), we find that the gains from trade accruing to the worker, V ∗, and to the firm, J∗,

satisfy condition (i) in the definition of equilibrium. The law of motion for unemployment,

g∗, satisfies condition (iii) in the definition of equilibrium. The employment contract, x∗,

prescribes a wage w∗ that satisfies (16). It prescribes a firing probability s∗(yh, ẑ′) that

satisfies (12). It prescribes a firing probability s∗(y`, ẑ′) that satisfies (13). To see why this is

the case, notice that the gains from trade accruing to the worker relative to those accruing

to the firm are such that υ′(w∗(g∗(u,B))) > υ′(w∗(g∗(u,G))) since the wage function w∗ is

strictly decreasing in unemployment and g∗(u,B) is strictly greater than g∗(u,G). Moreover,

the probability that the realization of the sunspot is B is such that the worker’s incentive

compatibility constraint holds with equality. Therefore, by Theorem 1, the employment

contract x∗ is optimal and satisfies condition (ii) in the definition of equilibrium. Moreover,

the tuple (V ∗, J∗, x∗, g∗) is a perfect coordination equilibrium by construction.

We have established the following result.

Theorem 3: (Existence) Assume µu−µJ(1−δ+µu) > 0. A perfect coordination equilibrium

exists for all (β, c) such that β ∈ (0, β∗) and c ∈ (0, c∗).

Two comments about Theorem 3 are in order. First, notice that, although the parametric

conditions in Theorem 3 are suffi cient for the existence of a perfect coordination equilibrium,

they are not necessary. Indeed, the version of the model that we calibrate in the next

section does not always meet these conditions and, yet, it does admit a perfect coordination

equilibrium. Second, notice that Theorem 3 does not rule out the existence of equilibria

that do not feature perfect coordination in the firing decision of different firms. Indeed, it is

easy to show that under the same conditions as in Theorem 3, there exists a no coordination

equilibrium. However, as we argued in Section 4, this type of equilibrium is not robust to

the introduction of small shocks to fundamentals.

6 Quantitative Analysis

In this section, we calibrate the model and then use it to measure the magnitude of labor

market fluctuations that can be generated by the firms’ incentive to coordinate on firing

non-performing workers at the same time. We refer to these fluctuations as Agency Business
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Cycles. We calibrate the model using US data on the UE, EU and unemployment rates and

using, as in identifying assumption, that all of the observed volatility in the EU rate is due

to the mechanism highlighted in our theory. First, we find that Agency Business Cycles can

account for a substantial fraction of the empirical fluctuations in the labor market, and it

can do so without relying on any exogenous shocks to fundamentals such as productivity,

unemployment benefits or preferences. Second, we find that Agency Business Cycles generate

the same pattern of leads and lags between unemployment, UE and EU rates as in the data.

Third, we find that Agency Business Cycles generate the same asymmetries in the velocity

at which unemployment rises in recessions and declines in expansions as in the data. Finally,

we provide some preliminary evidence suggesting that the difference between the value of

employment and the value of unemployment is higher in recessions than in recoveries, in

accordance with our theory of recessions and in contrast with the Real Business Cycle view.

6.1 Calibration

The parameters of the model are the following. Preferences are described by the worker’s

periodical utility function, υ(w) − ce, and by the discount factor, β. Market production is
described by the output distribution, yh and y`, by the probability that the output is high

given that the worker exerts effort, ph(1), by the probability that the output is high given that

the worker does not exert effort, ph(0), and by the exogenous match destruction probability

δ. Home production is described by the output of an unemployed worker, b. The search and

matching technology is described by the vacancy cost, k, and the matching function,M(u, v).

We specialize the utility function to be of the form υ(w) − ce = w1−γ/(1 − γ) − ce, where
γ is the coeffi cient of relative risk aversion. We also specialize the matching function to be

of the form M(u, v) = A(u)m(u, v), where m(u, v) = uv(uψ + vψ)−1/ψ is a constant returns

to scale matching function with constant elasticity of substitution ψ between unemployment

and vacancies, and A(u) = exp(−ρu) is a matching effi ciency term with a semi-elasticity

with respect to unemployment of negative ρ.

We calibrate the parameters of the model to match features of the US labor market be-

tween 1951 and 2014. We measure the unemployment rate as the CPS civilian unemployment

rate. We measure the monthly rate at which unemployed workers become employed (hence-

forth, the UE rate) and the monthly rate at which employed workers become unemployed

(henceforth, the EU rate) using the unemployment rate and the short-term unemployment

rate from the CPS, following the methodology outlined in Shimer (2005). We measure labor

productivity as output per worker in the non-farm sector. We detrend the unemployment,
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UE and EU rates, and labor productivity using an HP filter with a smoothing parameter of

105.

We choose the model period to be one month. We set the discount factor, β, so that

the annual real interest rate, (1/β)1/12 − 1, is equal 5 percent. We choose the vacancy cost,

k, and the exogenous job destruction rate, δ, so that the model matches the average of the

monthly UE rate and of the monthly EU rate that we observe in the data (respectively, 44%

and 2.6%). We normalize the expected value of market production, ph(1)yh + (1− ph(1))y`,

to be equal to 1. We choose the value of home production, b, to be 70% of the expected value

of market production, as suggested by Hall and Milgrom (2010). We choose the disutility of

effort, c, so that the model generates the same standard deviation in the time series of log EU

rate as in the data (9.85%). In this sense, as discussed above, we calibrate the model under

the identifying assumption that all of the fluctuations in the EU rate are caused by the burst

of coordinated firings generated by our model. We choose the probability ph(1) that output

is high if the worker exerts effort so that, on average, a coordinated firing episode occurs

once every 50 months. Given the normalization of expected output to 1, the distribution

of output yh and y` does not affect the equilibrium conditions. Similarly, notice that the

probability, ph(0), that output is high if the worker does not exerts effort only enters the

equilibrium conditions through the ratio c/(ph(1)−ph(0)). Therefore, we only need to choose

values for yh − y` and ph(1) − ph(0) such that the optimal employment contract prescribes

effort.

In our baseline calibration, we set the coeffi cient of relative risk aversion, γ, in the utility

function to be equal to 1. This is a rather standard value from micro estimates of risk

aversion. We set the elasticity of substitution, ψ, between unemployment and vacancy in

the matching function to be equal to 1.24. This is the value of the elasticity of substitution

estimated by Menzio and Shi (2011) using a model that takes into account for search both

off and on the job. We tentatively set the semi-elasticity, ρ, of the matching effi ciency with

respect to unemployment to be equal to 6. As we shall see, this value implies a relationship

between the UE rate and the unemployment rate that is very close to the one observed in

the data. In the following pages, we will consider alternative values for these parameters.

6.2 Simulation

The calibrated value of the parameters are reported in Table 1. Given these parameter values,

we simulate the model and compute standard business cycle statistics, which are reported and

compared to their empirical counterparts in Table 2. The table shows that agency business
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cycles– i.e. the cycles created by the firms’incentive to coordinate on firing non-performing

workers– can account for more than 50% of the overall volatility of the unemployment rate,

for 40% of the overall volatility of the UE rate and, by assumption, for all of the volatility

of the EU rate. Moreover, the agency business cycles create large fluctuations in the labor

market without requiring any exogenous fluctuations in any fundamentals such as technology,

preferences and policy.

Table 1: Calibrated Parameters

Description Value
β discount factor .9967
γ worker’s relative risk aversion 1.000
yh high output 1.03
y` low output .000

ph(1) probability of yh given e = 1 .967
ph(0) probability of yh given e = 0 .467
b UI benefit/value of leisure .700
c disutility of effort .007
δ exogenous job destruction .025
k vacancy cost .257
ψ elasticity of sub. btw u and v 1.24
ρ semi-elasticity of A wrt u 6.00

Agency business cycles are a potential explanation for two puzzling features of labor

markets. First, they can explain why unemployment fluctuates so much in the face of

relatively small movements in labor productivity (see, e.g., Shimer 2005). Second, they

can explain why the correlation between unemployment fluctuations and labor productivity

fluctuations is low, a phenomenon that has become particularly stark since 1984 (see, e.g.,

Gali and van Rens 2014). Our theory suggests that the firms’desire to coordinate on firing

non-performing workers may be a major source of labor market fluctuations which does not

require any contemporaneous shocks to productivity.
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Table 2: Agency Business Cycle

u rate UE rate EU rate APL
Model std 9.34 4.09 9.11 0

cor. wrt u 1 -.98 .32 -
Data: 1951-2014 std 16.9 12.9 9.7 1.98

cor wrt u 1 -.94 .80 -.37
Data: 1984-2014 std 17.3 13.8 6.91 1.38

cor wrt u 1 -.96 .70 .09

The literature has advanced several explanations for the high volatility of unemployment

(see, e.g., Menzio 2005, Hall 2005, Kennan 2010, Hagedorn and Manovskii 2008, Menzio and

Shi 2011) and for the low correlation between unemployment and labor productivity (see,

e.g., Kaplan and Menzio 2014, Gali and van Rens 2014). In order to distinguish our theory

from others, it is useful to examine in greater detail the pattern of labor market fluctuations

generated by our model. Indeed, the agency business cycle follows a rather distinctive

pattern. A recession starts with a spike in the EU rate, which leads to a rapid increase

in the unemployment rate. In turn, the increase in the unemployment rate decreases the

effi ciency of matching in the labor market and, hence, depresses the UE rate. This pattern

can be seen in Figure 1, which displays the correlation between unemployment in quarter

t and the UE rate in quarter t + i, for i between −8 and +8, as well as the correlation

between unemployment in quarter t and the EU rate in quarter t + i. The EU rate leads

the unemployment rate, in the sense that the peak correlation is between unemployment in

quarter t and the EU rate in quarter t − 1. In contrast, the UE rate is coincidental with

the unemployment rate, in the sense that the peak correlation is between unemployment in

quarter t and the UE rate in the same quarter.

The structure of leads and lags generated by the agency business cycle is very similar to

the one found in the data and reported in Figure 2. In the data as in the model, the EU

rate leads the unemployment rate by a quarter, while fluctuations in the UE rate have the

same timing as fluctuations in the EU rate. Moreover, in the data as in the model, the EU

rate is correlated with the current unemployment rate further in the past than it is in the

future. That is, the past EU rate is more strongly correlated with current unemployment

than the future EU rate. In contrast, the correlation between the past UE rate and current

unemployment is equally strong as the correlation between the future UE rate and current

unemployment. While these features of the data had been already identified by Fujita

and Ramey (2010), here we provide an economic theory that rationalizes them. The main
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Figure 3: Cross Correlations: Model
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shortcoming of our model is that– with i.i.d. sunspots– we generate less persistence in the

unemployment, UE and EU rates, as can be seen from the sharper drop of the correlations

to the left and right of center.

The mechanics of the agency business cycle imply differences in the velocity at which

unemployment increases in recessions and at which it declines in recoveries. Intuitively,

unemployment increases quickly in recessions as it is driven by the spurt of firings, while

it declines slowly in recoveries as it is bogged down by the congestion created by the large

number of unemployed workers. The asymmetry is clearly visible in the top-left panel of

Figure 3, which plots a few years of unemployment, UE and EU rates generated by the

model. The same asymmetry can be found in the data. The top-right panel of Figure 3

plots the change in the unemployment rate between quarter t and quarter t+ 1 as a function

of the unemployment rate in quarter t when unemployment is increasing (black line) and

decreasing (red line). The unemployment rate moves significantly faster when it is on the

rise than when it is falling.

Our theory also predicts that the EU rate should be higher in recessions, defined as

times when the unemployment rate rises, than in recoveries, defined as times when the

unemployment rate falls. In contrast, our theory predicts no systematic differences in the

UE rate during recessions and recoveries. These features of the model are illustrated in the

bottom panels of Figure 3 and compared with the data. One can clearly see that, in the
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Figure 4: Cross Correlations: Data
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Figure 5: Asymmetries in u, UE and EU rates
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data as in the model, the EU rate is systematically higher in recessions than in recoveries,

while the UE rate is nearly identical in the two phases of the cycle.

Finally, our theory predicts that the likelihood and magnitude of recessions should depend

on the current unemployment rate. In particular, the lower is the unemployment rate,

the higher is the probability that firms coordinate on firing non-performing workers and

the higher is the increase in the unemployment rate following a firing episode. The first

predictions follows immediately from the fact that– when unemployment is lower– the cost

to the worker of losing a job is relatively low and the probability that firms fire the non-

performing workers must be higher. The second prediction follows from the fact that– when

unemployment is lower– the number of employed workers that loses their job in case of

a firing episode is larger. The data seems to support both of predictions of the theory.

Indeed, given that the unemployment rate is falling between quarters t − 1 and t, there is

a negative correlation (−.10%) between the unemployment rate in t and the probability of

observing a turning point in t+ 1– i.e., a point where unemployment turns from decreasing

to increasing. Also, conditional on observing a turning point in unemployment in quarter t,

there is a negative correlation between the unemployment rate in a quarter t and the increase

in unemployment between quarter t and next quarter (−20%), next semester (i.e., −14%)

and next year (i.e., −27%).

6.3 Value of a Job

Some of the empirical predictions presented in the previous subsection need not be unique to

our model. For instance, the textbook model by Mortensen and Pissarides (1994, henceforth

MP94) predicts that, in response to a persistent, negative shock to aggregate productivity, all

of the marginal firm-worker matches will be destroyed and firms will create fewer vacancies

per unemployed worker. Hence, also MP94 predicts that we should observe recessions starting

with an increase in the EU rate followed by a decline in the UE rate. Unlike our theory,

though, MP94 implies a perfect correlation between unemployment and labor productivity

that is not found in the data. However, there is a much more profound distinction between

the prediction of our theory and those in MP94 and all models of Real Business Cycles.

If recessions are caused by lower productivity, then recessions should be times when the

unemployment rate is high because the gain from finding a job (as well as the cost of losing a

job) is relatively low. In contrast, according to our Agency Business Cycle theory, recessions

are times when unemployment is high because the cost of losing a job (as well as the value

of finding a job) is relatively high.
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Measuring the difference between the value of employment and the value of unemployment

in the data is clearly a diffi cult task. However, it is a task that at least is worth attempting.

In what follows, we use the empirical time-series of the UE rate, the empirical time-series

of the EU rate and the time-series of wages in order to construct a time-series for the value

of being employed, the value of being unemployed and for the difference between these two

values.

We measure the value of being employed in month t, Wt, as

Wt = wt + β {st+1Ut+1 + (1− st+1)Wt+1} , (47)

where wt is the real wage earned by a worker in month t, st+1 is the EU rate in month t+ 1

andWt+1 and Ut+1 are, respectively, the values of employment and unemployment in quarter

t+ 1. Similarly, we measure the value of being unemployed in month t, Ut, as

Ut = bt + β {ft+1Wt+1 + (1− ft+1)Ut+1} , (48)

where bt is the value of unemployment benefits/leisure for an unemployed worker in month t,

ft+1 is the UE rate in month t+1 andWt+1 and Ut+1 are, as before, the value of employment

and unemployment in month t+ 1.

We measure the wage earned by a worker in month t, wt, using two alternative series

constructed by Haefke, Sonntag and van Rens (2013). The first series is the real wage for

all employed workers (controlling for changes in the observable characteristics of employed

workers). As it is well-know the average wage of employed workers is nearly acyclical. This

may be due to fact that wages in continuing relationships are non-allocative and firms and

workers do not need to adjust them in response to varying labor market conditions. For this

reason, we also consider the average wage of newly hired workers (controlling for changes in

the observable characteristics of new hires). As discussed in Haefke, Sonntag and van Rens

(2013), the average wage of new hires is much more procyclical than the average wage of all

employed workers. When we use the wage of new hires as our measure of wt, it is natural

to assume that the worker is paid the wage at which he was hired throughout the duration

of his employment spell. In order to take low-frequency movements out of the data, we HP

filter the time series for the wage, compute its cyclical component and add it back to the

long-run average value of the wage. We set the value of unemployment benefit/leisure, bt,

as 70% of the long-run average value of the wage. The UE and EU rates, ft and st, are set

by HP filtering the time series for these rates, computing their cyclical components and by

adding these components back to the long-run averages of the UE and EU rates.

38



We assume that the value of employment, WT , and the value of unemployment, UT , in

the last month of observation take the values associated with the long-run averages of w, b,

f and s. Given these continuation values, we can use equations (47) and (48) to compute

the value of employment, Wt, and the value of unemployment, Ut, for all previous months.

Note that these empirical measures of W and U differ from their theoretical counterparts

because they are computed using realizations of future wages, job-finding and job-separation

rates rather than the expectation of these variables.

Figures 4 and 5 illustrate our findings. Using either time-series for the wage (i.e., the

average wage of all employed workers and the average wage of new hires), the difference

between the value of employment and the value of unemployment is countercyclical. When

the unemployment rate is high, the net value of employment is also high and, conversely, when

the unemployment rate is low, the net value of unemployment is also low. The correlation

between the net value of a job and the (detrended) unemployment rate is 81% using average

wages of all employed workers, and 56% using the average wage of new hires. These results

are very robust to different definitions of the value of unemployment benefits/leisure. Indeed,

the results follow from the simple fact that the UE rate is very procyclical, the EU rate very

countercyclical and wages are not suffi ciently procyclical to make the net value of a job go

up in expansions. It is perhaps not surprising that this is the case when we use the average

wage of all employed workers. It is quite surprising that this is also the case when we use

the wage of new hires.

These findings appear to confirm the view of recessions advanced by our theory and cast

some shadows on the typical Real Business Cycle view of recessions. Indeed, recessions do

not seem to be times when the unemployment rate is high because– due to low productivity

of labor– the value of finding a job and the cost of losing a job are relatively low. Recessions

seems to be times when the value of becoming employed and the cost of losing a job are

relatively large. According to our theory this happens because firms find it optimal to

fire non-performing workers exactly when the net value of employment is relatively high.

Fluctuations in the net value of employment may be driven by exogenous motives or, as

pointed out in our theory, they may be the caused by the self-fulfilling expectations of a

firing burst.

The cyclical behavior of layoffs– defined as firm-worker separations initiated by the firm–

and quits– defined as firm-worker separations initiated by the worker– provides further sup-

port for the above calculations. Figure 6 shows the behavior of the quit rate and of the

layoff rate during the last fifteen years. During the Great Recession (December 2007-June
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Figure 6: Value of a Job: Wage of all employees
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Figure 7: Value of a Job: Wage of new hires
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Figure 8: Layoff and Quit Rates
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2009), the quit rate fell by 0.7 percentage points (nearly halving). In contrast, the layoff

rate increased by 0.7 percentage points (nearly doubling). If the Great Recession was a time

when the net value of employment was relatively low, we should have seen the quit rate

increase. Instead, the decline in the quit rate suggests that the Great Recession was a time

when the net value of employment was relatively high. Moreover, the sharp increase in the

layoff rate during the recessions suggests that firms found it optimal to fire workers exactly

when the net value of a job was relatively high.

7 Conclusions

In this paper, we advanced a novel theory of cyclical fluctuations in the labor market. The

theory is based on two key assumptions. First, firms need to fire workers with positive

probability in order to given them an ex-ante incentive to exert effort. Under this assumption,

we showed that, in order to provide this incentive at the lowest cost, firms load up the firing

probability on the states of the world where the worker’s cost of losing a job relative to the

firm’s cost of losing a worker is highest. Second, there are decreasing returns to scale in the

matching process. Under this assumption, we showed that the states of the world where the

worker’s cost of losing a job is highest are the states with highest unemployment and, hence,

an individual firm finds it optimal to fire its non-performing workers exactly at the time

when other firms fire their non-performing workers. The strategic complementarity between
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the optimal solution of the agency problem faced by different firms leads to an equilibrium

in which firms use the realization of a sunspot to coordinate on firing their non-performing

workers at the same time, leading to aggregate fluctuations in the EU, UE and unemployment

rates.

The fluctuations generated by our model are genuinely endogenous, in the sense that they

do not require any exogenous shocks to preferences, technology or policy, nor they require

any exogenous switch in the selection of the equilibrium, and stochastic, in the sense that

the equilibrium features aggregate uncertainty about the firing probability. Quantitatively,

we showed that the fluctuations generated by our model can potentially account for a large

fraction of the volatility in the unemployment rate and in the UE and EU rates that is

observed in the US labor market. Moreover, our model generates fluctuations in labor

market variables that are uncorrelated with labor productivity, just as they have been in

the US for the past 30 years. We also showed that the fluctuations generated by our model

have the same morphology as the labor market fluctuations in the US: the EU rate leads the

unemployment rate, while the UE rate and the unemployment rate are contemporaneous, the

unemployment rate moves faster in recessions than in recoveries, etc. . . Finally, we carried

out some preliminary calculations that seem to support our view that recessions are times

when it is particularly costly to lose a job (or stay unemployed), rather than the standard

view that recessions are times when it is particularly cheap to lose a job (or stay unemployed).

Clearly, the theory of labor market fluctuations advanced in this paper is very stark and

a lot of work remains to be done. On the modelling side, we want to allow for long-term

contracts so that wages and not only firing can be used to provide workers with the incentive

to exert effort. On the empirical side, it would be important to find some data to directly

calibrate the parameters of the agency problem faced by firms and workers, thus dropping

the identifying assumption that all of the volatility in the EU rate observed in the data is

due to the theory of cyclical fluctuations proposed in this paper. Finally, we want to explore

the welfare properties of the equilibrium and, in particular, address the question of whether

the coordination of firms’firings is welfare enhancing or not.
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Appendix

A Proof of Lemma 5 and 6

Proof of Lemma 5: To alleviate notation, let w0 denote w(u0) and w1 denote w(u1). First,

we establish that w0 > w1. To this aim, notice that

υ′(w0) [E[y|e = 1]− w0 + J+(u1)]

≤ υ′(w0)E[y|e = 1]− w0 + J+(u0)] + υ′DJ+(u1 − u0).
(A.1)

Also, notice that

υ(w0)− υ(b)− c+ V +(u1)

≥ υ(w0)− υ(b)− c+ V +(u0) +DV+(u1 − u0)
= υ′(w0)E[y|e = 1]− w0 + J+(u0) +DV+(u1 − u0)
> υ′(w0)E[y|e = 1]− w0 + J+(u0) + υ′DJ+(u1 − u0),

(A.2)

where the third line follows from (27) and the last line follows from DV+ > υ′DJ+. Taken

together (A.1) and (A.2) imply that υ(w0) − υ(b) − c + V +(u1) is strictly greater than

υ′(w0) [E[y|e = 1]− w0 + J+(u1)]. Therefore, the left-hand side of (27) is strictly smaller

than the right-hand side of (27) when evaluated at w = w0 and u = u1. Since the left-hand

of (27) is strictly increasing in w and the left-hand side is strictly decreasing in w, w1 is

strictly smaller than w0.

Next, we derive lower and upper bounds on w0 − w1. From (27), it follows that

υ(w0)− υ(w1) + V +(u0)− V +(u1)

= υ′(w0) [E[y|e = 1]− w0 + J+(u0)]− υ′(w1) [E[y|e = 1]− w0 + J+(u0)]

+ υ′(w1) [E[y|e = 1]− w0 + J+(u0)]− υ′(w1) [E[y|e = 1]− w1 + J+(u1)]

The above equation can be rewritten as

w0 − w1

=

[
V +(u1)− V +(u0)

υ′(w1)

]
− [J+(u1)− J+(u0)]

−
[
υ(w0)− υ(w1)

υ′(w1)

]
−
[
υ′(w1)− υ′(w0)

υ′(w1)
(E[y|e = 1]− w0 + J+(u0))

]
.

(A.3)

The first term in square brackets on the right-hand side of (A.3) is greater than (DV+/υ
′)(u1−

u0) and smaller than (DV+/υ
′)(u1−u0). The second term in square brackets is greater than

DJ+(u1 − u0) and smaller than DJ+(u1 − u0). The third term in square brackets is greater
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than zero and smaller than w1−w0. The last term on the right-hand side of (A.3) is greater
than zero and smaller than υ′′DwJ/υ

′(w1−w0). From the above observations, it follows that

w0 − w1 ≤
[
DV+

υ′
−DJ+

]
(u1 − u0). (A.4)

Similarly, we have

w0 − w1 ≥
[
2 +

υ′′

υ′
DwJ

]−1 [DV+

υ′
−DJ+

]
(u1 − u0). (A.5)

The inequalities (A.4) and (A.5) represent the desired bounds on w0 − w1. �

Proof of Lemma 6: Take an arbitrary u ∈ [0, 1]. To alleviate notation, let w0 denote w0(u)

and w1 denote w1(u). From (27), it follows that

υ(w0)− υ(b)− c+ V +
0 (u)− υ′(w0)

[
E[y|e = 1]− w0 + J+0 (u)

]
= 0,

υ(w1)− υ(b)− c+ V +
1 (u)− υ′(w1)

[
E[y|e = 1]− w1 + J+1 (u)

]
= 0.

Subtracting the second equation from the first, we obtain

V +
0 (u)− V +

1 (u) + υ(w0)− υ(w1)

+ υ′(w0)
[
J+1 (u)− J+0 (u) + w0 − w1

]
+ [υ′(w1)− υ′(w0)]

[
E[y|e = 1]− w1 + J+1 (u)

]
= 0.

Suppose without loss in generality that w0 ≥ w1. We can rewrite the above equation as

w0 − w1 =
[
J+0 (u)− J+1 (u)

]
+

[
V +
1 (u)− V +

0 (u)

υ′(w0)

]
+

[
υ(w1)− υ(w0)

υ′(w0)

]
+
[
E[y|e = 1]− w1 + J+1 (u)

] [υ′(w0)− υ′(w1)
υ′(w0)

]
.

(A.6)

The first term in square brackets on the right-hand side of (A.6) is strictly smaller than κ.

The second term in square brackets is strictly smaller than κ/υ′. The third term in square

brackets is strictly negative. The last term is strictly negative. Hence, we have

0 ≤ w0 − w1 < (1 + 1/υ′)κ.

Since the above inequality holds for any u ∈ [0, 1], we conclude that ‖w0 − w1‖ < αwκ where

αw = (1 + 1/υ′). �

46



B Proof of Lemma 7 and 8

Proof of Lemma 7: To simplify notation, let w0 denote w(u0) and w1 denote w(u1). Then

the difference J(u1)− J(u0) is given by

J(u1)− J(u0) = w0 − w1 + J+(u1)− J+(u0).

From the above expression, it follows that

J(u1)− J(u0) ≥ (Dw +DJ+)(u1 − u0),
J(u1)− J(u0) ≤ (Dw +DJ+)(u1 − u0).

(B.1)

The difference V (u1)− V (u0) is given by

V (u1)− V (u0) = υ′(w1)J(u1)− υ′(w0)J(u0)

= [υ′(w1)J(u1)− υ′(w1)J(u0)] + [υ′(w1)J(u0)− υ′(w0)J(u0)]

From the above expression, it follows that

V (u1)− V (u0) ≥ υ′(Dw +DJ+)(u1 − u0),
V (u1)− V (u0) ≤

[
υ′(Dw +DJ+) + υ′′DwJ

]
(u1 − u0).

(B.2)

Lemma 7 follows directly from the inequalities in (B.1) and (B.2). �

Proof of Lemma 8: Take an arbitrary u ∈ [0, 1]. The difference J0(u)− J1(u) is such that

|J0(u)− J1(u)| ≤ |w0(u)− w1(u)|+
∣∣J+0 (u)− J+1 (u)

∣∣
< (αw + 1)κ.

(B.3)

The difference V0(u)− V1(u) is such that

|V0(u)− V1(u)| ≤ |υ(w0(u))− υ(w1(u))|+
∣∣V +
0 (u)− V +

1 (u)
∣∣

< (υ′αw + 1)κ.
(B.4)

Since the inequalities (B.3) and (B.4) hold for all u ∈ [0, 1], we conclude that ‖J0 − J1‖ <
αJ ′κ and ‖V0 − V1‖ < αV ′κ, where αJ = αw + 1 and αV = υ′αw + 1. �

C Proof of Lemma 9 and 10

Proof of Lemma 9: Let û1 denote the solution to (35) for u = u1 and let û0 denote the

solution to (35) for u = u0, i.e.

û1 = u1 − u1µ(J(û1), u1) + (1− u1)[δ + (1− δ)p`(1)s(y`, ẑ
′)],

û0 = u0 − u0µ(J(û0), u0) + (1− u0)[δ + (1− δ)p`(1)s(y`, ẑ
′)].
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Subtracting the second equation from the first one, we obtain

û1 − û0 = (u1 − u0)(1− δ)[1− p`(1)s(y`, ẑ
′)]

+u0 [µ (J(û0), u0)− µ (J(û1), u0)]

+u0 [µ (J(û1), u0)− µ (J(û1), u1)]

+u0µ (J(û1), u1)− u1µ (J(û1), u1) .

(C.1)

The first line on the right-hand side of (C.1) is positive. Since µ(J, u) is increasing in J ,

J is increasing in u and, as established in the main text, û1 > û0, the second line on the

right-hand side of (C.1) is negative. Since µ(J, u) is decreasing in u and u1 > u0, the third

line on the right-hand side of (C.1) is positive. The fourth line on the right-hand side of

(C.1) is obviously negative. Hence, an upper bound on û1 − û0 is given by

û1 − û0 ≤ (u1 − u0)(1− δ)[1− p`(1)s(y`, ẑ
′)] + u0 [µ (J(û1), u0)− µ (J(û1), u1)]

≤ (u1 − u0) [1− δ + µu] .

Combining the above inequality with û1 < û0, we obtain

Dg (u1 − u0) < û1 − û0 ≤ Dg (u1 − u0) ,

where

Dg = 0, Dg = 1− δ + µu. �

Proof of Lemma 10: Take an arbitrary u ∈ [0, 1] and ẑ′ ∈ {B,G}. Let û0 denote g0(u, ẑ′)
and û1 denote g1(u, ẑ′). From (35), it follows that

û0 = u− uµ(J0(û0), u) + (1− u)[δ + (1− δ)p`(1)s(y`, ẑ
′)],

û1 = u− uµ(J1(û1), u) + (1− u)[δ + (1− δ)p`(1)s(y`, ẑ
′)].

Without loss in generality suppose that û0 ≥ û1. In this case,

û0 − û1 = u {[µ(J1(û1), u)− µ(J0(û1), u)] + [µ(J0(û1), u)− µ(J0(û0), u)]} . (C.2)

The term µ(J0(û1), u)− µ(J0(û0), u) on the right-hand side of (C.2) is negative as µ(J, u) is

increasing in J , J0 is increasing in u and û0 ≥ û1. Therefore, we have

û0 − û1 ≤ u [µ(J1(û1), u)− µ(J0(û1), u)] < µJαJκ.

Since the above inequality holds for any u ∈ [0, 1] and any ẑ′ ∈ {B,G}, we conclude that
‖g0 − g1‖ < αgκ, where αg = µJαJ . �
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D Proof of Lemma 11, 12 and 13

Proof of Lemma 11: Take arbitrary u0, u1 ∈ [0, 1] with u1 > u0. To simplify notation, let

û0,ẑ′ denote g(u0, ẑ
′) and let û1,ẑ′ denote g(u1, ẑ

′). Similarly, let π0,ẑ′ denote the probability

that the realization of the sunspot is ẑ′ ∈ {B,G} defined by using g(u0, B) in (41), and let

π1,ẑ′ denote the probability that the realization of the sunspot is ẑ′ ∈ {B,G} defined by using
g(u1, B) in (41). Using this notation and (39), we can write the difference V +′(u1)−V +′(u0)

as

V +′(u1)− V +′(u0)

= β
∑

ẑ′ {(π1,ẑ − π0,ẑ) [(1− δ)(1− p`(1)s(y`, ẑ
′))− µ(J(û1,ẑ, u1)]V (û1,ẑ)

+ π0,ẑ[(1− δ)(1− p`(1)s(y`, ẑ
′))− µ(J(û1,B, u1)] [V (û1,ẑ)− V (û0,ẑ)]

+ π0,ẑV (û0,ẑ)[µ(J(û0,B, u0)− µ(J(û0,B, u1)].

+ π0,ẑV (û0,ẑ)[µ(J(û0,B, u1)− µ(J(û1,B, u1)]}

(D.1)

The first term on the right-hand side of (D.1) is negative. In absolute value, this term is

smaller than cDVDgV (u1 − u0)/[β(ph(1)− ph(0))(1− δ)V 2]. The second term on the right-

hand side of (D.1) is geater than zero and smaller than π0,ẑ(1− δ)DVDg(u1−u0). The third
term on the right-hand side of (D.1) is positive, greater than π0,ẑV µu(u1 − u0) and smaller
than π0,ẑV µu(u1−u0). The last term on the right-hand side of (D.1) is negative. In absolute
value, this term is smaller than π0,ẑV µJDJDg(u1 − u0). Overall, we have

V +′(u1)− V +′(u0) ≥
[
βV (µ

u
− µJDJDg)−

2cDVDgV

(ph(1)− ph(0))(1− δ)V 2

]
(u1 − u0), (D.2)

and

V +′(u1)− V +′(u0) ≤ β
[
V µu + (1− δ)DVDg

]
(u1 − u0). (D.3)

Using (40), we can write the difference J+′(u1)− J+′(u0) as

J+′(u1)− J+′(u0)
= β

∑
ẑ′ {(π1,ẑ − π0,ẑ) [(1− δ)(1− p`(1)s(y`, ẑ

′))]J(û1,ẑ)

+ π0,ẑ[(1− δ)(1− p`(1)s(y`, ẑ
′))] [J(û1,ẑ)− J(û0,ẑ)] .

(D.4)

The first term on the right-hand side of (D.4) is negative. In absolute value, this term is

smaller than cDVDgJ(u1 − u0)/[β(ph(1)− ph(0))(1− δ)V 2]. The second term on the right-

hand side of (D.4) is geater than zero and smaller than π0,ẑ(1− δ)DJDg(u1 − u0). Overall,
we have

J+′(u1)− J+′(u0) ≥ −
2cDVDgJ

(ph(1)− ph(0))(1− δ)V 2 (u1 − u0), (D.5)
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and

J+′(u1)− J+′(u0) ≤ β(1− δ)DJDg(u1 − u0). (D.6)

Lemma 11 follows directly from the inequalities in (D.2)-(D.3) and (D.5)-(D.6). �

Proof of Lemma 12: Set D′V+ and D
′
V+ in (43) equal to DV+ and DV+, and D′J+ and D

′
J+

in (44) equal to DJ+ and DJ+. Then solve for DV+, DV+, DJ+ and DJ+. It is immediate

to verify that, since µu − µJ(1 − δ + µu) > 0, DV+ > DV+ > 0, DJ+ > 0 ≥ DJ+ and

DV+ > υ′(DJ+ −DJ+) for β and c small enough. �

Proof of Lemma 13: Take an arbitrary u ∈ [0, 1]. To simplify notation, let û0,ẑ′ denote

g0(u, ẑ
′) and let û1,ẑ′ denote g1(u, ẑ′). Similarly, let π0,ẑ′ denote the probability that the

realization of the sunspot is ẑ′ ∈ {B,G} defined by using V0 and g0 in (41), and let π1,ẑ′
denote the probability that the realization of the sunspot is ẑ′ ∈ {B,G} defined by using V1
and g1 in (41). Using this notation and (39), we can write the difference V +′

0 (u)− V +′
1 (u) as

V +′
0 (u)− V +′

1 (u)

= β
∑

ẑ′ {(π0,ẑ − π1,ẑ) [(1− δ)(1− p`(1)s(y`, ẑ
′))− µ(J0(û0,ẑ, u)]V0(û0,ẑ)

+ π1,ẑ[(1− δ)(1− p`(1)s(y`, ẑ
′))− µ(J0(û0,ẑ, u)] [V0(û0,ẑ)− V1(û1,ẑ)]

+ π1,ẑV1(û1,ẑ)[µ(J1(û1,ẑ, u)− µ(J0(û0,ẑ, u)]}.

(D.7)

From (D.7), it follows that the absolute value of the difference V +′
0 (u)− V +′

1 (u) is such that∣∣V +′
0 (u)− V +

1 (u)
∣∣

≤ 2cV

(ph(1)− ph(0))(1− δ)V 2

(
αV +DV αg

)
κ+

(
αV +DV αg

)
κ+ V µJ

(
αJ +DJαg

)
κ,

(D.8)

where the first term on the right-hand side of (D.8) is an upper bound on the absolute value

on the first line on the right-hand side of (D.7), the second term on the right-hand side of

(D.8) is an upper bound on the absolute value on the second line on the right-hand side of

(D.7), and the last term on the right-hand side of (D.8) is an upper bound on the absolute

value on the last line on the right-hand side of (D.7).

Using (40) we can write the difference J+′0 (u)− J+′1 (u) as

J+′0 (u)− J+′1 (u)

= β
∑

ẑ′ {(π0,ẑ − π1,ẑ) (1− δ)(1− p`(1)s(y`, ẑ
′))J0(û0,ẑ)

+ π1,ẑ(1− δ)(1− p`(1)s(y`, ẑ
′)) [J0(û0,ẑ)− J1(û1,ẑ)] .

(D.9)

From (D.9), it follows that the absolute value of the difference J+′0 (u)− J+′1 (u) is such that∣∣J+′0 (u)− J+′1 (u)
∣∣

≤ 2cJ

(ph(1)− ph(0))(1− δ)V 2

(
αV +DV αg

)
κ+

(
αJ +DJαg

)
κ,

(D.10)
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where the first term on the right-hand side of (D.10) is an upper bound on the absolute value

on the first line on the right-hand side of (D.9), and the second term on the right-hand side

of (D.10) is an upper bound on the absolute value on the second line on the right-hand side

of (D.9).

Since the inequalities (D.8) and (D.10) hold for any u ∈ [0, 1], we conclude that
∥∥V +′

0 − V +′
1

∥∥ <
αV+κ and

∥∥J+′0 − J+′1 ∥∥ < αJ+κ, where αV+κ denotes the right-hand side of (D.8) and αJ+κ

denotes the right-hand side of (D.10) . �
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